
Towards Automatic Code Generation for GPUs⋆

Javier Setoain1, Christian Tenllado1, Jose Ignacio Gómez1, Manuel Arenaz2,
Manuel Prieto1, and Juan Touriño2

1ArTeCS Group 2Computer Architecture Group
Complutense University of Madrid, Spain University of A Coruña, Spain

jsetoain@pdi.ucm.es {arenaz,juan}@udc.es
{tenllado,jigomez,mpmatias}@dacya.ucm.es

Abstract. Graphics Processing Units (GPUs) have become highly par-
allel and programmable systems used as commodity data-parallel copro-
cessors. Moreover manufacturers have developed new software interfaces
that facilitate their use. Thus, new compilation strategies that enable
automatic mapping of sequential code would very likely arise in the near
future. To open this path, we need to define some performance metrics
or heuristics that steer the mapping, as well as to develop new tools
that support such metrics or heuristics. In this paper we sketch a new
compiler intermediate representation built on top of the hierarchy of
computational kernels provided by the XARK compiler framework. In
addition, we outline several compilation strategies based on such inter-
mediate representation and present several experiments aimed at ana-
lyzing the relative importance of the two principal factors that NVIDIA
reports to influence the most on performance of their GPUs: occupancy
and memory hierarchy usage. Our results show that taking decisions
based only on the optimization of the memory system provide the best
performance, even if some resources are underutilized.

1 Introduction

Graphics Processing Units (GPUs) have evolved from application-specific units
for 3D scene rendering into programmable and highly parallel processors, that
can satisfy extremely high computational requirements at low cost. Their num-
bers are impressive. Today’s fastest GPUs can deliver a peak performance in
the order of 500 Gflops [2], more than four times the performance of the fastest
x86 quad-core processor [5]. This astonishing performance has captured the at-
tention of many developers and researchers in different areas, who are using
GPUs as commodity data-parallel coprocessors to speed up their own applica-
tions [6]. Manufacturers in turn, have developed new software interfaces that

⋆ This research was supported by the Ministry of Education and Science of Spain
and FEDER funds of the European Union (Projects TIN2007-67537-C03, TIN2005-
5619, Ingenio 2010 Consolider CSD2007-20811 and the HIPEAC European Network
of Excellence), and by the Galician Government (Projects PGIDIT05PXIC10504PN
and PGIDIT06PXIB105228PR).

facilitate GPU programmability as general purpose parallel coprocessors. The
most representative examples are NVIDIA’s CUDA [1] and AMD’s Brook+ [9].

This new scenario should redirect some of the efforts of the GPU research
community from ad-hoc porting of applications, to the development of new com-
pilation strategies that enable automatic mapping of sequential code. State-of-
the-art tools for automatic recognition of program constructs, such as the XARK
compiler framework [3, 4], can play an important role in this respect. XARK
provides a high level hierarchical representation of the program with valuable
semantic information for the GPU mapping process. However, it is still needed
to define some performance metrics and heuristics in order to steer this mapping,
and extend the compiler framework accordingly.

In this paper we perform several experiments aimed at analyzing the main
factors behind GPU’s performance in an attempt to define those heuristics. As a
driven example we have used a real world algorithm [8] that exhibits some of the
computing patterns present in many scientific and image processing applications.

The rest of the paper is organized as follows. In Section 2 we give an overview
of some related work. Section 3 briefly describes the CUDA programming model
and the main factors that influence on performance. Using an image processing
application as a guide, Section 4 describes the XARK-based representation of
the algorithm and illustrates how some different GPU implementations can be
easily generated. In Section 5 we design some experiments to determine the
relative influence of the different performance factors and extract our mapping
guidelines. Finally, Section 6 presents the main conclusions of this paper and
outlines the future work.

2 Related Work

Focusing on general purpose computing on GPUs (GPGPU), most of the re-
search activity works towards finding efficient strategies for algorithm mapping
on these platforms. Generally speaking, it involves developing new implemen-
tation strategies following a stream programming model, in which the available
data parallelism is explicitly uncovered, so that it can be exploited by the hard-
ware. This programming challenge has been studied by several researchers who
have successfully ported a large number of scientific applications [6].

Regarding code generation for GPUs, most efforts have been focused on de-
veloping new software interfaces to build GPGPU applications with less pro-
gramming effort. The most representative examples are NVIDIA’s CUDA [1]
and AMD’s Brook+ [9]. Essentially, both of them provide kernel-style data par-
allel extensions to the standard C Language.

