
Java for High Performance Computing:
Assessment of Current Research and Practice

Guillermo L. Taboada, Juan Touriño, Ramón Doallo
Computer Architecture Group

University of A Coruña, A Coruña (Spain)
{taboada,juan,doallo}@udc.es

ABSTRACT
The rising interest in Java for High Performance Computing
(HPC) is based on the appealing features of this language
for programming multi-core cluster architectures, particu-
larly the built-in networking and multithreading support,
and the continuous increase in Java Virtual Machine (JVM)
performance. However, its adoption in this area is being
delayed by the lack of analysis of the existing programming
options in Java for HPC and evaluations of their perfor-
mance, as well as the unawareness of the current research
projects in this field, whose solutions are needed in order to
boost the embracement of Java in HPC.

This paper analyzes the current state of Java for HPC,
both for shared and distributed memory programming, pre-
- sents related research projects, and finally, evaluates the
performance of current Java HPC solutions and research de-
velopments on a multi-core cluster with a high-speed net-
work, InfiniBand, and a 24-core shared memory machine.
The main conclusions are that: (1) the significant interest
on Java for HPC has led to the development of numerous
projects, although usually quite modest, which may have
prevented a higher development of Java in this field; and
(2) Java can achieve almost similar performance to native
languages, both for sequential and parallel applications, be-
ing an alternative for HPC programming. Thus, the good
prospects of Java in this area are attracting the attention
of both industry and academia, which can take significant
advantage of Java adoption in HPC.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Object-oriented languages; D.1.3 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming ; C.4 [Performance of Systems]: Performance at-
tributes, Measurement techniques; C.2.5 [Computer-Co-
mmunication Networks]: Local and Wide-Area Networks—
High-speed, Ethernet

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

Keywords
Java, High Performance Computing, Performance Evalua-
tion, Multi-core Architectures, Message-passing, Threads,
Cluster, InfiniBand

1. INTRODUCTION
Java has become a leading programming language soon af-

ter its release, especially in web-based and distributed com-
puting environments, and it is an emerging option for High
Performance Computing (HPC) [1]. The increasing inter-
est in Java for parallel computing is based on its appealing
characteristics: built-in networking and multithreading sup-
port, object orientation, platform independence, portability,
security, it has an extensive API and a wide community of
developers, and finally, it is the main training language for
computer science students. Moreover, performance is no
longer an obstacle. The performance gap between Java and
native languages (e.g., C and Fortran) has been narrowing
for the last years, thanks to the Just-in-Time (JIT) compiler
of the Java Virtual Machine (JVM) that obtains native per-
formance from Java bytecode. However, the adoption of
Java in HPC is being delayed by the lack of analysis of the
existing programming options in this area and evaluations
of their performance, as well as the unawareness of the cur-
rent research projects in Java for HPC, whose solutions are
needed in order to boost its embracement.

Regarding HPC platforms, new deployments are increas-
ing significantly the number of cores installed in order to
meet the ever growing computational power demand. This
current trend to multi-core clusters underscores the impor-
tance of parallelism and multithreading capabilities [12]. In
this scenario Java represents an attractive choice for the de-
velopment of parallel applications as it is a multithreaded
language and provides built-in networking support, key fea-
tures for taking full advantage of hybrid shared/distributed
memory architectures. Thus, Java can use threads in shared
memory (intra-node) and its networking support for dis-
tributed memory (inter-node) communication. Neverthe-
less, although the performance gap between Java and native
languages is usually small for sequential applications, it can
be particularly high for parallel applications when depending
on inefficient communication libraries, which has hindered
Java adoption for HPC. Therefore, current research efforts
are focused on providing scalable Java communication mid-
dleware, especially on high-speed networks commonly used
in HPC systems, such as InfiniBand or Myrinet.

The remainder of this paper is organized as follows. Sec-
tion 2 analyzes the existing programming options in Java

for HPC. Section 3 describes current research efforts in this
area, with special emphasis on providing scalable communi-
cation middleware for HPC. A comprehensive performance
evaluation of representative solutions in Java for HPC is
presented in Section 4. Finally, Section 5 summarizes our
concluding remarks and future work.

2. JAVA FOR HIGH PERFORMANCE
COMPUTING

This section analyzes the existing programming options
in Java for HPC, which can be classified into: (1) shared
memory programming; (2) Java sockets; (3) Remote Method
Invocation (RMI); and (4) Message-passing in Java. These
programming options allow the development of both high
level libraries and Java parallel applications.

2.1 Java Shared Memory Programming
There are several options for shared memory programming

in Java for HPC, such as the use of Java threads, OpenMP-
like implementations, and Titanium.

As Java has built-in multithreading support, the use of
Java threads for parallel programming is quite extended due
to its high performance, although it is a rather low-level
option for HPC (work parallelization and shared data ac-
cess synchronization are usually hard to implement). More-
over, this option is limited to shared memory systems, which
provide less scalability than distributed memory machines.
Nevertheless, its combination with distributed memory pro-
gramming models can overcome this restriction. Finally, in
order to partially relieve programmers from the low-level
details of threads programming, Java has incorporated from
the 1.5 specification the concurrency utilities, such as thread
pools, tasks, blocking queues, and low-level high-performance
primitives for advanced concurrent programming like Cyclic-
Barrier.

The project Parallel Java (PJ) [17] has implemented sev-
eral high level abstractions over these concurrency utilities,
such as ParallelRegion (code to be executed in parallel), Par-
allelTeam (group of threads that execute a ParallelRegion)
and ParallelForLoop (work parallelization among threads),
allowing an easy thread-base shared memory programming.
Moreover, PJ also implements the message-passing paradigm
as it is intended for programming hybrid shared/distributed
memory systems such as multi-core clusters.

