
A tool for reconstructing codes from memory traces
José M. Andión, Gabriel Rodríguez
and Juan Touriño

Mahmut T. Kandemir

1 #define N 32
2 double p[N], A[N][N];
3 for(i = 0; i < N; ++i) {

4 x = A[i][i];

5 for(j = 0; j <= i-1; ++j)

6 x = x - A[i][j]

*

A[i][j];

7 p[i] = 1.0 / sqrt(x);

8 for(j = i+1; j < N; ++j) {

9 x = A[i][j];

10 for(k = 0; k <= i-1; ++k)
11 x = x - A[j][k]

*

A[i][k];
12 A[j][i] = x

*

p[i];

13 }

14 }

(a) Source code of the cholesky application.

1 0x1e2d140

2 0x1e2d140

...

30 0x1e2d140

31 0x1e2d240

32 0x1e2d248

33 0x1e2d240

34 0x1e2d248

...

88 0x1e2d248

89 0x1e2d340

90 0x1e2d348

91 0x1e2d350

92 0x1e2d340

93 0x1e2d348

94 0x1e2d350

...

(b) Excerpt of the memory trace generated by
the access A[i][k] (see line 11 of Fig. 2a).

(c) Reconstruction times (upper axis) and trace sizes
(lower axis). Axes are logarithmic. Since the subtraces
are independent, they can be reconstructed in paral-
lel achieving an average speedup of 5.6x. Each execu-
tion was performed on an Intel Xeon E5-2660 Sandy
Bridge 2.20 Ghz node, with 64 GB of RAM.

Figure 2: Experimental evaluation with the PolyBench/C 3.2 suite [Pou].

Memory Trace

Problem Formulation & Reconstruction Method

2 Problem Formulation

A program memory trace contains all the memory addresses issued by its entire execution,
including multiple loop nests and non-loop sections. In this work, it is assumed that each
entry in the trace is labeled using an identifier of the instruction issuing the access (e.g.,
its memory address as done by Intel Pin). Hence, the address stream generated by each
instruction can be analyzed separately.

The algorithm focuses on the reconstruction of each individual reference enclosed in
large regular loops, with linear static control parts that depend only on the loop index vari-
ables and loop independent constants through affine bounds and subscripts. These types of
loops are the main target of the polyhedral model and can be written as:

DO i1 = 0, u1(�!ı)
...

DO in = 0, un(�!ı)
V [f1(�!ı)] . . . [fm(�!ı)]

where {uj, 0 < j n} are affine functions, {fd(i1, . . . , in), 0 < d m} is the set of affine func-
tions that converts a given point in the iteration space of the loop nest to a point in the data
space of V , and �!ı k = {ik1, . . . , ikn}T is a column vector which encodes the state of each itera-
tion variable for the kth execution of the loop nest. The complete access V [f1(�!ı)] . . . [fm(�!ı)]
is abbreviated by V (�!ı). Since fd are affine, the access can be rewritten as:

V [f1(�!ı)] . . . [fm(�!ı)] = V [c0 + i1c1 + . . .+ incn] (1)

where c0 is a constant stride and each {cj, 0 < j n} is the coefficient of the loop index ij .
During the execution of the loop nest, the access to V will orderly issue the addresses

corresponding to V (�!ı 1), V (�!ı 2), etc. Note that, using Eq. (1), the stride between two con-
secutive accesses �k = V (�!ı k+1) � V (�!ı k) can be expressed as a linear combination of the
coefficients of the loop indices. This is the basis of our reconstruction approach.

3 Reconstruction Method

The proposed technique is essentially a guided exploration of a tree-like potential solution
space driven by the access strides, in which level k contains all possible loops with trip
count equal to k: from a 1-level nest iterating from 0 to (k � 1), to a k-level nest with a
single iteration per level. Its root is a trivial loop that generates the first two accesses in the
trace. The exploration engine incorporates one access to the reconstructed loop in each step,
descending one level into the tree, until it finds a solution for the entire trace or determines
that no affine loop is capable of generating the observed sequence of accesses. Each step of
the process is conceptually depicted in Fig. 1. Starting from the kth iteration vector �!ı k =
{ik1, . . . , ikn} there are (2n+1) different vectors �!ı k+1 that are considered as candidates for the
(k + 1)th iteration vector. The n alternatives on the left side are obtained using an operation
+(j,�!ı), which increases index ij by one and resets to zero all inner indices. The (n + 1)
alternatives on the right are obtained by applying an operation f(j,�!ı), which inserts a new
loop at nesting level (j + 1).

