
Compilation Techniques
for Automatic Extraction
of Parallelism and Locality
in Heterogeneous Architectures

José M. Andión

PHD ADVISORS: Gabriel Rodríguez and Manuel Arenaz

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Conclusions

2

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Conclusions

3

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

– H2020 Work Programme

“HPC is a crucial asset for Europe’s innovation capacity
and is of strategic importance to its scientific and

industrial capabilities, as well as to its citizens”

– POTUS Executive Order for Creating a National Strategic Computing Initiative

“HPC has contributed substantially to national economic
prosperity and rapidly accelerated scientific discovery”

– US Council of Competitiveness

“To out-compute is to out-compete”

4

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Figure 1.1: Trends in Transistors, Performance, and Power for General-Purpose Processors – Various
metrics are shown for a selection of processors usually found in high-performance desktop and server sys-
tems from 1975 to 2010. For over 30 years, engineers used increased clock frequencies and power hungry
architectural techniques to turn the wealth of available transistors into single-thread performance. Unfortu-
nately, power constraints are forcing engineers to integrate multiple cores onto a single die in an attempt to
continue performance scaling, albeit only for parallel applications. (Data gathered from publicly available
data-sheets, press-releases, and SPECint benchmark results. Some data gathered by M. Horowitz, F. Labonte,
O. Shacham, K. Olukoton, and L. Hammond of Stanford University. Single-thread performance is reported as
the most recent SPECint results normalized to the performance of an Intel 80286 processor. SPECint results
for many recent processors include auto-parallelization making it difficult to estimate single-thread perfor-
mance. Conversion factors for different SPECint benchmark suites are developed by analyzing processors
that have SPECint results for more than one suite.)

14

Trends in Transistors, Performance, and
Power for General-Purpose Processors

C. F. Batten. Simplified vector-thread architectures for flexible and
efficient data-parallel accelerators. PhD thesis, Massachusetts
Institute of Technology, Department of Electrical Engineering and
Computer Science, 2010.

5

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

The TOP500 List Development over Time

Ju
n.
93

N
ov
.9
3

Ju
n.
94

N
ov
.9
4

Ju
n.
95

N
ov
.9
5

Ju
n.
96

N
ov
.9
6

Ju
n.
97

N
ov
.9
7

Ju
n.
98

N
ov
.9
8

Ju
n.
99

N
ov
.9
9

Ju
n.
00

N
ov
.0
0

Ju
n.
01

N
ov
.0
1

Ju
n.
02

N
ov
.0
2

Ju
n.
03

N
ov
.0
3

Ju
n.
04

N
ov
.0
4

Ju
n.
05

N
ov
.0
5

Ju
n.
06

N
ov
.0
6

Ju
n.
07

N
ov
.0
7

Ju
n.
08

N
ov
.0
8

Ju
n.
09

N
ov
.0
9

Ju
n.
10

N
ov
.1
0

Ju
n.
11

N
ov
.1
1

Ju
n.
12

N
ov
.1
2

Ju
n.
13

N
ov
.1
3

Ju
n.
14

N
ov
.1
4

Ju
n.
15

60
32
18
16
14
12
10
9
8
6
4
2
1

0

100

200

300

400

500

Ju
n.
93

No
v.
93

Ju
n.
94

No
v.
94

Ju
n.
95

No
v.
95

Ju
n.
96

No
v.
96

Ju
n.
97

No
v.
97

Ju
n.
98

No
v.
98

Ju
n.
99

No
v.
99

Ju
n.
00

No
v.
00

Ju
n.
01

No
v.
01

Ju
n.
02

No
v.
02

Ju
n.
03

No
v.
03

Ju
n.
04

No
v.
04

Ju
n.
05

No
v.
05

Ju
n.
06

No
v.
06

Ju
n.
07

No
v.
07

Ju
n.
08

No
v.
08

Ju
n.
09

No
v.
09

Ju
n.
10

No
v.
10

Ju
n.
11

No
v.
11

Ju
n.
12

No
v.
12

Ju
n.
13

No
v.
13

Ju
n.
14

No
v.
14

Ju
n.
15

Hybrid
Other
IBM
Intel
NVIDIA
AMD
N/A

0

100

200

300

400

500

Cores per Socket

Accelerators

6

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

The TOP500 List Development over Time

Ju
n.
93

N
ov
.9
3

Ju
n.
94

N
ov
.9
4

Ju
n.
95

N
ov
.9
5

Ju
n.
96

N
ov
.9
6

Ju
n.
97

N
ov
.9
7

Ju
n.
98

N
ov
.9
8

Ju
n.
99

N
ov
.9
9

Ju
n.
00

N
ov
.0
0

Ju
n.
01

N
ov
.0
1

Ju
n.
02

N
ov
.0
2

Ju
n.
03

N
ov
.0
3

Ju
n.
04

N
ov
.0
4

Ju
n.
05

N
ov
.0
5

Ju
n.
06

N
ov
.0
6

Ju
n.
07

N
ov
.0
7

Ju
n.
08

N
ov
.0
8

Ju
n.
09

N
ov
.0
9

Ju
n.
10

N
ov
.1
0

Ju
n.
11

N
ov
.1
1

Ju
n.
12

N
ov
.1
2

Ju
n.
13

N
ov
.1
3

Ju
n.
14

N
ov
.1
4

Ju
n.
15

60
32
18
16
14
12
10
9
8
6
4
2
1

0

100

200

300

400

500

Ju
n.
93

No
v.
93

Ju
n.
94

No
v.
94

Ju
n.
95

No
v.
95

Ju
n.
96

No
v.
96

Ju
n.
97

No
v.
97

Ju
n.
98

No
v.
98

Ju
n.
99

No
v.
99

Ju
n.
00

No
v.
00

Ju
n.
01

No
v.
01

Ju
n.
02

No
v.
02

Ju
n.
03

No
v.
03

Ju
n.
04

No
v.
04

Ju
n.
05

No
v.
05

Ju
n.
06

No
v.
06

Ju
n.
07

No
v.
07

Ju
n.
08

No
v.
08

Ju
n.
09

No
v.
09

Ju
n.
10

No
v.
10

Ju
n.
11

No
v.
11

Ju
n.
12

No
v.
12

Ju
n.
13

No
v.
13

Ju
n.
14

No
v.
14

Ju
n.
15

Hybrid
Other
IBM
Intel
NVIDIA
AMD
N/A

0

100

200

300

400

500

Cores per Socket

Accelerators

6

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

The TOP500 List Development over Time

Ju
n.
93

N
ov
.9
3

Ju
n.
94

N
ov
.9
4

Ju
n.
95

N
ov
.9
5

Ju
n.
96

N
ov
.9
6

Ju
n.
97

N
ov
.9
7

Ju
n.
98

N
ov
.9
8

Ju
n.
99

N
ov
.9
9

Ju
n.
00

N
ov
.0
0

Ju
n.
01

N
ov
.0
1

Ju
n.
02

N
ov
.0
2

Ju
n.
03

N
ov
.0
3

Ju
n.
04

N
ov
.0
4

Ju
n.
05

N
ov
.0
5

Ju
n.
06

N
ov
.0
6

Ju
n.
07

N
ov
.0
7

Ju
n.
08

N
ov
.0
8

Ju
n.
09

N
ov
.0
9

Ju
n.
10

N
ov
.1
0

Ju
n.
11

N
ov
.1
1

Ju
n.
12

N
ov
.1
2

Ju
n.
13

N
ov
.1
3

Ju
n.
14

N
ov
.1
4

Ju
n.
15

60
32
18
16
14
12
10
9
8
6
4
2
1

0

100

200

300

400

500

Ju
n.
93

No
v.
93

Ju
n.
94

No
v.
94

Ju
n.
95

No
v.
95

Ju
n.
96

No
v.
96

Ju
n.
97

No
v.
97

Ju
n.
98

No
v.
98

Ju
n.
99

No
v.
99

Ju
n.
00

No
v.
00

Ju
n.
01

No
v.
01

Ju
n.
02

No
v.
02

Ju
n.
03

No
v.
03

Ju
n.
04

No
v.
04

Ju
n.
05

No
v.
05

Ju
n.
06

No
v.
06

Ju
n.
07

No
v.
07

Ju
n.
08

No
v.
08

Ju
n.
09

No
v.
09

Ju
n.
10

No
v.
10

Ju
n.
11

No
v.
11

Ju
n.
12

No
v.
12

Ju
n.
13

No
v.
13

Ju
n.
14

No
v.
14

Ju
n.
15

Hybrid
Other
IBM
Intel
NVIDIA
AMD
N/A

0

100

200

300

400

500

Cores per Socket

Accelerators

6

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

A New “Software Crisis”

• Modeling reality in software is already difficult

• Hardware architecture with multiple levels of increasing
complexity

• How do we distribute computations?

• How do we distribute data?

7

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Extraction of Parallelism

• libraries

• compiler directives

• programming languages

• parallelizing compilers

8

Pr
od

uc
tiv

ity
-

+

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Extraction of Parallelism

• libraries

• compiler directives

• programming languages

• parallelizing compilers

8

Pr
od

uc
tiv

ity
-

+

Our Proposal:

Source-to-Source Parallelizing
Compiler for CPUs and GPUs

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Extraction of Locality

• The Locality Principle: temporal & spatial clustering

• Techniques to improve locality:

• loop interchange, fission and fusion of loops and arrays, tiling…

• hardware and software prefetching

• data placement

• design of ad-hoc memory systems

• Implemented in compiler frameworks

9

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Extraction of Locality

• The Locality Principle: temporal & spatial clustering

• Techniques to improve locality:

• loop interchange, fission and fusion of loops and arrays, tiling…

• hardware and software prefetching

• data placement

• design of ad-hoc memory systems

• Implemented in compiler frameworks

9

Our Proposal:

Affine Reconstruction of Code from a

Trace of Memory Accesses

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Conclusions

10

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

2. A Novel Compiler Support for Multicore Systems

• KIR: A diKernel-based IR

• Automatic Partitioning driven by the KIR

• Automatic Parallelization of the Benchmark Suite

• Experimental Evaluation

11

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

2. A Novel Compiler Support for Multicore Systems

• KIR: A diKernel-based IR

• Automatic Partitioning driven by the KIR

• Automatic Parallelization of the Benchmark Suite

• Experimental Evaluation

12

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

State-of-the-art vs. Our Approach

• Current parallelizing compilers are based on systems of
equations that respect all dependences of statement-
based IRs even if they are merely implementation artifacts

• Our approach:

13

Sequential
C/Fortran
Source
Code

OpenMP-
enabled
Parallel

C/Fortran
Source
Code

Compiler IR
(ASTs,
DDG,
CFG)

Construction of the KIR Automatic Partitioning

diKernel
Recognition

Classification
of diK-level

Dependences
Execution
Scopes

Spurious
diK-level

Dependences
Parallelization

Strategy

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Standard Statement-based IR

14

BB0

BB1

BB2

BB3

BB4

BB5

i = 0;

t = 0;

t = t + A[i][j] * x[j];

y[i] = t;

i++;

if (i < n)

j = 0;

j++;

if (j < m)

F

(1)

T

(2)

(2)

(2)

(2)

(2)

(2)

(1)

(1)
(1)

T

F

16 Chapter 2. A Novel Compiler Support for Multicore Systems

partitioning technique that generates a parallel counterpart for a sequential ap-
plication targeting multicore processors. Next, Section 2.1.1 formally defines the
KIR and Section 2.1.2 sketches the KIR-driven automatic partitioning procedure.

2.1.1 KIR: A diKernel-based Intermediate Representation

Without loss of generality, assume that the source code of a program is repre-
sented by a statement-based IR that consists of a forest of ASTs, a DDG and
a CFG. For illustrative purposes, Figure 2.2 shows an implementation of the
dense matrix-vector multiplication. In each iteration i of the outer loop fori, the
dot product of the ith row of matrix A and vector x is computed (see lines 2–5).
Next, the result is stored in the ith element of vector y (line 6). Figure 2.3 presents
an excerpt of a typical IR where ASTs represent the source code statements.
The CFG groups the ASTs into basic blocks (dashed boxes) with precedence re-
lationships (dashed edges). Loops are represented with preheader, header and
latch basic blocks (BB) that initialize the loop index, check the loop exit condi-
tion and increment the loop index (see BB0, BB5 and BB4, respectively, for the
loop f ori). Finally, the DDG exhibits data dependences between statements (solid
edges).

The construction of the KIR consists of three steps: first, the construction
of the diKernels of the program and their data dependence relationships (Def-
initions 2.1.1–2.1.2); second, the construction of the flow dependences between
diKernels (Definitions 2.1.3–2.1.5); and third, the construction of the hierarchy of
execution scopes (Definitions 2.1.6–2.1.8), which reflects the computational stages
of the sequential program and groups diKernels into these stages.

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

Figure 2.2 – Source code of the dense matrix-vector multiplication.

BB0, BB5 & BB4

BB1, BB3 & BB2

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

diKernel: Domain-Independent
Computational Kernel

• Characterizes the computations carried out in a program
without being affected by how they are coded

• SCC of the DDG ignoring flow-of-control statements

15

TEXT LEVEL
(ASCII code)

SYNTACTIC LEVEL
(abstract syntax tree)

SEMANTIC LEVEL

(control flow and
data dependence graphs)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

DOMAIN-SPECIFIC
CONCEPT LEVEL

(problem solving methods
and application domain)

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Building the KIR (I)

BB0

BB1

BB2

BB3

BB4

BB5

i = 0;

t = 0;

t = t + A[i][j] * x[j];

y[i] = t;

i++;

if (i < n)

j = 0;

j++;

if (j < m)

F

(1)

T

(2)

(2)

(2)

(2)

(2)

(2)

(1)

(1)
(1)

T

F

K < iBB0 >

K < iBB4 >

K < yBB4 >

K < jBB1 >

K < tBB2 >

K < tBB1 >K < jBB2 >

16 Chapter 2. A Novel Compiler Support for Multicore Systems

partitioning technique that generates a parallel counterpart for a sequential ap-
plication targeting multicore processors. Next, Section 2.1.1 formally defines the
KIR and Section 2.1.2 sketches the KIR-driven automatic partitioning procedure.

2.1.1 KIR: A diKernel-based Intermediate Representation

Without loss of generality, assume that the source code of a program is repre-
sented by a statement-based IR that consists of a forest of ASTs, a DDG and
a CFG. For illustrative purposes, Figure 2.2 shows an implementation of the
dense matrix-vector multiplication. In each iteration i of the outer loop fori, the
dot product of the ith row of matrix A and vector x is computed (see lines 2–5).
Next, the result is stored in the ith element of vector y (line 6). Figure 2.3 presents
an excerpt of a typical IR where ASTs represent the source code statements.
The CFG groups the ASTs into basic blocks (dashed boxes) with precedence re-
lationships (dashed edges). Loops are represented with preheader, header and
latch basic blocks (BB) that initialize the loop index, check the loop exit condi-
tion and increment the loop index (see BB0, BB5 and BB4, respectively, for the
loop f ori). Finally, the DDG exhibits data dependences between statements (solid
edges).

The construction of the KIR consists of three steps: first, the construction
of the diKernels of the program and their data dependence relationships (Def-
initions 2.1.1–2.1.2); second, the construction of the flow dependences between
diKernels (Definitions 2.1.3–2.1.5); and third, the construction of the hierarchy of
execution scopes (Definitions 2.1.6–2.1.8), which reflects the computational stages
of the sequential program and groups diKernels into these stages.

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

Figure 2.2 – Source code of the dense matrix-vector multiplication.

Edges (1), (2) are abstracted
with diKernels

16

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

diKernel-level Flow Dependences

• Identification of the flow of information across the
program

• Statement-level dominance

• Range of values of variable x produced and used
throughout the execution of statements

17

20 Chapter 2. A Novel Compiler Support for Multicore Systems

Definition 2.1.4. Let xi and yj be ASTs representing statements of a program that define
values from variables x and y, respectively.

• DEF(x, xi) is the range of values of variable x produced throughout the execu-
tion of statement xi.

• USE(x, yj) is the range of values of variable x used throughout the execution of
statement yj.

Definition 2.1.5. Let K<x1 . . . xn> ! K<y1 . . . ym> be a diKernel-level data depen-
dence that connects diKernels Kx and Ky through the DDG edge xi ! yj. We say that it
is a diKernel-level flow dependence, Kx · Ky, if it holds that statement xi dominates
statement yj and DEF(x, xi) ◆ USE(x, yj).

For illustrative purposes, Figure 2.4 highlights the diKernel-level flow depen-
dences of the diKernel-level data dependence graph. As can be seen, K<iBB0> ·

K<iBB4> represents the flow between the initialization of the loop index i in the
preheader of the loop (BB0) and its update in the latch of the loop (BB4). The
two conditions hold as follows: first, the statement iBB0 dominates the state-
ment iBB4 because BB0 dominates BB4; and second, i is a scalar variable, thus
DEF(i, iBB0) = USE(i, iBB4) = {i}. The source code of the dense matrix-vector
multiplication of Figure 2.2 does not contain diKernel-level flow dependences
between non-scalar variables. Note that, in many programs, dependences are
coded in very complex ways, for instance, through the usage of pointers. Our
approach deals with pointers in the algorithm for recognition of diKernels [16],
which applies array recovery techniques to transform pointer-based programs into
a semantically equivalent array-based form (similar to [52]). Illustrative examples
of ranges of values of non-scalar variables (both array-based and pointer-based)
produced/used in different statements will be described later in Section 2.2.

The third step in the construction of the KIR is to build the hierarchy of execu-
tion scopes. Typically, loops often consume most of the execution time and thus
optimizations that improve their performance may have a significant impact on
the overall efficiency. The goal of the hierarchy of execution scopes is to expose
the computational stages of the program to the compiler. For this purpose, execu-
tion scopes are built upon loops (Definition 2.1.6) and organized in a hierarchy of

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Building the KIR (II)

18

BB0

BB1

BB2

BB3

BB4

BB5

i = 0;

t = 0;

t = t + A[i][j] * x[j];

y[i] = t;

i++;

if (i < n)

j = 0;

j++;

if (j < m)

F

(1)

T

(2)

(2)

(2)

(2)

(2)

(2)

(1)

(1)
(1)

T

F

K < iBB0 >

K < iBB4 >

K < yBB4 >

K < jBB1 >

K < tBB2 >

K < tBB1 >K < jBB2 >

i=0 dominates i++
DEF(i,i=0)⊇USE(i,i++)

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Hierarchy of Execution Scopes

• To expose the computational stages of the program

• Based on the hierarchy of loops: one execution scope for
each perfect loop nest

• The root execution scope is a special node that represents
the program as a whole.

• diKernels belong to the innermost execution scope that
contains all of their statements

• diKernels that compute the loop indices belong to the ES
of the corresponding loop

19

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Building the KIR (and III)

20

16 Chapter 2. A Novel Compiler Support for Multicore Systems

partitioning technique that generates a parallel counterpart for a sequential ap-
plication targeting multicore processors. Next, Section 2.1.1 formally defines the
KIR and Section 2.1.2 sketches the KIR-driven automatic partitioning procedure.

2.1.1 KIR: A diKernel-based Intermediate Representation

Without loss of generality, assume that the source code of a program is repre-
sented by a statement-based IR that consists of a forest of ASTs, a DDG and
a CFG. For illustrative purposes, Figure 2.2 shows an implementation of the
dense matrix-vector multiplication. In each iteration i of the outer loop fori, the
dot product of the ith row of matrix A and vector x is computed (see lines 2–5).
Next, the result is stored in the ith element of vector y (line 6). Figure 2.3 presents
an excerpt of a typical IR where ASTs represent the source code statements.
The CFG groups the ASTs into basic blocks (dashed boxes) with precedence re-
lationships (dashed edges). Loops are represented with preheader, header and
latch basic blocks (BB) that initialize the loop index, check the loop exit condi-
tion and increment the loop index (see BB0, BB5 and BB4, respectively, for the
loop f ori). Finally, the DDG exhibits data dependences between statements (solid
edges).

The construction of the KIR consists of three steps: first, the construction
of the diKernels of the program and their data dependence relationships (Def-
initions 2.1.1–2.1.2); second, the construction of the flow dependences between
diKernels (Definitions 2.1.3–2.1.5); and third, the construction of the hierarchy of
execution scopes (Definitions 2.1.6–2.1.8), which reflects the computational stages
of the sequential program and groups diKernels into these stages.

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

Figure 2.2 – Source code of the dense matrix-vector multiplication.

K < iBB0 >

K < iBB4 >

K < yBB4 >

K < jBB1 >

K < tBB2 >

K < tBB1 >K < jBB2 >

ROOT EXECUTION SCOPE

ES_fori (Figure 2.2, lines 1-7)

ES_forj (Figure 2.2, lines 3-5)

K < tBB1 >
scalar assignment

K < tBB2 >
scalar reduction

K < yBB4 >
regular assignment

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

2. A Novel Compiler Support for Multicore Systems

• KIR: A diKernel-based IR

• Automatic Partitioning driven by the KIR

• Automatic Parallelization of the Benchmark Suite

• Experimental Evaluation

21

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Spurious diKernel-level Dependences

• They do not prevent the parallelization

22

ROOT EXECUTION SCOPE

ES_fori (Figure 2.2, lines 1-7)

ES_forj (Figure 2.2, lines 3-5)

K < tBB1 >
scalar assignment

K < tBB2 >
scalar reduction

K < yBB4 >
regular assignment

t is a privatizable
scalar variable

16 Chapter 2. A Novel Compiler Support for Multicore Systems

partitioning technique that generates a parallel counterpart for a sequential ap-
plication targeting multicore processors. Next, Section 2.1.1 formally defines the
KIR and Section 2.1.2 sketches the KIR-driven automatic partitioning procedure.

2.1.1 KIR: A diKernel-based Intermediate Representation

Without loss of generality, assume that the source code of a program is repre-
sented by a statement-based IR that consists of a forest of ASTs, a DDG and
a CFG. For illustrative purposes, Figure 2.2 shows an implementation of the
dense matrix-vector multiplication. In each iteration i of the outer loop fori, the
dot product of the ith row of matrix A and vector x is computed (see lines 2–5).
Next, the result is stored in the ith element of vector y (line 6). Figure 2.3 presents
an excerpt of a typical IR where ASTs represent the source code statements.
The CFG groups the ASTs into basic blocks (dashed boxes) with precedence re-
lationships (dashed edges). Loops are represented with preheader, header and
latch basic blocks (BB) that initialize the loop index, check the loop exit condi-
tion and increment the loop index (see BB0, BB5 and BB4, respectively, for the
loop f ori). Finally, the DDG exhibits data dependences between statements (solid
edges).

The construction of the KIR consists of three steps: first, the construction
of the diKernels of the program and their data dependence relationships (Def-
initions 2.1.1–2.1.2); second, the construction of the flow dependences between
diKernels (Definitions 2.1.3–2.1.5); and third, the construction of the hierarchy of
execution scopes (Definitions 2.1.6–2.1.8), which reflects the computational stages
of the sequential program and groups diKernels into these stages.

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

Figure 2.2 – Source code of the dense matrix-vector multiplication.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

OpenMP-enabled Parallelization Strategy

• Find the critical path in the KIR

• diKernel-level flow dependences

• Parallelizing transformations for each type of diKernel

• Optimizations for the joint parallelization of loops

• Minimize synchronization between diKernels

• Minimize thread creation/destruction

23

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Parallelizing Transformations

24

FULLY PARALLEL LOOP PARTIALLY PARALLEL LOOP

1. #pragma omp parallel for
2. for (i = 0; i < n; i++) {
3. A[i] = 2
4. }

Array Expansion

1. r = 0;
2. #pragma omp parallel for reduction(+:r)
3. for (i = 0; i < n; i++) {
4. r = r + A[i];
5. }

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Automatic Partitioning driven by the KIR (I)

25

ROOT EXECUTION SCOPE

ES_fori (Figure 2.2, lines 1-7)

ES_forj (Figure 2.2, lines 3-5)

K < tBB1 >
scalar assignment

K < tBB2 >
scalar reduction

K < yBB4 >
regular assignment

critical path

16 Chapter 2. A Novel Compiler Support for Multicore Systems

partitioning technique that generates a parallel counterpart for a sequential ap-
plication targeting multicore processors. Next, Section 2.1.1 formally defines the
KIR and Section 2.1.2 sketches the KIR-driven automatic partitioning procedure.

2.1.1 KIR: A diKernel-based Intermediate Representation

Without loss of generality, assume that the source code of a program is repre-
sented by a statement-based IR that consists of a forest of ASTs, a DDG and
a CFG. For illustrative purposes, Figure 2.2 shows an implementation of the
dense matrix-vector multiplication. In each iteration i of the outer loop fori, the
dot product of the ith row of matrix A and vector x is computed (see lines 2–5).
Next, the result is stored in the ith element of vector y (line 6). Figure 2.3 presents
an excerpt of a typical IR where ASTs represent the source code statements.
The CFG groups the ASTs into basic blocks (dashed boxes) with precedence re-
lationships (dashed edges). Loops are represented with preheader, header and
latch basic blocks (BB) that initialize the loop index, check the loop exit condi-
tion and increment the loop index (see BB0, BB5 and BB4, respectively, for the
loop f ori). Finally, the DDG exhibits data dependences between statements (solid
edges).

The construction of the KIR consists of three steps: first, the construction
of the diKernels of the program and their data dependence relationships (Def-
initions 2.1.1–2.1.2); second, the construction of the flow dependences between
diKernels (Definitions 2.1.3–2.1.5); and third, the construction of the hierarchy of
execution scopes (Definitions 2.1.6–2.1.8), which reflects the computational stages
of the sequential program and groups diKernels into these stages.

