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Jorge González-Domı́nguez, Sabela Ramos, Juan Touriño, Senior Member, IEEE, Bertil Schmidt,
Senior Member, IEEE

Abstract—Development of new methods to detect pairwise epistasis, such as SNP-SNP interactions, in Genome-Wide
Association Studies is an important task in bioinformatics as they can help to explain genetic influences on diseases. As these
studies are time consuming operations, some tools exploit the characteristics of different hardware accelerators (such as GPUs
and Xeon Phi coprocessors) to reduce the runtime. Nevertheless, all these approaches are not able to efficiently exploit the whole
computational capacity of modern clusters that contain both GPUs and Xeon Phi coprocessors. In this paper we investigate
approaches to map pairwise epistasic detection on heterogeneous clusters using both types of accelerators. The runtimes to
analyze the well-known WTCCC dataset consisting of about 500K SNPs and 5K samples on one and two NVIDIA K20m are
reduced by 27% thanks to the use of a hybrid approach with one additional single Xeon Phi coprocessor.
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1 INTRODUCTION

THE latest developments in high-throughput geno-
typing technologies allow several thousands of

individual DNA samples to be genotyped at hun-
dreds of thousands to a few million genetic markers,
such as Single Nucleotide Polymorphisms (SNPs).
This collection of genotypes is typically linked to
a given phenotype in a Genome Wide Association
Study (GWAS). The simplest and most common phe-
notype classification is a binary trait, i.e. the presence
(case) or absence (control) of an associated disease.
In classical GWAS each genetic marker is analyzed
separately in order to identify markers showing dif-
ferences in genotype frequencies between cases and
controls. Unfortunately, this approach is generally not
powerful enough to model complex traits for which
the detection of joint genetic effects (epistasis) needs
to be considered [1], [2], [3]. For instance, 2-SNPs anal-
yses try to find pairs of SNPs whose joint genotype
frequencies show a statistically significant difference
between cases and controls which potentially explains
the effect of the genetic variation leading to disease.
Previous efforts have already addressed this problem
in high-throughput GWAS datasets [4], [5].

Computing epistasis is highly time-consuming due
to the large number of pairwise tests to be cal-
culated. Modern high-throughput technologies are
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able to gather information of millions of SNPs from
thousands of individuals. For instance, even for a
moderately-sized dataset consisting of 500,000 SNPs
there are about 125 billion pairwise interaction tests
to be performed. This leads to prohibitive runtimes
on conventional architectures. Targeting this problem
with High Performance Computing (HPC) architec-
tures can help to speed up the process to become
acceptable in a typical biologist’s workflow. Among
them, systems with accelerators are popular. Parallel
codes exist to detect epistasis on Xeon Phi copro-
cessors [6], FPGAs [7], GPUs [8], [9], [10], [11], [12],
[13] and even clusters of GPUs [14], [15]. However,
existing Xeon Phi implementations are still not fully
optimized, and one of the contributions of this paper
is a new parallel implementation to detect epistatic
interactions on Xeon Phi coprocessors. It uses an
approach based on regression models that has already
been proved accurate [16] and highly efficient on
GPUs [13].

Previous efforts have only focused on comparing
the performance of two types of accelerators (GPU
and Xeon Phi, or GPUs and FPGAs) for the same
problem [6], [17]. Due to their different characteristics
and programming models, they might be suitable for
different types of parallel problems. Nowadays, there
exist heterogeneous HPC systems that integrate two
types of accelerators. For instance, Stampede [18] and
Shepard [19] include nodes with GPUs and other
nodes with Xeon Phi coprocessors. Therefore, hybrid
GPU/Xeon Phi codes could exploit the characteristics
of these systems by using each architecture for the
most suitable part of the algorithm. It means, GPUs
and Xeon Phi coprocessors can collaborate in order
to accelerate the same task. The main contribution
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of this work consists in the development of two
hybrid approaches to detect pairwise epistatic interac-
tions on heterogeneous systems with GPUs and Xeon
Phi coprocessors. The workload has been efficiently
distributed using UPC++ [20], a Partitioned Global
Address Space (PGAS) extension of C++. We evaluate
their impact in order to speed up the GWAS analyses.

The rest of the paper is organized as follows. Sec-
tion 2 reviews some related work. Necessary back-
ground information is provided in Section 3. Impor-
tant features of our Xeon Phi-only parallelization and
the hybrid GPU/Xeon Phi approaches are described
in Sections 4 and 5, respectively. Performance is eval-
uated in Section 6. Finally, Section 7 concludes the
paper.

2 RELATED WORK

Since both the availability and size of GWAS datasets
are increasing rapidly, finding faster solutions is of
high importance to the research performed in this
area. In order to reduce runtimes, some tools such as
SNPHarvester [21], TEAM [22], Screen and Clean [23]
and SIXPAC [24] apply prefiltering techniques that
allow them to reduce the number of analyzed SNP-
pairs and perform a selective test only on a subset of
all pairwise combinations. Nevertheless, they can po-
tentially lose some significant SNP combinations [25].

A different approach consists of performing mas-
sively parallel exhaustive analyses using hardware
accelerators. For instance, GWIS [8] is CUDA-enabled
code to execute a test based on ROC curves for all
SNP-pair combinations. A method based on depen-
dency differences has also been adapted for GPU
computation [9]. Regression models are one of the
most popular statistical methods to find epistasis,
and their accuracy has been extensively proven.
BOOST [16], and its CUDA counterpart GBOOST [10],
are frequently employed by biologists (see for in-
stance [26], [27], [28]), thanks to their speed and
accuracy. GLIDE [11] also uses regression models on
GPUs and enables the use of non-discretized geno-
types and phenotypes. EpistSearch [13] provides the
same accuracy than GBOOST but with shorter run-
times. It relies on the novel KSASA filter, which is
less complex and faster to compute than the filters
applied in (G)BOOST. Furthermore, the CUDA kernel
is optimized to obtain speedups between 1.5 and 2
over GBOOST on a single GPU.

