
Performance Evaluation of Unified Parallel C Collective Communications

Guillermo L. Taboada, Carlos Teijeiro, Juan Touriño,
Basilio B. Fraguela, Ramón Doallo

Computer Architecture Group, University of A Coruña (Spain)
Email: {taboada,cteijeiro,juan,basilio,doallo}@udc.es

José Carlos Mouriño, Damián A. Mallón, Andrés Gómez

Supercomputing Center of Galicia (CESGA)
Santiago de Compostela (Spain)

Email:{jmourino,dalvarez,agomez}@cesga.es

Abstract

Unified Parallel C (UPC) is an extension of ANSI C
designed for parallel programming. UPC collective prim-
itives, which are part of the UPC standard, increase pro-
gramming productivity while reducing the communication
overhead. This paper presents an up-to-date performance
evaluation of two publicly available UPC collective im-
plementations on three scenarios: shared, distributed, and
hybrid shared/distributed memory architectures. The charac-
terization of the throughput of collective primitives is useful
for increasing performance through the runtime selection
of the appropriate primitive implementation, which depends
on the message size and the memory architecture, as well as
to detect inefficient implementations. In fact, based on the
analysis of the UPC collectives performance, we proposed
some optimizations for the current UPC collective libraries.
We have also compared the performance of the UPC col-
lective primitives and their MPI counterparts, showing that
there is room for improvement. Finally, this paper concludes
with an analysis of the influence of the performance of
the UPC collectives on a representative communication-
intensive application, showing that their optimization is
highly important for UPC scalability.

1. Introduction

As constellations and multi-core systems are increasing

their popularity, there is a need for new programming models

that provide an efficient support to application development

on these architectures. Among the proposed approaches,

UPC [1] has shown to be a good alternative to more tradi-

tional parallel programming models (e.g., message-passing,

data parallel and shared-memory models).

UPC is an extension of ANSI C designed for paral-

lel programming, which is especially suitable for hybrid

shared/distributed memory architectures (e.g., multi-core

clusters) because of its flexible memory model, the Parti-

tioned Global Address Space (PGAS). The PGAS model

presents a global memory address space logically partitioned

among several threads. In the PGAS model each shared-

memory portion has affinity with a particular thread, thereby

providing a productive programming model while allowing

the exploitation of locality. Although the PGAS model al-

lows the transparent access to data affine to a remote thread,

this usually introduces a significant overhead. In order to

reduce the number of these inefficient operations, the UPC

collectives specification [2], which is part of the standard

UPC specification [3], defines a set of data movements

and computational operations (primitives) commonly used

in parallel applications. The implementation of these prim-

itives, in a UPC collectives library, provides improvements

in the programmability, as well as the locality (and hence

the performance) in the data access.

Regarding UPC compilers, the most relevant open-source

implementations are Berkeley UPC [4] (BUPC) and GCC

UPC [5] (GCCUPC). BUPC includes a UPC-to-C translator

and a runtime environment that uses a high-performance

communication layer called GASNet [6] to provide sup-

port to PGAS on high-speed networks, such as Myrinet

or InfiniBand. The BUPC collectives library (from now

on denoted as “BCOL”, Berkeley COLlectives library) is

based on the GASNet collective implementation. GCCUPC

is an extension of GNU GCC for UPC code, but it does

not include its own implementation of collective primitives.

Thus, GCCUPC has to resort to an external collective library,

such as the reference implementation of the UPC collectives

specification (from now on REF library) [7]. Moreover,

GCCUPC can only be used in shared-memory systems by

default, as it does not support distributed communications

without a runtime environment. GCCUPC has not been

used in this paper because of these constraints and also for

showing usually poorer performance than BUPC [8]. Besides

these two options, there are also commercial UPC compilers:

HP UPC [9] and IBM UPC.

This paper presents up-to-date performance results of

UPC primitives, and identifies the inefficiencies in different

test environments in order to provide a better implementation

for UPC collective-based operations. The rest of this paper

is organized as follows. Section 2 discusses the related work

on UPC performance evaluations. Section 3 presents the

current implementations of UPC primitives and the differ-

ent extensions and optimizations that have been proposed.

Section 4 contains the results of our evaluation conducted

on a multi-core InfiniBand supercomputer using different

configurations. Finally, Section 5 concludes the paper.

2009 11th IEEE International Conference on High Performance Computing and Communications

978-0-7695-3738-2/09 $25.00 © 2009 IEEE

DOI 10.1109/HPCC.2009.88

69

2. Related Work

Previous UPC performance evaluations [8], [10], [11],

[12] have focused either on basic data movement primitives

or whole applications. Data movement primitives include

upc_memget, upc_memput and upc_memcpy, which

process all data types as byte arrays (raw data). Regarding

the evaluated applications, the most relevant ones are general

problem-solving algorithms, such as matrix multiplication,

Sobel edge detection, N-Queens, and the UPC version of

the NAS Parallel Benchmarks (NPB) [13], developed at

George Washington University [1]. The application bench-

marks allowed to measure overall results of UPC perfor-

mance, whereas the microbenchmarking of memory primi-

tives showed communication latencies and bandwidths.