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

Figure 2.2 – Source code of the dense matrix-vector multiplication.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Automatic Partitioning driven by the KIR (and II)

26

ROOT EXECUTION SCOPE

ES_fori (Figure 2.2, lines 1-7)

ES_forj (Figure 2.2, lines 3-5)

K < tBB1 >
scalar assignment

K < tBB2 >
scalar reduction

K < yBB4 >
regular assignment

critical path

26 Chapter 2. A Novel Compiler Support for Multicore Systems

1 #pragma omp parallel shared(A,x,y) private(i,j,t)
2 {
3 #pragma omp for schedule(static)
4 for (i = 0; i < n; i = i + 1) {
5 t = 0;
6 for (j = 0; j < m; j = j + 1) {
7 t = (t) + ((A[i][j]) * (x[j]));
8 }
9 y[i] = t;

10 }
11 }

Figure 2.6 – Parallelized code of the dense matrix-vector multiplication of Fig-
ure 2.2.

synthetic benchmarks that represent the main types of diKernels. Sections 2.2.2
and 2.2.3 describe important routines from dense/sparse linear algebra and im-
age processing. Finally, Sections 2.2.4 and 2.2.5 focus on two full-scale applica-
tions from the SPEC CPU2000 benchmark suite.

2.2.1 Synthetic Benchmarks

Some simple implementations of assignment, reduction and recurrence
diKernels are shown in Figure 2.7 (see Appendix A for the definition of each
type of diKernel). In all cases, the KIR consists of one execution scope ES_fori
(apart from the root execution scope) that contains one diKernel (either K<r3>

or K<A2>). Note that the subindex refers to the line number (e.g. the term r3

refers to the assignment-statement r=r+i in line 3 of Figure 2.7c). The most rele-
vant difference between the examples is the type of diKernel (see the captions of
Figure 2.7).

From the point of view of the automatic partitioning strategy, the examples
of Figure 2.7 present a critical path composed of one diKernel. The paralleliz-
ing strategy hinges on the existence of parallelizing transformations specifically
designed for each type of diKernel. As a result, the regular assignment of Fig-
ure 2.7a and the regular reduction of Figure 2.7f represent conflict-free loop it-
erations that are transformed into forall parallel loops [2]. The scalar reductions
of Figures 2.7c–2.7e are executed as parallel reductions, which are usually sup-

FULLY PARALLEL LOOP

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

2. A Novel Compiler Support for Multicore Systems

• KIR: A diKernel-based IR

• Automatic Partitioning driven by the KIR

• Automatic Parallelization of the Benchmark Suite

• Experimental Evaluation

27

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Automatic Parallelization of the Benchmark Suite

• Synthetic Benchmarks

• Dense/Sparse Matrix-Vector Multiplication

• Sobel Edge Filter

• SWIM from SPEC CPU2000

• EQUAKE from SPEC CPU2000

28

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

DenseAMUX & SparseAMUX

2.2 Automatic Parallelization of the Benchmark Suite 29

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

(a) Source code of DenseAMUX (dense matrix-
vector multiplication).

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = ia[i]; j < ia[i+1]-1; j++) {
4 t = t + A[j] * x[ja[j]];
5 }
6 y[i] = t;
7 }

(b) Source code of routine AMUX from
SparsKit-II.

(c) KIR for DenseAMUX and AMUX.

1 #pragma omp parallel shared(A,ia,ja,x,y) private(i,j,t)
2 {
3 #pragma omp for schedule(static)
4 for (i = 0; i < n; i++) {
5 t = 0;
6 for (j = ia[i]; j < (ia[i+1] - 1); j = j + 1) {
7 t = (t) + ((A[j]) * (x[ja[j]]));
8 }
9 y[i] = t;

10 }
11 }

(d) Parallelized code of the routine AMUX.

Figure 2.8 – Dense and sparse matrix-vector multiplication.

2.2 Automatic Parallelization of the Benchmark Suite 29

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

(a) Source code of DenseAMUX (dense matrix-
vector multiplication).

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = ia[i]; j < ia[i+1]-1; j++) {
4 t = t + A[j] * x[ja[j]];
5 }
6 y[i] = t;
7 }

(b) Source code of routine AMUX from
SparsKit-II.

(c) KIR for DenseAMUX and AMUX.

1 #pragma omp parallel shared(A,ia,ja,x,y) private(i,j,t)
2 {
3 #pragma omp for schedule(static)
4 for (i = 0; i < n; i++) {
5 t = 0;
6 for (j = ia[i]; j < (ia[i+1] - 1); j = j + 1) {
7 t = (t) + ((A[j]) * (x[ja[j]]));
8 }
9 y[i] = t;

10 }
11 }

(d) Parallelized code of the routine AMUX.

Figure 2.8 – Dense and sparse matrix-vector multiplication.

ROOT EXECUTION SCOPE

ES_fori (Figures 2.8a and 2.8b, lines 1-7)

ES_forj (Figures 2.8a and 2.8b, lines 3-5)

K < t2 >
scalar assignment

K < t4 >
scalar reduction

K < y6 >
regular assignment

DenseAMUX

SparseAMUX

29

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

SparseAMUX

2.2 Automatic Parallelization of the Benchmark Suite 29

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = 0; j < m; j++) {
4 t = t + A[i][j] * x[j];
5 }
6 y[i] = t;
7 }

(a) Source code of DenseAMUX (dense matrix-
vector multiplication).

1 for (i = 0; i < n; i++) {
2 t = 0;
3 for (j = ia[i]; j < ia[i+1]-1; j++) {
4 t = t + A[j] * x[ja[j]];
5 }
6 y[i] = t;
7 }

(b) Source code of routine AMUX from
SparsKit-II.

(c) KIR for DenseAMUX and AMUX.

1 #pragma omp parallel shared(A,ia,ja,x,y) private(i,j,t)
2 {
3 #pragma omp for schedule(static)
4 for (i = 0; i < n; i++) {
5 t = 0;
6 for (j = ia[i]; j < (ia[i+1] - 1); j = j + 1) {
7 t = (t) + ((A[j]) * (x[ja[j]]));
8 }
9 y[i] = t;

10 }
11 }

(d) Parallelized code of the routine AMUX.

Figure 2.8 – Dense and sparse matrix-vector multiplication.

ROOT EXECUTION SCOPE

ES_fori (Figures 2.8a and 2.8b, lines 1-7)

ES_forj (Figures 2.8a and 2.8b, lines 3-5)

K < t2 >
scalar assignment

K < t4 >
scalar reduction

K < y6 >
regular assignment

FULLY PARALLEL LOOP

30

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

AMUXMS & ATMUX

ROOT EXECUTION SCOPE

ES_forj,l (Figures 2.9a and 2.9b, lines 4-8)

ES_fori (Figures 2.9a and 2.9b, lines 1-3)

< y6 >
irregular reduction

< y2 >
regular assignment

30 Chapter 2. A Novel Compiler Support for Multicore Systems

1 for (i = 0; i < n; i++) {
2 y[i] = A[i] * x[i];
3 }
4 for (j = 0; j < n; j++) {
5 for (l = ja[j]; l < ja[j+1]-1; l++) {
6 y[j] = y[j] + A[l] * x[ja[l]];
7 }
8 }

(a) Source code of routine AMUXMS from
SparsKit-II.

1 for (i = 0; i < n; i++) {
2 y[i] = 0;
3 }
4 for (j = 0; j < n; j++) {
5 for (l = ia[j]; l < ia[j+1]-1; l++) {
6 y[ja[l]] = y[ja[l]] + x[j] * A[l];
7 }
8 }

(b) Source code of routine ATMUX from
SparsKit-II.

(c) KIR for AMUXMS and ATMUX.

Figure 2.9 – Variations of sparse matrix-vector multiplication.

30 Chapter 2. A Novel Compiler Support for Multicore Systems

1 for (i = 0; i < n; i++) {
2 y[i] = A[i] * x[i];
3 }
4 for (j = 0; j < n; j++) {
5 for (l = ja[j]; l < ja[j+1]-1; l++) {
6 y[j] = y[j] + A[l] * x[ja[l]];
7 }
8 }

(a) Source code of routine AMUXMS from
SparsKit-II.

1 for (i = 0; i < n; i++) {
2 y[i] = 0;
3 }
4 for (j = 0; j < n; j++) {
5 for (l = ia[j]; l < ia[j+1]-1; l++) {
6 y[ja[l]] = y[ja[l]] + x[j] * A[l];
7 }
8 }

(b) Source code of routine ATMUX from
SparsKit-II.

(c) KIR for AMUXMS and ATMUX.

Figure 2.9 – Variations of sparse matrix-vector multiplication.

AMUXMS

ATMUX

31

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

AMUXMS

ROOT EXECUTION SCOPE

ES_forj,l (Figures 2.9a and 2.9b, lines 4-8)

ES_fori (Figures 2.9a and 2.9b, lines 1-3)

< y6 >
irregular reduction

< y2 >
regular assignment

32 Chapter 2. A Novel Compiler Support for Multicore Systems

1 #pragma omp parallel shared(A,x,ja,y) private(i,j,l,t)
2 {
3 #pragma omp for schedule(static) nowait
4 for (i = 0; i < n; i = i + 1) {
5 y[i] = (A[i]) * (x[i]);
6 }
7 #pragma omp for schedule(static)
8 for (j = 0; j < n; j = j + 1) {
9 for (l = ja[j]; l < (ja[j+1] - 1); l = l + 1) {

10 y[j] = (y[j]) + ((A[l]) * (x[ja[l]]));
11 }
12 }
13 }

(a) Parallelized code of routine AMUXMS of Figure 2.9a.

1 #pragma omp parallel shared(A,ia,ja,x,y) private(i,j,l,y___private)
2 {
3 if (omp_get_thread_num() == 0) {
4 y___private = y;
5 } else {
6 y___private = (float *) malloc(n * sizeof(float));
7 }
8 for (i = 0; i < n; i = i + 1) {
9 y___private[i] = 0;

10 }
11 #pragma omp for schedule(static)
12 for (j = 0; j < n; j = j + 1) {
13 for (l = ia[j]; l < (ia[j+1] - 1); l = l + 1) {
14 y___private[ja[l]] = (y___private[ja[l]]) + ((x[j]) * (A[l]));
15 }
16 }
17 #pragma omp critical
18 if (omp_get_thread_num() != 0) {
19 for (i = 0; i < n; i = i + 1) {
20 y[i] += y___private[i];
21 }
22 }
23 if (omp_get_thread_num() != 0) {
24 free(y___private);
25 }
26 }

(b) Parallelized code of routine ATMUX of Figure 2.9b.

Figure 2.10 – Parallelized codes of variations of the sparse matrix-vector multipli-
cation.

FULLY PARALLEL LOOP

32

FULLY PARALLEL LOOP

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

ATMUX

ROOT EXECUTION SCOPE

ES_forj,l (Figures 2.9a and 2.9b, lines 4-8)

ES_fori (Figures 2.9a and 2.9b, lines 1-3)

< y6 >
irregular reduction

< y2 >
regular assignment

32 Chapter 2. A Novel Compiler Support for Multicore Systems

1 #pragma omp parallel shared(A,x,ja,y) private(i,j,l,t)
2 {
3 #pragma omp for schedule(static) nowait
4 for (i = 0; i < n; i = i + 1) {
5 y[i] = (A[i]) * (x[i]);
6 }
7 #pragma omp for schedule(static)
8 for (j = 0; j < n; j = j + 1) {
9 for (l = ja[j]; l < (ja[j+1] - 1); l = l + 1) {

10 y[j] = (y[j]) + ((A[l]) * (x[ja[l]]));
11 }
12 }
13 }

(a) Parallelized code of routine AMUXMS of Figure 2.9a.

1 #pragma omp parallel shared(A,ia,ja,x,y) private(i,j,l,y___private)
2 {
3 if (omp_get_thread_num() == 0) {
4 y___private = y;
5 } else {
6 y___private = (float *) malloc(n * sizeof(float));
7 }
8 for (i = 0; i < n; i = i + 1) {
9 y___private[i] = 0;

10 }
11 #pragma omp for schedule(static)
12 for (j = 0; j < n; j = j + 1) {
13 for (l = ia[j]; l < (ia[j+1] - 1); l = l + 1) {
14 y___private[ja[l]] = (y___private[ja[l]]) + ((x[j]) * (A[l]));
15 }
16 }
17 #pragma omp critical
18 if (omp_get_thread_num() != 0) {
19 for (i = 0; i < n; i = i + 1) {
20 y[i] += y___private[i];
21 }
22 }
23 if (omp_get_thread_num() != 0) {
24 free(y___private);
25 }
26 }

(b) Parallelized code of routine ATMUX of Figure 2.9b.

Figure 2.10 – Parallelized codes of variations of the sparse matrix-vector multipli-
cation.

PARTIALLY PARALLEL LOOP

Initialization

Computation

Reduction

33

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

EQUAKE (I)

34

2.2 Automatic Parallelization of the Benchmark Suite 43

1 for (iter = 1; iter <= timesteps; iter++) {
2 for (i = 0; i < ARCHnodes; i++)
3 for (j = 0; j < 3; j++)
4 disp[disptplus][i][j] = 0.0;
5 for (i = 0; i < ARCHnodes; i++) {
6 Anext = ARCHmatrixindex[i]; Alast = ARCHmatrixindex[i+1];
7 sum0 = K[Anext][0][0] * disp[dispt][i][0]
8 + K[Anext][0][1] * disp[dispt][i][1]
9 + K[Anext][0][2] * disp[dispt][i][2];

10 sum1 = K[Anext][1][0] * ...; sum2 = K[Anext][2][0] * ...;
11 Anext++;
12 while (Anext < Alast) {
13 col = ARCHmatrixcol[Anext];
14 sum0 += K[Anext][0][0] * disp[dispt][col][0]
15 + K[Anext][0][1] * disp[dispt][col][1]
16 + K[Anext][0][2] * disp[dispt][col][2];
17 sum1 += K[Anext][1][0]*...; sum2 += K[Anext][2][0]*...;
18 disp[disptplus][col][0] +=
19 K[Anext][0][0] * disp[dispt][i][0]
20 + K[Anext][1][0] * disp[dispt][i][1]
21 + K[Anext][2][0] * disp[dispt][i][2];
22 disp[disptplus][col][1] += K[Anext][0][1] ...
23 disp[disptplus][col][2] += K[Anext][0][2] ...
24 Anext++;
25 }
26 disp[disptplus][i][0] += sum0; ...
27 }
28 time = iter * Exc.dt;
29 for (i = 0; i < ARCHnodes; i++)
30 for (j = 0; j < 3; j++)
31 disp[disptplus][i][j] *= - Exc.dt * Exc.dt;
32 for (i = 0; i < ARCHnodes; i++)
33 for (j = 0; j < 3; j++)
34 disp[disptplus][i][j] +=
35 2.0 * M[i][j] * disp[dispt][i][j]
36 - (M[i][j] - Exc.dt / 2.0 * C[i][j])
37 * disp[disptminus][i][j] - ...
38 for (i = 0; i < ARCHnodes; i++)
39 for (j = 0; j < 3; j++)
40 disp[disptplus][i][j] /= (M[i][j] + Exc.dt / 2.0 * C[i][j]);
41 for (i = 0; i < ARCHnodes; i++)
42 for (j = 0; j < 3; j++)
43 vel[i][j] = 0.5 / Exc.dt * (disp[disptplus][i][j]
44 - disp[disptminus][i][j]);
45 i = disptminus; disptminus = dispt; dispt = disptplus; disptplus = i;
46 }

Figure 2.18 – Excerpt of the source code of the EQUAKE application.

ROOT EXECUTION SCOPE

ES_foriter (Figure 2.18, lines 1-46)

ES_fori,j (Figure 2.18, lines 2-4)

ES_fori,while (Figure 2.18, lines 5-27)

ES_fori,j (Figure 2.18, lines 29-31)

ES_fori,j (Figure 2.18, lines 32-37)

ES_fori,j (Figure 2.18, lines 38-40)

ES_fori,j (Figure 2.18, lines 41-44)

< disp4 >
regular assignment

< disp26 >
irregular reduction

< disp31 >
regular reduction

< disp34 >
regular reduction

< disp40 >
regular reduction

< vel43 >
regular assignment

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

EQUAKE (II)

35

2.2 Automatic Parallelization of the Benchmark Suite 43

1 for (iter = 1; iter <= timesteps; iter++) {
2 for (i = 0; i < ARCHnodes; i++)
3 for (j = 0; j < 3; j++)
4 disp[disptplus][i][j] = 0.0;
5 for (i = 0; i < ARCHnodes; i++) {
6 Anext = ARCHmatrixindex[i]; Alast = ARCHmatrixindex[i+1];
7 sum0 = K[Anext][0][0] * disp[dispt][i][0]
8 + K[Anext][0][1] * disp[dispt][i][1]
9 + K[Anext][0][2] * disp[dispt][i][2];

10 sum1 = K[Anext][1][0] * ...; sum2 = K[Anext][2][0] * ...;
11 Anext++;
12 while (Anext < Alast) {
13 col = ARCHmatrixcol[Anext];
14 sum0 += K[Anext][0][0] * disp[dispt][col][0]
15 + K[Anext][0][1] * disp[dispt][col][1]
16 + K[Anext][0][2] * disp[dispt][col][2];
17 sum1 += K[Anext][1][0]*...; sum2 += K[Anext][2][0]*...;
18 disp[disptplus][col][0] +=
19 K[Anext][0][0] * disp[dispt][i][0]
20 + K[Anext][1][0] * disp[dispt][i][1]
21 + K[Anext][2][0] * disp[dispt][i][2];
22 disp[disptplus][col][1] += K[Anext][0][1] ...
23 disp[disptplus][col][2] += K[Anext][0][2] ...
24 Anext++;
25 }
26 disp[disptplus][i][0] += sum0; ...
27 }
28 time = iter * Exc.dt;
29 for (i = 0; i < ARCHnodes; i++)
30 for (j = 0; j < 3; j++)
31 disp[disptplus][i][j] *= - Exc.dt * Exc.dt;
32 for (i = 0; i < ARCHnodes; i++)
33 for (j = 0; j < 3; j++)
34 disp[disptplus][i][j] +=
35 2.0 * M[i][j] * disp[dispt][i][j]
36 - (M[i][j] - Exc.dt / 2.0 * C[i][j])
37 * disp[disptminus][i][j] - ...
38 for (i = 0; i < ARCHnodes; i++)
39 for (j = 0; j < 3; j++)
40 disp[disptplus][i][j] /= (M[i][j] + Exc.dt / 2.0 * C[i][j]);
41 for (i = 0; i < ARCHnodes; i++)
42 for (j = 0; j < 3; j++)
43 vel[i][j] = 0.5 / Exc.dt * (disp[disptplus][i][j]
44 - disp[disptminus][i][j]);
45 i = disptminus; disptminus = dispt; dispt = disptplus; disptplus = i;
46 }

Figure 2.18 – Excerpt of the source code of the EQUAKE application.

ROOT EXECUTION SCOPE

ES_foriter (Figure 2.18, lines 1-46)

ES_fori,j (Figure 2.18, lines 2-4)

ES_fori,while (Figure 2.18, lines 5-27)

ES_fori,j (Figure 2.18, lines 29-31)

ES_fori,j (Figure 2.18, lines 32-37)

ES_fori,j (Figure 2.18, lines 38-40)

ES_fori,j (Figure 2.18, lines 41-44)

< disp4 >
regular assignment

< disp26 >
irregular reduction

< disp31 >
regular reduction

< disp34 >
regular reduction

< disp40 >
regular reduction

< vel43 >
regular assignment

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

EQUAKE (III)

36

46 Chapter 2. A Novel Compiler Support for Multicore Systems

1 #pragma omp parallel shared(disp) private(disp___disptplus___private,...)
2 {
3 if (omp_get_thread_num() == 0) {
4 disp___disptplus___private = disp[disptplus];
5 } else {
6 disp___disptplus___private = (double **) malloc (ARCHnodes * sizeof(double *));
7 for (i = 0; i < ARCHnodes; i = i + 1)
8 disp___disptplus___private[i] = (double *) malloc(3 * sizeof(double));
9 }

10 for (iter = 1; iter < (timesteps + 1); iter = iter + 1) {
11 #pragma omp barrier
12 for (i = 0; i < ARCHnodes; i = i + 1)
13 for (j = 0; j < 3; j = j + 1)
14 disp___disptplus___private[i][j] = 0.0;
15 #pragma omp for schedule(static)
16 for (i = 0; i < ARCHnodes; i = i + 1) {
17 Anext = ARCHmatrixindex[i]; Alast = ARCHmatrixindex[i+1];
18 sum0 = K[Anext][0][0] * ...
19 Anext++;
20 while (Anext < Alast) {
21 col = ARCHmatrixcol[Anext];
22 sum0 += K[Anext][0][0] * ...
23 disp___disptplus___private[col][0] += K[Anext][0][0] * ...
24 Anext++;
25 }
26 disp___disptplus___private[i][0] += sum0; ...
27 }
28 #pragma omp critical
29 if (omp_get_thread_num() != 0)
30 for (i = 0; i < ARCHnodes; i = i + 1)
31 for (j = 0; j < 3; j = j + 1)
32 disp[disptplus][i][j] += disp___disptplus___private[i][j];
33 #pragma omp barrier
34 time = iter * Exc.dt;
35 #pragma omp for schedule(static) nowait
36 for (i = 0; i < ARCHnodes; i = i + 1)
37 for (j = 0; j < 3; j = j + 1)
38 disp[disptplus][i][j] *= - Exc.dt * Exc.dt;
39 #pragma omp for schedule(static) nowait
40 for (i = 0; i < ARCHnodes; i = i + 1)
41 for (j = 0; j < 3; j = j + 1)
42 disp[disptplus][i][j] += ...
43 #pragma omp for schedule(static) nowait
44 for (i = 0; i < ARCHnodes; i = i + 1)
45 for (j = 0; j < 3; j = j + 1)
46 disp[disptplus][i][j] /= ...
47 #pragma omp for schedule(static) nowait
48 for (i = 0; i < ARCHnodes; i = i + 1)
49 for (j = 0; j < 3; j = j + 1)
50 vel[i][j] = ...
51 i = disptminus; disptminus = dispt; dispt = disptplus; disptplus = i;
52 } /

*

for iter

*

/

53 if (omp_get_thread_num() != 0) {
54 for (i = 0; i < ARCHnodes; i = i + 1)
55 free(disp___disptplus___private[i]);
56 free(disp___disptplus___private);
57 }
58 }

Figure 2.20 – Excerpt of the parallelized code of the EQUAKE application.

PARTIALLY PARALLEL LOOP

Initialization

Computation

Reduction

Minimization of
thread creation/destruction

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

EQUAKE (and IV)

37

46 Chapter 2. A Novel Compiler Support for Multicore Systems

1 #pragma omp parallel shared(disp) private(disp___disptplus___private,...)
2 {
3 if (omp_get_thread_num() == 0) {
4 disp___disptplus___private = disp[disptplus];
5 } else {
6 disp___disptplus___private = (double **) malloc (ARCHnodes * sizeof(double *));
7 for (i = 0; i < ARCHnodes; i = i + 1)
8 disp___disptplus___private[i] = (double *) malloc(3 * sizeof(double));
9 }

10 for (iter = 1; iter < (timesteps + 1); iter = iter + 1) {
11 #pragma omp barrier
12 for (i = 0; i < ARCHnodes; i = i + 1)
13 for (j = 0; j < 3; j = j + 1)
14 disp___disptplus___private[i][j] = 0.0;
15 #pragma omp for schedule(static)
16 for (i = 0; i < ARCHnodes; i = i + 1) {
17 Anext = ARCHmatrixindex[i]; Alast = ARCHmatrixindex[i+1];
18 sum0 = K[Anext][0][0] * ...
19 Anext++;
20 while (Anext < Alast) {
21 col = ARCHmatrixcol[Anext];
22 sum0 += K[Anext][0][0] * ...
23 disp___disptplus___private[col][0] += K[Anext][0][0] * ...
24 Anext++;
25 }
26 disp___disptplus___private[i][0] += sum0; ...
27 }
28 #pragma omp critical
29 if (omp_get_thread_num() != 0)
30 for (i = 0; i < ARCHnodes; i = i + 1)
31 for (j = 0; j < 3; j = j + 1)
32 disp[disptplus][i][j] += disp___disptplus___private[i][j];
33 #pragma omp barrier
34 time = iter * Exc.dt;
35 #pragma omp for schedule(static) nowait
36 for (i = 0; i < ARCHnodes; i = i + 1)
37 for (j = 0; j < 3; j = j + 1)
38 disp[disptplus][i][j] *= - Exc.dt * Exc.dt;
39 #pragma omp for schedule(static) nowait
40 for (i = 0; i < ARCHnodes; i = i + 1)
41 for (j = 0; j < 3; j = j + 1)
42 disp[disptplus][i][j] += ...
43 #pragma omp for schedule(static) nowait
44 for (i = 0; i < ARCHnodes; i = i + 1)
45 for (j = 0; j < 3; j = j + 1)
46 disp[disptplus][i][j] /= ...
47 #pragma omp for schedule(static) nowait
48 for (i = 0; i < ARCHnodes; i = i + 1)
49 for (j = 0; j < 3; j = j + 1)
50 vel[i][j] = ...
51 i = disptminus; disptminus = dispt; dispt = disptplus; disptplus = i;
52 } /

*

for iter

*

/

53 if (omp_get_thread_num() != 0) {
54 for (i = 0; i < ARCHnodes; i = i + 1)
55 free(disp___disptplus___private[i]);
56 free(disp___disptplus___private);
57 }
58 }

Figure 2.20 – Excerpt of the parallelized code of the EQUAKE application.

