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Abstract

Interest in discovering combinations of genetic markers from case-control studies, such as Genome Wide Association

Studies (GWAS), that are strongly associated to diseases has increased in recent years. Detecting epistasis, i.e. inter-

actions among k markers (k ≥ 2), is an important but time consuming operation since statistical computations have to

be performed for each k-tuple of measured markers. Efficient exhaustive methods have been proposed for k = 2, but

exhaustive third-order analyses are thought to be impractical due to the cubic number of triples to be computed. Thus,

most previous approaches apply heuristics to accelerate the analysis by discarding certain triples in advance. Unfor-

tunately, these tools can fail to detect interesting interactions. We present GPU3SNP, a fast GPU-accelerated tool to

exhaustively search for interactions among all marker-triples of a given case-control dataset. Our tool is able to analyze

an input dataset with tens of thousands of markers in reasonable time thanks to two efficient CUDA kernels and efficient

workload distribution techniques. For instance, a dataset consisting of 50,000 markers measured from 1,000 individuals

can be analyzed in less than 22 hours on a single compute node with 4 NVIDIA GTX Titan boards. Source code is

available at: http://sourceforge.net/projects/gpu3snp/
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1. Introduction

Genotype-phenotype association studies can contribute

towards the identification of genetic variants that are as-

sociated with certain diseases. In classical analysis, Sin-

gle Nucleotide Polymorphisms (SNPs) are studied sepa-

rately in order to identify markers showing differences in

genotype frequencies between cases and controls. Unfor-

tunately, this approach is not powerful enough to model

complex traits for which the detection of joint genetic ef-

fects (epistasis) needs to be considered [1–3].

However, detecting epistasis for k-tuples with k > 2

is computationally expensive due to the combinatorial ex-

plosion of combinations that arise. In fact, some related

works have assumed that exhaustive search for interac-

tion on all the third-order combinations is only feasible for

small datasets with hundreds of SNPs [4]. Thus, most ap-

proaches discard a large number of non-interesting triples

during the search procedure. For instance, BEAM [5] and

its extension epiMODE [6] use Markov Chain Monte Carlo

(MCMC) to calculate the probability of a SNP being part

of a combination associated to the disease. Another ap-

proach consists of stepwise algorithms that only analyze

those combinations that contain a subset of SNPs that are

selected at the beginning [7]. Non-exhaustive approaches

based on the clustering of relatively frequent items [4,

8] and on machine learning techniques [9, 10] are also

becoming popular. Unfortunately, these non-exhaustive

tools may discard interesting SNP-triples. Despite be-

ing highly time-consuming, there also exist exhaustive-

search strategies that analyze all the possible triples. Some

well-known examples are the Combinatorial Partitioning

Method (CPM) [11], the Restriction Partition Method (RPM)

[12] and the Multifactor Dimensionality Reduction (MDR)

method [13] (and its extensions MB-MDR [14] or RMDR

[15]). However, their use is limited to extremely small

datasets because of their slow speed.

As an attempt to overcome this limitation, several tools

use High Performance Computing (HPC) to accelerate the

exhaustive analysis even for Genome Wide Association

Studies (GWAS), either with GPUs [16–21], FPGAs [22],

Xeon Phis [23] or clusters [24–27]. However, they are only

able to look for pairwise epistatic interactions. In this

work we present GPU3SNP, a new multi-GPU tool that

addresses the exhaustive search for third-order epistatic in-

teractions. It receives a dataset with biallelic information

as input and returns a list of SNP-triples that, according

to the interaction metric selected by the user, present the

highest probabilities of discriminating between the pres-

ence and absence of the disease based on mutual informa-

tion or information gain measure. Our approach is able

to provide high accuracy in comparison to non-exhaustive

methods. Furthermore, it is able to analyze datasets with

tens of thousands of SNPs in reasonable time, which is not

possible by existing exhaustive tools.