A shared outcome from these studies is that UPC shows

better performance when data locality and the use of private

memory are maximized [14]. Collective primitives have not

played an important role in these studies: research on this

topic has been mostly restricted to different proposals for op-

timizing or extending the standard collectives specification.

Recently, the introduction of MPI-like optimizations on UPC

collectives has been proposed and experimentally evaluated

in [15]. Nevertheless, these works only present relative

comparisons between UPC collective libraries, measuring

percentages of improvement, without characterizing their

real performance, so the comparison with other implemen-

tations is not possible. Moreover, these three studies are

restricted to the use of a small number of threads (up to

16) on a cluster of dual processor nodes, without evaluating

this hybrid shared/distributed memory architecture.

The analysis of the throughput of collective primitives

is useful for selecting the implementation that obtains the

highest performance on a given scenario, to detect inefficient

implementations, and eventually to propose new algorithms

in order to increase their performance. As previous studies

lack this analysis, this paper evaluates current UPC collec-

tives performance in order to provide UPC developers with

this valuable information.

3. Implementations of UPC Collectives

The UPC collectives specification includes several primi-

tives that implement common communication patterns, such

as broadcast, scatter, gather, exchange or reduce. These

primitives operate in the shared-memory space, which im-

plies that the source and destination arguments of these

primitives are pointers to shared-memory locations. In or-

der to improve the functionality of the standard collective

specification, different extensions and optimizations have

been proposed. The most relevant ones are Value-based

Collectives [16], One-sided Collectives and Variable-sized

Data Blocks Collectives [17]. Value-based Collectives op-

timize communications of single-valued variables, which

can be either on private or shared memory. The One-

sided approach defines communications in a single direction,

with an active and a passive peer for each communication,

thus simplifying synchronizations in data transfers. Variable-

sized Data Blocks Collectives provide a more flexible

set of collectives that define custom message sizes and

source/destination pointers for each communication peer, al-

lowing non-contiguous data movements and the transmission

of data from private memory.

An additional project on UPC collectives is the defi-

nition of sets of threads called “teams”, which allow a

collective primitive to be called by a subset of all avail-

able threads [18]. Another active line is the research on

extensions of the UPC memory copy library [19], that aims

for an efficient implementation of non-blocking and non-

contiguous data transfers.

The basis of UPC collective primitives are data transfers

between threads, which can be implemented either with bulk

data transfers, using UPC functions such as upc_memcpy,

or relying on the collective implementation provided by an

underlying communication library. Regarding the two UPC

collective libraries evaluated in this study, the BUPC collec-

tives library (BCOL) [4] is an example of the latter approach,

as it relies on a low-level communication library (GASNet),

whereas the UPC reference implementation (REF) [7] is

implemented with upc_memcpy operations.

BCOL is based on the low-level GASNet communica-

tion library [6], which is implemented using Active Mes-

sages [20]. From version 2.6.0 of the BUPC compiler, the

former linear flat-tree implementation of collectives has been

replaced by a binomial tree communication pattern, which

organizes data transfers in a logarithmic number of steps,

thus reducing memory and network contention.

Regarding REF, from Michigan Tech. University, the

implementation of its collective primitives is based on

upc_memcpy data transfers. Its communications use a fully

parallel flat-tree algorithm, so that they are all performed in

only one step. Two different approaches can be used in REF

collective primitives: pull and push. Both techniques are

based on upc_memcpy, and their distinguishing feature is

the active side in the communications. In the pull approach,

each destination thread copies its corresponding data from

the source thread in parallel, while in the push approach each

source thread copies its data to all the destination threads.

The selection of a pull or a push approach has to provide

a fair distribution of the communication overhead for each

collective primitive. Thus, in broadcast and scatter a pull

implementation is better because it makes the destination

threads copy the data in parallel from the source thread,

whereas the push approach maximizes parallelism in the

gather collective. In this study, the most efficient approach

has been selected for each REF collective primitive evalu-

ated.

70

4. Performance Evaluation of UPC Collectives

4.1. Experimental Configuration

The performance evaluation has been conducted on the

Finis Terrae supercomputer, ranked #427 in the November

2008 TOP500 list (14 TFlops) [21]. It consists of 142 nodes,

each of them with 8 Montvale Itanium2 (IA64) dual-core

processors at 1.6 GHz (16 cores per node), 128 GB of

memory and InfiniBand [22] as interconnection network.

Additionally, the Finis Terrae has an HP Superdome with

64 Montvale Itanium2 processors (128 cores) at 1.6 GHz

and 1 TB of shared memory.

The software configuration consists of a SuSE Linux

Enterprise Server 10 (for IA-64) OS, the Intel C com-

piler icc 10.1 with OpenMP support and BUPC 2.6.0 as

UPC compiler/runtime. BUPC uses HP-MPI v2.2.5.1 for

distributed-memory communications, relying on its Open-

Fabrics InfiniBand Verbs (IBV) communication device for

internode transfers, and on a special low-level messaging

protocol (SHM) which avoids the use of the InfiniBand

network device for intranode communications. Two UPC

collective libraries have been selected for this work, BCOL

and REF, which have been also used in some evaluations and

subsequent optimizations of UPC collective libraries [15].

