
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2011)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.1777

Device level communication libraries for high-performance
computing in Java

Guillermo L. Taboada 1,*,†, Juan Touriño 1, Ramón Doallo 1, Aamir Shafi 2,
Mark Baker 3 and Bryan Carpenter 4

1 Computer Architecture Group, University of A Coruña, A Coruña, Spain
2 MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

3 School of Systems Engineering, University of Reading, Reading, UK
4 School of Computing, University of Portsmouth, Portsmouth, UK

SUMMARY

Since its release, the Java programming language has attracted considerable attention from the high-
performance computing (HPC) community because of its portability, high programming productivity, and
built-in multithreading and networking support. As a consequence, several initiatives have been taken to
develop a high-performance Java message-passing library to program distributed memory architectures, such
as clusters. The performance of Java message-passing applications relies heavily on the communications per-
formance. Thus, the design and implementation of low-level communication devices that support message-
passing libraries is an important research issue in Java for HPC. MPJ Express is our Java message-passing
implementation for developing high-performance parallel Java applications. Its public release currently con-
tains three communication devices: the first one is built using the Java New Input/Output (NIO) package for
the TCP/IP; the second one is specifically designed for the Myrinet Express library on Myrinet; and the third
one supports thread-based shared memory communications. Although these devices have been successfully
deployed in many production environments, previous performance evaluations of MPJ Express suggest that
the buffering layer, tightly coupled with these devices, incurs a certain degree of copying overhead, which
represents one of the main performance penalties. This paper presents a more efficient Java message-passing
communications device, based on Java Input/Output sockets, that avoids this buffering overhead. Moreover,
this device implements several strategies, both in the communication protocol and in the HPC hardware
support, which optimizes Java message-passing communications. In order to evaluate its benefits, this paper
analyzes the performance of this device comparatively with other Java and native message-passing libraries
on various high-speed networks, such as Gigabit Ethernet, Scalable Coherent Interface, Myrinet, and Infini-
Band, as well as on a shared memory multicore scenario. The reported communication overhead reduction
encourages the upcoming incorporation of this device in MPJ Express (http://mpj-express.org). Copyright
© 2011 John Wiley & Sons, Ltd.

Received 30 July 2010; Revised 11 April 2011; Accepted 12 April 2011

KEY WORDS: Message Passing in Java (MPJ); Java for high-performance computing (HPC); high-speed
networks; shared memory multicore communication; performance evaluation

1. INTRODUCTION

The Java programming language has now become a leading platform in the software industry as it
allows developers to write portable, safe, robust, and reliable multithread and network-based appli-
cations. Moreover, there has been a continuous and growing interest in Java for high-performance
computing (HPC) [1, 2]. This interest is based on several appealing characteristics of Java, which
include its built-in networking and multithreading support, object orientation and thus higher

*Correspondence to: Guillermo L. Taboada, Computer Architecture Group, University of A Coruña, A Coruña, Spain.
†E-mail: taboada@udc.es

Copyright © 2011 John Wiley & Sons, Ltd.

G. L. TABOADA ET AL.

programming productivity, platform independence, portability, and security. These significant
benefits motivated the appearance of the Java Grande Forum [3], an initiative devoted to promote
the use of Java for Grande applications, those with large requirements of computational resources,
and proposed modifications to the Java language specification to make it more suitable for these
codes. Furthermore, in the era of multicore processors, the use of Java threads is considered to be
a feasible option to harness the performance of these processors. Another interesting argument in
favor of Java is the large pool of developers, especially due to its significant presence in academia.

Java, in its early days, was severely criticized for its poor computational performance [4], but the
performance gap between Java and native (compiled) languages like C and C++ has narrowed signif-
icantly. The main reason is that the Java Virtual Machine (JVM), which executes Java applications,
is now equipped with just-in-time compilers. The JVM identifies sections of the code frequently
executed and converts them to native machine code instead of interpreting the bytecode. Neverthe-
less, the tremendous improvement in its computational performance is not enough for Java to be a
successful language in the area of parallel computing, as its communications performance is also
essential to obtain scalability in Java for HPC.

Traditionally the HPC community has adopted two mainstream architectures: shared and dis-
tributed memory. In the shared memory approach, all processors communicate to each other via
shared memory transfers, whereas for distributed memory architectures, processors must resort to
message passing for sharing data. Nevertheless, the emergence of multicore processors has had a
significant impact on HPC hardware platforms. Currently, the most popular architectures are high-
speed clusters, several compute nodes interconnected to each other via a high-speed network, thanks
to their interesting cost/performance ratio. In fact, current cluster deployments are increasingly rely-
ing on compute nodes with a high number of cores in order to meet the ever growing computational
power needs. Such hybrid hardware underscores the importance of parallelism and multithreading
[5], where only a hybrid shared/distributed memory programming model can fully exploit the avail-
able processing power. Here, Java represents a practical and attractive choice for programming these
systems as it supports both message passing and built-in multithreading. As Java has built-in multi-
threading support, the sustained interest in the use of Java for HPC has motivated the development
of an important number of message-passing libraries [2].

In hybrid shared/distributed memory architectures, the approach that is considered to take full
advantage of the underlying hardware is the simultaneous use of the message-passing paradigm
together with thread-based solutions. However, although this hybrid programming approach can
provide good performance, it has, as a main drawback, the fact that it requires the use of two pro-
gramming paradigms, increasing the complexity of parallel programming. Thus, the productivity in
the development of parallel applications motivates that a significant number of applications are only
implemented using the message-passing model. Nevertheless, the efficiency of this pure message-
passing approach (without multithreading) to program multicore clusters depends on its intra-node
communications support. Thus, current Message Passing in Java (MPJ) libraries are develop-
ing their shared memory communication support, based on either sockets, native inter-process
communication libraries, or Java threads.

MPJ Express [6] is an implementation of the Java bindings for the Message-Passing Interface
(MPI) standard [7]. This message-passing library also provides thread-safe communication in order
to support hybrid shared/distributed memory programming. Moreover, it targets both performance
and portability by supporting pluggable communication devices. Thus, MPJ Express includes a
fully portable ‘pure’ (100%) Java device based on Java New Input/Output (NIO) sockets on TCP/IP,
together with various communication devices targeted to high-performance hardware (Myrinet
network and multicore nodes).

There is a growing community of users who are developing their parallel applications using
MPJ Express. Recently, researchers at National Aeronautics and Space Administration Langley
used the software to parallelize their 3D radiative transfer modeling application [8]. Another
scientific software using MPJ Express is CartaBlanca [9], an object-oriented physical system
simulation package. The code uses Jacobian-free Newton–Krylov methods to solve nonlinear
physics simulations on unstructured meshes. Additionally, Gadget, a very popular code for cos-
mological N -body/smoothed-particle hydrodynamics simulations, and ProtTest, a widely extended

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

bioinformatics application for the selection of best-fit models of protein evolution, have also been
implemented using MPJ Express within their Gadget [10] and ProtTest 3 [11] projects, respec-
tively. Furthermore, the Modelling and Simulation in e-Social Science (MoSeS) project [12] at the
University of Leeds is using MPJ Express.

This paper focuses on studying the communication performance of MPJ Express, the most rep-
resentative Java message-passing implementation, on popular HPC interconnects and shared mem-
ory multicore systems. During this evaluation, and from our previous work [6], several potential
bottlenecks have been identified, especially the use of a buffering layer that incurs a significant
performance penalty. Thus, a new communication device without buffering overhead has been
implemented. Moreover, this device implements several strategies, both in the communication
protocol and the HPC hardware support, which definitely optimizes Java message-passing commu-
nications. This solution is thread safe; thus, shared memory and network communication solutions
can be efficiently combined, which is of special interest for developing efficient parallel programs
for the current mainstream multicore-based architecture and clusters with high-speed networks. The
success of this device supports its upcoming incorporation in MPJ Express (http://mpj-express.org).

The rest of the paper is organized as follows. Section 2 presents the design of the communications
support in MPJ Express with a special emphasis on its low-level communication device and buffer-
ing layers. This is followed by Section 3, which presents the new communication device meant for
reducing the message-passing communication overhead in MPJ Express. Section 4 evaluates the
performance of the new device on shared memory and various HPC interconnects. Section 5 ana-
lyzes its impact on the overall performance of MPJ applications. Section 6 comments on related
work. Finally, Section 7 concludes the paper.

2. MPJ EXPRESS COMMUNICATION DEVICES DESIGN

MPJ Express has a layered design that enables its incremental development and provides the capa-
bility to update and swap layers in or out as required. Thus, at runtime, end users can opt to use a
high-performance proprietary network device, or choose a pure Java device, based either on sockets
or threads, for portability.

