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Abstract

Genotype-by-genotype interactions (epistasis) are believed to be a sig-
nificant source of unexplained genetic variation causing complex chronic
diseases but have been ignored in genome-wide association studies
(GWAS) due to the computational burden of analysis. In this work we
show how to benefit from FPGA technology for highly parallel creation
of contingency tables in a systolic chain with a subsequent statistical test.
We present the implementation for the FPGA-based hardware platform
RIVYERA S6-LX150 containing 128 Xilinx Spartan6-LX150 FPGAs. For
performance evaluation we compare against the method iLOCi[9]. iLOCi
claims to outperform other available tools in terms of accuracy. However,
analysis of a dataset from the Wellcome Trust Case Control Consortium
(WTCCC) with about 500,000 SNPs and 5,000 samples still takes about
19 hours on a MacPro workstation with two Intel Xeon quad-core CPUs,
while our FPGA-based implementation requires only 4 minutes.
Keywords
GWAS, epistasis, pairwise gene-gene interaction, contingency tables,
FPGA technology

1 Introduction

High-throughput genotyping technologies allow the collection of hundreds of
thousands to a few million genetic markers, such as single nucleotide polymor-
phisms (SNPs), from individual DNA samples. In genome-wide association
studies (GWAS) these genotypes are typically measured for several thousand
individuals and then linked to a given phenotype of each individual, such as
the presence (case) or absence (control) of an associated disease. In classical
GWAS each genetic marker is analyzed separately in order to identify markers
showing differences in genotype frequencies between cases and controls. Un-
fortunately, this approach is generally not powerful enough to model complex
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traits for which the detection of joint genetic effects (epistasis) needs to be con-
sidered [5, 7]. In (2-way) statistical epistasis each pair of measured markers
is therefore tested in order to discover significant interactions that explain the
given phenotype. Consequently, a number of algorithms have been developed
to address the problem of detecting epistasis in recent years [1, 13, 17]. The
main goal of these approaches is to find pairs of SNPs whose joint values show
a statistically significant difference between cases and controls and thus they
provide a list with these pairs that could explain a substantial proportion of
genetic variation leading to disease.

Computing epistasis is highly time-consuming due to the large number of
pairwise tests to be calculated; e.g. already for a moderately-sized dataset
consisting of 500,000 SNPs there are about 125 billion pairwise interaction tests
to be performed. Thus, many existing tools for calculating epistasis [6, 11, 14]
require several days for processing moderately-sized datasets and several weeks
to months for processing large-scale datasets on a standard CPU. Since both
the availability and size of GWAS datasets are increasing rapidly, finding faster
solutions is of high importance to research in this area. In this paper we address
this problem by taking advantage of both fine-grained (by using of reconfigurable
hardware (FPGAs)) and coarse-grained parallelism (using a number of FPGAs
in parallel). Our parallel architecture is based on a systolic chain of processing
elements for pairwise contingency table creation and a subsequent statistical
test. Since contingency table creation is a common operation, our solution is
easily adaptable to accelerate a large variety of epistasis tools by interchanging
the statistical test implementation. In this paper we have chosen the test method
of iLOCi [9] as a proof-of-concept. We show that this approach leads to an
acceleration of between two and three orders of magnitude compared to the
CPU-based approach.

2 Statistical Epistasis

2.1 Background

To perform large-scale epistasis studies, a lot of methods for pairwise interaction
tests exist [13, 17], balancing between reducing runtimes and keeping the error
rate low. CPU-based approaches, such as BOOST [14, 16], MDR [11], MB-
MDR [4], iLOCi [9] etc., often result in long runtimes for exhaustive searches.
Therefore prefiltering techniques may be applied to reduce the amount of SNP
pairs, as in SIXPAC [10], SNPRuler [15], SNPHarvester [22], TEAM [24] and
Screen and Clean [21]. Other methods take advantage from special architec-
tures, such as GPUs, to perform an exhaustive analysis, e.g. GBOOST [23],
SHEsisEpi [3], EpiGPU [2] and others.