This supercomputer allows the evaluation of UPC col-

lective primitives on three scenarios: shared memory, dis-

tributed memory, and hybrid shared/distributed memory. In

the shared-memory configuration (from now on denoted

as “SMP”) the benchmarks are run on the shared-memory

machine, the Finis Terrae Superdome, obtaining results up to

128 threads. In the distributed-memory scenario (from now

on “DMP”) up to 8 nodes are used and the communication

among threads is done exclusively using the InfiniBand

Verbs (IBV) support provided by GASNet. The evaluation

on DMP has been done using all the available combinations

of number of nodes (up to 8) and number of threads

per node (up to 16), obtaining results up to 128 threads.

The third scenario is the hybrid shared/distributed memory

configuration (denoted as “Hybrid”), where up to 8 nodes

are used and internode communications are also done over

InfiniBand using the GASNet IBV device. Nevertheless,

intranode communications are shared-memory accesses. The

results in the Hybrid scenario are also obtained for up to 128

threads using all the combinations of number of nodes (up to

8) and number of threads per node (up to 16). Among these

three scenarios, the hybrid-memory layout is of particular

interest in the PGAS model, as it increases the scalability of

the shared-memory model, allowing the aggregation of com-

puting resources with distributed memory, and it avoids the

overhead incurred when the distributed-memory applications

are used within shared-memory machines. Nevertheless, no

evaluation of UPC collectives performance has been done

up to now on a hybrid-memory architecture despite being

the most commonly deployed (e.g., multi-core clusters)

nowadays.

4.2. UPC Collectives Microbenchmark Suite

Due to the lack of suitable benchmarks for our purposes,

we have implemented our own UPC collectives suite, which

is similar to the Intel MPI collectives benchmarks (pre-

viously known as Pallas MPI) [23]. This suite has been

designed to measure the performance of every collective

primitive through a single call to a generic benchmarking

function, which tests the performance of the primitive in

a range of message sizes. Although this suite can be used

to characterize the performance of all collective primitives

present in the UPC specification, only five have been se-

lected for our evaluation: broadcast, scatter, gather, exchange

and reduce.

In order to avoid the issues that might arise when mi-

crobenchmarking communications performance, the bench-

markmarking suite has been designed following most

of the guidelines presented in [24]. For example, the

UPC {IN,OUT} ALLSYNC (strict) synchronization mode

has been used in all collective calls (in UPC the synchro-

nization mode is passed to each collective primitive call as

a function parameter). The main goal of this approach is to

characterize the maximum overhead that the synchronization

can impose in a collective primitive operation. Furthermore,

the results have been obtained using cache invalidation in

order to avoid the influence of cache reuse. This technique

has been implemented using new dynamically allocated

buffers for each primitive call, without reuse. The design of

the tests implicitly forces the obtention of correct results,

but simple sanity checks are also performed here. The

performance results of UPC collectives obtained with our

microbenchmark suite are discussed in the next section.

4.3. UPC Collective Primitives Performance

Figures 1-4 and Table 1 show aggregated bandwidths of

UPC collectives (latencies in the case of reduce) for BUPC

using two UPC collective implementations, the BUPC de-

fault library (BCOL) and REF, on the three available con-

figurations on Finis Terrae (SMP, DMP and Hybrid). The

main difference between the collective implementations is

that REF uses flat-tree communication algorithms, whereas

BCOL resorts to binomial trees. The data size shown in

the figures is the size of the data used in the collective

operation at the root thread, or in any thread in a non-rooted

operation. Thus, in a 1 MB scatter primitive (rooted oper-

ation) (1 MB)/THREADS of data is sent to each thread

(THREADS is the number of UPC threads involved in

the collective operation). The aggregated bandwidth metric

includes the minimum number of bytes that need to be trans-

ferred in the collective primitive operation, thus allowing to

71

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

1(a) Broadcast - UPC Bandwidth (32 Threads)

BCOL SMP
REF SMP

BCOL Hybrid
REF Hybrid
BCOL DMP

REF DMP

 0

 2

 4

 6

 8

 10

 12

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

1(b) Broadcast - UPC Bandwidth (SMP)

BCOL 32 Threads
REF 32 Threads

BCOL 64 Threads
REF 64 Threads

BCOL 128 Threads
REF 128 Threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

1(c) Broadcast - UPC Bandwidth (32 Threads - DMP)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

 0

 1

 2

 3

 4

 5

 6

 7

 8

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

1(d) Broadcast - UPC Bandwidth (32 Threads - Hybrid)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

Figure 1. UPC broadcast performance

compare the performance obtained using different numbers

of threads (performance scalability). It has been calculated

as data size/latency for the scatter and gather measures,

and as THREADS ∗ data size/latency for the broadcast

and exchange results.

Each figure (from Figures 1-4) consists of four graphs.