There are two main OpenMP-like implementations in Java,
JOMP [16] and JaMP [18]. JOMP consists of a compiler
(written in Java, and built using the JavaCC tool) and a
runtime library. The compiler translates Java source code
with OpenMP-like directives to Java source code with calls
to the runtime library, which in turn uses Java threads to
implement parallelism. The whole system is “pure” Java
(100% Java), and thus can be run on any JVM. Although
the development of this implementation stopped in 2000,
it has been used recently to provide nested parallelism on
multi-core HPC systems [25]. Nevertheless, JOMP had to
be optimized with some of the utilities of the concurrency
framework, such as the replacement of the busy-wait im-
plementation of the JOMP barrier by the more efficient
java.util.concurrent.CyclicBarrier. The experimental
evaluation of the hybrid Java message-passing + JOMP con-
figuration (being the message-passing library thread-safe)
showed up to 3 times higher performance than the equiva-

lent pure message-passing scenario. Although JOMP scal-
ability is limited to shared memory systems, its combina-
tion with distributed memory communication libraries (e.g.,
message-passing libraries) can overcome this issue. JaMP
is the Java OpenMP-like implementation for Jackal [33], a
software-based Java Distributed Shared Memory (DSM) im-
plementation. Thus, this project is limited to this environ-
ment. JaMP has followed the JOMP approach, but taking
advantage of the concurrency utilities, such as tasks, as it is
a more recent project.

The OpenMP-like approach has several advantages over
the use of Java threads, such as the higher level program-
ming model with a code much closer to the sequential version
and the exploitation of the familiarity with OpenMP, thus
increasing programmability. However, current OpenMP-like
implementations are still preliminary works and lack effi-
ciency (busy-wait JOMP barrier) and portability (JaMP).

Titanium [34] is an explicitly parallel dialect of Java devel-
oped at UC Berkeley which provides the Partitioned Global
Address Space (PGAS) programming model, like UPC and
Co-array Fortran, thus achieving higher programmability.
Besides the features of Java, Titanium adds flexible and
efficient multi-dimensional arrays and an explicitly paral-
lel SPMD control model with lightweight synchronization.
Moreover, it has been reported that it outperforms Fortran
MPI code [11], thanks to its source-to-source compilation to
C code and the use of native libraries, such as numerical
and high-speed network communication libraries. However,
Titanium presents several limitations, such as the avoidance
of the use of Java threads and the lack of portability as it
relies on Titanium and C compilers.

2.2 Java Sockets
Sockets are a low-level programming interface for net-

work communication, which allows sending streams of data
between applications. The socket API is widely extended
and can be considered the standard low-level communica-
tion layer as there are socket implementations on almost
every network protocol. Thus, sockets have been the choice
for implementing in Java the lowest level of network commu-
nication. However, Java sockets usually lack efficient high-
speed networks support [29], so it has to resort to inefficient
TCP/IP emulations for full networking support. Exam-
ples of TCP/IP emulations are IP over InfiniBand (IPoIB),
IPoMX on top of the Myrinet low-level library MX (Myrinet
eXpress), and SCIP on SCI.

Java has two main sockets implementations, the widely
extended Java IO sockets, and Java NIO (New I/O) sock-
ets which provide scalable non-blocking communication sup-
port. However, both implementations do not provide high-
speed network support nor HPC tailoring. Ibis sockets partly
solve these issues adding Myrinet support and being the base
of Ibis [22], a parallel and distributed Java computing frame-
work. However, their implementation on top of the JVM
sockets library limits their performance benefits.

2.3 Java Remote Method Invocation
The Java Remote Method Invocation (RMI) protocol al-

lows an object running in one JVM to invoke methods on
an object running in another JVM, providing Java with re-
mote communication between programs equivalent to Re-
mote Procedure Calls (RPCs). The main advantage of this
approach is its simplicity, although the main drawback is

the poor performance shown by the RMI protocol.
ProActive [2] is an RMI-based middleware for parallel,

multithreaded and distributed computing focused on Grid
applications. ProActive is a fully portable“pure”Java (100%
Java) middleware whose programming model is based on a
Meta-Object protocol. With a reduced set of simple prim-
itives, this middleware simplifies the programming of Grid
computing applications: distributed on Local Area Network
(LAN), on clusters of workstations, or for the Grid. More-
over, ProActive supports fault-tolerance, load-balancing, mo-
bility, and security. Nevertheless, the use of RMI as its de-
fault transport layer adds significant overhead to the opera-
tion of this middleware.

The optimization of the RMI protocol has been the goal of
several projects, such as KaRMI [23], RMIX [19], Manta [20],
Ibis RMI [22], and Opt RMI [27]. However, the use of non-
standard APIs, the lack of portability, and the insufficient
overhead reductions, still significantly larger than socket la-
tencies, have restricted their applicability. Therefore, al-
though Java communication middleware (e.g., message-pa-
ssing libraries) used to be based on RMI, current Java com-
munication libraries use sockets due to their lower overhead.
In this case, the higher programming effort required by the
lower-level API allows for higher throughput, key in HPC.

2.4 Message-Passing in Java
Message-passing is the most widely used parallel program-

ming paradigm as it is highly portable, scalable and usually
provides good performance. It is the preferred choice for par-
allel programming distributed memory systems such as clus-
ters, which can provide higher computational power than
shared memory systems. Regarding the languages compiled
to native code (e.g., C and Fortran), MPI is the standard
interface for message-passing libraries.

Soon after the introduction of Java, there have been sev-
eral implementations of Java message-passing libraries (eleven
projects are cited in [28]). However, most of them have de-
veloped their own MPI-like binding for the Java language.
The two main proposed APIs are the mpiJava 1.2 API [8],
which tries to adhere to the MPI C++ interface defined in
the MPI standard version 2.0, but restricted to the support
of the MPI 1.1 subset, and the JGF MPJ (Message-Passing
interface for Java) API [9], which is the proposal of the Java
Grande Forum (JGF) [15] to standardize the MPI-like Java
API. The main differences among these two APIs lie on nam-
ing conventions of variables and methods.

The Message-passing in Java (MPJ) libraries can be im-
plemented: (1) using Java RMI; (2) wrapping an underlying
native messaging library like MPI through Java Native In-
terface (JNI); or (3) using Java sockets. Each solution fits
with specific situations, but presents associated trade-offs.
The use of Java RMI, a “pure” Java (100% Java) approach,
as base for MPJ libraries, ensures portability, but it might
not be the most efficient solution, especially in the presence
of high speed communication hardware. The use of JNI
has portability problems, although usually in exchange for
higher performance. The use of a low-level API, Java sock-
ets, requires an important programming effort, especially
in order to provide scalable solutions, but it significantly
outperforms RMI-based communication libraries. Although
most of the Java communication middleware is based on
RMI, MPJ libraries looking for efficient communication have
followed the latter two approaches.

