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GPGPU with CUDA

• First GPGPU programs look like graphics applications 

!

• CUDA enables the use of C 

CUDA kernel: specifies the operation of a single GPU thread 

• Main ideas: 

1.Lightweight parallel threads in hierarchy: grid, block 

2.Shared memory 

3.Barriers
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GPU Programming Features in CUDA

1 Threadification

2 Thread grouping: warps

3 Minimization of CPU-GPU data transfers

4 Coalescing

5 Maximization of the usage of registers and shared memory

6 Divergency

7 Occupancy

8 Threads per block
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GPGPU with OpenHMPP

• Directive-based approaches provide several advantages: 

• More readable codes 
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GPU Programming Features with OpenHMPP

1 Threadification

2 Thread grouping

3 Minimization of CPU-GPU data transfers

4 Coalescing

5 Maximization of the usage of registers and shared memory

6 Divergency

7 Occupancy

8 Threads per block

gridify 
advancedLoad 

delegatedStore 
permute 
unroll 
fuse 
tile 
shared
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diKernel: 
Domain- 
Independent 
Computational 
Kernel

•Characterizes the computations 
carried out in a program without 
being affected by how they are 
coded 

•Exposes multiple levels of 
parallelism

TEXT LEVEL 

(ASCII code)

SYNTACTIC LEVEL 

(abstract syntax tree)

SEMANTIC LEVEL 

(control flow and  
data dependence graphs)

DOMAIN-INDEPENDENT 
CONCEPT LEVEL 

(programming practice)

DOMAIN-SPECIFIC 
CONCEPT LEVEL 

(problem solving methods  
and application domain)

M. Arenaz et al. XARK: An Extensible Framework for 
Automatic Recognition of Computational Kernels. 
ACM Transactions on Programming Languages and 
Systems, 30(6), 2008.



J.M. Andión et al. Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives. HLPP 2014.

Building the KIR

•Non-statement based, high-level, hierarchical IR 

1.diKernel recognition on the DDG 

2.Identification of flow dependences 

3.Hierarchy of execution scopes reflecting the 
computational stages & diKernel classification

J.M. Andión et al. A Novel Compiler Support for 
Automatic Parallelization on Multicore Systems. 
Parallel Computing, 39(9), 2013.
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Example of KIR: CONV3D
1.int i, j, k, size_x, size_y, size_z; 
2.float coefx,coefy,coefz,*input,*output; 
3.  
4.for (i = 0; i < size_x; i++) { 
5. for (j = 0; j < size_y; j++) { 
6.  for (k = 0; k < size_z; k++) { 
7.   float tempx = input[i][j][k]+coefx* 
8.     ( 
9.      input[i-1][j][k]+input[i+1][j][k]+ 
10.     input[i-2][j][k]+input[i+2][j][k]+ 
11.     input[i-3][j][k]+input[i+3][j][k]+ 
12.     input[i-4][j][k]+input[i+4][j][k] 
13.    ); 
14.   float tempy = input[i][j][k]+coefy* 
15.    ( 
16.     input[i][j-1][k]+input[i][j+1][k]+ 
17.     input[i][j-2][k]+input[i][j+2][k]+ 
18.     input[i][j-3][k]+input[i][j+3][k]+ 
19.     input[i][j-4][k]+input[i][j+4][k] 
20.    ); 
21.   float tempz = input[i][j][k]+coefz* 
22.    ( 
23.     input[i][j][k-1]+input[i][j][k+1]+ 
24.     input[i][j][k-2]+input[i][j][k+2]+ 
25.     input[i][j][k-3]+input[i][j][k+3]+ 
26.     input[i][j][k-4]+input[i][j][k+4] 
27.    ); 
28.   output[i][j][k] = 
29.    output[i][j][k]+tempx+tempy+tempz; 
30.  } 
31. } 
32.}

ROOT EXECUTION SCOPE

ES_fori,j,k (Fig. 1a, lines 4-32)