The first one (a), shows the performance of the two collective

implementations (BCOL and REF) using 32 threads on the

three configurations, thus allowing the comparison among

them. The Hybrid and DMP results have been obtained

using 8 nodes and 4 threads per node. The second graph

(b) presents the aggregated bandwidths for 32, 64 and 128

threads on SMP, allowing the analysis of the performance

scalability. Graph (c) depicts the collective aggregated band-

width with 32 threads on the DMP scenario varying the

number of nodes used (2, 4 or 8 nodes, which means using

16, 8 or 4 UPC threads per node, respectively). A similar

analysis (varying the number of nodes used) is also done

for the Hybrid configuration in the last graph (d). Table 1

presents a summary of the results that would appear in a (a)-

like graph for the reduce collective, but showing latencies

instead of bandwidths.

Figure 1 shows the performance of the broadcast col-

lective. Regarding the Graph 1(a), the best results have

been obtained with REF SMP. The reason is the parallel

access of the destination threads to the root thread data,

without any additional synchronization. In fact, BCOL SMP

performs the binomial tree in five steps (log232), obtaining

quite poorer performance than REF on SMP due to the

synchronization overhead involved in a five step operation

compared to the single step required for REF. The second

best performance is achieved by BCOL Hybrid which, taking

advantage of the shared-memory transfers, almost doubles

the performance of BCOL DMP. The REF Hybrid and DMP

results are poor, as they involve several internode transfers,

which are an important performance bottleneck for a flat-tree

algorithm. In fact, BCOL Hybrid and DMP outperform their

REF counterpart, emphasizing the fact that the minimization

of internode transfers improves the performance of the

collectives. Graph 1(b) shows that REF significantly outper-

forms BCOL on SMP, which obtains comparatively quite

poor performance, especially for 128 threads. Moreover, the

scalability of both implementations is quite small. Regarding

Graph 1(c), the best performance is obtained by BCOL using

8 nodes (4 threads per node). In this scenario, REF obtains

poorer performance than BCOL as in a flat-tree implemen-

72

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

2(a) Scatter - UPC Bandwidth (32 Threads)

BCOL SMP
REF SMP

BCOL Hybrid
REF Hybrid
BCOL DMP

REF DMP

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

2(b) Scatter - UPC Bandwidth (SMP)

BCOL 32 Threads
REF 32 Threads

BCOL 64 Threads
REF 64 Threads

BCOL 128 Threads
REF 128 Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

2(c) Scatter - UPC Bandwidth (32 Threads - DMP)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

2(d) Scatter - UPC Bandwidth (32 Threads - Hybrid)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

Figure 2. UPC scatter performance

tation the use of distributed-memory communications is an

important performance bottleneck. From the analysis of the

results of Graph 1(d) it can be derived that there is not

much difference between using 8 nodes with 4 threads per

node, and using 4 nodes with 8 threads per node. The best

performance in this Hybrid scenario has been obtained by

BCOL, although REF increases the throughput shown on the

DMP configuration, especially on 2 nodes. In fact, the use

of 2 nodes, and hence 16 threads per node, maximizes the

number of intranode transfers, which benefits from the flat-

tree algorithm of REF, whereas it harms BCOL performance.

Figure 2 presents the results of UPC scatter. Graph 2(a)

shows that the best performance has been obtained by REF

on SMP thanks to its parallel access to the source thread,

which avoids synchronization steps and data buffering in

intermediate threads. Regarding BCOL, its best results are

obtained in the Hybrid configuration. Graph 2(b) shows

that both implementations have poor scalability, obtaining

the best results with 32 threads. In this scenario REF

significantly outperforms BCOL. In Graph 2(c) REF almost

doubles BCOL results, achieving its best performance using

8 nodes. This is the opposite behavior to the broadcast,

where BCOL obtains better results than REF. In this case

the BCOL scatter (binomial tree) has to transfer additional

data for all the leaves of a node (intermediate buffering). For

example, in a 1 MB scatter to 8 threads using a binomial

tree it is required that the source thread transfers 512 KB in

the first step, the two threads with data (the source and the

one that got the data in the first step) will transfer 256 KB in

the second step, and finally, four threads will copy 128 KB

to the leaves of the binomial tree. Thus, BCOL requires the

movement of 1536 KB whereas REF only 1024 KB, which

means an overhead in terms of extra data transferred of 50%

of the data size considered in the primitive. Regarding a

32-thread operation, the additional data overhead is 153%

of the data size considered in the primitive. Thus, for a

1 MB scatter, 1.53 MB of additional data are transferred.

Therefore, REF scatter obtains higher throughput as it trans-

mits the minimum amount of data without synchronization

overheads. This efficient implementation allows REF to also

outperform BCOL in the Hybrid configuration (Graph 2(d)),

although in this case the best results have been obtained

using 2 nodes, and hence 16 threads per node, where the

number of shared-memory transfers is maximized.