The present work uses the same filters as Epist-
Search and thus all the parallel implementations pro-
vide the same results as this tool. Our work focuses
on the speedup of GWAS codes using hardware accel-
erators. Consequently, an analysis of the advantages
and drawbacks of different filters is out of the scope
of this paper. Regression models are used due to their
high accuracy providing SNP-pairs with real epistatic
interactions (see [29] for an evaluation of different

methods). However, our implementations are flexible
enough to support other filters with minimal modifi-
cations.

SNPsyn, a tool that detects pairwise epistatic in-
teractions and that can be executed on GPUs and
Xeon Phi coprocessors, was presented in [6]. It uses
the information gain statistic to measure the epistasis
effects. The authors propose to split the dataset in
chunks that can be analyzed by the CPU or the
accelerators, so each one performs the complete anal-
ysis of different SNP-pairs. In this paper we have
also implemented an approach where different ac-
celerators collaborate on the analysis of every SNP-
pair, performing only the part of the computation
more suitable to their hardware characteristics. Up
to our knowledge, there are no previous efforts on
implementing collaborative hybrid GPU/Xeon Phi
applications. As it will be shown in Section 6, our
parallel implementations are much more efficient even
for only one type of accelerator.

3 BACKGROUND

The goal of our implementation is the exploitation of
HPC facilities in order to accelerate the detection of
epistasis. We work with datasets containing informa-
tion about a large number of biallelic genetic markers
from many individuals. For each SNP there are three
genotypes: homozygous wild (w), heterozygous (h)
and homozygous variant (v). They are numerically
represented as {0,1,2}. Each individual is character-
ized as case or control, depending on the presence or
absence of an associated disease. Two SNPs present
epistasis or interaction if their combination discrimi-
nates between cases and controls significantly better
than discrimination using each SNP individually.

3.1 Contingency Tables
The number of SNPs and individuals is denoted as M
and N , respectively. The individuals are categorized
as cases (value 0) and controls (value 1). The filters
that identify which SNP-pairs present interaction use
a 3x3x2 contingency table per pair. As shown in the
example of Table 1, each cell ijk stores the number
of individuals categorized as k (case or control) with
the value of the first SNP as i, and the second SNP
as j. We can also fill the contingency table with
probabilities: πijk = nijk/N .

3.2 Filters
Our implementations apply the same three statistical
tests as EpistSearch [13] and its multi-GPU version
multiEpistSearch [15]. They are based on the defini-
tion of epistasis in terms of log-linear models pre-
sented in [16]: epistatic interaction is measured as
the information contained in the joint distribution but
not in its lower-order factorization. This definition
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TABLE 1
2-SNP contingency table

Cases SNP2=0 SNP2=1 SNP2=2
SNP1=0 n000 n010 n020

SNP1=1 n100 n110 n120

SNP1=2 n200 n210 n220

Controls SNP2=0 SNP2=1 SNP2=2
SNP1=0 n001 n011 n021

SNP1=1 n101 n111 n121

SNP1=2 n201 n211 n221

leads to measure interaction as L̂S − L̂H , where L̂S

and L̂H represent the maximum log-likelihood of the
saturated and the homogeneous association models,
respectively. It can be calculated from the values of
the contingency table. The authors establish that all
pairs with log-linear measure higher than a certain
threshold THRES show epistasis. Although this log-
linear model is affordable, it still requires a lot of
computation as it has to be computed by iterative
methods. This is the reason why a simpler filter based
on the Kirkwood Superposition Approximation (KSA)
was designed: L̂S − L̂KSA. The authors proved that
this KSA filter is an upper bound of L̂S and L̂H

and it can be directly calculated from the cells of
the contingency table without iterative methods. The
detection of epistasis was further optimized with a
novel and simpler filter called the KSA’s Superposi-
tion Approximation (KSASA). Let E and O denote
the counts of expected (control) and observed (case)
samples, then EpistSearch and multiEpistSearch use
the discrete Kullback-Leibler divergence as measure:

DKL(E,O) =
∑
ij

πij1 log

(
πij1
πij0

)
It can be shown that it is an upper bound of the KSA

test and can be used as first prefilter; i.e. it holds:

L̂S − L̂H ≤ L̂S − L̂KSA ≤ N ·DKL(E,O)

Therefore, these tools apply the KSASA filter to all
SNP-pairs, discarding those that have a value below
the threshold, and calculating the KSA and log-linear
tests only for the remaining pairs. In the remainder of
this paper, we call the value of N ·DKL(E,O) and L̂S−
L̂KSA for a specific SNP-pair its “KSASA value” and
“KSA value”, respectively. The algorithmic workflow
is summarized in Figure 1.

3.3 Xeon Phi Architecture

The Intel Xeon Phi coprocessor [30] is the first com-
mercial manycore system based on the Intel MIC
(Many Integrated Core) architecture. Its main advan-
tage over other accelerators or coprocessors is that
it is x86-based, enabling the use of general purpose

Fig. 1. Workflow of the tests applied to each SNP-pair
in EpistSearch and multiEpistSearch

languages like C, C++ or Fortran. Hence, the pro-
gramming effort focuses on performance exploitation
through vectorization and libraries like OpenMP, MPI
or Pthreads. Moreover, the use of x86 cores enables the
acceleration of codes that are not suitable for GPUs or
that require major design and programming efforts,
like kernels with branch divergence or several double
precision operations.