The mpiJava library [3] consists of a collection of wrap-
per classes that call a native MPI implementation (e.g.,
MPICH2 or OpenMPI) through JNI. This wrapper-based
approach provides efficient communication relying on na-
tive libraries, adding a reduced JNI overhead. However, al-
though its performance is usually high, mpiJava currently
only supports some native MPI implementations, as wrap-
ping a wide number of functions and heterogeneous runtime
environments entails an important maintaining effort. Addi-
tionally, this implementation presents instability problems,
derived from the native code wrapping, and it is not thread-
safe, being unable to take advantage of multi-core systems
through multithreading.

As a result of these drawbacks, the mpiJava maintenance
has been superseded by the development of MPJ Express [25],
a “pure” Java message-passing implementation of the mpi-
Java 1.2 API specification. MPJ Express is thread-safe and
presents a modular design which includes a pluggable archi-
tecture of communication devices that allows to combine the
portability of the “pure” Java New I/O package (Java NIO)
communications (niodev device) with the high performance
Myrinet support (through the native Myrinet eXpress –MX–
communication library in mxdev device).

Currently, these two projects, mpiJava and MPJ Express,
are the most active projects in terms of uptake by the HPC
community, presence on academia and production environ-
ments, and available documentation. These projects are also
stable and publicly available along with their source code.

In order to update the compilation of Java message-passing
implementations presented in [28], this paper presents the
projects developed since 2003, in chronological order:

• MPJava [24] is the first Java message-passing library
implemented on Java NIO sockets, taking advantage
of their scalability and high performance communica-
tions.

• Jcluster [35] is a message-passing library which pro-
vides both PVM-like and MPI-like APIs and is focused
on automatic task load balance across large-scale het-
erogeneous clusters. However, its communications are
based on UDP and it lacks high-speed networks sup-
port.

• Parallel Java (PJ) [17] is a “pure” Java parallel pro-
gramming middleware that supports both shared mem-
ory programming (see Section 2.1) and an MPI-like
message-passing paradigm, allowing applications to take
advantage of hybrid shared/distributed memory archi-
tectures. However, the use of its own API difficults its
adoption.

• P2P-MPI [13] is a peer-to-peer framework for the ex-
ecution of MPJ applications on the Grid. Among its
features are: (1) self-configuration of peers (through
JXTA peer-to-peer technology); (2) fault-tolerance, ba-
sed on process replication; (3) a data management pro-
tocol for file transfers on the Grid; and (4) an MPJ
implementation that can use either Java NIO or Java
IO sockets for communications, although it lacks high-
speed networks support. In fact, this project is tai-
lored to grid computing systems, disregarding the per-
formance aspects.

• MPJ/Ibis [6] is the only JGF MPJ API implementa-
tion up to now. This library can use either “pure”
Java communications, or native communications on
Myrinet. Moreover, there are two low-level communi-
cation devices available in Ibis for MPJ/Ibis commu-
nications: TCPIbis, based on Java IO sockets (TCP),
and NIOIbis, which provides blocking and non-blocking
communication through Java NIO sockets. Neverthe-
less, MPJ/Ibis is not thread-safe, and its Myrinet sup-
port is based on the GM library, which shows poorer
performance than the MX library.

• JMPI [4] is an implementation which can use either
Java RMI or Java sockets for communications. How-
ever, the reported performance is quite low (it only
scales up to two nodes).

• Fast MPJ (F-MPJ) [30] is our scalable Java message-
passing implementation which provides high-speed net-
works support (see Section 3).

Table 1 serves as a summary of the Java message-passing
projects discussed in this section.

Table 1: Java message-passing projects overview

P
u
r
e

J
a
v
a

Im
p
l.

Socket
impl.

High-speed
network
support

API

J
a
v
a

IO

J
a
v
a

N
IO

M
y
r
in

e
t

In
fi

n
iB

a
n
d

S
C

I

m
p
iJ

a
v
a

1
.2

J
G

F
M

P
J

O
t
h
e
r

A
P

Is

MPJava [24] X X X

Jcluster [35] X X X

Parallel Java [17] X X X

mpiJava [3] X X X X

P2P-MPI [13] X X X X

MPJ Express [25] X X X X

MPJ/Ibis [6] X X X X

JMPI [4] X X X

F-MPJ [30] X X X X X X

3. JAVA FOR HPC: CURRENT RESEARCH
This section describes current research efforts in Java for

HPC, which can be classified into: (1) development of high
performance Java sockets for HPC; (2) design and imple-
mentation of low-level Java message-passing devices; (3) im-
provement of the scalability of Java message-passing collec-
tive primitives; and (4) implementation and evaluation of
efficient MPJ benchmarks. These ongoing projects are pro-
viding Java with several evaluations of their suitability for
HPC, as well as solutions for increasing their performance
and scalability in HPC systems with high-speed networks.

3.1 High Performance Java Sockets
Java Fast Sockets (JFS) [29] is our high performance Java

socket implementation for HPC, available at http://jfs.

des.udc.es. As JVM IO/NIO sockets do not provide high-
speed network support nor HPC tailoring, JFS overcomes

these constraints by: (1) reimplementing the protocol for
boosting shared memory (intra-node) communication (see
Figure 1); (2) supporting high performance native sockets
communication over SCI Sockets, Sockets-MX, and Socket
Direct Protocol (SDP), on SCI, Myrinet and InfiniBand, re-
spectively (see Figure 2); (3) avoiding the need of primitive
data type array serialization; and (4) reducing buffering and
unnecessary copies. Its interoperability and user and appli-
cation transparency through reflection allow for immediate
applicability on a wide range of parallel and distributed tar-
get applications.