Figure 3 depicts the results of UPC gather. Similarly to

scatter, REF usually outperforms BCOL on all configura-

73

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

3(a) Gather - UPC Bandwidth (32 Threads)

BCOL SMP
REF SMP

BCOL Hybrid
REF Hybrid
BCOL DMP

REF DMP

 0

 0.5

 1

 1.5

 2

 2.5

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

3(b) Gather - UPC Bandwidth (SMP)

BCOL 32 Threads
REF 32 Threads

BCOL 64 Threads
REF 64 Threads

BCOL 128 Threads
REF 128 Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

3(c) Gather - UPC Bandwidth (32 Threads - DMP)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

3(d) Gather - UPC Bandwidth (32 Threads - Hybrid)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

Figure 3. UPC allgather performance

tions. In fact, the evaluation of all the graphs of gather shows

analogous conclusions to the previous primitive. However,

the performance of REF gather is lower that that of scatter

due to memory access performance. In Graph 3(a) the best

performance has been also obtained by REF SMP, although

the aggregated bandwidth values are significantly lower than

for the scatter. Graph 3(b) shows that the highest throughput

is obtained using 64 threads, both for REF and BCOL. In

Graph 3(c) REF gather (like REF scatter) almost doubles

BCOL, achieving the best performance using 8 nodes.

Finally, REF gather achieves its highest performance on

the Hybrid scenario (Graph 3(d)) with 2 nodes (maximizing

the number of shared-memory transfers), whereas the best

BCOL gather results have been obtained with 4 and 8 nodes

(maximizing the number of internode transfers).

Figure 4 shows the exchange results. This primitive in-

volves a more complex communication pattern than the

preceding ones. Thus, its performance is highly influenced

by the start-up communication latency, and thus the syn-

chronization, showing REF on SMP much better perfor-

mance than the other configurations, taking advantage of

the shared-memory access and its flat-tree implementation.

Furthermore, the aggregated bandwidth is usually higher

than that of the preceding collectives as it is a non-rooted

collective where all threads are actively communicating

during the collective operation. The analysis of the per-

formance of this primitive on SMP (Graph 4(b)) shows an

important scalability for REF, especially for long messages,

increasing the aggregated bandwidth almost linearly with

the number of threads. In this scenario, the high number of

transfers involved in this operation benefits from the flat-

tree implementation of REF collectives. However, BCOL

has an inefficient implementation on SMP, showing quite

poor performance. In fact, BCOL exchange obtains worse

performance on SMP than on DMP and Hybrid. Regard-

ing DMP results (Graph 4(c)), BCOL slightly outperforms

REF, whereas for the Hybrid configuration (Graph 4(d)) the

performance gap is wider for BCOL on 4 and 8 nodes, but

REF outperforms BCOL on 2 nodes. Both BCOL and REF

implementations benefit from the use of 8 nodes on DMP

and Hybrid, compared to the use of 4 and 2, as for this non-

rooted operation all threads are actively communicating, thus

taking advantage of the highest number of nodes.

Table 1 shows the latencies (in microseconds) of UPC

reduce. The latency has been selected as performance mea-

sure instead of the bandwidth as the UPC reduce only

74

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

4(a) Exchange - UPC Bandwidth (32 Threads)

BCOL SMP
REF SMP

BCOL Hybrid
REF Hybrid
BCOL DMP

REF DMP

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

4(b) Exchange - UPC Bandwidth (SMP)

BCOL 32 Threads
REF 32 Threads

BCOL 64 Threads
REF 64 Threads

BCOL 128 Threads
REF 128 Threads

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

4(c) Exchange - UPC Bandwidth (32 Threads - DMP)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

4KB 8KB 16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
B

p
s)

Data size

4(d) Exchange - UPC Bandwidth (32 Threads - Hybrid)

BCOL 8 nodes
REF 8 nodes

BCOL 4 nodes
REF 4 nodes

BCOL 2 nodes
REF 2 nodes

Figure 4. UPC exchange performance

Data size
1KB 1MB

BCOL
SMP 622 624

Hybrid 213 354
DMP 531 641

REF
SMP 653 5191

Hybrid 287 3599
DMP 716 3980

Table 1. UPC reduce latencies (μs) for 32 threads

involves the transfer of a primitive data type value per thread,

independently of the number of elements being processed.

The operation of the UPC reduce differs from the MPI

reduction, which communicates all the local data. Thus,

the reduction of an array of 10 elements per thread/process

returns a scalar result in UPC and a 10 element result array

for MPI. The operation used in the microbenchmarking is

the floating point addition of double precision data (doubles).

Unlike the previous data movement collectives, reduce is

a computational one, and therefore its UPC implementa-

tion is more intensive in computations than in communi-

cations. Thus, in this scenario, it can be concluded that

the computation associated to a reduce call happens to

be implemented more efficiently in BCOL reduce than in

REF, because BCOL clearly outperforms REF especially for

long messages. Regarding reduce 1 KB performance, BCOL

outperforms REF on DMP and Hybrid, whereas it shows

similar results to REF on SMP.