Figure 2 represents the basic architecture of the
Xeon Phi. The current commercial device (code name
Knights Corner, KNC), has between 57 and 61 sim-
plified Intel CPU cores running at between 1053 and
1238 MHz, and supports 4 threads per core. The cores
have a vector unit with 64 byte registers featuring
the vector instruction set known as Initial Many Core
Instructions (IMCI) [31]. Each core has a 32 KB L1
data cache, 32 KB L1 instruction cache, and a private
512 KB L2 unified cache which is kept coherent by
a distributed tag directory system (DTDs). The cores
and the DTDs are arranged on a bidirectional ring
bus with the PCIe bus and the memory controllers,
that provide access to the GDDR5 memory (between
6 and 16 GB of global memory). The address-mapping
to the tag directories is based on hash functions over
the memory addresses, leading to an even distribution
around the ring. The coprocessor runs a simplified
Linux-based OS in one of the cores.

The Xeon Phi can be used in three different man-
ners [32]:

1) Native model: or coprocessor-only model. The
application is launched on the Xeon Phi and it
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Fig. 2. Architecture of the Intel Xeon Phi coprocessor

runs independently.
2) Symmetric model: the coprocessor communicates

with the host in a symmetric manner using MPI.
3) Offload model: the host offloads blocks of code to

be accelerated.
a) Automatic offload: when using the Intel MKL

library, some functions can be automatically
offloaded to the coprocessor.

b) Compiler-assisted offload: the programmer in-
serts directives to indicate which blocks of
code must run in the coprocessor.

The native model is usually preferred for small
applications that run on one Xeon Phi and with almost
no I/O instructions. In the symmetric model, the
computation is split in MPI tasks that run both in
the host(s) and the coprocessor(s). Finally, the offload
model enables the use of a Xeon Phi as a mere
coprocessor. This mode can be combined with any
distributed computing model in which nodes with
coprocessors can leverage blocks of code to be accel-
erated by the Xeon Phis.

3.4 Unified Parallel C++
We have used Unified Parallel C++ (UPC++) [20] in
order to implement hybrid GPU/Xeon Phi parallel
codes where accelerators are placed on different nodes
of a system. This language is an extension of C++
which has evolved from Unified Parallel C (UPC) [33]
and follows the PGAS programming model. The ex-
ecution model of UPC++ is Single Program Multiple
Data (SPMD). As this language is able to work on
both shared-memory and distributed-memory sys-
tems, each independent execution unit (from now on,
UPC++ process) can be implemented as an OS process
or a pthread. UPC++ takes advantage of unique C++
language features, such as templates, object-oriented
design, operator overloading, and lambda functions
(in C++ 11) to provide advanced PGAS features.
Hence, UPC++ gathers the advantages of this PGAS
model and the object-oriented paradigm.

As all PGAS languages, UPC++ exposes to the user
a globally shared address space which is logically di-
vided among processes, so each process is associated
or presents affinity to a different part of the shared

Fig. 3. Memory model in UPC++

memory. Moreover, UPC++ also provides a private
memory space per process for local computations, as
shown in Figure 3. Therefore, each process has access
to both its private memory and to the whole global
space (even the parts that do not present affinity to it)
with read/write functions. This memory specification
combines the advantages of both the shared and
distributed programming models. On the one hand,
the global shared-memory space facilitates the devel-
opment of parallel codes, allowing all processes to
directly read and write from remote memory (shared-
memory space with affinity to another process) with-
out explicitly notifying the owner. On the other hand,
the performance of the codes can be increased by tak-
ing data affinity into account. Typically the accesses
to remote data will be much more expensive than the
accesses to local data (i.e. accesses to private memory
and to shared memory with affinity to the process).

Other parallel programming paradigms, such as
MPI, could have been employed to implement the
hybrid GPU/Xeon Phi approaches. UPC++ has been
selected because it gathers the following necessary
features:

• UPC++ is able to work on distributed-memory
systems. Therefore, our approaches can be used
on clusters, and GPUs and Xeon Phi coprocessors
are not required to be in the same node.

• C++ codes can be integrated into the application
(the Xeon Phi filters are implemented using this
language).

• Locks in shared memory are available in order to
synchronize the work of the processes, as needed
for the inter-pair parallelization (see Section 5.1).
This feature is not present in MPI, where the only
alternative would be a more expensive barrier.

• One-sided communications available in UPC++
can provide better performance than two-sided
communications [34], [35].

• UPC++ provides asynchronous copies that were
used to overlap computation and communica-
tion.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2460247

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 5

4 PARALLEL IMPLEMENTATION ON THE
XEON PHI COPROCESSOR

The three fundamental techniques to achieve high per-
formance on the Xeon Phi are: scaling, vectorization
and memory usage [36]. The Xeon Phi provides a
large number of threads and 512-bit SIMD instructions
at the cost of using simplified Intel CPU cores. Hence,
in order to benefit from the Xeon Phi architecture,
workloads have to be able to exploit high degrees of
parallelism. Moreover, given its low core frequency,
the use of vector instructions is key to accelerate the
code run by each core.

Regarding memory usage, on the one hand the
Xeon Phi benefits from local memory accesses to
its GDDR5 modules instead of accessing the host
memory through PCIe. On the other hand, although
all cores can access all L2 slices, the access to remote
cache slices is costly due to the directory-based cache
coherence protocol [37].