The rest of the paper is organized as follows. Sec-

tion 2 provides some necessary background information

about the utilized methodology to search for third-order

epistatic interactions as well as information about GPUs

and the CUDA language. Our parallelization approach

and the employed optimization techniques are described

in Section 3. Experimental evaluations are presented in

Section 4. Section 5 concludes the paper.

2. Background

2.1. Contingency Tables

Case-control datasets contain information about a large

number of biallelic genetic markers (typically SNPs) from

many individuals. For each SNP there are three genotypes:

homozygous wild (w), heterozygous (h) and homozygous

variant (v). They are numerically represented as {0,1,2},

respectively. The number of SNPs and individuals is de-

noted as M and N , respectively. The individuals are cat-

egorized as cases (value 0) and controls (value 1). The

first step in order to detect interaction among SNPs is the

creation of contingency tables. The contingency tables are



Table 1: Example of contingency table

Cases SNP3=0 SNP3=1 SNP3=2

SNP1=0

SNP2=0 n0000 n0010 n0020

SNP2=1 n0100 n0110 n0120

SNP2=2 n0200 n0210 n0220

SNP1=1

SNP2=0 n1000 n1010 n1020

SNP2=1 n1100 n1110 n1120

SNP2=2 n1200 n1210 n1220

SNP1=2

SNP2=0 n2000 n2010 n2020

SNP2=1 n2100 n2110 n2120

SNP2=2 n2200 n2210 n2220

Controls SNP3=0 SNP3=1 SNP3=2

SNP1=0

SNP2=0 n0001 n0011 n0021

SNP2=1 n0101 n0111 n0121

SNP2=2 n0201 n0211 n0221

SNP1=1

SNP2=0 n1001 n1011 n1021

SNP2=1 n1101 n1111 n1121

SNP2=2 n1201 n1211 n1221

SNP1=2

SNP2=0 n2001 n2011 n2021

SNP2=1 n2101 n2111 n2121

SNP2=2 n2201 n2211 n2221

used in order to store the number of individuals for each

combination of genotypes in each cell. Table 1 shows the

contingency table of size 3x3x3x2 for a given SNP-triple,

where the cell ijkc stores the number of individuals cat-

egorized as c (case or control) with the value of the first

SNP as i, the second SNP as j and the third SNP as k.

We can also fill the contingency table with probabilities:

πijkc = nijkc/N .

2.2. Filtering Stage

Once the contingency tables are created, their values

are used to identify statistically significant SNP-triples

presenting epistasis. Several measures have been used

to define significance. Examples include Chi-square tests

[7, 8], regression models [18, 28], ROC-curves [20], depen-

dency difference [19], Mutual Information (MI) [4] and

Information Gain (IG) [29]. GPU3SNP allows the user

to choose between MI and IG as they have been shown

to be accurate in the presence of contingency table cells

with low counts, which is quite common when looking for

third-order epistasis. MI is very efficient detecting epista-

sis with interaction effects from lower-order tuples. On the

other hand, IG is more suitable for users who are only in-

terested in pure three-way epistasis, where the lower-order

effects (pairs) do not present interaction. Anyway, the

tool is flexible enough to include more measures in next

versions.

2.3. GPU Architecture and CUDA

GPU3SNP is able to exploit several GPUs within the

same node using CUDA [30], a parallel programming lan-

guage that extends the general programming languages

with a set of abstractions to express parallelism. A CUDA

program is comprised of code for the host and kernels

for the devices. A kernel is a program launched over a

set of lightweight parallel threads on GPUs, where the

threads are organized into a grid of thread blocks. All

threads in a thread block are split into small groups of

32 parallel threads, called warps, for execution. These

warps are scheduled in a single instruction, multiple thread

fashion. Full efficiency and performance can be obtained

when all threads in a warp execute the same code path.

CUDA threads cannot directly access to host memory, so

input/output data must be copied between CPU and GPU

(device) memory before and after computation. Moreover,

CUDA threads within the same blocks can exploit a spe-

cial shared memory, which is faster but smaller (around

48 KB) than device memory (around several GB). It is

the programmers’ responsibility to exploit the memory hi-

erarchy in order to improve performance.