K < tempz21 >
scalar assignment

K < output28 >
regular reduction

K < tempy14 >
scalar assignment

K < tempx7 >
scalar assignment

shaded to be omitted 
in the discovering of 

parallelism
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GPU Programming Features addressed by our Automatic Technique

1 Threadification

2 Thread grouping

3 Minimization of CPU-GPU data transfers

4 Coalescing

5 Maximization of the usage of registers and shared memory

6 Divergency

7 Occupancy

8 Threads per block
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Detection of coalesced accesses to the GPU 
global memory

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

1 // only for_i is threadified

2 for (i = 0; i <= N; i++) {

3 for (j = 0; j <= N; j++) {

4 ... x[i][j] ...

5 }

6 }

(a) Source code S1.

T0 T1 T2
(i=0) (i=1) (i=2)

j=0 x[0][0] x[1][0] x[2][0]
j=1 x[0][1] x[1][1] x[2][1]
j=2 x[0][2] x[1][2] x[2][2]
. . . . . . . . . . . .

ch
re

cs 1st dim {0} {1} {2}
2nd dim {0,+,1} {0,+,1} {0,+,1}

(b) Non-coalesced accesses.

1 // only for_j is threadified

2 for (j = 0; j <= N; j++) {

3 for (i = 0; i <= N; i++) {

4 ... x[i][j] ...

5 }

6 }

(c) Source code S2.

T0 T1 T2
( j=0) ( j=1) ( j=2)

i=0 x[0][0] x[0][1] x[0][2]
i=1 x[1][0] x[1][1] x[1][2]
i=2 x[2][0] x[2][1] x[2][2]
. . . . . . . . . . . .

ch
re

cs 1st dim {0,+,1} {0,+,1} {0,+,1}
2nd dim {0} {1} {2}

(d) Coalesced accesses.

Fig. 2: Examples of access patterns to the GPU global memory.

If the chrecs of the last dimension are the same, then the same memory position is
accessed and only one memory transaction is needed (line 20).

For illustrative purposes, Fig. 2a and 2c present the two possibilities to traverse a
2D array x: row-major traversal (denoted S1) and column-major traversal (S2). Arrays
are stored in row-major order in C and thus S1 accesses array x row by row, exploiting
locality and minimizing data cache misses on the CPU. Assume that only the outer
loop of a nest is threadified on the GPU (contrary to the OpenHMPP default pol-
icy —see Sect. 3—). Hence, each GPU thread will access consecutive memory posi-
tions: T0 will access x[0][0], x[0][1], x[0][2]. . . (see Fig. 2b). Therefore, for the iteration
j = 0, the threads of the first warp (T0, T1, T2. . . ) will access to the non-consecutive
memory locations x[0][0], x[1][0], x[2][0]. . . and these memory requests cannot be co-
alesced. Algorithm 1 detects this non-coalesced access pattern as follows. The KIR
provides CHRECS xk = [{0,+,1}][{0,+,1}] (see line 2 of Alg. 1). Next, chrecs are
instantiated: CHRECS xT0

k = [{0}][{0,+,1}], CHRECS xT1
k = [{1}][{0,+,1}]. . . .

They are different for the first dimension, thus the threads cannot access consecu-
tive memory positions (lines 7–11).

In contrast, j drives the access to the last dimension of array x in S2 (see Fig. 2c).
This code will run poorly on the CPU in the common situation when the array x is big-
ger than the cache memory. However, on the GPU, T0 will access to x[0][0], x[1][0],
x[2][0]. . . (see Fig. 2d). Hence, for the iteration i = 0, the threads of the first warp (T0,
T1, T2. . . ) will access the consecutive memory locations x[0][0], x[0][1], x[0][2]. . . and
these memory requests can be coalesced. Algorithm 1 detects this coalesced ac-
cess pattern as follows. The KIR provides CHRECS xk = [{0,+,1}][{0,+,1}] (see
line 2 of Alg. 1). Next, chrecs are instantiated: CHRECS xT0

k = [{0,+,1}][{0}],
CHRECS xT1

k = [{0,+,1}][{1}]. . . . They are the same for the first dimension, thus
the threads may access consecutive memory positions (lines 7–11). The union of the
last chrecs {0}[ {1}. . . defines a contiguous range (line 15) and therefore the per-
formed accesses maximize coalescing and correctly exploit the GPU global memory