Finally, some groups are trying build a performance model for GPUs. Shane
Ryoo et. al. [7] have studied the effect of loop unrolling and tiling on matrix
multiplication codes, focusing on the impact of the occupancy factor on perfor-
mance. This paper extends [7] by considering the interaction of occupancy and
memory hierarchy usage on a more complex application.

3 Execution model and performance limiting factors

GPUs have evolved from application specific processors to highly parallel multi-
core architectures that exploit hardware multi-threading to maximize the utiliza-
tion of computational resources. CUDA-enabled GPUs from NVIDIA organize
those cores as SIMD multiprocessors and overall, they are able to execute thou-
sands of concurrent threads.

Their memory hierarchies have also improved substantially and include differ-
ent on-chip memories to exploit data locality. For instance, CUDA-enabled GPUs
integrate software controlled scratchpad memories, which are shared among the
cores of the SIMD multiprocessors, and read-only caches to speed up the access
to texture and constant data.

Under the CUDA programming model, the GPU is view as a coprocessor that
executes data-parallel kernel functions. The data-parallel threads are arranged
into groups of up to 512 threads, called CUDA blocks. Threads within a block
can cooperate with each other by (1) efficiently sharing data through the low
latency shared memory that resides in the multiprocessor and (2) synchronizing
their execution, for hazard-free shared memory accesses. Each multiprocessor
can allocate multiple blocks concurrently.

For scheduling purposes, threads are arranged in smaller groups, known as
warps, that executes the same instruction in a SIMD fashion. Memory accesses
from threads within the same warp can be coalesced as long as they access
groups of contiguously aligned memory elements. Coalesced memory accesses
are desirable since memory access penalties are one of the ultimate performance
factors.

Given that multiprocessor’s resources are statically partitioned among the
assigned threads, the actual maximum number of concurrent threads per mul-
tiprocessor is limited by the allocated resources. Thus, besides predefined lim-
itations in the number of threads per multiprocessor and threads per CUDA

block, actual numbers could be lower due to resources demands. Within these
limits, the programmer specifies how many blocks and how many threads per
block are assigned to the execution of a given data parallel function. Blocks are
then dispatched to the multiprocessors until all of them are completed.

According to NVIDIA, one of the main concerns for GPU programmers
should be occupancy maximization. Current NVIDIA GPUs support a maxi-
mum of 768 concurrent threads per multiprocessor, that must be distributed
across equally sized blocks. Other than unveiling parallelism, resource distri-
bution must be considered to achieve an acceptable occupancy. For instance,
the available registers are statically assigned to the given threads, so that each
thread acquires the same number of registers.

The other most significant factor affecting performance is the memory usage.
Despite taking advantage of multithreading to mitigate the impact of the large
memory accesses latencies, having hundreds of threads accessing simultaneously
to the off chip DRAM poses a hard problem. This means that taking advantage of
memory coalescing and exploiting on-chip memories becomes almost mandatory.

4 Code Generation Strategies for GPUs using XARK

Today’s optimizing compilers represent program behavior by means of several
graphs that capture information at the statement and/or at the basic block lev-
els. Well-known examples are the data dependence graph and the dominance
tree. In contrast, the XARK framework [3] builds a hierarchical representation
of the code that decomposes a program into a set of mutually dependent kernels

that capture the behavior of the code fragment. The kernels capture well-known
program constructs such as inductions, reductions and recurrences, even in the
presence of complex control flows. Thus, XARK provides valuable information
about the computations carried out at runtime on scalar and non-scalar vari-
ables.

Based on this hierarchical representation we have built a Kernel Data De-
pendence Graph (K-DDG), which consists of a pair < N, E > where the set of
nodes N represents the kernels recognized by XARK, and the set of edges E

captures the dependence relationships between these kernels. More formally, let
K1 and K2 be two kernels that capture the computations of the sets of source
code statements s1

1
, . . . , sn

1
and s1

2
, . . . , sm

2
, respectively. The K-DDG contains an

edge for each dependence si
1
−→ s

j
2

between statements of different kernels K1

and K2.

