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Abstract

The growth of next-generation sequencing (NGS) datasets poses a challenge to the align-
ment of reads to reference genomes in terms of alignment quality and execution speed.
Some available aligners have been shown to obtain high quality mappings at the expense
of long execution times. Finding fast yet accurate software solutions is of high importance to
research, since availability and size of NGS datasets continue to increase. In this work we
present an efficient parallelization approach for NGS short-read alignment on multi-core
clusters. Our approach takes advantage of a distributed shared memory programming
model based on the new UPC++ language. Experimental results using the CUSHAWS3
aligner show that our implementation based on dynamic scheduling obtains good scalability
on multi-core clusters. Through our evaluation, we are able to complete the single-end and
paired-end alignments of 246 million reads of length 150 base-pairs in 11.54 and 16.64 min-
utes, respectively, using 32 nodes with four AMD Opteron 6272 16-core CPUs per node. In
contrast, the multi-threaded original tool needs 2.77 and 5.54 hours to perform the same
alignments on the 64 cores of one node. The source code of our parallel implementation is
publicly available at the CUSHAW3 homepage (http://cushaw3.sourceforge.net).

Introduction

The application of next-generation sequencing (NGS) technologies has led to an explosion of
short-read sequence datasets. The alignment of produced sequences to a given reference
genome, i.e. short-read alignment (SRA), is one of the most important basic operations
required for further downstream analysis. Continuous improvements of NGS technologies
have led to a steady increase in throughput by producing more reads as well as increasing aver-
age read length. However, longer reads often come at the expense of higher sequencing error
rates. A variety of aligners, such as GASSST [1], Bowtie2 [2], GEM [3], SeqAlto [4], BWA--
MEM [5] and CUSHAW3 [6], have been proposed in order to deal with these features. All of
them are based on the seed-and-extend approach, although using different seeding policies.
This approach maps a given read by first identifying seeds on the genome using efficient index-
ing data structures. Seeds are then extended (e.g., by using fast versions of dynamic
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programming based alignment algorithms) in order to verify if a seed can actually be extended
to a full alignment. Note that the time needed for the alignment of each read can vary as it
depends on the number of associated seeds.

Even though the seed-and-extend approach is relatively efficient, associated SRA runtimes
can still be high since NGS datasets can contain hundreds of millions or even billions of reads.
Parallelization can be used to reduce these runtimes. Many aligners take advantage of the capa-
bilies of common multi-core CPUs by using multi-threading and SIMD vectorization. Further-
more, the usage of modern accelerator hardware for SRA has attracted research interest. The
most popular accelerator architecture for SRA are GPUs with some examples of GPU-based
tools being CUSHAW [7], BarraCUDA [8], SOAP3-dp [9], and nvBowtie [10]. Other examples
include FPGA and Xeon Phi implementations such as [11] and [12].

So far, not many efforts have been made to develop tools able to exploit the characteristics
of compute clusters. pMap [13] and pBWA [14] use MPI to distribute sequence reads among
the processes and align the assigned reads on each process. While pBWA is limited to a certain
version of the BWA aligner, pMap is portable enough to be able to work with a number of dif-
ferent aligners. The current publicly available version of pMap provides support for some pop-
ular aligners. Moreover, the source code can be modified in the case that a user wants to work
with a new aligner. pMap and pBWA both suffer from two major problems that limit their scal-
ability. First, the overhead of their initial splitting is significant, especially when increasing the
number of processes. Moreover, they apply a block distribution that assigns the same number
of reads to each MPI process. As the time to align each read in the seed-and-extend approach
can vary, a simple block distribution cannot achieve good load balancing. Recently, Hadoop-
based tools SEAL [15] and BigBWA [16] have also been introduced to parallelize SRA for
cloud computing. Unfortunately, they achieve similar speedups to pMap when using the same
underlying aligner and running on a cluster [16].

In this paper, we describe a parallel implementation of a short-read aligner for multi-core
clusters with improved scalability compared to pMap. CUSHAW3 [6] has been chosen because
of its high alignment quality (which made it suitable for recent studies such as [17]) but high
runtime (even using the multi-threaded version). The results in [6] show that CUSHAW?3 con-
sistently outperforms BWA-MEM, Bowtie2 and GEM in terms of single- and paired-end qual-
ity alignment. CUSHAW 3 has also proved to perform highly competitive on several datasets of
the GCAT benchmark (http://www.bioplanet.com/gcat). However, it is on average 2.58 and
4.93 times slower than Bowtie2 and BWA-MEM, respectively, on a workstation with two hex-
core Intel Xeon X5650 processors. Nevertheless, our parallel approach can be adapted to other
seed-and-extend based SRA tools, since the underlying algorithm for aligning one read (or
read-pair) does not need to be modified.

