
www.elsevier.com/locate/parco

Parallel Computing 30 (2004) 225–248
A compiler tool to predict memory
hierarchy performance of scientific codes q

B.B. Fraguela a, R. Doallo a,*, J. Touri~no a, E.L. Zapata b

a Depto. de Electr�onica e Sistemas, Facultade de Inform�atica, Universidade da Coru~na,
Campus de Elvi~na s/n, 15071 A Coru~na, Spain

b Depto. de Arquitectura de Computadores, Complejo Tecnol�ogico Campus de Teatinos,

Universidad de M�alaga, 29080 M�alaga, Spain

Received 15 March 2002; received in revised form 15 February 2003; accepted 15 September 2003
Abstract

The study and understanding of memory hierarchy behavior is essential, as it is critical to

current systems performance. The design of optimising environments and compilers, which

allow the guidance of program transformation applications in order to improve cache perfor-

mance with as little user intervention as possible, is particularly interesting. In this paper we

introduce a fast analytical modelling technique that is suitable for arbitrary set-associative ca-

ches with LRU replacement policy, which overcomes weak points of other approaches found

in the literature. The model was integrated in the Polaris parallelizing compiler, to allow auto-

mated analysis of loop-oriented scientific codes and to drive code optimizations. Results from

detailed validations using well-known benchmarks show that the model predictions are usually

very accurate and that the code optimizations proposed by the model are always, or nearly

always, optimal.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Memory hierarchy; Cache behavior; Performance prediction; Compiler optimizations
qThis work was supported in part by the Ministry of Science and Technology of Spain under contract

TIC2001-3694-C02-02.
*Corresponding author.

E-mail addresses: basilio@udc.es (B.B. Fraguela), doallo@udc.es (R. Doallo), juan@udc.es

(J. Touri~no), ezapata@ac.uma.es (E.L. Zapata).

0167-8191/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2003.09.004

mail to: basilio@udc.es

226 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
1. Introduction

The widening disparity between processor and main-memory speeds makes mem-

ory hierarchy performance one of the most critical factors that influences global sys-

tem performance. Programmers are aware of this and try to hand-tune it to their
codes through a time-consuming trial and error process [1], either intuitively, or

using costly traditional techniques such as trace-driven simulations [2], or profiling

(e.g. using built-in hardware counters [3]). These methods are not the most suitable

ones, because they provide very little information on the reasons for a given memory

hierarchy behavior and their time requirements are high. As a result, a lot of effort is

made to automatically and efficiently guide this kind of optimization. Present com-

piler technology usually relies on limited scope heuristics and simple analyses that

lack the necessary generality and precision. New general techniques for analysing
cache performance are required to give accurate predictions of memory hierarchy

behavior, improve its understanding, and to provide the information needed to pro-

pose improvements to the cache configuration or the code structure.

Analytical models based on the direct analysis of the source code seem to be a

very reasonable approach to meet these challenges, as they overcome the limitations

of the other strategies. Still, traditionally, they have had two important disadvan-

tages with respect to the aforementioned techniques. One has been the lack of accu-

racy, as many models give rough approximations of the number of misses, rather
than precise quantitative estimations. This is not surprising, since cache behavior

is known to be highly unstable and sensitive to small changes in a large number

of parameters [4,5]: code structure, problem sizes, base addresses, cache layout,

etc. Another drawback of the analytical models has been their limited scope, as, in

some way, they all restrict either the code structure or the memory hierarchy they

can analyse. Finally, only the construction of some models [6–10] has been system-

atized to the point of allowing their integration in frameworks that can apply them

automatically. The resulting tools analyse cache performance and/or propose suit-
able program transformations in order to optimize cache behavior for the given in-

put codes.

Our group has developed a fast analytical model [11] that makes accurate predic-

tions of the performance of set-associative caches with LRU replacement policy for

general loop-oriented codes. It is based on the generation of a set of what we denote

as probabilistic miss equations (PMEs). These equations provide estimators for the

number of misses generated by each reference in each loop. Unlike most of the other

models found in the bibliography, which consider separately each loop nest, ours
takes into consideration, the probability of hits due to reuse of data structures ac-

cessed in loops in different nests. This is very important, since most misses may occur

between loop executions [12]. Although a conservative approach is applied in the

current implementation, the analysis of real scientific codes without limiting the

study to isolated loop-nests becomes feasible. It should also be mentioned that

our model is the only one of this kind that is based on a probabilistic approach. This

property enables it to predict memory system performance without knowing the base

addresses of the data structures, something that no other model can do. If such

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 227
addresses are available, the model uses them to improve the prediction. A final pro-

perty of our model is its velocity, which enables it to be used for extensive searches

in the optimization space of large codes.

In this paper we have unified the different cases for generating the miss equations

exposed in [11] in a single expression. Furthermore, the model has been integrated in
the Polaris parallelizing compiler framework [13], to automatically make perfor-

mance estimations and propose code optimizations. In this paper the model is vali-

dated, using both small kernels and codes from the SPECfp95 suite, and the

feasibility of driving compiler optimizations that lead to optimal or almost optimal

solutions using the analytical model is shown. In fact, we will see that the optimiza-

tions proposed by our tool are usually better than those of a current production

compiler.

This paper is structured as follows: The following section provides a detailed re-
view of related work. Section 3 introduces the underlying modelling ideas on which

PMEs are based. It explains how to derive both formulae that give the number of

misses for each reference in a set of nested loops, and the miss probabilities generated

by the accesses performed during the given reuse distances that such formulae re-

quire. Details about the structure and functionality of our tool, integrated in Polaris

to analyse real codes and suggest code optimizations, can be found in Section 4. The

next section compares the model predictions with the measurements of trace-driven

simulations to evaluate its accuracy and speed. Section 6 focuses on automatic
code optimization. Section 7 follows with our conclusions.
2. Related work

A number of analytical models based on the code structure have been developed,

but they differ in distinct levels of coverage with respect to scope of applicability,

type of results delivered, accuracy, execution times required for obtaining model re-
sults, or implementation in a compiler framework. For example, Ferrante et al. [14]

consider an arbitrary degree of associativity, but they estimate the number of differ-

ent lines that the references in a given loop-nest access rather than the real number of

misses. This is often misleading, as conflict misses play a very important role that is

not considered in that work. A model based on a code that considers all the kinds of

misses and which can be applied to general numerical codes is presented in [5],

although it is restricted to direct-mapped and isolated perfect loop-nests. The miss

formulae of this model are based on the calculation of the footprints on the cache
of the different references of the loop. More recently, Ghosh et al. [7] and Harper

et al. [8] have overcome some of these restrictions. The first paper introduces Cache

Miss Equations (CMEs), a system of linear Diophantine equations where each solu-

tion corresponds to a potential cache miss. Although CMEs can be generated in a few

seconds for standard benchmark programs and are very accurate, using them to try

to predict or optimize the cache behavior seems to have heavy computing require-

ments. On the other hand, Harper et al [8] focus on the same class of nests as [5]

and also base their approach on footprints. Their model is devoted to set-associative

228 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
caches and has modeling times very similar to those of our tool. Tests show that

the error of our model is usually between two and three times smaller than theirs,

using the same example codes they propose.

