
Non-blocking Java Communications Support
on Clusters

Guillermo L. Taboada, Juan Touriño, and Ramón Doallo

Department of Electronics and Systems
University of A Coruña, Spain
{taboada,juan,doallo}@udc.es

Abstract. This paper presents communication strategies for support-
ing efficient non-blocking Java communication on clusters. The commu-
nication performance is critical for the overall cluster performance. It is
possible to use non-blocking communications to reduce the communica-
tion overhead. Previous efforts to efficiently support non-blocking com-
munication in Java have led to the introduction of the Java NIO API.
Although the Java NIO package addresses scalability issues by providing
select() like functionality, it lacks support for high speed interconnects.
To solve this issue, this paper introduces a non-blocking communica-
tion library to efficiently support specialized communication hardware.
This library focuses on reducing the startup communication time, avoid-
ing unnecessary copying, and overlapping computation with communica-
tion. This project provides the basis for a Java Message-passing library
to be implemented on top of it. Towards the end, this paper evaluates
the proposed approach on a Scalable Coherent Interface (SCI) and Gi-
gabit Ethernet (GbE) testbed cluster. Experimental results show that
the proposed library reduces the communication overhead and increases
computation and communication overlapping.

1 Introduction

There is a growing interest shown by scientific and enterprise community in
commodity clusters. The reason is that they deliver outstanding parallel perfor-
mance at a competitive cost. A cluster consists of computing nodes connected
together by a network fabric—usually a high-performance interconnect like SCI,
Myrinet, or GbE. Scalability is a key factor to confront new challenges in cluster
computing—it depends heavily not only on the network fabric, but also on the
communication middleware.

This growing need of efficient communication middleware has led the com-
munity to devote significant efforts on this subject, although almost exclusively
on native protocols. A thorough work focused on native protocols is that of Ver-
stoep et al. [1], where several implementation issues are studied in order to obtain
an efficient use of Myrinet. In this study, a non standard user level communi-
cation interface is implemented varying reliability protocols, maximum transfer

unit, multicast protocols and studying Serial Direct Memory Access (SDMA)-
based versus Processor Input/Output (PIO)-based message passing and remote-
memory copy. The proposed approach inherits some optimizations from [1].

Despite the dominance of native protocol optimizations, the increasing inter-
est in Java for high performance computing has recently increased the need for
efficient Java communication middleware. This efficiency is of critical importance
on clusters, especially on System Area Networks (SANs). In such environments,
the overall performance is quite sensitive to the communication overhead [2]. As
Java does not provide direct SAN protocols support, socket libraries and IP em-
ulation layers have to be implemented on top of the high performance low-level
SAN protocols. Moreover, communication is a major bottleneck in parallel Java
applications. Thus, supporting efficient non-blocking communication on clusters,
especially on SANs, appears to be a key objective to improve Java communica-
tion efficiency. As High Performance Cluster support has been traditionally fo-
cused on the blocking Java Remote Method Invocation (RMI) a follow-up aimed
at supporting efficient non-blocking Java communications on clusters appears to
be a promising research topic. This paper reports on the results obtained from
the implementation of a non-blocking Java communication library with High
Performance Cluster support.

1.1 Related Work

Previous efforts at obtaining non-blocking Java communications, NBIO (http:
//www.eecs.harvard.edu/~mdw/proj/java-nbio/) and Jaguar [3] have led to
the introduction of some facilities in Java NIO to address scalability issues in
server applications. Current efforts in non-blocking Java communications are
more oriented to support communication for higher level libraries rather than
constitute a messaging system per se. Therefore, their importance is centred
around their projects. This is the case for mpjdev [4] used in HPJava [5] and
of xdev used in a Java messaging-passing system, MPJ Express [6]. The xdev
library is highly scalable due to the use of Java NIO and an efficient buffering
scheme [7], supporting also Myrinet communications. mpiJava [8] is an object-
oriented Java wrapper library to MPI implementations providing similar perfor-
mance to native MPI implementations. Thus, non-blocking primitives present
in native MPI implementations can be used efficiently in Java. Another Java
Message-passing library that support non-blocking communication and Myrinet
clusters is MPJ/Ibis [9].

2 Efficient Communication Libraries on Clusters

In the context of High Performance Cluster Computing the use of Network In-
terface Cards (NICs) is an attractive option as they offload communication pro-
cessing from the host CPU. This helps in freeing up valuable CPU cycles for
application processing. Moreover, higher performance in terms of both latency

and bandwidths can be reached with these network fabrics, although this perfor-
mance is usually only obtained by using their own efficient protocols. Figure 1
shows an overview of some protocols on SCI and GbE. Given components are
colored in dark grey, whereas contributions presented in this paper are depicted
in light grey.