The workflow of EpistSearch complies with the
requirements to exploit the Xeon Phi manycore ar-
chitecture. First of all, it presents an embarrassingly
parallel workflow in which SNP-pairs can be analysed
independently, as shown in Figure 1. Second, if the
SNPs are uploaded into the coprocessor memory, each
core only accesses the information of the pair that is
being processed, and it only has to write to the output
array when it finds a pair with epistasis. Third, the
information of the SNPs is arranged in arrays that
are manipulated to generate the contingency tables,
enabling the use of vector instructions. Note that we
have to align the memory addresses of these arrays
in order to better exploit vectorization.

Regarding the Xeon Phi use models, we have se-
lected the offload model because it allows us to lever-
age the computation of the contingency tables and the
filters (see Figure 1) into the coprocessor while the
host performs the I/O tasks (loading SNP information
and writing the output file). Moreover, it simplifies the
use of multiple coprocessors, being the host in charge
of splitting tasks (sets of SNP-pairs) among them.

Within the compiler-assisted offload, there are two
ways of managing data transfers between the host
and the coprocessor: shared and non-shared memory
models [38]. The shared memory model (or implicit
memory copy model) uses Cilk to share complex
data structures (pointer-based structures, classes, etc.)
between the host and the coprocessor, suffering from
coherence overhead. The non-shared memory model
(or explicit memory copy model) relies on directives
that indicate explicitly which data has to be trans-
ferred to and from the coprocessor and when. The
non-shared memory model enables a finer-grained
control over data transfers but it is limited to primitive
data types. The data required to process SNP-pairs
is stored in arrays of primitive types and hence we
use the non-shared memory model with explicit data

transfers.
Since the host is not performing extra computation,

we use synchronous transfers (i.e., the host offloads a
block of code and waits until the coprocessor finishes).
Once the data has been transferred, the Xeon Phi
operates with the SNP-pairs to obtain the contingency
tables and applies the filters to select those pairs with
epistasis. We have used OpenMP within the Xeon
Phi to exploit the inter-pair parallelism. The pairs are
generated using a nested loop that iterates over two
lists of SNPs, covering all the combinations. We split
the outer loop among threads using OpenMP so that
each thread maintains one SNP in cache and iterates
over the second set of SNPs. Since the computation
of each pair is independent, we do not need to assign
tasks taking into account thread locality. We have
experimentally verified that two threads is usually the
optimum load per core, since it enables to interleave
memory accesses. Moreover, the core running the OS
and in charge of the offload daemon must be avoided
when distributing the computation.

One of the most costly operations is the creation of
the contingency tables, whose bottleneck is the Ham-
ming weight function (popcount) to count the acti-
vated bits in the arrays that represent the SNPs. We
use a popcount function developed by the authors
of MICA [39] that takes advantage of prefetching and
vectorization. This function is optimized to operate
with full cache lines. In our implementation, each SNP
is represented by four arrays (two for the cases and
two for the controls) in which each bit represents one
individual. Thus, one cache line (64 bytes) comprises
information for 512 individuals. This means that the
popcount function will provide better performance
when the number of cases and the number of controls
are both multiple of 512.

Finally, once the Xeon Phi has selected those SNP-
pairs with epistasis, the results are transferred back to
the host to be written to an output file.

5 HYBRID GPU/XEON PHI PARALLELIZA-
TION

Two approaches have been explored in order to im-
plement a hybrid GPU/Xeon Phi parallel code where
the two types of accelerators collaborate to analyze
the same dataset: inter-pair and intra-pair. Both are
flexible enough to work with several GPUs and Xeon
Phi coprocessors and are based on UPC++.

5.1 Inter-Pair Parallelism

In this first approach each accelerator performs the
whole analysis (calculation of the contingency ta-
bles and whole filtering) of different SNP-pairs. The
UPC++ processes call either GPU or Xeon Phi func-
tions to perform the analysis of a block of SNP-pairs.
The biallelic information of the SNPs is distributed
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Fig. 4. Procedure within each UPC++ process in the
inter-pair approach

in blocks in a round-robin way, where the user can
specify the number of blocks per process. This in-
formation is stored in shared memory so it can be
directly accessed by all processes.

The flowchart in Figure 4 summarizes the behav-
ior of each UPC++ process. The term “metablock”
describes each block of SNP-pairs that must be com-
puted, i.e., all possible combinations with the blocks
of SNPs. In an example with 3 processes where the
biallelic data is distributed using 2 blocks per process
(6 blocks in total) there would exist 36 metablocks.
However, as the results of the filters are the same
for symmetric pairs (i.e., same result for pair (x, y)
and pair (y, x)), only 21 metablocks of SNP-pairs must
be analyzed. In general, if the biallelic information is
split in n blocks, n·(n+1)

2 metablocks are analyzed. For
each associated metablock, if the biallelic information
is not in the part of shared memory with affinity, the
process initially reads it from remote memory and
loads it into the accelerator memory. Next, it calls
the device to search for epistasis in all the SNP-pairs
within the metablock (the whole analysis illustrated
in Figure 1). Thanks to the shared-memory space and
the one-sided communications available in UPC++,
remote copies can be performed without synchroniza-
tion with the owner. Moreover, the execution on the
accelerator and the copy of the information needed
to compute the next metablock are overlapped using
asynchronous communication.

The metablocks are not initially assigned to certain
UPC++ processes. A table of UPC++ locks, with one
open lock per metablock, is created in shared memory
(accessible by all processes). Every time one accelera-

tor finishes the analysis of one metablock, the process
accesses this shared table to know which metablocks
have not been or are not being computed at the
same time by other devices, i.e., those metablocks
whose lock is still open. Once one idle process finds
a metablock to compute, it closes the associated lock.

