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Jorge González-Domı́nguez ·
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Abstract Unified Parallel C (UPC) is a Partitioned Global Address Space
(PGAS) language whose popularity has increased during the last years thanks
to its high programmability and reasonable performance through an efficient
exploitation of data locality, especially on hierarchical architectures like multi-
core clusters. However, the performance issues that arise in this language due
to the irregular structure of sparse matrix operations have not yet been stud-
ied. Among them, the selection of an adequate storage format for the sparse
matrices can significantly improve the efficiency of the parallel codes. This
paper presents an evaluation, using UPC, of the most common sparse storage
formats with different implementations of the matrix-vector and matrix-matrix
products, which are key kernels in many scientific applications.
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1 Introduction and Related Work

UPC is an extension of ANSI C for parallel computing that follows the Par-
titioned Global Address Space (PGAS) programming model. Several studies
have shown that UPC is able to obtain similar or even better performance than
traditional parallel libraries such as the Message Passing Interface (MPI) [3,
6,13,16]. Furthermore, UPC can scale up to thousands of processors with the
right support from the compiler and the run-time system [1,12,15].

Sparse matrix-vector and matrix-matrix products represent the main core
of many iterative solvers or matrix factorizations that arise in a wide variety
of scientific and engineering problems. Due to the importance of the sparse
products, a large number of parallel solutions exist in the literature [4,9,10,
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20]. Nevertheless, none of these works take advantage of the use of PGAS lan-
guages. The work in [2] is the only one addressing parallel sparse computation
in the PGAS model, but it is restricted to provide a UPC implementation of
the sparse triangular solver using the Compressed Sparse Row format.

Sparse formats [5] are strongly involved in achieving high performance
because they define the matrix data structure in memory and the most ap-
propriate algorithms to perform the sparse multiplications. Sparse numerical
libraries must take into account the most suitable combination of storage for-
mats and algorithms, especially when it comes to their processing in parallel on
hybrid shared/distributed memory architectures. Several related works have
evaluated the suitability of different storage formats to different architectures
and languages such as Java [11], Fortran [19], MPI on multicore clusters [14]
and CUDA in Graphic Processing Units (GPUs) [8].

This paper presents an evaluation of the suitability of the following storage
formats for the Sparse Basic Linear Algebra Subprograms (SparseBLAS) [17]
products in UPC:

– Coordinate (COO): It consists of three arrays, values, rows and columns,
which store the values, row indices and column indices of the non-zero
entries, respectively. In most occasions (and always in this work) the non-
zero elements of the same row are assumed to be stored contiguously.

– Compressed Sparse Row (CSR): It explicitly stores subsequent non-zero
values of the matrix rows in array values. Array columns keeps the column
indices. A third array rowPtr stores, for each row, the index of the entry in
the array columns which is the first non-zero element of the given row, and
an additional entry with the number of non-zero elements in the matrix.

– Block Sparse Row (BSR): It is a variant of CSR using blocks.
– Compressed Sparse Column (CSC): It is similar to CSR, but storing the

non-zero elements consecutively by columns.
– Diagonal (DIA): In this case values stores consecutively all the elements

of the diagonals with any non-zero element. The array distance represents,
for each stored diagonal, its offset from the main diagonal. Diagonals above
and below the main one have positive and negative distance, respectively.

– Skyline (SKY): This format has been specifically designed for sparse trian-
gular matrices and the concrete storage of the elements depends on whether
the matrix is lower or upper triangular. The values of all the entries from
the first non-zero element to the diagonal in each row/column are consecu-
tively stored in values in the lower/upper case. Besides, an additional array
ptr is necessary. In lower/upper matrices, it keeps for each row/column the
index of the entry of values with the first element of this row/column.

Therefore, our work is not only the first approach to the parallel sparse
products in any PGAS language but also the first performance comparison
among different sparse storage formats in this programming model.