For illustrative purposes, consider the pseudocode of an application of the
hyperspectral image processing domain shown in Figure 1. On the left-hand
side, the figure presents the source code, which consists of a loop nest with
maximum depth 4. Two array variables res and respos store the results of the
execution of the loop. The values assigned to res and respos are calculated
from temporary computations (dp, acc, max, maxpos and np) carried out at the
beginning of each loop iteration. On the right-hand side, the figure shows the K-
DDG of the program. The nodes are depicted as ovals labeled with the program
variable that stores the results of the computation of the kernel. Attached to
each node, the type of kernel is shown: induction for induction variables (in
particular, loop indexes); reinitialized reduction for a reduction operation (e.g.,
sum, maximum) computed in an inner loop that is reset to a constant value at
each iteration of an outer loop; and array assignment for the computation of the
value of all the entries of an array variable. In order to highlight the relationship
between the source code and the K-DDG, the nodes of the K-DDG that capture
temporary computations (kernels associated with dp, acc, max, maxpos and np)
are linked to the corresponding source code fragment. The edges are depicted as
arrows that capture depencences between kernels. For instance, there exist two
dependences between the reinitialized reduction associated to the array variable
acc and the scalar variable max: the first one appears from its use in the predicate
acc[bij3] > max of the if statement; and the second one appears from its use in
the right-hand side of the assignment statement max = acc[bij3].

In the following subsections we use this K-DDG in order to explore different
mapping alternatives on a GPU.

Fig. 1. Kernel Data Dependence Graph (K-DDG) of the pseudocode of an application
from the hyperspectral image processing domain.

4.1 Exploiting Processor Occupancy

In order to study the influence of processor occupancy in the overall performance,
we have experimented with two well-known code transformations: loop fission
and loop unrolling. Loop fission breaks a loop into multiple loops over the same
index range but each taking a part of the loop body. Loop fission is an effective
way to reduce the size and the requirements of the GPU programs. Consider the
example of Figure 1. The outermost loop forij computes two array assignment
kernels (res and respos) and thus it can be fully parallelized. However, as the
code fragment is large, the number of registers required is too high to reach 100%
occupancy. As a result, the compilation strategy may consist of applying loop
fission to forij in order to reduce the size of the GPU program. For instance,
the loop body can be broken by the dependences between acc and max as they
are loop-independent dependences. However, this strategy forces to expand the
acc array, as it must now store the results for all the ij iterations. Moreover, we
must now run sequentially two GPU kernels instead of one, which could means
an important performance penalty if they are too light. Finally, loop fission may
also lead to a loss of locality, further restricting the potential performance gains
achieved by maximizing occupancy.

Loop unrolling is another optimizing transformation that impacts on resource
usage. It consists of replicating the loop body to build a single sequence of

instructions and reduce the number of loop iterations. Thus, the pressure on the
registers is increased and the number of concurrent threads is limited. According
to [7], loop unrolling (in the context of matrix multiplication) is still worthy due
to the increase of ILP. However, in many occasions the loss in occupancy could
not be compensated by the increase in ILP.

Moreover, the number of threads per block further restricts the total occu-
pancy. Given the limit of 768 threads per multiprocessor, using maximum size
CUDA blocks of 512 threads would always lead to underutilized resources. On
the other extreme, too small blocks (less than 64 threads) are neither advisable
due to the warp-scheduling explained above.

4.2 Exploiting Memory Hierarchy

In many situations it is not possible to guarantee alignment access in the whole
GPU kernel program. The example code in Figure 1 exhibits this problem. As
described above, the iterations of the outermost loop forij can be computed
concurrently by different threads. Hence, if memory alignment is guarantee for
a given value of the loop index bij1, then the remaining iterations of forbij1 will
perform misaligned memory accesses. We have performed several experiments
aiming at evaluating the impact of this misalignment problem.

Texture Cache. GPUs can access the off chip DRAM through read-only texture
caches: the programmer only needs to bind a texture to the given memory area.
On cache misses the texture cache controller fetches a whole cache line. This
way, misaligned memory accesses are avoided but at the expense of potentially
increasing bandwidth demands. If spatial locality exists within the threads of the
same block, texture fetching captures it and reduces the pressure on the memory
system, but if not, it increases bandwidth demands.

Shared Memory. The main advantage of this software controlled memory is its
low latency, but the actual benefits of using it will depend on how much reuse
is possible and what are the overheads caused by (1) fetching the data from
the off-chip RAM (misaligned problems still could exists) and (2) synchronizing
thread execution for hazard free shared memory accesses.

5 Experimental Results

In this section we present the experimental results obtained from applying the
ideas presented in Section 4 to our driving example (see Figure 1). All the ex-
periments have been carried out on a NVIDIA GeForce 8800 GTX (G80).