All the works referenced above share a common limitation that we have over-

come: their modelling is suitable for regular access patterns in isolated, perfectly
nested loops, and they do not take into account the probability of hits in the reuse

of data structures referenced in previous loops. This is a very important issue, as

pointed out by McKinley and Temam [12]. In any case, our model is not the only

one capable of handling non-perfect loop-nests and analysing a whole code rather

than isolated loop-nests. Recently Vera and Xue [9] have reduced the computing

requirements of the CMEs by applying statistical techniques and have extended

the model to handle complete codes with regular computations. Table 1 compares the

accuracy and speed of that model and ours using the cache configurations that they
use in most of their evaluations. MMT is a matrix product with blocking in two

dimensions that Vera and Xue use to compare their model with ours, while Tomcatv

and Swim are two well-known SPECfp95 codes. We can see that accuracy is similar,

while our model is much faster. Notice that the models must be applied hundreds or

thousands of times to search in the optimization space for optimal block sizes, pad-

dings, etc. So typical compiler applications will require computing times which are

several orders of magnitude longer than those required by a single evaluation of

the models. An approach based on Presburger formulae [10] also addresses the reuse
in non-perfect loop-nests and gives exact predictions for small kernels that can in-

clude certain conditional statements and non-linear data layouts, while allowing a

certain amount of symbolic analysis. Drawbacks also exist, as it can only handle

modest levels of associativity and is very time-consuming, which currently reduces

its applicability. Blieberger et al. [15] propose a model completely focused on sym-

bolic evaluation and analysis which addresses set-associative caches. Their strategy
Table 1

Comparison between Vera and Xue’s EstimateMisses algorithm (subindex E) using a 95% confidence and

an interval of 0.05 [9], and our probabilistic model (subindex P) for a 32 Kbyte cache with lines of 32 bytes

and different degrees of associativity (K)

Benchmark K ErrE ErrP TimeE TimeP

MMT 1 0.23 0.02 100.00 0.45

N ¼ BJ ¼ 100, 2 0.37 0.20 100.00 0.36

BK ¼ 50 4 0.37 0.06 110.00 0.32

Tomcatv (ref. input set) 1 0.04 0.31 300.00 0.87

2 0.03 0.32 370.00 0.88

4 0.06 0.11 580.00 0.92

Swim (ref. input set) 1 0.25 0.05 2470.00 2.30

2 0.25 0.12 2630.00 2.10

4 0.27 0.03 3230.00 2.00

The error (Err) is expressed as the absolute difference between the predicted and the measured miss ratios.

Modeling times (Time, in ms) for both models were measured on a 933 MHz Pentium III.

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 229
involves instrumenting source codes that are then symbolically evaluated to generate

symbolic trace-files which store all the references of the program as symbolic expres-

sions and recurrences. The symbolic evaluation of this trace-file, based on the cache

parameters, yields the final analytical cache hit function. Unfortunately it has only

been evaluated with simple kernels, for which it yields very accurate results, and
there is no information about its computing requirements. A very important advan-

tage, exclusive of our model, is that it is able to predict the behavior of a code with-

out knowing the base addresses of the data structures, which is a quite common

situation. For this reason it is also the only one applicable to physically indexed

caches or dynamically allocated data structures.

Some other recently designed tools, such as Delphi [6] and SPLAT [16] analyse

codes through both run-time profiling and analytic models. Delphi bases its model

on stack distances, by generating stack histograms for each individual loop-nest.
This restricts the accurate estimation to fully associative caches with LRU replace-

ment policy (although it includes a probabilistic approach to handle general set-asso-

ciative caches), and causes the loss of reuse information between different loop-nests.

Delphi also includes a model for indirect accesses and a CPU model that we have

used as a complement to our model in Section 6, to obtain real computing time esti-

mations. The locality analysis in SPLAT uses a series of phases. In the volume phase

the cache behavior is considered to be similar to that of an LRU fully associative

cache, while in the interference phase the model only focuses on direct-mapped ca-
ches. However, it relies on the CMEs to estimate the behavior of set-associative ca-

ches. Both tools, Delphi and SPLAT, require computing times to perform their

analysis which are typically several orders of magnitude larger than those of our

tool. In both cases prediction errors are usually similar or larger than ours, but only

consider codes in which the vast majority of the accesses are sequential, like tomcatv

and swim. These kinds of codes are better suited to their strategy of modelling set-

associative or direct-mapped caches as if they were fully associative. Experiments

using the matrix product with blocking, a code which presents a larger variety of
access patterns, show that large deviations appeared in the predictions of Delphi

(we had no access to SPLAT), while our model generates very good predictions

(see Section 5).
3. Model concepts

We classify misses as either cold or interference misses. When a line is accessed for
the very first time, it gives place to a cold miss. All the remaining misses on that line

take place when the processor tries to reuse the line, but the line has been replaced

due to accesses to other lines that interfere with it in its cache set. For example, in a

K-way associative cache with LRU replacement, the condition for a cache line to be

replaced is that K, or more different lines mapped to its same cache set, be accessed

since the last access to this line. Analysing the access patterns of the different refer-

ences during a given portion of the program execution, provides knowledge of how

many different lines have been accessed, as well as how many of them will be reused

230 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
and which other lines will be accessed between those reuses. This way, miss equations

that estimate the number of misses that such references generate can be constructed.

Our model differs from all the related works in the bibliography in its probabilistic

approach. It builds PMEs based on the estimation of miss probabilities for the line

reuses. These probabilities depend on the cache area affected by the accesses per-
formed between the consecutive accesses to each line.

Let us now consider an initial modelling scope to develop these ideas. This scope

is a set of normalized nested loops, like the one in Fig. 1, where several arrays are

accessed through references indexed by affine functions of the enclosing loop vari-

ables. The references can be found in any nesting level, so imperfectly nested loops

can be analysed. The number of iterations of each loop will be known at compile

time and is the same in each execution of the loop. The code is executed in a machine

with an arbitrary cache size, line size and degree of associativity. The only limitation
regarding the cache is that the replacement policy must be LRU. Under these con-

ditions, which depict the most common indexing scheme in scientific and engineering

codes, a PME for each reference in each nesting level is generated following

some simple ideas:

• Each loop enclosing a given reference gives place to a stride in the accesses of the

reference (which may be zero) and to a fixed number of accesses following this

stride. This way, a function to estimate the number of misses generated by the refe-
rence during execution of that loop can be built (see Section 3.1).

• The existence of several references to a given array gives place to reuses of those

lines that are accessed by two or more of these references (group reuse). As a re-

sult, miss equations for loops in which these reuses occur will not reflect the total

size of such loops, but rather the number of iterations between consecutive reuses.

In order to simplify the analysis, our model only computes the reuse among refe-
Fig. 1. General perfectly nested DO loops in a regular code.

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 231
rences which are in translation, that is, their indices only differ in one or more

of the added d constants. Most reuse in scientific codes comes from this kind of

reference groups.

• The cache area affected by the accesses of a given reference during a number of

executions of any of its enclosing loops can be computed either analytically or
through simulation, or following a mixed approach. The probability that these

accesses generate interferences that affect this specific reference, or others, can

be derived from this cache area (see Section 3.2).