Figure 1 shows the structure of the GPU architec-

ture. CUDA-enabled GPUs have evolved into highly paral-

lel many-core processors with tremendous compute power

and very high memory bandwidth. They are especially

well-suited to address computational problems with high

data parallelism and arithmetic density. A CUDA-enabled

GPU can be conceptualized as a fully configurable array of

Scalar Processors (SPs). These SPs are further organized

into a set of Streaming Multiprocessors (SMs).



Figure 1: GPU architecture and memory hierarchy.

3. Parallel Implementation

3.1. Contingency Table Creation

The creation of the contingency tables is the most time-

consuming step in our algorithm, with time complexity

O(M3 ∗N). Thus, we optimize this step by using an effi-

cient boolean representation of the input data, which has

already been proved adequate for GPU computation in

previous approaches [18, 21]. Instead of using the naive

representation of the SNP information with an M ×N ta-

ble where each row is encoded using 2 bits per entry to

distinguish among the three genotypes ({0,1,2}), we allo-

cate three binary strings per row, one for each possible

genotype. These strings use one bit per entry that indi-

cates whether the sample has the corresponding genotype.

We refer to [28] for further explanation.

The main advantage of this approach is that the cells

of the contingency table can be calculated using bit opera-

tions, which is faster than working with integer arithmetic.

Specifically, the logical AND and the counting of the num-

ber of ones in a bit string (popcount) are used. We have

adapted the idea present in [18, 21] to third-order anal-

yses so that the cell ijk0 is calculated just counting the

1-bits in the part for the cases of the string resulting from

SNP 1
i & SNP 2

j & SNP 3
k (SNP 1

i , SNP 2
j and SNP 3

k are

the bit strings that represent whether the individuals have

the genotype i, j and k in SNP1, SNP2 and SNP3, re-

spectively). The same approach could also be applied for

controls. The popcount is implemented using the highly

efficient popc routine available in the Integer Intrinsics

library of CUDA. An example using 3 SNPs and 6 cases

is illustrated in Table 2. In general, we can represent the

value of the cases cells of the contingency table as:

nijk0 = popcount(SNP 1
i &SNP

2
j &SNP

3
k ) (1)

The calculation of nijk1 is similar but using the bits re-

lated to the controls. According to Equation 1, we would

need two logical AND operations per cell of each SNP-

triple (in total, 108 AND operations per SNP-triple). How-

ever, we can reuse the value of SNP 1
i &SNP 2

j for three

cells (nij00, nij10 and nij20), reducing the number of AND

operations to 72. As each AND operation requires many

memory accesses, this 33% reduction of AND operations

can lead to a significant performance improvement. Thus,

GPU3SNP initially calculates auxiliary results of the AND

operations for the SNP-pair formed by the two first SNPs

of the triple in order to reuse them for the creation of the

contingency table.

3.2. CUDA Kernels

The goal of our implementation is to provide a list

with the l third-order combinations containing the highest

MI or IG. We store the auxiliary results of the 2-SNP-

AND operations in the device memory. The computation

of SNP-pairs is divided into batches and two consecutive



Table 2: From left to right: naive input data; input data of the tool using binary strings; calculation of the n0000 cell of the contingency table.

SNP1 = 000000 SNP 1
0 = 111111 SNP 1

1 = 000000 SNP 1
2 = 000000 n0000 = popcount

(
(111111)&(111000)&(101010)

)
SNP2 = 000112 SNP 2

0 = 111000 SNP 2
1 = 000110 SNP 2

2 = 000001 n0000 = popcount
(
101000

)
SNP3 = 010201 SNP 3

0 = 101010 SNP 3
1 = 010001 SNP 3

2 = 000100 n0000 = 2

kernels are applied to each batch. Both kernels use the

same number of threads per block.

1. Kernel to create the 2-SNP-AND. Each CUDA thread

works with one SNP-pair. It reads the information of

the two SNPs (using the boolean representation ex-

plained in the previous section), calculates the nine

possible &s and stores the results in device memory

in order to be used by the next kernel.