FULLY PARALLEL LOOP

FULLY PARALLEL LOOP

FULLY PARALLEL LOOP

FULLY PARALLEL LOOP

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

2. A Novel Compiler Support for Multicore Systems

• KIR: A diKernel-based IR

• Automatic Partitioning driven by the KIR

• Automatic Parallelization of the Benchmark Suite

• Experimental Evaluation

38

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

48 Chapter 2. A Novel Compiler Support for Multicore Systems

Table 2.1 – Effectiveness of GCC, ICC, PLUTO and KIR for the benchmark suite.

Benchmark

Program Characteristics Compilers

diKernel Ir
re

g.
w

ri
te

s

Ir
re

g.
re

ad
s

U
nk

no
w

n
LB

C
om

pl
ex

C
F

Te
m

p.
va

rs

G
C

C

IC
C

PL
U

TO

K
IR

Sy
nt

he
tic

reg. assig. regular assignment
p p p p

irreg. assig. irregular assignment
p p p

sc. reduc. 1 scalar reduction ⇡
p p

sc. reduc. 2 scalar reduction ⇡
p p

sc. reduc. 3 scalar reduction
p

⇡
p p

reg. reduc. regular reduction
p p p p

irreg. reduc. irregular reduction
p p p p

reg. recurr. regular recurrence
p

A
lg

eb
ra

DenseAMUX regular assignment
p p

⇡
p

AMUX regular assignment
p p p p

AMUXMS regular reduction
p p p

ATMUX irregular reduction
p p p p

Im
. sobel1 regular assignment

p p p

sobel2 regular assignment
p p p

A
pp

s SWIM regular recurrence
p p

U
p

EQUAKE irregular reduction
p p p

⇡
p

Effectiveness 2 Intel Xeon E5520 quad-core Nehalem processors at 2.26 GHz
with 8 MB of cache memory per processor and 8 GB of RAM

39

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Performance: EQUAKE (Execution Time)

 0.0

 0.5

 1.0

 1.5

 2.0

 2.5

 3.0

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8
ICCKIR/ICCICCKIR/ICCICCKIR/ICC

WL x 1 WL x 2 WL x 3

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

Remaining
Overhead

Irregular

ICCKIR/ICCICCKIR/ICCICCKIR/ICC
WL x 1 WL x 2 WL x 3

Execution Time (s) Speedup
40

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for
GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Conclusions

41

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

3. Locality-Aware Automatic Parallelization for GPGPU

• GPGPU with CUDA and OpenHMPP

• Locality-Aware Generation of Efficient GPGPU Code

• CONV3D & SGEMM

• Experimental Evaluation

42

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

3. Locality-Aware Automatic Parallelization for GPGPU

• GPGPU with CUDA and OpenHMPP

• Locality-Aware Generation of Efficient GPGPU Code

• CONV3D & SGEMM

• Experimental Evaluation

43

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

GPGPU with CUDA

• First GPGPU programs look like graphics applications

• CUDA enables the use of C

CUDA kernel: specifies the operation of a single GPU thread

• Main ideas:

1. Lightweight parallel threads in hierarchy: grid, block

2. Shared memory

3. Barriers

44

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

bution block distributes vertex work packets
to the various TPCs in the SPA. The TPCs
execute vertex shader programs, and (if
enabled) geometry shader programs. The
resulting output data is written to on-chip
buffers. These buffers then pass their results
to the viewport/clip/setup/raster/zcull block
to be rasterized into pixel fragments. The
pixel work distribution unit distributes pixel
fragments to the appropriate TPCs for
pixel-fragment processing. Shaded pixel-
fragments are sent across the interconnec-
tion network for processing by depth and
color ROP units. The compute work
distribution block dispatches compute
thread arrays to the TPCs. The SPA accepts
and processes work for multiple logical
streams simultaneously. Multiple clock
domains for GPU units, processors,
DRAM, and other units allow independent
power and performance optimizations.

Command processing
The GPU host interface unit communi-

cates with the host CPU, responds to
commands from the CPU, fetches data from
system memory, checks command consisten-
cy, and performs context switching.

The input assembler collects geometric
primitives (points, lines, triangles, line
strips, and triangle strips) and fetches
associated vertex input attribute data. It
has peak rates of one primitive per clock
and eight scalar attributes per clock at the
GPU core clock, which is typically
600 MHz.

The work distribution units forward the
input assembler’s output stream to the array
of processors, which execute vertex, geom-
etry, and pixel shader programs, as well as
computing programs. The vertex and com-
pute work distribution units deliver work to
processors in a round-robin scheme. Pixel

Figure 1. Tesla unified graphics and computing GPU architecture. TPC: texture/processor cluster; SM: streaming

multiprocessor; SP: streaming processor; Tex: texture, ROP: raster operation processor.

..

MARCH–APRIL 2008 41

Example of CUDA-enabled
GPU architecture

45

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

GPU Memories

stencil shadow generation and cube map
texture generation. Geometry shader output
primitives go to later stages for clipping,
viewport transformation, and rasterization
into pixel fragments.

Streaming multiprocessor
The SM is a unified graphics and

computing multiprocessor that executes
vertex, geometry, and pixel-fragment shader
programs and parallel computing programs.
As Figure 3 shows, the SM consists of eight
streaming processor (SP) cores, two special-
function units (SFUs), a multithreaded
instruction fetch and issue unit (MT Issue),
an instruction cache, a read-only constant
cache, and a 16-Kbyte read/write shared
memory.

The shared memory holds graphics input
buffers or shared data for parallel comput-
ing. To pipeline graphics workloads
through the SM, vertex, geometry, and
pixel threads have independent input and
output buffers. Workloads can arrive and
depart independently of thread execution.
Geometry threads, which generate variable
amounts of output per thread, use separate
output buffers.

Each SP core contains a scalar multiply-
add (MAD) unit, giving the SM eight
MAD units. The SM uses its two SFU units

for transcendental functions and attribute
interpolation—the interpolation of pixel
attributes from vertex attributes defining a
primitive. Each SFU also contains four
floating-point multipliers. The SM uses the
TPC texture unit as a third execution unit
and uses the SMC and ROP units to
implement external memory load, store,
and atomic accesses. A low-latency inter-
connect network between the SPs and the
shared-memory banks provides shared-
memory access.

The GeForce 8800 Ultra clocks the SPs
and SFU units at 1.5 GHz, for a peak of 36
Gflops per SM. To optimize power and area
efficiency, some SM non-data-path units
operate at half the SP clock rate.

SM multithreading. A graphics vertex or
pixel shader is a program for a single thread
that describes how to process a vertex or a
pixel. Similarly, a CUDA kernel is a C
program for a single thread that describes
how one thread computes a result. Graphics
and computing applications instantiate
many parallel threads to render complex
images and compute large result arrays. To
dynamically balance shifting vertex and
pixel shader thread workloads, the unified
SM concurrently executes different thread
programs and different types of shader
programs.

To efficiently execute hundreds of
threads in parallel while running several
different programs, the SM is hardware
multithreaded. It manages and executes up
to 768 concurrent threads in hardware with
zero scheduling overhead.

To support the independent vertex,
primitive, pixel, and thread programming
model of graphics shading languages and
the CUDA C/C++ language, each SM
thread has its own thread execution state
and can execute an independent code path.
Concurrent threads of computing programs
can synchronize at a barrier with a single
SM instruction. Lightweight thread crea-
tion, zero-overhead thread scheduling, and
fast barrier synchronization support very
fine-grained parallelism efficiently.

Single-instruction, multiple-thread. To man-
age and execute hundreds of threads running

Figure 3. Streaming multiprocessor (SM).

..

MARCH–APRIL 2008 43

3.1 GPGPU with the CUDA Programming Model 63

weight parallel threads are organized into a hierarchy: a grid of blocks, a block of
threads. Blocks may execute in parallel allowing easy scalability. The execution
of the threads of a block can be synchronized with a barrier.

Figures 3.1 and 3.2 present the hardware implementation of the GeForce 8800,
the first CUDA-enabled GPU. It consists of an array of Streaming Multiprocessors
(SMs), where each SM executes the threads of a block in groups of 32 called warps.
The threads of a warp execute one common instruction at a time, although each
thread has its own execution state.

Table 3.1 shows the main characteristics of the different memory types avail-
able in NVIDIA GPUs. When a CUDA kernel begins its execution, each thread
gets assigned its own private subset of registers and a portion of local memory. The
shared memory enables fast data interchange between the threads of a block. In
addition, all GPU threads can access the global memory (the biggest one), and two
more read-only memories: the constant memory and the texture memory (with spe-
cial addressing modes and not targeted in this thesis). CUDA assumes that all
of these memories are physically on the GPU card, separated from the memory
addressed by the CPU. Thus, memory allocations and transfers must be explicitly
managed by the programmer.

The compute capability of an NVIDIA GPU defines its core architecture (Tesla,
Fermi, etc.), supported features (e.g., double-precision floating-point operations),
technical specifications (e.g., the maximum dimensions of the hierarchy of threads)
and architectural specifications (e.g., the number of warp schedulers).

In summary, the generation of efficient GPGPU code requires the program-
mer to explicitly handle the GPU hardware architecture through the following
programming features exposed by CUDA:

Location Access Scope

registers SM read & write one GPU thread
local memory DRAM read & write one GPU thread
shared memory SM read & write all GPU threads in a block
global memory DRAM read & write all GPU threads & CPU

Table 3.1 – Characteristics of the GPU memories considered in this thesis.

46

explicit allocations and
transfers

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

GPU Programming Features in CUDA

1 Threadification

2 Thread grouping: warps

3 Minimization of CPU-GPU data transfers

4 Coalescing

5 Maximization of the usage of registers and shared memory

6 Divergency

7 Occupancy

8 Threads per block

+
-

Im
pa

ct
 o

n
pe

rfo
rm

an
ce

47

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

interaction RPC RPC RPC

address spaces disjoint disjoint disjoint

data transfers automatic &
manual

automatic &
manual

automatic &
manual

sw-managed
caches explicit handling explicit handling automatic

handling
parallelism

specification loop iterations gangs, workers,
SIMD

loop iterations,
tasks, SIMD

standard loop
transformations directives no no

GPGPU with OpenHMPP

48

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

3. Locality-Aware Automatic Parallelization for GPGPU

• GPGPU with CUDA and OpenHMPP

• Locality-Aware Generation of Efficient GPGPU
Code

• CONV3D & SGEMM

• Experimental Evaluation

49

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

GPU Programming Features addressed by our Automatic Technique

1 Threadification

2 Thread grouping: warps

3 Minimization of CPU-GPU data transfers

4 Coalescing

5 Maximization of the usage of registers and shared memory

6 Divergency

7 Occupancy

8 Threads per block

+
-

Im
pa

ct
 o

n
pe

rfo
rm

an
ce

50

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11851

• Algebraic formalism

Chains of Recurrences (chrecs)

3.3 Chains of Recurrences 69

Our technique will use these OpenHMPP mechanisms to automatically gen-
erate efficient GPU code.

3.3 Chains of Recurrences

Chains of recurrences (from now on, chrecs) are an algebraic formalism to repre-
sent closed-form functions which have been successfully used to expedite func-
tion evaluation at a number of points in a regular interval [18].

Definition 3.3.1. Given a constant f 2 Z, a function g : N0 ! Z, and the operator
+, the chrec f = {f,+, g} is defined as a function f : N0 ! Z such that:

{f,+, g}(i) = f +
i�1

Â
j=0

g(j)

Hence, the chrecs can be used for representing the iterations of a loop. For
example, the loop index of fori in Figure 3.4 takes integer values in the interval
[0, sizex � 1]. The chrec {0,+, 1} provides a closed-form function to compute the
value of i at each fori iteration.

The chrecs, which are given by the KIR1, have demonstrated to be a powerful
representation of the complex loops and the memory accesses that appear in full-
scale real applications [13]. In the same example of Figure 3.4, the memory access
pattern i in the first dimension of input[i][j][k] (see line 10 of Figure 3.4) can be
represented with the chrec {0,+, 1}.

The algebraic properties of chrecs provide rules for carrying out arithmetic
operations with them [18]. For instance, the addition of a chrec and a constant c is
given by {f,+, g}+ c = {f + c,+, g}. This rule enables the representation of the
access pattern in the first dimension of input[i � 1][j][k] (see line 12 of Figure 3.4)
as {0,+, 1} � 1 = {�1,+, 1}. Hence, chrecs can be computed to completely
describe the access pattern for n-dimensional arrays.

1Note that, for the sake of simplicity, Chapter 2 used triplet notation for the analysis of the
values produced/used throughout the execution of diKernels. Chrecs represent the same and
more information, and they provide a formal algebra of operations, thus chrecs are the formalism
chosen for our compiler framework.

• Useful for representing the iterations of a loop and array access patterns

CHRECS_xk = [{0,+,1}][{0,+,1}]

74 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 // only for_i is threadified

2 for (i = 0; i <= N; i++) {
3 for (j = 0; j <= N; j++) {
4 ... x[i][j] ...
5 }
6 }

(a) Source code S1.

T0 T1 T2
(i=0) (i=1) (i=2)

j=0 x[0][0] x[1][0] x[2][0]
j=1 x[0][1] x[1][1] x[2][1]
j=2 x[0][2] x[1][2] x[2][2]
.

ch
re

cs 1stdim {0} {1} {2}
2nddim {0,+, 1} {0,+, 1} {0,+, 1}

(b) Non-coalesced accesses.

1 // only for_j is threadified

2 for (j = 0; j <= N; j++) {
3 for (i = 0; i <= N; i++) {
4 ... x[i][j] ...
5 }
6 }

(c) Source code S2.

T0 T1 T2
(j=0) (j=1) (j=2)

i=0 x[0][0] x[0][1] x[0][2]
i=1 x[1][0] x[1][1] x[1][2]
i=2 x[2][0] x[2][1] x[2][2]
.

ch
re

cs 1stdim {0,+, 1} {0,+, 1} {0,+, 1}
2nddim {0} {1} {2}

(d) Coalesced accesses.

Figure 3.3 – Examples of access patterns to the GPU global memory.

provides (see line 2 of Algorithm 3.1):

CHRECS_xk = [{0,+, 1}][{0,+, 1}]

Next, chrecs are instantiated (lines 4–6):

CHRECS_xT0
k = [{0,+, 1}][{0}]

CHRECS_xT1
k = [{0,+, 1}][{1}] . . .

They are the same for the first dimension, thus the threads may access consecutive
memory positions (lines 7–9). The union of the last chrecs {0}[{1}[. . . defines
a convex set and therefore the performed accesses are coalesced and correctly
exploit the GPU global memory hierarchy (lines 10–12).

Algorithm 3.1 is invoked for all the array accesses enclosed in the loop nests
of the program. If the index of the threadified loop does not drive the access to
the last dimension of the array, a general strategy to try to exploit coalescing is to
permute the loops of the nest (as will be seen in Section 3.5).

• We instantiate (particularize) them for each GPU thread

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Detection of Coalesced Accesses to the GPU
Global Memory

CHRECS_xk = [{0,+,1}][{0,+,1}]CHRECS_xk = [{0,+,1}][{0,+,1}]
74 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 // only for_i is threadified

2 for (i = 0; i <= N; i++) {
3 for (j = 0; j <= N; j++) {
4 ... x[i][j] ...
5 }
6 }

(a) Source code S1.

T0 T1 T2
(i=0) (i=1) (i=2)

j=0 x[0][0] x[1][0] x[2][0]
j=1 x[0][1] x[1][1] x[2][1]
j=2 x[0][2] x[1][2] x[2][2]
.

ch
re

cs 1stdim {0} {1} {2}
2nddim {0,+, 1} {0,+, 1} {0,+, 1}

(b) Non-coalesced accesses.

1 // only for_j is threadified

2 for (j = 0; j <= N; j++) {
3 for (i = 0; i <= N; i++) {
4 ... x[i][j] ...
5 }
6 }

(c) Source code S2.

T0 T1 T2
(j=0) (j=1) (j=2)

i=0 x[0][0] x[0][1] x[0][2]
i=1 x[1][0] x[1][1] x[1][2]
i=2 x[2][0] x[2][1] x[2][2]
.

ch
re

cs 1stdim {0,+, 1} {0,+, 1} {0,+, 1}
2nddim {0} {1} {2}

(d) Coalesced accesses.

Figure 3.3 – Examples of access patterns to the GPU global memory.

provides (see line 2 of Algorithm 3.1):

CHRECS_xk = [{0,+, 1}][{0,+, 1}]

Next, chrecs are instantiated (lines 4–6):

CHRECS_xT0
k = [{0,+, 1}][{0}]

CHRECS_xT1
k = [{0,+, 1}][{1}] . . .

They are the same for the first dimension, thus the threads may access consecutive
memory positions (lines 7–9). The union of the last chrecs {0}[{1}[. . . defines
a convex set and therefore the performed accesses are coalesced and correctly
exploit the GPU global memory hierarchy (lines 10–12).

Algorithm 3.1 is invoked for all the array accesses enclosed in the loop nests
of the program. If the index of the threadified loop does not drive the access to
the last dimension of the array, a general strategy to try to exploit coalescing is to
permute the loops of the nest (as will be seen in Section 3.5).

the
same

convex set

row
major

column
major

52

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Detection of whether an Access to the GPU Global
Memory can be Coalesced

53

72 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

Algorithm 3.1 Detection of whether an access to the GPU global memory can be
coalesced

1: FUNCTION ISCOALESCEDACCESS
Input: access xk[ik,1][ik,2] . . . [ik,n] to an n-dimensional array x stored in row-major

order
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
Output: returns whether the given access xk can be coalesced after threadifying

the loop nest L
2: CHRECS_xk [{fk,1,+, gk,1}][{fk,2,+, gk,2}] . . . [{fk,n,+, gk,n}]
3: W warp of GPU threads {T0, T1, T2. . . }
4: for each thread Ti in W do
5: CHRECS_xTi

k [{fTi
k,1,+, gTi

k,1}][{fTi
k,2,+, gTi

k,2}] . . . [{fTi
k,n,+, gTi

k,n}]
6: end for
7: if (9d2{1 . . . n� 1}, Tj2W� {T0} : {f

Tj
k,d,+, gTj

k,d} 6= {fT0
k,d,+, gT0

k,d}) then
8: return false . first n� 1 chrecs differ
9: end if

10: CHRECS_RANGE_xk,n
STi{fTi

k,n,+, gTi
k,n}

11: if CHRECS_RANGE_xk,n defines a convex set then
12: return true . threads of the warp access consecutive locations
13: else
14: return (8Tj 2 W� {T0} : {f

Tj
k,n,+, gTj

k,n} = {fT0
k,n,+, gT0

k,n})
. threads of the warp access the same location

15: end if
16: end FUNCTION

3.4.1 Detection of Coalesced Accesses to the GPU Global
Memory

According to the CUDA Best Practices Guide [102], coalescing is maximized (and
thus memory requests are minimized) if the threads of a warp access consecu-
tive memory locations. Algorithm 3.1 identifies coalesced accesses by taking into
account loop threadification, thread grouping and chrecs. As mentioned in Sec-
tion 3.3, for an access xk to an array x in a loop nest L, the KIR provides the chrecs
associated to each array dimension (see line 2 of Algorithm 3.1). Next, chrecs are
instantiated to represent the memory accesses performed by each GPU thread by
fixing the value of the index of L1 that the thread executes (lines 4–6). Assuming
row-major storage, consecutive memory positions are given by consecutive ac-
cesses to the last dimension of the array x. Thus, the first n� 1 chrecs must be the

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Usage of Registers to Store Reused Data within a
GPU Thread

54

3.4 Locality-Aware Automatic Generation of Efficient GPGPU Code 75

3.4.2 Maximization of the Usage of the GPU Registers and the
Shared Memory

As mentioned in point (5) of Section 3.1, the GPU global memory is the biggest
but slowest one. Both registers and shared memory are faster, but they have much
less capacity. Therefore, this complex memory hierarchy should be managed with
even more care than the traditional CPU memory hierarchy due to its biggest
impact on performance.

Algorithm 3.2 presents a technique to detect reused data within a GPU thread.
It considers all the accesses to an n-dimensional array x in a loop nest L (see
line 2 of Algorithm 3.2). As mentioned in Section 3.3, the KIR provides the chrecs
associated to each access in each array dimension (line 3). For each GPU thread,
the chrecs are instantiated by fixing the value of the index of L1 that the thread
executes (line 5). If the intersection of the instantiated chrecs for the GPU thread
is not empty, then some data are accessed several times and they can be stored
in the GPU registers if they are not modified by another thread (lines 6–9). Note
that the shared memory could be used for the same purpose as it has the same
access time as registers.

Algorithm 3.2 Usage of registers to store reused data within a GPU thread
1: PROCEDURE STOREREUSEDDATAINREGISTERS

Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
Output: a modified program that exploits reused data to maximize the usage of

the GPU registers
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k 2 {1, . . . , m}
3: CHRECS_xk [{fk,1,+, gk,1}][{fk,2,+, gk,2}] . . . [{fk,n,+, gk,n}]
4: for each thread Ti do
5: CHRECS_xTi

k [{fTi
k,1,+, gTi

k,1}][{fTi
k,2,+, gTi

k,2}] . . . [{fTi
k,n,+, gTi

k,n}]
6: REUSED_DATA_xTi Tm

k=1 CHRECS_xTi
k

7: if (REUSED_DATA_xTi 6= ∆) then
8: store reused data between the accesses made by Ti in its set of

registers if data are private
9: end if

10: end for
11: end PROCEDURE

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Usage of the GPU Shared Memory for Data Shared
between the Threads of a Block

55

76 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

However, the GPU shared memory has been specifically designed to share
data between the threads of a block. Algorithm 3.3 presents a technique that takes
into account all the accesses to an n-dimensional array x in a loop nest L emitted
by the threads of a block (see line 2 of Algorithm 3.3). The KIR provides the chrecs
associated to each access in each array dimension (line 3). For each thread of the
considered block, the chrecs are instantiated by fixing the value of the index of L1

that the thread executes (lines 5–7). If the intersection of the instantiated chrecs
associated to all the accesses is not empty, then some data are accessed several
times and can be stored in the shared memory (lines 8–11).

Algorithm 3.3 Usage of the GPU shared memory for data shared between the
threads of a block

1: PROCEDURE STORESHAREDDATAINSHAREDMEMORY
Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1, L2, . . . , Ll where L1 is the threadified loop
Output: a modified program using the GPU shared memory to share data be-

tween the threads of a block
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k 2 {1, . . . , m}
3: CHRECS_xk [{fk,1,+, gk,1}][{fk,2,+, gk,2}] . . . [{fk,n,+, gk,n}]
4: for each block B do
5: for each thread Ti in B do
6: CHRECS_xTi

k [{fTi
k,1,+, gTi

k,1}][{fTi
k,2,+, gTi

k,2}] . . . [{fTi
k,n,+, gTi

k,n}]
7: end for
8: SHDATA_x TTi CHRECS_xTi

k with k 2 {1, . . . , m}
9: if (SHDATA_x 6= ∆) then

10: store data shared between the threads of block B
in the shared memory

11: end if
12: end for
13: end PROCEDURE

Another general technique to improve performance is loop tiling. It consists
of partitioning the loop iterations into blocks to ensure that data being used
stay in the fastest levels of the memory hierarchy. As explained in Section 3.2,
OpenHMPP implements loop threadification and thread grouping with the two
outermost loops in a nest; consecutive GPU threads are created for consecutive
iterations of the inner loop. Therefore, the common m⇥ n tiling breaks coalesc-
ing because the step of L2 is different from one and thus consecutive threads will

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Increase the Computational Load of a GPU Thread

56

3.5 Case Studies 77

not access consecutive memory locations. Algorithm 3.4 presents a technique for
loop tiling that preserves coalescing under OpenHMPP and also considers the
promotion of the enclosed scalar variables. Instead of creating a thread for each
access xk, a bigger portion of data to compute (D) is given to each thread. Hence,
the algorithm increments the step of L1 to i = i + D (see line 2 of Algorithm 3.4).
Scalar variables inside L are promoted to arrays of size D, and their corresponding
reads and writes are transformed into loops preserving dependences (lines 3–6).
The optimization of the size of D depends on runtime information about the GPU
hardware, thus it has been adjusted empirically by hand in this work.

Algorithm 3.4 Increase the computational load of a GPU thread
1: PROCEDURE INCREASELOAD

Input: access xk[ik,1][ik,2] . . . [ik,n] to an n-dimensional array x stored in row-major
order

Input: loop nest L = L1, L2, . . . , Ll where both L1, L2 are threadified
Input: amount of data D to be processed by a GPU thread
Output: a modified program after applying loop tiling under the OpenHMPP

programming model
2: increment the step of the outer loop L1 to D
3: for each scalar variable s in L do
4: promote s to an array s[D]
5: transform reads and writes to s into loops of D iterations
6: end for
7: end PROCEDURE

The previous technique can prevent some GPU compiler optimizations: typ-
ically, these binary compilers make better optimizations if the program is coded
with several instructions using scalar variables (avoiding arrays and loops). In or-
der to solve this issue, Algorithm 3.5 applies loop unrolling and loop interchange
to the output of Algorithm 3.4.