From the analysis of the performance results presented in

Figures 1-4 and Table 1 it can be concluded that: (1) there

are significant performance differences between BCOL and

REF, up to 2000% (exchange SMP); therefore, it is possible

to increase UPC throughput by selecting the best collective

library at runtime for each configuration and message size;

(2) UPC can take important advantage of the Hybrid configu-

ration, increasing significantly the performance shown in the

equivalent configuration in the DMP scenario (up to 100%);

(3) the best UPC collectives performance is usually obtained

by REF on SMP; (4) REF reduce, BCOL broadcast on SMP,

and BCOL exchange on SMP are examples of collective

primitives implemented inefficiently; and (5) it is possible

to optimize collective operations minimizing the number of

internode communications and using a flat-tree algorithm

for shared-memory transfers (SMP or Hybrid scenarios) on

intranode communication.

75

Broadcast Scatter Gather Exchange/Alltoall
Library \ Message size 1 KB 1 MB 1 KB 1 MB 1 KB 1 MB 1 KB 1 MB

MPI (GBps) 0.0992 4.4013 0.0088 1.5360 0.0183 1.5627 0.0066 0.0971

BCOL SMP 3% 22% 23% 44% 23% 31% 21% 40%
REF SMP 8% 145% 61% 171% 61% 74% 82% 514%

BCOL DMP 2% 30% 13% 28% 13% 28% 11% 53%
REF DMP 1% 15% 11% 40% 9% 32% 6% 52%

BCOL Hybrid 5% 86% 43% 44% 45% 45% 16% 89%
REF Hybrid 9% 24% 72% 97% 3% 64% 13% 68%

Table 2. UPC vs. MPI collectives performance (32 threads/processes, 4 nodes, MPI = 100%)

4.4. UPC vs. MPI Collective Primitives Perfor-
mance Analysis

This subsection presents a comparative analysis of the

performance of the UPC collectives and their MPI counter-

parts. As MPI collectives have been thoroughly optimized

for years, the gap between MPI and UPC collectives per-

formance can be considered a good estimate of the quality

of a UPC implementation. However, UPC will not always

lag behind MPI, as it is expected that UPC collectives out-

perform MPI when shared-memory transfers are involved.

Table 2 shows the relative performance of UPC compared to

MPI (HP-MPI v2.2.5.1), where UPC collectives throughput

is shown as a percentage of the MPI performance. Thus,

UPC outperforms MPI when the percentage is higher than

100%, which only happens for some primitives with 1

MB messages on REF SMP. The reduce comparison is

not shown, as the UPC reduce primitive has no equivalent

operation in MPI (MPI reduce transfers an array instead

of a single variable). These results have been obtained for

two representative message sizes, 1 KB and 1 MB. An

analysis of the results shows that the UPC performance

in the Hybrid configuration, although significantly better

than for DMP, is lower than MPI results. Furthermore,

UPC suffers from higher start-up latencies than MPI, which

means poor performance for 1 KB messages, especially

for the broadcast. This comparative analysis of MPI and

UPC collectives performance serves to assess that there is

room for improvement in the implementation of the UPC

collectives, as UPC could outperform MPI on the SMP and

Hybrid scenarios, whereas it could rival MPI on DMP.

4.5. Performance Evaluation of UPC Applications
with Collective Primitives

This subsection analyzes the performance shown by an

application written in UPC using collective operations. The

selected code is the FT benchmark from the UPC imple-

mentation of the NAS Parallel Benchmarks (NPB) [13], dis-

tributed with BUPC [4], as it is a communication-intensive

application that performs an important number of calls to

the exchange primitive. A preliminary performance result

obtained with BCOL using 128 threads on the SMP scenario

showed that the exchange operation overhead was 96% of

the overall runtime of FT with workload B, confirming

that FT is a suitable code for analyzing UPC collective

implementations.

In order to analyze the potential performance increase in

UPC collectives of the optimizations presented in this paper,

we have developed a proposal for a more efficient UPC

collective library (from now on denoted as “PROP”). PROP

is based on REF and hence relies on upc_memcpy calls. It

is intended to take advantage of the memory configuration

and the data locality to reduce memory and data move-

ments contention. However, PROP only uses the flat-tree

algorithms for intranode transfers, whereas the binomial-

tree communications are used for internode communications.

Moreover, in SMP it uses sched_setaffinity libc

system calls in order to improve performance maximizing

the distance among the physical cores being used. PROP

implements this technique setting the affinity of UPC threads

(identified by MY THREAD, which goes from 0 up to

THREADS-1) to physically non-contiguous cores (e.g.,

when using 32 threads on a 128 core machine the affinity

of the UPC thread MY THREAD is set to the core

4*MY THREAD). Thus, the communication bandwidth is

maximized as the main performance bottleneck in shared

memory systems is the memory access performance, which

achieves the highest performance with this approach.

Figure 5 shows the performance (measured in MOPS,

millions of operations) of OpenMP, MPI, and UPC with

BCOL/REF/PROP versions for FT on the SMP scenario

(SMP has been selected because it allows a comparative

evaluation against OpenMP). FT using BCOL obtains quite

poor performance. However, the throughput obtained with

REF exchange is significantly higher, and much more scal-

able. This analysis agrees with the evaluation of the ex-

change primitive presented in Section 4.3 (see Graph 4(b)).