Figure 1 illustrates the MPJ Express design and the different levels of the software. The topmost
MPJ API layer presents the full API of the library. The next two layers contain the high level and
base level primitives, representing the collective and point-to-point communications, respectively.
The point-to-point primitives (or base level) are implemented on top of mpjdev, the MPJ device
layer [13], which has two implementations, the ‘pure’ (100%) Java and the native one. The pure
Java mpjdev relies on the xdev low-level communications layer for actual communications and
interaction with the underlying networking hardware, whereas the native mpjdev is a research
library on top of a native MPI implementation.

mpjdev

niodev

JVM

MPI library

iodev

JNI

MX library TCP/IP sockets (emulations) High performance sockets

JFS

MPJ Collective Primitives (high level)

MPJ Point−to−Point Primitives (base level)

MPJ API

native mpjdevpure Java mpjdev

smpdev mxdev

JVM NIO sockets JVM IO sockets

xdev

Figure 1. Overview of the MPJ Express design. MPJ, Message Passing in Java; JFS, Java Fast Sockets;
IO, Input/Output; NIO, New IO; JNI, Java Native Interface; MX, Myrinet Express; MPI, Message-Passing

Interface.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

The main reason behind the introduction of a second device layer, xdev, in the MPJ Express
design is to reduce the effort when implementing the support for new underlying communication
libraries. Unlike the mpjdev layer, xdev only provides basic point-to-point communication meth-
ods and is not aware of higher-level MPI abstractions like communicators. This pluggable design,
the combination of xdev and mpjdev, provides higher-level libraries with an already known API
(mpjdev), while adapting through custom implementations (xdev) to specific HPC interconnec-
tion hardware, easing the integration, as well as the use and efficiency of the solution [14].

In order to favor the development of the new xdev communication devices, it has been defined
an abstract class xdev.Device, which provides an xdev API (see Subsection 2.1) to which all
device implementations must conform. This pluggable design allows for runtime selection of the
most appropriate communication device.

There are four specialized communication devices in the xdev layer. Three of them, niodev,
smpdev, and mxdev, are currently bundled with the MPJ Express distribution and deployed in
production systems, whereas the actual incorporation of iodev is the focus of this paper. On
the one hand, niodev is a Java NIO-based device that relies on SocketChannel objects
to implement point-to-point primitives, whereas smpdev [15] is a thread-based shared mem-
ory device that performs communications as intra-process transfers. On the other hand, mxdev
uses Java Native Interface (JNI) to call MX native methods, a collection of specialized routines
that are implemented to take full advantage of Myrinet-based hardware. Finally, iodev runs on
top of Java IO socket implementations, both JVM libraries and high-performance ones, such as
our Java Fast Sockets (JFS) [16], a Java TCP IO socket implementation that can access directly
high-performance native socket libraries and thus take advantage of RDMA-capable interconnects,
such as Scalable Coherent Interface (SCI), Myrinet, and InfiniBand, which are able to trans-
fer efficiently bulk memory between nodes, while freeing the host CPU from communications
processing.

These four xdev devices access HPC hardware through a variety of communication libraries
that can be ‘pure’ (100%) Java, such as Java NIO and IO sockets, or that can be native libraries,
such as high-performance sockets and MX. Thus, these devices can be classified into ‘pure’ Java
devices, when they resort to JVM libraries (or other Java libraries), and wrapper devices, whose
implementation is directly based on native methods, accessed through JNI. A ‘pure’ Java device
is fully portable, whereas a device that relies on native libraries depends on the presence of those
libraries in the target machine. The new iodev device combines both approaches as it accesses
high-performance native sockets through JFS, when available, while it is portable, as it can always
resort to JVM IO sockets.

Figure 2 presents the communications support of the two socket-based xdev implementa-
tions, niodev and iodev, on shared memory and several high-speed network interface cards
(NIC): Gigabit Ethernet, SCI, Myrinet, and InfiniBand. This graph focuses on the different high-
performance native libraries supported by each socket library. Thus, on the one hand, JVM NIO
and IO sockets are supported by TCP/IP sockets on shared memory and Gigabit Ethernet and IP
emulations on SCI, Myrinet, and InfiniBand, namely SCIP, IPoMX, and IPoIB, respectively. Nev-
ertheless, on the other hand, JFS provides support on UNIX sockets for shared memory transfers
and high-performance native socket libraries on SCI, Myrinet, and InfiniBand, namely SCI Sock-
ets, Sockets-MX, and Sockets Direct Protocol, respectively. With respect to the performance that
can be achieved, IP emulations usually provide a wider support but incur a higher communication
overhead than high-performance native sockets, which are currently available through the use of
JFS. Thus, iodev, which relies on JFS, can obtain higher performance than niodev thanks to its
more efficient support of the underlying communication libraries. This paper includes in Section 4
a performance evaluation of these four xdev communication devices on all these environments.

2.1. xdev API design

The xdev API (see Listing 1) has been designed with the goal of being simple and small, providing
only basic communication methods in order to ease the development of xdev devices. An xdev
communication device is similar to the MPI communicator class but with reduced functionality. The

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

Myrinet Driver: MXoM

TCP/IP Sockets IPoMX

Myrinet NICSCI NICShared Memory

SCI Drivers: IRM/SISCI

SCIP

Gigabit Ethernet Driver

Sockets−MX

InfiniBand NIC

Shared Memory Protocol

Gigabit Ethernet NIC

SCI Sockets

niodev

Sockets
TCP/IP

Sockets
UNIX IPoIB SDP

iodev

InfiniBand Driver: IBV

xdev

Java sockets JVM JFS

JNI

IO socketsNIO sockets

Figure 2. Overview of socket-based xdev devices support on HPC hardware. IO, Input/Output; NIO, New
IO; JFS, Java Fast Sockets; JNI, Java Native Interface; SCI, Scalable Coherent Interface; IRM/SISCI, Inter-
connect Resource Manager/Software Infrastructure for SCI; NIC, Network Interface Cards; MX, Myrinet
Express; IPoMX, IP over MX; MXoM, MX over Myrinet; IPoIB, IP over InfiniBand; SDP, Sockets Direct

Protocol; IBV, InfiniBand Verbs.

publ i c c l a s s Device
s t a t i c pub l i c Device newIns t ance (S t r i n g d e v i c e I m p l) ;
P roces s ID [] i n i t (S t r i n g [] a r g s) ;
P roces s ID i d () ;
void f i n i s h () ;

R eques t i s e n d (mpjbuf . B u f f e r buf , P rocess ID dst ID , i n t t ag , i n t c o n t e x t) ;
R eques t i r e c v (mpjbuf . B u f f e r buf , P rocess ID srcID , i n t t ag , i n t c o n t e x t ,

S t a t u s s t a t u s) ;
void send (mpjbuf . B u f f e r buf , P rocess ID dst ID , i n t t ag , i n t c o n t e x t) ;
S t a t u s r e c v (mpjbuf . B u f f e r buf , P roces s ID srcID , i n t t ag , i n t c o n t e x t) ;

R eques t i s s e n d (mpjbuf . B u f f e r buf , P rocess ID dst ID , i n t t ag , i n t c o n t e x t) ;
void s send (mpjbuf . B u f f e r buf , P roces s ID srcID , i n t t ag , i n t c o n t e x t) ;

S t a t u s i p r o b e (P rocess ID srcID , i n t t ag , i n t c o n t e x t) ;
S t a t u s p robe (P roces s ID srcID , i n t t ag , i n t c o n t e x t) ;
Reques t peek () ;

i n t getSendOverhead () ;
i n t getRecvOverhead () ;

Listing 1. API of the xdev.Device class.

init method starts the communication device operation. The id method returns the identification
(ProcessID) of the device. The finish method is the last method to be called and completes
the device operation.

The xdev communication primitives only include point-to-point communication, both block-
ing (send and recv, like MPI_Send and MPI_Recv) and nonblocking (isend and irecv
like MPI_Isend and MPI_Irecv). Synchronous communications are also embraced (ssend and
issend). MPJ Express implements the four communication modes (standard, synchronous, ready,
and buffered) on top of xdev primitives. These communication methods use ProcessID objects
instead of using ranks as arguments to send and receive primitives. In fact, the xdev layer is

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

focused on providing basic communication methods, and it does not deal with high-level message-
passing abstractions such as groups, communicators, and contexts. Therefore, a ProcessID object
unequivocally identifies a device object. It is the mpjdev layer (see Figure 1) that deals with
communicators and groups management.

2.2. MPJ Express buffering layer

MPJ Express currently uses a buffering layer (implemented using Java NIO direct byte buffers) for
three reasons:

1. mpjdev communication methods handle both primitive data types and object communica-
tions through the use of buffers, whose storage format has been already defined in objects of
class mpjbuf.Buffer. The xdev layer also uses the same buffers for compatibility reasons.

2. The niodev device transfers messages through Java NIO SocketChannel objects that can
only transfer byte buffers (ByteBuffer objects).

3. The native communication devices, such as mxdev, rely on the use of direct byte buffers as
they reside inside the native operating system (OS) memory, avoiding JNI copying as well
as supporting RDMA transfers on high-speed networks, thus reducing the communication
overhead.

Although the specification does not define how a message is contained in a buffer, it states that the
user is responsible for ensuring enough space to pack/unpack a message. Otherwise, an exception
is thrown. mpjbuf.Buffer is divided into a primary payload, used to store primitive data type
elements, and a secondary payload, for serialized objects. The size of the primary payload is static,
whereas the secondary payload is dynamic, increasing its size with the number of objects that are
written to the buffer. The primary payload is divided into sections. Each section contains elements
of the same primitive data type. The secondary payload stores data according to the serialization
specification. Although xdev and mpjdev share the storage format, xdev has implemented its
own buffering strategy [17] to manage the communication buffers. The selected storage objects are
Java NIO direct byte buffers, which allow performing of native IO operations directly upon them.
However, because of their high allocation/deallocation times, a buffering scheme that consists of
pooling reusable message buffers has been implemented. These message buffers are slices of the
original buffers, thus allowing merges and splits of buffers in order to maximize their reusability.
However, despite these optimizations, the use of this buffering layer incurs a copying overhead, that
can be significant for large messages.