• Once these ideas are developed, it is clear that there is no reason to restrict our

study to a single simple nest. Computing reuse distances and interference proba-

bilities between references located in different nests has also been done, although a

number of restrictions must be met (see [11] for more information).

The modelling requires data such as the size of the loops, the indices of the refe-

rences and so on. Many times this data is not available at compile time. In these

cases, code instrumentation could capture such data at run-time, which for example

is the approach of Delphi [6]. As for data locations, the model can use them if they

are available, but it can also predict the memory behavior using a completely prob-

abilistic approach that does not use them. Our model cannot be applied to codes that

include conditional structures.

In the following we discuss the PMEs and the miss probabilities that PMEs use in
Sections 3.1 and 3.2, respectively. It is interesting to note that although this basic

modelling scope allows the analysis of many programs, our modelling ideas are gen-

eral enough to allow the expansion of this scope in a number of ways. For example,

our model already supports some kinds of loop dependences (blocking) and loops

with a different number of iterations in different executions (triangular loops).

3.1. Probabilistic miss equations

Our model associates a probabilistic miss estimator FRiðpÞ to each reference R and

enclosing loop at nesting level i, which estimates the number of misses the reference

generates during the execution of that loop. The estimator is a function of the miss

probability p in the first access to a line of the data structure that R references during

the execution of that loop. This probability is an input parameter for the estimator in

this nesting level, because it depends on the access patterns and accesses in outer and/

or previous loops. If R is enclosed by loop iþ 1, FRiðpÞ is calculated in a PME in

terms of FRðiþ1ÞðpÞ, as each iteration of the loop i involves the execution of the imme-
diate inner loop iþ 1, and thus FRðiþ1ÞðpÞ includes the access pattern of the reference

in that loop and the misses generated in it. On the other hand, the analysis of loop i
provides p for any immediate inner loop iþ 1. Thus, the analysis of each reference

starts in the innermost loop that contains it, and finishes in the outermost loop. In

the innermost loop containing a reference, there is no inner loop to analyze that car-

ries information on the access pattern of the reference. As a result, in the PME that

generates the estimator for this loop, the FRðiþ1ÞðpÞ estimator really corresponds to

one execution of the loop body, rather than to the execution of any inner loop. This

232 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
way, in the PME that generates the estimator for the innermost loop, FRðiþ1ÞðpÞ is re-
placed by p, the probability of a miss in any single access. The input miss probability

for the outermost loop of the code is one, as there are no portions of the data struc-

ture in the cache when the execution begins. Notice that the generation of a miss

estimation per reference and loop facilitates the detection of those references and
loops where data accesses become a serious bottleneck (hot spots).

Let Ni be the number of iterations of the loop at nesting level i, and LRi be the

number of iterations in which R cannot reuse lines in this loop, then the estimator

FRiðpÞ for this reference R is obtained by the PME
FRiðpÞ ¼ LRiFRðiþ1ÞðpÞ þ ðNi � LRiÞFRðiþ1ÞðPRðItði; 1ÞÞÞ ð1Þ
if R carries no reuse with other references. Itði; nÞ represents the memory regions
accessed during n iterations of the loop at nesting level i, and PR(RegionsSet) is

the interference probability that the access to region(s) RegionsSet generates on the

accesses of R. In Section 3.2 we elaborate on the mapping of accessed regions to the

interference probabilities they generate. This formula reflects that the miss proba-

bility for the LRi loop iterations in which there can be no reuse in this loop, depends

on the accesses and patterns in the outer loops (given by p), while the miss proba-

bility for the remaining iterations and their accesses is a function of the regions

accessed during the portion of the program executed between those reuses, which is
one iteration of this loop.

The indices of R are affine functions of the enclosing loop variables, so there is a

constant stride SRi for this reference associated to the loop i. As a result, LRi can be

calculated as
LRi ¼ 1þ Ni � 1

maxfLs=SRi; 1g

� �
ð2Þ
where Ls is the number of array elements a cache line holds. The formula estimates

the number of accesses of R that cannot exploit either temporal or spatial locality,

and it is equivalent to estimating the number of different lines that are accessed in Ni

iterations with stride SRi. On the one hand, if the index of loop i does not index
reference R, then SRi ¼ 0 and LRi ¼ 1. This is correct, as in that case there is a single

iteration for cold accesses with respect to this loop (the first one) and all the

remaining iterations are potential reuses due to temporal locality. On the other hand,

if R is indexed by the loop variable, then SRi > 0 and it accesses different data items in

different iterations. In this case, the reuse of lines related to the execution of this loop

is only possible by exploiting spatial locality. As we access LRi different lines during

the Ni iterations of the loop with stride SRi, then this locality can be exploited by the

remaining Ni � LRi iterations. This way Eq. (2) captures both temporal and spatial
locality, and in either case the reuse distance is always one iteration of the loop which

is being considered, which justifies Eq. (1).

The above formulae are applied when the reference carries no reuse with other refe-

rences. When the reference belongs to a group of references in translation, they all

exhibit the same strides, but may differ in the d constants of the indices. This gives

rise to possible (spatial or temporal) systematic group reuse between them, which

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 233
is taken into account when building the corresponding PMEs. Our model sorts the

references in descending order of their base address in order to compare them and

estimate the reuse distance, measured in loop iterations, of the lines accessed by these

groups of references. The PMEs corresponding to these references are summationies,

in which each term expresses the number of accesses that have a given reuse distance
multiplied by the miss probability associated with that distance. This algorithm is

explained in [11].

Example. In order to illustrate our model, we will explain the modelling of the

following simple loop, where the references have been numbered:

REAL*8 A(250), B(250,250)

DO I¼1, 200

T¼T+A1(I)+A2(I+2)

B3(1,I)¼2*T

END DO

Let us consider for example a computer with 8-byte words and a 2-way 4 Kw cache

with 4-word lines. Then, Ls ¼ 4, and the PMEs for references R2, A(I+2), and R3,

B(1,I), for loop I at nesting level 0 with N0 ¼ 200 iterations, would be:
FR20ðpÞ ¼ 50 � p þ 150 � ðPR2
ðItð0; 1ÞÞÞ

FR30ðpÞ ¼ 200 � p

as R2 has stride SR20 ¼ 1 in the loop, which implies in Eq. (2) that LR20 ¼ 50; and the

stride for R3 is SR30 ¼ 250, resulting in LR20 ¼ 200. Notice that LRi is always the number

of different lines the reference R accesses in the loop. Finally, this loop contains

no other loops, so FRðiþ1ÞðpÞ is replaced in the PMEs by p, as we have explained.
The PME for reference R1, A(I), cannot be derived from Eq. (1) because it exhib-

its group reuse with respect to the reference R2. Although this kind of modeling is not

explained in this paper, we illustrate it for this example with this simple reasoning. Its
PME is FR10ðpÞ ¼ 100 � ðPR1

ðItð0; 1ÞÞÞ, because in 50 out of the 200 iterations of the

loop it is accessing the line that R2 accessed in the previous iteration, and in another

50 iterations it is accessing the same line it accessed in the previous iteration. This

yields a total of 100 accesses whose reuse distance is Itð0; 1Þ, this is, one execution

of the loop under consideration. In the remaining 100 iterations, R1 is accessing

the same line as R2 and there are no intermediate accesses, so these accesses cannot

result in misses. As a result, these iterations are not represented in the PME.