ReceiverApplication

JAVA VIRTUAL MACHINEJAVA VIRTUAL MACHINE

JFS

<primitive data type> rdata[]

SenderApplication

N

Native Socket Library

native socket buffernative socket buffer

Network

JFS

<primitive data type> sdata[]

Y

Y
Y

Y

N

N

Shared Memory

Transfer

Copy

Copy

local?
 Is src

Is dst
local?

RDMA?
RDMA?RDMA Transfer

Native Socket Library

GetPrimitiveArrayCritical(rdata)
GetPrimitiveArrayCritical(sdata)

N

Communication

 1

Figure 1: JFS optimized protocol

The avoidance of primitive data type serialization is pro-
vided by JFS extending the sockets API in order to al-
low the direct sending of primitive data type arrays (e.g.,
jfs.net.SocketOutputStream.write(int buf[], int off-
set, int length)). In the implementation of these read-
/write socket stream methods it has been used the JNI func-
tion GetPrimitiveArrayCritical(<primitive data type>

sdata[]) (see point (1) in Figure 1), which allows native
code to obtain, through JNI, a direct pointer to the Java ar-
ray, thus avoiding serialization. Therefore, a one-copy pro-
tocol can be implemented in JFS, as only one copy is needed
to transfer sdata to the native socket library.

JFS reduces significantly JVM sockets communication over-
head (see Table 2). According to Figure 1, JFS needs up to
two data copies and a network communication, or only a
shared memory transfer. JVM IO sockets can involve up
to nine steps (see [29]): a serialization, three copies in the
sender side, a network transfer, another three copies in the
receiver side, and a deserialization.

Table 2: JFS performance improvement compared
to Sun JVM sockets

JFS start-up JFS bandwidth
reduction increase

Shared memory up to 50% up to 4411%
Gigabit Ethernet up to 10% up to 119%

SCI up to 88% up to 1305%
Myrinet up to 78% up to 412%

InfiniBand up to 65% up to 860%

Infiniband Driver: OFEDMyrinet Driver: MXoM

UNIX TCP/IP TCP/IP Sockets IPoIBIPoMX SDP
Sockets Sockets

Infiniband NICMyrinet NICSCI NICShared Memory

SCI Drivers: IRM/SISCI

SCI Sockets/SCILibSCIP

Gigabit Ethernet NIC

Java IO sockets JFS

Shared Memory Protocol Gigabit Ethernet Driver

Sockets−MX

Java Communication Middleware

Parallel and Distributed Java Applications

(RMI−based, Socket−based or MPJ Middleware)

JNI

JVM IO sockets

Figure 2: Java communication middleware on high-speed multi-core clusters

JFS transparency is achieved through Java reflection: the
built-in procedure (setting factories) to swap the default
socket library can be used in a small application, launcher,
which invokes, through Java reflection, the main method of
the target Java class (see Listing 1). This target Java appli-
cation will use JFS transparently from then on, even with-
out source code availability. Finally, JFS is portable because
it implements a general pure Java solution over which JFS
communications can rely on absence of native communica-
tion libraries, although it obtains, in general, worse perfor-
mance than the native approach.

Listing 1: JFS launcher application code
SocketImplFactory f a c t o ry ;
f a c t o ry = new j f s . net . JFSImplFactory () ;
Socket . setSocketImplFactory (f a c t o ry) ;
ServerSocket . se tSocketFactory (f a c t o ry) ;

Class c l = Class . forName (className) ;
Method method = c l . getMethod (”main ” , parametrTypes) ;
method . invoke (null , parameters) ;

3.2 Low-level Java Message-passing
Communication Devices

The use of pluggable low-level communication devices for
high performance communication support is widely extended
in native message-passing libraries. Both MPICH2 and Open-
MPI include several devices on Myrinet, InfiniBand and
shared memory. Regarding MPJ libraries, in MPJ Express
the low-level xdev layer [25] provides communication devices
for different interconnection technologies. The two imple-
mentations of the xdev API currently available are niodev
(over Java NIO sockets) and mxdev (over Myrinet MX). Fur-
thermore, there are two shared memory xdev implementa-
tions [26], one thread-based (pure Java) and the other based
on native IPC resources, and two more xdev devices are be-
ing implemented, one on native MPI implementations and
the other on InfiniBand. This latter can take full advantage
of the low-level InfiniBand Verbs layer, like Jdib [14].

Additionally, we have implemented a low-level communi-
cation device based on Java IO sockets which presents an

API similar to xdev [30]. The motivation behind this de-
velopment is the research on the efficiency of Java message-
passing protocols based on Java IO sockets. Thus, this de-
vice, iodev, can run on top of JFS, and hence obtain high
performance on shared memory and Gigabit Ethernet, SCI,
Myrinet, and InfiniBand networks. In order to evaluate the
impact of iodev on MPJ applications we have implemented
our own MPJ library, Fast MPJ (F-MPJ) [30], on top of
iodev.

3.3 MPJ Collectives Scalability
MPJ application developers use collective primitives for

performing standard data movements (e.g., Broadcast, Scat-
ter, Gather and Alltoall –total exchange–) and basic compu-
tations among several processes (reductions). This greatly
simplifies code development, enhancing programmers pro-
ductivity together with MPJ programmability. Moreover, it
relieves developers from communication optimization. Thus,
collective algorithms, which consist of multiple point-to-point
communications, must provide scalable performance, usu-
ally through overlapping communications in order to max-
imize the number of operations carried out in parallel. An
unscalable algorithm can easily waste the performance pro-
vided by an efficient communication middleware.

The design, implementation and runtime selection of ef-
ficient collective communication operations have been ex-
tensively discussed in the context of native message-passing
libraries [5, 10, 31, 32], but not in MPJ. Therefore, in F-MPJ
we have adapted the research in native libraries to Java. As
far as we know, this is the first project in this sense, as up to
now MPJ library developments have been focused on pro-
viding production-quality implementations of the full MPJ
specification, rather than concentrate on developing scalable
MPJ collective primitives.