Background
UPC++ Parallel Programming Language

Our parallel implementation overcomes the scalability issues of pMap thanks to an efficient
use of UPC++ [18], an extension of C++ for parallel computing which has evolved from Uni-
fied Parallel C (UPC) [19]. PGAS (Partitioned Global Address Space) languages (such as UPC,
Co-Array Fortran [20] or Titanium [21]) are often easier to use than message passing counter-
parts [22, 23] and can also obtain better performance than them thanks to efficient one-sided
communication [24-26]. UPC++ combines these advantages of the PGAS model and object
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Fig 1. UPC++ memory model.

doi:10.1371/journal.pone.0145490.g001

oriented programming. Both UPC and UPC++ have recently been used for the parallelization
of bioinformatics applications [27-29].

Among them, merAligner [29] is a parallel UPC short-read aligner for distributed-memory
architectures which obtains good scalability on multi-core clusters. merAligner optimizes the
distribution of the reference genome index in case that it is too large to fit in one node. How-
ever, the goal of our work is the parallelization of the type of aligners mentioned before, that
work with index data structures that typically fit in the main memory of one node. For
instance, for a human reference genome the memory consumption of CUSHAW3 is only
around 3 GB.

The execution model of UPC++ is single program multiple data (SPMD). As this language
is able to work on both shared-memory and distributed-memory systems, each independent
execution unit (from now, UPC++ process) can be implemented as an OS process or a POSIX
thread (Pthread). UPC++ takes advantage of C++ language features, such as templates, object-
oriented design, operator overloading, and lambda functions (in C++ 11) to provide advanced
PGAS features.

As all PGAS languages, UPC++ exposes a global shared address space to the user which is
logically divided among processes, so each process is associated or presents affinity to a
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different part of the shared memory. Moreover, UPC++ also provides a private memory space
per process for local computations, as shown in Fig 1. Therefore, each process has access to
both its private memory and the whole global memory space (even the parts that do not pres-
ent affinity to it) with read/write functions. This memory specification combines the advan-
tages of both shared and distributed programming models. On one hand, the global shared
memory space facilitates the development of parallel codes, allowing all processes to directly
read and write remote data without explicitly notifying the owner. On the other hand, perfor-
mance can be increased by taking data affinity into account. Typically, accesses to remote data
are more expensive than the accesses to local data (i.e. accesses to private memory and to
shared memory with affinity to the process).

UPC++ provides different mechanisms to synchronize the computation of the processes,
such as barriers, locks or asynchronous functions. Among them, our implementation makes
use of a shared lock to protect the access of the processes to certain positions of the shared
memory. A lock is stored in shared memory and thus it can be accessed by all processes. The
basic concept of a lock is that only one process can own it at any given time. Therefore, even if
several processes try to access the lock only one will be successful. No other process can access
that lock until the owning process unlocks it.

CUSHAW3

CUSHAWS3 is an open-source, multi-threaded, sensitive and accurate short-read aligner sup-
porting both base-space and color-space sequences. This tool is based on the well-known seed-
and-extend heuristic, but introduces hybrid seeding approaches to improve the quality of both
single-end and paired-end alignments. Concretely, it incorporates maximal exact match
(MEM), exact-match k-mer and variable-length seeds.

Fig 2 illustrates the pipeline of CUSHAW?3 to perform the single-end alignment of one read.
It starts by generating the MEM seeds of the read and, for each seed, determines a potential
mapping region on the reference genome by calculating the optimal local alignment score. All
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seeds are subsequently ranked in terms of this optimal local alignment score. The next step
consists in using dynamic programming from the highest ranked seeds to identify the optimal
local alignment of the read on the genome. CUSHAW?3 considers this alignment as qualified if
it satisfies certain previously specified constraints. Otherwise, CUSHAW3 tries to rescue the
read using a semi-global alignment approach. Again, the semi-global alignment is set as quali-
fied if it fulfills certain conditions. Otherwise, it means that the true alignment is not implied
by any of the MEM seeds. In this case, CUSHAW?3 applies a second rescue by generating the
exact-match k-mer seeds and performing the same procedure as for MEM seeds. Finally, if the
alignments generated by these new seeds also fail to fulfill all the conditions, the read is
reported as unaligned.

