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Communication is Expensive

Communication has two components:

▶ Bandwidth cost: # of words moved / bandwidth

▶ Latency cost: # messages × latency

Communication exists in memory hierarchy and network
Things are bad and getting worse:

flop time ≪ 1/bandwidth ≪ latency

Annual improvements [FOSC] 
Flop time Bandwidth Latency 

 
59% 

Network 26% 15% 
DRAM 23% 5% 

Communication is also expensive in energy
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Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):

▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms

▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):

▶ Reduces the impact of each communication event by
overlapping it with computation

▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation

▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost

▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

Communication Avoidance vs Overlapping

Two techniques to minimize the impact of communication:

1. Communication Avoidance (CA):
▶ Leads to provably optimal algorithms
▶ There might be a trade-off in bandwidth and latency

2. Communication Overlapping (CO):
▶ Reduces the impact of each communication event by

overlapping it with computation
▶ Hides bandwidth and/or latency cost
▶ Most effective if communication & computation are balanced



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

CA and CO in Linear Algebra

▶ We studied these techniques in three Linear Algebra routines:
▶ Matrix Multiplication (SUMMA and Cannon’s algorithms)
▶ Cholesky factorization
▶ Triangular Solve

▶ Prior algorithms but novel implementations

                  Optimizations 
 Algorithm 

Overlapping Avoidance Overlapping 
& Avoidance 

SUMMA PRIOR  PRIOR    

Cannon’s 
 

PRIOR  PRIOR  

Cholesky PRIOR  

TRSM PRIOR  

∗Uses replication but not communication optimal
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▶ We studied these techniques in three Linear Algebra routines:
▶ Matrix Multiplication (SUMMA and Cannon’s algorithms)
▶ Cholesky factorization
▶ Triangular Solve

▶ Prior algorithms but novel implementations

                  Optimizations 
 Algorithm 

Overlapping Avoidance Overlapping 
& Avoidance 

SUMMA PRIOR  PRIOR   NEW  

Cannon’s 
 

PRIOR  
NEW: One sided   
communication 

PRIOR  
NEW: One sided   
communication 

NEW 

Cholesky PRIOR  NEW  NEW  

TRSM PRIOR  NEW*  NEW*  

∗Uses replication but not communication optimal
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CA and CO in Linear Algebra

Three major questions arise:

1. Which is more important? CA or CO? It depends

2. Is there a benefit from combining both techniques? Yes

3. Can we explain the behavior of CA and CO under
different situations? Yes - Performance models
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2D Matrix Multiplication (SUMMA)
[Van De Geijn and Watts 97]

tim
e 

▶ Outer product form of Mat Mul

▶ Partitions A, B and C in 2 dimensions

▶ Row and column broadcast on 2D grid
▶ Costs:

▶ O(n3/p) flops
▶ O(n2/

√
p) words moved

▶ O(
√
p) messages
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2D Matrix Multiplication with CO (SUMMA)

▶ We overlap the broadcasts of next iteration with the local
Mat.Mul computation of current iteration

▶ Theoretically the execution time becomes
texec = O(max(tcomputation, tcommunication))

▶ If communication and computation are balanced we can
achieve up to 2× speedup

▶ Additional communication buffers are needed
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Experimental setup

▶ Experiments on Hopper, a Cray XE6 system (153,216 cores)

▶ We will focus on communication-limited problems (i.e. small
problems on large machine configurations)

▶ Strong scaling experiments
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Overlapping yields more benefits at medium scale
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▶ At medium scale where communication and computation are
balanced we observe larger benefits (1.34× speedup)

▶ At large scale overlapping does not help
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2.5D Matrix Multiplication (SUMMA)
[McColl and Tiskin 99], [Solomonik and Demmel 11]

A

B
A

B

A

B

A
B

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

32 CPUs (4x4x2)

2 copies of matrices

▶ The 2.5D algorithm uses extra
memory to reduce communication

▶ Each one of the c layers of processors
computes a different contribution to
the matrix C

▶ Works for c copies, c ∈ [1, p1/3]
▶ Costs:

▶ O(n3/p) flops
▶ O(n2/

√
c · p) words moved

▶ O(
√
p/c3) messages
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Communication avoidance helps a lot at large scale
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▶ At large scale avoidance helps a lot (2.08× speedup) (there is
a lot of communication to avoid!)