The rest of the paper is organized as follows. Section 2 provides an overview
of the memory model in UPC, as background for the following sections. Sec-
tion 3 describes the different approaches used in UPC to implement the sparse
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matrix-vector and matrix-matrix products depending on the storage format.
Section 4 presents the analysis of the experimental results obtained on an HP
supercomputer (Finis Terrae). Finally, conclusions are discussed in Section 5.

2 Background: Overview of the Memory Model in UPC

All PGAS languages, and thus UPC, expose a global shared address space to
the user which is logically divided among threads, so each thread is associated
to a part of the shared memory. This association between a portion of the
shared address space and a given thread is called affinity. Moreover, UPC
also provides a private memory space per thread. Therefore, each thread has
access to both its private memory and to the whole global space. However, the
accesses to remote data will be more expensive than the accesses to data in
local memory (private memory or shared memory with affinity to the thread).

Shared arrays are employed to implicitly distribute data among threads.
The syntax to declare a shared array A is: shared [BLOCK SIZE] type A[N],
being BLOCK SIZE the number of consecutive elements with affinity to the
same thread, type the datatype, and N the array size. It means that the first
BLOCK SIZE elements are associated to thread 0, the next BLOCK SIZE ones to
thread 1, and so on. The block size in shared arrays cannot be variable.

As an extension of the C language, UPC provides functionality to access
memory through pointers. Due to the two types of memory available in UPC,
several types of pointers arise:

– Private pointers (from private to private). The standard C pointers. They
are only available for the thread that stores them in its private memory
and can reference addresses in the same private memory or in the part of
the shared memory with affinity to the owner.

– Private pointers to shared memory (from private to shared). They are only
available for the thread that stores them in its private memory, but can
have access to any data in the shared space.

– Shared pointers (from shared to shared). They are stored in shared memory
(and therefore accessible by all threads) and they can access any data in
the shared memory.

The pointers to shared memory contain three fields in order to know their
exact position: the thread where the data is located, the block that contains
the data and the phase (the location of the data within the block). Thus,
when performing pointer arithmetic on a pointer-to-shared all three fields will
be updated, making the operation slower than private pointer arithmetic.

3 Implementation of Sparse Matrix Products in UPC

This section analyzes the implementation of the sparse matrix-vector and
matrix-matrix products in UPC. The syntax of these products is the same
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as in the SparseBLAS library [17], because it is widely used in scientific com-
putations: y = α ∗ A ∗ x + y and C = α ∗ A ∗ B + C (being α a scalar value,
A a sparse matrix, x and y dense vectors, and B and C dense matrices). The
output vector or matrix is expected to be completely stored in an array in the
local memory of one thread in both cases.

Figure 1 illustrates the three different approaches implemented for the
matrix-vector product, each of them suitable for a different type of storage
format. The first approach distributes the sparse matrix by rows and then
each thread calculates a partial result by applying a sequential partial sparse
matrix-vector product with the rows that correspond to it and all the elements
of x. Thus, the distribution of y must match the distribution of the matrix
so that the partial sums can be performed without remote accesses. Besides,
this approach only requires one bulk copy of remote data per thread to place
the partial results in their correct positions of the output array. In order to
perform this distribution the non-zero elements must be consecutively stored
by rows in the values array so it can be used in the COO, CSR, BSR and SKY
(with lower matrices) formats.

(a) Distribution by rows (COO, CSR, BSR and SKY with lower matrices)

(b) Distribution by columns (CSC and SKY with upper matrices)

(c) Distribution by diagonals (DIA)

Fig. 1 Approaches for the sparse matrix-vector product

For the CSC and SKY (with upper matrices) formats, where the data
in the values array are consecutively stored by columns, the use of this row
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distribution would lead to several data movements, which would represent an
important performance overhead. The natural distribution for these formats
is by blocks of columns and with the source vector x distributed according to
the size of the blocks in the matrix as represented in Figure 1(b). Each thread
performs a partial sequential matrix-vector product with its local data. Then,
in order to compute the ith element of the result, the ith values of all partial
results should be added. These additions need reduction operations involving
all UPC threads, so their performance is usually poor. The approach followed
by the DIA format, which can be seen in Figure 1(c), is very similar to the
previous one but the sparse matrix is distributed by diagonals.