3.2. Miss probabilities

In Section 3.1 interference probability has been represented through the reuse dis-

tance between two consecutive accesses to the line accessed by the reference whose

behavior is being studied. The process to calculate the miss probability associated

to a given reuse distance has three steps: Access Pattern Description, Cache Impact

Quantification, and Area Vectors Addition. The first one involves the description of

234 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
the access pattern followed by the references inside the reuse distance. This is

achieved by examining the indices of each dimension as well as the number of iter-

ations during the reuse distance for each loop that controls these indices. Consider-

ing these two factors together, we will obtain the shape and size of the accessed

region.
In the second step, Cache Impact Quantification, each region is analyzed in order

to describe the way its access affects the cache. This involves calculating the cache

footprint of the region and its contribution to the miss probability we are estimating.

This is represented in our model by the interference area vectors. Given a data struc-

ture A and a K-way associative cache, we call SA ¼ SA0
; SA1

; . . . ; SAK is the area vector

associated with the accesses to A during a given period of the program execution.

The element in the ith position of the vector stands for the ratio of sets that have

received K � i lines of this structure. The exception is SA0
, as it is the ratio of sets that

have received K or more lines. Thus, SA0
is the probability that the accesses to array A

produce an interference, as we are considering caches with LRU replacement policy.

Notice that estimating the area vector of a given region just means counting how

many different lines of that region fall in each cache set. A region has two kinds

of interference area vectors associated to it. Self-interference area vectors contain

the information required to estimate the miss probability on the reference(s) that ac-

cess the region they depict. On the other hand, cross interference area vectors are

generated by the accesses of the references to other regions. The calculation of both
kinds of area vectors for a given access pattern is different only because a given line

does not generate interferences with itself, thus the calculations are very similar.

There are a number of typical access patterns which account for the vast majority

of the accesses in scientific codes. A previous work [17], focused on non-automatic

modeling of irregular codes, describes formulae and algorithms to estimate the area

vectors associated to many of these patterns. The most common regular patterns

found in loop-oriented scientific and engineering applications are sequential access

and access to regions of the same size separated by a constant stride. Simulation
must be used when we lack the analytical tools to calculate this impact.

In the following, we show the sequential access to n words as an example, in order

to illustrate our area vector estimation approach. Its cross interference area vector,

SsðnÞ, can be estimated as:
SsðK�blcÞ ðnÞ ¼ 1� ðl� blcÞ

SsðK�blc�1Þ ðnÞ ¼ l� blc

SsiðnÞ ¼ 0 06 i < K � blc � 1;K � blc < i6K

ð3Þ
where l ¼ maxfK; ðnþ Ls � 1Þ=ðCs=KÞg is the average number of lines of this access

that are placed in each set when it finishes. In this expression Ls stands for line size

and Cs for cache size. The term Ls � 1 added to n stands for the average extra words

brought to the cache in the first and last accessed lines. The formula expresses that

ðl� blcÞ � 100% of the cache sets keep K � blc � 1 lines of this access and the

remaining cache sets keep K � blc lines.

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 235
The self-interference area vector associated to this access, SsaðnÞ, expresses the

interference that the lines associated to this access generate on themselves. It can

be estimated as SsaðnÞ ¼ SsðCðnÞCs=KÞ, because the self-interference for each indivi-

dual line is equivalent to the cross interference generated by the sequential access

to CðnÞCs=K words, where CðnÞ is the average number of lines of this access that com-
pete with another line in its set. This value is calculated as CðnÞ ¼ bvc=vð2v� bvc � 1Þ
where v ¼ ðnþ Ls � 1Þ=ðCs=KÞ.

Once the effect on the cache of the accesses to the different data structures has

been calculated, a third step, Area Vectors Addition, is required to add them together,

in order to obtain the global effect on the cache. If the relative position of the data

structures is known, each area vector is scaled before its addition: the amount of

overlapping between its region and the data structure associated to the reference

whose PME is being calculated is expressed using a coefficient. Once the scaling
has been done, the area vectors are added considering their area ratios as indepen-

dent probabilities. Given two area vectors SU and SV , their addition, represented

by the operator [, is calculated as
ðSU [SV Þ0 ¼
XK
j¼0

SUj

XK�j

i¼0

SVi

 !

ðSU [SV Þi ¼
XK
j¼i

SUjSVðKþi�jÞ 0 < i6K

ð4Þ
It should be mentioned that when the analysed references are in translation, the

access pattern is sequential and the array base addresses are known, then an opti-

mized algorithm which considers the pathological conflicts that may arise in such

cases is applied.

Example. The PMEs calculated in the example in Section 3.1 must be completed with

the corresponding miss probabilities. Both FR10ðpÞ and FR20ðpÞ depend on the miss

probability on the line they access due to the regions accessed during one loop
iteration. In each of the iterations in our example loop, two elements (separated by

one) from A and one element from B are accessed. This access pattern to A is

equivalent, from the point of view of the cache footprint, to an access to three

consecutive elements. This way, both regions can be modeled as a sequential access.

As the degree of associativity is K ¼ 2, the area vectors that depict these regions have

three elements. The cross interference area vectors associated to these regions are

Scross A Itð0;1Þ ¼ Ssð3Þ ¼ ð0; 1:5=512; 510:5=512Þ for array A, and Scross B Itð0;1Þ ¼ Ssð1Þ ¼
ð0; 1=512; 511=512Þ for matrix B, both calculated according to Eq. (3). The self-
interference area vectors for both data structures would be Sself A Itð0;1Þ ¼ Ssað3Þ ¼
Sself B Itð0;1Þ ¼ Ssað1Þ ¼ ð0; 0; 1Þ, as neither of these regions interferes with itself in the

cache.

As explained, the last step in order to calculate the miss probabilities is to add the

area vectors corresponding to the different data structures accessed during the con-

sidered period of the program execution. In our example, both PR2
ðItð0; 1ÞÞ and PR1

236 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
ðItð0; 1ÞÞ are the first element of the area vector Scross B Itð0;1Þ [Sself A Itð0;1Þ, which yields

(0, 1/512, 511/512) according to Eq. (4). As a result, the final expression for the

PMEs of the three references in our example code is FR10ðpÞ ¼ 0, FR20ðpÞ ¼ 50 � p
and FR30ðpÞ ¼ 200 � p.
4. A compiler framework for analytical modelling

The final purpose of the modelling task described in the previous section is the

integration of the model in a compiler environment. This allows the analysis of real

scientific codes, both effectively and quickly, in such a way that code optimizations

can be proposed. Our modelling technique has been embedded in the Polaris paral-

lelizing compiler [13], using its development infrastructure. The whole environment
also includes the Delphi CPU model [6]. Thus, the computation cycles predicted by

Delphi can be added to the stall cycles caused by the misses predicted by our model,

in order to estimate real execution times. Memory hierarchies of arbitrary size, block

size and associativity per memory level, and LRU replacement policy (which nowa-

days is by far the most common) can be considered to depict the behavior of memory

systems. Basically, our framework takes as inputs the memory hierarchy parameters

and a FORTRAN 77 program, and returns system performance results using our

analytical models. It also provides timing results for each stage of the tool, as well
as the desired level of monitoring capabilities (from a user-level up to a developer-

level).