Additionally, FT with our PROP exchange implementation

has been also evaluated, obtaining the best results of the UPC

collectives. Regarding PROP results, the highest throughput

increases have been obtained on 16, 32 and 64 cores (up

76

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 4 8 16 32 64 128

M
O

P
S

Number of Cores

 FT Class B (SMP)

OpenMP FT
MPI FT
UPC FT with BCOL exchange
UPC FT with REF exchange
UPC FT with PROP exchange

Figure 5. Performance comparison of OpenMP, MPI
and UPC versions of NPB FT

to a 30% increase) due to a a more efficient mapping

of UPC threads to cores through sched_setaffinity,

maximizing the distance among threads in order to improve

the throughput in the access to memory. However, its results

on 128 cores are similar to REF exchange as the use

of all the cores of the system (Finis Terrae Superdome)

reduces the effectiveness of PROP. Nevertheless, although

UPC implementations obtain the lowest performance using

up to 32 cores, on 128 cores REF and PROP eventually

outperform both OpenMP and MPI.

Regarding OpenMP, it shows quite high performance

using up to 64 cores (in fact, it obtains the maximum

throughput, above 40.000 MOPS), although using 128 cores

it has the worst result. Nevertheless, MPI has the opposite

behavior. Thus, although it presents less performance than

OpenMP up to 64 cores, it takes advantage of the use

of 128 cores. In this latter case, OpenMP presents lower

performance because of its poor data locality support. In

this case MPI is run on an SMP scenario, but HP-MPI on

intranode resorts to an efficient low-level messaging protocol

(HP-MPI SHM), which obtains similar performance to MPI

on the DMP configuration (with HP-MPI IBV).

These observations are in tune with the expected results.

Thus, OpenMP presents high performance but relatively

low scalability as it does not take into account the data

locality. MPI usually presents a scalable performance on

most of the current architectures as it works on private

data. However, its results are usually lower than those of

OpenMP. Finally, UPC takes advantage of shared-memory

communications while considering data locality, especially

using PROP, which allows for higher speedups. Neverthe-

less, current UPC compilers/runtimes and collective libraries

are not mature enough to significantly outperform OpenMP

and MPI.

5. Conclusions

This paper has presented an up-to-date performance evalu-

ation of two UPC collective libraries on three configurations:

shared, distributed and hybrid shared/distributed memory.

The main conclusions of this work are: (1) there is a lack of

collective primitives benchmarks, so we have implemented

our own UPC collectives microbenchmark suite, which

is similar to a widely spread suite for MPI collectives

(Intel MPI microbenchmarks); (2) the two collective im-

plementations evaluated present significant differences in

performance, which depend on the memory architecture, the

message size and the communication pattern of the primi-

tive. However, as a general rule, the collectives reference

implementation (REF) achieves the best performance on

shared memory, whereas BUPC collectives implementation

(BCOL) usually presents the best results for reduce on

all configurations, and for broadcast and exchange on the

distributed-memory and hybrid scenarios; (3) it is possible

to achieve important performance increases by automatically

selecting the best collective primitive implementation at

runtime; (4) UPC collective primitives take advantage of

the use of hybrid shared/distributed memory configurations,

currently the most commonly deployed ones (e.g., multi-

core clusters); (5) inefficient implementations of collective

primitives have been detected, such as REF reduce, and

BCOL broadcast and exchange on shared memory; (6)

UPC obtains quite poor collective performance compared to

MPI, although REF outperforms MPI on shared memory;

moreover, the best comparative results are obtained for

long messages, as UPC suffers from high start-up com-

munication latencies. This comparative evaluation shows

that there is room for performance improvement in UPC

collectives libraries. And (7) an analysis of the influence of

the performance of the UPC collectives on a representative

communication-intensive application has shown that UPC

codes can significantly benefit from the optimization of the

collective primitives, even outperforming the scalability of

OpenMP and MPI on a shared memory scenario.

Finally, it can be concluded that UPC codes can take

full advantage of the use of efficient and scalable collective

primitives. Thus, the characterization of their performance is

highly important. Furthermore, the higher programmability

provided by collective primitives, together with their locality

exploitation, improves the productive development of effi-

cient parallel applications in UPC.

As future work we intend to develop a more efficient

UPC collective library that would take into account the

locality and the communication overhead among all threads.

Thus, in a hybrid shared/distributed memory architecture

this library would minimize the number of remote memory

operations. Moreover, the shared-memory (local) accesses

can be improved taking advantage of the affinity of UPC

threads in order to improve the memory throughput.

77

Our prototype of collective library, PROP, has achieved

significant improvements in the performance of the evaluated

UPC application (up to a 30% performance increase).

Acknowledgments

This work was funded by Hewlett-Packard and partially

supported by the Ministry of Science and Innovation of

Spain under Project TIN2007-67537-C03-02 and by the

Galician Government (Xunta de Galicia, Spain) under the

Consolidation Program of Competitive Research Groups

(Ref. 3/2006 DOGA 13/12/2006). We gratefully thank Jim

Bovay and Brian Wibecan at HP for their valuable support,

and CESGA for providing access to the Finis Terrae super-

computer.