However, most of these methods have one thing in common, they compute
contingency tables (see Sect. 2.2) for each SNP pair before calculating a signifi-
cance value. Our approach presented in this paper focuses on exhaustive analysis
of SNP pairs and shows how FPGA technology can be applied to create and pre-
pare contingency tables for significance tests concurrently on a large scale. We
target the RIVYERA architecture with 128 FPGAs (see Sect. 3 for details) to
significantly speedup pairwise interaction tests. RIVYERA is already success-
ful in accelerating other bioinformatics applications, such as Smith-Waterman
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Figure 1: Contingency tables for cases and controls. ncase
ij and nctrl

ij reflect
the number of occurrences for the corresponding genotype combination in the
current SNP pair.

alignments or BLAST database searches [18, 19, 20] and hence, shows promise
for this target as well.

Furthermore, the calculation of the significance value in our method is ex-
changeable. Thus, our solution may be applied to many existing methods per-
forming an exhaustive analysis. Other approaches may not directly be adapted
to our method, but prefiltering techniques, such as filtering of single SNPs, can
trivially be implemented in the preprocessing phase. In our presentation we
chose the iLOCi method [9] (see Sect. 2.3) as an example for an exhaustive
search.

2.2 Contingency Tables

A typical GWAS dataset consists of two groups of samples (cases and controls)
which are genotyped at a set of marker positions (SNPs). In this paper we con-
sider biallelic markers for diploid organisms which is the common use case, i.e.
genotypes may appear as homozygous wild (w), heterozygous (h) or homozy-
gous variant (v) type. For pairwise interaction analysis a contingency table is
created for each pair of SNPs separately for case and control group. Therefore,
with n denoting the total number of SNPs, n(n−1)/2 tables have to be created
(instead of n2 due to the symmetry of SNP pairs). For moderate-size datasets,
such as the Wellcome Trust Case Control Consortium (WTCCC) datasets [12]
with about 500,000 SNPs, this implies about 125 billion tables. This huge
amount of calculations is challenging for any computing system.

Contingency tables in pairwise interaction tests with biallelic markers have
dimension 3 × 3, one entry for each possible combination of genotypes. The
entries reflect the number of occurrences each combination of genotypes appears
in the dataset for the corresponding SNP pair in either case and control group
(see Fig. 1).

2.3 iLOCi

We have chosen iLOCi as an example application to test and compare against
our implementation. iLOCi claims to outperform other tools, such as MDR [11]
or BOOST [14], in terms of accuracy. However, according to the authors, anal-
ysis of a WTCCC dataset [12] with about 500,000 SNPs and 5,000 samples still
takes about 19 hours on a MacPro workstation.

iLOCi computes a significance value pdiff for every possible pair of SNPs.
This value is based on the previously created contingency tables as in Fig. 1

3



Host System FPGA Computer

Network

Slot 2Slot 1 Slot 3 Slot 16

PCIe Interface

Bridge

CPU etc.

Figure 2: The RIVYERA S6-LX150 system.

and is calculated as follows.

pdiff =
∣∣pctrl − pcase

∣∣ (1)
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ij denote the genotype counts for the combination i and j of the current

SNP pair in all case samples (i, j ∈ {0, 1, 2} corresponding to the three possible

genotypes). pcase
ij then denotes the relative probability

ncase
ij

ncase whereby ncase is the
number of samples from the case group. Thus, pcase is calculated as follows.

pcase =
pcase

00 − pcase
02 − pcase

20 + pcase
22√

(pcase
0• + pcase

2• ) (pcase
•0 + pcase

•2 )
(2)

=
ncase
00

ncase − ncase
02

ncase − ncase
20

ncase +
ncase
22

ncase√(∑
j

ncase
0j

ncase +
∑

j

ncase
2j

ncase

)(∑
i
ncase
i0

ncase +
∑

i
ncase
i2

ncase

) (3)

=
ncase

00 − ncase
02 − ncase

20 + ncase
22√(∑

j n
case
0j +

∑
j n

case
2j

)
(
∑

i n
case
i0 +

∑
i n

case
i2 )

(4)

The same applies analogously to the control samples for calculation of pctrl.
The higher the pdiff value the greater is the probability for an interaction [9].

Thus, unlike other algorithms, such as BOOST [14], which filter the results by
a threshold, iLOCi saves the n best results (e.g. n = 1000) and presents the
corresponding SNP pairs in a sorted list.