2. Kernel to perform the third-order analysis. In this

case we create one thread block per SNP-pair that

analyses all the SNP-triples in which the first two

SNPs are included. Thus, each thread will com-

pute more than one SNP-triple. For each SNP-triple,

the thread creates the contingency table as shown in

Equation 1 and calculates the MI or IG value.

The output of the second kernel is a list per thread

block that contains the l SNP-triples with the highest mea-

sure value. The host compares this new list to the list ob-

tained from previous batches and gathers them in order to

save only the overall l highest values.

Exploiting the strengths of the different levels of the

memory hierarchy on the GPU is key to achieve high per-

formance. In order to improve the memory accesses to

device memory we have reorganized the biallelic informa-

tion of each SNP. As we pack the bit values of the boolean

representation in 32-bit arrays, the information is stored in

three 32-bit arrays (one per genotype) of lengthN/32. Fig-

ure 2 shows how each array would look like if the entries of

each SNP were consecutively ordered. In the second kernel

consecutive threads access the information of consecutive

SNPs. However, as there are N/32 entries per SNP (and

N might be very large, in the order of several thousands of

samples), we would generate uncoalesced memory accesses

on the GPU because consecutive threads would access to

positions of the arrays with distance N/32. This is the

reason why the data of the two arrays are reordered when

loaded into device memory, following the structure shown

in Figure 3. In this case consecutive threads access consec-

utive memory positions, increasing the coalescence of the

accesses and, thus, significantly improving performance.

Furthermore, the second kernel exploits CUDA shared

memory in order to accelerate memory accesses. As ex-

plained before, each kernel call creates one block per SNP-

pair (i,j) and all the threads within the block analyze all

the possible SNP-triples that contain this pair: all (i,j,k)

for i < j < k. The starting point for this computation is

the 2-SNP-AND generated by the first kernel. This config-

uration blocks/threads has been chosen so that all threads

within the same block can access the same 2-SNP-AND re-

sults. Therefore, threads can collaborate at the beginning

of the kernel to copy the auxiliary 2-SNP-AND results to

shared memory. After synchronization, all threads create

the contingency tables with fast accesses to these values

through shared memory.

Finally, at the end of the kernel each thread has a list

with the l SNP-triples analyzed by it with highest measure

value. These lists are reduced into only one l-sized list per

block using a tree-based approach that also exploits shared

memory.

3.3. Workload Distribution Among GPUs

In GPU3SNP batches of SNP-pairs are assigned to dif-

ferent GPUs so that each GPU can analyze all the possi-

ble third-order combinations generated with the pairs of

the batch. The gathering of SNP-pairs into batches and



Figure 2: Example of one array with the information of one SNP without reordering the entries.

Figure 3: Example of one array with the information of one SNP when reordering the entries.

their distribution to GPUs is performed by the CPU using

PThreads (one thread per GPU). Two types of distribu-

tions are used:

• Static approach where the workload is distributed

in advance as each SNP-pair is initially associated

to exactly one GPU. Each batch is created by us-

ing only pairs associated to the corresponding GPU.

Note that the number of third-order combinations

depends on the pair: for pair (i,j) there exist M − j

SNP-triples. Thus, in order to balance the workload

among the GPUs, we follow a cyclic approach for the

SNP-pair distribution.

• Dynamic distribution where only one batch is ini-

tially assigned to each GPU. Once a GPU completes

the two kernels it requests another batch and the

CPU provides the next available one. The assign-

ment of batches to GPUs is controlled in a flexible

way, since the GPUs can finish their computation in

any order.

As will be shown in the next section, the dynamic ap-

proach is especially useful for systems with different types

of GPUs, as the workload is variable and can be adapted

to the speed of each GPU. More powerful GPUs complete

their computations faster and request more batches from

the CPU. However, as the SNP-pair distribution is not per-

formed in advance, the CPU computation of the dynamic

approach is more complex. The static distribution reduces

this overhead as the CPU does not need to calculate the

distribution. Consequently, it is appropriate for platforms

with the same type of GPUs, as it equally distributes the

workload among them.