3.5 Case Studies

This section details the operation of our locality-aware automatic parallelization
technique introduced in Section 3.4. We have selected two representative case
studies extracted from compute-intensive scientific applications. First,

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Use Scalar Variables to Enable GPU Compiler
Optimizations

57

78 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

Algorithm 3.5 Use scalar variables to enable GPU compiler optimizations
1: PROCEDURE INCREASELOAD

Input: loop nest L = L1, L2, L3 . . . , Ll that results of Algorithm 3.4 where both
L1, L2 are threadified, the step of L1 is D, and L3 is the created loop with D
iterations

Output: a modified program that uses more scalar variables to enable GPU com-
piler optimizations

2: apply loop fission to L3, the loop created in line 5 of Algorithm 3.4
3: for each loop L0

3 resulting from the fission of L3 do
4: interchange loops until L0

3 is the innermost one
5: insert a fullunroll directive before L0

3
6: end for
7: end PROCEDURE

Section 3.5.1 presents the study of the three-dimensional discrete convolution
(CONV3D). With this case study we cover stencil codes, which are commonly
found in computer simulations, image processing and finite element methods.
Next, Section 3.5.2 addresses the simple-precision general matrix multiplication
(SGEMM), which is one of the most important linear algebra routines commonly
used in engineering, physics or economics.

3.5.1 Case Study: CONV3D

The three-dimensional discrete convolution operator can be generally written as:

output[i][j][k] = Â
n1,n2,n3

coef [i][j][k] · input[i � n1][j � n2][k � n3]

with input being the input 3D-function data, coef the filter, and output the con-
voluted data. Consider the implementation shown in Figure 3.4 (from now on,
denoted as variant conv3d-cpu). Three nested loops fori, forj and fork traverse out-
put (see lines 7–9). For each element output[i][j][k], four elements in each sense of
the three directions of the coordinate axis are taken to perform the convolution
with the scalar values coefx, coefy and coefz, respectively. Thus, the temporary vari-
able tempx (lines 10–16) stores the weighted sum of nine values of input along the
x-axis, coefx being the weight. Similarly, temporaries tempy and tempz are along

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

3. Locality-Aware Automatic Parallelization for GPGPU

• GPGPU with CUDA and OpenHMPP

• Locality-Aware Generation of Efficient GPGPU Code

• CONV3D & SGEMM

• Experimental Evaluation

58

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D & SGEMM

59

3.5 Case Studies 79

the y-axis and z-axis. Finally, these contributions are accumulated in output[i][j][k]
(lines 31–32).

The corresponding KIR is shown in Figure 3.5. The loops are perfectly nested,
thus they are represented by a unique execution scope ES_fori,j,k. One diKer-
nel is created for each temporary variable, which stores the calculations in each
3D axis: K<tempx10>, K<tempy17> and K<tempz24>. Note that the subindices
refer to the line number in the source code (e.g., the term tempx10 refers to the
statement in lines 10–16 of Figure 3.4). Their contribution to the final result
K<output31> is symbolized by diKernel-level flow dependences (·). Scalars
tempx, tempy and tempz are assigned new values in each fori,j,k iteration, thus
K<tempx10>, K<tempy17> and K<tempz24> are scalar assignments. In contrast,
the value stored in output[i][j][k] depends on the previous one and thus
K<output31> is a regular reduction. The diKernels that represent loop indices
are not shown because they are already represented in the notation of the execu-
tion scope and the types of the remaining diKernels. Only the regular reduction
K<output31> determines if CONV3D is parallelizable (note that the remaining
parts of the KIR are shaded because they represent privatizable temporaries). As
the regular reduction diKernel represents conflict-free loop iterations, it can be
converted into a forall parallel loop. On the CPU, it can be parallelized using the
OpenMP parallel for directive (see Section 2.2.1).

Table 3.2 summarizes the GPU features addressed by our locality-aware au-
tomatic parallelization technique to generate the same optimal variant as the one
written by an expert in GPU programming. The first optimized variant is conv3d-

GPU Features co
nv

3d
-c

pu

co
nv

3d
-h

m
pp

1

co
nv

3d
-h

m
pp

2

co
nv

3d
-h

m
pp

3

sg
em

m
-c

pu

sg
em

m
-m

kl

sg
em

m
-h

m
pp

1

sg
em

m
-h

m
pp

2

sg
em

m
-h

m
pp

3

sg
em

m
-h

m
pp

4

sg
em

m
-c

ub
la

s

Coalescing -
p p p

- -
p p p p

-
Registers -

p p
- -

p p
-

Shared Memory -
p

- -
p

-

Table 3.2 – GPU features exploited with each variant of CONV3D and SGEMM.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D (I)

60

ROOT EXECUTION SCOPE

ES_fori,j,k (Figure 3.4, lines 7-35)

K < tempz24 >
scalar assignment

K < output31 >
regular reduction

K < tempy17 >
scalar assignment

K < tempx10 >
scalar assignment

shaded to be omitted
in the discovering of

parallelism

80 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 int sizex, sizey, sizez, bound = 4;
2
3 void conv3d(float output[sizex][sizey][sizez],
4 float input[bound+sizex+bound][4+sizey+4][4+sizez+4],
5 float coefx, float coefy, float coefz) {
6
7 for (int i = 0; i < sizex; i++) {
8 for (int j = 0; j < sizey; j++) {
9 for (int k = 0; k < sizez; k++) {

10 float tempx = input[i][j][k] + coefx *
11 (
12 input[i-1][j][k] + input[i+1][j][k] +
13 input[i-2][j][k] + input[i+2][j][k] +
14 input[i-3][j][k] + input[i+3][j][k] +
15 input[i-4][j][k] + input[i+4][j][k]
16);
17 float tempy = input[i][j][k] + coefy *
18 (
19 input[i][j-1][k] + input[i][j+1][k] +
20 input[i][j-2][k] + input[i][j+2][k] +
21 input[i][j-3][k] + input[i][j+3][k] +
22 input[i][j-4][k] + input[i][j+4][k]
23);
24 float tempz = input[i][j][k] + coefz *
25 (
26 input[i][j][k-1] + input[i][j][k+1] +
27 input[i][j][k-2] + input[i][j][k+2] +
28 input[i][j][k-3] + input[i][j][k+3] +
29 input[i][j][k-4] + input[i][j][k+4]
30);
31 output[i][j][k] =
32 output[i][j][k] + tempx + tempy + tempz;
33 }
34 }
35 }
36 }

Figure 3.4 – Source code of the 3D discrete convolution operator (CONV3D).

FULLY PARALLEL LOOP

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D (II)

• conv3d-cpu: Sequential code

• conv3d-hmpp1: Coalescing

• Default OpenHMPP policy

• Loop nest is permuted to forj, fork, fori

61

1. int i, j, k, size_x, size_y, size_z;
2. float coefx,coefy,coefz,*input,*output;
3.
4. for (i = 0; i < size_x; i++) {
5. for (j = 0; j < size_y; j++) {
6. for (k = 0; k < size_z; k++) {
7. float tempx = input[i][j][k]+coefx*
8. …

CHRECS_input1 =
[{0,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input1
T0 =

[{0}][{0}][{0,+,1}]

CHRECS_input1
T1 =

[{0}][{1}][{0,+,1}]

CHRECS_input1
T0 =

[{0,+,1}][{0}][{0}]
CHRECS_input1

T1 =
[{0,+,1}][{0}][{1}]

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D (III)

• conv3d-hmpp2: Registers

62

4.for (j = 0; j < size_y; j++) {
5. for (k = 0; k < size_z; k++) {
6. for (i = 0; i < size_x; i++) {
7. float tempx = input[i][j][k]+coefx*
8. (
9. input[i-1][j][k]+input[i+1][j][k]+
10.…

CHRECS_input1 =
[{0,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input1
T0 =

[{0,+,1}][{0}][{0}]

CHRECS_input2 =
[{-1,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input3 =
[{1,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input2
T0 =

[{-1,+,1}][{0}][{0}]
CHRECS_input3

T0 =
[{1,+,1}][{0}][{0}]

∩≠∅

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D (IV)

63

84 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 #pragma hmpp conv3d___hmpp2 codelet
2 void conv3d___hmpp2(float output[sizex][sizey][sizez],
3 float input[bound+sizex+bound][4+sizey+4][4+sizez+4],
4 float coefx, float coefy, float coefz) {
5
6 #pragma hmppcg gridify (j, k)
7 for (int j = 0; j < sizey; j++) {
8 for (int k = 0; k < sizez; k++) {
9 float i___minus4 = 0;

10 float i___minus3 = input[-4][j][k];
11 float i___minus2 = input[-3][j][k];
12 float i___minus1 = input[-2][j][k];
13 float i___plus0 = input[-1][j][k];
14 float i___plus1 = input[0][j][k];
15 float i___plus2 = input[1][j][k];
16 float i___plus3 = input[2][j][k];
17 float i___plus4 = input[3][j][k];
18 for (int i = 0; i < sizex; i++) {
19 i___minus4 = i___minus3;
20 i___minus3 = i___minus2;
21 i___minus2 = i___minus1;
22 i___minus1 = i___plus0;
23 i___plus0 = i___plus1;
24 i___plus1 = i___plus2;
25 i___plus2 = i___plus3;
26 i___plus3 = i___plus4;
27 i___plus4 = input[i+4][j][k];
28 float tempx = i___plus0 + coefx *
29 (
30 i___minus1 + i___plus1 +
31 i___minus2 + i___plus2 +
32 i___minus3 + i___plus3 +
33 i___minus4 + i___plus4
34);
35 float tempy = ...
36 float tempz = ...
37 output[i][j][k] =
38 output[i][j][k] + tempx + tempy + tempz;
39 }
40 }
41 }
42 }

Figure 3.6 – Excerpt of the parallelized code of the 3D discrete convolution oper-
ator (CONV3D): variant conv3d-hmpp2.

84 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 #pragma hmpp conv3d___hmpp2 codelet
2 void conv3d___hmpp2(float output[sizex][sizey][sizez],
3 float input[bound+sizex+bound][4+sizey+4][4+sizez+4],
4 float coefx, float coefy, float coefz) {
5
6 #pragma hmppcg gridify (j, k)
7 for (int j = 0; j < sizey; j++) {
8 for (int k = 0; k < sizez; k++) {
9 float i___minus4 = 0;

10 float i___minus3 = input[-4][j][k];
11 float i___minus2 = input[-3][j][k];
12 float i___minus1 = input[-2][j][k];
13 float i___plus0 = input[-1][j][k];
14 float i___plus1 = input[0][j][k];
15 float i___plus2 = input[1][j][k];
16 float i___plus3 = input[2][j][k];
17 float i___plus4 = input[3][j][k];
18 for (int i = 0; i < sizex; i++) {
19 i___minus4 = i___minus3;
20 i___minus3 = i___minus2;
21 i___minus2 = i___minus1;
22 i___minus1 = i___plus0;
23 i___plus0 = i___plus1;
24 i___plus1 = i___plus2;
25 i___plus2 = i___plus3;
26 i___plus3 = i___plus4;
27 i___plus4 = input[i+4][j][k];
28 float tempx = i___plus0 + coefx *
29 (
30 i___minus1 + i___plus1 +
31 i___minus2 + i___plus2 +
32 i___minus3 + i___plus3 +
33 i___minus4 + i___plus4
34);
35 float tempy = ...
36 float tempz = ...
37 output[i][j][k] =
38 output[i][j][k] + tempx + tempy + tempz;
39 }
40 }
41 }
42 }

Figure 3.6 – Excerpt of the parallelized code of the 3D discrete convolution oper-
ator (CONV3D): variant conv3d-hmpp2.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11864

• conv3d-hmpp3: Shared memory

CONV3D (V)

4.for (j = 0; j < size_y; j++) {
5. for (k = 0; k < size_z; k++) {
6. for (i = 0; i < size_x; i++) {
…
21. float tempz = input[i][j][k]+coefz*
22. (
23. input[i][j][k-1]+input[i][j][k+1]+
24. input[i][j][k-2]+input[i][j][k+2]+
25. input[i][j][k-3]+input[i][j][k+3]+
26. input[i][j][k-4]+input[i][j][k+4]
27.);
…

shared clause of the gridify directive

86 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

CHRECS T0 T1
1stdim 2nddim 3rddim 1stdim 2nddim 3rddim

CHRECS_input19 {0,+, 1} {0} {0} {0,+, 1} {0} {1}
CHRECS_input20 {0,+, 1} {0} {�1} {0,+, 1} {0} {0}
CHRECS_input21 {0,+, 1} {0} {1} {0,+, 1} {0} {2}
CHRECS_input22 {0,+, 1} {0} {�2} {0,+, 1} {0} {�1}
CHRECS_input23 {0,+, 1} {0} {2} {0,+, 1} {0} {3}
CHRECS_input24 {0,+, 1} {0} {�3} {0,+, 1} {0} {�2}
CHRECS_input25 {0,+, 1} {0} {3} {0,+, 1} {0} {4}
CHRECS_input26 {0,+, 1} {0} {�4} {0,+, 1} {0} {�3}
CHRECS_input27 {0,+, 1} {0} {4} {0,+, 1} {0} {5}

Table 3.3 – Chrecs for the accesses in lines 24–30 of Figure 3.4 (CONV3D).

3.5.2 Case Study: SGEMM

The simple-precision general matrix multiplication from the BLAS library [24]
performs the matrix operation:

C = a · A ⇥ B + b · C

where A, B, C are m ⇥ k, k ⇥ n and m ⇥ n matrices, respectively, and a, b are
the scale factors for A ⇥ B and C. Figure 3.8 shows an implementation with two
nested loops fori and forj that traverse the matrix C row by row (see lines 5–6).
Each matrix position C[i][j] is computed with the dot product between the ith

row of matrix A and the jth column of B. The dot product is temporarily stored
in the scalar variable prod (lines 7–10).

The KIR shown in Figure 3.9 captures the semantics of Figure 3.8 as follows.
Loops fori and forj are perfectly nested, thus a unique execution scope ES_fori,j is
created. K<prod7> represents the initialization of the temporary variable prod at
line 7. The computation of the dot product is contained in forl. Hence, the scalar
reduction K<prod9> is attached to ES_forl. Finally, K<C11> is a regular reduc-
tion that updates the previous value stored in C[i][j]. As prod is a privatizable
scalar variable, the parts of the KIR referring to its computations are shaded in
order to be omitted in the discovery of parallelism. Thus, only K<C11> needs

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

CONV3D (and VI)

65

3.5 Case Studies 85

1 #pragma hmpp conv3d___hmpp3 codelet
2 void conv3d___hmpp3(float output[sizex][sizey][sizez],
3 float input[bound+sizex+bound][4+sizey+4][4+sizez+4],
4 float coefx, float coefy, float coefz) {
5 float input___shared[bound+8+bound][bound+32+bound];
6 #pragma hmppcg gridify(j,k),blocksize(32x8),shared(input___shared),unguarded
7 for (int j = 0; j < sizey; j++) {
8 for (int k = 0; k < sizez; k++) {
9 int tx = 0;

10 int ty = 0;
11 #pragma hmppcg set tx = RankInBlockX()
12 #pragma hmppcg set ty = RankInBlockY()
13 int rk = tx + bound;
14 int rj = ty + bound;
15 float i___minus4 = ...
16 for (int i = 0; i < sizex; i++) {
17 i___minus4 = ...
18 #pragma hmppcg grid barrier
19 input___shared[rj-bound][rk-bound] = input[i][j-bound][k-bound];
20 input___shared[rj+bound][rk-bound] = input[i][j+bound][k-bound];
21 input___shared[rj-bound][rk+bound] = input[i][j-bound][k+bound];
22 input___shared[rj+bound][rk+bound] = input[i][j+bound][k+bound];
23 #pragma hmppcg grid barrier
24 float tempx = ...
25 float tempy = i___plus0 + coefy *
26 (
27 input___shared[rj-1][rk] + input___shared[rj+1][rk] +
28 input___shared[rj-2][rk] + input___shared[rj+2][rk] +
29 input___shared[rj-3][rk] + input___shared[rj+3][rk] +
30 input___shared[rj-4][rk] + input___shared[rj+4][rk]
31);
32 float tempz = i___plus0 + coefz *
33 (
34 input___shared[rj][rk-1] + input___shared[rj][rk+1] +
35 input___shared[rj][rk-2] + input___shared[rj][rk+2] +
36 input___shared[rj][rk-3] + input___shared[rj][rk+3] +
37 input___shared[rj][rk-4] + input___shared[rj][rk+4]
38);
39 output[i][j][k] =
40 output[i][j][k] + tempx + tempy + tempz;
41 }
42 }
43 }
44 }

Figure 3.7 – Excerpt of the parallelized code of the 3D discrete convolution oper-
ator (CONV3D): variant conv3d-hmpp3.

3.5 Case Studies 85

1 #pragma hmpp conv3d___hmpp3 codelet
2 void conv3d___hmpp3(float output[sizex][sizey][sizez],
3 float input[bound+sizex+bound][4+sizey+4][4+sizez+4],
4 float coefx, float coefy, float coefz) {
5 float input___shared[bound+8+bound][bound+32+bound];
6 #pragma hmppcg gridify(j,k),blocksize(32x8),shared(input___shared),unguarded
7 for (int j = 0; j < sizey; j++) {
8 for (int k = 0; k < sizez; k++) {
9 int tx = 0;

10 int ty = 0;
11 #pragma hmppcg set tx = RankInBlockX()
12 #pragma hmppcg set ty = RankInBlockY()
13 int rk = tx + bound;
14 int rj = ty + bound;
15 float i___minus4 = ...
16 for (int i = 0; i < sizex; i++) {
17 i___minus4 = ...
18 #pragma hmppcg grid barrier
19 input___shared[rj-bound][rk-bound] = input[i][j-bound][k-bound];
20 input___shared[rj+bound][rk-bound] = input[i][j+bound][k-bound];
21 input___shared[rj-bound][rk+bound] = input[i][j-bound][k+bound];
22 input___shared[rj+bound][rk+bound] = input[i][j+bound][k+bound];
23 #pragma hmppcg grid barrier
24 float tempx = ...
25 float tempy = i___plus0 + coefy *
26 (
27 input___shared[rj-1][rk] + input___shared[rj+1][rk] +
28 input___shared[rj-2][rk] + input___shared[rj+2][rk] +
29 input___shared[rj-3][rk] + input___shared[rj+3][rk] +
30 input___shared[rj-4][rk] + input___shared[rj+4][rk]
31);
32 float tempz = i___plus0 + coefz *
33 (
34 input___shared[rj][rk-1] + input___shared[rj][rk+1] +
35 input___shared[rj][rk-2] + input___shared[rj][rk+2] +
36 input___shared[rj][rk-3] + input___shared[rj][rk+3] +
37 input___shared[rj][rk-4] + input___shared[rj][rk+4]
38);
39 output[i][j][k] =
40 output[i][j][k] + tempx + tempy + tempz;
41 }
42 }
43 }
44 }

Figure 3.7 – Excerpt of the parallelized code of the 3D discrete convolution oper-
ator (CONV3D): variant conv3d-hmpp3.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

SGEMM (I)

66

ROOT EXECUTION SCOPE

ES_fori,j (Figure 3.8, lines 5-13)

ES_forl (Figure 3.8, lines 8-10)

K < prod7 >
scalar assignment

K < prod9 >
scalar reduction

K < C11 >
regular reduction

3.5 Case Studies 87

1 int m, n, k;
2 void sgemm(float C[m][n], float alpha, float A[m][k],
3 float B[k][n], float beta) {
4
5 for (int i = 0; i < m; i++) {
6 for (int j = 0; j < n; j++) {
7 float prod = 0;
8 for (int l = 0; l < k; l++) {
9 prod += A[i][l] * B[l][j];

10 }
11 C[i][j] = alpha * prod + beta * C[i][j];
12 }
13 }
14 }

Figure 3.8 – Source code of the simple-precision general matrix multiplication
(SGEMM).

Figure 3.9 – KIR of the simple-precision general matrix multiplication (SGEMM).

FULLY PARALLEL LOOP

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11867

• sgemm-cpu: Sequential code

• sgemm-mkl: Intel MKL

• sgemm-hmpp1: Offloading (and check coalescing)

SGEMM (II)

3.5 Case Studies 87

1 int m, n, k;
2 void sgemm(float C[m][n], float alpha, float A[m][k],
3 float B[k][n], float beta) {
4
5 for (int i = 0; i < m; i++) {
6 for (int j = 0; j < n; j++) {
7 float prod = 0;
8 for (int l = 0; l < k; l++) {
9 prod += A[i][l] * B[l][j];

10 }
11 C[i][j] = alpha * prod + beta * C[i][j];
12 }
13 }
14 }

Figure 3.8 – Source code of the simple-precision general matrix multiplication
(SGEMM).

Figure 3.9 – KIR of the simple-precision general matrix multiplication (SGEMM).

88 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

to be considered to decide if the source code is parallelizable. As mentioned in
Section 2.2.1, a regular reduction diKernel represents conflict-free loop iterations
and it is therefore parallelizable.

From the point of view of the locality, the challenge of SGEMM is to handle
the tradeoff between opposite array traversals efficiently: row-major for C and
A, and column-major for B. On the CPU, the general solution is to apply loop
tiling: matrices are computed in small tiles to keep data in the cache memory.
This approach can be also applied on the GPU using the shared memory as cache
and being aware of coalescing.

The first variant of SGEMM is the sequential code shown in Figure 3.8
(sgemm-cpu). In addition, we have selected the cblas_sgemm function of the
non-clustered, threaded part of the Intel MKL library [69] to build the sgemm-mkl
variant.

The first OpenHMPP variant is sgemm-hmpp1. It is trivially built by offload-
ing to the GPU the same code as sgemm-cpu. Table 3.4 shows the chrecs for this
variant, which are analyzed by Algorithm 3.1 as follows. Regarding A, all the
threads of a warp have the same chrecs and thus access the same memory posi-
tion (see line 14 of Algorithm 3.1). Regarding B, coalescing is maximized because
the chrecs of the first dimension are the same while the chrecs of the second one
define a convex set (lines 10–12). Finally, the same situation holds for C and thus
accesses are coalesced.

The second OpenHMPP variant is sgemm-hmpp2. Algorithm 3.4 transforms
the source code of Figure 3.8 as follows. The scalar variable prod is promoted to
an array prod[D], and thus a new loop fort is created to enclose all its definitions
and uses (see lines 3–6 of Algorithm 3.4). The step of the outer fori is incremented

CHRECS not instantiated T0 T1
1stdim 2nddim 1stdim 2nddim 1stdim 2nddim

CHRECS_A {0,+, 1} {0,+, 1} {0} {0,+, 1} {0} {0,+, 1}
CHRECS_B {0,+, 1} {0,+, 1} {0,+, 1} {0} {0,+, 1} {1}
CHRECS_C {0,+, 1} {0,+, 1} {0} {0} {0} {1}

Table 3.4 – Chrecs for the accesses to arrays A, B and C in SGEMM.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

SGEMM (III)

• sgemm-hmpp2: Tiling preserving coalescing

68

90 Chapter 3. Locality-Aware Automatic Parallelization for GPGPU

1 int m, n, k;
2 #define DELTA 16
3
4 #pragma hmpp sgemm___hmpp2 codelet
5 void sgemm___hmpp2(float C[m][n], float alpha, float A[m][k],
6 float B[k][n], float beta) {
7
8 #pragma hmppcg gridify (i,j), blocksize(128x1)
9 for (int i = 0; i < m; i = i + DELTA) {

10 for (int j = 0; j < n; j++) {
11 float prod[DELTA];
12 for (int t = 0; t < DELTA; t++) {
13 prod[t] = 0;
14 for (int l = 0; l < k; l++) {
15 prod[t] += A[i+t][l] * B[l][j];
16 }
17 C[i+t][j] = alpha * prod[t] + beta * C[i+t][j];
18 }
19 }
20 }
21 }

Figure 3.10 – Excerpt of the parallelized code of the simple-precision general ma-
trix multiplication (SGEMM): variant sgemm-hmpp2.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

SGEMM (and IV)

• sgemm-hmpp3:
Let the compiler
use the registers
(fullunroll)

69

• sgemm-hmpp4:
Use the shared
memory for B

• sgemm-cublas:
NVIDIA CUBLAS
library

3.6 Performance Evaluation 91

1 int m, n, k;
2 #define DELTA 16
3
4 #pragma hmpp sgemm___hmpp3 codelet
5 void sgemm___hmpp3(float C[m][n], float alpha, float A[m][k],
6 float B[k][n], float beta) {
7
8 #pragma hmppcg gridify (i,j), blocksize(128x1)
9 for (int i = 0; i < m; i = i + DELTA) {

10 for (int j = 0; j < n; j++) {
11 float prod[DELTA];
12 #pragma hmppcg fullunroll
13 for (int t = 0; t < DELTA; t++) {
14 prod[t] = 0;
15 }
16 for (int l = 0; l < k; l++) {
17 #pragma hmppcg fullunroll
18 for (int t = 0; t < DELTA; t++) {
19 prod[t] += A[i+t][l] * B[l][j];
20 }
21 }
22 #pragma hmppcg fullunroll
23 for (int t = 0; t < DELTA; t++) {
24 C[i+t][j] = alpha * prod[t] + beta * C[i+t][j];
25 }
26 }
27 }
28 }

Figure 3.11 – Excerpt of the parallelized code of the simple-precision general ma-
trix multiplication (SGEMM): variant sgemm-hmpp3.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

3. Locality-Aware Automatic Parallelization for GPGPU

• GPGPU with CUDA and OpenHMPP

• Locality-Aware Generation of Efficient GPGPU Code

• CONV3D & SGEMM

• Experimental Evaluation

70

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Performance Evaluation: CONV3D

CPU (nova) GPU Tesla S1070 (nova) GPU Tesla S2050 (pluton)
0

20

40

60

80

100

120

G
F

L
O

P
S

conv3d-hmpp1

conv3d-hmpp2

conv3d-hmpp3

conv3d-cpu

Fermi cards introduced
memory caches

sizex, sizey and sizez in 128, 256, 384, 512, 640 and 768

71

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Performance Evaluation: SGEMM (I)

CPU (nova) GPU Tesla S1070 (nova) GPU Tesla S2050 (pluton)
0

100

200

300

400

500

G
F

L
O

P
S

sgemm-cpu

sgemm-mkl

sgemm-hmpp1

sgemm-hmpp2

sgemm-hmpp3

sgemm-hmpp4

sgemm-cublas

the biggest improvement factor is
the usage of the GPU shared memory

m, n and k in 128, 256, 384, 512, 640, 768, 896, 1024, 1152, 1280,
1408, 1536, 1664, 1792, 1920, 2048, 4096, 6144 and 8192

72

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Performance Evaluation: SGEMM (and II)

blue: sgemm-cublas
red: sgemm-hmpp4
black: sgemm-mkl

128 1024
2048

4096
6144

8192

12810242048
4096

6144
8192
128
1024
2048

4096

6144

8192

mn

k

CPU (nova) GPU Tesla S1070 (nova) GPU Tesla S2050 (pluton)
0

100

200

300

400

500

G
F

L
O

P
S

sgemm-cpu

sgemm-mkl

sgemm-hmpp1

sgemm-hmpp2

sgemm-hmpp3

sgemm-hmpp4

sgemm-cublas

73

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Main Contributions and Future Research Lines

74

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

4. Trace-Based Affine Reconstruction of Code

• Problem Formulation

• Problem Resolution with CHOLESKY

• Extensions for Supporting Nonlinear Traces

• Experimental Evaluation

75

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

4. Trace-Based Affine Reconstruction of Code

• Problem Formulation

• Problem Resolution with CHOLESKY

• Extensions for Supporting Nonlinear Traces

• Experimental Evaluation

76

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Statement

• We assume that:

• Addresses are generated by a single instruction

• Instruction is enclosed in an affine loop nest

• Existing memory optimization techniques based on the polyhedral model, and any
other static or dynamic optimization technique in the absence of source and/or
binary code, can be applied.