3 RIVYERA S6-LX150 Architecture

In 2008 the computing platform RIVYERA [8], originally developed for crypt-
analysis, was introduced for problems related to bioinformatics. Here, the spe-
cific model RIVYERA S6-LX150 is presented.

The basic structure consists of two elements, a multiple-FPGA system and
a server grade mainboard with standard PC components. The FPGA system
consists of up to 16 FPGA modules with 8 Xilinx Spartan6-LX150 FPGAs each
(upgrades allow up to 16 FPGAs on one module). Furthermore, each FPGA
is connected to 256 MB DDR3-SDRAM. The mainboard is equipped with two
Intel Xeon E5-2620 CPUs (6 cores @ 2GHz each) with 128 GB of RAM running
a Linux OS. This system is later referred to as host.

The bus system implemented on the RIVYERA FPGA computer is orga-
nized as a systolic chain, i.e. every FPGA on an FPGA module is connected by

4



fast point-to-point connections to each neighbor forming a ring. An additional
member of this ring forms the communication controller. It provides the inter-
connection of each module to its neighboring modules and, on the first module,
the uplink to the host via PCIe. An API hides control of the complete bus sys-
tem and ensures transparency of the communication to the developer. Besides
normal point-to-point transmissions, the API provides broadcast facilities and
methods for configuring the FPGAs. A picture and the design structure of the
RIVYERA S6-LX150 system is shown in Fig. 2.

4 Parallel Creation of Contingency Tables

4.1 Systolic Chain of Processing Elements

We have designed a systolic chain of processing elements (PEs) on each FPGA
to concurrently generate as many contingency tables as possible. The genotype
data is distributed among all FPGAs such that each FPGA processes two in-
tervals of SNPs with all corresponding genotypes of all samples. The data has
to be organized in genotypes grouped by cases and controls for each SNP. The
contingency tables are created while the data from both intervals is streamed
SNP-wise through the chain.

Each PE contains a local memory to store the complete genotype data for
one SNP and a number of counters for the entries of the contingency table. The
genotype data stream from the previous PE in the chain is directly provided to
the next PE after one clock cycle. However, if the local SNP memory has not
been initialized yet, the data of the first SNP is streamed into this memory and
not provided to the next PE. After initialization of the local SNP, the next SNP
in the stream is directly compared to the stored SNP genotype by genotype.
For each pair of genotypes the corresponding counter is incremented. Since the
genotypes are ordered by case and control group, the contingency table for each
group is ready after processing the last genotype of a SNP for the corresponding
group in the stream. The tables are provided to a transport bus afterwards and
carried to a postprocessing unit which could be an entity calculating a statistic.
After each SNP in the stream, the counters of the PE are reset for the next
contingency table.

If the streaming process has finished all SNPs from both initial intervals, it
starts all over but leaving out the first k SNPs, if k is the number of PEs in
the chain. In the next iteration the first 2k SNPs are left out, and so on. The
process stops until all SNPs from the first interval are to be left out. This way
all possible SNP pairings in the first interval, i.e. each pair contains only SNPs
from the first interval, and between both intervals, i.e. each pair contains a SNP
from each interval, are processed. This makes an efficient distribution of the
whole set of SNPs among all available FPGAs possible (see Sect. 4.3). Figures 3
and 4 show the design overview of the systolic chain of PEs and the processing
sequence of an example dataset of six SNPs and three PEs.

After calculating the statistic, the results are filtered before being provided
to the host. The filter could be threshold-based or, as for iLOCi, storage of the
n best results.
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Figure 3: Overview of the systolic chain of processing elements for contingency
table creation.

4.2 Specifics Regarding iLOCi

For the implementation of the iLOCi significance test, we have optimized the
overall structure regarding the requirements in Eqs. (1) and (4). Obviously, the
same calculations are made for pcase and pctrl. Hence, we have implemented
Eq. (4) only once, sharing the resources for both calculations. Furthermore, the
entries of the contingency table are required as sums. Thus, we have changed the
representation of a contingency table to contain only three values a, b and c ac-
cording to the following definitions whereby nij denotes ncase

ij or nctrl
ij respective

to the current group on turn.

a = n00 − n02 − n20 + n22 (5)

b =
∑
j

n0j +
∑
j

n2j (6)

c =
∑
i

ni0 +
∑
i

ni2 (7)