4. Experimental Evaluation

4.1. Accuracy

We have compared GPU3SNP to the EDCF tool [8]

in order to demonstrate that our exhaustive approach is

more accurate than a representative non-exhaustive one

for searching third-order epistatic interactions. EDCF has

been selected as state-of-the-art because it has been shown

in [8] to be more accurate than epiMode [6] and SNPRuler

[10] (for its part, more accurate than MegaSNPHunter [9]).

The EDCF statistic to measure interactions is based on the

clustering of relatively frequent items. Additionally, the

authors assume that tuples with epistasis must contain at

least one lower-order interaction. Therefore, they reduce

the search space by only analyzing the triples with at least

one SNP-pair that presents interaction.

We have considered three disease models by expand-

ing them from widely used pairwise models [31]. They are

represented in Tables 3, 4 and 5 using the same notation

as in several previous works [4, 5, 8, 31]. The major and

minor alleles of the first, second and third SNP are rep-

resented as Aa, Bb and Cc, respectively. For each model,

we have tried four different configurations by varying the

values of α and θ. We have selected the proper values for

α and θ so that the configurations combine two different

minor allele frequencies (MAF ) at 0.2 and 0.5, and two

different marginal effect sizes (λ) at 0.3 and 0.5. Let p0

and p1 denote the probability that the genotype of a SNP



Table 3: Disease model with multiplicative effects between and

within loci (Model 1)

CC Cc cc

AABB α α ∗ (1 + θ) α ∗ (1 + θ)2

AABb α ∗ (1 + θ) α ∗ (1 + θ)2 α ∗ (1 + θ)3

AAbb α ∗ (1 + θ)2 α ∗ (1 + θ)3 α ∗ (1 + θ)4

AaBB α ∗ (1 + θ) α ∗ (1 + θ)2 α ∗ (1 + θ)3

AaBb α ∗ (1 + θ)2 α ∗ (1 + θ)3 α ∗ (1 + θ)4

Aabb α ∗ (1 + θ)3 α ∗ (1 + θ)4 α ∗ (1 + θ)5

aaBB α ∗ (1 + θ)2 α ∗ (1 + θ)3 α ∗ (1 + θ)4

aaBb α ∗ (1 + θ)3 α ∗ (1 + θ)4 α ∗ (1 + θ)5

aabb α ∗ (1 + θ)4 α ∗ (1 + θ)5 α ∗ (1 + θ)6

Table 4: Disease model with multiplicative effects between loci

(Model 2)

CC Cc cc

AABB α α α

AABb α α α

AAbb α α α

AaBB α α α

AaBb α α ∗ (1 + θ) α ∗ (1 + θ)2

Aabb α α ∗ (1 + θ)2 α ∗ (1 + θ)4

aaBB α α α

aaBb α α ∗ (1 + θ)2 α ∗ (1 + θ)4

aabb α α ∗ (1 + θ)4 α ∗ (1 + θ)7

involved in a disease is equal to 0 and 1, respectively, λ is

defined as:

λ =
p1/p0

(1− p1)/(1− p0)
(2)

For each configuration we have simulated 100 datasets

with 2,000 SNPs, 2,000 cases and 2,000 controls using

genomeSIMLA [32]. There is one SNP-triple with epis-

tasis per dataset (ground-truth). As EDCF also provides

a list with the l SNP-triples with the highest interaction,

we measure the power as the number of datasets on which

the ground-truth is in the output list, with l equal to 10.

In order to provide a fair comparison between exhaus-

tive and non-exhaustive methods, MI has been used for

GPU3SNP as this measure has similar characteristics to

EDCF. IG has been proved more accurate on some scenar-

ios [29], but a deep analysis of the advantages and draw-

backs of different measures is out of the scope of this work.