The collective algorithms present in MPJ libraries can
be classified in six types, namely Flat Tree (FT) or linear,
Minimum-Spanning Tree (MST), Binomial Tree (BT), Four-
ary Tree (Four-aryT), Bucket (BKT) or cyclic, and BiDirec-
tional Exchange (BDE) or recursive doubling, which are ex-
tensively described in [10]. Table 3 presents a complete list

of the collective algorithms used in F-MPJ and MPJ Express
(the prefix “b” means that only blocking point-to-point com-
munication are used, whereas “nb” that non-blocking prim-
itives are used). It can be seen that F-MPJ implements up
to three algorithms per collective primitive, allowing their
selection at runtime, as well as it takes more advantage of
communications overlapping, achieving higher performance
scalability. As MPJ libraries (e.g., MPJ Express) can ben-
efit significantly from the use of these collective algorithms
we plan to distribute soon our MPJ collectives library im-
plementation.

Table 3: Collective algorithms used in representa-
tive MPJ libraries (1selected algorithm for short
messages; 2selected algorithm for long messages;
3selectable algorithm for long messages and number
of processes power of two)
Collective F-MPJ MPJ Express

Barrier MST nbFTGather+
bFour-aryTBcast

Bcast MST1 bFour-aryT
MSTScatter+BKTAllgather2

Scatter MST1 nbFT
nbFT2

Scatterv MST1 nbFT
nbFT2

Gather MST1 nbFT
nbFT2

Gatherv MST1 nbFT
nbFT2

Allgather MSTGather+MSTBcast1 nbFT
BKT2 / BDE3

Allgatherv MSTGatherv+MSTBcast nbFT
Alltoall nbFT nbFT
Alltoallv nbFT nbFT
Reduce MST1 bFT

BKTReduce scatter+
MSTGather2

Allreduce MSTReduce+MSTBcast1 BT
BKTReduce scatter+

BKTAllgather2 / BDE3

Reduce - MSTReduce+MSTScatterv1 bFTReduce+
scatter BKT2 / BDE3 nbFTScatterv
Scan nbFT nbFT

3.4 Implementation and Evaluation of
Efficient HPC Benchmarks

Java lacks efficient HPC benchmarking suites for charac-
terizing its performance, although the development of effi-
cient Java benchmarks and the assessment of their perfor-
mance is highly important. The JGF benchmark suite [7],
the most widely used Java HPC benchmarking suite, presents
quite inefficient codes, as well as it does not provide the na-
tive language counterparts of the Java parallel codes, pre-
venting their comparative evaluation. Therefore, we have
implemented the NAS Parallel Benchmarks (NPB) suite for
MPJ (NPB-MPJ) [21], selected as this suite is the most ex-
tended in HPC evaluations, with implementations for MPI
(NPB-MPI), OpenMP (NPB-OMP), Java threads (NPB-
JAV) and ProActive (NPB-PA).

NPB-MPJ allows, as main contributions: (1) the compar-
ative evaluation of MPJ libraries; (2) the analysis of MPJ
performance against other Java parallel approaches (e.g.,
Java threads); (3) the assessment of MPJ versus native MPI
scalability; (4) the study of the impact on performance of the
optimization techniques used in NPB-MPJ, from which Java

HPC applications can potentially benefit. The description
of the NPB-MPJ benchmarks implemented is next shown in
Table 4.

Table 4: NPB-MPJ Benchmarks Description

Name Operation
Communicat.
intensiveness

K
e
r
n
e
l

A
p
p
li
c
.

CG Conjugate Gradient Medium X
EP Embarrassingly Parallel Low X
FT Fourier Transformation High X
IS Integer Sort High X

MG Multi-Grid High X
SP Scalar Pentadiagonal Medium X

In order to maximize NPB-MPJ performance, the “plain
objects” design has been chosen as it reduces the overhead
of the“pure”object-oriented design (up to 95%). Thus, each
benchmark uses only one object instead of defining an object
per each element of the problem domain. Thus, complex
numbers are implemented as two-element arrays instead of
complex numbers objects.

The inefficient multidimensional array support in Java (an
n-dimensional array is defined as an array of n − 1 dimen-
sional arrays, so data is not guaranteed to be contiguous
in memory) imposed a significant performance penalty in
NPB-MPJ, which handle arrays of up to five dimensions.
This overhead was reduced through the array flattening op-
timization, which consists of the mapping of a multidimen-
sional array in a one-dimensional array. Thus, adjacent ele-
ments in the C/Fortran versions are also contiguous in Java,
allowing the data locality exploitation.

Finally, the implementation of the NPB-MPJ takes ad-
vantage of the JVM JIT (Just-in-Time) compiler-based op-
timizations. The JIT compilation of the bytecode (or even
its recompilation in order to apply further optimizations)
is reserved to heavily-used methods, as it is an expensive
operation that increases significantly the runtime. Thus,
the NPB-MPJ codes have been refactored towards simpler
and independent methods, such as methods for mapping ele-
ments from multidimensional to one-dimensional arrays, and
complex number operations. As these methods are invoked
more frequently, the JVM gathers more runtime informa-
tion about them, allowing a more effective optimization of
the target bytecode.

The performance of NPB-MPJ significantly improved us-
ing these techniques, achieving up to 2800% throughput in-
crease (on SP benchmark). Furthermore, we believe that
other Java HPC codes can potentially benefit from these
optimization techniques.

4. PERFORMANCE EVALUATION
This section presents an up-to-date comparative evalua-

tion of current Java and native solutions for HPC using the
NPB on two representative scenarios: a multi-core Infini-
Band cluster and a 24-core shared memory machine.