These values are calculated on-the-fly by each PE while streaming the genotype
data. The calculation of p for pcase and pctrl respectively directly follows from
Eq. (4).

p =
a√
bc

(8)

The implementation of Eq.(8) requires FPGA resources for one multiplier,
one square root extractor and one divider. The multiplication is processed in
integer arithmetics while square root extraction and division require double pre-
cision floating point arithmetics. Each component is implemented as a pipeline
such that in every clock cycle new input data can be processed. This is neces-
sary since all PEs provide their contingency tables at once with only one clock
cycle delay. Furthermore, the FPGA resources are optimally utilized.

pcase is calculated before pctrl for each concurrently processed SNP pairs.
Thus, these values have to be stored in a FIFO buffer. After calculating pctrl

the corresponding pcase is extracted from the buffer and the difference according
to Eq. (1) is computed. Finally, the n-best results of this FPGA are stored in a
buffer and provided to the host which collects the final n-best results from all
FPGAs afterwards.
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Figure 4: Sequence of processing an example dataset of six SNPs with a chain
of three PEs in nine steps. Black squares indicate SNP pair combinations to be
processed while white squares indicate already processed pairs. Grey squares
are currently being processed while an arrow on the vertical axis indicates the
currently streamed SNP.

4.3 Distribution of Data

To achieve good load balancing for a large number of FPGAs the distribution of
genotype data has to follow a certain scheme. Due to the symmetry of the con-
tingency tables only n(n− 1)/2 tables have to be created for cases and controls
(with n the number of SNPs). Therefore, we employ a scheme that enables
us to create almost redundant-free SNP pairings while keeping the workload
balanced.

Figure 5 shows an example how SNPs would be distributed if seven FPGAs
were available. Each FPGA receives two SNP intervals, one interval on the
horizontal and one on the vertical axis. According to Sect. 4.1, a rectangular tile
of the table space is calculated with this data. Exploiting the symmetry again,
the triangle below the symmetry axis (dashed line) is always processed as well
for no extra cost. Unfortunately, it is inevitable that a few of these triangles
are calculated multiple times. Hence, duplicate results may be produced by
different FPGAs which are filtered by the host software. One FPGA (no. 7 in
the figure) is reserved for the remaining triangle which is not covered by the
calculation of a rectangle.

This scheme obviously works for a number of available FPGAs in the se-
quence of triangular numbers (1, 3, 6, 10, 15, 21, 28, . . . ) plus one for the last
triangle. As our RIVYERA system contains 128 FPGAs, the nearest number
is 120. Hence, to avoid idle FPGAs at all, we split all available FPGAs in two
groups with slightly different interval sizes. With this configuration applied on
a WTCCC dataset, each FPGA gets two intervals of about 30, 000 SNPs with
all corresponding 5, 000 genotypes for each SNP. Since genotypes are coded in
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Figure 5: Example SNP distribution among seven FPGAs. Only SNP pairs
below the dashed line have to be considered.

a two bit representation, only 75 MB of memory are required, easily fitting in
the local DRAM.

5 Performance Evaluation and Results

Our implementation of the iLOCi test on RIVYERA S6-LX150 contains 100
PEs on each FPGA for creation of contingency tables and allows to store up
to 1000 best results. The FPGA resources are utilized by about 80% regarding
the FPGA’s slices, leaving enough buffer for more complex tests. The chip
frequency is 100 MHz for IO and 150 MHz for genotype streaming, counting
and calculation of the significance. The FPGA specification has been developed
using the Xilinx ISE Design Suite and the VHDL programming language.

iLOCi [9] takes about 19 hours on a MacPro workstation with two Intel Xeon
quad-core CPUs @ 2.4 GHz for a WTCCC dataset [12] with 500,000 SNPs and
5,000 samples. In contrast, our RIVYERA S6-LX150 implementation requires
less than 4 minutes, leading to a speedup of more than 285. As iLOCi uses
the OpenCL interface, we are also able to measure its performance on a GPU
system, specifically an nVidia GeForce GTX Titan. Due to a surprisingly poor
performance on this system, we have used the iLOCi example dataset with only
8,000 SNPs and 4,901 samples to extrapolate the runtimes for the WTCCC
dataset. We have set the number of stored best results to 1,000 but applied no
extra parameters. The runtime is 94 s to calculate the ∼ 8, 0002/2 = 32 × 106

tests. Extrapolated to the∼ 500, 0002/2 tests of a WTCCC dataset, the runtime
would be more than four days.