2 Problem Formulation

A program memory trace contains all the memory addresses issued by its entire execution,
including multiple loop nests and non-loop sections. In this work, it is assumed that each
entry in the trace is labeled using an identifier of the instruction issuing the access (e.g.,
its memory address as done by Intel Pin). Hence, the address stream generated by each
instruction can be analyzed separately.

The algorithm focuses on the reconstruction of each individual reference enclosed in
large regular loops, with linear static control parts that depend only on the loop index vari-
ables and loop independent constants through affine bounds and subscripts. These types of
loops are the main target of the polyhedral model and can be written as:

DO i1 = 0, u1(�!ı)
...

DO in = 0, un(�!ı)
V [f1(�!ı)] . . . [fm(�!ı)]

where {uj, 0 < j n} are affine functions, {fd(i1, . . . , in), 0 < d m} is the set of affine func-
tions that converts a given point in the iteration space of the loop nest to a point in the data
space of V , and �!ı k = {ik1, . . . , ikn}T is a column vector which encodes the state of each itera-
tion variable for the kth execution of the loop nest. The complete access V [f1(�!ı)] . . . [fm(�!ı)]
is abbreviated by V (�!ı). Since fd are affine, the access can be rewritten as:

V [f1(�!ı)] . . . [fm(�!ı)] = V [c0 + i1c1 + . . .+ incn] (1)

where c0 is a constant stride and each {cj, 0 < j n} is the coefficient of the loop index ij .
During the execution of the loop nest, the access to V will orderly issue the addresses

corresponding to V (�!ı 1), V (�!ı 2), etc. Note that, using Eq. (1), the stride between two con-
secutive accesses �k = V (�!ı k+1) � V (�!ı k) can be expressed as a linear combination of the
coefficients of the loop indices. This is the basis of our reconstruction approach.

3 Reconstruction Method

The proposed technique is essentially a guided exploration of a tree-like potential solution
space driven by the access strides, in which level k contains all possible loops with trip
count equal to k: from a 1-level nest iterating from 0 to (k � 1), to a k-level nest with a
single iteration per level. Its root is a trivial loop that generates the first two accesses in the
trace. The exploration engine incorporates one access to the reconstructed loop in each step,
descending one level into the tree, until it finds a solution for the entire trace or determines
that no affine loop is capable of generating the observed sequence of accesses. Each step of
the process is conceptually depicted in Fig. 1. Starting from the kth iteration vector �!ı k =
{ik1, . . . , ikn} there are (2n+1) different vectors �!ı k+1 that are considered as candidates for the
(k + 1)th iteration vector. The n alternatives on the left side are obtained using an operation
+(j,�!ı), which increases index ij by one and resets to zero all inner indices. The (n + 1)
alternatives on the right are obtained by applying an operation f(j,�!ı), which inserts a new
loop at nesting level (j + 1).

2 Problem Formulation

A program memory trace contains all the memory addresses issued by its entire execution,
including multiple loop nests and non-loop sections. In this work, it is assumed that each
entry in the trace is labeled using an identifier of the instruction issuing the access (e.g.,
its memory address as done by Intel Pin). Hence, the address stream generated by each
instruction can be analyzed separately.

The algorithm focuses on the reconstruction of each individual reference enclosed in
large regular loops, with linear static control parts that depend only on the loop index vari-
ables and loop independent constants through affine bounds and subscripts. These types of
loops are the main target of the polyhedral model and can be written as:

DO i1 = 0, u1(�!ı)
...

DO in = 0, un(�!ı)
V [f1(�!ı)] . . . [fm(�!ı)]

where {uj, 0 < j n} are affine functions, {fd(i1, . . . , in), 0 < d m} is the set of affine func-
tions that converts a given point in the iteration space of the loop nest to a point in the data
space of V , and �!ı k = {ik1, . . . , ikn}T is a column vector which encodes the state of each itera-
tion variable for the kth execution of the loop nest. The complete access V [f1(�!ı)] . . . [fm(�!ı)]
is abbreviated by V (�!ı). Since fd are affine, the access can be rewritten as:

V [f1(�!ı)] . . . [fm(�!ı)] = V [c0 + i1c1 + . . .+ incn] (1)

where c0 is a constant stride and each {cj, 0 < j n} is the coefficient of the loop index ij .
During the execution of the loop nest, the access to V will orderly issue the addresses

corresponding to V (�!ı 1), V (�!ı 2), etc. Note that, using Eq. (1), the stride between two con-
secutive accesses �k = V (�!ı k+1) � V (�!ı k) can be expressed as a linear combination of the
coefficients of the loop indices. This is the basis of our reconstruction approach.