4.1 Experimental Configuration
The InfiniBand cluster consists of eight dual-processor

nodes (Pentium IV Xeon 5060 dual-core, 4 GB of RAM) in-
terconnected via InfiniBand dual 4X NICs (16 Gbps). The
InfiniBand driver is OFED 1.4, and the MPI implementation
is Intel 3.2.0.011 with InfiniBand support. The performance

results on this system have been obtained using one core per
node, except for 16 and 32 processes, for which two and four
cores per node, respectively, have been used. The shared
memory machine has four Pentium IV Xeon 7450 hexa-core
processors (hence 24 cores) and 32 GB of RAM. The bench-
marks have been evaluated using up to the number of avail-
able cores on this system (24). Both scenarios share the re-
maining configuration details. The OS is Linux CentOS 5.1,
the C/Fortran compiler (with -fast flag) is the Intel version
11.0.074 with OpenMP support, and the JVM is Sun JDK
1.6.0 05. The evaluated MPJ libraries are F-MPJ with JFS
0.3.1, MPJ Express 0.27 and mpiJava 1.2.5x. It has been
used the NPB-MPI/NPB-OMP version 3.3 and the NPB-
JAV version 3.0. The ProActive version used is the 4.0.2,
which includes its own implementation of the NPB (NPB-
PA). The metric that has been considered is MOPS (Millions
of Operations Per Second), which measures the operations
performed in the benchmark, that differ from the CPU op-
erations issued. Moreover, Class B workload has been used
as their performance is highly influenced by the efficiency
in communications, both the network interconnect and the
communication library. Therefore, the differences among
parallel libraries can be appreciated more easily.

4.2 Experimental Results on One Core
Figure 3 shows a performance comparison of several NPB

implementations on one Xeon 5060 core. The results are
shown in terms of speedup relative to the MPI library (using
the GNU C/Fortran compiler), Runtime(NPB-MPI bench-
mark) / Runtime(NPB benchmark). Thus, a value higher
than 1 means than the evaluated benchmark achieves higher
performance (shorter runtime) than the NPB-MPI bench-
mark, whereas a value lower than 1 means than the evalu-
ated code shows poorer performance (longer runtime) than
the NPB-MPI benchmark. Only F-MPJ results are shown
for NPB-MPJ performance for clarity purposes, as other
MPJ libraries obtain quite similar results on one core. Here,
the differences that can be noted are explained by the differ-
ent implementations of the NPB benchmarks, and the use
of Java or native code (C/Fortran). Thus, the ProActive
code generally obtains good results due to its efficient im-
plementation, especially for EP and IS, whereas Java FT
implementations achieve poor performance. Java Threads
EP and ProActive SP results are missing from Figure 3 as
these kernels are not implemented in their respective NPB
suites (NPB-JAV and NPB-PA).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

CG EP FT IS MG SP

S
p

e
e
d

u
p

 R
e
la

ti
v
e
 t

o
 M

P
I
(G

N
U

 C
o

m
p

.)

NPB Class B Performance on 1 core (Xeon 5060)

MPI (GNU Comp.)
MPI (Intel Comp.)
MPJ (F-MPJ)
ProActive
Java Threads

Figure 3: NPB relative performance on one core

NPB-MPI results have also been obtained with the GNU
compiler version 4.1.2. As the publicly available Sun JVM
for Linux has been built with the GNU compiler, Java per-
formance is limited by this compiler throughput. Thus, the
Java results of Figure 3 (MPJ, ProActive and Java threads)
are usually slightly lower than those of GNU-built bench-
marks, although it is possible that Java benchmarks outper-
form native code (EP), or, on the contrary, obtain around
half of the native performance (FT and SP). From now on
only the Intel compiler results are shown as it usually out-
performs GNU compiler.

4.3 Java Performance for HPC
Figure 4 shows NPB-MPI, NPB-MPJ and NPB-PA per-

formance on the InfiniBand cluster, and NPB-OMP and
NPB-JAV on the 24-core shared memory machine. Although
the configuration of the shared and the distributed scenar-
ios are different, their results are shown together in order to
ease their comparison. Moreover, the NPB-MPJ results have
been obtained using three MPJ libraries: mpiJava, MPJ Ex-
press and F-MPJ, in order to compare them.

Regarding CG results, NPB-PA, NPB-OMP and NPB-
JAV, due to their inefficient benchmark implementations,
show the lowest performance, whereas MPJ libraries achieve
high performance, especially mpiJava and F-MPJ. In fact,
mpiJava outperforms MPI up to 16 cores. EP presents low
communication intensiveness (see Table 4). Thus, speedups
almost linear are expected. In this case NPB-OMP achieves
the highest performance, followed by NPB-PA. The remain-
ing libraries obtain quite similar performance among them.
Within FT results the native solutions show the highest
performance, NPB-OMP up to 8 cores and NPB-MPI on
16 and 32 cores. Among Java results F-MPJ achieves the
highest performance, around 15% lower than MPI on 32
cores, whereas NPB-PA shows the lowest results up 16 cores.
Moreover, shared memory solutions do not take advantage
of the use of more than 8 cores.

The communication intensiveness of IS reduces Java per-
formance, except for NPB-JAV up to four cores. Regarding
native implementations, OpenMP obtains the best results
up to 8 cores, whereas MPI achieves the highest scalability
and performance from 16 cores. The highest MG perfor-
mance has been obtained with NPB-MPI and NPB-MPJ
with mpiJava, whereas the lowest with NPB-PA and shared
memory programming.

The NPB-MPJ SP benchmark obtains generally high per-
formance, especially for F-MPJ and mpiJava, outperforming
significantly shared memory programming, especially NPB-
JAV. In this case MPJ scalability is higher than that of MPI
as MPJ on one core achieved around half of the performance
of MPI, but on 32 cores rises up to 75% of MPI results. In
this case, mpiJava and F-MPJ shows similar performance
among them. A particular feature of SP is that it requires
a square number of processes (1, 4, 9, 16, 25...). On the
InfiniBand cluster it is used one core per node up to 9 pro-
cesses, two cores per node for 16 processes and three cores
per node for 25 processes. In this scenario all distributed
memory options (MPI and MPJ) take advantage of the use
of up to 16 cores, whereas NPB-OMP obtains the highest
performance on 9 cores.