Fig. 1. Overview of communication libraries on popular cluster interconnects

Regarding SCI, the IRM driver interacts directly with the hardware, whereas
SISCI provides resource management and a higher level API. This library im-
plements basic mechanisms to share memory segments between nodes and to
transfer data between them. SCILib is a communication protocol that offers
unidirectional message queues. Depending on the message size SCILib presents
three communication protocols: inline, short (both one-copy protocols) and long
(zero-copy protocol). Mbox is a library that provides with remote interrupt mech-
anisms, so the target side can wait explicitly for an event or register a callback
routine, whereas the initiator side triggers the event. SCI SOCKET [10] is a
High Performance Socket implementation on SCI obtaining startup times as low
as 4µs on commodity clusters.

Regarding GbE, its socket implementations are usually not very efficient.
Various projects tried to reduce the overhead of these protocols by means of
High Performance Sockets implementations—much like SCI SOCKETS on SCI.
These High Performance Sockets projects are usually lightweight communica-
tion protocols focused on reducing latency by removing buffering overheads and
protocol processing. In this context, some efforts include FastSockets [11], SO-
VIA [12], Sockets over GbE [13], and GAMMAsockets [14].

3 Designing Java Communication Libraries on Clusters

A non-blocking Java communication library, named NBComm, has been designed
for efficient use of Java on clusters. This library abstracts the lower network
layer and supports higher middleware libraries or runtime systems. As a result,
such systems and libraries can be easily ported to different interconnects. This
implementation constitutes the basis for a Java Message-passing library, as it

SCINBCommNBComm

+init() (args:java.lang.String[]): void

+id() (): int

+isend(buf:Buffer,dstID:int,tag:int): Request

+irecv(buf:Buffer,srcID:int,tag:int): Request

+finish(): void

NIONBComm

Request

+iwait(): void

Fig. 2. NBComm API

provides a communication library with efficient non-blocking primitives along
with good performance on different cluster interconnects.

This library is focused on reducing latency, avoiding unnecessary copying,
and computation/communication overlapping. Figure 2 shows its object dia-
gram, which consists of NBComm, the abstract communicator class that defines
the general behaviour of the communication methods, and two implementation
classes, SCINBComm and NIONBComm, for supporting different communication li-
braries. In this case, SCINBComm follows a native approach, implementing com-
munications in native code over SCILib with a lightweight Java layer on top of it,
whereas NIONBComm is a pure Java NIO-based solution. These classes implement
the general behaviour in function of the underlying communication libraries:
init() initialises the communicator object and finish() finalizes the commu-
nicator object; id() gets the identification for each process; iwait() waits for
the completion of a communication; and isend() and irecv() perform com-
munication using a direct ByteBuffer (a Java NIO buffer) which belongs to the
class Buffer. These buffers can be accessed directly, and more efficiently, from
native applications as they may reside outside of the normal garbage-collected
heap. The Buffer class is similar to the Java NIO Buffer.

Listing 1.1. Non-blocking communications code example

public stat ic void main (St r ing args []) throws Exception {
int tag=10, s i z e =10, capac i ty =40;
int [] data = new int [s i z e] ;
NBComm nbComm = NBCommFactory . getNBComm(” s c i ”) ;
nbComm. i n i t (args) ;
int myId = nbComm. id () ;
int peer = 1−myId ;
Buf f e r buf = new Buf f e r (Buf fe rFactory . g e tBu f f e r (capac i ty)) ;
i f (myId==0){

buf . wr i t e (data , 0 , data . l ength) ;
Request req = nbComm. i s end (buf , peer , tag) ;
req . iwa i t () ;

} else i f (myId==1) {
Request req = nbComm. i r e c v (buf , peer , tag) ;
req . iwa i t () ;
buf . read (data , 0 , data . l ength) ;

}
nbComm. f i n i s h () ;

}

Listing 1.1 shows a code example of a parallel application that uses SCINBComm
(getNBComm("sci")). This application performs a non-blocking point-to-point
communication. The init() and finish() functions serve as barrier because
these methods do not return the control to the application until all processes
involved in the parallel application have reached those points.

4 Implementing Efficient Non-blocking Communication

NBComm uses a dedicated thread for communication (receptor thread) which is
responsible for receiving messages. This thread is implemented in SCINBComm in
native code whereas in pure Java for NIONBComm. Listing 1.2 shows its operation
pseudocode.