In comparison to single-end alignment, the information contained in paired-end alignment
usually allows to obtain more accurate results thanks to applying techniques such as weighted
seed-pairing heuristics, pair ranking and read mate rescuing. CUSHAW?3 obtains paired-end
alignments with high quality by integrating the hybrid seeding and these three techniques, at
the cost of a high computational complexity. Fig 3 shows the workflow of CUSHAW3 for
paired-end alignment. It starts by generating and ranking the MEM seeds of the two reads, fol-
lowing the same procedure as in the single-end counterpart. The second step consists of pairing
seeds with a weighted seed-pairing heuristic that only takes into account top ranked seeds.
Then, CUSHAW?3 analyzes if some seed pairs fulfill certain conditions and thus they are quali-
fied. If no seed pair is qualified, the tool repeats the previous step but looking for exact-match
k-mer seeds. Once at least one seed pair is qualified, CUSHAW?3 continues its workload by cal-
culating the real alignments of both ends and identifying these alignments as qualified depend-
ing on if they satisfy the insert-size constraint. Finally, read mate rescuing is applied if all
alignments are not qualified.
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Fig 3. Workflow of CUSHAWS3 for the paired-end alignment of each couple of reads.
doi:10.1371/journal.pone.0145490.g003
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We refer to [6] to find more information about the methodology and the accuracy of
CUSHAWS3, as well as its comparison to other aligners.

Methods

The aim of our parallel implementation is to accelerate the SRA performed by CUSHAW3 but
preserving the high quality of its results. Therefore, we have not modified the C++ methods in
the original source code to align one read or read-pair to a reference genome. The computation
starts with all processes reading the genome and saving it into their private memories. Then,
the processes apply several times the CUSHAW 3 method to align their assigned reads to their
copy of the genome.

In the original multi-threaded CUSHAW?3 code only one stream is created to access each
input file. All threads share this stream so the last accessed position in the file is updated for all
threads every time one sequence is read. A mutex variable is created for synchronizing these
accesses and thus guaranteeing that each sequence is aligned only once. Unfortunately, this syn-
chronization means that only one thread can access the file at a time. The threads read one
sequence from the input file and then call the mentioned C++ method to align it. The main prob-
lem of this approach is that the time that threads need to wait in the synchronization step (while
other threads access the file) might be long, especially on platforms with a significant number of
cores. Directly exporting this approach to UPC++ could be possible with the use of only one
shared lock for all the processes. However, the performance would not be satisfactory as we could
have thousands of processes idle during the whole time that one process accesses one line of the
file. In our implementation we take advantage of the UPC++ capabilities to read the same file
from different processes employing different streams. We indicate to each process which reads
should be aligned by itself and which ones should be skipped since they are aligned by other pro-
cesses. With this information all the reads from the input files can be aligned in parallel.

Furthermore, the UPC++ framework included in the parallel implementation works with
blocks of reads, i.e., the processes take block_size reads every time they access the file and then
they call the C++ SRA method block_size times. Therefore, the number of accesses to the file is
reduced. The block_size value can be specified by the user in a configuration file at compile time.

Finally, our UPC++ implementation is compatible with the multi-threaded CUSHAW 3 ver-
sion. In a system with N compute nodes containing C cores each, we can select only N UPC+
+ processes (one per node) and C threads aligning each block, or other combinations up to
using N x C single-threaded processes.

On-Demand Distribution

An analysis of the CUSHAW?3 workflow (see Figs 2 and 3) indicates that the time needed to
map each read can vary. In general, the runtime is mainly subject to the following three factors:
(7) the number of seeds generated, (ii) whether the local and semi-global alignments are good
enough, and (iii) the non-uniform memory access (NUMA) architecture in modern multi-
CPU computers. Moreover, for paired-end alignment, the runtime is also effected by the possi-
bility of applying a read mate rescue. Therefore, a static distribution of reads to processes, with
the same number of reads for each process, might lead to unbalanced workloads. Our approach
applies an on-demand distribution, where the blocks are not initially assigned to the threads, in
an attempt to balance the workload. A similar approach was already presented in [30] but only
for shared-memory NUMA platforms using Cilk. The procedure for single-end alignment con-
sists of the following steps:

1. All processes load the reference genome into their local memory.
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2. Process i accesses the input file with its stream and saves into a buffer the information of the
reads of the block i. To do this it has to skip the information of the previous i — 1 blocks of
reads.