3. IMPROVING THE MPJ EXPRESS PERFORMANCE: IODEV DEVICE

Although MPJ Express has been successfully deployed in many production environments, our pre-
vious performance evaluations [17, 18] suggest that the buffering layer incurs a certain degree of
copying overhead, representing one of its main performance penalties. This copying overhead is
caused by the use of the xdev API, which is tightly coupled to the buffering layer. In fact, every
message (which can be either an object or a primitive data type array) must be packed into an
mpjbuf.Buffer object in order to be sent and subsequently be unpacked at the receiver side
into the destination object. These pack/unpack (copying) operations form the major performance
bottlenecks in MPJ Express, as experimentally assessed in Section 4, thus limiting significantly its
scalability.

Therefore, in order to overcome this issue, we have implemented iodev, a low-level communi-
cation device whose API extends the xdev API, allowing the communication of any serializable
object, not only mpjbuf.Buffer objects. Thus, the buffering of data in an mpjbuf.Buffer
object for each send/receive operation is no longer required. The iodev device has been imple-
mented using Java IO sockets, which support the direct communication of any serializable object.
This implementation will allow the analysis of the impact of the buffering avoidance in MPJ
Express, as well as the comparison of a Java IO socket implementation versus a Java NIO-based

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

one. Nevertheless, the use of Java IO sockets has required a significantly higher effort in develop-
ing scalable nonblocking communications, whose support is direct in Java NIO sockets but not in
IO sockets. However, the IO socket API allows the use of our high-performance Java IO socket
implementation, JFS (see Figure 2).

Therefore, the iodev device can use either JFS or JVM IO socket implementations, thus provid-
ing portability through the use of a JVM library (IO sockets) as well as high performance because
it can rely on JFS on HPC hardware: 10 Gigabit Ethernet, SCI, Myrinet, and InfiniBand high-speed
networks and shared memory architectures.

3.1. Communication operation in iodev

The communication operation in iodev presents significant advantages such as (i) the removal
of the dependence on the buffering layer, hence avoiding the overhead of the extra copies of the
message data to the communication buffers; and (ii) the relying of iodev on the JVM garbage
collection technology for memory management instead of on a custom implementation of buffer-
ing strategies used in previous communication devices (e.g., niodev and mxdev). However, the
following disadvantages have also to be considered:

1. Primitive data type arrays have to be serialized as the Java NIO bulk get/put methods, which
avoid this costly process, are not available for Java IO sockets.

2. An extra JNI copy has to be done between the data in the JVM and native memory in order to
transfer the data, while Java NIO direct byte buffers avoid this copy as they reside in the OS
memory and allow native code to access their data directly.

3. Java NIO buffers provide a standard and efficient support for MPJ derived data types, whereas
in iodev this support must be implemented from scratch.

Nevertheless, the first two issues can be overcome with the use of the high-performance JFS library,
which avoids the serialization of primitive data types arrays and the extra data copies through JNI.
Thus, the serialization can be avoided through the use of a Java sockets extended API (see Listing 2)
that allows the direct transfer of primitive data type arrays, even supporting the direct communica-
tion of portions of primitive data type arrays. As JVM sockets cannot send array portions (except
for parts of byte arrays), a new array must be created to store the data to be serialized and then be
sent. This costly process is repeated analogously at the receiver side.

As Java parameters are passed by value, the receiving methods (e.g., irecv) are unable to mod-
ify the receiving object reference. Thus, an intermediate structure (an array) is needed to store the
reference to the read object and maintain this reference in the receiving process. This fact limits Java
communication devices to receive only arrays.

The operation of the iodev communication mechanism starts checking if the message is a prim-
itive data type array. In this case, if it is possible (e.g., if the sockets extended API is available), the
serialization of the data is avoided. Otherwise, data has to be serialized and sent using JVM IO sock-
ets, except when the message handled is an array of arrays, where each element will be processed
independently. In this scenario, the communication method is recursively called for each element of
the array, which can be either serialized or not.

Furthermore, in iodev, the message data have to be copied through JNI in order to be
sent/received, unlike using Java NIO direct byte buffers whose data are directly accessible into

Socke t O u t pu t S t r eam . w r i t e (i n t buf [] , i n t o f f s e t , i n t l e n g t h) ;
Socke t O u t pu t S t r eam . w r i t e (double buf [] , i n t o f f s e t , i n t l e n g t h) ;
Socke t O u t pu t S t r eam . w r i t e (f l o a t buf [] , i n t o f f s e t , i n t l e n g t h) ;

. . .
S o c k e t I n p u t S t r e a m . r e a d (i n t buf [] , i n t o f f s e t , i n t l e n g t h) ;
S o c k e t I n p u t S t r e a m . r e a d (double buf [] , i n t o f f s e t , i n t l e n g t h) ;
S o c k e t I n p u t S t r e a m . r e a d (f l o a t buf [] , i n t o f f s e t , i n t l e n g t h) ;

. . .

Listing 2. Sockets extended API for communicating primitive data type arrays directly.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

native communication operations. Nevertheless, it is possible to avoid these extra data copies
through the use of native methods.

3.2. Implementation of the iodev communication device

The iodev device implements nonblocking low-level communication primitives on top of Java IO
sockets. In iodev, each process uses two TCP sockets, one for sending and another for receiving,
in order to be connected to every other process. This design decision reduces synchronization over-
heads when sending/receiving data to/from the same peer process, while not restricting much the
scalability of iodev, which is able to communicate with up to 500 peers by default. In fact, iodev
is generally limited by the maximum number of open file descriptors (each socket connection has
one open file descriptor) that is usually set to 1024. The access to these sockets has been synchro-
nized with locks, both for reading and for writing, as several threads have read/write access to these
sockets.

An iodev message consists of a header plus data. The message header includes the data type
sent, the source identification, the message size, the tag, and the context and control information.
In order to reduce the overhead of multiple accesses to the network, the iodev message header
is buffered. Once the message header buffer has been filled in, it is written to the network. The
message data are next sent to the network. Thus, only two accesses are required for each message.
Although for very short messages (<4 KB), the header and data are merged in order to perform a
single-socket write call. This optimization has been evaluated experimentally corroborating the ben-
efits of this approach in terms of start-up latency overhead reduction. In fact, Figures 3–9 confirm
that there is no evidence of performance penalties for iodev short messages. Moreover, when the
source and the destination of a message are the same, the socket communication is replaced by an
array copy.

In iodev, all communication methods are based on the nonblocking primitives isend/irecv.
Thus, blocking communication methods are implemented as a nonblocking primitive followed
by a nonblocking wait (iwait) call. In order to handle the nonblocking communications, their
Request objects are internally stored in two disjoint sets of pending communication requests.

The message reception is carried out by both the input handler, a thread in charge of receiving data
(also known in the literature as the progress engine), which is constantly running from the init
up to the finish call, and the Request.iwait method. Usually, in message-passing libraries,
both native and Java implementations, only the input handler receives messages. This, in order to
continue the execution, presents a high overhead that consists of the following: first, the reception of
the message by the input handler; second, the notification of the reception to the Request object
(which is in a wait state); third, the waking up of this waiting object; and fourth, the context
switching between the input handler and the Request. However, in iodev, both the input handler
thread and the Request.iwait method receive messages. Thus, if Request.iwait receives
the message, the overhead of the input handler reception is avoided.

The iodev device implements the iwait operation by means of a polling strategy together
with periodically issued yield calls, which decrease iwait priority in order not to monopo-
lize system CPU. This strategy allows significant reduction of message latency, especially in a
scenario of undersubscription (e.g., running four processes on eight available cores) where both
the user thread and the input handler can be polling simultaneously, in exchange for a moder-
ate CPU overhead increase compared with the approach where only the input handler (progress
engine) receives data. This approach allows iodev to obtain significant benefits, especially in
communication-intensive codes, as message latency reduction provides higher scalability than the
saving of some CPU cycles. However, when the number of processes is equal or higher than
the number of available cores, the yield calls of the input handler are likely to reduce signif-
icantly its polling activity. Thus, the number of polling threads running at a given time would
tend to be similar to the number of available cores. Finally, the use of two threads per process has
also been evaluated in MPI [19], showing that this approach eliminates context switches, reduces
scheduler overhead, and diminishes the overhead of privilege changes between user space and
kernel space.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

3.3. iodev communication protocols

The iodev device implements two communication protocols, eager and rendezvous.
On the one hand, the eager protocol delivers the message data without waiting for the receiver

to request it, on the assumption that the receiver has available storage space (otherwise, an out-
of-memory exception is thrown). This direct communication is targeted to short messages, typi-
cally below 128–512 KB (configurable threshold). In fact, it minimizes the start-up latency (the
0-byte message latency), as no control message is required, although it adds the overhead of an
extra copy when the receiver is not waiting for a particular message, and hence the communica-
tion will suffer the overhead of extra copies. In fact, in this latter scenario, the input handler or
the Request.iwait method will temporarily receive the data, being copied later to the final
destination.