To study the influence of occupancy we have run two versions of our example
code varying the number of threads per CUDA block from 16 to 512 (see Fig-
ure 2(a)). In the first version, a single kernel programs encapsulates the whole
code (we call it the Single version), whereas in the second one, we have applied
loop fission as described in Section 4.1 (we call it the Split version). Surprisingly,

even if performance differences are low (less than 10%), the best results are ob-
tained for 16 and 32 threads per block, where occupancy drops as low as 33%.
Apparently, other factors are limiting performance much more than occupancy.

�� ���� ���� ���������������������
�� �� �� ��� ����	
�� �

������� ��� �����
����������

(a)

!!"#!"$!"%!"&''"#'"$
'% (# %$ '#& #)%*+ ,-. /0

1234567 843 9:;<=
>574>57414?@8:AB14?

(b)

Fig. 2. Influence of the number of threads per CUDA block and the GPU program size
on performance either without (a) or with (b) texture fetching.

Figure 2(b) confirms this intuition. Once memory access is enhanced by using
texture fetching, which improves locality and removes misalignment problems,
the behavior become closer to our expectations. The optimal performance is
achieved using 128 threads per CUDA block, which reaches 83% occupancy, the
maximum attainable in this example. Finally, it is important to note that the
Split version never outperforms the Single one in any of the two scenarios. With
texture fetching the performance gap becomes lower. However, in both cases
the benefits of reducing the pressure on resources is lost due to the overheads
associated with launching more kernel programs.

We have also studied the impact of unrolling the innermost loop (l1 loop in
Figure 1) on performance. To keep under control the number of registers, we
prevent the compiler from using more than 12, 16 and 20 registers per thread1.
Without using textures (see Figure 3(a)), the execution time scarcely improves
with unrolling in both versions: it has no impact on the Split version, whereas
for the Single one, it achieves a small speedup when registers are not limited.

Figure 3(b) shows the result of the same set of experiments but accessing
the DRAM through texture fetching. Again, the execution time significantly
improves over non-texture counterpart. Furthermore, we also observed that (1)
unrolling never has positive effects on the execution time of our driving example
and (2) limiting the number of registers to the compiler slightly improves the
Split implementation.

Since the performance of both versions are similar, for the rest of this Section
we only consider the Single implementation.

1 None of the program versions ever requires more than 20 registers per thread, so
this results in non register usage restriction

��
� � � � � � � �	
 �� ��

������ ������
������ �� ��������� �� ��������� �� �������� �� �������� �� �������� �� ���

(a)

� !"� !#� !$� !%� !&� !'� (� (!� ((� ()
! () " # $ % &*+ ,-. /0

123455 678943
:;2<5=>=? !$ 3=<:;2<5=>=? !(3=<:;2<5=>=? (� 3=<:@5;9>=? !$ 3=<:@5;9>=? !(3=<:@5;9>=? (� 3=<

(b)

Fig. 3. Influence of the unroll factor and number of registers available on performance
either without (a) or with (b) texture fetching. These curves were obtained using 128
threads per CUDA block.

In the next experiments we analyze the effect of exploiting shared memory.
The loop nests that contribute most to the total execution time are l1 and l2,
labeled by XARK as reinitialized reduction (see Figure 1)). We need to tile these
loops so that all the elements accessed in a tile fit in the shared memory. Figure 4
compares the execution time of six different versions of the Single code. Base,
BaseTex and BaseSh stand for the original Single code, the original code with
texture fetching and the original code with shared memory respectively.

AABCABDABEABFGGBCGBD
ED GCF CHE HGCIJ KLM NO

PQRSTUV WSR XYZ[\
XTVSXTVSPS]XTVS^QXTVSPS]^Q_ GVQ_CPS]_ GPS]^Q_CPS]

Fig. 4. Effect of using Shared memory and its synergy with the use of texture accesses.

Using texture fetching in both loops (BaseTex) outperforms either the shared
memory counterpart (BaseSh) or the combined version (BaseTexSh), whereas
BaseTexSh only improves BaseSh by a small factor. There are two reason that
explains this behavior:

1. The nature of the l2 loop causes a lot of bank conflicts in the access to the
shared memory. Whereas the access function to f is known at compile time

in the first loop, it is modified at run time (through variable maxpos) in
the second one. The actual addresses accessed in this case by the different
threads will frequently match, causing bank conflicts in the shared memory.