3. Each process aligns the reads stored in the buffer with block_size calls to the CUSHAW?3
alignment functions. The mappings are written to an intermediate output file associated to
the process. Each process has one intermediate file and can work with several threads.

4. As soon as a process finishes the alignment of the block, it checks for the first bock that has
not already been aligned by any process.

5. The process skips the reads contained in the blocks that have already been aligned by any
process and stores in the buffer the information of the next block (the next block_size
reads).

6. The procedure is repeated from Step 3 until all the reads of the input file have been aligned.
7. The mapping information of the intermediate files is gathered into the output file.

An integer variable stored in shared memory is used to save the number of the first block of
sequences that has not been aligned yet by any process. This variable can be accessed and mod-
ified by all processes. At the end of Step 5 its value is incremented. The accesses and modifica-
tion of this shared variable must be synchronized with a lock, in order to avoid race conditions
and guarantee that each block is only aligned by one process. Although this synchronization
leads to certain performance overhead, its impact is limited because the lock is only held by
one process for the short time needed to read and modify the variable. This is a better idea than
just adapting the multi-threaded CUSHAW?3 approach, in which the processes hold the mutex
all the time while they read the input file. Paired-end alignment works in a similar way to sin-
gled-end alignment, except that each process reads from two files at the same time.

Note that the shared memory and the locks available in UPC++ allow us to perform this on-
demand distribution in an efficient way, where only those processes that finish the alignment
of one block at the same time need to be synchronized. In contrast, a conventional message
passing approach like MPI would force us to broadcast the index of the next block to be
aligned, each time one process computes one block, with its corresponding synchronization
among all processes. Nevertheless, we found a problem in the implementation of locks in the
current UPC++ version. If Process 0 accesses the lock, it does not release it until the end of the
computation, even if we explicitly indicate the release of the lock in the code with the proper
directive for unlocking. Therefore, we could not allow Process 0 to align reads. In our imple-
mentation, Process 0 is only dedicated to gather the results in the output file once any process i
(i € [1, P)) finishes the alignment. Each time one process finishes the alignment, it updates a
shared variable to indicate that one intermediate file has been finished. Process 0 continuously
polls these variables to check whether other processes have output information and, if this is
the case, copies the information to the output file and deletes the corresponding intermediate
file. The accesses to these variables do not need to be synchronized as only one process reads
them. Algorithm 1 illustrates the pseudocode of our UPC++ on-demand distribution for sin-
gle-end alignment. As mentioned before, the paired-end counterpart is similar but accesses
two input files.

Algorithm 1 Pseudocode of the UPC++ single-end alignment parallelization

INPUT: FILE stream F; intermediate FILE streams interF[P ; number of pro-
cesses P; rank of the process MY PROC; number of threads per process T;
SHARED: lock 1I; nextBlock; end[P]
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1: nextBlock=P-1 // the next block that must be computed
2: newInfo[MYPROC] =0 // MYPROC has not finished

3: 1if MYPROC=0 then

4 procsEnd=0 // no process has reached the end

5: while procskEnd< P-1do

6 fori=1..P-1do

7
8

if end i] =1 then // process i has finished
: Copy the information stored in interF i] to F
9: Delete interH 1]
10: end 1] =0
11: procskEnd=procskEnd+ 1
12: endif
13: end for
14: endwhile
15: else // processes different than0
16: loadthe genome intomemory
17: myBlock=MYPROC-1 // the firstblocktoalign
18: whileExitsmyBlockin Fdo
19: alignmyBlockusing Tthreads
20: write the results in interF MYPROC]
21: lock 1 // start of the synchronized accesses
22: myBlock = nextBlock
23: nextBlock=nextBlock+1
24: unlock 1 // end of the synchronized accesses

25: endwhile
26: end MYPROC] =1
27:endif

The advantage of our on-demand distribution is that the workload adapts to the characteris-
tics of the input file. One process computes more blocks if the reads that are assigned to it are
aligned fast. Finally, note that the choice of block_size has an impact on the performance.
Increasing block_size decreases the number of blocks and thereby reduces the amount of syn-
chronization among processes. On the contrary, a larger block_size also restricts the adaptabil-
ity of the on-demand approach and could lead to a more unbalanced workload.