The main advantage of the inter-pair approach is its
minimum data transfer requirements among acceler-
ators. Only the access to the table in shared memory
with the information of the remaining metablocks
needs to be synchronized using locks. Internal execu-
tions are completely independent as the computations
on each device are related to different SNP-pairs, i.e.,
accelerators do not need to wait for data generated
on other devices. Moreover, as the workload schedule
is dynamic and flexible (the first device to finish, the
first to analyze the next metablock), faster accelerators
perform more work.

5.1.1 Considerations for Xeon Phi
This implementation enables the use of multiple Xeon
Phis regardless of whether they are in the same or
in different hosts. We also provide an optimization
for coprocessors that reside in the same host with
only one process per host and using asynchronous
offload primitives to distribute the metablocks among
the multiple Xeon Phis. Unlike synchronous offload
primitives, asynchronous ones do not block the host
until the computation of the offloaded code has fin-
ished (unless a wait directive is found). This enables
to transfer metablocks to all coprocessors using only
one host process without serializing the computation
on the different coprocessors. We use wait directives
to ensure that the computation on one Xeon Phi
has finished before the host tries to offload the next
metablock to the same card. Data transfers are opti-
mized so that the coprocessors are able to reuse data
that do not change throughout consecutive offloads.
The results are copied back to the host only after each
coprocessor finishes its last part of code.

5.2 Intra-Pair Parallelism
A problem of the inter-pair approach is that its CUDA
kernel is affected by thread divergence because one
thread could need to perform the KSA and log-linear
filters for one SNP-pair whereas the other threads of
the warp discarded their pairs in the KSASA filter and
thus are idle. The effect of the divergence depends
on the number of SNP-pairs discarded by each filter
but it is always harmful for performance. We have
developed an intra-pair version that removes from the
kernel the computation that is not always performed
by all threads. This version divides the workflow il-
lustrated in Figure 1 into two parts and assigns each of
them to a different type of accelerator. Concretely, the
GPUs calculate the contingency tables and the KSASA
filter of all SNP-pairs while the Xeon Phi coprocessors
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Fig. 5. Workflow of the hybrid GPU/Xeon Phi intra-pair approach with overlapping

compute the KSA and log-linear filters of the SNP
pairs when necessary. Therefore, in this version the
SNP-pairs are not distributed among the accelerators,
but both GPUs and Xeon Phi coprocessors collaborate
to analyze the same SNP-pair. Similarly to the inter-
pair approach, the computation is split in metablocks.
One UPC++ process is created for each available
accelerator. As an example, the workflow for each
metablock in an execution with one GPU and one
Xeon Phi coprocessor would be:

1) Calculation of the contingency tables and ap-
plication of the KSASA filter on the GPU for
all the SNP-pairs within the metablock. The
GPU kernel has been simplified compared to
the inter-pair approach by removing the KSA
and log-linear filters. This step finishes with the
contingency tables of the SNP-pairs that passed
the KSASA filter copied into a buffer of shared
memory. This buffer has affinity to the UPC++
process associated to the GPU so that the con-
tingency tables can be directly copied from GPU
memory to the buffer and, at the same time, they
are accessible to other processes.

2) Copy of the contingency tables of the SNP-pairs
that passed the KSASA filter to another buffer
in the part of the shared memory with affinity
to the UPC++ process associated to the Xeon Phi
coprocessor. This buffer will be used as input for
the computation on the Xeon Phi.

3) Computation of the KSA filter using the input
contingency tables on the Xeon Phi. Addition-
ally, the log-linear filter is performed for those
SNP-pairs that passed the two previous filters.

4) Write the information of the SNP-pairs that
passed the three filters in the output file. This
is performed by the CPU.

Copies in PGAS languages can be performed fol-
lowing a push or a pull approach, i.e., the process
responsible of transferring data is either the source
(push) or the destination (pull). In this case the copy
of step 2 is performed in a pull way. It means that
the host process associated to the Xeon Phi directly
copies the remote data to local memory because this
process has less computational workload.

Our intra-pair implementation is flexible enough
to work with several GPUs and/or several Xeon
Phi coprocessors. In this case, the SNP-pairs and
contingency tables would be distributed among the
GPUs and Xeon Phi coprocessors in steps 1 and 3,
respectively. Furthermore, although this workflow is
inherently sequential, we overlap computation with
communication and other computation by simultane-
ously working with different metablocks on different
accelerators, as illustrated in Figure 5: the UPC++
processes associated to the Xeon Phi coprocessors
perform steps 2 and 3 for metablock i at the same
time that the processes associated to GPUs complete
step 1 for the next metablock (i + 1). The writing of
the results (step 4) by the CPU is also overlapped with
the previous steps.

The main advantage of this approach is the reduc-
tion of the CUDA thread divergence. As it will be seen
in Section 6.1 the computational power of modern
GPUs is higher than that of Xeon Phi coprocessors.
Therefore, optimizing the CUDA kernel is key in
order to improve performance. The new kernel im-
plemented for the intra-pair version only includes the
calculation of the contingency tables and the KSASA
filter, which are performed for all SNP-pairs. There-
fore, the computation of each thread is similar, the di-
vergence is reduced and the performance significantly
improves. On the other hand, the necessary copies
of the contingency tables between different parts of
the shared memory (step 2) are the main source of
overhead of this intra-node approach. Moreover, the
sequential nature of the workflow (the four steps must
be computed sequentially for the same metablock)
could have been an additional drawback but it has
been significantly alleviated with the overlapping of
the computation of different metablocks.