2. Texture fetching on the l1 loop is slightly more efficient than using shared
memory (compare BaseTex and L1ShL2Tex curves) due to the overhead
introduced by the code that fetches the data from the off-chip DRAM to the
shared memory (it exhibits misalignment problems).

Overall, the best performance is achieved when texture fetching is combined
with shared memory only in the l1 loop (L1TexShL2Tex). This reinforces the
observation that using texture fetching significantly improves performance by
improving data locality and eliminating the problems introduced by the mis-
aligned accesses to the off chip DRAM. In addition, it shows that using shared
memory does not always improve performance and it must be employed care-
fully. Essentially, codes shall fulfill two conditions to effectively exploit it: 1) they
must exhibit enough data reuse and 2) there arithmetic density should be high
enough. This way, the overhead introduced by intra-block thread synchroniza-
tion and bank conflict accesses can be compensated. Finally, a very interesting
finding is the synergistic effect of using texture fetching to reduce alignment
problems in the code that fetches the data to the shared memory.

6 Conclusions

In this paper we have presented a comparative analysis of the factors that influ-
ence algorithm performance when mapped on modern GPUs, as a first step to
automatize code generation for these platforms. Although the occupancy factor
is reported by NVIDIA as being essential for performance, the overhead intro-
duced by misalignment accesses to the off-chip memory happen to be one of the
most dominant factors in codes that exhibit this problem.

In this scenario, occupancy should only be considered once the alignment
problems have been mitigated. Texture fetching can ease these problems is spa-
tial locality is high enough. On the contrary, shared memory does not always
improves performance. We do recommend to avoid shared memory when we can-
not guaranty at compile time that accesses to this memory are bank conflict-free.
In those cases, texture fetching is a more robust alternative that usually pro-
vides better results. Furthermore, when accesses to the shared memory are bank
conflict-free combining texture fetching and shared memory could be beneficial
since texture fetching reduces the overhead introduced by misalignment accesses
to the off-chip

Finally, we have proposed the use of the XARK compiler as a kernel-style
parallelism uncovering tool, showing how its computational kernel representation
can be used to extract most of the information needed for the algorithm mapping.

As future work we plan to obtain efficient techniques for mapping thread
identifiers to parallel loop iterations using the XARK representation as input.

This process should give us enough information to decide which code transfor-
mations are needed to exploit locality and minimize the probability of bank
conflicts in shared memory.

References

1. NVIDIA CUDA programming guide. Available online at:
http://www.nvidia.com/object/cuda develop.html.

2. NVIDIA Tesla. GPU computing technical brief. Available on-line at:
http://www.nvidia.com/object/tesla computing solutions.html, May 2007.

3. Manuel Arenaz, Juan Touriño, and Ramón Doallo. Xark: An extensible framework
for automatic recognition of computational kernels. Accepted for Publication on the
ACM Transactions on Programming Languages and Systems (TOPLAS).

4. Manuel Arenaz, Juan Tourio, and Ramon Doallo. Program behavior characteriza-
tion through advanced kernel recognition. In Anne-Marie Kermarrec, Luc Boug,
and Thierry Priol, editors, EuroPar, volume 4641 of Lecture Notes in Computer
Science, pages 237–247. Springer, 2007.

5. Nebojsa Novakovic. Harpertown benchmarks show a monster in the
making. http://www.theinquirer.net/en/inquirer/news/2007/09/18/harpertown-
benchmarks-show-a-monster-in-the-making, September 2007.

6. John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger,
Aaron E. Lefohn, and Timothy J. Purcell. A survey of general-purpose compu-
tation on graphics hardware. Computer Graphics Forum, 26(1):80–113, 2007.

7. Shane Ryoo, Christopher I. Rodrigues, Sara S. Baghsorkhi, Sam S. Stone, David B.
Kirk, and Wen mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded gpu using cuda. In PPoPP ’08: Proceedings of the 13th
ACM SIGPLAN Symposium on Principles and practice of parallel programming,
pages 73–82, New York, NY, USA, 2008. ACM.

8. Javier Setoain, Manuel Prieto, Christian Tenllado, Antonio Plaza, and Francisco
Tirado. Parallel Morphological Endmember Extraction Using Commodity Graphics
Hardware. IEEE Geoscience and Remote Sensing Letters, vol. 4, issue 3, pp. 441-
445, 4:441–445, July 2007.

9. AMD Whitepaper. AMD stream computing software stack. Available online at
http://ati.amd.com/technology/streamcomputing/index.html.