Results and Discussion

32 nodes of the MOGON cluster, installed at the Johannes Gutenberg University Mainz, are
used for evaluating the scalability of our parallel SRA tool. Each node contains four 16-core
AMD Opteron 6272 processors (i.e., 64 cores at 2.10 GHz within each node). A private L1
cache of 16 KB is available for each core, while the 2 MB L2 and 8 MB L3 caches are shared
among two and eight cores, respectively. Nodes provide 128 GB of memory and are connected
through a QDR InfiniBand network. UPC++ runs over GCC v4.8.1 and OpenMPI v1.6.5.

We have analyzed the scalability of our UPC++ implementation by aligning four Illumina
short-read datasets (see Table 1) to the human genome hg38. In Table 1, all datasets are

Table 1. Characteristics of the lllumina datasets used in the tests.

Name Number of reads Length of reads
SRR034939 36,200,062 100
SRR211279 50,937,050 100
SRR091634 328,621,238 100
SRR926245 246,839,706 150

doi:10.1371/journal.pone.0145490.t001
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doi:10.1371/journal.pone.0145490.g004

publicly available and named after their accession numbers in the NCBI sequence read archive.
Remark that in this experimental evaluation we only focus on analyzing the performance in
terms of speed. We have tested that the output alignments provided by the parallel implemen-
tation are the same as for the original CUSHAW 3, so we do not need to check again the accu-
racy of the results (see [6, 31] for more information). The only difference is that the order of
the alignments in the output file can be different, which does not influence alignment quality.
Furthermore, although CUSHAW?3 and our UPC++ version also support color-space reads, we
have focused our evaluation on the alignment of more common base-space datasets. Neverthe-
less, we expect to achieve similar scalability on color-space datasets as the UPC++ paralleliza-
tion does not modify the method to align each read. The C++ method for base- or color-space
alignment can be seen as a black box. Thus, the features of our parallel implementation are
directly exported to color-space experiments.

A preliminary performance evaluation of the UPC++ implementation was performed by
varying block_size from 500 to 50,000 reads. The best performance depends not only on the
number of processes but also on the characteristics of the input dataset. Thus, we cannot guar-
antee that a certain value of block_size will always be the best choice. In this regard, for all the
experiments, we have set block_size to 5,000 for the on-demand approach, as this setting is
observed to obtain reasonable performance in all cases through our evaluations.

Single-End Alignment

Each node has multiple CPU cores, therefore tuning the number of processes per node and the
number of threads per process is important for both runtime and memory overhead. Hence,
we have used the two smallest datasets to analyze the best combination of UPC++ processes/
threads for the alignment within each node. Fig 4 illustrates the runtime for the single-end
alignment for all possible combinations. Note that using several processes per node increases
the memory requirements, as each process saves its own copy of the genome. In our case the
nodes have enough memory (128 GB) to store up to 32 copies of the genome. Therefore, the
possible combinations range from only one to 32 processes (multi-threaded versions with 64
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and 2 threads, respectively). The results of these and all the experiments in this section show
the runtime of the total execution, i.e., not only the runtime of the alignment, but also of the
additional steps such as loading the reference genome index, reading the sequences from the
input file, printing the mappings into the intermediate files, and gathering the results into the
output file.

The results indicate that the use of four or more processes per node is beneficial compared
to applying only multi-threaded parallelism with one process and 64 threads. There are two
reasons for this behavior: (1) the overhead due to synchronizing the accesses to the input file in
the multi-threaded CUSHAW?3 has a high impact for many threads; (2) the on-demand UPC+
+ distribution does not lead to workload imbalance when increasing the number of processes,
and the only synchronization included in the UPC++ code is related to the read and update of
one shared variable. Consequently, our UPC++ implementation not only allows to perform
SRA on several nodes, but also can optimize the single-end alignments on single-node
machines with many cores.