On the other hand, the rendezvous protocol does not deliver the data until the receiver explic-
itly requests it, thus preventing the temporal storage of the messages whose corresponding receive
operation has not been already called. The use of control messages in the implementation of this
protocol makes it suitable for large messages, typically above 128–512 KB, although its communi-
cation strategy is sensitive to high start-up latencies as it implements a three-step protocol: (i) the
source sends a ready-to-send message; (ii) the destination replies with a ready-to-receive message;
and (iii) data are actually transferred. Thus, this strategy avoids the overhead of extra data copies,
although it increases protocol overhead. However, its impact is usually reduced for large messages.

The benefits of these protocols on the performance of the applications can be significant. Thus, the
eager protocol reduces the start-up latency, allowing Java applications with intensive short-message
communications to increase their scalability. Moreover, the rendezvous protocol maximizes com-
munication bandwidth, thus reducing the overhead of message buffering and network contention.
Therefore, both protocols support the scalable performance of MPJ applications.

3.4. Integration of iodev in MPJ Express

In order to take advantage of the iodev features (e.g., buffering avoidance and high-speed network
support), MPJ Express has to implement the support for its extended API, which communicates
regular objects instead of mpjbuf.Buffer objects. This task is relatively complex as the MPJ
Express architecture is tightly bound to the buffering layer. In fact, the other low-level communica-
tion devices only support the communication of mpjbuf.Buffer objects, as shown in Listing 3
for the Send method. Here, the data are packed onto an mpjbuf buffer before being sent. The
implementation of the receive operation is analogous.

The integration of iodev in MPJ Express requires a design that bypasses the buffering layer,
which has meant the implementation of an alternative trunk version of MPJ Express, which replaces
calls to the buffering layer and the xdev API with invocations to the iodev extended API. Thus,
MPJ applications can rely on iodev, which can achieve better performance results, as will be
shown in the performance evaluation (Sections 4 and 5).

void Send (O b j ec t buf , i n t o f f s e t , i n t count ,
D a t a t ype d a t a t y p e , P rocess ID dst ID , i n t t a g)

i n t c o n t e x t = 0 ; / / d e f a u l t v a l u e f o r p o i n t to p o i n t comms
Packe r packe r = d a t a t y p e . g e t P a c k e r () ;
mpjbuf . B u f f e r wBuffer = d a t a t y p e . c r e a t e W r i t e B u f f e r (cou n t) ;
packe r . pack (wBuffer , buf , o f f s e t , coun t) ;
wBuffer . commit () ;
xdev . send (wBuffer , ds t ID , t ag , c o n t e x t) ;
wBuffer . c l e a r () ;
wBuffer . f r e e () ;

Listing 3. Current MPJ Express Send method implementation.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

The implementation of the xdev.send method in iodev (see Listing 4) entails the inspection
of the handled message data. This is accomplished via the use of the Java reflection API. The first
steps are composing the message header and checking if the data is an array of a primitive data
type or an array of objects. Further steps include collecting more information about the data such as
checking if the data is a multidimensional array or if it involves the communication of only a part
of an array. Then, the message is written onto the socket using either JVM sockets or JFS meth-
ods, depending on the availability of this high-performance socket implementation. Its presence is
detected through a typecasting against its own stream implementation, which will be successful only
if the library is available. The implementation of the receiving operation follows a similar approach.

An important design decision taken into account in the integration of this communication device
is the thread safety of the overall solution. This fact allows the efficient exploitation of hybrid
shared/distributed memory architectures, such as multicore clusters, through the combination of

void send (O b j ec t da t a , i n t o f f s e t , i n t count , P rocess ID dst ID ,
i n t t ag , i n t c o n t e x t)

/ / s y n c h r o n i z e d a c c e s s t o t h e o u t p u t S t r e a m
O ut pu t S t r eam o u t p u t S t r e a m = a c q u i r e S t r e a m f o r D e s t i n a t i o n (ds t ID) ;

i f (o u t p u t S t r e a m i n s t a n c e o f j f s . n e t . Socke t O u t pu t S t r eam)
j f s O u t p u t S t r e a m = (j f s . n e t . Socke t O u t pu t S t r eam) o u t p u t S t r e a m ;
us i ngJFS = t rue ;

C l a s s d a t a C l a s s = d a t a . g e t C l a s s () ;
i f (d a t a C l a s s . i s A r r a y ())

C l a s s c lassComponen t = d a t a C l a s s . getComponentType () ;

U t i l . w r i t e H e a d e r (ou t pu t S t r eam , c lassComponent , o f f s e t , count , t ag , c o n t e x t) ;

i f (c l assComponent . i s P r i m i t i v e ())
i f (u s i ngJFS) j f s O u t p u t S t r e a m . w r i t e (da t a , o f f s e t , coun t) ;
e l s e

i f (c l assComponen t != Byte . TYPE)
/ / s e r i a l i z e da t a

o u t p u t S t r e a m . w r i t e (s e r i a l i z e d d a t a) ;
e l s e

o u t p u t S t r e a m . w r i t e (da t a , o f f s e t , coun t) ;

e l s e / / s e n d i n g an a r ray o f o b j e c t s
C l a s s i n n e r C l a s s ;
i n n e r C l a s s = j a v a . l a n g . r e f l e c t . Array . g e t (da t a , o f f s e t) . g e t C l a s s () ;
i f (i n n e r C l a s s . i s A r r a y ())

for (i =0; i coun t ; i ++)
O b j ec t ob j R ef = j a v a . l a n g . r e f l e c t . Array . g e t (da t a , o f f s e t + i) ;
send (objRef , 0 , ob j R ef . l e n g t h , ds t ID , t ag , c o n t e x t + i) ;

e l s e
i f (coun t d a t a . l e n g t h)

/ / s e r i a l i z e coun t e l e m e n t s t o be s e n t
e l s e

/ / s e r i a l i z e da t a

o u t p u t S t r e a m . w r i t e (s e r i a l i z e d d a t a) ;
/ / f i i n n e r C l a s s i s A r r a y ?

/ / f i c lassComponen t i s P r i m i t i v e ?
/ / f i d a t a C l a s s i s A r r a y ?

o u t p u t S t r e a m . f l u s h ()
r e l e a s e S t r e a m f o r D e s t i n a t i o n (ds t ID , o u t p u t S t r e a m) ;

Listing 4. Proposed xdev.send pseudocode with buffering avoidance (eager protocol).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

message passing and the built-in multithreading support of Java. Thus, MPJ Express maintains its
MPI_THREAD_MULTIPLE thread-safety level. This means that multiple threads can communicate
without restriction, taking advantage of the increasing number of cores available per system.

Once the avoidance of the buffering layer has been implemented in the MPJ Express library, it
is necessary to evaluate the communication device presented here, iodev, together with its impact
on the overall performance of MPJ applications.

4. PERFORMANCE EVALUATION

This work presents a performance evaluation of MPJ Express communication devices (iodev,
niodev, mxdev, and smpdev) compared with native MPI libraries and mpiJava [20, 21], an
MPJ wrapper implementation on top of MPI, on Gigabit Ethernet, Myrinet, SCI, and Infini-
Band networks, as well as on a shared memory multicore scenario. Thus, this section includes
a microbenchmarking of point-to-point primitives, using our own MPJ microbenchmarking suite
[22], and Section 5 presents an analysis of the impact of the communication devices on the scalabil-
ity of two representative message-passing applications, finite-difference time-domain (FDTD) and
Gadget [18].

4.1. Experimental configuration

Two multicore clusters have been used in this performance evaluation of Java message-passing
communication devices.

The first system is a cluster of eight dual-processor x86_64 nodes (Intel Pentium 4 Xeon 5060
dual core at 3.2 GHz, 4 GB of memory [Intel Corp., Santa Clara, CA, USA]) interconnected via
SCI (D334 network interface Dolphin Interconnect Solutions, Oslo, Norway), Myrinet (‘F’ Myrinet
2000 card [Myricom, Inc., Arcadia, CA, USA]), Gigabit Ethernet (Intel PRO/1000 [Intel Corp.,
Santa Clara, CA, USA]), and InfiniBand (QLogic IBA7220 4x Double Data Rate (DDR) [Aliso
Viejo, CA, USA], 16 Gbps). Each node has four cores, allowing the evaluation of shared memory
communications.

Regarding the software configuration of this testbed, the OS is Linux CentOS 5.1 with ker-
nel 2.6.18 and C compiler Intel icc 11.0 (used with -O3 flag). The JVM is the Sun Java
Development Kit 1.6. The native communication libraries (see Figure 2) are the SCI Sockets 3.1.4,
Dolphin Interconnect Solutions (DIS) 3.1.11 (it includes Interconnect Resource Manager, Software
Infrastructure for SCI and SCILib) and SCIP 1.2.0 on SCI; MX 1.1.1 and Sockets-MX 1.1.0 on
Myrinet; and Sockets Direct Protocol, IPoIB (the IP emulation over InfiniBand) and InfiniBand
Verbs (IBV), from the Open Fabrics Enterprise Distribution (OFED) drivers 1.4, on InfiniBand.

The second system used in this performance evaluation is the Finis Terrae supercomputer [23],
an InfiniBand cluster with 2400 cores (14 TFlops). This supercomputer is also the system selected
for the analysis of performance scalability of MPJ applications (shown in Section 5), because of its
high number of cores.