6 EXPERIMENTAL EVALUATION

Twelve synthetic datasets, consisting of different num-
bers of SNPs (50K and 100K) and individuals (1,600;
2,048; 3,200; 4,096; 6,400; 8,192), have been used in
our experiments. They have been generated with the
genomeSIMLA tool [40] and contain the same number
of cases and controls. Regarding the hardware, two
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TABLE 2
Specifications of the hardware accelerators used for

the experimental evaluation

NVIDIA K20m Xeon Phi 5110P
Cores 2496 60

Clock frequency 0.706 GHz 1.053 GHz
Memory size 5 GB 8 GB

Memory bandwidth 208 GB/s 320 GB/s
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Fig. 6. Evaluation of the single Xeon Phi implementa-
tion according to the number of threads per core

NVIDIA K20m GPUs and two Intel Xeon Phi 5110P
coprocessors have been employed. Their characteris-
tics are summarized in Table 2. Note that although the
Xeon Phi architecture provides 60 cores, one of them
is used for the operating system and the offload dae-
mon issues, and thus only 59 cores are employed for
computation. Figure 6 shows the runtime (in seconds)
of the single Xeon Phi implementation presented in
Section 4 depending on the number of threads per
core. The use of only one thread per core always leads
to the worst performance but there is no significant
difference among two, three or four threads per core.
Similar conclusions are obtained for multiple copro-
cessors. This behavior has been previously observed
for other Xeon Phi codes [41], [42]. From now on we
will use two threads per core (118 threads in total)
for all the executions on the Xeon Phi coprocessors as
more threads do not imply better performance.

TABLE 3
Runtimes (in seconds) of multiEpistSearch (on one

K20m GPU) and the Xeon Phi implementations

Num SNPs Num Inds. 1 GPU 1 Phi 2 Phi

50,000

1,600 8.64 289.41 146.18
2,048 9.18 88.14 47.20
3,200 12.21 253.05 136.93
4,096 13.52 133.72 75.57
6,400 16.76 238.99 129.37
8,192 20.49 244.49 137.85

100,000

1,600 37.75 1017.07 562.81
2,048 38.63 318.57 177.07
3,200 43.77 980.51 552.91
4,096 50.41 532.72 305.27
6,400 68.74 948.63 513.38
8,192 83.15 928.47 531.50

6.1 GPU vs Xeon Phi Comparison

Table 3 compares the runtimes (in seconds) of the
Xeon Phi implementation described in Section 4,
the optimized multi-Phi version explained in Sec-
tion 5.1.1, and our GPU counterpart. The GPU times
have been obtained executing multiEpistSearch on
one NVIDIA K20m as the CUDA kernel of this tool
is more optimized than EpistSearch thanks to the
exploitation of the GPU shared memory (see [15] for
more details).

The first conclusion that can be drawn is that the
evolution of runtimes according to the number of
individuals is different on the GPU and the Xeon
Phi coprocessors. The GPU presents the expected
runtime behavior: linear increase with the number
of individuals and quadratic with the number of
SNPs. This behavior is also reproduced on the Xeon
Phi if we consider only the series with number of
individuals power of two (2,048; 4,096; 8,192). For
instance, this runtime series for 50K SNPs on one
coprocessor is (88.14s, 133.72s, 244.49s), and for 100K
SNPs is (318.57s, 532.72s, 928.47s). However, runtimes
on one Xeon Phi coprocessor for other amount of
samples are much higher than expected. For example,
the time needed to analyze the dataset with 50K SNPs
and 1,600 individuals (289.41s) is 3.28 times higher
than for the same number of SNPs but 2,048 samples
(88.14s). Similar trends are observed for two Xeon Phi
coprocessors. The reason for this erratic behavior is
the implementation of the popcount function (see
Section 4), which is the core part of the calculation
of the contingency tables. Our popcount function
is optimized to work with full lines which, in our
approach, are filled with the information of 512 in-
dividuals. Therefore, the use of a number of samples
where cases and controls are multiple of 512 enables
to benefit from vectorization and memory alignment.
Padding could be used to alleviate this effect at the
expense of increasing the memory usage (twice the
memory would be necessary in the worst case).

Regarding the comparison between the GPU and
the Xeon Phi, runtimes are significantly lower for
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GPUs: between 8.25 and 33.50 times faster than one
Xeon Phi and between 5.14 and 16.92 compared to two
coprocessors. The maximum speedup is reduced if we
only take into account datasets containing a number
of cases and controls multiple of 512: 11.93 and 6.75
times faster over one and two coprocessors, respec-
tively. The high speedups of the GPU over the Xeon
Phi are due to the higher real computational power of
the NVIDIA K20m compared to the Xeon Phi 5110P.
The theoretical peak performance of the Xeon Phi [30]
is close to the NVIDIA K20m because it considers that
all floating point instructions are vectorized. However,
real codes rarely have all instructions vectorized and
real performance is far from the theoretical peak.
A new metric has been used to show the level of
hardware exploitation of each implementation. Let M
be the number of SNPs and T the runtime, we define
speed (S) as the thousands of SNP-pairs analyzed per
second:

S =
M (M − 1)

T · 2 · 103

Let C and F denote the number of cores of the
accelerator and the clock frequency per core, respec-
tively. The parallel exploitation metric (Exp) is calcu-
lated as the speed divided by the maximum amount
of GHz provided by each core of the accelerator:

Exp =
S

C · F
=

M (M − 1)