CHRECS_xk = [{0,+,1}][{0,+,1}]CHRECS_xk = [{0,+,1}][{0,+,1}]
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Detection of coalesced accesses to the GPU 
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1 // only for_i is threadified

2 for (i = 0; i <= N; i++) {
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If the chrecs of the last dimension are the same, then the same memory position is
accessed and only one memory transaction is needed (line 20).

For illustrative purposes, Fig. 2a and 2c present the two possibilities to traverse a
2D array x: row-major traversal (denoted S1) and column-major traversal (S2). Arrays
are stored in row-major order in C and thus S1 accesses array x row by row, exploiting
locality and minimizing data cache misses on the CPU. Assume that only the outer
loop of a nest is threadified on the GPU (contrary to the OpenHMPP default pol-
icy —see Sect. 3—). Hence, each GPU thread will access consecutive memory posi-
tions: T0 will access x[0][0], x[0][1], x[0][2]. . . (see Fig. 2b). Therefore, for the iteration
j = 0, the threads of the first warp (T0, T1, T2. . . ) will access to the non-consecutive
memory locations x[0][0], x[1][0], x[2][0]. . . and these memory requests cannot be co-
alesced. Algorithm 1 detects this non-coalesced access pattern as follows. The KIR
provides CHRECS xk = [{0,+,1}][{0,+,1}] (see line 2 of Alg. 1). Next, chrecs are
instantiated: CHRECS xT0

k = [{0}][{0,+,1}], CHRECS xT1
k = [{1}][{0,+,1}]. . . .

They are different for the first dimension, thus the threads cannot access consecu-
tive memory positions (lines 7–11).

In contrast, j drives the access to the last dimension of array x in S2 (see Fig. 2c).
This code will run poorly on the CPU in the common situation when the array x is big-
ger than the cache memory. However, on the GPU, T0 will access to x[0][0], x[1][0],
x[2][0]. . . (see Fig. 2d). Hence, for the iteration i = 0, the threads of the first warp (T0,
T1, T2. . . ) will access the consecutive memory locations x[0][0], x[0][1], x[0][2]. . . and
these memory requests can be coalesced. Algorithm 1 detects this coalesced ac-
cess pattern as follows. The KIR provides CHRECS xk = [{0,+,1}][{0,+,1}] (see
line 2 of Alg. 1). Next, chrecs are instantiated: CHRECS xT0

k = [{0,+,1}][{0}],
CHRECS xT1

k = [{0,+,1}][{1}]. . . . They are the same for the first dimension, thus
the threads may access consecutive memory positions (lines 7–11). The union of the
last chrecs {0}[ {1}. . . defines a contiguous range (line 15) and therefore the per-
formed accesses maximize coalescing and correctly exploit the GPU global memory

CHRECS_xk = [{0,+,1}][{0,+,1}]

the 
same

contiguous 
range

CHRECS_xk = [{0,+,1}][{0,+,1}]
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Locality-Aware Generation of Efficient GPGPU 
Code (and III)