Previous works have pointed out that a key aspect in the performance of
the sparse matrix-vector product is the computational load balance [20]. In
order to achieve a good load balance the first and the second approaches try
to distribute the matrices by providing the same or similar number of non-zero
elements per thread (in the examples, six non-zero elements per thread). This
implies using row/column distributions with a variable block size. This distri-
bution must be explicitly performed in the private memories of the threads as
UPC shared arrays can not have variable block size (see Section 2). In order to
apply a similar mechanism with the DIA format, all the entries should be read
before the distribution to know the number of non-zero elements per diagonal.
This overhead is avoided by using always a cyclic distribution, which achieves
a balanced load distribution in most sparse matrices (in Figure 1(c), seven
non-zero elements for threads 0 and 1 and five for threads 2 and 3).

Figure 2 shows the two approaches employed for the matrix-matrix prod-
uct. The first one is an adaptation of the matrix-vector distribution by rows
to this problem. Each thread needs the whole matrix B and the same rows
of C as in A. Only one bulk copy per thread is required to place all the ele-
ments of the output matrix consecutively in one local memory. Nevertheless,
the adaptation of the distribution by columns and diagonals employed in the
matrix-vector multiplication would eventually involve a significant number of
final reductions, leading to a very poor performance. Therefore, the approach
illustrated in Figure 2(b) was developed for CSC, DIA and SKY with upper
matrices. Each thread needs to access the whole sparse matrix but only the
same columns of B and C. The block distribution is used because it allows to
aggregate the final copies of all elements of the same row of C using only one
bulk copy of remote data per thread and row.

In all the implemented approaches, when dealing with shared data with
affinity to the local thread, the access is performed through standard C pointers
instead of using UPC pointers to shared memory in order to improve the
performance of the sparse products, as explained in Section 2. All the bulk
copies are performed in one go using private pointers to shared memory and
the upc memget function, which is much more efficient than copying all the
elements one-by-one (the UPC default access).



6 Jorge González-Domı́nguez et al.

(a) Distribution by rows (COO, CSR, BSR and SKY with lower matrices)

(b) Distribution by columns (CSC, DIA and SKY with upper matrices)

Fig. 2 Approaches for the sparse matrix-matrix product

4 Performance Evaluation

The evaluation of the sparse matrix products in UPC has been conducted
on the Finis Terrae supercomputer at the Galicia Supercomputing Center
(CESGA). This system consists of 142 HP RX7640 nodes, each of them with
16 IA64 Itanium2 Montvale cores at 1.6 Ghz, 128 GB of memory and a dual
4X InfiniBand port. As for software, the code was compiled using Berkeley
UPC 2.12.1 with the Intel C compiler (icc) version 10.1 as backend. In this
machine there is a memory overhead when several cores that share the memory
bus access memory at the same time. In order to avoid this overhead only 4
threads per node are used. The intra-node and inter-node communications are
performed through shared memory and GASNet over InfiniBand, respectively.

In this evaluation seven representative square matrices, with different spar-
sity patterns, have been selected from the University of Florida Matrix Collec-
tion [18]. Their characteristics are shown in Table 1. Larger versions (labeled
with “large”) have been obtained by scaling the original matrices, which pre-
serves the sparsity and the pattern of the original ones. The larger versions
have been used for the matrix-vector product whereas the original matrices
have been used for the matrix-matrix product. The DIA and SKY formats
are not appropriate for storing some matrices due to the significant number of
zeros that the format would require to store them, and thus these combina-
tions have not been considered. All the results have been obtained discarding
the overhead of the initial data distribution (for many applications several
consecutive products are performed with the same input data distributions).