77

1 # d e f i n e N 32;

2 d oub l e p[N], A[N][N];

3 for (i = 0; i < N; ++i) {

4 x = A[i][i];

5 f o r (j = 0; j <= i - 1; ++j)

6 x = x - A[i][j]

*

A[i][j];

7 p[i] = 1.0 / sqrt(x);

8 for (j = i + 1; j < N; ++j) {

9 x = A[i][j];

10 for (k = 0; k <= i - 1; ++k)
11 x = x - A[j][k]

*

A[i][k];
12 A[j][i] = x

*

p[i];

13 }

14 }

Figure 2. Source code of the cholesky application.

1 0x1e2d140

2 0x1e2d140

.

.

.

30 0x1e2d140

31 0x1e2d240

32 0x1e2d248

33 0x1e2d240

34 0x1e2d248

.

.

.

88 0x1e2d248

89 0x1e2d340

90 0x1e2d348

91 0x1e2d350

92 0x1e2d340

93 0x1e2d348

94 0x1e2d350

.

.

.

Figure 3. Excerpt of the memory trace generated by the
access A[i][k] (line 11 of Figure 2).

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
� k 2

Zn is the solution. There are two possible situations when
solving this system:

1. The system has one or more integer solutions. In this
case, for each solution

�!
� k, the new index �!ı k+1 = �!ı k+�!

� k, which must be sequential to �!ı k, is calculated, and
Ik+1 =

⇥
Ik|�!ı k+1

⇤
. U, �!w , and �!c remain unchanged.

Each of these solutions must be explored independently.

2. The system has no solution generating an index sequen-
tial to �!ı k, in which case there are three courses of action:

(a) Increase the dimensionality of the solution (Sec. 3.2).

(b) Modify the boundary conditions U and �!w (Sec. 3.4).

(c) Discard this branch.

3.1 Solving the linear diophantine system
Although the system in Eq. (5) has infinite solutions in the
general case, only a few are valid in the context of the affine
loop reconstruction, which makes it possible to develop very
efficient ad-hoc solution strategies.

Lemma 3.1. There are at most n valid solutions to the
system in Eq. (5). These correspond to indices:

{+(l,�!ı k) =
⇥
ik1 . . . ikl�1 ikl + 1 0 . . . 0

⇤
, 0 < l  n}

Proof. If index �!ı k+1 must be sequential to index �!ı k as per
Definition 2.1, then there is a single degree of freedom for�!
� k: the position �kl that is equal to 1.

[�k1 . . . �kl�1 �kl �kl+1 . . . �kn]T =

= [0 . . . 0 1 �ikl+1 . . . �ikn]T

Positions {ij , 0 < j < l} will not change between iterations
k and (k+1), and therefore �kj = 0; while positions {ij , l <
j  n} will be reset to 0, and therefore �kj = �ikj .

Taking this result into account, it is possible to find all
valid solutions of the system in linear time, O(n), by simply
testing the n valid candidates +(l,�!ı k), calculating their as-
sociated strides �̂k

l = �!c
�!
� k

l , and accepting those solutions
with a stride equal to the observed one, �̂k

l = �k. These are
particular solutions of the subtrace {a1, . . . , ak+1}, which
will be explored to construct a solution for the entire trace.

Following the cholesky example, the next access in
the trace to be processed is a3 = 0x1e2d140. The engine
computes the access stride as �2 = a3 � a2 = 0. At this
point, a 1-level loop has been constructed and the engine
checks whether

�!
i 3 = +(1,

�!
i 2) = [2] produces an stride

that matches the observed one. The equality �̂2
1 = �!c

�!
� 2

1 =
[0] [1] = �2 holds, and the solution is accepted. The matrix
of reconstructed indices is updated, and the algorithm con-
tinues processing the trace and updating I in the same way
until it builds S30

1 , with I30 =
⇥
0 1 . . . 29

⇤
. At this

point, the observed stride changes to:

�30 = a31 � a30 = 0x1e2d240� 0x1e2d140 = 256

The constructed loop with �!c = [0] cannot produce a
stride different from 0. As such, the subtrace {a1, . . . , a31}
cannot be generated with an affine access enclosed in a 1-
level loop and the dimensionality of the current solution S30

1

must be increased to build S31
2 .

3.2 Increasing solution dimensionality
Let Sk

n = {�!c , Ik,U,�!w } be a partial solution for the sub-
trace {a1, . . . , ak}. If no valid index {+(l,�!ı k), 0 < l  n}
provides �̂k

l = �k, it may be because a loop index which
had not appeared before is increasing in access (k+1). This
can cause �k to be unrepresentable either as a linear combi-
nation of the loop coefficients �!c , or as an index sequential
to �!ı k. It is possible to generate a valid partial solution Sk+1

n+1

from Sk
n by enlarging the dimensionality of the current solu-

tion components. There are (n+1) such potential solutions,
corresponding to the indices {f(p,�!ı k), 0  p  n}. For

4

1. for (i = 0; i <= 29; i++) {
2. for (j = 0; j <= 29-i; j++) {
3. for (k = 0; k < i; k++) {
4. … A[i][k] …
5. }
6. }
7. }

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Formulation (I)

104 Chapter 4. Trace-based Affine Reconstruction of Code

bounds are assumed to be inclusive, i.e., 0  ij  uj(
�!ı).

Since f j is affine, the access can be rewritten as:

V[f1(
�!ı)] . . . [fm(

�!ı)] = V[c0 + i1c1 + . . . + incn] (4.1)

where V is the base address of the array, c0 is a constant stride, and each {cj, 0 <

j  n} is the coefficient of the loop index ij, and it must account for the dimension-
ality of the original array. For instance, an access A[2 ⇤ i][j] to an array A[N][M]

can be rewritten as A[(2 ⇤ M) ⇤ i + j], where ci = 2M accounts for both the con-
stant multiplying i in the original access (2), and the size of the fastest changing
dimension (M). This is the canonical form into which the method proposed in this
thesis reconstructs the loop.

During the execution of the loop nest, the instruction which implements the
access to V will orderly issue the addresses corresponding to V(�!ı 1), V(�!ı 2),
V(�!ı 3), etc. Consider two consecutive accesses, V(�!ı k) and V(�!ı k+1), and as-
sume that the loop index values in �!ı k = {ik

1, . . . , ik
n} and the upper bounds func-

tions, u1(
�!ı), . . . , un(

�!ı) are known. The values in �!ı k+1 can be calculated as
follows:

1. An index ij will be reset to 0 if and only if all of the following hold:

• All inner indices are resetting.

• Either ij has reached its maximum iteration count, or some inner index
has a negative value for its maximum iteration count when ij increases
by one:

(ij = uj(
�!ı k)) _

⇣
9l, j < l  n; ul(. . . , ik

j + 1, . . .) < 0
⌘

2. An index ij will be increased by one if and only if all of the following hold:

• All inner indices are resetting.

• ij has not reached its maximum iteration count, and all inner indices
have non-negative values for their maximum iteration count when ij

increases by one:

4.1 Trace-based Reconstruction 103

4.1.1 Mathematical Formulation

The proposed reconstruction algorithm deals with the stream of addresses gen-
erated by a single memory instruction (i.e., we focus on one reference at a time).
Hence, we assume that the trace contains at least the memory address of the in-
struction issuing the access (or a similar way to uniquely identify the instruction),
and the accessed location. This memory trace format can be generated, for in-
stance, by Intel Pin [93]. In the general case, it is expected that a trace file will
contain the entire execution of the program, including multiple loop nests and
non-loop sections. Detection of loop sections in execution traces falls out of the
scope of this thesis, but it has been discussed in previous work [80, 96]. Thus, a
reliable mechanism to detect and extract loop sections in the trace is assumed.

Our proposal is designed to recreate the same sequence of accesses that the
memory trace contains. Hence, we model the memory access to be reconstructed
as:

DO i1 = 0, u1(
�!ı)

DO i2 = 0, u2(
�!ı)

...

DO in = 0, un(
�!ı)

V[f1(
�!ı)] . . . [fm(

�!ı)]

where {uj, 0 < j  n} are affine functions that provide the upper bounds of
loop ij; { fd(i1, . . . , in), 0 < d  m} is the set of affine functions that converts a
given point in the iteration space of the nest to a point in the data space of V; and
�!ı = {i1, . . . , in}T is a column vector which encodes the state of each iteration
variable. Note that, if the original access is not affine, it can be modeled in the
worst case as one loop (with one iteration and the corresponding stride) per entry
in the trace. Section 4.3 will present smarter ways to handle irregularities.

From now on, the particular set of index values for the kth execution of the ac-
cess to V is denoted by �!ı k = {ik

1, . . . , ik
n}T; and the complete access

V[f1(
�!ı)] . . . [fm(

�!ı)] is abbreviated by V(�!ı). Note that each upper bound func-
tion uj(

�!ı) can only depend on scoped variables at the nesting level j, i.e.,
{i1, . . . , ij�1}. This is not explicitly acknowledged to simplify notation. Iteration

78

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Formulation (II)

4.1 Trace-based Reconstruction 105

(ij < uj(
�!ı k)) ^

⇣
8l, j < l  n; ul(. . . , ik

j + 1, . . .) � 0
⌘

3. In any other case, ij will not change.

These conditions are intuitive and a direct consequence of loop semantics and
application control flow. If any internal index (il , j < l  n) is not resetting, then
control flow will not exit the loop at level l, and therefore it will be impossible
for ij to be modified. If all internal indices reset, then control flow will reach the
post-loop section of loop at level j, increasing ij by one unit. If ik

j = uj(
�!ı k), then

this increase will cause the index to go beyond its maximum iteration count, and
control flow will exit level j. If there is an iteration (k + 1), then control flow must
re-enter level j later, executing the pre-loop instruction and assigning ij = 0. If
ik
j < uj(

�!ı k) but there is some inner level l such that its maximum iteration count
takes a negative value when ij is increased by one unit, then control flow will not
enter level l, will not reach V, and no memory access may be executed until ij

resets to 0. In all other case, the next access to V will be performed in iteration
�!ı k+1 = {ik

1 . . . , ik
j + 1, 0, . . . , 0}.

Definition 4.1.1. A set of indices built complying with these conditions will be referred
to as a set of sequential indices.

The instantaneous variation of loop index ij between iterations k and (k + 1),
dk

j = (ik+1
j � ik

j), can only take one of three possible values:

1. ij does not change) dk
j = 0

2. ij is increased by one) dk
j = 1

3. ij is reset to 0) dk
j = �ik

j

In the following, vector notation will be used for d:

(�!ı k+1 ��!ı k) =

2

66664

ik+1
1 � ik

1
ik+1
2 � ik

2
...

ik+1
n � ik

n

3

77775
=

2

66664

dk
1

dk
2
...

dk
n

3

77775
=

�!
d k

4.1 Trace-based Reconstruction 105

(ij < uj(
�!ı k)) ^

⇣
8l, j < l  n; ul(. . . , ik

j + 1, . . .) � 0
⌘

3. In any other case, ij will not change.

These conditions are intuitive and a direct consequence of loop semantics and
application control flow. If any internal index (il , j < l  n) is not resetting, then
control flow will not exit the loop at level l, and therefore it will be impossible
for ij to be modified. If all internal indices reset, then control flow will reach the
post-loop section of loop at level j, increasing ij by one unit. If ik

j = uj(
�!ı k), then

this increase will cause the index to go beyond its maximum iteration count, and
control flow will exit level j. If there is an iteration (k + 1), then control flow must
re-enter level j later, executing the pre-loop instruction and assigning ij = 0. If
ik
j < uj(

�!ı k) but there is some inner level l such that its maximum iteration count
takes a negative value when ij is increased by one unit, then control flow will not
enter level l, will not reach V, and no memory access may be executed until ij

resets to 0. In all other case, the next access to V will be performed in iteration
�!ı k+1 = {ik

1 . . . , ik
j + 1, 0, . . . , 0}.

Definition 4.1.1. A set of indices built complying with these conditions will be referred
to as a set of sequential indices.

The instantaneous variation of loop index ij between iterations k and (k + 1),
dk

j = (ik+1
j � ik

j), can only take one of three possible values:

1. ij does not change) dk
j = 0

2. ij is increased by one) dk
j = 1

3. ij is reset to 0) dk
j = �ik

j

In the following, vector notation will be used for d:

(�!ı k+1 ��!ı k) =

2

66664

ik+1
1 � ik

1
ik+1
2 � ik

2
...

ik+1
n � ik

n

3

77775
=

2

66664

dk
1

dk
2
...

dk
n

3

77775
=

�!
d k

• In our model, only three possible variations of a loop
index between two consecutive iterations are allowed

79

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Formulation (and III)

106 Chapter 4. Trace-based Affine Reconstruction of Code

Lemma 4.1.2. The stride between two consecutive accesses sk = V(�!ı k+1)� V(�!ı k)

is a linear combination of the coefficients of the loop indices.

Proof. Using Equation (4.1), sk can be rewritten as:

sk = V + (c0+ c1ik+1
1 + . . .+ cnik+1

n) �
V + (c0+ c1ik

1 + . . .+ cnik
n) =

= c1dk
1 + . . .+ cndk

n =

= �!c �!
d k

4.1.2 Reconstruction Algorithm

The proposed algorithm is essentially a guided exploration of the potential so-
lution space, driven by the first-order differences of the addresses accessed by a
given instruction (the access strides). Each node in this tree-like space represents
a point in the iteration space of the loop. Its root is a trivial loop that generates the
first two accesses in the trace. Children of a node in the tree are the indices that
can immediately follow the parent in the iteration space. Starting from the root,
an exploration engine begins incorporating one access to the reconstructed loop
in each step, descending one level into the tree, until it finds a solution for the en-
tire trace or determines that no affine loop is capable of generating the observed
sequence of accesses.

Each step of the process is conceptually depicted in Figure 4.1. Starting from
the kth iteration vector �!ı k = {ik

1, . . . , ik
n} there are (2n+ 1) different vectors �!ı k+1

that are considered as candidates for the (k + 1)th iteration vector. The n alterna-
tives on the left side are obtained using an operation +(j,�!ı), which increases
index ij by one and resets to zero all inner indices. The (n + 1) alternatives on the
right are obtained by applying an operation f(j,�!ı)1, which inserts a new loop
at nesting level (j + 1).

If a solution exists, the algorithm builds the minimal nest (in terms of the

1Read f as ampheck

• The stride between two consecutive accesses is a linear
combination of the coefficients of the loop indices

80

106 Chapter 4. Trace-based Affine Reconstruction of Code

Lemma 4.1.2. The stride between two consecutive accesses sk = V(�!ı k+1)� V(�!ı k)

is a linear combination of the coefficients of the loop indices.

Proof. Using Equation (4.1), sk can be rewritten as:

sk = V + (c0+ c1ik+1
1 + . . .+ cnik+1

n) �
V + (c0+ c1ik

1 + . . .+ cnik
n) =

= c1dk
1 + . . .+ cndk

n =

= �!c �!
d k

4.1.2 Reconstruction Algorithm

The proposed algorithm is essentially a guided exploration of the potential so-
lution space, driven by the first-order differences of the addresses accessed by a
given instruction (the access strides). Each node in this tree-like space represents
a point in the iteration space of the loop. Its root is a trivial loop that generates the
first two accesses in the trace. Children of a node in the tree are the indices that
can immediately follow the parent in the iteration space. Starting from the root,
an exploration engine begins incorporating one access to the reconstructed loop
in each step, descending one level into the tree, until it finds a solution for the en-
tire trace or determines that no affine loop is capable of generating the observed
sequence of accesses.

Each step of the process is conceptually depicted in Figure 4.1. Starting from
the kth iteration vector �!ı k = {ik

1, . . . , ik
n} there are (2n+ 1) different vectors �!ı k+1

that are considered as candidates for the (k + 1)th iteration vector. The n alterna-
tives on the left side are obtained using an operation +(j,�!ı), which increases
index ij by one and resets to zero all inner indices. The (n + 1) alternatives on the
right are obtained by applying an operation f(j,�!ı)1, which inserts a new loop
at nesting level (j + 1).

If a solution exists, the algorithm builds the minimal nest (in terms of the

1Read f as ampheck

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

4. Trace-Based Affine Reconstruction of Code

• Problem Formulation

• Problem Resolution with CHOLESKY

• Extensions for Supporting Nonlinear Traces

• Experimental Evaluation

81

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Solution Space 2n + 1 candidates

82

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11883

• Coefficients of the Loop Indices

• Iteration Indices

• Bounds

Problem Resolution (I)

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

108 Chapter 4. Trace-based Affine Reconstruction of Code

number of nested loops) capable of generating the whole observed access trace.
For example, a 2-level loop with indices i and j might iterate sequentially over
all the elements in array A[N][M] if the upper bounds are defined as ui = N,
uj = M and the access is V[i ⇤ M + j]. This can be rewritten as an equivalent
1-level loop with index i, using ui = N ⇤ M and access V[i]. Section 4.1.5 will
detail a mechanism to increase the dimensionality of the resulting nest.

Let �!a = {a1, . . . , aN} = {V(�!ı 1), . . . , V(�!ı N)} be the addresses generated
by a single instruction, included in the execution trace. Since the upper bounds
functions are affine, each uj(

�!ı) can be written as:

uj(
�!ı) = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) (4.2)

and therefore it is possible to build a matrix U 2 Zn⇥n and a column vector
�!w 2 Zn such that:

U =

2

6666664

�1 0 0 . . . 0
u2,1 �1 0 . . . 0
u3,1 u3,2 �1 . . . 0

...
...

...
un,1 un,2 un,3 . . . �1

3

7777775
, and �!w =

2

66664

w1

w2
...

wn

3

77775
(4.3)

Note that U is a lower triangular matrix, since no index ij can depend on an
inner index; and that its main diagonal is equal to

�!�1 2 Zn. Using U and �!w , the
condition for a given iteration tuple �!ı to be valid under the loop constraints in
the canonical loop form can be written as:

U�!ı +�!w � �!
0 T (4.4)

Let us assume that the algorithm has already identified a partial solution Sk
n =

{�!c , Ik, U,�!w }, which reconstructs the subtrace {a1, . . . , ak} using n nested loops,
whose components are defined as follows:

• Vector �!c 2 Zn of coefficients of loop indices.

• Matrix Ik = [�!ı 1| . . . |�!ı k] 2 Zn⇥k of reconstructed indices.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11884

• To be a valid solution:

• Each consecutive pair of indices must be sequential

• The observed strides are coherent with the
reconstructed ones

Problem Resolution (II)

4.1 Trace-based Reconstruction 109

• Matrix U 2 Zn⇥n, bounds matrix as defined in Equation (4.3).

• Vector �!w 2 Zn, bounds vector as defined in Equation (4.3).

To be a valid solution, Sk
n has to meet the following requirements:

1. Each consecutive pair of indices �!ı k and �!ı k+1 must be sequential as per
Definition 4.1.1.

Note that this condition is stronger than simply requiring that the itera-
tion indices stay inside the loop bounds, which could be written extending
Equation (4.4) as:

UIk +�!w 11⇥k � 0n⇥k (4.5)

2. The observed strides are coherent with the reconstructed ones. Using
Lemma 4.1.2 this can be expressed as:

�!c (�!ı k+1 ��!ı k) = �!c �!
d k = sk

Upon processing access ak+1, the algorithm first calculates the observed stride:

sk = ak+1 � ak (4.6)

Afterwards, it builds a diophantine2 linear equation system based on Lemma 4.1.2
to discover the potential indices �!ı k+1 which generate an access stride that is
equal to the observed one:

�!c (�!ı k+1 ��!ı k) = sk) (�!c T�!c)
�!
d k = �!c Tsk (4.7)

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
d k 2 Zn is the solution. There

are two possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
�!
d k, the new index �!ı k+1 = �!ı k +

�!
d k is calculated, and Ik+1 =

⇥
Ik|�!ı k+1⇤.

U, �!w , and �!c remain unchanged. Each of these solutions must be explored
independently.

2The system must be diophantine, as loop indices may only have integer values.

4.1 Trace-based Reconstruction 109

• Matrix U 2 Zn⇥n, bounds matrix as defined in Equation (4.3).

• Vector �!w 2 Zn, bounds vector as defined in Equation (4.3).

To be a valid solution, Sk
n has to meet the following requirements:

1. Each consecutive pair of indices �!ı k and �!ı k+1 must be sequential as per
Definition 4.1.1.

Note that this condition is stronger than simply requiring that the itera-
tion indices stay inside the loop bounds, which could be written extending
Equation (4.4) as:

UIk +�!w 11⇥k � 0n⇥k (4.5)

2. The observed strides are coherent with the reconstructed ones. Using
Lemma 4.1.2 this can be expressed as:

�!c (�!ı k+1 ��!ı k) = �!c �!
d k = sk

Upon processing access ak+1, the algorithm first calculates the observed stride:

sk = ak+1 � ak (4.6)

Afterwards, it builds a diophantine2 linear equation system based on Lemma 4.1.2
to discover the potential indices �!ı k+1 which generate an access stride that is
equal to the observed one:

�!c (�!ı k+1 ��!ı k) = sk) (�!c T�!c)
�!
d k = �!c Tsk (4.7)

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
d k 2 Zn is the solution. There

are two possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
�!
d k, the new index �!ı k+1 = �!ı k +

�!
d k is calculated, and Ik+1 =

⇥
Ik|�!ı k+1⇤.

U, �!w , and �!c remain unchanged. Each of these solutions must be explored
independently.

2The system must be diophantine, as loop indices may only have integer values.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: CHOLESKY (I)
122 Chapter 4. Trace-based Affine Reconstruction of Code

1 #define N 32;
2 double p[N], A[N][N], x;
3 int i, j, k;
4
5 #pragma scop
6 for (i = 0; i < N; ++i) {
7 x = A[i][i];
8 for (j = 0; j <= i - 1; ++j)
9 x = x - A[i][j] * A[i][j];

10 p[i] = 1.0 / sqrt(x);
11 for (j = i + 1; j < N; ++j) {
12 x = A[i][j];
13 for (k = 0; k <= i - 1; ++k)
14 x = x - A[j][k] * A[i][k] ;
15 A[j][i] = x * p[i];
16 }
17 }
18 #pragma endscop

(a) Source code.

1 0x00400cbe 0x1e2d140
2 0x00400cbe 0x1e2d140
3 0x00400cbe 0x1e2d140
4 ...
5 0x00400cbe 0x1e2ef18
6 0x00400cbe 0x1e2ef20
7 0x00400cbe 0x1e2ef28

(b) Excerpt of the memory trace
generated by the access A[i][k]
(see line 14 of Figure 4.2a).

Figure 4.2 – The Cholesky matrix decomposition.

the engine predicts an iteration of the only loop that has been found so far:

ŝ2
1 = �!c �!

d 2
1 = [0] [1]T = 0

which is equal to the observed stride s2. The matrix of reconstructed indices is
updated:

I = [I|+ (1,�!ı 2)] =
h

0 1 2
i

and the loop bounds need to be recomputed. Thanks to Corollary 4.1.6:

�!w 0 =
⇥
w

0
1
⇤T

=
h
i3
1

iT
= [2]T

and U remains unchanged. The new solution is linear and the algorithm contin-
ues processing the trace and updating I and �!w in the same way until the observed
stride changes to:

s30 = a31 � a30 = 0x1e2d240� 0x1e2d140)

1 # d e f i n e N 32;

2 d o ub l e p[N], A[N][N];

3 for (i = 0; i < N; ++i) {

4 x = A[i][i];

5 f o r (j = 0; j <= i - 1; ++j)

6 x = x - A[i][j]

*

A[i][j];

7 p[i] = 1.0 / sqrt(x);

8 for (j = i + 1; j < N; ++j) {

9 x = A[i][j];

10 for (k = 0; k <= i - 1; ++k)
11 x = x - A[j][k]

*

A[i][k];
12 A[j][i] = x

*

p[i];

13 }

14 }

Figure 2. Source code of the cholesky application.