There are two possible ways to implement message arrival notification de-
pending on the implementation. The first, the native solution, is through a
callback() function or through an event that is registered for being triggered
every time a message arrives. The second, the pure Java solution, is checking
arrival notification using Java NIO Selector. Each message is uniquely identified
by <srcid,tag>, and irecv() requests posted and not actually received are in
the posted messages linked list.

Listing 1.2. Pseudocode of the receptor thread operation

WHILE NBComm. f i n i s h () i s not c a l l e d
IF pending messages = 0 THEN

wait until message a r r i v a l n o t i f i c a t i o n
END IF
r e c e i v e message header
check i f t h i s message i r e c v has been posted
IF posted THEN

r e c e i v e message data in the i r e c v Buf f e r buf
d e l e t e i r e c v post from posted messages

ELSE
r e c e i v e message data in temporal bu f f e r
add r e c e i v ed post to posted messages

END IF
no t i f y the message r e c ep t i on to the wai t ing r eque s t s

END WHILE

A problem in this implementation is that NBComm subclasses replicate some
code as it appears as Java code in NIONBComm and as native code in SCINBComm.
Thus, this code can not be factorized in the superclass NBComm making it harder
to maintain the source code. A proposed solution consists of moving the in-
terconnection hardware support to a lower API level (Java sockets) and using
NIONBComm over these low level libraries.

4.1 Java Sockets with SAN Support

In order to support high performance interconnection technologies on Java sock-
ets, a High Performance Java socket implementation, called Java Fast Sockets
(JFS), has been developed. JFS aims to be efficient and portable by providing
two alternative solutions using pure Java and JNI wrappers to low-level SAN
protocols. In the presence of these SAN protocols, JFS uses the JNI approach.
Otherwise, it uses the pure Java solution. Moreover, the use of the new Java
NIO capabilities, such as new data containers (direct ByteBuffer), new I/O
channels, selectors and selection keys, can optimize performance in JFS. Finally,
by setting the default SocketImplFactory to a factory that returns JFS sockets,
every socket operation in an application can transparently use JFS.

4.2 Native Java Communication Support

In the design of native support of SCINBComm and in JFS, both libraries use
communication mechanisms implemented by the underlying libraries. High Per-
formance Clusters usually provide several protocols depending on the message
size, as communication performance depends on the trade-off between latency
and protocol processing overhead. Thus, one-copy protocol trades off high CPU
load for low latency, whereas zero-copy protocol cuts down system load (high
bandwidth rates with low CPU loads). A sensible choice between protocols in-
volves using one-copy protocol for latency sensitive applications, and zero-copy
protocol for applications with high bandwidth requirements. On SCI, native li-
braries resort to SCILib, implementing the non-blocking semantic on top of this
blocking layer by means of threads. The protocol choice can be configured by
the user.

5 Performance Evaluation

In this section an evaluation of NBComm implementations is presented. Addition-
ally, mpiJava non-blocking communication over MPICH on GbE has also been
tested for comparison purposes. SCI-MPICH [15] is not supported by mpiJava
in our testbed. In order to evaluate the performance, half of the round trip time
of a ping-pong test (hereafter called latency) is measured. Moreover, two specific
non-blocking communication benchmarks including a communication/computa-
tion overlapping test and an overlapping communications test are used.

5.1 Experiment Configuration

Our testbed consist of two dual-processor nodes (PIV Xeon at 2.8 GHz with
hyper-threading disabled and 2GB of memory) interconnected via SCI and GbE.
The SCI NIC is a D334 card plugged into a 64bits/66MHz PCI, whereas the
GbE is a Marvell 88E8050 with an MTU of 1500 bytes. The OS is linux CentOS
4.2 with kernel 2.6.9 and compilers gcc 3.4.4 and Sun JDK 1.5.0 05. The SCI
libraries are SCI SOCKETS/DIS 3.0.3. mpiJava version 1.2.5 runs on top of
MPICH 1.2.5.

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

L
at

en
cy

 [
u

s]

Message size [bytes]

NBComm Latencies

SCINBComm (SCI)
mpiJava (GbE)

 NIONBComm (GbE)
NIONBComm (JFS over SCI)

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500

 100 1000 10000 100000 1e+06

B
an

d
w

id
th

 [
M

b
p

s]

Message size [bytes]

NBComm Bandwidths

SCINBComm (SCI)
 mpiJava (GbE)

 NIONBComm (GbE)
NIONBComm (JFS over SCI)

Fig. 3. Measured latencies and bandwidths of NBComm implementations

5.2 Performance Results

Figure 3 shows experimentally measured latencies and bandwidths of NBComm
implementations on SCI and GbE as a function of the message length. The
bandwidth graph (right side) is useful to compare long-message performance,
whereas latency graph (left side) serves to compare short-message performance
(note that their scale is logarithmic). In order to analyse the overhead imposed
by NBComm, experimental results from SCILib (library used by SCINBComm), JFS,
and Java sockets (libraries used by NIONBComm) are shown in Figure 4.