3 Reconstruction Method

The proposed technique is essentially a guided exploration of a tree-like potential solution
space driven by the access strides, in which level k contains all possible loops with trip
count equal to k: from a 1-level nest iterating from 0 to (k � 1), to a k-level nest with a
single iteration per level. Its root is a trivial loop that generates the first two accesses in the
trace. The exploration engine incorporates one access to the reconstructed loop in each step,
descending one level into the tree, until it finds a solution for the entire trace or determines
that no affine loop is capable of generating the observed sequence of accesses. Each step of
the process is conceptually depicted in Fig. 1. Starting from the kth iteration vector �!ı k =
{ik1, . . . , ikn} there are (2n+1) different vectors �!ı k+1 that are considered as candidates for the
(k + 1)th iteration vector. The n alternatives on the left side are obtained using an operation
+(j,�!ı), which increases index ij by one and resets to zero all inner indices. The (n + 1)
alternatives on the right are obtained by applying an operation f(j,�!ı), which inserts a new
loop at nesting level (j + 1).

Reconstruction times (s)

0.5 5 50 500 5k

Total trace refs (millions)
2 20 200 2k 20k

3mm
2mm
syr2k
syrk

gemm

symm

covariance
trmm

lu
adi

dynprog
fdtd-apml

ludcmp
fdtd-2d

gramschmidt

doitgen

bicg

reg_detect

cholesky
gemver

seidel

mvt

durbin

jacobi-2D
gesummv

atax

trisolv
jacobi-1D

floyd-warshall

correlation

Sequential
Parallel

Experimental EvaluationReconstructed Code
1 #define N 32
2 double p[N], A[N][N];
3 for(i = 0; i < N; ++i) {

4 x = A[i][i];

5 for(j = 0; j <= i-1; ++j)

6 x = x - A[i][j]

*

A[i][j];

7 p[i] = 1.0 / sqrt(x);

8 for(j = i+1; j < N; ++j) {

9 x = A[i][j];

10 for(k = 0; k <= i-1; ++k)
11 x = x - A[j][k]

*

A[i][k];
12 A[j][i] = x

*

p[i];

13 }

14 }

(a) Source code of the cholesky application.

1 0x1e2d140

2 0x1e2d140

...

30 0x1e2d140

31 0x1e2d240

32 0x1e2d248

33 0x1e2d240

34 0x1e2d248

...

88 0x1e2d248

89 0x1e2d340

90 0x1e2d348

91 0x1e2d350

92 0x1e2d340

93 0x1e2d348

94 0x1e2d350

...

(b) Excerpt of the memory trace generated by
the access A[i][k] (see line 11 of Fig. 2a).

(c) Reconstruction times (upper axis) and trace sizes
(lower axis). Axes are logarithmic. Since the subtraces
are independent, they can be reconstructed in paral-
lel achieving an average speedup of 5.6x. Each execu-
tion was performed on an Intel Xeon E5-2660 Sandy
Bridge 2.20 Ghz node, with 64 GB of RAM.

Figure 2: Experimental evaluation with the PolyBench/C 3.2 suite [Pou].

Applications

✦ Hardware and software prefetching
✦ Data placement
✦ Dependence analysis
✦ Design of embedded memories
✦ Trace compression

Affine loop The access can be rewritten as a linear
combination of the loop indices

Traversal of a tree-like space to generate the observed strides

[3, 5, 7]

[4, 0, 0]

[3, 6, 0]

[3, 5, 8]

[1, 0, 0, 0]

[3, 1, 0, 0]

[3, 5, 7, 1]

[3, 5, 1, 0]

Goal

✦ without user intervention
✦ without usage of source or

binary code

Rebuilding affine loop
nests from a trace of
memory accesses

Web

Free Download!