1 0x1e2d140

2 0x1e2d140

.

.

.

30 0x1e2d140

31 0x1e2d240

32 0x1e2d248

33 0x1e2d240

34 0x1e2d248

.

.

.

88 0x1e2d248

89 0x1e2d340

90 0x1e2d348

91 0x1e2d350

92 0x1e2d340

93 0x1e2d348

94 0x1e2d350

.

.

.

Figure 3. Excerpt of the memory trace generated by the
access A[i][k] (line 11 of Figure 2).

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
� k 2

Zn is the solution. There are two possible situations when
solving this system:

1. The system has one or more integer solutions. In this
case, for each solution

�!
� k, the new index �!ı k+1 = �!ı k+�!

� k, which must be sequential to �!ı k, is calculated, and
Ik+1 =

⇥
Ik|�!ı k+1

⇤
. U, �!w , and �!c remain unchanged.

Each of these solutions must be explored independently.

2. The system has no solution generating an index sequen-
tial to �!ı k, in which case there are three courses of action:

(a) Increase the dimensionality of the solution (Sec. 3.2).

(b) Modify the boundary conditions U and �!w (Sec. 3.4).

(c) Discard this branch.

3.1 Solving the linear diophantine system
Although the system in Eq. (5) has infinite solutions in the
general case, only a few are valid in the context of the affine
loop reconstruction, which makes it possible to develop very
efficient ad-hoc solution strategies.

Lemma 3.1. There are at most n valid solutions to the
system in Eq. (5). These correspond to indices:

{+(l,�!ı k) =
⇥
ik1 . . . ikl�1 ikl + 1 0 . . . 0

⇤
, 0 < l  n}

Proof. If index �!ı k+1 must be sequential to index �!ı k as per
Definition 2.1, then there is a single degree of freedom for�!
� k: the position �kl that is equal to 1.

[�k1 . . . �kl�1 �kl �kl+1 . . . �kn]T =

= [0 . . . 0 1 �ikl+1 . . . �ikn]T

Positions {ij , 0 < j < l} will not change between iterations
k and (k+1), and therefore �kj = 0; while positions {ij , l <
j  n} will be reset to 0, and therefore �kj = �ikj .

Taking this result into account, it is possible to find all
valid solutions of the system in linear time, O(n), by simply
testing the n valid candidates +(l,�!ı k), calculating their as-
sociated strides �̂k

l = �!c
�!
� k

l , and accepting those solutions
with a stride equal to the observed one, �̂k

l = �k. These are
particular solutions of the subtrace {a1, . . . , ak+1}, which
will be explored to construct a solution for the entire trace.

Following the cholesky example, the next access in
the trace to be processed is a3 = 0x1e2d140. The engine
computes the access stride as �2 = a3 � a2 = 0. At this
point, a 1-level loop has been constructed and the engine
checks whether

�!
i 3 = +(1,

�!
i 2) = [2] produces an stride

that matches the observed one. The equality �̂2
1 = �!c

�!
� 2

1 =
[0] [1] = �2 holds, and the solution is accepted. The matrix
of reconstructed indices is updated, and the algorithm con-
tinues processing the trace and updating I in the same way
until it builds S30

1 , with I30 =
⇥
0 1 . . . 29

⇤
. At this

point, the observed stride changes to:

�30 = a31 � a30 = 0x1e2d240� 0x1e2d140 = 256

The constructed loop with �!c = [0] cannot produce a
stride different from 0. As such, the subtrace {a1, . . . , a31}
cannot be generated with an affine access enclosed in a 1-
level loop and the dimensionality of the current solution S30

1

must be increased to build S31
2 .

3.2 Increasing solution dimensionality
Let Sk

n = {�!c , Ik,U,�!w } be a partial solution for the sub-
trace {a1, . . . , ak}. If no valid index {+(l,�!ı k), 0 < l  n}
provides �̂k

l = �k, it may be because a loop index which
had not appeared before is increasing in access (k+1). This
can cause �k to be unrepresentable either as a linear combi-
nation of the loop coefficients �!c , or as an index sequential
to �!ı k. It is possible to generate a valid partial solution Sk+1

n+1

from Sk
n by enlarging the dimensionality of the current solu-

tion components. There are (n+1) such potential solutions,
corresponding to the indices {f(p,�!ı k), 0  p  n}. For

4

4.2 Case Study: CHOLESKY 121

that this affine access to the 2D matrix A is enclosed into a 3-level loop whose
inner indices depend on the outer ones.

An excerpt of the memory trace generated by A[i][k] is shown in Figure 4.2b.
The first column uniquely identifies the instruction that emits the memory access,
and the second is the address of the accessed memory location.

4.2.1 Reconstruction Process

The pseudocode that implements our proposal was presented in Section 4.1.4. As
mentioned, the extraction process starts by calling EXTRACT() with the following
S2

1 : 8
>>><

>>>:

�!c =
⇥
s1⇤ = [a2 � a1] = [0]

I2 =
⇥�!ı 1|�!ı 2⇤ = [0, 1]

U = [�1]
�!w = [1]T

As commented in Section 4.1.3, this is the only feasible solution for the sub-
trace {a1 = 0x1e2d140, a2 = 0x1e2d140}. Next, EXTRACT() starts to process the
following access in the trace:

a3 = 0x1e2d140

and computes the stride with the prior access (see line 4 of Algorithm 4.1):

s2 = a3 � a2 = 0x1e2d140� 0x1e2d140 = 0

Then, our method tries to efficiently traverse the solution space considering:

�!g 2 = U�!ı 2 +�!w = [�1] [1] + [1] = [�1] + [1] = [0]

�!g 2 does not have positive elements, and thus cannot guide the exploration (as
expected in the first iterations). As will be suggested in Section 4.4.1, a simple
heuristic that solves this kind of situations is considering that, when �!g is not yet
operational, the outermost discovered loop is predicted to iterate. At this point,

85

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: Building the System

• Calculate the observed stride

• Build a diophantine linear equation system

• One or more solutions: Explore them independently

• No solution under current boundaries

• Increase dimensionality adding a new loop

• Modify boundaries

• Discard this branch

86

4.1 Trace-based Reconstruction 109

• Matrix U 2 Zn⇥n, bounds matrix as defined in Equation (4.3).

• Vector �!w 2 Zn, bounds vector as defined in Equation (4.3).

To be a valid solution, Sk
n has to meet the following requirements:

1. Each consecutive pair of indices �!ı k and �!ı k+1 must be sequential as per
Definition 4.1.1.

Note that this condition is stronger than simply requiring that the itera-
tion indices stay inside the loop bounds, which could be written extending
Equation (4.4) as:

UIk +�!w 11⇥k � 0n⇥k (4.5)

2. The observed strides are coherent with the reconstructed ones. Using
Lemma 4.1.2 this can be expressed as:

�!c (�!ı k+1 ��!ı k) = �!c �!
d k = sk

Upon processing access ak+1, the algorithm first calculates the observed stride:

sk = ak+1 � ak (4.6)

Afterwards, it builds a diophantine2 linear equation system based on Lemma 4.1.2
to discover the potential indices �!ı k+1 which generate an access stride that is
equal to the observed one:

�!c (�!ı k+1 ��!ı k) = sk) (�!c T�!c)
�!
d k = �!c Tsk (4.7)

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
d k 2 Zn is the solution. There

are two possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
�!
d k, the new index �!ı k+1 = �!ı k +

�!
d k is calculated, and Ik+1 =

⇥
Ik|�!ı k+1⇤.

U, �!w , and �!c remain unchanged. Each of these solutions must be explored
independently.

2The system must be diophantine, as loop indices may only have integer values.

4.1 Trace-based Reconstruction 109

• Matrix U 2 Zn⇥n, bounds matrix as defined in Equation (4.3).

• Vector �!w 2 Zn, bounds vector as defined in Equation (4.3).

To be a valid solution, Sk
n has to meet the following requirements:

1. Each consecutive pair of indices �!ı k and �!ı k+1 must be sequential as per
Definition 4.1.1.

Note that this condition is stronger than simply requiring that the itera-
tion indices stay inside the loop bounds, which could be written extending
Equation (4.4) as:

UIk +�!w 11⇥k � 0n⇥k (4.5)

2. The observed strides are coherent with the reconstructed ones. Using
Lemma 4.1.2 this can be expressed as:

�!c (�!ı k+1 ��!ı k) = �!c �!
d k = sk

Upon processing access ak+1, the algorithm first calculates the observed stride:

sk = ak+1 � ak (4.6)

Afterwards, it builds a diophantine2 linear equation system based on Lemma 4.1.2
to discover the potential indices �!ı k+1 which generate an access stride that is
equal to the observed one:

�!c (�!ı k+1 ��!ı k) = sk) (�!c T�!c)
�!
d k = �!c Tsk (4.7)

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
d k 2 Zn is the solution. There

are two possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
�!
d k, the new index �!ı k+1 = �!ı k +

�!
d k is calculated, and Ik+1 =

⇥
Ik|�!ı k+1⇤.

U, �!w , and �!c remain unchanged. Each of these solutions must be explored
independently.

2The system must be diophantine, as loop indices may only have integer values.

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: Solving the System

• As indices must be sequential, there are at
most n solutions

• We only need to calculate the predicted
stride for each valid index and compare with
the observed stride

87

4.1 Trace-based Reconstruction 109

• Matrix U 2 Zn⇥n, bounds matrix as defined in Equation (4.3).

• Vector �!w 2 Zn, bounds vector as defined in Equation (4.3).

To be a valid solution, Sk
n has to meet the following requirements:

1. Each consecutive pair of indices �!ı k and �!ı k+1 must be sequential as per
Definition 4.1.1.

Note that this condition is stronger than simply requiring that the itera-
tion indices stay inside the loop bounds, which could be written extending
Equation (4.4) as:

UIk +�!w 11⇥k � 0n⇥k (4.5)

2. The observed strides are coherent with the reconstructed ones. Using
Lemma 4.1.2 this can be expressed as:

�!c (�!ı k+1 ��!ı k) = �!c �!
d k = sk

Upon processing access ak+1, the algorithm first calculates the observed stride:

sk = ak+1 � ak (4.6)

Afterwards, it builds a diophantine2 linear equation system based on Lemma 4.1.2
to discover the potential indices �!ı k+1 which generate an access stride that is
equal to the observed one:

�!c (�!ı k+1 ��!ı k) = sk) (�!c T�!c)
�!
d k = �!c Tsk (4.7)

where (�!c T�!c) 2 Zn⇥n is the system matrix, and
�!
d k 2 Zn is the solution. There

are two possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
�!
d k, the new index �!ı k+1 = �!ı k +

�!
d k is calculated, and Ik+1 =

⇥
Ik|�!ı k+1⇤.

U, �!w , and �!c remain unchanged. Each of these solutions must be explored
independently.

2The system must be diophantine, as loop indices may only have integer values.

110 Chapter 4. Trace-based Affine Reconstruction of Code

2. The system has no solution, in which case there are three courses of action:

2.1. Modify the boundary conditions imposed by U and �!w .

2.2. Increase the dimensionality of the solution: compute Sk+1
n+1 modeling a

loop with (n + 1) nesting levels.

2.3. Discard this branch.

Section 4.1.3 describes heuristic methods to guide the search through the so-
lution space to accelerate the traversal.

Solving the Linear Diophantine System

Although the system in Equation (4.7) has infinite solutions in the general case,
only a few are valid in the context of the affine loop reconstruction, which makes
it possible to develop ad-hoc solving strategies.

Lemma 4.1.3. There are at most n valid solutions to the system in Equation (4.7). These
correspond to indices:

{�!ı k+1
l = +(l,�!ı k), 0 < l  n}

Proof. If index �!ı k+1 must be sequential to index �!ı k as per Definition 4.1.1, then
there is a single degree of freedom for

�!
d k: the position dk

l that is equal to 1.

2

6666666666664

dk
1
...

dk
l�1
dk

l
dk

l+1
...

dk
n

3

7777777777775

=

2

6666666666664

0
...
0
1

�ik
l+1
...

�ik
n

3

7777777777775

(4.8)

Positions {ij, 0 < j < l} will not change between iterations k and (k + 1), and
therefore dk

j = 0; while positions {ij, l < j  n} will be reset to 0, and therefore
dk

j = �ik
j .

4.1 Trace-based Reconstruction 111

Taking this result into account, it is possible to find all valid solutions of the
system in linear time (O(n)) by simply testing the n valid indices �!ı k+1

l , calculat-
ing the predicted stride for each combination as ŝk

l = �!c �!
d k

l , and accepting those
solutions that generate a stride equal to the observed one (ŝk

l = sk, obtained using
Equation (4.6)). These will be particular solutions of the subtrace {a1, . . . , ak+1},
which must be explored to construct a solution for the entire trace.

4.1.3 Exploration of the Solution Space

Branch Priority

The approach proposed in the previous section is capable of efficiently finding the
relevant solutions of the linear diophantine system for each address of the trace,
but can still produce a large number of potential solutions that will be discarded
when processing the remaining addresses in the trace. In the general case, the
time for exploring the entire solution space of a trace containing N addresses
generated by n loops would be O(nN). Consequently, exploring all branches with
no particular order could take a very long time. In order to guide the traversal of
the solution space, consider the column vector �!g k 2 Zn defined as:

�!g k = U�!ı k +�!w (4.9)

Lemma 4.1.4. Each element gk
j 2 �!g k indicates how many more iterations of index ij

are left before it resets under bounds U and �!w .

Proof. gk
j is equal to the value of the upper bound of the loop in ij, defined in

Equation (4.2), minus the current value of ij:

gk
j = U(j,:)

�!ı k + wj = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) � ij =

= uj(
�!ı)� ij

where U(j,:) denotes the jth row of matrix U. By construction of the canonical loop
form, the step of all loops is 1. Therefore, gk

j is equal to the number of iterations
of loop ij before ij > uj(

�!ı).

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 11888

• Solution for the first two accesses:

• Processing the third access:

• The reconstruction continues until

Problem Resolution: CHOLESKY (II)

4.2 Case Study: CHOLESKY 121

that this affine access to the 2D matrix A is enclosed into a 3-level loop whose
inner indices depend on the outer ones.

An excerpt of the memory trace generated by A[i][k] is shown in Figure 4.2b.
The first column uniquely identifies the instruction that emits the memory access,
and the second is the address of the accessed memory location.

4.2.1 Reconstruction Process

The pseudocode that implements our proposal was presented in Section 4.1.4. As
mentioned, the extraction process starts by calling EXTRACT() with the following
S2

1 : 8
>>><

>>>:

�!c =
⇥
s1⇤ = [a2 � a1] = [0]

I2 =
⇥�!ı 1|�!ı 2⇤ = [0, 1]

U = [�1]
�!w = [1]T

As commented in Section 4.1.3, this is the only feasible solution for the sub-
trace {a1 = 0x1e2d140, a2 = 0x1e2d140}. Next, EXTRACT() starts to process the
following access in the trace:

a3 = 0x1e2d140

and computes the stride with the prior access (see line 4 of Algorithm 4.1):

s2 = a3 � a2 = 0x1e2d140� 0x1e2d140 = 0

Then, our method tries to efficiently traverse the solution space considering:

�!g 2 = U�!ı 2 +�!w = [�1] [1] + [1] = [�1] + [1] = [0]

�!g 2 does not have positive elements, and thus cannot guide the exploration (as
expected in the first iterations). As will be suggested in Section 4.4.1, a simple
heuristic that solves this kind of situations is considering that, when �!g is not yet
operational, the outermost discovered loop is predicted to iterate. At this point,

4.2 Case Study: CHOLESKY 121

that this affine access to the 2D matrix A is enclosed into a 3-level loop whose
inner indices depend on the outer ones.

An excerpt of the memory trace generated by A[i][k] is shown in Figure 4.2b.
The first column uniquely identifies the instruction that emits the memory access,
and the second is the address of the accessed memory location.

4.2.1 Reconstruction Process

The pseudocode that implements our proposal was presented in Section 4.1.4. As
mentioned, the extraction process starts by calling EXTRACT() with the following
S2

1 : 8
>>><

>>>:

�!c =
⇥
s1⇤ = [a2 � a1] = [0]

I2 =
⇥�!ı 1|�!ı 2⇤ = [0, 1]

U = [�1]
�!w = [1]T

As commented in Section 4.1.3, this is the only feasible solution for the sub-
trace {a1 = 0x1e2d140, a2 = 0x1e2d140}. Next, EXTRACT() starts to process the
following access in the trace:

a3 = 0x1e2d140

and computes the stride with the prior access (see line 4 of Algorithm 4.1):

s2 = a3 � a2 = 0x1e2d140� 0x1e2d140 = 0

Then, our method tries to efficiently traverse the solution space considering:

�!g 2 = U�!ı 2 +�!w = [�1] [1] + [1] = [�1] + [1] = [0]

�!g 2 does not have positive elements, and thus cannot guide the exploration (as
expected in the first iterations). As will be suggested in Section 4.4.1, a simple
heuristic that solves this kind of situations is considering that, when �!g is not yet
operational, the outermost discovered loop is predicted to iterate. At this point,

122 Chapter 4. Trace-based Affine Reconstruction of Code

1 #define N 32;
2 double p[N], A[N][N], x;
3 int i, j, k;
4
5 #pragma scop
6 for (i = 0; i < N; ++i) {
7 x = A[i][i];
8 for (j = 0; j <= i - 1; ++j)
9 x = x - A[i][j] * A[i][j];

10 p[i] = 1.0 / sqrt(x);
11 for (j = i + 1; j < N; ++j) {
12 x = A[i][j];
13 for (k = 0; k <= i - 1; ++k)
14 x = x - A[j][k] * A[i][k] ;
15 A[j][i] = x * p[i];
16 }
17 }
18 #pragma endscop

(a) Source code.

1 0x00400cbe 0x1e2d140
2 0x00400cbe 0x1e2d140
3 0x00400cbe 0x1e2d140
4 ...
5 0x00400cbe 0x1e2ef18
6 0x00400cbe 0x1e2ef20
7 0x00400cbe 0x1e2ef28

(b) Excerpt of the memory trace
generated by the access A[i][k]
(see line 14 of Figure 4.2a).

Figure 4.2 – The Cholesky matrix decomposition.

the engine predicts an iteration of the only loop that has been found so far:

ŝ2
1 = �!c �!

d 2
1 = [0] [1]T = 0

which is equal to the observed stride s2. The matrix of reconstructed indices is
updated:

I = [I|+ (1,�!ı 2)] =
h

0 1 2
i

and the loop bounds need to be recomputed. Thanks to Corollary 4.1.6:

�!w 0 =
⇥
w

0
1
⇤T

=
h
i3
1

iT
= [2]T

and U remains unchanged. The new solution is linear and the algorithm contin-
ues processing the trace and updating I and �!w in the same way until the observed
stride changes to:

s30 = a31 � a30 = 0x1e2d240� 0x1e2d140)

122 Chapter 4. Trace-based Affine Reconstruction of Code

1 #define N 32;
2 double p[N], A[N][N], x;
3 int i, j, k;
4
5 #pragma scop
6 for (i = 0; i < N; ++i) {
7 x = A[i][i];
8 for (j = 0; j <= i - 1; ++j)
9 x = x - A[i][j] * A[i][j];

10 p[i] = 1.0 / sqrt(x);
11 for (j = i + 1; j < N; ++j) {
12 x = A[i][j];
13 for (k = 0; k <= i - 1; ++k)
14 x = x - A[j][k] * A[i][k] ;
15 A[j][i] = x * p[i];
16 }
17 }
18 #pragma endscop

(a) Source code.

1 0x00400cbe 0x1e2d140
2 0x00400cbe 0x1e2d140
3 0x00400cbe 0x1e2d140
4 ...
5 0x00400cbe 0x1e2ef18
6 0x00400cbe 0x1e2ef20
7 0x00400cbe 0x1e2ef28

(b) Excerpt of the memory trace
generated by the access A[i][k]
(see line 14 of Figure 4.2a).

Figure 4.2 – The Cholesky matrix decomposition.

the engine predicts an iteration of the only loop that has been found so far:

ŝ2
1 = �!c �!

d 2
1 = [0] [1]T = 0

which is equal to the observed stride s2. The matrix of reconstructed indices is
updated:

I = [I|+ (1,�!ı 2)] =
h

0 1 2
i

and the loop bounds need to be recomputed. Thanks to Corollary 4.1.6:

�!w 0 =
⇥
w

0
1
⇤T

=
h
i3
1

iT
= [2]T

and U remains unchanged. The new solution is linear and the algorithm contin-
ues processing the trace and updating I and �!w in the same way until the observed
stride changes to:

s30 = a31 � a30 = 0x1e2d240� 0x1e2d140)

4.2 Case Study: CHOLESKY 121

that this affine access to the 2D matrix A is enclosed into a 3-level loop whose
inner indices depend on the outer ones.

An excerpt of the memory trace generated by A[i][k] is shown in Figure 4.2b.
The first column uniquely identifies the instruction that emits the memory access,
and the second is the address of the accessed memory location.

4.2.1 Reconstruction Process

The pseudocode that implements our proposal was presented in Section 4.1.4. As
mentioned, the extraction process starts by calling EXTRACT() with the following
S2

1 : 8
>>><

>>>:

�!c =
⇥
s1⇤ = [a2 � a1] = [0]

I2 =
⇥�!ı 1|�!ı 2⇤ = [0, 1]

U = [�1]
�!w = [1]T

As commented in Section 4.1.3, this is the only feasible solution for the sub-
trace {a1 = 0x1e2d140, a2 = 0x1e2d140}. Next, EXTRACT() starts to process the
following access in the trace:

a3 = 0x1e2d140

and computes the stride with the prior access (see line 4 of Algorithm 4.1):

s2 = a3 � a2 = 0x1e2d140� 0x1e2d140 = 0

Then, our method tries to efficiently traverse the solution space considering:

�!g 2 = U�!ı 2 +�!w = [�1] [1] + [1] = [�1] + [1] = [0]

�!g 2 does not have positive elements, and thus cannot guide the exploration (as
expected in the first iterations). As will be suggested in Section 4.4.1, a simple
heuristic that solves this kind of situations is considering that, when �!g is not yet
operational, the outermost discovered loop is predicted to iterate. At this point,

122 Chapter 4. Trace-based Affine Reconstruction of Code

1 #define N 32;
2 double p[N], A[N][N], x;
3 int i, j, k;
4
5 #pragma scop
6 for (i = 0; i < N; ++i) {
7 x = A[i][i];
8 for (j = 0; j <= i - 1; ++j)
9 x = x - A[i][j] * A[i][j];

10 p[i] = 1.0 / sqrt(x);
11 for (j = i + 1; j < N; ++j) {
12 x = A[i][j];
13 for (k = 0; k <= i - 1; ++k)
14 x = x - A[j][k] * A[i][k] ;
15 A[j][i] = x * p[i];
16 }
17 }
18 #pragma endscop

(a) Source code.

1 0x00400cbe 0x1e2d140
2 0x00400cbe 0x1e2d140
3 0x00400cbe 0x1e2d140
4 ...
5 0x00400cbe 0x1e2ef18
6 0x00400cbe 0x1e2ef20
7 0x00400cbe 0x1e2ef28

(b) Excerpt of the memory trace
generated by the access A[i][k]
(see line 14 of Figure 4.2a).

Figure 4.2 – The Cholesky matrix decomposition.

the engine predicts an iteration of the only loop that has been found so far:

ŝ2
1 = �!c �!

d 2
1 = [0] [1]T = 0

which is equal to the observed stride s2. The matrix of reconstructed indices is
updated:

I = [I|+ (1,�!ı 2)] =
h

0 1 2
i

and the loop bounds need to be recomputed. Thanks to Corollary 4.1.6:

�!w 0 =
⇥
w

0
1
⇤T

=
h
i3
1

iT
= [2]T

and U remains unchanged. The new solution is linear and the algorithm contin-
ues processing the trace and updating I and �!w in the same way until the observed
stride changes to:

s30 = a31 � a30 = 0x1e2d240� 0x1e2d140)

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution:
Increasing the Solution Dimensionality (I)

89

• Add a new loop

4.1 Trace-based Reconstruction 115

the previous system can be reduced to:

U0
(j,1:j)i

z
(1:j,1:j�1) + w0

j1
1⇥(j�1) = 01⇥(j�1) (4.12)

where U0
(j,1:j) 2 Z1⇥j denotes the first j entries of the jth row of U0, and iz

(1:j,1:j�1) 2
Zj⇥(j�1) denotes the first (j� 1) entries in the first j rows of matrix iz. Only (j� 1)
indexes are needed, as that is the number of unknowns in the jth row of U0. Sec-
ond, note that any full rank matrix can be extracted from Ik+1 to build iz as long
as the selected columns are iterations where index ij is maximum. By taking ad-
vantage of the canonical loop form, this means that it is always possible to build
iz as a triangular matrix, and solve the system in linear time O(j). By applying
both optimizations, the complexity of the calculation of U0 becomes O(n2).