Table 5: Disease model with threshold effect (Model 3)

CC Cc cc

AABB α α α

AABb α α α

AAbb α α α

AaBB α α α

AaBb α α ∗ (1 + θ) α ∗ (1 + θ)

Aabb α α ∗ (1 + θ) α ∗ (1 + θ)

aaBB α α α

aaBb α α ∗ (1 + θ) α ∗ (1 + θ)

aabb α α ∗ (1 + θ) α ∗ (1 + θ)

Users can select the most suitable approach for their anal-

yses when employing GPU3SNP.

The results for all the configurations are presented in

Figure 4. They show that both algorithms are perfectly

accurate for the three models when both MAF and λ are

high (0.5). However, GPU3SNP outperforms EDCF for all

the other scenarios. Models 2 and 3 with low MAF (0.2)

are especially remarkable as EDCF is never able to detect

the ground-truth while GPU3SNP achieves power 63% and

94% for Model 2 and 100% in both cases of Model 3. On

average, GPU3SNP is 34% more accurate than EDCF.

This improvement increases to 46% if we do not take into

account the scenarios with MAF and λ equal to 0.5, where

both tools present 100% power.

4.2. Execution Times and Speedups

Most of the experiments for the performance evalua-

tion have been conducted on a system with a hex-core Intel

Core i7 Sandy Bridge 3.20 GHz CPU with 12 MB cache,

and two different NVIDIA Kepler GPUs, whose specifi-

cations are shown in Table 6. Firstly, we have evaluated

the parallel efficiency of GPU3SNP. Instead of compar-

ing it to very slow exhaustive tools such as CPM [11],

RPM [12] or MDR [13] (see Section 1), we have developed

an efficient PThreads CPU implementation of GPU3SNP.

Note that, in order to provide a fair comparison, this CPU

version includes the optimization techniques presented in

Section 3.1 (i.e. a boolean representation of data and the

reuse of the 2-SNP-AND information for the third-order
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Figure 4: Accuracy comparison between EDCF and GPU3SNP (with MI as measure).

Table 6: Specifications of the GPUs used for the experimental eval-

uation

GTX 650Ti GTX Titan

Num. of cores 768 2,688

Core frequency 928 MHz 837 MHz

Memory size 2 GB 6 GB

Memory bandwidth 86.4 GBs 288.4 GBs

analyses). Moreover, it uses the same popcount and the

same PThreads approach that has been proved efficient

for the pairwise interaction tool presented in [21] so that

it exploits the 6 cores of the system. The execution times

(in minutes) of GPU3SNP for the two GPUs and the CPU

implementation are shown in Table 7 for three simulated

datasets with different number of SNPs and individuals.

The speedups of GPU3SNP compared to the CPU version

are include in parenthesis. Despite comparing to a multi-

threaded CPU version, the speedups are high for the three

datasets: around 20 for the 650Ti and between 80 and 90

for the more powerful Titan. As there are no dependencies

among the analysis of different SNP-triples, our kernels are

able to fully exploit the parallel capacities of the GPUs.

Besides the high computational power of the GPUs,

memory access optimizations explained in Section 3.2 are

key in order to justify these high speedups. Figure 5 shows

the percentage of the runtime used by each part of the com-

putation (calculation of the 2-SNP-ANDs, creation of the

Table 7: Execution times (in minutes) of GPU3SNP and the

multithreaded CPU implementation. In parenthesis, speedups of

GPU3SNP over the CPU version.

SNPs Ind. CPU (6th) 650Ti Titan

5,000 1,000 356.60 16.00 (22.29) 3.97 (89.82)

5,000 2,000 559.13 25.61 (21.83) 6.54 (85.49)

10,000 1,000 2,477.27 125.63 (19.72) 30.73 (80.61)

contingency tables and filtering). While the CPU imple-

mentation spends more than 98% of the total time for any

input datasets by creating the contingency tables (where

most of memory accesses are performed), the GPU im-

plementation reduces this percentage to around 75-82%

thanks to the efficient coalesced accesses and the use of

the fast shared memory. The filtering is independent of

the number of individuals as it only accesses the 54 val-

ues of the contingency tables. Therefore, its influence on

the runtime is higher for the smallest number of samples

(1,000 individuals and around 22%) while it is only around

16% for datasets with 2,000 samples.