References

[1] George Washington University, “Unified Parallel C at GWU,”
http://upc.gwu.edu [Last visited: April 2009].

[2] E. Wiebel, D. Greenberg and S. R. Seidel,
“UPC Collective Operations Specifications v1.0,”
http://www.gwu.edu/upc/docs/UPC Coll Spec V1.0.pdf
[Last visited: April 2009].

[3] UPC Consortium, “UPC Language Specifications v1.2. (May
31, 2005).” http://upc.lbl.gov/docs/user/upc spec 1.2.pdf
[Last visited: April 2009].

[4] UC Berkeley / LBNL, “Berkeley Unified Parallel C (UPC)
Project,” http://upc.lbl.gov [Last visited: April 2009].

[5] Intrepid Technology Inc, “GCC Unified Parallel C,”
http://www.intrepid.com/upc.html [Last visited: April 2009].

[6] UC Berkeley, “GASNet Communication System,”
http://gasnet.cs.berkeley.edu [Last visited: April 2009].

[7] Michigan Tech, “Collectives Reference Implementation,”
http://www.upc.mtu.edu/collectives/col1.html [Last visited:
April 2009].

[8] Z. Zhang and S. Seidel, “Benchmark Measurements of Cur-
rent UPC Platforms,” in Proc. 4th Workshop on Performance
Modeling, Evaluation and Optimization of Parallel and Dis-
tributed Systems (PMEO’05), Denver (CO), 2005, p. 276b (8
pages).

[9] Hewlett-Packard Inc., “HP Unified Parallel C (HP UPC),”
http://hp.com/go/upc/ [Last visited: April 2009].

[10] T. El-Ghazawi and F. Cantonnet, “UPC Performance and Po-
tential: a NPB Experimental Study,” in Proc. 15th ACM/IEEE
Conference on Supercomputing (SC’02), Baltimore (MD),
2002, p. 1–26.

[11] T. El-Ghazawi and F. Cantonnet and Y. Yao and S. Annareddy
and A. S. Mohamed, “Benchmarking Parallel Compilers: A
UPC Case Study,” Future Generation Computer Systems,
vol. 22, no. 7, pp. 764–775, 2006.

[12] C. Coarfa et al., “An Evaluation of Global Address Space
Languages: Co-Array Fortran and Unified Parallel C,” in
Proc. 10th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’05), Chicago (IL),
2005, pp. 36–47.

[13] NASA Advanced Computing Division, “NAS Parallel Bench-
marks,” http://www.nas.nasa.gov/Software/NPB/ [Last vis-
ited: April 2009].

[14] T. El-Ghazawi and S. Chauvin, “UPC Benchmarking Is-
sues,” in Proc. 30th Intl. Conference on Parallel Processing
(ICPP’01), Valencia (Spain), 2001, pp. 365–372.

[15] R. A. Salama and A. Sameh, “Potential Performance Improve-
ment of Collective Operations in UPC,” Advances in Parallel
Computing, vol. 15, pp. 413–422, 2008.

[16] D. Bonachea, “UPC Collectives Value Interface, v1.2,”
http://upc.lbl.gov/docs/user/README-collectivev.txt [Last
visited: April 2009].

[17] Z. Ryne and S. Seidel, “Ideas and Specifications for
the new One-sided Collective Operations in UPC,”
http://www.upc.mtu.edu/papers/OnesidedColl.pdf [Last
visited: April 2009].

[18] R. Nishtala, G. Almasi, and C. Cascaval, “Performance
without Pain = Productivity: Data Layout and Collective
Communication in UPC,” in Proc. 13th ACM SIGPLAN Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’08), Salt Lake City (UT), 2008, pp. 99–110.

[19] D. Bonachea, “Proposal for Extending the
UPC Memory Copy Library Functions, v2.0,”
http://upc.lbl.gov/publications/upc memcpy.pdf [Last visited:
April 2009].

[20] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active Messages: a Mechanism for Integrating
Communication and Computation,” in Proc. 25th Intl. Sympo-
sium on Computer Architecture (ISCA’98), Barcelona (Spain),
1998, pp. 430–440.

[21] “Finis Terrae Supercomputer at TOP500 List,”
http://www.top500.org/system/9156 [Last visited: April
2009].

[22] “InfiniBand Trade Association,” http://www.infinibandta.org
[Last visited: April 2009].

[23] Intel Corporation, “Intel MPI Benchmarks,”
http://www.intel.com/cd/software/products/asmo-
na/eng/219848.htm [Last visited: April 2009].

[24] W. Gropp and E. Lusk, “Reproducible Measurements of
MPI Performance Characteristics,” in Proc. 6th European
PVM/MPI Users’ Group Meeting (EuroPVM/MPI’99). Lec-
ture Notes in Computer Science vol. 1697, Barcelona (Spain),
1999, pp. 11–18.

78