The tool structure is depicted in Fig. 2, and it consists of the following blocks:

• In the Cache Parameters configuration file, the user specifies for each level of

the memory hierarchy: its size, line size (both expressed in number of words),

degree of associativity and miss weight. This file also contains, among others,

switches to enable/disable the code generation of the simulator and also the
analyser shown in Fig. 2. All parameters can also be specified on the command

line.

• The Modelling Library is a set of C routines that collect, in a modular way, our

analytical model described in the previous section.

• The Delphi CPU Modelling Library is used in those cases in which predictions

involving the processor execution time are required.

• The Optimization Library analyses the input code and uses the predictions of the

memory hierarchy behavior (and also the CPU, if required), and suggests code
restructuring in order to reduce the total execution time. An example of optimi-

zation currently implemented is the selection of an optimal block size for the

points in the program where a blocking pattern is detected.

• The Parser/Integrator is the integrative part of this framework. It analyses the

source code, detects array reference patterns inside a loop, and uses the corre-

sponding model from the Modelling Library. Note that the functionality of our

performance model could be embedded in other compiler environments by chang-

ing this module.

C++

C++

C

F77F77

F77F77TextC C

Text

Modelling

Results Source Code

Analyser

Code

Library
Simulation

Library

Polaris

Simulator
Code

C

C

Library

Modelling

Library

Optimization

Fortran 77 Code

C++

Delphi CPU
Modelling Library

Parser/Integrator

Cache Parameters

Optimized

Fig. 2. Tool diagram.

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 237
Our tool provides both general and detailed information about cache behavior

in the Modelling Results: global number of misses, misses per data structure, misses

per loop (or set of loops). Thus, cache hot spots can be detected and localized to

drive code optimizations. Optionally, the following files can be generated:

• The Analyser Code is a C program (with the appropriate calls to the Modelling

Library) that obtains the modelling results of the input code (although the cache
parameters and optionally, the data structures base addresses, can be altered).

The aim of this code is to be used afterwards for testing purposes on any machine,

independently of the Polaris environment.

• The Simulator Code is the C code of a trace-driven simulator that validates the

analytical results obtained for the specific input code. As in the case of the analy-

ser, it allows the modification of the memory hierarchy parameters and the data

structures base addresses. Simulation is performed by an optimized library of

functions (Simulation Library in Fig. 2) that has been extensively validated match-
ing its results with those of the dineroIII simulator (a component of the WARTS

toolset [1]).

238 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
• The Optimized Source Code is the input code after a source-to-source transforma-

tion. In case of a blocking transformation, currently implemented, for each block-

ing, the original block size is replaced by the optimal block size (computed

by means of our analytical models).
5. Experimental results

The main validation of our model has been performed by comparing the number

of misses it predicts with the values measured using trace-driven simulations. The

code to perform these simulations can also be generated automatically by our tool

(Simulator Code and Simulation Library in Fig. 2). Thus, we have applied both ap-

proaches to a series of codes using a wide variety of combinations of cache para-
meters and data structure dimensions. Also, for each combination, several simulations

(approximately twenty) were performed, changing the value of the data structure

base addresses using a random generator.

Two kinds of metrics have been calculated for each cache parameter combination:

DMR, which is based on the miss ratio (MR), and DNM, based on the number of

misses. The first metric, DMR, is the average of the differences between the predicted

and measured miss ratios obtained for each combination of array base addresses

tried for each cache; DNM is the average error in the prediction of the number of
misses in these trials, expressed as a percentage of the number of measured misses.

Both the miss ratio differences and the percentage error in the prediction of the num-

ber of misses were taken in absolute value to calculate the averages, so that negative

and positive values did not compensate each other. The standard deviation, r, of the
number of measured misses in the simulations (expressed as a percentage of the aver-

age number of measured misses) is also taken into account to help understand the

memory behavior of the algorithms.

5.1. Validation through synthetic codes

The validation was first performed using three kernels covering different access

patterns and loop-nests:

(1) The synthetic code in Fig. 3 represents a type of code with several non-perfect

nestings. A number of 216 parameter combinations (and more than 4000 simu-

lations) were tried.
(2) A matrix–matrix product with blocking (Fig. 4) was validated checking 2400

parameter combinations resulting in 16,320 simulations.

(3) Finally, a system solver by forward substitution (shown in Fig. 5) that involves

a triangular loop, has also been included; 480 parameter combinations were

tried, requiring a total of 9600 simulations.

Table 2 includes validation results for these codes. The DMR values are highly satis-

factory, with small errors. The codes also perform very well on average in the pre-

Fig. 3. Example code with several non-perfect nestings.

Fig. 4. Matrix–matrix product with blocking in two dimensions.

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 239
diction of the absolute number of misses, although the deviations are somewhat

higher. This difference in the validation metrics means that the important deviations

take place in the parameter combinations for which a small number of misses is ob-

tained. That is, those in which the memory behavior analysis produces little optimi-

zation. A relatively small error in the prediction of the number of misses for these

combinations generates very large values of DNM, which unbalance the average.

Fig. 5. Forward substitution code with triangular loop.

Table 2

Average validation values (in percentage)

Algorithm MR DMR DNM r

Non-perfect nestings 12.53 0.13 7.57 39.10

Matrix product 21.69 0.30 6.14 12.68

Forward substitution 17.33 0.39 5.77 1.22

240 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
For example, only 31.3% of the combinations for the code with non-perfect nestings

have a DNM over 5%, and their average miss ratio DMR is 0.22%; while the remaining

68.7% of the combinations have an average miss ratio of 17.94%. Even more mean-

ingful is the fact that if the parameter combinations with miss ratios smaller than

0.5% are not considered for the calculation of the average DNM (just those in which

the memory hierarchy is already behaving very well), it drops to only 1.45%.

Tables 3–5 show the validation results of some parameter combinations for the

codes shown in Figs. 3–5, respectively. In these tables and in what follows, Cs stands
for the cache size in Kwords, Ls is the line size in words and K is the degree of asso-

ciativity, while M , N , BJ and BK stand for the problem size (see the related codes).

These tables also include average times in seconds, both for the trace-driven simula-

tion used for the validation (T. sim.) and modelling (T. mod.), measured in an SGI

Origin 200 server with R10000 processors at 180 MHz. We must recall that many

efforts have been made to optimize our simulator, and these simulation times are
Table 3

Validation and time results corresponding to the non-perfect nestings code

M N Cs Ls K MR DMR DNM r T. sim. T. mod.