Results for the single-end alignment of all the datasets using up to 32 nodes of the MOGON
cluster are presented in Fig 5. Within each node, four processes with 16 threads each are used
as this configuration provided the best performance in our previous single-node analysis. In
order to test the impact of using our on-demand distribution, we have also included the run-
time of a static variant of our UPC++ parallelization, which uses only one block per process.
The results show that our on-demand distribution yields superior performance to the static dis-
tribution, which is often used by other tools such as pMap and pBWA, where the average

improvement is 42.56% (50.35% for the largest experiments with 2,048 cores).
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Fig 5. Runtime (seconds) of the single-end alignment varying the number of nodes. Results are shown for the UPC++ implementation with static and

on-demand distributions.

doi:10.1371/journal.pone.0145490.9005
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Table 2. Speedups of the UPC++ implementation and the pMap framework over CUSHAW3 with 64 threads for single-end alignment.

Num. nodes — 2
SRR034939 2.77
SRR211279 2.30
SRR091634 2.09
SRR926245 2.09

doi:10.1371/journal.pone.0145490.t002

4.41
3.55
3.91
3.92

UPC++ pMap

8 16 32 2 4 8 16 32
5.93 6.03 8.21 1.73 2.19 2.73 3.02 2.94
4.73 4.86 6.67 1.81 1.99 2.46 3.63 3.49
5.86 8.35 9.61 1.66 2.56 3.39 4.73 5.69
6.50 10.24 14.44 1.79 3.09 5.03 711 8.84

The scalability of our approach, compared to that of pMap [13], is presented in Table 2. As
the current version of pMap does not provide support for CUSHAW?3, we have adapted its
source code to use CUSHAW 3 and perform exactly the same alignment as our UPC++ imple-
mentation. In order to provide a fair comparison, all the experimental results for pMap are
obtained with CUSHAW 3 as underlying aligner. The pMap runtime was calculated by adding
the times of the initial distribution, the alignment, and the final merging of the results. The
baseline for the speedups is in all cases the runtime of the original multi-threaded CUSHAW?3
tool using the 64 cores of one node. As expected, the speedups of our approach improve when
increasing the size of the dataset, especially when increasing the lengths of the reads (sequences
in the SRR926245 are longer than in other datasets). For instance, the runtime for aligning
the smallest dataset (SRR034939) on 8 nodes is less than 3 minutes, which is difficult to
improve using more computational resources due to the associated synchronization overhead.
More efficient support by the UPC++ compiler to synchronize the accesses to the shared vari-
able that indicates the next block of reads to analyze (e.g., semaphores, mutex, atomic func-
tions) could help to improve these speedups. Nevertheless, our implementation obtains better
scalability for problems with higher sequential runtime, as will be shown in the next subsection
with the results for paired-end alignments. The results also show that our approach performs
better than pMap in all cases. The expensive initial distribution and unbalanced workload of
pMap limit the scalability of this framework (e.g., only a speedup of 2.94 can be achieved for
SRR034939 using 32 nodes). Note that the UPC++ implementation sometimes obtains
super-linear speedups for two and four nodes as it is executed with four processes per node,
which is more efficient than the original CUSHAW 3 version with 64 threads.

We have not included results for pPBWA [14] as it is based on BWA [32]. Nevertheless,
according to the experimental results presented in [14], this tool never obtains parallel effi-
ciency higher than 24% even for a small cluster with 240 cores. Thus, we can deduce that its
scalability is supposed to be significantly lower than the results presented in Table 2.

Paired-End Alignment

The analysis of the best combination of processes and threads on each node for paired-end
alignment is presented in Fig 6. Note that the runtimes are in all cases more than 10 times
higher than the single-end alignment because of the complexity of the algorithm. In this case
the best approach consists in creating only one process per node and fully exploiting the multi-
threading capabilities of CUSHAW?3, as the overhead due to thread synchronization to access
the input file is not as significant as for single-end alignment. On one hand, as there are two
input files, two threads can simultaneously access them without synchronization, which allevi-
ates the overhead by a factor of two. On the other hand, the threads spend more time in the
alignment of the pair of reads due to the complex calculations required and thus it is less com-
mon that several threads need to access the input files at the same time.
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Fig 6. Runtime (seconds) of the paired-end alignment using the 64 cores of one node and varying the
combinations of proccesses/threads (from one process with 64 threads to 32 processes with two
threads each).