Extracting the Coefficients of the Loop Indices

Once again, assume that the algorithm has found a partial solution Sk
n =

{�!c , Ik, U,�!w }. If no valid {�!ı k+1
l = +(l,�!ı k), 0 < l  n} can be built using

the methods described until now in this section, it may be caused by a loop in-
dex increasing in access (k + 1) which had not appeared before. This can cause
sk to be unrepresentable either as a linear combination of the currently known
coefficients in �!c , or as a set of sequential indices Ik+1. Assuming that the first
k accesses have been correctly recognized, it is possible to generate a valid par-
tial solution Sk+1

n+1 from Sk
n by enlarging the dimensionality of the current solution

components. There are (n + 1) potential solutions that need to be explored (as
shown in the right half of Figure 4.1), one for each insertion position of the newly
discovered index. The most common situation, particularly for large values of k,
is that the newly discovered loops are outer than the previously known ones. In
any case, given an insertion point (p, 0  p  n) for the new loop index ip, the
set of indices generated, Ik+1 2 Z(n+1)⇥(k+1), is as follows:

Ik+1 =

2

664

Ik
(1:p,:) �!ı k+101⇥k

Ik
(p+1:n,:)

3

775

116 Chapter 4. Trace-based Affine Reconstruction of Code

where a 0 in position p has been added to each index �!ı 2 Ik, and a new column
�!ı k+1 = f(p,�!ı k) has been added to the matrix. The coefficient c0p associated
with the new loop index can be derived from Equation (4.7):

�!c (�!ı k+1 ��!ı k) = sk)

h
c1, . . . , cp, c

0
p

, cp+1, . . . , cn

i

2

6666666666664

0
...
0
1

�ik
p

...
�ik

n

3

7777777777775

= sk)

c0p = sk +
n

Â
r=p+1

ik
r cr

After calculating the new �!c , U and �!w are updated as described previously
in this section to reflect any new information available. If no solution is found for
the boundary conditions, then this branch is discarded. Note that there must be
a practical limit to the maximum acceptable solution size, as in the general case
any trace {a1, . . . , aN} can be generated using at most N affine nested loops. For
this reason, the solution space should be traversed in a breadth-first fashion, to
ensure that a minimal solution (in terms of number of generated nested loops) is
reached.

Starting the Exploration

In the previous sections, it has been discussed how to constructively build a so-
lution for the subtrace {a1, . . . , ak+1} assuming that the solution for {a1, . . . , ak}
is known. The first partial solution S2

1 for {a1, a2} is built as:

• �!c =
⇥
s1⇤ • I2 =

⇥�!ı 1|�!ı 2⇤ = [0, 1]
• U = [�1] • �!w = [1]

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

• In CHOLESKY

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

• In CHOLESKY

Problem Resolution:
Increasing the Solution Dimensionality (and II)

• The coefficient for the new loop can be derived from the
observed stride

90

116 Chapter 4. Trace-based Affine Reconstruction of Code

where a 0 in position p has been added to each index �!ı 2 Ik, and a new column
�!ı k+1 = f(p,�!ı k) has been added to the matrix. The coefficient c0p associated
with the new loop index can be derived from Equation (4.7):

�!c (�!ı k+1 ��!ı k) = sk)

h
c1, . . . , cp, c

0
p

, cp+1, . . . , cn

i

2

6666666666664

0
...
0
1

�ik
p

...
�ik

n

3

7777777777775

= sk)

c0p = sk +
n

Â
r=p+1

ik
r cr

After calculating the new �!c , U and �!w are updated as described previously
in this section to reflect any new information available. If no solution is found for
the boundary conditions, then this branch is discarded. Note that there must be
a practical limit to the maximum acceptable solution size, as in the general case
any trace {a1, . . . , aN} can be generated using at most N affine nested loops. For
this reason, the solution space should be traversed in a breadth-first fashion, to
ensure that a minimal solution (in terms of number of generated nested loops) is
reached.

Starting the Exploration

In the previous sections, it has been discussed how to constructively build a so-
lution for the subtrace {a1, . . . , ak+1} assuming that the solution for {a1, . . . , ak}
is known. The first partial solution S2

1 for {a1, a2} is built as:

• �!c =
⇥
s1⇤ • I2 =

⇥�!ı 1|�!ı 2⇤ = [0, 1]
• U = [�1] • �!w = [1]

116 Chapter 4. Trace-based Affine Reconstruction of Code

where a 0 in position p has been added to each index �!ı 2 Ik, and a new column
�!ı k+1 = f(p,�!ı k) has been added to the matrix. The coefficient c0p associated
with the new loop index can be derived from Equation (4.7):

�!c (�!ı k+1 ��!ı k) = sk)

h
c1, . . . , cp, c

0
p

, cp+1, . . . , cn

i

2

6666666666664

0
...
0
1

�ik
p

...
�ik

n

3

7777777777775

= sk)

c0p = sk +
n

Â
r=p+1

ik
r cr

After calculating the new �!c , U and �!w are updated as described previously
in this section to reflect any new information available. If no solution is found for
the boundary conditions, then this branch is discarded. Note that there must be
a practical limit to the maximum acceptable solution size, as in the general case
any trace {a1, . . . , aN} can be generated using at most N affine nested loops. For
this reason, the solution space should be traversed in a breadth-first fashion, to
ensure that a minimal solution (in terms of number of generated nested loops) is
reached.

Starting the Exploration

In the previous sections, it has been discussed how to constructively build a so-
lution for the subtrace {a1, . . . , ak+1} assuming that the solution for {a1, . . . , ak}
is known. The first partial solution S2

1 for {a1, a2} is built as:

• �!c =
⇥
s1⇤ • I2 =

⇥�!ı 1|�!ı 2⇤ = [0, 1]
• U = [�1] • �!w = [1]

116 Chapter 4. Trace-based Affine Reconstruction of Code

where a 0 in position p has been added to each index �!ı 2 Ik, and a new column
�!ı k+1 = f(p,�!ı k) has been added to the matrix. The coefficient c0p associated
with the new loop index can be derived from Equation (4.7):

�!c (�!ı k+1 ��!ı k) = sk)

h
c1, . . . , cp, c

0
p

, cp+1, . . . , cn

i

2

6666666666664

0
...
0
1

�ik
p

...
�ik

n

3

7777777777775

= sk)

c0p = sk +
n

Â
r=p+1

ik
r cr

After calculating the new �!c , U and �!w are updated as described previously
in this section to reflect any new information available. If no solution is found for
the boundary conditions, then this branch is discarded. Note that there must be
a practical limit to the maximum acceptable solution size, as in the general case
any trace {a1, . . . , aN} can be generated using at most N affine nested loops. For
this reason, the solution space should be traversed in a breadth-first fashion, to
ensure that a minimal solution (in terms of number of generated nested loops) is
reached.

Starting the Exploration

In the previous sections, it has been discussed how to constructively build a so-
lution for the subtrace {a1, . . . , ak+1} assuming that the solution for {a1, . . . , ak}
is known. The first partial solution S2

1 for {a1, a2} is built as:

• �!c =
⇥
s1⇤ • I2 =

⇥�!ı 1|�!ı 2⇤ = [0, 1]
• U = [�1] • �!w = [1]

each insertion position p of the newly discovered loop, the
set of indices Ik+1 2 Z(n+1)⇥(k+1), is built as:

Ik+1 =

2

4
Ik(1:p,:) �!ı k+101⇥k

Ik(p+1:n,:)

3

5

where a 0 in position p has been added to each index in Ik,
and a new column �!ı k+1 = f(p,�!ı k) has been added to
the matrix. The coefficient c0p associated with the new loop
index can be derived from Eq. (5):

�!c
�!
� k =

⇥
. . . cp c0p cp+1 . . .

⇤

2

6666664

...
0
1

�ikp
...

3

7777775
= �k)

c0p = �k +
nX

r=p+1

ikrcr

U and �!w are updated as described in Sec. 3.4 to reflect
any new information available. If no solution is found for the
boundary conditions, then this branch is discarded. Note that
there must be a practical limit to the maximum acceptable
solution size, as in the general case any trace {a1, . . . , aN}
can be generated using at most N affine nested loops. To en-
sure that a minimal solution, in terms of the dimensionality
of the generated Z–polyhedron, is found, the solution space
should be traversed in a breadth-first fashion.

Revisiting the cholesky example, there are two pos-
sible insertion points for the new loop in S31

2 . As the most
common situation is that newly discovered loops are outer
than the previously known ones, it explores p = 0 first. The
new loop coefficient vector and index matrix are calculated
as:

c00 = �30 + i301 c1 = 256 + 0 · 29) �!c =
⇥
256 0

⇤

I31 =


0 . . . 0 1
0 . . . 29 0

�

The traversal of the solution space continues. The next ob-
served stride is �31 = a32 � a31 = 8. No increase of the
currently found loop indices produces such stride:

(
�̂31
1 = �!c

�!
� 31

1 =
⇥
256 0

⇤ ⇥
1 0

⇤T
= 256

�̂31
2 = �!c

�!
� 31

2 =
⇥
256 0

⇤ ⇥
0 1

⇤T
= 0

Hence, the solution must grow to S32
3 . Now there are

three different insertion points. The first two yield the fol-
lowing coefficient vectors:

⇢
p = 0) �!c =

⇥
264 256 0

⇤

p = 1) �!c =
⇥
256 8 0

⇤

As soon as the first points are explored in these branches, the
engine will find that this partial solution does not match the
remainder of the trace either. For the sake of simplicity, let
us assume that the engine has been configured to explore up
to 3-level loops before discarding a branch, and thus it will
not try to build S33

4 . Rather, it will continue the exploration
on the third possible insertion point:

p = 2) �!c =
⇥
256 0 8

⇤

At this point the engine has correctly recognized the coeffi-
cients of the three levels of the original nest. It generates the
new index matrix:

I32 =


I(1:2,:) �!ı 32

0 . . . 0

�
=

2

4
0 . . . 0 1 1
0 . . . 29 0 0
0 . . . 0 0 1

3

5

For the sake of simplicity, this section does not discuss
the calculations associated to loop bounds. These will be
discussed in Sec. 3.4.

3.3 Branch priority
The approach proposed above is capable of efficiently find-
ing the relevant solutions of the linear diophantine system
for each address of the trace, but can still produce a large
number of potential solutions that will be discarded when
processing the remaining addresses in the trace. In the gen-
eral case, the time for exploring the entire solution space of a
trace containing N addresses generated by n loops would be
O(nN). Consequently, exploring all branches with no partic-
ular order could take a very long time. To guide the traversal
of the solution space, consider the column vector �!� k 2 Zn

defined as:
�!� k = U�!ı k +�!w (6)

Lemma 3.2. Each element �k
j 2 �!� k indicates how many

more iterations of index ij are left before it resets under
bounds U, �!w .

Proof. �k
j is equal to the value of the upper bound of the loop

in ij minus the current value of ij :

�k
j = U(j,:)

�!ı k + wj| {z }
wj+uj,1i1+...+uj,(j�1)i(j�1)�ij

= uj(
�!ı)� ij

By construction of the canonical loop form, the step of all
loops is 1. Therefore, �k

j is equal to the number of iterations
of loop ij before ij > uj(

�!ı).

This result suggests that, assuming that U and �!w are
accurate, the most plausible value for the next index is
�!ı k+1 = +(l,�!ı k), where l is the position of the inner-
most positive element of �!� k. The correctness of this pre-
diction can be assessed by comparing the predicted stride
�̂k
l with the observed �k. Note that using �!� k as described

above guarantees consistency with the boundary conditions
in Eq. (2), which further improves the efficiency of the ap-
proach by saving calculations.

5

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: Updating the Loop Bounds

• Loop indices must be sequential and stay into loop
bounds

91

112 Chapter 4. Trace-based Affine Reconstruction of Code

This result suggests that, assuming that U and �!w are accurate, the most plau-
sible value for the next index is �!ı k+1

l = +(l,�!ı k), where l is the position of the
innermost positive element of �!g k.

The correctness of �!ı k+1
l can be assessed by comparing the predicted stride ŝk

l
with the observed one sk. Note that using �!g k as described above guarantees con-
sistency with the boundary conditions in Equation (4.4), which further improves
the efficiency of the approach by saving calculations.

In order to reduce the number and size of matrix multiplications, �!g k+1 can
be calculated from �!g k as follows:

�!g k+1 =
h
gk

0, . . . , gk
l�1, gk

l � 1, ul+1(
�!ı k+1

l), . . . , un(
�!ı k+1

l)
iT

Extracting the Loop Bounds

So far it has been assumed that the boundary conditions, U and �!w , can be used
to correctly predict �!ı k+1 from �!ı k. This is not true in the general case, as ini-
tially the loop bounds are unknown, as are the number of loops involved in the
execution of the instruction accessing V.

As before, assume that the algorithm has already identified a partial solution
Sk

n = {�!c , Ik, U,�!w }. Upon processing access ak+1, the algorithm will try to ex-
plore the branch which increments the index il corresponding to the innermost
positive element of �!g k. However, it might happen that the calculated stride for
the selected branch does not match the observed stride (i.e., ŝk

l 6= sk). A different
loop index il0 will have to be selected as described in Section 4.1.2, but the con-
structed Ik+1 will not be valid in the context of the extracted loop bounds, U and
�!w , because either �!ı k+1

l0 will not be sequential to �!ı k, or it will violate boundary
conditions. In this scenario, it is necessary to generate new boundary conditions
U0 and �!w 0. These can be found by solving the system in Equation (4.5):

U0Ik+1 +�!w 011⇥(k+1) � 0n⇥(k+1) (4.10)

If the system is inconsistent, then the generated iteration space is not a polytope
and the solution is not valid. If the system has solutions, then it will be overdeter-

• Inconsistent system The branch is discarded

• System with solutions Overdetermined

114 Chapter 4. Trace-based Affine Reconstruction of Code

and the constructed �!w 0 would not be consistent with some of the entries in Ik+1.

Corollary 4.1.6. In Equation (4.11), it is only necessary to calculate the value w0
l , as

other elements of �!w will remain unchanged. Moreover, w0
l will only change if (8j, 0 <

j < l, ik+1
j = 0) and, in that case, w0

l = ik+1
l .

�!w 0 =
⇥
w1, . . . , wl�1, w

0
l

, wl+1, . . . , wl
⇤T

Proof. If {w0
j, l < j  n} can be calculated exclusively selecting vectors in the

shape of �!ı z as per Lemma 4.1.5, then index �!ı k+1
l = +(l,�!ı k) is not a feasible

selection for �!ı z when calculating w0
j (since ik+1

l > 0 by the definition of the +

operation). Therefore, w0
j will be equal to the one calculated for the previous step

of the algorithm using Ik. Using the same reasoning, if (9j, 0 < j < l, ik+1
j 6= 0),

index �!ı k+1
l is not a feasible selection for calculating w0

l. Otherwise, and by the
definition of the + operation and index sequentiality, ik+1

l = iz
l will be maximum.

Using this result, the calculation of �!w 0 has a complexity of O(1). Once �!w 0 is
computed, the unknown rows {U0

(j,:), l  j  n} can be calculated by reducing
the original system in Equation (4.10) to (n � l + 1) equation systems of the form:

U0
(j,:)i

z + w0
j1

1⇥n = 01⇥n

where iz 2 Zn⇥n is a full rank matrix of columns extracted from Ik+1. As estab-
lished in Lemma 4.1.5, it is necessary to choose iz = {�!ı z

1, . . . ,�!ı z
n} such that each

of its columns represents an iteration where index ij is maximum for a specific
combination of indices (i0, . . . , ij�1). Note that the inequality in Equation (4.10)
has been changed to ensure that gj = uj(

�!ı) = 0 will hold for each of the selected
iterations, guaranteeing index consistency.

In order to efficiently solve these systems, two optimizations can be consid-
ered. First, since U0 must be a lower triangular matrix with known main diagonal,

114 Chapter 4. Trace-based Affine Reconstruction of Code

and the constructed �!w 0 would not be consistent with some of the entries in Ik+1.

Corollary 4.1.6. In Equation (4.11), it is only necessary to calculate the value w0
l , as

other elements of �!w will remain unchanged. Moreover, w0
l will only change if (8j, 0 <

j < l, ik+1
j = 0) and, in that case, w0

l = ik+1
l .

�!w 0 =
⇥
w1, . . . , wl�1, w

0
l

, wl+1, . . . , wl
⇤T

Proof. If {w0
j, l < j  n} can be calculated exclusively selecting vectors in the

shape of �!ı z as per Lemma 4.1.5, then index �!ı k+1
l = +(l,�!ı k) is not a feasible

selection for �!ı z when calculating w0
j (since ik+1

l > 0 by the definition of the +

operation). Therefore, w0
j will be equal to the one calculated for the previous step

of the algorithm using Ik. Using the same reasoning, if (9j, 0 < j < l, ik+1
j 6= 0),

index �!ı k+1
l is not a feasible selection for calculating w0

l. Otherwise, and by the
definition of the + operation and index sequentiality, ik+1

l = iz
l will be maximum.

Using this result, the calculation of �!w 0 has a complexity of O(1). Once �!w 0 is
computed, the unknown rows {U0

(j,:), l  j  n} can be calculated by reducing
the original system in Equation (4.10) to (n � l + 1) equation systems of the form:

U0
(j,:)i

z + w0
j1

1⇥n = 01⇥n

where iz 2 Zn⇥n is a full rank matrix of columns extracted from Ik+1. As estab-
lished in Lemma 4.1.5, it is necessary to choose iz = {�!ı z

1, . . . ,�!ı z
n} such that each

of its columns represents an iteration where index ij is maximum for a specific
combination of indices (i0, . . . , ij�1). Note that the inequality in Equation (4.10)
has been changed to ensure that gj = uj(

�!ı) = 0 will hold for each of the selected
iterations, guaranteeing index consistency.

In order to efficiently solve these systems, two optimizations can be consid-
ered. First, since U0 must be a lower triangular matrix with known main diagonal,

4.1 Trace-based Reconstruction 115

the previous system can be reduced to:

U0
(j,1:j)i

z
(1:j,1:j�1) + w0

j1
1⇥(j�1) = 01⇥(j�1) (4.12)

where U0
(j,1:j) 2 Z1⇥j denotes the first j entries of the jth row of U0, and iz

(1:j,1:j�1) 2
Zj⇥(j�1) denotes the first (j� 1) entries in the first j rows of matrix iz. Only (j� 1)
indexes are needed, as that is the number of unknowns in the jth row of U0. Sec-
ond, note that any full rank matrix can be extracted from Ik+1 to build iz as long
as the selected columns are iterations where index ij is maximum. By taking ad-
vantage of the canonical loop form, this means that it is always possible to build
iz as a triangular matrix, and solve the system in linear time O(j). By applying
both optimizations, the complexity of the calculation of U0 becomes O(n2).

Extracting the Coefficients of the Loop Indices

Once again, assume that the algorithm has found a partial solution Sk
n =

{�!c , Ik, U,�!w }. If no valid {�!ı k+1
l = +(l,�!ı k), 0 < l  n} can be built using

the methods described until now in this section, it may be caused by a loop in-
dex increasing in access (k + 1) which had not appeared before. This can cause
sk to be unrepresentable either as a linear combination of the currently known
coefficients in �!c , or as a set of sequential indices Ik+1. Assuming that the first
k accesses have been correctly recognized, it is possible to generate a valid par-
tial solution Sk+1

n+1 from Sk
n by enlarging the dimensionality of the current solution

components. There are (n + 1) potential solutions that need to be explored (as
shown in the right half of Figure 4.1), one for each insertion position of the newly
discovered index. The most common situation, particularly for large values of k,
is that the newly discovered loops are outer than the previously known ones. In
any case, given an insertion point (p, 0  p  n) for the new loop index ip, the
set of indices generated, Ik+1 2 Z(n+1)⇥(k+1), is as follows:

Ik+1 =

2

664

Ik
(1:p,:) �!ı k+101⇥k

Ik
(p+1:n,:)

3

775

4.1 Trace-based Reconstruction 115

the previous system can be reduced to:

U0
(j,1:j)i

z
(1:j,1:j�1) + w0

j1
1⇥(j�1) = 01⇥(j�1) (4.12)

where U0
(j,1:j) 2 Z1⇥j denotes the first j entries of the jth row of U0, and iz

(1:j,1:j�1) 2
Zj⇥(j�1) denotes the first (j� 1) entries in the first j rows of matrix iz. Only (j� 1)
indexes are needed, as that is the number of unknowns in the jth row of U0. Sec-
ond, note that any full rank matrix can be extracted from Ik+1 to build iz as long
as the selected columns are iterations where index ij is maximum. By taking ad-
vantage of the canonical loop form, this means that it is always possible to build
iz as a triangular matrix, and solve the system in linear time O(j). By applying
both optimizations, the complexity of the calculation of U0 becomes O(n2).

Extracting the Coefficients of the Loop Indices

Once again, assume that the algorithm has found a partial solution Sk
n =

{�!c , Ik, U,�!w }. If no valid {�!ı k+1
l = +(l,�!ı k), 0 < l  n} can be built using

the methods described until now in this section, it may be caused by a loop in-
dex increasing in access (k + 1) which had not appeared before. This can cause
sk to be unrepresentable either as a linear combination of the currently known
coefficients in �!c , or as a set of sequential indices Ik+1. Assuming that the first
k accesses have been correctly recognized, it is possible to generate a valid par-
tial solution Sk+1

n+1 from Sk
n by enlarging the dimensionality of the current solution

components. There are (n + 1) potential solutions that need to be explored (as
shown in the right half of Figure 4.1), one for each insertion position of the newly
discovered index. The most common situation, particularly for large values of k,
is that the newly discovered loops are outer than the previously known ones. In
any case, given an insertion point (p, 0  p  n) for the new loop index ip, the
set of indices generated, Ik+1 2 Z(n+1)⇥(k+1), is as follows:

Ik+1 =

2

664

Ik
(1:p,:) �!ı k+101⇥k

Ik
(p+1:n,:)

3

775

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: Accelerating the Traversal

• In the general case, the complexity of exploring the solution
space for a trace with A addresses generated by n loops is
O(nA)

92

4.1 Trace-based Reconstruction 111

Taking this result into account, it is possible to find all valid solutions of the
system in linear time (O(n)) by simply testing the n valid indices �!ı k+1

l , calculat-
ing the predicted stride for each combination as ŝk

l = �!c �!
d k

l , and accepting those
solutions that generate a stride equal to the observed one (ŝk

l = sk, obtained using
Equation (4.6)). These will be particular solutions of the subtrace {a1, . . . , ak+1},
which must be explored to construct a solution for the entire trace.

4.1.3 Exploration of the Solution Space

Branch Priority

The approach proposed in the previous section is capable of efficiently finding the
relevant solutions of the linear diophantine system for each address of the trace,
but can still produce a large number of potential solutions that will be discarded
when processing the remaining addresses in the trace. In the general case, the
time for exploring the entire solution space of a trace containing N addresses
generated by n loops would be O(nN). Consequently, exploring all branches with
no particular order could take a very long time. In order to guide the traversal of
the solution space, consider the column vector �!g k 2 Zn defined as:

�!g k = U�!ı k +�!w (4.9)

Lemma 4.1.4. Each element gk
j 2 �!g k indicates how many more iterations of index ij

are left before it resets under bounds U and �!w .

Proof. gk
j is equal to the value of the upper bound of the loop in ij, defined in

Equation (4.2), minus the current value of ij:

gk
j = U(j,:)

�!ı k + wj = wj + uj,1i1 + . . . + uj,(j�1)i(j�1) � ij =

= uj(
�!ı)� ij

where U(j,:) denotes the jth row of matrix U. By construction of the canonical loop
form, the step of all loops is 1. Therefore, gk

j is equal to the number of iterations
of loop ij before ij > uj(

�!ı).

• Each element indicates how many more iterations of each
index are left before it resets under the bounds

• The most plausible value for the next index is
where l is the position of the innermost positive element

• Several accesses are recognized in block

112 Chapter 4. Trace-based Affine Reconstruction of Code

This result suggests that, assuming that U and �!w are accurate, the most plau-
sible value for the next index is �!ı k+1

l = +(l,�!ı k), where l is the position of the
innermost positive element of �!g k.

The correctness of �!ı k+1
l can be assessed by comparing the predicted stride ŝk

l
with the observed one sk. Note that using �!g k as described above guarantees con-
sistency with the boundary conditions in Equation (4.4), which further improves
the efficiency of the approach by saving calculations.

In order to reduce the number and size of matrix multiplications, �!g k+1 can
be calculated from �!g k as follows:

�!g k+1 =
h
gk

0, . . . , gk
l�1, gk

l � 1, ul+1(
�!ı k+1

l), . . . , un(
�!ı k+1

l)
iT

Extracting the Loop Bounds

So far it has been assumed that the boundary conditions, U and �!w , can be used
to correctly predict �!ı k+1 from �!ı k. This is not true in the general case, as ini-
tially the loop bounds are unknown, as are the number of loops involved in the
execution of the instruction accessing V.

As before, assume that the algorithm has already identified a partial solution
Sk

n = {�!c , Ik, U,�!w }. Upon processing access ak+1, the algorithm will try to ex-
plore the branch which increments the index il corresponding to the innermost
positive element of �!g k. However, it might happen that the calculated stride for
the selected branch does not match the observed stride (i.e., ŝk

l 6= sk). A different
loop index il0 will have to be selected as described in Section 4.1.2, but the con-
structed Ik+1 will not be valid in the context of the extracted loop bounds, U and
�!w , because either �!ı k+1

l0 will not be sequential to �!ı k, or it will violate boundary
conditions. In this scenario, it is necessary to generate new boundary conditions
U0 and �!w 0. These can be found by solving the system in Equation (4.5):

U0Ik+1 +�!w 011⇥(k+1) � 0n⇥(k+1) (4.10)

If the system is inconsistent, then the generated iteration space is not a polytope
and the solution is not valid. If the system has solutions, then it will be overdeter-

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: CHOLESKY (III)

93

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

4.2 Case Study: CHOLESKY 123

s30 = 0x100 = 2563

Neither �!g nor the brute force approach exploring all possible indices �!ı k+1
l =

+(l,�!ı k) (see Section 4.1.2) can predict a stride different from 0 because �!c =

[0] (see Lemma 4.1.2). Therefore, the subtrace {a1, . . . , a31} cannot be generated
with an affine access enclosed in a 1-level loop and the dimensionality of the
current solution S30

1 must be increased to build S31
2 . For this purpose, the function

EXTRACT() calls GROW() for the two possible insertion points of the new loop
(see lines 25–30 of Algorithm 4.1). As the most common situation is that newly
discovered loops are outer than the previously known ones, it starts with x = 0.
GROW() inserts a new row and column in U:

U =

"
�1 0
0 U(1:1,1:1)

#
=

"
�1 0
0 �1

#

a new index into I, updating the previous ones with a row of 0 to match the new
dimensionality:

I =

"
0 . . . 0 1

I(1:30) 0

#
=

"
0 . . . 0 1
0 . . . 29 0

#

and a new element in �!w :

�!w =
h
1|�!w (1:1)

iT
= [1|29]T

There are not enough points in the reconstructed iteration space to infer any
dependence between the number of iterations of i2 and the newly inserted i1 (see
Equation (4.12)), and therefore U remains unchanged. The engine checks the lin-
earity of the calculated loop bounds as indicated in Equation (4.5):

UI +�!w 11⇥(31) � 02⇥(31)

3Note that the strides are in bytes (see Section 4.2.2).