The Finis Terrae consists of 142 Hewlett–Packard (HP) Integrity rx7640 nodes (Hewlett–Packard
Company, Palo Alto, CA, USA), each of them with 16 Montvale Itanium 2 (IA64) cores (Intel
Corp.) at 1.6 GHz and 128 GB of memory. The InfiniBand NIC is a 4X DDR Mellanox MT25208
(Mellanox Technologies, Inc., Sunnyvale, CA, USA) (16 Gbps). The OS is SUSE Linux Enterprise
Server 10 with C compiler Intel icc 10.1.012 (used with the -O3 flag). The JVM is BEA JRockit
5.0 (R27.5), selected because of its high performance on this system, outperforming the other JVM
available for IA64 systems, the Sun JVM. The native communication library is OFED version 1.3.

The Java message-passing communication devices evaluated are niodev, mxdev, and smpdev
from MPJ Express 0.36 and an internal release of iodev (with JFS 0.3.1). Additionally, for compar-
ison purposes, the following native MPI libraries have been evaluated: Scali’s MPI (ScaMPI) 1.13.8
on SCI; MPICH-MX 1.2.6 on Myrinet; Intel MPI 3.2.0.011 on InfiniBand, Gigabit Ethernet, and
shared memory (all of them on the x86_64 cluster); and HP MPI 2.2.5.1 on InfiniBand and shared
memory on the Finis Terrae. Moreover, mpiJava 1.2.5x has also been benchmarked. The experimen-
tal results have been obtained both at the device level (xdev) and at the MPJ API level (see Figure 1)

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

for the communication devices evaluated, iodev, niodev, mxdev, and smpdev, whereas the
native MPI libraries have been benchmarked only at the MPI API level (this high-level layer usually
adds quite low overhead, almost negligible, on its underlying low-level message-passing devices).
The mpiJava library has been benchmarked at the MPJ API level as it relies on native MPI libraries
for communication, instead of on Java message-passing communication devices.

4.2. Point-to-point microbenchmarking on the x86_64 cluster

Figures 3–7 show the measured point-to-point latencies and bandwidths on the x86_64 cluster when
communicating byte arrays on Gigabit Ethernet (using niodev and iodev), SCI (using niodev
and iodev), Myrinet (using mxdev and iodev), InfiniBand (using niodev and iodev), and
shared memory (using smpdev and iodev).

An analysis of the performance results reveals the following:

1. iodev shows similar performance at the communication device level (xdev) and at the MPJ
layer, MPJ(iodev), as it does not incur any costly operation at the MPJ layer. Thus, for
clarity purposes, their performance is shown in Figures 3–7 as MPJ(iodev)/iodev.

2. niodev, mxdev, and smpdev present, however, different performance between MPJ and
xdev levels as the operation of these devices is tightly coupled with the MPJ Express buffer-
ing layer, incurring significant overhead at the MPJ level (the packing and unpacking of data
is done at this level). This overhead for short messages is around 20 �s for niodev, 10 �s
for mxdev (half of niodev overhead thanks to its native buffer handling), and 3 �s for
smpdev. However, this byte array packing overhead is slightly lower than using derived and
other primitive data types.

3. MPJ level buffering overhead (incurred by niodev, mxdev, and smpdev) is also significant
for large messages, reducing communication performance down to a half, especially on Infini-
Band and shared memory scenarios, which provide high raw bandwidth. However, when the
NIC is the main performance bottleneck, as for Myrinet and Gigabit Ethernet, the performance
decrease is much less important, less than 15%.

4. As a direct consequence of the reduction of the serialization and buffering overheads,
MPJ(iodev) obtains the best performance among current MPJ communication devices.

Message size (bytes)

Java Communication Devices Performance on Gigabit Ethernet

50

60

70

80

90

100

110

120

130

140

150

4 16 64 256 1K

L
at

en
cy

 (
µs

)

1K 4K 16K 64K 256K 1M 4M
0

100

200

300

400

500

600

700

800

900

1000

B
an

d
w

id
th

 (
M

b
p

s)

MPJ(niodev)
niodev

MPJ(iodev)/iodev
mpiJava

MPICH2(ssm)

Figure 3. Message-passing point-to-point performance on Gigabit Ethernet (x86_64 cluster). MPJ, Message
Passing in Java; MPICH2(ssm), MPICH2 (sockets and shared memory).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

Additionally, a general comparison of Java communication devices against mpiJava and native
MPI results shows the following:

1. MPI libraries generally obtain the best performance, as their implementations are more devel-
oped, extended, and mature than those of the MPJ ones. In fact, their high-speed networks and
shared memory support is more efficient, although the thread-based approach of smpdev can
outperform MPI on shared memory.

2. mpiJava achieves the lowest Java start-up latencies thanks to a reduced wrapping overhead. In
fact, it shows results around 10 �s higher than the underlying MPI library, independently of
the MPI library and the underlying HPC hardware (high-speed network or shared memory).

3. mpiJava shows poor large-message performance due to the overhead of the JNI copy of the
message data between the Java heap and its underlying MPI library (which even results in a
higher overhead than the data copy performed in niodev).

The network is the main performance bottleneck for the Gigabit Ethernet results (see Figure 3),
limiting its bandwidth to a maximum of 1000 Mbps, while showing start-up latencies quite high
(more than 50 �s), imposing poor performance for short messages. Moreover, the interrupt han-
dling scheme of the Gigabit Ethernet Linux driver (interrupt coalescence) delays communications,
causing latencies to be around multiples of 50 �s (driver notifications are handled every 50 �s,
approximately). Thus, MPJ(iodev)/iodev performance is close to that of MPI, especially for
large messages, outperforming MPJ(niodev) and especially mpiJava thanks to the buffering
avoidance.

Figure 4 shows the results of the evaluated libraries on SCI, where the native MPI implemen-
tation obtains the lowest start-up latency, 4 �s, followed by mpiJava, with 13 �s (a 9 �s start-up
latency overhead over the underlying ScaMPI), and iodev, which achieves a similar result, 14 �s.
Nevertheless, niodev shows poorer short-message performance, 47 �s start-up latency. Finally,
MPJ(niodev) shows the highest latency (71 �s) due to the buffering overhead.

Regarding large-message bandwidths, MPJ(iodev)/iodev presents the best performance
among Java communication devices, achieving similar performance to the native MPI library,
ScaMPI. Compared with mpiJava, MPJ(iodev) presents similar bandwidths for messages up to
64 KB; however, for longer messages, mpiJava performance falls below 1500 Mbps. Finally, the
high start-up latency of niodev and MPJ(niodev) has a significant impact on performance.

Message size (bytes)

Java Communication Devices Performance on SCI

0

10

20

30

40

50

60

70

80

90

100

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(niodev)
niodev

MPJ(iodev)/iodev
mpiJava
ScaMPI

1K 4K 16K 64K 256K 1M 4M
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

B
an

d
w

id
th

 (
M

b
p

s)

Figure 4. Message-passing point-to-point performance on Scalable Coherent Interface (SCI) (x86_64
cluster). MPJ, Message Passing in Java; ScaMPI, Scali Message-Passing Interface.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

Thus, messages sent through the rendezvous protocol (message size >128 KB), which involves
two control messages and the actual data transfer (hence, three data transfers per message), incurs a
poor performance, especially for 128- and 256-KB message sizes, obtaining less than half of iodev
performance on this scenario (see Figure 4).

Figure 5 shows point-to-point performance results on Myrinet, where MPJ(iodev)/iodev
start-up latency is 17 �s, which is lower than MPJ(mxdev) (24 �s) and similar to mpiJava and
mxdev (13 and 16 �s, respectively). Here, the start-up buffering overhead, which is the differ-
ence between MPJ(mxdev) and mxdev start-up latency, is lower than the difference between
MPJ(niodev) and niodev as the communication is handled by native methods. Moreover,
the Myrinet 2000 network, with a theoretical maximum bandwidth of 2000 Mbps, is the main
performance bottleneck for large messages, limiting MPJ(iodev) large-message bandwidth
to 1800 Mbps, whereas MPJ(mxdev), which additionally incurs a significant MPJ buffering
overhead, obtains results around 1300 Mbps.

Figure 6 shows the performance results on InfiniBand, where start-up latencies are higher than on
SCI and Myrinet. Moreover, large-message bandwidths, although higher than on SCI and Myrinet,
are far from the theoretical limit, 16 Gbps, due to the communication protocol processing over-
head (this analysis is supported by the InfiniBand evaluation on the Finis Terrae, presented in
Subsection 4.3). The analysis of the particular performance results on InfiniBand confirms the
conclusions derived from previous results (Figures 3–5) that MPI obtains the best performance, fol-
lowed by MPJ(iodev)/iodev when sending large messages and by mpiJava for short messages.
Finally, MPJ(niodev) and niodev show poor start-up latencies and high processing overhead,
which penalizes especially MPJ large-message performance, whose results are below 2.2 Gbps.