Additional experiments where the two GPUs are col-

laborating to analyze a dataset with 5,000 SNPs and 1,000

individuals have been performed in order to study the

performance of the workload distribution approaches pre-

sented in Section 3.3. Execution times and speedups over

the multithreaded CPU and the single-GPU executions

are shown in Table 8. The dynamic approach, where the
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Figure 5: Runtime breakdown of GPU3SNP and the multithreaded CPU approach.

Table 8: Runtime and speedup comparison of the static and dynamic

distributions when analyzing a dataset with 5,000 SNPs and 1,000 in-

dividuals on a heterogeneous platform with one NVIDIA GTX 650Ti

and one NVIDIA GTX Titan.

Distribution Static Dynamic

Runtime (m) 7.96 3.21

Speedup over CPU 44.80 111.09

Speedup over 650Ti 2.01 4.98

Speedup over Titan 0.50 1.24

slowest GPU (650Ti) analyzes less SNP-triples than the

most powerful one (Titan), leads to 24% of performance

improvement compared to the fastest single-GPU execu-

tion. It proves that collaboration among GPUs is bene-

ficial even on platforms with heterogeneous GPUs. How-

ever, for these scenarios the static approach does not pro-

vide a performance improvement. The reason is that the

workload is equally distributed among both GPUs, and the

computation of half of the analyses on the slowest GPU

leads to a bottleneck.

A single node of the MOGON supercomputer contain-

ing 4 NVIDIA GTX Titans, installed at the Johannes

Gutenberg University of Mainz, is employed to evaluate

the scalability of GPU3SNP for homogeneous GPUs. Fig-

ure 6 shows the execution time and speedups (compared

to the single-GPU version) for both the static and dy-

namic approaches when analyzing again the dataset with

5,000 SNPs and 1,000 individuals on a varying number of

GPUs. Note that the single-GPU runtime is higher than

for the Titan of the heterogeneous system, as the charac-

teristics of the host are different. The results show that

static distribution is better for this type of system, with

parallel efficiency over 98%. For homogeneous GPUs the

on-demand version tends to equally distribute the work-

load. Thus, the workload distribution is the same for both

approaches but the CPU computation before submitting

each batch to the GPU is more complex in the dynamic

approach. Nevertheless, as we have optimized the batch

generation as much as possible, the difference between the

two approaches is not significant (between 1% and 4%) for

just four GPUs. However, it is expected to increase for a

larger number of GPUs.

Table 9 compares the runtimes for the dataset with

10,000 SNPs and 1,000 individuals of GPU3SNP on the

two platforms and two publicly available non-exhaustive

tools: SNPRuler [10] and EDCF [8]. EDCF has been
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Figure 6: Runtime of the static and dynamic multi-GPU approaches

for a varying number of NVIDIA GTX Titan. In parenthesis,

speedups over the single-GPU version.

briefly described in Section 4.1. SNPRuler follows a ma-

chine learning approach to apply the χ2 statistic only to

the triples that pass a rule searching algorithm. We have

excluded comparisons to other exhaustive tools presented

in Section 1 since they are extremely slow and would re-

quire days or weeks to finish. As expected, thanks to their

non-exhaustive search methods, EDCF and SNPRuler are

faster than GPU3SNP. Nevertheless, while exhaustive anal-

yses on CPU would need prohibitive runtimes, our multi-

GPU parallelization is able to increase accuracy compared

to these tools (see Section 4.1) with only a reasonable in-

crease of time. In fact, we have been able to exhaustively

analyze a dataset with 50,000 SNPs and 1,000 individuals

in less than one day (21 hours and 52 minutes) on a single

MOGON node.