124 Chapter 4. Trace-based Affine Reconstruction of Code

"
�1 0
0 �1

"
0 . . . 0 1
0 . . . 29 0

#
+

"
1

29

h
1 . . . 1

i
=

"
0 0 0 . . . 0 �1
0 �1 �2 . . . �29 0

#
+

"
1 . . . 1

29 . . . 29

#
=

"
1 1 1 . . . 1 0

29 28 27 . . . 0 29

#
� 02⇥(31)

The insertion of the new loop in position p = 0 is accepted and the traversal of the
solution space continues from k = 31. The next observed stride is s31 = 8. Until
now the engine has discovered a 2-level loop nest, hence �!g may be operational
and it is computed as:

�!g 31 = U�!ı 31 +�!w =

"
�1 0
0 �1

"
1
0

#
+

"
1
29

#
=

"
0

29

#

As the innermost element of �!g is g2 = 29, the next index is predicted as:

�!ı 32
2 = +(2,�!ı 31) = +(2,

"
1
0

#
) =

"
1
1

#

and the estimated stride is

ŝ31
2 = �!c �!

d 31
2 =

h
256 0

i " (1 � 1)
(1 � 0)

#
= 0

which is different from the observed stride s31 = 8, and then the prediction of
g is inaccurate. The brute force search (see lines 12–24 of Algorithm 4.1) must
explore the n = 2 possible solutions of the diophantine linear equation system of
Equation (4.7) (see Lemma 4.1.3). For n = 1:

ŝ31
1 = �!c �!

d 31
1 = �!c (+(1,�!ı 31)��!ı 31))

ŝ31
1 =

h
256 0

i " (2 � 1)
(0 � 0)

#
= 256

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Problem Resolution: CHOLESKY (and IV)
122 Chapter 4. Trace-based Affine Reconstruction of Code

1 #define N 32;
2 double p[N], A[N][N], x;
3 int i, j, k;
4
5 #pragma scop
6 for (i = 0; i < N; ++i) {
7 x = A[i][i];
8 for (j = 0; j <= i - 1; ++j)
9 x = x - A[i][j] * A[i][j];

10 p[i] = 1.0 / sqrt(x);
11 for (j = i + 1; j < N; ++j) {
12 x = A[i][j];
13 for (k = 0; k <= i - 1; ++k)
14 x = x - A[j][k] * A[i][k] ;
15 A[j][i] = x * p[i];
16 }
17 }
18 #pragma endscop

(a) Source code.

1 0x00400cbe 0x1e2d140
2 0x00400cbe 0x1e2d140
3 0x00400cbe 0x1e2d140
4 ...
5 0x00400cbe 0x1e2ef18
6 0x00400cbe 0x1e2ef20
7 0x00400cbe 0x1e2ef28

(b) Excerpt of the memory trace
generated by the access A[i][k]
(see line 14 of Figure 4.2a).

Figure 4.2 – The Cholesky matrix decomposition.

the engine predicts an iteration of the only loop that has been found so far:

ŝ2
1 = �!c �!

d 2
1 = [0] [1]T = 0

which is equal to the observed stride s2. The matrix of reconstructed indices is
updated:

I = [I|+ (1,�!ı 2)] =
h

0 1 2
i

and the loop bounds need to be recomputed. Thanks to Corollary 4.1.6:

�!w 0 =
⇥
w

0
1
⇤T

=
h
i3
1

iT
= [2]T

and U remains unchanged. The new solution is linear and the algorithm contin-
ues processing the trace and updating I and �!w in the same way until the observed
stride changes to:

s30 = a31 � a30 = 0x1e2d240� 0x1e2d140)

130 Chapter 4. Trace-based Affine Reconstruction of Code

and afterwards the system calculates U0. Its first and third rows do not change.
For the second, the following system is solved:

U0
(2,1:2)i

z
(1:2,1) + w0

211⇥1 = 01⇥1)

h
u2,1 �1

i " 1
28

#
+ [29] = 01⇥1)

u2,1 = �1

and the calculated matrix is:

U0 =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

The engine has now collected all the information that it will need to solve the
problem. From this point on, our method will keep incorporating elements in the
trace to the solution, with �!g predicting all remaining iterations, until it reaches
the end of the trace having reconstructed the following terms:

�!c =
h

256 0 8
i

U =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

�!w =
h

29 29 0
i

4.2.2 Discussion

Note that, since addresses in the trace are expressed in bytes, the coefficient of
loop indexes reconstructed by the engine is also expressed in bytes: the original
access A[i][k] is reconstructed as A[256 ⇤ i+ 8 ⇤ k]. These account for both the data
type size (double, 8 bytes) and the dimensionality of the array A[32][32].

130 Chapter 4. Trace-based Affine Reconstruction of Code

and afterwards the system calculates U0. Its first and third rows do not change.
For the second, the following system is solved:

U0
(2,1:2)i

z
(1:2,1) + w0

211⇥1 = 01⇥1)

h
u2,1 �1

i " 1
28

#
+ [29] = 01⇥1)

u2,1 = �1

and the calculated matrix is:

U0 =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

The engine has now collected all the information that it will need to solve the
problem. From this point on, our method will keep incorporating elements in the
trace to the solution, with �!g predicting all remaining iterations, until it reaches
the end of the trace having reconstructed the following terms:

�!c =
h

256 0 8
i

U =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

�!w =
h

29 29 0
i

4.2.2 Discussion

Note that, since addresses in the trace are expressed in bytes, the coefficient of
loop indexes reconstructed by the engine is also expressed in bytes: the original
access A[i][k] is reconstructed as A[256 ⇤ i+ 8 ⇤ k]. These account for both the data
type size (double, 8 bytes) and the dimensionality of the array A[32][32].

130 Chapter 4. Trace-based Affine Reconstruction of Code

and afterwards the system calculates U0. Its first and third rows do not change.
For the second, the following system is solved:

U0
(2,1:2)i

z
(1:2,1) + w0

211⇥1 = 01⇥1)

h
u2,1 �1

i " 1
28

#
+ [29] = 01⇥1)

u2,1 = �1

and the calculated matrix is:

U0 =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

The engine has now collected all the information that it will need to solve the
problem. From this point on, our method will keep incorporating elements in the
trace to the solution, with �!g predicting all remaining iterations, until it reaches
the end of the trace having reconstructed the following terms:

�!c =
h

256 0 8
i

U =

2

64
�1 0 0
�1 �1 0
1 0 �1

3

75

�!w =
h

29 29 0
i

4.2.2 Discussion

Note that, since addresses in the trace are expressed in bytes, the coefficient of
loop indexes reconstructed by the engine is also expressed in bytes: the original
access A[i][k] is reconstructed as A[256 ⇤ i+ 8 ⇤ k]. These account for both the data
type size (double, 8 bytes) and the dimensionality of the array A[32][32].

94

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

4. Trace-Based Affine Reconstruction of Code

• Problem Formulation

• Problem Resolution with CHOLESKY

• Extensions for Supporting Nonlinear Traces

• Experimental Evaluation

95

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Supporting Nonlinearity: Input Noise

• Some trace files mainly contain references issued by a
single access, but mixed with unrelated ones (e.g., nearly
affine or unlabeled traces)

• The exploration of the solution space can be modified to
discard until max observed accesses

96

132 Chapter 4. Trace-based Affine Reconstruction of Code

can be modified to discard some observations before concluding that a branch
cannot lead to a solution. This feature has to be statistically guided, to avoid
discarding too many points and reaching a very simplified nest version.

Hence, the algorithm has been extended to allow discarding input noise. When-
ever �!g k predicts a ŝk that does not match the observed sk, the reconstruction
engine checks whether

(
ŝk =

e

Â
r=0

sk+r, 0 < e  max

)

where max is the maximum number of consecutive noise references to be toler-
ated. If this condition holds for some value of e, then it is plausible that accesses
{ak, . . . , ak+e�1} are spurious. The engine will discard these references and re-
sume the exploration. A backtracking point is created in case this assumption
proves false.

The use of �!g is capable of identifying errors as long as the current Sk
n accu-

rately represents the trace. However, this does not happen in the initial stages of
the exploration process. For this reason, whenever the exploration engine finds
that a set of indices Ik cannot lead to a solution (as there is no feasible �!ı k+1 to
continue the exploration), it arbitrarily discards the current sk. In order to avoid
the exploration of improbable branches, a tolerance parameter is added to indi-
cate the percentage of accesses that may be considered spurious before the branch
is definitely discarded.

4.3.2 Missing Data: Reconstructing Conditionals

In some situations, a trace file may be missing some data to make it completely
representable by an affine loop. Our engine can be configured to insert “missing”
observations to try to reach a linear representation. Whenever �!g k predicts a ŝk

that does not match the observed sk, the engine may check whether inserting the

• Tolerance parameter for discarding a branch

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Supporting Nonlinearity: Missing Data

• A trace file may be missing some data to make it
completely representable by an affine loop

• The exploration of the solution space can be modified to
insert until max predicted strides

97

4.3 Supporting Nonlinearity 133

access predicted by �!g k allows to continue exploring the branch:
(

sk =
e

Â
r=0

ŝk+r, 0 < e  max

)

where max is the maximum number of missing references to be tolerated. As
before, if this condition holds then it is plausible that there is a sequence of
missing accesses {a0k, . . . , a0k+e�1} in between ak and ak+1 such that {a0k+j�1 =

ak + Sj
r=0ŝk+r, 0 < j  e}. The engine tentatively inserts these accesses and

resumes the exploration. A backtracking point is created in case no solution is
reached by exploring that branch. A tolerance parameter is used to avoid the
exploration of improbable branches, as described in Section 4.3.1.

When allowing for missing data, the final solution for a trace �!a containing
N points takes the form of a tuple SN0

n = {�!c , IN0 , U,�!w , i}, where the iteration
matrix IN0 is an over-approximation of the original iteration domain [23] that con-
tains more indices than accesses of the original trace; and i 2 Zn⇥M is a matrix
composed of M columns extracted from IN0

(M = N0 � N), which represents
the extra iterations that are missing from the original trace. A class of interesting
problems that may be modeled as a trace with missing points are traces generated
by accesses guarded by a boolean function g(�!ı), which depends on loop indices
and loop invariants:

DO i1 = 0, u1(
�!ı)

...

DO in = 0, un(
�!ı)

IF g(�!ı) THEN

V[f1(
�!ı)] . . . [fm(

�!ı)]

A code that regenerates the original trace can be written using loops that it-
erate the constructed over-approximation of the iteration space, and adding a
boolean piecewise guard function gp(�!ı) such that:

gp(�!ı) =

(
0 i f�!ı 2 i
1 otherwise

• Tolerance parameter to avoid the exploration of
improbable branches

• Particular case: access guarded by a boolean function

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Supporting Nonlinearity:
Automatically Parallelized Codes with PLUTO

• Codes parallelized by simply adding a OpenMP parallel
pragma & the iterations are scheduled statically

• The same algorithm can be applied.

98

136 Chapter 4. Trace-based Affine Reconstruction of Code

Algorithm 4.3 Pseudocode of the piecewise reconstruction
1: FUNCTION PIECEWISEEXTRACT

Input: �!a : the execution trace
Input: max_depth: maximum reconstruction depth
Output: W = {S0, . . . , SL�1}: set of perfectly nested affine loops that form a

piecewise reconstruction of �!a
2: W PIECEWISEEXTRACT(�!a , depth = 1)
3: curr_depth 2
4: while (curr_depth  max_depth) ^ (|W| > 1) do
5: for Sl 2 W do
6: S 0l EXTRACT(Sl ,

�!a , depth = curr_depth)
7: if S 0l overlaps perfectly with {Sl , . . . , Sl0} 2 W then
8: W (W� {Sl , . . . , Sl0}) [S 0l
9: end if

10: curr_depth ++
11: end for
12: end while
13: return W
14: end FUNCTION=0

the problem intractable due to the vast amount of different alternatives to be ex-
plored. Note that, when reconstructing nonlinear traces in a piecewise fashion, it
is not possible in the general case to reconstruct an SPMD code that is common
to all threads. Nevertheless, this technique allows to construct a piecewise affine
equivalent form of codes that are not in their original form, enabling their affine
analysis and optimization.

4.4 Experimental Evaluation

The proposed method has been implemented in Python and used to extract affine
loops for different codes. This section analyzes the behavior of the reconstruction
algorithm on completely affine codes (in order to assess the feasibility of the pro-
posed approach) and then on codes with some nonlinearities that include noise,
missing points, and automatically parallelized affine codes. Each execution was
performed on an Intel Xeon E5-2660 octa-core Sandy Bridge processor at 2.22
GHz with 20 MB of cache memory and 64 GB of RAM.

• Otherwise

• Piecewise
reconstruction as
sequence of
perfectly nested
loops

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

4. Trace-Based Affine Reconstruction of Code

• Problem Formulation

• Problem Resolution with CHOLESKY

• Extensions for Supporting Nonlinear Traces

• Experimental Evaluation

99

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Experimental Evaluation: Affine Codes
Reconstruction times (s)

0.5 5 50 500 5k

Total trace refs (millions)
2 20 200 2k 20k

3mm
2mm
syr2k

syrk
gemm

symm

covariance
trmm

lu
adi

dynprog
fdtd-apml

ludcmp
fdtd-2d

gramschmidt

doitgen

bicg

reg_detect

cholesky
gemver

seidel

mvt

durbin

jacobi-2D
gesummv

atax

trisolv
jacobi-1D

Sequential
Parallel

floyd-warshall

correlation

140 Chapter 4. Trace-based Affine Reconstruction of Code

Trace % Trace % Trace %

3mm 0.02 lu 0.11 seidel 0.00
2mm 0.04 adi 0.01 jac-2D 0.00
syr2k 0.02 doit. 0.58 gesum. 25.01

syrk 0.05 dynp. 0.00 atax 25.00
gemm 0.05 fdtd-a. 24.21 bicg 25.00
floyd 0.00 lud. 0.66 mvt 12.50

symm 0.13 fdtd-2d 0.01 reg_d. 2.07
corr. 0.67 grams. 0.58 durbin 100

covar. 0.37 chol. 0.58 trisolv 100
trmm 0.00 gemv. 21.43 jac-1D 100

Table 4.1 – Percentage of trace reconstructed after 48h without �!g prediction.

Trace % Trace % Trace %

3mm 99.85 lu 99.71 seidel 95.00
2mm 99.84 adi 98.00 jac-2D 95.00
syr2k 99.85 doit. 98.83 gesum. 74.95
syrk 99.83 dynp. 99.98 atax 74.96

gemm 99.83 fdtd-a. 75.62 bicg 74.96
floyd 99.88 lud. 99.99 mvt 87.46

symm 99.80 fdtd-2d 98.00 reg_d. 99.78
corr. 99.60 grams. 99.61 durbin 99.88

covar. 99.70 chol. 99.99 trisolv 99.89
trmm 99.97 gemv. 78.53 jac-1D 99.00

Table 4.2 – Percentage of trace accesses predicted by �!g .

140 Chapter 4. Trace-based Affine Reconstruction of Code

Trace % Trace % Trace %

3mm 0.02 lu 0.11 seidel 0.00
2mm 0.04 adi 0.01 jac-2D 0.00
syr2k 0.02 doit. 0.58 gesum. 25.01

syrk 0.05 dynp. 0.00 atax 25.00
gemm 0.05 fdtd-a. 24.21 bicg 25.00
floyd 0.00 lud. 0.66 mvt 12.50

symm 0.13 fdtd-2d 0.01 reg_d. 2.07
corr. 0.67 grams. 0.58 durbin 100

covar. 0.37 chol. 0.58 trisolv 100
trmm 0.00 gemv. 21.43 jac-1D 100

Table 4.1 – Percentage of trace reconstructed after 48h without �!g prediction.

Trace % Trace % Trace %

3mm 99.85 lu 99.71 seidel 95.00
2mm 99.84 adi 98.00 jac-2D 95.00
syr2k 99.85 doit. 98.83 gesum. 74.95
syrk 99.83 dynp. 99.98 atax 74.96

gemm 99.83 fdtd-a. 75.62 bicg 74.96
floyd 99.88 lud. 99.99 mvt 87.46

symm 99.80 fdtd-2d 98.00 reg_d. 99.78
corr. 99.60 grams. 99.61 durbin 99.88

covar. 99.70 chol. 99.99 trisolv 99.89
trmm 99.97 gemv. 78.53 jac-1D 99.00

Table 4.2 – Percentage of trace accesses predicted by �!g .

% of trace reconstructed without gamma in 48h

% of accesses predicted by gamma

100

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Experimental Evaluation:
Input Noise & Missing Data

32

16

8

4

2

1
3mm dynprog cholesky jacobi-1dtrisolv

N
or

m
al

iz
ed

 e
xt

ra
ct

io
n

tim
e

(lo
g)

p=0.01 p=0.05 p=0.10 p=0.15 guarded

101

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Experimental Evaluation:
Piecewise Reconstruction (I)

146 Chapter 4. Trace-based Affine Reconstruction of Code

1 for (i=1;i<=N-2;i++)
2 for (j=1;j<=N-2;j++)
3 a[i][j] = ...

(a) Original sequential code.

1 for (t1=3;t1<=3*N-6;t1++) {
2 lbp=max(ceild(t1+1,2),t1-N+2);
3 ubp=min(floord(t1+N-2,2),t1-1);
4 #pragma omp parallel for
5 for (t2=lbp;t2<=ubp;t2++)
6 a[(t1-t2)][(-t1+2*t2)] = ...

(b) Automatically parallelized code.

(c) Accessed tiles of the 64 ⇥ 64 seidel kernel executed using 8
threads (each shade of gray represents the area calculated by a
single thread).

Figure 4.8 – Original and automatically parallelized seidel code.

146 Chapter 4. Trace-based Affine Reconstruction of Code

1 for (i=1;i<=N-2;i++)
2 for (j=1;j<=N-2;j++)
3 a[i][j] = ...

(a) Original sequential code.

1 for (t1=3;t1<=3*N-6;t1++) {
2 lbp=max(ceild(t1+1,2),t1-N+2);
3 ubp=min(floord(t1+N-2,2),t1-1);
4 #pragma omp parallel for
5 for (t2=lbp;t2<=ubp;t2++)
6 a[(t1-t2)][(-t1+2*t2)] = ...

(b) Automatically parallelized code.

(c) Accessed tiles of the 64 ⇥ 64 seidel kernel executed using 8
threads (each shade of gray represents the area calculated by a
single thread).

Figure 4.8 – Original and automatically parallelized seidel code.

seidel
(from the PLUTO examples)

102

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Reconstructed Trace Pieces of
seidel for the Thread #0 max_depth = 1 (161 pieces)

103

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Reconstructed Trace Pieces of
seidel for the Thread #0 max_depth = 2 (58 pieces)

104

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Reconstructed Trace Pieces of
seidel for the Thread #0 max_depth = 3 (41 pieces)

105

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Reconstructed Trace Pieces of
seidel for the Thread #0 max_depth = 4 (3 pieces)

106

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Reconstructed Trace Pieces of
seidel for All the Threads max_depth = 4

107

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Experimental Evaluation:
Piecewise Reconstruction (and VII)

108

increasing the
maximum depth has

diminishing returns

a small number of
loops represent most
of the issued accesses

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Outline

1. Introduction

2. A Novel Compiler Support for Multicore Systems

3. Locality-Aware Automatic Parallelization for GPGPU

4. Trace-Based Affine Reconstruction of Code

5. Conclusions

109

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Main Contributions (I)

Definition of a new compiler intermediate representation
called KIR

• It provides the program characteristics needed for the
automatic parallelization of the input sequential code

• It is built on top of diKernels to handle syntactical variations
of the source code

• diKernels are connected with diKernel-level dependences
and are grouped into execution scopes in order to
recognize the computational stages of the input application

110

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Main Contributions (II)

Generation of parallel code for multicore processors with the insertion of
OpenMP directives

• Automatic partitioning algorithm of the KIR focused on the minimization
of the overhead of thread synchronization

• Comprehensive benchmark suite that includes synthetic codes
representative of frequently used diKernels, routines from dense/sparse
linear algebra and image processing, and simulation applications

• Comparative evaluation in terms of effectiveness with GCC, ICC and
PLUTO. The contenders fail to parallelize codes that contain both regular
computations with complex control flows and irregular computations,
and they do not optimize the joint parallelization of multiple loops

111

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Main Contributions (III)

KIR-based locality-aware automatic parallelization technique that
targets GPU-based heterogeneous systems

• It exploits data locality in the complex GPU memory hierarchy

• Tested with two representative case studies: CONV3D & SGEMM

• Chains of recurrences model accesses to n-dimensional arrays

• OpenHMPP directives enabled a great understandability and
portability of the generated GPU code

• Performance evaluation on NVIDIA GPUs (with two different core
architectures) has corroborated its effectiveness

112

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Main Contributions (and IV)

Reconstruction of affine loop codes from their memory traces,
considering one instruction at a time

• Formulated as the exploration of a tree-like solution space

• Large traces are processed in a matter of minutes, without user
intervention or access to source/binary codes

• Extensions to deal with moderate nonlinearity in the trace and with
automatic parallelized codes

• Applications such as trace compression/storage/communication,
dynamic parallelization, memory placement and memory hierarchy
design

113

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Future Research Lines

• Using the trace-based reconstruction to increase the
information available for the construction of the KIR

• New automatic partitioning algorithm of the KIR that handles
the interactions between computations for heterogeneous
clusters, considering both CPU-GPU interaction and inter-
node communication

• Auto-tuning to select the best performant variant between
several candidates of a parallelized diKernel

• Reconstructing the memory trace of a broader range of
irregular computations

114

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Publications (I)

• J. M. Andión, M. Arenaz, G. Rodríguez, and J. Touriño. A novel compiler support for
automatic parallelization on multicore systems. Parallel Computing, 39(9):442–460,
2013. [Q1 (15/102) in Computer Science, Theory & Methods in JCR 2013]

• J. M. Andión, M. Arenaz, G. Rodríguez, and J. Touriño. A parallelizing compiler for
multicore systems. In Proceedings of the 17th International Workshop on Software
and Compilers for Embedded Systems (SCOPES), pages 138–141, Sankt Goar,
Germany, 2014. [Type A in CORE2014]

• J. M. Andión, M. Arenaz, and J. Touriño. Domain-independent kernel-based intermediate representation for automatic parallelization of sequential
programs. In Poster Abstracts of the 6th International Summer School on Advanced Computer Architecture and Compilation for High-Performance and
Embedded Systems (ACACES), pages 71–74, Terrasa, Spain, 2010.

• J. M. Andión, M. Arenaz, and J. Touriño. Automatic partitioning of sequential applications driven by domain-independent kernels. In Proceedings of the
15th Workshop on Compilers for Parallel Computing (CPC), CDROM, Vienna, Austria, 2010.

• J. M. Andión, M. Arenaz, and J. Touriño. A new intermediate representation for GCC based on the XARK compiler framework. In Proceedings of the 2nd
International Workshop on GCC Research Opportunities (GROW) (in conjunction with HiPEAC), pages 89–100, Pisa, Italy, 2010.

115

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Publications (II)

• J. M. Andión, M. Arenaz, F. Bodin, G. Rodríguez, and J.
Touriño. Locality-aware automatic parallelization for
GPGPU with OpenHMPP directives. International Journal
of Parallel Programming (in press), 2015. [Q4 (79/102) in
Computer Science, Theory & Methods en JCR 2013]

• J. M. Andión, M. Arenaz, F. Bodin, G. Rodríguez, and J. Touriño. Locality-aware
automatic parallelization for GPGPU with OpenHMPP directives. In Proceedings of the
7th International Symposium on High-level Parallel Programming and Applications
(HLPP), pages 217–238, Amsterdam, Netherlands, 2014. [Type C in CORE2014]

116

Compilation Techniques for Automatic Extraction of Parallelism and Locality in Heterogeneous Architectures
/ 118

Publications (and III)

• G. Rodríguez, J. M. Andión, M. T. Kandemir, and J.
Touriño. Trace-based Affine Reconstruction of Codes. In
Proceedings of the 14th International Symposium on
Code Generation and Optimization (CGO), (accepted),
Barcelona, Spain, 2016. [Type A in CORE2014]

• G. Rodríguez, J. M. Andión, J. Touriño, and M. T. Kandemir. Reconstructing affine
codes from their memory traces. Pennsylvania State University Technical Report CSE
15-001, University Park, PA, USA, 2015.

117

Compilation Techniques
for Automatic Extraction
of Parallelism and Locality
in Heterogeneous Architectures

José M. Andión

PHD ADVISORS: Gabriel Rodríguez and Manuel Arenaz