The two lower graphs of Figure 4 show the latency and bandwith of NIONBComm
using GbE. In addition, the graphs also show the latency and bandwith of the
raw Java sockets. The difference between the performance of NIONBComm and
Java sockets shows the imposed overhead. This overhead is aproximately 60µs
in terms of latency. As can be seen from the two upper graphs in Figure 4,
SCINBComm obtains lower startup time than NIONBComm over JFS on SCI. The
overheads in latency imposed by the NBComm layer are around 40µs and 58µs over
SCILib and JFS respectively. Bandwidth performance is quite similar except for
messages larger than 256KB where the pure Java implementation outperforms
the native implementation. As expected, SCINBComm obtains better results in
general than NIONBComm using JFS on SCI. However, the performance gain is
due to the use of JNI. JFS has an asymptotic bandwidth similar to native sock-
ets and startup times as low as 8µs. Some experimentally measured examples
of latency reduction have been observed: a 64Kb message in the SCI testbed
where the reception is posted after receiving the message has tisend = 156µs,
tsend = 308µs, tirecv = 3µs, trecv = 308µs and tiwait = 2µs. The sender process
obtains a time gain of 152µs (49%), apart from not having to wait to send, and
the receiver process obtains a time gain of 303µs.

The CPU overlap test determines the amount of software overhead involved
in sending and receiving messages. The benchmark code consists of inserting
gradually increasing computation between the calls that initiate and complete a
non-blocking send or receive operation. By determining the maximum amount
of computation that can be overlaped with communication the computation/-

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

L
at

en
cy

 [
u

s]

Message size [bytes]

NBComm over SCI Latencies

 SCINBComm
 SCILIB

 NIONBComm (JFS over SCI)
 JFS over SCI

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800

 100 1000 10000 100000 1e+06

B
an

d
w

id
th

 [
M

b
p

s]

Message size [bytes]

NBComm over SCI Bandwidths

SCINBComm
 SCILIB

 NIONBComm (JFS over SCI)
JFS over SCI

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06

L
at

en
cy

 [
u

s]

Message size [bytes]

NBComm over Gb Ethernet Latencies

 NIONBComm
 Java Sockets

 mpiJava

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 100 1000 10000 100000 1e+06

B
an

d
w

id
th

 [
M

b
p

s]

Message size [bytes]

NBComm over Gb Ethernet Bandwidths

 NIONBComm
 Java Sockets

mpiJava

Fig. 4. Measured latencies and bandwidths of NBComm vs. underlying libraries

communication overlapping parameter can be obtained. This assumes that the
computation cost does not affect the measured communication time. The results
obtained by benchmarking 1Kb messages show that a 37% of the communica-
tion time can be overlapped with computation in SCINBComm. A 6% and a 40%
performance improvement is obtained for NIONBComm and mpiJava respectively.
Native-based solutions provides a higher degree of computation/communication
overlapping.

The overlapping communications test benchmarks the overlap of communi-
cation with additional communication. Rather than filling idle CPU time with
computation, as in the previous test, it can be used to send additional messages.
It has been experimentally observed that sending 8 simultaneous 1Kb messages
helps achieve a latency reduction of 44% in SCINBComm, a 33% in NIONBComm,
and a 49% in mpiJava.

6 Conclusions

Communication performance is critical for the overall system cluster perfor-
mance. In this scenario non-blocking communications can significantly reduce the
communication overhead. Nevertheless, the definition of an efficient non-blocking
Java communication library with cluster support poses an important number of
implementation issues. These can be summarized in designing the solution for

receiving messages, notify the arrival of messages, the study of the efficiency of
data movements and the API definition. This Java communication library can
use Java sockets implementations or native communication libraries specialized
for SAN systems. This paper has presented a non-blocking Java communication
library (NBComm) that resolves efficiently numerous design issues aforementioned
and provides cluster support. This library aims at reducing the startup time
of communications, avoiding unnecessary copying and overlapping computation
and communication. In the design of the library a thread is devoted to receive
messages (receptor thread). The approach followed also ensures that unnec-
essary copying is avoided writing directly to a buffer of type direct ByteBuffer
and DMA is used for messages longer than 8KB. This library implements differ-
ent solutions depending on the underlying communication libraries—SCINBComm
is implemented for using SCI native communication libraries and NIONBComm for
using Java sockets. A High Performance Java socket implementation JFS can also
be used as communication layer for NIONBComm, providing additionally access to
SCI for this solution.