Table 1 lists runtimes of the implementations including their respective
power consumption during the operation and their total energy consumption
for this task. For the CPU and GPU versions, we have chosen the correspond-
ing thermal design power specification without any peripheral, while we have
actually measured the energy consumption of the RIVYERA S6-LX150 system
with the on-board IPMI interface.

Furthermore, we have compared the runtime of our iLOCi implementation
against other methods that perform an exhaustive creation of contingency tables
on the same dataset size (see Table 2). To accomplish this, we have determined
the speed in tests per second and interpolated from the published results of
the corresponding authors. We made an exception for GBOOST [23]. Since
it is freely available and performs best in our compared GPU solutions, we
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Architecture Energy Time
Speed

(M tests/s)

RIVYERA S6-LX150 780 W 0.05 kWh 4 m 520.83
2x Intel Xeon quad-core @ 2.4 GHz 260 W 4.94 kWh 19 h 1.83
nVidia GeForce GTX Titan 250 W 25.50 kWh ∼102 h ∼0.34

Table 1: iLOCi performance for analysis of a dataset with 500,000 SNPs and
5,000 samples. GPU results are extrapolated.

Method Architecture Time
Speed

(M tests/s)

RIVYERA iLOCi FPGA (128x Spartan6-LX150) 4 m 520.83

GBOOST * GPU (GeForce GTX Titan) 1 h 01 m 34.23
GBOOST * GPU (GeForce GTX650Ti) 2 h 41 m 12.97
GBOOST [23] GPU (GeForce GTX285) 2 h 43 m 12.81
EpiGPU [2] GPU (GeForce GTX580) 2 h 55 m 11.90
SHEsisEpi [3] GPU (2x GeForce GTX285) 27 h 1.29

iLOCi [9] CPU (2x Xeon quad-core @ 2.4 GHz) 19 h 1.83
BOOST [14] CPU (@ 3 GHz) 121 h 0.29

Table 2: Performance comparison of different GWAS methods based on exhaus-
tive creation of contingency tables for analysis of a dataset with 500,000 SNPs
and 5,000 samples. Results are interpolated from the publications of the corre-
sponding authors, except those marked with (*) have actually been measured.

measured the performance on two of our own systems as well. All results have
to be treated carefully since the comparison is done over different architectures.
However, it shows that our implementation on the RIVYERA architecture is
able to outperform other architectures by far.

6 Conclusion

Recent advances in high-throughput genotyping technologies establish the need
for fast implementations of statistical epistasis in GWAS. Recent work has
shown how GPUs can be used to accelerate such methods. In this paper we
have demonstrated that reconfigurable hardware based on FPGAs is another
promising alternative for this task. We have presented an efficient and flexible
parallel architecture for contingency table creation with a subsequent statistical
test. Since contingency table creation is common to most epistasis tools our
architecture can thus be used to accelerate a large variety of tools by simply in-
terchanging the statistical test core. As a proof-of-concept we have implemented
the iLOCi algorithm. This leads to a speedup of between two and three orders
of magnitude on the RIVYERA S6-LX150 system compared to the CPU-based
iLOCi implementation. Furthermore, we have shown speedups of one to two
orders of magnitude compared to the GPU-based implementations GBOOST
and EpiGPU.

The utilized Spartan6-LX150 FPGA is still based on 45 nm technology.
Newer technology on the market, e.g. a cutting-edge Xilinx Kintex7 based
on 28 nm technology provides around three times more logic resources, 10 times
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more DSPs for faster floating-point computations and 7 times more BRAM for
local storage. Furthermore, the smaller transistors in the 28 nm structure allow
faster reaction times and thus, higher frequencies. Extrapolating our results to
a Kintex7, we expect a further performance gain of around one order of magni-
tude. A RIVYERA system equipped with 128 FPGAs of this type would make
it possible to compute statistical epistasis of large-scale datasets consisting of
around 5 million SNPs and ten thousand individuals in less than one hour.

Our future work includes evaluating our existing architecture to other epis-
tasis algorithms and extending it to calculate 3-way interactions.
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