C · F · T · 2 · 103

Figure 7 shows the level of hardware exploitation
of multiEpistSearch on one NVIDIA K20m and of our
implementations for one and two Xeon Phi coproces-
sors for the same 12 datasets presented before. The
values for C and F were obtained from Table 2, and
T from Table 3. Note that we use C = 118 (two threads
per core) to calculate the metric of the Xeon Phi ver-
sions as it has been proved as the best configuration.
These graphs show that the difference of performance
among the three implementations is not high when
we take into account the computational power of
the accelerator. The exploitation level is on average
only 1.50 and 1.65 times higher on the GPU than
on one and two Xeon Phi coprocessors, respectively.
Furthermore, the exploitation metric of the Xeon Phi
versions is higher than that of the GPU for the datasets
containing 50K SNPs and number of cases and con-
trols multiple of 512. This is caused by the exploitation
of vectorization in the popcount function. Figure 7 is
also useful to graphically illustrate the trends of the
performance for a varying number of individuals: the
hardware exploitation on the GPU decreases linearly,
but the lines for the Xeon Phi present several peaks
(since the Xeon Phi implementations are more efficient
when the number of cases and controls is a multiple
of 512).
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Fig. 7. Parallel exploitation of multiEpistSearch (on one
K20m GPU) and the Xeon Phi implementations

TABLE 4
Runtimes (in seconds) of SNPsyn

Num SNPs Num Inds. 1 GPU 1 Phi 2 Phi

50,000 1,600 878.24 980.38 494.79
2,048 1114.74 1216.69 614.48

We have also evaluated the performance of
SNPsyn [6] on the same system in order to compare
our implementations to the previous work. We have
tested the two different methods available in SNPsyn
(Laplace and Relative) for both types of accelerators,
with and without additional heuristics to filter SNPs
before applying the detection method. Although the
use of the different detection methods causes minor
variations in performance, the use of filters has signif-
icant impact on the results. In order to provide a fair
comparison, only the runtime for the best approach
on each scenario is included in Table 4 (Laplace and
the main heuristic on GPU; Relative without heuristic
on Xeon Phi). Only the two smallest datasets have
been employed for this comparison due to the large
runtime of SNPsyn. The runtime of our implemen-
tations for the same datasets can be seen in the first
two rows of Table 3. These results show that our GPU
implementation is more efficient than SNPsyn, with
speedups over 100 for both datasets. The Xeon Phi
implementation of SNPsyn is more competitive, but
still between 3.38 and 13.80 times slower.
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Fig. 8. Performance comparison of multiEpistSearch on one GPU and the hybrid inter- and intra-pair approaches
using one additional Xeon Phi coprocessor. In parentheses, the speedups of the hybrid versions over the GPU-
only version

6.2 Evaluation of the Hybrid Approaches

The hybrid GPU/Xeon Phi implementations pre-
sented in Section 5 have been evaluated on a system
with two nodes connected through an InfiniBand FDR
network (maximum bandwidth of 56 Gbps and laten-
cies around 1-2 microseconds). One node contains two
NVIDIA K20m GPUs and the other node one Intel
Xeon Phi 5110P coprocessor. Figure 8 shows the per-
formance of multiEpistSearch on one NVIDIA K20m
and the inter-pair and intra-pair approaches when
using an additional Xeon Phi coprocessor. Speedups
of the hybrid implementations over the GPU-only one
are specified in parentheses above the boxes. In all
the experiments the intra-pair version is significantly
faster than the inter-pair one. It obtains on average
speedups of 1.37 and 1.20 over the GPU-only and
the inter-pair approaches, respectively. As explained
in Section 5.2, the thread divergence of the CUDA
kernel in the intra-pair version is removed, which
optimizes the part of the algorithm executed on the
GPU (creation of the contingency tables and KSASA
filter). Although the computational power of the Xeon
Phi is lower, it is sufficient to perform the KSA
and log-linear filters of the selected SNP-pairs within
one block simultaneously to the GPU computation of

the next block. Furthermore, thanks to overlapping
computation and communication, the transfer of the
contingency tables information between GPU and
Xeon Phi does not involve performance overhead.

However, the speedups of the inter-pair version
are much lower. On average it is only 1.06 times
faster than using only the GPU. In this case the
thread divergence is not removed from the CUDA
kernel as the GPU must perform the whole analysis
of the corresponding SNP-pairs. Due to its lower
computational power, only a small percentage of SNP-
pairs (metablocks) are assigned to the Xeon Phi co-
processor. Therefore, the impact of its collaboration
is not significant. Moreover, there is a performance
overhead due to accessing the table stored in shared
memory from different nodes. Similar conclusions are
taken from Figure 9 for the experiments with two
GPUs and the Xeon Phi coprocessor. In this case the
inter-pair version is even slower than using only the
two GPUs whereas the intra-pair approach obtains
speedups between 1.21 and 1.59.

Table 5 presents a comparison between our inter-
pair version and SNPsyn. As explained in Section 6.1,
in SNPsyn each card obtains maximum performance
with different methods and heuristics. Therefore,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2460247

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. #, NO. #, MMMMMMMM YYYY 11

 0

 2

 4

 6

 8

 10

 12

1,600 2,048 3,200 4,096 6,400 8,192

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of individuals

50,000 SNPs

(0.96)

(1.29)

(0.96)

(1.21)

(0.93)

(1.27)

(0.98)

(1.59)

(0.99)

(1.23)

(0.93)

(1.22)

GPU
Inter-pair
Intra-pair

 0

 10

 20

 30

 40

 50

1,600 2,048 3,200 4,096 6,400 8,192

R
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Number of individuals

100,000 SNPs

(0.94)

(1.26)

(1.00)

(1.34)

(0.93)

(1.37)

(0.99)

(1.35)

(0.98)

(1.28)

(0.99)

(1.26)

GPU
Inter-pair
Intra-pair

Fig. 9. Performance comparison of multiEpistSearch on two GPUs and the hybrid inter- and intra-pair
approaches using one additional Xeon Phi coprocessor. In parentheses, the speedups of the hybrid versions
over the GPU-only version

when combining both accelerators, it is not possible
to select the best configuration for both cards without
causing inconsistencies in the results. In order to
select the best parameters for a hybrid scenario, the
analysis was performed for all configurations. The
task scheduling in SNPsyn depends on the estimation
of the relative performance of each accelerator, which
depends on the set of parameters used. To avoid
bias related to this estimation, we divided the job
in 10 chunks and tested different splitting schemes.
Although the reported times correspond to the best
configuration and splitting scheme, the performance
of SNPsyn is not competitive even when compared to
our inter-pair version (note that the SNPsyn latency
does not include the cost of task scheduling and
merging the final results), being the runtimes between
79.15 and 116.98 times slower.