The use of non-blocking communication can gain significant improvements
with respect to the use of blocking communication in parallel applications. It
has been experimentally assessed that non-blocking communication is specially
advantageous, obtaining latency reductions and overlapping computation with
communication, yielding communication overhead reductions up to 50%.

Acknowledgments

This work was funded by the Ministry of Education and Science of Spain under
Project TIN2004-07797-C02 and under a FPU grant AP2004-5984.

References

1. K. Verstoep, R. Bhoedjang, T. Rühl, H. Bal, and R. Hofman. Cluster Communica-
tion Protocols for Parallel-programming Systems. ACM Transactions on Computer
Systems, 22(3):281–325, 2004.

2. G. L. Taboada, J. Touriño, and R. Doallo. Performance Analysis of Java Message-
Passing Libraries on Fast Ethernet, Myrinet and SCI Clusters. In Proc. 5th IEEE
International Conference on Cluster Computing (CLUSTER’03), pages 118–126,
Hong Kong, China, 2003.

3. M. Welsh and D. E. Culler. Jaguar: Enabling Efficient Communication and I/O
in Java. Concurrency: Practice and Experience, 12(7):519–538, 2000.

4. S. B. Lim, B. Carpenter, B. Fox, and H.-K. Lee. A Low-Level Communication
Library for Java HPC. In Proc. 6th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP’05), LNCS 3719, Springer-Verlag,
pages 429–434, Melbourne, Australia, 2005.

5. H.-K. Lee, B. Carpenter, G. Fox, and S. B. Lim. HPJava: Programming Support
for High-Performance Grid-Enabled Applications. International Journal of Parallel
Algorithms and Applications, 19(2–3):175–193, 2004.

6. M. Baker, B. Carpenter, and A. Shafi. MPJ Express: Towards Thread Safe Java
HPC. In Proc. 8th IEEE International Conference on Cluster Computing (CLUS-
TER’06), Barcelona, Spain, 2006.

7. M. Baker, B. Carpenter, and A. Shafi. An Approach to Buffer Management in Java
HPC Messaging. In Proc. 6th International Conference on Computational Science
(ICCS’06), LNCS 3992, Springer-Verlag, pages 953–960, Reading, UK, 2006.

8. M. Baker, B. Carpenter, G. Fox, S. Ko, and S. Lim. mpiJava: an Object-Oriented
Java Interface to MPI. In Proc. 1st International Workshop on Java for Parallel
and Distributed Computing (IPPS/SPDP’99), LNCS 1586, Springer-Verlag, pages
748–762, San Juan, Puerto Rico, 1999.

9. M. Bornemann, R. V. van Nieuwpoort, and T. Kielmann. MPJ/Ibis: A Flexible and
Efficient Message Passing Platform for Java. In Proc. 12th European PVM/MPI
Users’ Group Meeting, (PVM/MPI’05), LNCS 3666, Springer-Verlag, pages 217–
224, Sorrento, Italy, 2005.

10. F. Seifert and H Kohmann. SCI SOCKETS - A Fast Socket Implementation over
SCI. http://www.dolphinics.com/pdf/whitepapers/sci-socket.pdf. [Last visited:
July 2006].

11. S. H. Rodrigues, T. E. Anderson, and D. E. Culler. High-Performance Local-Area
Communication With Fast Sockets. In Proc. Winter 1997 USENIX Symposium,
pages 257–274, Anaheim, CA, 1997.

12. J.-S. Kim, K. Kim, and S.-I. Jung. SOVIA: A User-level Sockets Layer Over
Virtual Interface Architecture. In Proc. 3rd IEEE International Conference on
Cluster Computing (CLUSTER’01), pages 399–408, New Port Beach, CA, 2001.

13. P. Balaji, P. Shivan, P. Wyckoff, and D. K. Panda. High Performance User Level
Sockets over Gigabit Ethernet. In Proc. 4th IEEE International Conference on
Cluster Computing (CLUSTER’02), pages 179–186, Chicago, IL, 2002.

14. S. Petri, L. Schneidenbach, and B. Schnor. Architecture and Implementation of
a Socket Interface on top of GAMMA. In Proc. 28th IEEE Conference on Local
Computer Networks (LCN’03), pages 528–536, Bonn, Germany, 2003.

15. J. Worringen and T. Bemmerl. MPICH for SCI-connected Clusters. In SCI Eu-
rope’99, pages 3–11, Toulouse, France, 1999.