 32 24 16 8 4 2 1
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

M
O

P
S

Number of Cores

 CG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA
NPB−OMP
NPB−JAV

 32 24 16 8 4 2 1
 0

 500

 1000

M
O

P
S

Number of Cores

 EP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA
NPB−OMP

 32 24 16 8 4 2 1
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500
M

O
P

S

Number of Cores

 FT (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA
NPB−OMP
NPB−JAV

 32 24 16 8 4 2 1
 0

 50

 100

 150

 200

 250

 300

 350

M
O

P
S

Number of Cores

 IS (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA
NPB−OMP
NPB−JAV

 32 24 16 8 4 2 1
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 9000

 9500

M
O

P
S

Number of Cores

 MG (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−PA
NPB−OMP
NPB−JAV

2516941
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

M
O

P
S

Number of Cores

 SP (Class B)

NPB−MPI
NPB−MPJ (mpiJava)
NPB−MPJ (MPJ Express)
NPB−MPJ (F−MPJ)
NPB−OMP
NPB−JAV

Figure 4: NPB Class B results

These NPB experimental results can be analyzed in terms
of the three main evaluations that NPB-MPJ allows. The
first one is the comparison among MPJ implementations,
which present quite significant differences in performance,
except for EP, due to their communication efficiency. Thus,
in this testbed, MPJ Express uses IPoIB, obtaining rel-
atively low performance, F-MPJ relies on the InfiniBand
support of JFS, implemented on SDP, thus achieving much
higher speedups. Finally, mpiJava relies on the high perfor-
mance MPI support on InfiniBand, in this case implemented
on IBV (InfiniBand Verbs). CG and MG results confirms
the highest performance of mpiJava compared to MPJ Ex-
press and F-MPJ. However, F-MPJ obtains the best MPJ
performance for IS, FT and SP, showing that it is possi-
ble to achieve significant performance benefits without the
drawbacks of mpiJava. Finally, MPJ Express achieves good
results on CG and SP, thanks to the efficient non-blocking
support provided by Java NIO.

The second evaluation that can be performed is the com-
parison of MPJ against other Java parallel libraries, in this
case ProActive and Java threads. ProActive is an RMI-
based middleware, and for this reason its performance is
usually lower than that of MPJ libraries, whose communi-
cations are based on MPI or on Java sockets. Moreover,
ProActive does not support InfiniBand in our testbed (nei-
ther on SDP nor IPoIB), so it resorted to Gigabit Ether-
net. Thus, its scalability was significantly worse than that
of NPB-MPJ results. Regarding Java threads, NPB-JAV
only obtains good results for IS up to 4 cores.

Finally, NPB-MPJ allows the comparative performance
evaluation of MPJ against MPI. Except for CG and IS, the
gap between Java and native performance narrows as the
number of cores grows. This higher MPJ scalability helps to
bridge the gap between Java and native code performance.

5. CONCLUSIONS
This paper has analyzed the current state of Java for

HPC, both for shared and distributed memory program-
ming, showing an important number of past and present
projects which are the result of the sustained interest in the
use of Java for HPC. Nevertheless, most of these projects
are restricted to experimental environments, which prevents
its general adoption in this field. The performance evalua-
tion of existing Java solutions and research developments in
Java for HPC on a multi-core InfiniBand cluster, and on a
24-core shared memory machine allows us to conclude that
Java can achieve almost similar performance to native lan-
guages, both for sequential and parallel applications, being
an alternative for HPC programming. In fact, the perfor-
mance overhead that Java may impose is a reasonable trade-
off for the appealing features that this language provides for
parallel programming multi-core architectures. Finally, the
active research efforts in this area are expected to bring in
the next future new developments that will bridge the gap
with native performance and will increase the benefits of the
adoption of Java for HPC.

Acknowledgments
This work was funded by the Xunta de Galicia under Project
PGIDIT06PXIB105228PR and the Consolidation Program
of Competitive Research Groups (ref. 2006/3).

6. REFERENCES
[1] B. Amedro, V. Bodnartchouk, D. Caromel, C. Delbé,

F. Huet, and G. L. Taboada. Current State of Java for
HPC. In INRIA Technical Report RT-0353, 24 pages,
http://hal.inria.fr/inria-00312039/en/ [Last visited:
July 2009].

[2] L. Baduel, F. Baude, and D. Caromel. Object-oriented
SPMD. In Proc. 5th IEEE Intl. Symposium on Cluster
Computing and the Grid (CCGrid’05), pages 824–831,
Cardiff, UK, 2005.

[3] M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim.
mpiJava: an Object-Oriented Java Interface to MPI.
In Proc. 1st Intl. Workshop on Java for Parallel and
Distributed Computing (IWJPDC’99), LNCS vol.
1586, pages 748–762, San Juan, Puerto Rico, 1999.

[4] S. Bang and J. Ahn. Implementation and Performance
Evaluation of Socket and RMI based Java Message
Passing Systems. In Proc. 5th Intl. Conf. on Software
Engineering Research, Management and Applications
(SERA’07), pages 153–159, Busan, Korea, 2007.

[5] L. A. Barchet-Estefanel and G. Mounie. Fast Tuning
of Intra-cluster Collective Communications. In Proc.
11th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’04), LNCS vol. 3241, pages 28–35,
Budapest, Hungary, 2004.

[6] M. Bornemann, R. V. v. Nieuwpoort, and
T. Kielmann. MPJ/Ibis: a Flexible and Efficient
Message Passing Platform for Java. In Proc. 12th
European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’05), LNCS vol. 3666, pages 217–224,
Sorrento, Italy, 2005.

[7] J. M. Bull, L. A. Smith, M. D. Westhead, D. S. Henty,
and R. A. Davey. A Benchmark Suite for High
Performance Java. Concurrency: Practice and
Experience, 12(6):375–388, 2000.

[8] B. Carpenter, G. Fox, S.-H. Ko, and S. Lim. mpiJava
1.2: API Specification. http://www.hpjava.org/re-
ports/mpiJava-spec/mpiJava-spec/mpiJava-spec.html
[Last visited: July 2009].

[9] B. Carpenter, V. Getov, G. Judd, A. Skjellum, and
G. Fox. MPJ: MPI-like Message Passing for Java.
Concurrency: Practice and Experience,
12(11):1019–1038, 2000.

[10] E. Chan, M. Heimlich, A. Purkayastha, and R. A.
van de Geijn. Collective Communication: Theory,
Practice, and Experience. Concurrency and
Computation: Practice and Experience,
19(13):1749–1783, 2007.