2.Usage of registers to store reused data within a GPU 
thread 

3.Usage of the GPU shared memory for data shared 
between the threads of a warp 

4.Increase the computational load of a GPU thread (loop 
tiling preserving coalescing)
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Case Study: CONV3D (I)
1.int i, j, k, size_x, size_y, size_z; 
2.float coefx,coefy,coefz,*input,*output; 
3.  
4.for (i = 0; i < size_x; i++) { 
5. for (j = 0; j < size_y; j++) { 
6.  for (k = 0; k < size_z; k++) { 
7.   float tempx = input[i][j][k]+coefx* 
8.     ( 
9.      input[i-1][j][k]+input[i+1][j][k]+ 
10.     input[i-2][j][k]+input[i+2][j][k]+ 
11.     input[i-3][j][k]+input[i+3][j][k]+ 
12.     input[i-4][j][k]+input[i+4][j][k] 
13.    ); 
14.   float tempy = input[i][j][k]+coefy* 
15.    ( 
16.     input[i][j-1][k]+input[i][j+1][k]+ 
17.     input[i][j-2][k]+input[i][j+2][k]+ 
18.     input[i][j-3][k]+input[i][j+3][k]+ 
19.     input[i][j-4][k]+input[i][j+4][k] 
20.    ); 
21.   float tempz = input[i][j][k]+coefz* 
22.    ( 
23.     input[i][j][k-1]+input[i][j][k+1]+ 
24.     input[i][j][k-2]+input[i][j][k+2]+ 
25.     input[i][j][k-3]+input[i][j][k+3]+ 
26.     input[i][j][k-4]+input[i][j][k+4] 
27.    ); 
28.   output[i][j][k] = 
29.    output[i][j][k]+tempx+tempy+tempz; 
30.  } 
31. } 
32.}

ROOT EXECUTION SCOPE

ES_fori,j,k (Fig. 1a, lines 4-32)

K < tempz21 >
scalar assignment

K < output28 >
regular reduction

K < tempy14 >
scalar assignment

K < tempx7 >
scalar assignment

shaded to be omitted 
in the discovering of 

parallelism
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Case Study: CONV3D (II)

• conv3d-cpu 

• conv3d-hmpp1: Coalescing 

!

!

• Default OpenHMPP policy 

!

• Loop nest is permuted to forj, fork, fori (permute directive)

1.int i, j, k, size_x, size_y, size_z; 
2.float coefx,coefy,coefz,*input,*output; 
3.  
4.for (i = 0; i < size_x; i++) { 
5. for (j = 0; j < size_y; j++) { 
6.  for (k = 0; k < size_z; k++) { 
7.   float tempx = input[i][j][k]+coefx* 
…

CHRECS_input1 = [{0,+,1}][{0,+,1}]
[{0,+,1}]

CHRECS_input1
T0 = 

[{0}][{0}][{0,+,1}]
CHRECS_input1

T1 = 
[{0}][{1}][{0,+,1}]

CHRECS_input1
T0 = 

[{0,+,1}][{0}][{0}]
CHRECS_input1

T1 = 
[{0,+,1}][{0}][{1}]
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Case Study: CONV3D (III)

• conv3d-hmpp2: Registers
4.for (i = 0; i < size_x; i++) { 
5. for (j = 0; j < size_y; j++) { 
6.  for (k = 0; k < size_z; k++) { 
7.   float tempx = input[i][j][k]+coefx* 
8.     ( 
9.      input[i-1][j][k]+input[i+1][j][k]+ 
…

CHRECS_input1 = 
[{0,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input1
T0 = 

[{0,+,1}][{0}][{0}]

CHRECS_input2 = [{-1,+,1}]
[{0,+,1}][{0,+,1}]

CHRECS_input1 = 
[{1,+,1}][{0,+,1}][{0,+,1}]

CHRECS_input2
T0 = 

[{-1,+,1}][{0}][{0}]
CHRECS_input3

T0 = 
[{1,+,1}][{0}][{0}]

∩≠∅
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Case Study: CONV3D (and IV)

• conv3d-hmpp3: Shared memory

4.for (i = 0; i < size_x; i++) { 
5. for (j = 0; j < size_y; j++) { 
6.  for (k = 0; k < size_z; k++) { 
… 
21.  float tempz = input[i][j][k]+coefz* 
22.    ( 
23.     input[i][j][k-1]+input[i][j][k+1]+ 
24.     input[i][j][k-2]+input[i][j][k+2]+ 
25.     input[i][j][k-3]+input[i][j][k+3]+ 
26.     input[i][j][k-4]+input[i][j][k+4] 
27.    ); 
…