The increasing number of cores per system heightens the need for efficient message-passing com-
munications on shared memory. The performance evaluation on our testbed (Figure 7) shows lower
start-up latencies compared with high-speed networks, as well as higher bandwidths. Here, MPI
usually obtains the best performance, although MPJ(iodev)/iodev can achieve quite competi-
tive results thanks to the efficient communications support of its underlying layer (JFS over UNIX
sockets). Regarding MPJ(smpdev), although thread-based intra-process transfers can present the
highest transfer rates, its performance is severely limited by synchronization and buffering over-
heads, thus showing poorer performance than MPJ(iodev)/iodev. Additionally, mpiJava obtains

Message size (bytes)

Java Communication Devices Performance on Myrinet

0

5

10

15

20

25

30

35

40

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(mxdev)
mxdev

MPJ(iodev)/iodev
mpiJava

MPICH-MX

1K 4K 16K 64K 256K 1M 4M
0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
an

d
w

id
th

 (
M

b
p

s)

Figure 5. Message-passing point-to-point performance on Myrinet (x86_64 cluster). MPJ, Message Passing
in Java; MPICH-MX, MPICH-Myrinet Express.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

Message size (bytes)

Java Communication Devices Performance on InfiniBand

0

10

20

30

40

50

60

70

80

90

100

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(niodev)
niodev

MPJ(iodev)/iodev
mpiJava

Intel MPI(IBV)

1K 4K 16K 64K 256K 1M 4M
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

B
an

d
w

id
th

 (
G

b
p

s)

Figure 6. Message-passing point-to-point performance on InfiniBand (x86_64 cluster). MPJ, Message
Passing in Java; MPI(IBV), Message-Passing Interface (InfiniBand Verbs).

Message size (bytes)

Java Communication Devices Performance on Shared Memory

0

5

10

15

20

25

30

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(smpdev)
smpdev

MPJ(iodev)/iodev
mpiJava

Intel MPI(SHM)

1K 4K 16K 64K 256K 1M 4M
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

B
an

d
w

id
th

 (
G

b
p

s)

Figure 7. Point-to-point performance on shared memory (x86_64 cluster). MPJ, Message Passing in Java;
MPI(SHM), Message-Passing Interface (shared memory).

good start-up latencies but poor large-message performance. Moreover, it is noticeable that the per-
formance of iodev and smpdev drops for 512 KB, the shortest message using the rendezvous
protocol in this scenario, as this protocol involves three communications steps instead of only one
(as in the eager protocol). Thus, iodev and smpdev obtains higher performance for a 256-KB
message (eager protocol) than for a 512-KB message (rendezvous protocol). Finally, the perfor-
mance of all these libraries also drops when the total dataset plus the associated auxiliary storage
exceeds the L2 cache size (the Xeon 5060 has a 2-MB L2 cache, and from 1-MB message size, the
data do not fit in cache).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

4.3. Point-to-point microbenchmarking on the Finis Terrae

Figures 8 and 9 show latencies and bandwidths of point-to-point operations on the Finis Terrae,
using InfiniBand and shared memory communications, respectively. The motivation for this bench-
marking is the analysis of the MPJ Express devices on a supercomputer, a high-end environment
whose hardware provides higher communications performance. Additionally, this system has been
used for evaluating the scalability of representative message-passing applications, so the charac-
terization of the point-to-point performance is of special interest for the analysis of their results
(presented in Section 5).

Message size (bytes)

Java Communication Devices Performance on InfiniBand

0

20

40

60

80

100

120

140

160

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(niodev)
niodev

MPJ(iodev)/iodev
mpiJava

HP MPI(IBV)

1K 4K 16K 64K 256K 1M 4M
0

1

2

3

4

5

6

7

8

9

10

11

B
an

d
w

id
th

 (
G

b
p

s)

Figure 8. Point-to-point performance on InfiniBand (Finis Terrae). MPJ, Message Passing in Java; HP
MPI(IBV), Hewlett–Packard Message-Passing Interface (InfiniBand Verbs).

Message size (bytes)

Java Communication Devices Performance on Shared Memory

0

10

20

30

40

50

60

70

80

4 16 64 256 1K

L
at

en
cy

 (
µs

)

MPJ(smpdev)
smpdev

MPJ(iodev)/iodev
mpiJava

HP MPI(SHM)

1K 4K 16K 64K 256K 1M 4M
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

B
an

d
w

id
th

 (
G

b
p

s)

Figure 9. Point-to-point performance on shared memory (Finis Terrae). MPJ, Message Passing in Java; HP
MPI(SHM), Hewlett–Packard Message-Passing Interface (shared memory).

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

The microbenchmarking on the Finis Terrae has shown, compared with the x86_64 cluster results,
higher performance differences between Java (niodev and iodev) and native code (MPI), espe-
cially for short messages. The reasons for this higher gap are the relatively poor performance of the
JVM on Linux IA64 systems, as well as the high performance of MPI on this supercomputer due
to better hardware characteristics (e.g., performance of the processor–NIC connection and mem-
ory access performance). Thus, MPI shows start-up latencies as low as 6 �s on InfiniBand and
below 1 �s on shared memory and large-message bandwidths above 10 Gbps on both scenarios.
As a direct consequence of the higher performance of MPI, mpiJava, wrapping the MPI library, no
longer shows the poorest large-message performance, outperforming MPJ on both shared memory
and InfiniBand.

Figure 8 presents InfiniBand performance results on the IA64 supercomputer. The start-up latency
of the Java communication devices on this system is quite high (62 and 88 �s for iodev and
niodev, respectively) because of the poor performance of the JVMs on IA64 architectures. How-
ever, as the message size grows, their performance increases, obtaining bandwidths of up to 7.5 and
9 Gbps for niodev and iodev, respectively, whereas MPI obtains up to 10.4 Gbps. Thus, Java
achieves up to 87% of the native communication performance (using iodev). Furthermore, the
impact of the poor start-up latency is also noticeable in the performance of the rendezvous protocol
for message sizes slightly higher than the protocol threshold, which is set to 256 KB, as this pro-
tocol involves three communication steps, two of them are control messages, that is, without actual
message transfer but suffering the poor start-up latency. Thus, iodev obtains higher performance
for a 256-KB message (eager protocol) than for a 512-KB message (rendezvous protocol).

Figure 9 shows shared memory performance of the evaluated communication libraries. Here, the
most noticeable result is that smpdev achieves the highest performance for the message range
(128 KB–2 MB), as it is the only communication device that performs intra-process communica-
tion, transferring data between two threads, whereas the remaining libraries perform inter-process
data transfers. However, smpdev shows the poorest start-up latency due to its high synchronization
overhead. This overhead limits smpdev short-message performance (up to 128 KB). Additionally,
the MPJ buffering overhead also limits severely the performance benefits of MPJ(smpdev) for
large-message communications, obtaining the poorest performance. In this scenario, iodev results
are limited by the performance of UNIX sockets, its underlying communication mechanism that
obtains approximately half of the performance of HP MPI, which relies on its SHared Memory
(SHM) device.

5. IMPACT OF JAVA COMMUNICATION DEVICES ON HIGH-PERFORMANCE
COMPUTING APPLICATIONS PERFORMANCE

This section presents the performance evaluation of two representative parallel applications, FDTD
and Gadget [18], implemented using MPI (C) and MPJ and FDTD and Gadget [18]. The experimen-
tal results have been obtained on the Finis Terrae supercomputer (see Subsection 4.1), which allows
the evaluation of up to 64 cores on a multicore shared memory machine (an Itanium 2 Montvale-
based ccNUMA Integrity Superdome node [Hewlett–Packard Company] within the Finis Terrae).
Moreover, it allows the performance evaluation on distributed memory, using InfiniBand as inter-
connection network and running the applications with four cores per node and up to 64 nodes (e.g.,
a 32-core execution involves eight nodes and four cores per node). This latter configuration experi-
mentally obtains the best performance results. In fact, the use of a higher number of cores per node
(more than four) turns the interconnection network into a major performance bottleneck. The anal-
ysis of the results of this evaluation confirms that the research on Java communication devices has a
highly positive impact on the scalability of these applications.

5.1. Finite-difference time-domain performance evaluation

A message-passing (MPI/MPJ) version [18] of the FDTD method [24] (widely used in electromag-
netism) has been evaluated. This parallel FDTD application divides the workload equally among

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

the available computational resources, requiring frequent updates from the neighbor processes state
during the simulation. These updates are implemented using nonblocking point-to-point data trans-
fers. Moreover, the Java FDTD code has been optimized, avoiding performance bottlenecks such as
the use of multidimensional arrays [25].

Figure 10 presents the execution times and scalability of MPI and MPJ FDTD when simulating
200 steps on 4096� 4096 grids. The exploitation of the data locality explains the speedup increase
observed for a number of cores of 64 and higher, when the dataset fits entirely in cache (Itanium 2
Montvale 9140 has 9-MB L3 capacity per core).

Regarding shared memory results (only available up to 64 cores), MPI(SHM) shows high
speedups, whereas MPJ presents poor scalability for a number of cores of 16 and higher, not taking
advantage both MPJ shared memory solutions of this ccNUMA architecture, especially when using
MPJ(smpdev) as it suffers from important synchronization overheads, a significant performance
bottleneck for an application with frequent short-message transfers.

Although the scalability of MPJ when using InfiniBand is higher than that of MPI, the results
are not directly comparable, as the sequential runtimes of the C and Java FDTD codes are different
(80 and 179 seconds, respectively), and hence their parallel execution times. The reason for this
noticeable gap is the poor performance of the JVMs on Linux IA64 systems, which allows higher
speedups. This reinforces one of the main conclusions of this paper, that MPJ can help bridge the
gap between C and Java applications in HPC, especially when using iodev on InfiniBand, thanks
to the avoidance of the buffering overhead and the efficient exploitation of high-speed networks.