Figure 3 shows the speedups of the double precision sparse matrix-vector
product using 32 and 64 threads as representative scenarios. The speedup is
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Table 1 Overview of the sparse square matrices used in the evaluation

Plot Name Rows Sparsity Plot Name Rows Sparsity

nemeth26 9506 0.842% ramage02 16830 0.509%

nemeth26 large 85554 0.842% ramage02 large 67320 0.509%

nd3k 9000 2.03% gupta3 16783 1.658%

nd3k large 81000 2.03% gupta3 large 67132 1.658%

pattern1 19242 1.26% exdata 1 6001 3.159%

pattern1 large 57726 1.26% exdata 1 large 84014 3.159%

TSOPF 18696 1.258%

TSOPF large 56088 1.258%
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Fig. 3 Speedups of the matrix-vector product

relative to the execution time using UPC with only one thread. As expected,
the row-based storage formats outperform column- and diagonal-based ones
due to the avoidance of the final reduction operations, as shown in Section 3.

Figure 4 shows the results of the sparse matrix-matrix product. When
working with matrices with a quite similar number of non-zero elements per
row (for instance nemeth26, ramage02 or nd3k) the row distribution obtains
better performance than the column one due to the efficiency of the final copies
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Fig. 4 Speedups of the matrix-matrix product

of data to the output array. As can be seen in Figure 2, the first approach gath-
ers the output data with only one bulk copy per thread, which in UPC is more
efficient than using one bulk copy per row and thread, as in the second ap-
proach. However, if the matrix presents a very irregular sparsity pattern such
as TSOPF, exdata 1 or pattern1, the distribution by rows tries to balance the
number of non-zero elements per thread and this leads to a different number
of rows per thread (see Section 3). Therefore, the computational workload of
the final additions and data copies is very unbalanced, obtaining less efficiency
than distributing the dense matrices by columns. Finally, the poor speedups
of the DIA format for this routine is due to the fact that the sequential times
are lower than using other formats thanks to the efficient exploitation of the
memory hierarchy provided by this format on the evaluated matrices. Never-
theless, when the data in the DIA format is distributed among several threads
this cache efficiency decreases, showing significantly poorer scalability.

The column distribution was initially only implemented for CSC, DIA and
SKY with upper matrices. However, as the sparse matrix is not distributed,
this approach can be applied to all the formats. Experiments with the formats
COO, CSR, BSR and SKY with lower matrices using this distribution were
performed and similar results to CSC were obtained for all the matrices. These
results were not included due to space limitations. Thus, these storage formats
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that order the non-zero elements consecutively by rows could always obtain the
best performance also in the sparse matrix-matrix product if the appropriate
distribution is chosen. The column distribution should be the approach to
be applied in case of sparse matrices with very irregular sparsity pattern.
Otherwise, the approach with the row distribution is the best choice.

5 Conclusions

This paper has presented the performance evaluation of the sparse matrix
products in UPC using six representative sparse storage formats. The algo-
rithms proposed have taken into account the influence of the storage format
on the data distribution in order to achieve a high efficiency. Some optimiza-
tion techniques for UPC codes such as using private pointers to access shared
memory with affinity to the thread or minimizing the number of bulk copies
in the remote data movements have also been included.

The evaluation was performed using sparse matrices with different charac-
teristics and the experimental results have shown that the speedups depend
not only on the storage format but also on the sparsity pattern of the matrix.
The variability of the efficiency among the storage formats is very significant.
Furthermore, we can assert that formats that store the non-zero elements con-
secutively by rows (Coordinate, Compressed Sparse Row, Block Sparse Row
and Skyline with lower matrices) are able to obtain the same or better perfor-
mance than the other ones in all scenarios. All these row-based formats achieve
for the sparse matrix-vector product speedups between 40 and 63 on 64 threads
even though the sequential times are very low. Regarding the sparse matrix-
matrix product, speedups between 37 and 63 are obtained if the appropriate
distribution according to the sparsity pattern of the matrix is selected.

As future work, the sparse matrix products will be included in the UP-
CBLAS library [7]. Although some changes in the interface will be necessary
to adapt them to this library (for instance, input and output matrices dis-
tributed among all threads) the experimental evaluation done in this work
will be very helpful for the choice of the most appropriate storage formats.
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