▶ At medium scale communication avoidance may yield
slowdown
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2.5D Matrix Multiplication with CO (SUMMA)

▶ We overlap the broadcasts of the next iteration with the local
Mat.Mul computation of current iteration on each of the c
processor layers

▶ Additional communication buffers are needed on top of
the extra memory needed for replication
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Putting everything together
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▶ At medium scale overlapping itself yields best
performance

▶ At large scale combining both techniques pays off
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Cannon’s algorithm

▶ In SUMMA we use collective communication operations

▶ In Cannon’s algorithm the communication needed is shifting
▶ The same techniques can be applied for Cannon’s algorithm
▶ Use fast one-sided communication provided by UPC
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2D Cholesky factorization

▶ Factorize a symmetric positive definite matrix A into
A = L · LT , where L is lower triangular

▶ Take advantage of symmetry and store only half of matrix A

▶ Employ block-cyclic layout for load-balance
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2D Cholesky factorization

1. Factorize the upper-left (green) block &
broadcast it to the column

2. Update via TRSM the (yellow) block column

3. Broadcast the factorized column in two phases
& update the trailing matrix (white blocks)

4. Continue with the factorization of the second
block column and repeat previous steps until all
matrix is factorized

▶ Communication involved is row and column broadcasts

▶ There are dependencies among rows and column during
factorization
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2D Cholesky factorization with overlapping

1. Factorize the 1st block-column

2. Broadcast factorized column

3. Update & factorize only the 2nd block-column

4. Overlap
▶ broadcast of the 2nd block-column
▶ update of the rest trailing matrix

(using 1st block-column)
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2.5D Cholesky factorization
[McColl and Tiskin 99], [Solomonik and Demmel 11]

▶ Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
layer & update trailing matrices

3. All-reduce the next ”fat” panel to
accumulate the updates

▶ At step 2 we can overlap computation and communication
similarly to the 2D version
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▶ Employ two levels of blocking: “Fat panels” and “blocks”

1. All layers jointly factorize a “fat” panel

2. Broadcast different subpanels within each
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Recall	  matrix	  mul-plica-on	  !!!	  
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Performance results on Hopper (Cray XE6)
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▶ CO helps more at the smallest scale (1,536 cores)
▶ Have not reached yet the cross-point of CA and 2D
▶ Future work: Aggregate updates to improve performance
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Triangular Solve (TRSM)

▶ Computes X , such that X · U = B with upper-triangular U
▶ Similar parallelization to Cholesky
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Can we explain the behavior of CO and CA?

▶ Communication avoiding and overlapping:

▶ Introduce four different algorithmic variants for each routine
▶ Have different memory requirements
▶ Lead to performance gains dependent on the problem size, the

algorithm and the machine configuration
▶ Tunable parameters with complicated interactions

                  Effect 
Parameter 

# messages load 
balance 

computation 
efficiency 

block size é  ê ê  é 
replication é é/ê é/ê NA 

fat panel sizeé ê ê  NA 

▶ Communication performance depends on number of processors

▶ Given a problem instance and a machine configuration
would like to predict the optimal variant
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Methodology for constructing performance models

▶ We construct detailed performance models

▶ Inputs: matrix size, # of processors, BLAS efficiency, LogGP
parameters, block sizes, replication factors, fat panel sizes

▶ Output: Estimate for execution time of algorithm

▶ We track the execution flow of each algorithm and estimate
completion time for encountered operation

▶ Estimate computation times through BLAS microbenchmarks
▶ Estimate communication times through LogGP model

▶ We take into account possible idle times
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Models make correct qualitative predictions
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▶ The models predict correctly the performance ranking of
the four variants

▶ They encapsulate the complicated interactions

▶ They can take into account memory limitations

▶ Ongoing work shows that we can predict absolute
performance accurately through integration of congestion



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Table of contents

...1 Introduction
Communication is Expensive
Communication avoidance vs Overlapping
CA and CO in Linear Algebra

...2 Linear algebra algorithms
Matrix Multiplication
Cholesky factorization
Triangular Solve (TRSM)

...3 Performance modeling
Motivation
Methodology

...4 Conclusions
Conclusions



Introduction
Linear algebra algorithms

Performance modeling
Conclusions

Conclusions

Conclusions

1. Which is more important? CA or CO?

It depends
▶ For core counts where communication and computation are

balanced CO helps more (up to 1.82× speedup)
▶ For larger core counts CA is more beneficial (up to 2.08×

speedup)

2. Is there a benefit from combining both techniques? Yes
▶ CO helps further hide the minimized communication by CA

(up to 2.33× speedup)

3. Can we explain the behavior of CA and CO under different
situations? Yes - Performance models

▶ We developed detailed performance models
▶ They encapsulate complicated interactions between parameters
▶ They predict correctly the performance ranking
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Thank you!
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