[11] K. Datta, D. Bonachea, and K. A. Yelick. Titanium
Performance and Potential: An NPB Experimental
Study. In Proc. 18th Intl. Workshop on Languages and
Compilers for Parallel Computing (LCPC’05), LNCS
vol. 4339, pages 200–214, Hawthorne, NY, USA, 2005.

[12] J. Dongarra, D. Gannon, G. Fox, and K. Kennedy.
The Impact of Multicore on Computational Science
Software. CTWatch Quarterly, 3(1):1–10, 2007.

[13] S. Genaud and C. Rattanapoka. P2P-MPI: A
Peer-to-Peer Framework for Robust Execution of
Message Passing Parallel Programs. Journal of Grid
Computing, 5(1):27–42, 2007.

[14] W. Huang, H. Zhang, J. He, J. Han, and L. Zhang.
Jdib: Java Applications Interface to Unshackle the

Communication Capabilities of InfiniBand Networks.
In Proc. 4th Intl. Conf. Network and Parallel Com-
puting (NPC’07), pages 596–601, Dalian, China, 2007.

[15] Java Grande Forum. http://www.javagrande.org.
[Last visited: July 2009].

[16] M. E. Kambites, J. Obdrzálek, and J. M. Bull. An
OpenMP-like Interface for Parallel Programming in
Java. Concurrency and Computation: Practice and
Experience, 13(8-9):793–814, 2001.

[17] A. Kaminsky. Parallel Java: A Unified API for Shared
Memory and Cluster Parallel Programming in 100%
Java. In Proc. 9th Intl. Workshop on Java and
Components for Parallelism, Distribution and
Concurrency (IWJacPDC’07), page 196a (8 pages),
Long Beach, CA, USA, 2007.

[18] M. Klemm, M. Bezold, R. Veldema, and
M. Philippsen. JaMP: an Implementation of OpenMP
for a Java DSM. Concurrency and Computation:
Practice and Experience, 19(18):2333–2352, 2007.

[19] D. Kurzyniec, T. Wrzosek, V. Sunderam, and
A. Slominski. RMIX: A Multiprotocol RMI
Framework for Java. In Proc. 5th Intl. Workshop on
Java for Parallel and Distributed Computing
(IWJPDC’03), page 140 (7 pages), Nice, France, 2003.

[20] J. Maassen, R. V. v. Nieuwpoort, R. Veldema, H. Bal,
T. Kielmann, C. Jacobs, and R. Hofman. Efficient
Java RMI for Parallel Programming. ACM
Transactions on Programming Languages and
Systems, 23(6):747–775, 2001.

[21] D. A. Mallón, G. L. Taboada, J. Touriño, and
R. Doallo. NPB-MPJ: NAS Parallel Benchmarks
Implementation for Message-Passing in Java. In Proc.
17th Euromicro Intl. Conf. on Parallel, Distributed,
and Network-Based Processing (PDP’09), pages
181–190, Weimar, Germany, 2009.

[22] R. V. v. Nieuwpoort, J. Maassen, G. Wrzesinska,
R. Hofman, C. Jacobs, T. Kielmann, and H. E. Bal.
Ibis: a Flexible and Efficient Java-based Grid
Programming Environment. Concurrency and
Computation: Practice and Experience,
17(7-8):1079–1107, 2005.

[23] M. Philippsen, B. Haumacher, and C. Nester. More
Efficient Serialization and RMI for Java. Concurrency:
Practice and Experience, 12(7):495–518, 2000.

[24] B. Pugh and J. Spacco. MPJava: High-Performance
Message Passing in Java using Java.nio. In Proc. 16th
Intl. Workshop on Languages and Compilers for
Parallel Computing (LCPC’03), LNCS vol. 2958,
pages 323–339, College Station, TX, USA, 2003.

[25] A. Shafi, B. Carpenter, and M. Baker. Nested
Parallelism for Multi-core HPC Systems using Java.
Journal of Parallel and Distributed Computing,
69(6):532–545, 2009.

[26] A. Shafi and J. Manzoor. Towards Efficient Shared
Memory Communications in MPJ Express. In Proc.
11th Intl. Workshop on Java and Components for
Parallelism, Distribution and Concurrency
(IWJacPDC’09), Rome, Italy, page 111b (8 pages),
2009.

[27] G. L. Taboada, C. Teijeiro, and J. Touriño. High
Performance Java Remote Method Invocation for
Parallel Computing on Clusters. In Proc. 12th IEEE

Symposium on Computers and Communications
(ISCC’07), pages 233–239, Aveiro, Portugal, 2007.

[28] G. L. Taboada, J. Touriño, and R. Doallo.
Performance Analysis of Java Message-Passing
Libraries on Fast Ethernet, Myrinet and SCI Clusters.
In Proc. 5th IEEE Intl. Conf. on Cluster Computing
(CLUSTER’03), pages 118–126, Hong Kong, China,
2003.

[29] G. L. Taboada, J. Touriño, and R. Doallo. Java Fast
Sockets: Enabling High-speed Java Communications
on High Performance Clusters. Computer
Communications, 31(17):4049–4059, 2008.

[30] G. L. Taboada, J. Touriño, and R. Doallo. F-MPJ:
Scalable Java Message-passing Communications on
Parallel Systems. Journal of Supercomputing, (In
press).

[31] R. Thakur, R. Rabenseifner, and W. Gropp.
Optimization of Collective Communication Operations
in MPICH. Intl. Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[32] S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra.
Towards an Accurate Model for Collective
Communications. Intl. Journal of High Performance
Computing Applications, 18(1):159–167, 2004.

[33] R. Veldema, R. F. H. Hofman, R. Bhoedjang, and
H. E. Bal. Run-time Optimizations for a Java DSM
Implementation. Concurrency and Computation:
Practice and Experience, 15(3-5):299–316, 2003.

[34] K. A. Yelick et al. Titanium: A High-performance
Java Dialect. Concurrency - Practice and Experience,
10(11-13):825–836, 1998.

[35] B.-Y. Zhang, G.-W. Yang, and W.-M. Zheng. Jcluster:
an Efficient Java Parallel Environment on a Large-sca-
le Heterogeneous Cluster. Concurrency and Computa-
tion: Practice and Experience, 18(12):1541–1557, 2006.