Finally, Table 6 shows the runtime and the speeds
S (as thousands of SNP-pairs per second) for mul-
tiEpistSearch on one and two K20m and the hy-
brid implementations with an additional Xeon Phi
coprocessor, analyzing a real-world dataset obtained
from the Wellcome Trust Case-Control Consortium
(WTCCC) [43]. It consists of 3,004 controls from the
1958 British Birth Cohort and 2,005 cases with bipolar

TABLE 5
Runtimes (in seconds) of SNPsyn and the inter-pair

version using 50,000 SNPS

Num Inds. Library 1 GPU + 2 GPUs +
1 Phi 1 Phi

1,600 inter-pair 8.36 4.54
SNPsyn 661.69 434.26

2,048 inter-pair 9.13 4.68
SNPsyn 844.69 547.48

disorder genotyped at 500,568 SNPs. The runtime
reduction of the intra-pair approach is 27% compared
to using either only one or two GPUs. Nevertheless,
only 6% and 3% of reduction is obtained, respectively,
with the inter-pair version.

The results of this section have shown that Xeon
Phi coprocessors can be effectively used to accelerate
codes in combination with GPUs and that the key
resides in assigning different tasks that are suitable for
the different architectures. Hence, appropriate hybrid
implementations can significantly accelerate certain
types of parallel applications, such as the detection
of epistatic interactions in GWAS.
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TABLE 6
Performance comparison of multiEpistSearch and the hybrid implementations using the WTCCC dataset

Version Hardware Runtime Speed (103 pairs/s)
Hybrid intra-pair 2 K20m & 1 Xeon Phi 9 m 56 s 210,229
Hybrid inter-pair 2 K20m & 1 Xeon Phi 13 m 15 s 157,538
multiEpistSearch 2 K20m 13 m 37 s 153,323
Hybrid intra-pair 1 K20m & 1 Xeon Phi 19 m 52 s 105,099
Hybrid inter-pair 1 K20m & 1 Xeon Phi 25 m 33 s 81,734
multiEpistSearch 1 K20m 27 m 15 s 76,621

7 CONCLUSION

The application of HPC techniques to pairwise epis-
tasis detection is key to enable the analysis of large-
scale datasets while maintaining reasonable runtimes
in a biologist’s workflow. This work has explored
the combination of different accelerators in order to
enhance the performance of an epistasis detection
workload. All the implementations presented in this
work use regression models to detect which SNP-pairs
present epistasis. The employed filters were selected
because they have been proved to be efficient in
previous works. Nevertheless, the conclusions related
to the efficiency of the parallel techniques presented
in this work could be applicable to other parallel
implementations even if they use different statistical
filters.

Firstly, we have provided an efficient implemen-
tation for the Xeon Phi. Although porting codes to
Xeon Phi involves using well-known languages and
traditional paradigms, extra effort has to be spent
in optimizing codes for the specific architecture. Our
implementation exploits Xeon Phi features like the
512-bit vector instructions and it significantly outper-
forms the only state-of-the-art tool for this coproces-
sor. We have also compared its performance to GPU
counterparts. Although current GPUs are faster, the
combination with Xeon Phi coprocessors can serve
to accelerate parts of the code that are not able to
fully exploit the GPU hardware, benefiting from the
use of a more flexible x86 architecture. Secondly, two
hybrid approaches have been analyzed to conclude
that different manycore architectures like GPUs and
Xeon Phis are complementary and can be successfully
used in collaboration to accelerate different sections
of a workload. In fact, the intra-pair approach vs
the GPU-only implementation obtains a maximum
speedup of around 1.6x for the synthetic datasets, and
a runtime reduction of 27% for the WTCCC dataset.

There is an increasing number of heterogeneous
clusters with both GPUs and Xeon Phi coprocessors.
Up to now, users execute their parallel applications
using only one type of accelerator and thus not
exploiting the whole computational capacity of the
system. In this work we have shown that efficient
hybrid GPU/Xeon Phi implementations can signifi-
cantly improve the performance of parallel tools. The
experimental results and conclusions provided by this

work can lead in the future to implement hybrid
approaches for other parallel applications.

An interesting approach to implement hybrid par-
allel algorithms is the usage of platform-independent
languages such as OpenCL. This would have the
advantage of providing potability across different de-
vices; e.g., NVIDIA as well as AMD GPUs could
be supported. However, the performance of OpenCL
kernels is not always portable across platforms; i.e.,
to achieve optimal performance a different kernel
often has to be written for each device. Studying the
performance of an OpenCL implementation of the
algorithm to detect pairwise epistasic interactions is
an interesting research direction.
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B. Schmidt, “Large-Scale Genome-Wide Association Studies
on a GPU Cluster Using a CUDA-Accelerated PGAS Pro-
gramming Model,” Intl. Journal of High Performance Computing
Applications, 2015 (in press).

[16] X. Wan, C. Yang, Q. Yang et al., “BOOST: a Fast Approach
to Detecting Gene-Gene Interactions in Genome-Wide Case-
Control Studies,” The American Journal of Human Genetics,
vol. 87, no. 3, pp. 325–340, 2010.
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