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

T0 T1

1st dim 2nddim 3rddim 1st dim 2nddim 3rddim

CHRECS input19 {0,+,1} {0} {0} {0,+,1} {0} {1}
CHRECS input20 {0,+,1} {0} {�1} {0,+,1} {0} {0}
CHRECS input21 {0,+,1} {0} {1} {0,+,1} {0} {2}
CHRECS input22 {0,+,1} {0} {�2} {0,+,1} {0} {�1}
CHRECS input23 {0,+,1} {0} {2} {0,+,1} {0} {3}
CHRECS input24 {0,+,1} {0} {�3} {0,+,1} {0} {�2}
CHRECS input25 {0,+,1} {0} {3} {0,+,1} {0} {4}
CHRECS input26 {0,+,1} {0} {�4} {0,+,1} {0} {�3}
CHRECS input27 {0,+,1} {0} {4} {0,+,1} {0} {5}

Table 2: Chrecs for the accesses in lines 21–27 of Fig. 1a (CONV3D).

Table 1 summarizes the GPU features addressed by our locality-aware automatic
parallelization technique to generate an optimal variant written by an expert in GPU
programming. The first optimized variant is conv3d-hmpp1, which exploits coalesc-
ing through loop interchange as follows. A basic OpenHMPP variant could be gen-
erated by simply isolating the source code between lines 6–30 of Fig. 1a. However,
Alg. 1 detects that this is not the correct approach due to the non-coalesced accesses.
The chrecs associated to the first access to array input (line 7) are CHREC input1 =
[{0,+,1}][{0,+,1}][{0,+,1}]. As explained in Sect. 3, the default OpenHMPP loop
threadification policy creates GPU threads for the two outermost loops (fori and for j).
Hence, the instantiated chrecs would be CHREC inputT0

1 = [{0}][{0}][{0,+,1}],
CHREC inputT1

1 = [{0}][{1}][{0,+,1}]. . . and these accesses cannot be coalesced
(see lines 7–11 of Alg. 1). However, if the loop nest is permuted to for j, fork, fori, the
chrecs will be CHREC inputT0

1 = [{0,+,1}][{0}][{0}], CHREC inputT1
1 =

[{0,+,1}][{0}][{1}]. . . , satisfying the conditions of lines 14–15 of Alg. 1.
The second optimized variant is conv3d-hmpp2. Note that each GPU thread along

the threadified for j,k executes the entire innermost fori. Hence, each thread will repeat
reads to the array input in the x-axis in consecutive iterations of fori (see lines 7–13
of Fig. 1a). Old values can be stored in local registers reducing the needs of mem-
ory bandwidth. Algorithm 2 detects this situation as follows. The chrecs for the first
three accesses to array input are CHREC input1 = [{0,+,1}][{0,+,1}][{0,+,1}],
CHREC input2 = [{�1,+,1}][{0,+,1}][{0,+,1}] and CHREC input3 =
[{1,+,1}][{0,+,1}][{0,+,1}]. For T0, the instantiated chrecs are CHREC inputT0

1 =
[{0,+,1}][{0}][{0}], CHREC inputT0

2 = [{�1,+,1}][{0}][{0}] and
CHREC inputT0

3 = [{1,+,1}][{0}][{0}] (line 5). Thus,
T3

k=1 CHRECS inputT0
k =

[{1,+,1}][{0}][{0}] 6= /0 (line 6 of Alg. 2) and, as input is only read, copies of already
read values can be kept in registers for following accesses.