100 100 2 2 1 29.33 0.15 0.50 0.69 34.845 0.003

100 100 64 8 2 0.01 0.01 17.95 172.154 42.534 0.006

200 200 4 4 4 12.68 0.00 0.03 0.01 949.837 0.003

200 200 16 16 1 4.49 0.14 3.03 3.28 555.659 0.004

200 400 64 16 2 3.15 0.01 0.35 0.65 5364.425 0.006

400 100 128 16 4 0.00 0.00 0.16 0.09 234.490 0.006

400 200 64 8 4 0.11 0.01 8.38 2.14 1909.567 0.004

400 400 1024 128 2 0.00 0.00 41.17 109.54 10587.293 0.069

Table 4

Validation and time results corresponding to the matrix product code

N BJ BK Cs Ls K MR DMR DNM r T. sim. T. mod.

200 100 200 2 4 1 30.11 0.06 0.20 0.19 3.70 0.005

200 100 100 16 4 2 6.73 0.05 0.69 0.54 4.31 0.005

200 50 100 32 4 4 0.41 0.01 3.03 0.97 5.65 0.006

400 50 50 4 8 1 12.71 0.24 1.86 0.56 29.55 0.005

400 200 200 16 8 2 6.53 0.02 0.25 0.25 34.25 0.006

400 100 50 64 16 4 0.08 0.01 10.09 7.51 44.64 0.008

400 200 100 128 16 2 0.10 0.01 11.37 18.91 35.36 0.017

400 50 400 256 32 4 0.01 0.00 9.72 7.95 44.72 0.015

Table 5

Validation and time results corresponding to the forward substitution code

N Cs Ls K MR DMR DNM r T. sim. T. mod.

200 8 32 1 40.53 0.25 0.61 0.69 0.009 0.009

500 4 4 2 13.09 0.49 3.72 0.77 0.066 0.003

500 32 16 1 4.38 0.39 8.72 3.61 0.057 0.016

1000 16 8 1 10.16 0.86 8.43 1.15 0.225 0.013

1000 32 4 4 12.58 0.04 0.30 0.00 0.353 0.011

1000 128 16 2 3.21 0.07 2.24 0.34 0.269 0.035

2000 64 16 2 3.18 0.04 1.34 0.19 1.046 0.044

2000 256 8 4 6.28 0.02 0.35 0.00 1.434 0.054

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 241
much shorter than those we would obtain using more general and standard simula-

tors. Even so, modelling is typically between three and six orders of magnitude fas-

ter. The exception is the forward substitution code, where the triangular loop halves

the number of accesses and thus, the simulation time, while its irregularity forces our

tool to perform a sampled simulation to estimate the area vector. Still, modelling

is much faster than simulation.

Large values of DNM arise in the non-perfect nestings code for some combinations

with a very small miss ratio (almost 0%), where a prediction error of a small number
of misses in absolute terms becomes a large relative error, as we have already

explained. There is another general and important reason for this behavior of the

model for these combinations. Due to the probabilistic nature of the model, the con-

vergence of this kind of approach is not favoured by small problems where few

misses are generated. An additional reason for some large deviations in codes with

non-perfect nestings is the use of a conservative approach in the estimation of the

number of misses for data structures that have been accessed in previous loops. This

simple and quick strategy affects the accuracy of the prediction for codes with several
non-perfect nestings, giving place to an overestimation.

Another interesting fact in the tables is that the parameter combinations with the

greatest prediction errors are those that have a wide variation (high r) in their num-

ber of misses depending on the relative positions of the data structures. Moreover,

such prediction deviations are almost always similar to or noticeably smaller than

242 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
the standard deviation of the real number of misses, making them a very reasonable

prediction even when the relative error is large. Again, this effort can be explained by

the probabilistic nature of the model: it tends to predict a number of misses close to

the average number of misses generated through the different simulations, but the

particular values generated in the different simulations may be far from this average
value.

5.2. Validation through the SPECfp95 suite

In order to demonstrate the wide range of validity of our tool, we applied it to

programs belonging to the SPECfp95 suite, as shown in Table 6. In the case of

the first two SPECfp95 programs we have analysed the whole code, while in the

remaining codes we have chosen the most CPU time consuming routine. In the cases
where such routine calls other routines, they have been inlined in the calling routine.

Four benchmarks were not considered in our study, for different reasons: turb3d and

apsi most demanding loops are very small and so they generate very few misses; fppp

main routines contain many non-regular loops and conditional sentences; finally,

wave5 has many indirect accesses, not suitable for our analysis techniques.

Table 6 shows the resulting number of loops and references analyzed (Loops and

Refs columns, respectively), as well as the percentage of the program execution time

associated to them (% Ex. T.) and the validation results for each code. As in the pre-
vious experiments in Section 5.1, miss ratio errors (DMR) are very good, with a max-

imum average value of only 0.12%. The average errors relative to the number of

misses are somewhat larger, but still small and within the range of the corresponding

r. Notice also that the largest relative deviations usually take place in the codes with

the smallest miss ratios: memory hierarchy is working better and the small number of

misses turns an error of a few misses into a large relative error. In any case, DNM

exhibits excellent values. In fact, Fig. 6 proves the high precision of the model for

some caches with different sizes and degrees of associativity. Benchmark su2cor-mat-

mat has not been included in the figure because of its reduced number of misses, and

the number of misses generated by tomcatv and swim have been scaled to fit in the

plot. Tables 7 and 8 shows the miss ratio deviations DMR and modelling times for

the same cache configurations, respectively. These times refer only to the model exe-

cution itself, so they do not include the time required by Polaris to read the file, parse
Table 6

Main code parameters and average validation values (in percentage)

Benchmark Loops Refs % Ex. T. MR DMR DNM r

Tomcatv 16 75 100.0 6.27 0.12 1.90 2.66

Swim 23 193 100.0 6.46 0.02 0.57 1.97

Su2cor-matmat 1 36 23.5 5.61 0.01 0.12 0.00

Hydro2d-filter 24 120 46.8 7.70 0.11 1.84 2.77

Mgrid-resid 9 45 55.5 2.21 0.08 5.82 6.26

Applu-blts 11 20 28.3 5.28 0.05 1.25 0.22

MGRID m
MGRID p

TOMCATV m
TOMCATV p

HYDRO2D m
HYDRO2D p

SWIM m
SWIM p

APPLU m
APPLU p

 4K-4-1
 4K-4-2

 4K-4-4
32K-4-1

32K-4-2
32K-4-4

0

2

4

6

8

10

x 10
5

Cache (Cs- Ls- K)

N
u

m
b

er
 o

f
m

is
se

s

Fig. 6. Measured (m) versus predicted (p) misses for the SPECfp95 codes. Cache size (Cs) and line size (Ls)

in words; K stands for the degree of associativity.