5.2. Gadget performance evaluation

Gadget [26, 27] is a very popular application in cosmology simulation. The parallelization strategy,
both with MPI (C) and MPJ [18], is an irregular and dynamically adjusted domain decomposition,
with intensive communication between processes.

Figure 11 presents Gadget performance results for a galaxy cluster formation simulation with two
million particles in the system (simulation available within the Gadget code and examples bundle).
As Gadget is a communication-intensive application, the speedups obtained on the Finis Terrae
supercomputer are below 50.

Regarding the results on shared memory, on the one hand, MPJ, especially with smpdev, shows
the poorest scalability. On the other hand, MPI(SHM) obtains the highest speedups when using up

0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 4 8 16 32 64 128 256

T
im

e
(s

ec
o

n
d

s)

Number of Cores

FDTD Execution Times

MPI(IBV)
MPI(SHM)
MPJ(iodev) − InfiniBand
MPJ(niodev) − InfiniBand
MPJ(iodev) − shared memory
MPJ(smpdev) − shared memory

1 2 4 8 16 32 64 128 256
0

20

40

60

80

100

120

140

160

180

S
p

ee
d

u
p

Number of Cores

FDTD Scalability

MPI(IBV)
MPI(SHM)
MPJ(iodev) − InfiniBand
MPJ(niodev) − InfiniBand
MPJ(iodev) − shared memory
MPJ(smpdev) − shared memory

Figure 10. Execution times and scalability of Message-Passing Interface/Message Passing in Java finite-
difference time-domain (MPI/MPJ FDTD) on the Finis Terrae. IBV, InfiniBand Verbs; SHM, shared

memory.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

1 2 4 8 16 32 64 128 256

T
im

e
(s

ec
o

n
d

s)

Number of Cores

Gadget Execution Times

MPI(IBV)
MPI(SHM)
MPJ(iodev) − InfiniBand
MPJ(niodev) − InfiniBand
MPJ(iodev) − shared memory
MPJ(smpdev) − shared memory

1 2 4 8 16 32 64 128 256
0

5

 10

 15

 20

 25

 30

 35

 40

 45

 50

S
p

ee
d

u
p

Number of Cores

Gadget Scalability

MPI(IBV)
MPI(SHM)
MPJ(iodev) − InfiniBand
MPJ(niodev) − InfiniBand
MPJ(iodev) − shared memory
MPJ(smpdev) − shared memory

Figure 11. Execution times and scalability of Message-Passing Interface/Message Passing in Java
(MPI/MPJ) Gadget on the Finis Terrae. IBV, InfiniBand Verbs; SHM, shared memory.

to 32 cores, closely followed by MPI(IBV). Although the smpdev device obtains reasonably good
point-to-point performance, the scalability of MPJ(smpdev), which motivates the optimization of
this device with a special focus on reducing the synchronization overhead, is poor.

The scalability achieved by MPJ with the new iodev device on InfiniBand is similar to that
of MPI, but they can not be compared directly as the sequential runtimes of the C and Java Gadget
codes are quite different (1114 and 2295 s, respectively), and hence their parallel execution times. In
fact, although the MPJ Gadget implementation obtains good scalability, its runtimes are still higher
than the MPI ones.

6. RELATED WORK

The use of pluggable low-level communication devices is widely extended in message-passing
libraries [28]. Thus, MPICH [29] includes several devices that implement the Abstract Device Inter-
face (ADI), a low-level messaging API, on several communication layers such as high-speed net-
works (e.g., Myrinet and InfiniBand) and shared memory. Moreover, Open MPI [30] also supports
high-speed interconnects and shared memory through the implementation of Byte-Transfer-Layer
(BTL) communication devices for each communication technology (e.g., Myrinet and InfiniBand).
Regarding MPJ libraries, MPJ Express [6] also follows this approach with the xdev layer [14],
providing communication devices for different interconnection technologies (Java NIO sockets, MX
for Myrinet, and shared memory). Other MPJ libraries [2] (e.g., P2P-MPI and Jcluster) only provide
support for Java NIO and/or IO sockets, without taking into account either high-speed networks or
shared memory systems. The only exception is the MPJ/Ibis, which is discussed next.

Since the introduction of Java, there have been several implementations of Java messaging
libraries for HPC [2]. These libraries were initially implemented using Java Remote Method
Invocation (RMI), but its TCP/IP default implementation presents quite high overhead, especially
the data marshalling and transport mechanisms. Thus, the optimization of the RMI protocol has been
the goal of several projects, such as KaRMI [31], RMIX [32], Manta [33], Ibis RMI [34], and Opt
RMI [35]. However, the use of nonstandard APIs, the lack of portability, and their high overhead,
which is still significantly larger than socket latencies, have restricted their applicability. Therefore,
although Java communication middleware (e.g., message-passing libraries) used to be based on
RMI, current Java communication libraries are implemented by (i) wrapping an underlying native

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

messaging library like MPI through JNI or by (ii) using Java sockets. The use of JNI presents porta-
bility, security, and dependency issues but in exchange of usually a higher performance, thanks to
taking advantage of the efficient communications of native MPI libraries. The other approach, which
is the use of a low-level API, Java sockets, requires an important programming effort, especially for
providing scalable solutions. However, both solutions are able to provide higher throughput, key in
HPC.

An example of a wrapper library is mpiJava [20, 21], which usually achieves high performance
but presents some portability issues as it only supports some native MPI libraries, as wrapping a
wide number of functions and heterogeneous runtime environments entails an important maintain-
ing effort. Additionally, this implementation is not thread safe, being unable to take advantage of
multicore systems through multithreading.

Socket-based MPJ libraries that support different communication technologies include, apart from
our MPJ Express project, MPJ/Ibis [36] and P2P-MPI [37]. MPJ/Ibis is an MPJ implementation on
top of Ibis [34], a parallel and distributed Java computing framework. Ibis can use both the ‘pure’
Java communications and the Myrinet high-speed network. There are two low-level communication
devices in Ibis: TCPIbis, based on Java IO sockets, and NIOIbis, providing blocking and nonblock-
ing communications through Java NIO sockets. Nevertheless, MPJ/Ibis is not thread safe, that is,
it only provides blocking communications, and its Myrinet support is based on GM, an out-of-date
low-level library on Myrinet, which has been superseded by MX and which is supported by most
MPI libraries and MPJ Express. P2P-MPI is a ‘pure’ Java message-passing implementation whose
communications are implemented on top of either Java IO sockets or NIO sockets. As this project
is tailored to grid computing systems, it is focused on fault tolerance and dynamic discovery of
computing resources.

However, the performance of socket-based MPJ libraries usually suffers from buffering [17] and
serialization [38] overheads. In order to reduce their impact, several efforts have been devoted to
optimize MPJ communications. Thus, our related project Fast MPJ [39] has served us to evaluate
an early prototype of the iodev device within an MPJ library without buffering layer. Fast MPJ
is a research implementation oriented to evaluate the scalability of new communication strategies.
Jcluster [40] is an MPJ implementation that uses a reliable protocol based on UDP communications
instead of TCP. Moreover, Java Object-Passing Interface (JOPI) [41] supports object communication
through an MPI-like interface. However, its high communication overhead restricts its application
to coarse-grain parallelism. Furthermore, the Parallel Java (PJ) project [42] is focused on hybrid
shared memory/message-passing programming. Although these three latter projects, Jcluster, JOPI,
and PJ, target programmability, they require the use of their own APIs and lack high-speed networks
support, which has severely limited their adoption in the Java HPC arena. Finally, there have been
several projects on serialization overhead reduction [31, 43].

7. CONCLUSIONS AND FUTURE WORK

The scalability of Java message-passing applications in HPC relies heavily on the performance of
Java communication devices. As the buffering is among their main performance bottlenecks, several
efforts have been carried out in order to reduce the overhead associated with its use in communi-
cations. Thus, the support for direct object communications, avoiding the use of buffers, has been
implemented in a new communication device, iodev, implemented using Java IO sockets. This
communication device has considered several protocols for a more efficient support of high-speed
networks and shared memory systems, and it has reduced the nonblocking communications over-
head. Moreover, this device can take advantage of efficient Java communication middleware, such
as high-performance Java sockets, which implement several techniques to reduce serialization over-
head. The performance evaluation of this device on Gigabit Ethernet, SCI, Myrinet, InfiniBand,
and shared memory/multicore clusters has shown significant performance benefits, especially when
the HPC hardware allows high-speed transfers, and the communication protocol is the main per-
formance penalty, such as on shared memory and InfiniBand. Moreover, the scalability of MPJ
applications can benefit from the reduction of the buffering overhead and the use of a more efficient

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

DEVICE LEVEL COMMUNICATION LIBRARIES FOR HPC IN JAVA

high-speed network support. In fact, the development of efficient Java communication devices is
bridging the gap between Java and native (compiled) applications in HPC.

Therefore, the increasing adoption of Java by the HPC community can take advantage not only
from the built-in multithreading, security, portability, and higher programmability of Java but also
from a more efficient MPJ communications support, in order to achieve higher productivity in
parallel programming for multicore systems.

Further information, additional documentation, and software downloads of this project are
available from the MPJ Express Project webpage http://mpj-express.org.

ACKNOWLEDGEMENTS

This work was funded by the Ministry of Science and Innovation of Spain under Project TIN2010-16735.
We gratefully thank CESGA (Galicia Supercomputing Center, Santiago de Compostela, Spain) for providing
access to the Finis Terrae supercomputer.