Finally, Table 10 compares the speed of GPU3SNP and

other GPU tools. As parallel tools for third-order analysis

do not exist, we have used the results provided in [21] for

two of the fastest pairwise interactions tools: EpistSearch

and GBOOST. In order to provide a normalized compari-

son, speed is indicated as millions of contingency table cells

per second. Furthermore, all experiments are performed

with datasets consisting of 5,000 individuals on the same

GPUs (Titan and 650Ti). Results show that GPU3SNP

achieves high performance which indicates that it exploits

more efficiently the GPU resources than GBOOST and

EpistSearch.

Table 9: Runtime comparison of different tools when analyzing a

dataset with 10,000 SNPs and 1,000 samples.

Tool Exhaustive? Architecture Time

EDCF No Intel Core i7 44 s

SNPRuler No Intel Core i7 5 m

GPU3SNP Yes 4 Titan 10 m

GPU3SNP Yes Titan & 650Ti 25 m

Table 10: Speed comparison of GPU3SNP and two GPU-based tools

for pairwise studies. Speed is measured in millions of contingency

table cells per second when analyzing 5,000 individuals.

Tool Speed 650Ti Speed Titan

GPU3SNP 365.85 1,432.63

EpistSearch 320.51 872.09

GBOOST 232.92 614.75

5. Conclusions

The search for third-order epistatic interactions plays

a key role in order to find genetic explanations for sev-

eral common human diseases. However, due to the high

number of possible combinations, exhaustive analysis of

all SNP-triples is not possible in a reasonable period of

time on a CPU even for moderately-sized datasets with

thousands of SNPs. Most current solutions follow a step-

wise approach that reduces the search space. Nevertheless,

these approaches can lead to a loss of accuracy. In this

paper we have presented GPU3SNP, a GPU-accelerated

exhaustive tool to search for third-order epistatic interac-

tions. The main contributions of our work are:

• Development of the first open-source GPU-based tool

that is able to analyze all the 3-SNP combinations.

EDCF, one of the most powerful non-exhaustive pub-

licly available tools, has been compared to GPU3SNP

using three disease models with different minor al-

lele frequencies and marginal effects. GPU3SNP is

on average 34% more powerful than EDCF.

• Implementation of two highly efficient CUDA kernels

that reuse auxiliary 2-SNP-AND values in all the

SNP-triples that contain the pair. Memory accesses

are optimized thanks to the exploitation of shared



memory. Furthermore, necessary accesses to device

memory are fully coalesced.

• Development of two multiGPU approaches (static

and dynamic) that exploit the capacities of systems

with not only homogeneous but also heterogeneous

GPUs.

The runtime of GPU3SNP has been tested on two dif-

ferent GPUs (GTX 650Ti and Titan), obtaining speedups

over an efficient multithreaded implementation on a hex-

core Intel Core i7 of up to 22.29 and 89.82, respectively.

Moreover, thanks to the dynamic distribution, these two

GPUs can collaborate to further increase performance by

24%. On a system with 4 NVIDIA GTX Titans the speedup

over the single-GPU version is 3.93 (98% of parallel effi-

ciency). We have also demonstrated that GPU3SNP is

able to analyze tens of thousands of SNPs in a reasonable

time (for instance, it needs less than 22 hours for 50,000

SNPs on 4 NVIDIA GTX Titan), while a similar approach

on a modern hex-core machine would need several months.

Due to its exhaustive nature, the runtime of GPU3SNP

scales at a cubic rate in terms of the number of SNPs.

Thus, the analysis of GWAS datasets containing hundreds

of thousands of genetic markers would still require signifi-

cant amount of time on a single MOGON node. To address

this issue, we are planning the extension of GPU3SNP to

run on a large number of GPU-accelerated compute nodes

efficiently. This approach should enable the exhaustive

third-order analysis of such datasets in reasonable time.

As future work, our plan is to extend GPU3SNP to pro-

vide more measures apart from MI and IG. Therefore,

the users will be able to choose the measure more suit-

able for the type of analyses that they need. In fact, as

GPU3SNP is open-source, it can be used to analyze differ-

ent datasets with several measures in order to study their

accuracy for different scenarios.
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