Table 7

Miss ratio errors DMR of the model for the suite codes considering different cache configurations

Benchmark Cache configuration (Cs–Ls–K)

4K–4–1 4K–4–2 4K–4–4 32K–4–1 32K–4–2 32K–4–4

Tomcatv 0.291 0.439 0.112 0.181 0.018 0.017

Swim 0.009 0.009 0.009 0.015 0.015 0.016

Su2cor-matmat 0.006 0.006 0.006 0.006 0.006 0.006

Hydro2d-filter 0.255 0.408 0.149 0.005 0.006 0.006

Mgrid-resid 0.360 0.076 0.075 0.012 0.006 0.002

Applu-blts 0.045 0.055 0.035 0.055 0.065 0.063

Table 8

Modeling times for the suite codes for different cache configurations (in seconds)

Benchmark Cache configuration (Cs–Ls–K)

4K–4–1 4K–4–2 4K–4–4 32K–4–1 32K–4–2 32K–4–4

Tomcatv 0.023 0.023 0.023 0.023 0.023 0.023

Swim 0.043 0.042 0.042 0.048 0.046 0.044

Su2cor-matmat 0.004 0.003 0.004 0.003 0.003 0.003

Hydro2d-filter 0.020 0.020 0.020 0.024 0.022 0.022

Mgrid-resid 0.021 0.021 0.021 0.021 0.022 0.022

Applu-blts 0.009 0.008 0.008 0.025 0.016 0.011

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 243

244 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
it, and so on. The modelling times are at least one order of magnitude faster than the

simulation, and even with respect to the execution time. As an example, the tomcatv

amd swim benchmarks require, respectively, 192 and 131 s to be executed using the

reference input set, and the corresponding cache simulation is at least one order of

magnitude slower.
6. Automatic code optimization

An additional set of experiments using our model to check the possibility of driv-

ing optimizations in real memory hierarchy systems is described below. The high de-

gree of accuracy obtained in the validation experiments shown in the preceding

section was a support for this idea.
The matrix–matrix product with blocking shown in Fig. 4 was chosen as a case

study for that purpose. We tried to derive the optimal block sizes for four represen-

tative architectures by feeding our tool with the code and the parameters describing

the memory hierarchy levels of such systems (see Table 9): a PC with a PentiumII at

450 MHz (PC pII), a Digital Personal Workstation 433au with a 21164 at 433 MHz

(PW 433au), an SGI Origin 200 with R10000 processors at 180 Mhz (O200 R10K)

and the nodes of a Fujitsu AP3000 multicomputer with UltraSparc-II processors

at 300 MHz (AP U-II). Each memory hierarchy level i of these systems was specified
to our model by means of Csi , Lsi and Ki, and a new parameter Wi , the relative miss

penalty. We have obtained the values of Wi for the different memory levels of these

machines either from the corresponding manuals or using microbenchmarking [18].

This way, the cost of a given block BJ � BK in a system with L levels would be com-

puted as
Table

Differe

execut

N

200

250

400

500

600
CostðBJ ;BKÞ ¼
XL
i¼1

WiMðCsi ; Lsi ;Ki;BJ ;BKÞ ð5Þ
where function M provides the number of misses the model estimates for a given

cache level and block. The code was later run on these machines, trying all the

possible blocks whose sizes were divisors of the matrix dimensions in order to

measure their execution times. Table 9 shows the difference between the execution

times using the predicted optimal block and the best execution time expressed as a
9

nce between predicted and real optimal block execution times expressed as a percentage of the

ion time of the real optimal block (N stands for the matrix size)

PC pII PW 433au O200 R10K AP U-II

0.00 0.00 3.97 4.40

1.28 0.00 5.34 3.61

0.00 2.10 3.53 1.59

0.00 2.78 4.13 0.88

8.74 3.75 1.93 0.98

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 245
percentage of the latter. As we can see, the model proposes optimal or near optimal

blocks in all the cases.

6.1. Optimal block selection

The good results achieved in the preceding set of experiments on real systems, to-

gether with the high speed of our model, confirmed that it was feasible to drive com-

pletely automatic optimizations using our tool. As an example we built a module to

choose optimal block sizes (inside Optimization Library in Fig. 2). The estimation of

the block size leading to the minimum execution time requires taking into account

both the stalls due to cache misses and the computation cycles, which implies the

need of a CPU model. As this is beyond the scope of our work, we took the CPU

model of Delphi, as explained in Section 4. The CPU computation cycles predicted
by Delphi were added to the stall cycles caused by the misses predicted by our model,

to estimate the total number of execution cycles for a given code. The platform cho-

sen for this set of experiments was an SGI Origin 200 for two reasons: the CPU

parameters for the R10000 microprocessor required by Delphi were known; and

a good compiler (MIPSpro version 7.3.1.1m), with many flags that allow control

of the optimization and code generation process, was available.

The procedure for performing this experiment was the following: each code was

first fed to the MIPSpro compiler in such a way that it decided where to apply block-
ing, as well as the size of the block, using the O3 optimization level. The resulting

code was then analysed and rewritten by our framework, modifying the block sizes

and the sentences related to them according to the predictions of our model. The set

of block sizes evaluated by the tool for each dimension of size N were the original

values proposed by the compiler as well as dN=ie for 0 < i6 128 (discarding those

values that differed in less than three units). It should also be mentioned that the

model was run without taking into account the relative position of the data struc-

tures, just using pure probabilities. It is obvious that this execution mode is less accu-
rate, as it has less information to perform the modelling. This conservative approach

was taken because our algorithm was not running in the MIPSpro compiler, so it

really had no information at all about where it was going to locate the different data

structures.

The experiment was applied to all the codes in Table 6, but the MIPSpro compiler

only chose to apply blocking in three of them: tomcatv, swim and hydro2d-filter. We

must point out that these codes can only benefit from reuse in the borders of the

blocks, and not in the whole block, as is the case in the typical example of the ma-
trix–matrix product. As a result, large improvements in the execution time cannot be

expected by optimizing the size of such blocks. Moreover, the execution time of the

loops modified in the last code is so small that it is very difficult to measure them

alone meaningfully. This problem was overcome using the whole hydro2d program

to make the measurements, just changing the block sizes in those places where the

compiler chose to apply blocking.

Table 10 shows the percentage of improvement in execution time obtained when

applying our tool with respect to that obtained with the MIPSpro compiler using the

Table 10

Improvement in the execution time for the analyzed codes

Optimization level

Benchmark O2 (%) O3 (%)

Tomcatv 1.23 1.82

Swim 0.00 1.25

Hydro2d)0.60 0.18

246 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
O2 and O3 optimization levels. Excepting one case, our tool has always improved the

execution times although, as expected, there are no big improvements, mainly due to

the reasons previously mentioned. Nevertheless, we think that the improvements are

quite good, taking into account that only one column and/or row of the blocks can

be reused and that we are comparing it to the results of a good compiler.
There are several points that make it very difficult to compare our approach with

the traditional algorithms for tile size selection [4,19]. First, such algorithms only

focus on the memory hierarchy behavior, while our approach is the first one that,

as far as we know, also takes into account CPU time. This happened to play an

essential role, as ignoring it would lead to the choice of very small blocks that have

maximum reuse, but whose management requires computing overheads that are too

high. Another important point is that the referenced algorithms can consider just the

parameters of one cache level, while our approach takes into account all the levels of
the memory hierarchy simultaneously, in order to make the selection. Furthermore,

works in [4,19] are specifically devoted to driving tile size optimization; in our case,

tiling is just a particular application of a general purpose system for the prediction of

the memory hierarchy behavior. Not less important is the fact that these algorithms

look for block sizes that allow the keeping of the whole block in cache between

reuses, but the blocks found in these codes only reuse their borders, so it is only inter-

esting to keep the last row and/or column. Finally, these approaches only consider a

block of one given matrix and pay little or no attention to its interaction with other
data structures, which could even be other blocks generated by the dimension parti-

tioning implied by blocking. Nevertheless, such interferences must be taken into ac-

count, particularly as the dimension tiling may simultaneously affect many arrays

accessed in the same nesting (up to seven in these codes), giving place to many blocks

interacting in the caches. This is no problem for our tool because it is oriented to a

broader scope.
7. Conclusions

A fast and flexible analytical modelling technique to study the memory hierarchy

performance has been validated and embedded in a compiler framework. The model

is based on the concepts of a PME for each reference and nesting level, and the miss

probability for an access to a given line. The miss probabilities are derived from the

cache areas affected by the references between the reuses of a line, which are repre-