doi:10.1371/journal.pone.0145490.g006

Fig 7 illustrates the results of the multi-node experiments for paired-end alignment. In this
case, only one process per node with 64 threads is employed. Likewise, our approach is com-
pared to an additional UPC++ version with a static block distribution. The degree of the
improvement depends on the characteristics of the input dataset. For instance, the static distri-
bution of the SRR091 634 dataset with 32 nodes (2048 cores) creates blocks with exactly the
same number of reads, but highly variable computational requirements. Consequently, the
speedup of the on-demand version over the static distribution is as high as 2.65. Otherwise, the
computational requirements of the blocks of the same distribution for the SRR211279 dataset
are more balanced and thus the speedup is significantly lower (1.83) even for 32 nodes. On
average, the speedup is 1.48 (2.09 for the experiments with 2048 cores).

Finally, the speedups over the CUSHAW?3 paired-end alignment with 64 threads for our
UPC++ implementation and pMap are given in Table 3. Scalability is better than for the single-
end case (especially for the experiments with the highest amount of nodes) as also the sequen-
tial runtimes are higher. Another reason is that, as previously explained, less processes and
threads require simultaneous access to the input files, thus improving the speedups. Regarding
the comparison between pMap and the UPC++ version, the efficiency of the on-demand distri-
bution depends on the dataset (if the blocks of pMap present balanced workload). In general,
the benefit is higher than for the single-end experiments (on average, our UPC++ implementa-
tion is 1.99 times faster than pMap for 32 nodes).

Conclusions

Recent advances of NGS technologies have established the need for fast tools to align sequence
reads to reference genomes. However, to the best of our knowledge, most available tools to per-
form SRA on multi-core clusters are not able to efficiently exploit the computational capability
of these systems. In this article we have therefore presented a parallel implementation of
CUSHAWS3 that obtains good scalability on multi-core clusters for accelerating SRA. Our
approach provides the same high quality mappings as the original tool, but drastically reduces
the runtime when executing on several nodes.
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Fig 7. Runtime (seconds) of the paired-end alignment varying the number of nodes. Results are shown for the UPC++ implementation with static and
on-demand distributions.

doi:10.1371/journal.pone.0145490.9007

Table 3. Speedups of the UPC++ implementation and the pMap framework over CUSHAW3 with 64 threads for paired-end alignment.

UPC++ pMap
Num. nodes — 2 4 8 16 32 2 4 8 16 32
SRR034939 2.00 3.99 7.76 15.29 27.28 1.76 3.38 6.35 9.85 16.29
SRR211279 2.00 3.97 7.77 15.04 28.25 1.89 3.60 6.55 11.18 17.13
SRR091634 1.98 3.85 6.90 11.64 19.83 1.69 2.96 5.16 5.37 6.44
SRR926245 1.94 3.87 7.08 12.27 19.99 1.85 3.43 6.03 9.71 12.80

doi:10.1371/journal.pone.0145490.t003

Our implementation is developed with UPC++ in order to take advantage of the strengths
of the PGAS model (e.g., direct access to remote data or shared locks) and the object-oriented
paradigm (e.g., inheritance or polymorphism). It is based on an on-demand approach that
adapts the workload distribution according to the characteristics of the input dataset. We have
evaluated our implementation using four Illumina datasets. Performance evaluations revealed
that the on-demand approach always obtains better performance than a UPC++ counterpart
with a static block distribution on a system with 32 nodes of 64 cores each, although its effi-
ciency still depends on the characteristics of the input dataset. We have also tested that our
implementation is, on average, 2.01 and 1.99 times faster than pMap using the 2048 cores for
single-and paired-end alignments, respectively.

One additional advantage of the parallel approach described in this work is that it is flexible
enough to be adapted to other short-read aligners, even to tools that exploit accelerators such
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as GPUs. Our UPC++ implementation does not modify the underlying method to align each
read to the genome. Instead, it distributes the reads among processes and lets each process
repeatedly call the method to align different reads. Thus, our implementation can also be
regarded as a UPC++ framework which can be used to accelerate other seed-and-extend based
aligners; i.e., users can replace the CUSHAW3 C++ method to align a read by their own
approach. As future work, our plan is to include the UPC++ parallelization in GPU-based
aligners such as CUSHAW2-GPU [33] so that they can exploit modern heterogeneous clusters
and supercomputers with GPUs within the nodes. The source code of the parallel implementa-
tion described in this paper is publicly available at http://cushaw3.sourceforge.net.
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