REFERENCES

1. Carpenter B, Chang Y, Fox G, Li X. Java as a language for scientific parallel programming. Proceedings of the 10th
International Workshop Languages and Compilers for Parallel Computing (LCPC ’97), Minneapolis, MN, USA,
7–9 August 1997; 340–354.

2. Taboada GL, Touriño J, Doallo R. Java for high performance computing: assessment of current research and practice.
Proceedings of the 7th International Conference on Principles and Practice of Programming in Java (PPPJ ’09),
Calgary, Canada, 27–28 August 2009; 30–39.

3. Java Grande Forum. Available from: http://www.javagrande.org [accessed on April 2011]
4. Blount B, Chatterjee S. An evaluation of Java for numerical computing. Scientific Programming 1999; 7(2):97–110.
5. Dongarra J, Gannon D, Fox G, Kennedy K. The impact of multicore on computational science software. CTWatch

Quarterly 2007; 3(1):1–10.
6. Shafi A, Carpenter B, Baker M. Nested parallelism for multi-core HPC systems using Java. Journal of Parallel and

Distributed Computing 2009; 69(6):532–545.
7. Message Passing Interface Forum. Available from: http://www.mpi-forum.org [accessed on April 2011]
8. Godoy WF, DesJardin PE. On the use of flux limiters in the discrete ordinates method for 3D radiation calculations

in absorbing and scattering media. Journal of Computational Physics 2010; 229(9):3189–3213.
9. Padial-Collins NT, VanderHeyden WB, Zhang DZ, Dendy ED, Livescu D. Parallel operation of CartaBlanca

on shared and distributed memory computers. Concurrency and Computation: Practice and Experience 2004;
16(1):61–77.

10. Baker M, Carpenter B, Shafi A. MPJ Express meets Gadget: towards a Java code for cosmological simulations.
Proceedings of the 13th European PVM/MPI Users’ Group Meeting (EuroPVM/MPI ’06), Bonn, Germany, 17–20
September 2006; 358–365.

11. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution.
Bioinformatics 2011; 27(8):1164–1165.

12. Turner A. MoSeS Project. Available from: http://www.geog.leeds.ac.uk/people/a.turner/projects/MoSeS/ [accessed
on April 2011]

13. Lim SB, Carpenter B, Fox G, Lee HK. A low-level communication library for Java HPC. Proceedings of the 6th Inter-
national Conference on Algorithms and Architectures for Parallel Processing (ICA3PP ’05), Melbourne, Australia,
2–3 October 2005; 429–434.

14. Baker M, Carpenter B, Shafi A. A pluggable architecture for high-performance Java messaging. IEEE Distributed
Systems Online 2005; 6(10):1–4.

15. Shafi A, Manzoor J, Hameed K, Carpenter B, Baker M. Multicore-enabling the MPJ Express messaging library.
Proceedings of the 8th International Conference on the Principles and Practice of Programming in Java (PPPJ ’10),
Vienna, Austria, 15–17 September 2010; 49–58.

16. Taboada GL, Touriño J, Doallo R. Java Fast Sockets: enabling high-speed Java communications on high performance
clusters. Computer Communications 2008; 31(17):4049–4059.

17. Baker M, Carpenter B, Shafi A. An approach to buffer management in Java HPC messaging. Proceedings of the 6th
International Conference on Computational Science (ICCS ’06), Reading, UK, 28–31 May 2006; 953–960.

18. Shafi A, Carpenter B, Baker M, Hussain A. A comparative study of Java and C performance in two large-scale
parallel applications. Concurrency and Computation: Practice and Experience 2009; 21(15):1882–1906.

19. Hoefler T, Lumsdaine A. Message progression in parallel computing—to thread or not to thread? Proceedings of
the 10th IEEE International Conference on Cluster Computing (CLUSTER’08), Tsukuba, Japan, 29 September–1
October 2008; 213–222.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

G. L. TABOADA ET AL.

20. Baker M, Carpenter B, Fox G, Ko S, Lim SB. mpiJava: an object-oriented Java interface to MPI. Proceedings of the
1st International Workshop on Java for Parallel and Distributed Computing (IWJPDC ’99), San Juan, Puerto Rico,
12–16 April 1999; 748–762.

21. The mpiJava Project. Available from: http://www.hpjava.org/mpiJava.html [accessed on April 2011]
22. Taboada GL, Touriño J, Doallo R. Performance analysis of Java message-passing libraries on Fast Ethernet, Myrinet

and SCI clusters. Proceedings of the 5th IEEE International Conference on Cluster Computing (CLUSTER ’03),
Hong Kong, China, 1–4 December 2003; 118–126.

23. Finis Terrae Supercomputer. Available from: http://www.cesga.es/content/view/917/115/lang,en/ [accessed on April
2011]

24. Taflove A, Hagness S. Computational Electrodynamics: The Finite-Difference Time-Domain Method (3rd edn).
Artech House Publishers: Norwood, MA, USA, 2005.

25. Moreira JE, Midkiff SP, Gupta M, Artigas PV, Snir M, Lawrence RD. Java programming for high-performance
numerical computing. IBM Systems Journal 2000; 39(1):21–56.

26. Springel V. The cosmological simulation code GADGET-2. Monthly Notices of the Royal Astronomical Society
2005; 364(4):1105–1134.

27. Springel V, White SDM, Jenkins A, Frenk CS, Yoshida N, Gao L, Navarro J, Thacker R, Croton D, Helly J,
Peacock JA, Cole S, Thomas P, Couchman H, Evrard A, Colberg J, Pearce F. Simulations of the formation, evolution
and clustering of galaxies and quasars. Nature 2005; 435(7042):629–636.

28. Pedroso H, Silva JG. An architecture for using multiple communication devices in an MPI library. Proceedings of the
8th International Conference on High Performance Computing and Networking Europe (HPCN ’00), Amsterdam,
The Netherlands, 8–10 May 2000; 688–697.

29. Gropp W, Lusk E, Doss N, Skjellum A. A high-performance, portable implementation of the MPI message passing
interface standard. Parallel Computing 1996; 22(6):789–828.

30. Open MPI Project. Available from: http://www.open-mpi.org [accessed on April 2011]
31. Philippsen M, Haumacher B, Nester C. More efficient serialization and RMI for Java. Concurrency: Practice and

Experience 2000; 12(7):495–518.
32. Kurzyniec D, Wrzosek T, Sunderam V, Slominski A. RMIX: a multiprotocol RMI framework for Java. Proceed-

ings of the 5th IEEE International Workshop on Java for Parallel and Distributed Computing (JAVAPDC ’03), Nice,
France, 22–26 April 2003; 1–7.

33. Maassen J, van Nieuwpoort RV, Veldema R, Bal HE, Kielmann T, Jacobs C, Hofman R. Efficient Java RMI for
parallel programming. ACM Transactions on Programming Languages and Systems 2001; 23(6):747–775.

34. van Nieuwpoort RV, Maassen J, Wrzesinska G, Hofman R, Jacobs C, Kielmann T, Bal HE. Ibis: a flexible and effi-
cient Java-based Grid programming environment. Concurrency and Computation: Practice and Experience 2005;
17(7–8):1079–1107.

35. Taboada GL, Teijeiro C, Touriño J. High performance Java remote method invocation for parallel computing on clus-
ters. Proceedings of the 12th IEEE Symposium on Computers and Communications (ISCC ’07), Aveiro, Portugal,
1–4 July 2007; 233–239.

36. Bornemann M, van Nieuwpoort RV, Kielmann T. MPJ/Ibis: a flexible and efficient message passing platform for
Java. Proceedings of the 12th European PVM/MPI Users’ Group Meeting (Euro PVM/MPI ’05), Sorrento, Italy,
18–21 September 2005; 217–224.

37. Genaud S, Rattanapoka C. P2P-MPI: a peer-to-peer framework for robust execution of message passing parallel
programs on grids. Journal of Grid Computing 2007; 5(1):27–42.

38. Carpenter B, Fox G, Ko SH, Lim SB. Object serialization for marshaling data in a Java interface to MPI.
Concurrency: Practice and Experience 2000; 12(7):539–553.

39. Taboada GL, Touriño J, Doallo R. F-MPJ: scalable Java message-passing communications on parallel systems.
Journal of Supercomputing 2011. DOI: 10.1007/s11227-009-0270-0

40. Zhang BY, Yang GW, Zheng WM. Jcluster: an efficient Java parallel environment on a large-scale heterogeneous
cluster. Concurrency and Computation: Practice and Experience 2006; 18(12):1541–1557.

41. Al-Jaroodi J, Mohamed N, Jiang H, Swanson D. JOPI: a Java object-passing interface. Concurrency and Computa-
tion: Practice and Experience 2005; 17(7–8):775–795.

42. Kaminsky A. Parallel Java: a unified API for shared memory and cluster parallel programming in 100% Java.
Proceedings of the 9th IEEE International Workshop on Java and Components for Parallelism, Distribution and
Concurrency (IWJacPDC ’07), Long Beach, CA, USA, 26–30 March 2007; 1–8.

43. Bouchenak S, Hagimont D, Krakowiak S, Palma ND, Boyer F. Experiences implementing efficient Java thread
serialization, mobility and persistence. Software: Practice and Experience 2004; 34(4):355–393.

Copyright © 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)
DOI: 10.1002/cpe