B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248 247
sented by means of the unified notation of the area vectors. This produces many

structural advantages. For example, it allows the estimation of the number of misses

for each reference and each given loop. The area vectors also allow the study of the

relative contribution of each different data structure or even reference to the miss

probability of the accesses associated to any reference. Other advantages which
are not so obvious have been illustrated here, such as the ability to take into account

the probability of hits due to reuses of data accessed in previous loops, which enables

the analysis of non-perfect nestings and even whole programs. The model can be eas-

ily extended, thanks to its modularity, by developing the PMEs and area vectors

associated to each new access pattern we need to study. These calculations may be

performed either analytically or through simulations that can be sampled to reduce

their computing requirements.

The systematization achieved in the model has allowed its implementation inside
the Polaris parallelizing compiler, together with additional capabilities shown in Sec-

tion 4. This has allowed the construction of a complete compiler framework, giving

place to a powerful tool for system designers and programmers.

Validations performed through comparison with trace-driven simulations shows

that although relatively large errors may arise in the number of predicted misses

(when both the number of misses and the miss ratio are very small), such predictions

are still very acceptable and the average accuracy of the model is very good. On the

other hand, the time required by our model to make the predictions is very small in
comparison with that required by simulation, and even in comparison with the com-

pilation and execution time of the example codes. These properties make our model

ideal to guide compiler optimizations. Thus, we applied it to choose optimal block

sizes, as a case study, using the parameters of memory hierarchies of real systems.

Successful results in a number of different hardware platforms were achieved and

current commercial compilers were outperformed with real codes from the

SPECfp95 suite.
References

[1] A. Lebeck, D. Wood, Cache profiling and the SPEC benchmarks: A case study, IEEE Computer 27

(10) (1994) 15–26.

[2] R. Uhlig, T. Mudge, Trace-driven memory simulation: A survey, ACM Computing Surveys 29 (2)

(1997) 128–170.

[3] M. Zagha, B. Larson, S. Turner, M. Itzkowitz, Performance analysis using the MIPS R10000

performance counters, in: ACM (Eds.), Proc. Supercomputing’96 Conference, ACM Press and IEEE

Computer Society Press, 1996, pp. 17–22.

[4] M.S. Lam, E.E. Rothberg, M.E. Wolf, The cache performance and optimizations of blocked

algorithms, in: Proc. Fourth Int. Conf. on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-IV), ACM SIGARCH, SIGPLAN, SIGOPS, and the IEEE Computer

Society, Santa Clara, CA, 1991, pp. 63–74.

[5] O. Temam, C. Fricker, W. Jalby, Cache interference phenomena, in: Proc. Sigmetrics Conference on

Measurement and Modeling of Computer Systems, ACM Press, 1994, pp. 261–271.

[6] C. Cascaval, Compile-time performance prediction of scientific programs, Ph.D. thesis, Department

of Computer Science, University of Illinois at Urbana-Champaign, 2000.

248 B.B. Fraguela et al. / Parallel Computing 30 (2004) 225–248
[7] S. Ghosh, M. Martonosi, S. Malik, Cache miss equations: A compiler framework for analyzing and

tuning memory behavior, ACM Transactions on Programming Languages and Systems 21 (4) (1999)

702–745.

[8] J.S. Harper, D.J. Kerbyson, G.R. Nudd, Analytical modeling of set-associative cache behavior, IEEE

Transactions on Computers 48 (10) (1999) 1009–1024.

[9] X. Vera, J. Xue, Let’s study whole-program behaviour analytically, in: Proc. 8th Int. Symposium on

High-Performance Computer Architecture (HPCA8), 2002, pp. 175–186.

[10] S. Chatterjee, E. Parker, P. Hanlon, A. Lebeck, Exact analysis of the cache behavior of nested loops,

in: Proc. ACM SIGPLAN’01 Conference on Programming Language Design and Implementation

(PLDI’01), 2001, pp. 286–297.

[11] B.B. Fraguela, R. Doallo, E.L. Zapata, Automatic analytical modeling for the estimation of cache

misses, in: Proc. Int. Conf. on Parallel Architectures and Compilation Techniques (PACT’99), 1999,

pp. 221–231.

[12] K.S. McKinley, O. Temam, A quantitative analysis of loop nest locality, in: Proc. Seventh Int. Conf.

on Architectural Support for Programming Languages and Operating Systems (ASPLOS-VII), ACM

Press, Cambridge, Massachusetts, 1996, pp. 94–104.

[13] W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger, T. Lawrence, J. Lee, D. Padua, Y. Paek,

B. Pottenger, L. Rauchwerger, P. Tu, Parallel programming with Polaris, IEEE Computer 29 (12)

(1996) 78–82.

[14] J. Ferrante, V. Sarkar, W. Thrash, On estimating and enhancing cache effectiveness, in: U. Banerjee,

D. Gelernter, A. Nicolau, D. Padua (Eds.), Proc. of the Fourth International Workshop on

Languages and Compilers for Parallel Computing, Lecture Notes in Computer Science, vol. 589, Intel

Corp., Springer-Verlag, Santa Clara, CA, 1991, pp. 328–343.

[15] J. Blieberger, T. Fahringer, B. Scholz, Symbolic cache analysis for real-time systems, Real-Time

Systems 18 (2/3) (2000) 181–215.

[16] J. Sanchez, A. Gonzalez, Analyzing data locality in numeric applications, IEEE Micro 20 (4) (2000)

58–66.

[17] B.B. Fraguela, R. Doallo, E.L. Zapata, Modeling set associative caches behavior for irregular

computations, ACM Performance Evaluation Review (Proc. SIGMETRICS/PERFORMANCE’98)

26 (1) (1998) 192–201.

[18] R. Saavedra, A. Smith, Measuring cache and TLB performance and their effect on benchmark run

times, IEEE Transactions on Computers 44 (10) (1995) 1223–1235.

[19] G. Rivera, C.-W. Tseng, A comparison of compiler tiling algorithms, in: Proc. of 8th Int. Conf. on

Compiler Construction, Lecture Notes in Computer Science, vol. 1575, 1999, pp. 168–182.

	A compiler tool to predict memory hierarchy performance of scientific codes
	Introduction
	Related work
	Model concepts
	Probabilistic miss equations
	Miss probabilities

	A compiler framework for analytical modelling
	Experimental results
	Validation through synthetic codes
	Validation through the SPECfp95 suite

	Automatic code optimization
	Optimal block selection

	Conclusions
	References