The variant conv3d-hmpp3 exploits, in addition, the shared memory. Contigu-
ous threads repeat accesses to some positions in the y,z-plane of the array input.
Hence, those values can be stored in the shared memory and be interchanged among
the threads of a block. Table 2 focuses on the chrecs corresponding to the first two
threads T0 and T1 and the accesses performed in lines 21–27 of Fig. 1a. Algorithm 3

shared clause of the gridify directive
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Case Study: SGEMM (I)

1.int i, j, l, m, n, k; 
2.float A[m][k], B[k][n], C[m][n]; 
3.float alpha, beta, prod; 
4.  
5.for (i = 0; i < m; i++) { 
6.  for (j = 0; j < n; j++) { 
7.    prod = 0; 
8.    for (l = 0; l < k; l++) { 
9.      prod += A[i][l] * B[l][j]; 
10.   } 
11.   C[i][j] = alpha * prod + beta * C[i][j]; 
12. } 
13.}

ROOT EXECUTION SCOPE

ES_fori,j (Fig. 3a, lines 5-13)

ES_forl (Fig.   3a, lines 8-10)

K < prod7 >
scalar assignment

K < prod9 >
scalar reduction

K < C11 >
regular reduction
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Case Study: SGEMM (II)

• sgemm-cpu 

• sgemm-mkl: Intel MKL 

• sgemm-hmpp1: Offloading (and check coalescing)

1.int i, j, l, m, n, k; 
2.float A[m][k], B[k][n], C[m][n]; 
3.float alpha, beta, prod; 
4.  
5.for (i = 0; i < m; i++) { 
6.  for (j = 0; j < n; j++) { 
7.    prod = 0; 
8.    for (l = 0; l < k; l++) { 
9.      prod += A[i][l] * B[l][j]; 
10.   } 
11.   C[i][j] = alpha * prod + beta * C[i][j]; 
12. } 
13.}

Locality-Aware Automatic Parallelization for GPGPU with OpenHMPP Directives

not instantiated T0 T1

1st dim 2nddim 1st dim 2nddim 1st dim 2nddim

CHRECS A {0,+,1} {0,+,1} {0} {0,+,1} {0} {0,+,1}
CHRECS B {0,+,1} {0,+,1} {0,+,1} {0} {0,+,1} {1}
CHRECS C {0,+,1} {0,+,1} {0} {0} {0} {1}

Table 3: Chrecs for the accesses to arrays A, B and C in SGEMM.

column-major for B. On the CPU, the general solution is to apply loop tiling: matrices
are computed in small tiles to keep data in cache. This approach can be also applied
on the GPU using the shared memory as cache and being aware of coalescing.

The first variant of SGEMM is the sequential code shown in Fig. 3a (sgemm-cpu).
In addition, we have selected the cblas sgemm function of the non-clustered, threaded
part of the Intel MKL library [16] to build the sgemm-mkl variant.

The first OpenHMPP variant is sgemm-hmpp1. It is trivially built by offloading
to the GPU the same code as sgemm-cpu. Table 3 shows the chrecs for this variant,
which are analyzed by Alg. 1 as follows. Regarding A, all the threads of a warp have
the same chrecs and thus access the same memory position (see line 20 of Alg. 1).
Regarding B, coalescing is maximized because the chrecs of the first dimension are
the same while the chrecs of the second one define a contiguous range (line 15).
Finally, the same situation holds for C and thus accesses are coalesced.

The second OpenHMPP variant is sgemm-hmpp2. Algorithm 4 transforms the
source code of Fig. 3a as follows. The scalar variable prod is promoted to an array
prod[D ], and thus a new loop fort is created to enclose all its definitions and uses (see
lines 3–6 of Alg. 4). The step of the outer fori is incremented by D , and uses of the
loop index i inside fort are replaced by i+ t.

The third OpenHMPP variant is sgemm-hmpp3. For the reasons mentioned in
Sect. 4.2, our technique first performs loop fission in the new fort giving place to
fort1 (prod initialization), fort2 (dot product between the row of A and the column of
B), and fort3 (computation with the old value of C). Next, fullunroll directives are
inserted in fort1 and fort3. In order to fully unroll fort2, it is first interchanged with
forl . This way, the GPU compilers are able to store prod[D ] in registers.

The fourth OpenHMPP variant is sgemm-hmpp4. Algorithm 2 presented a method
to store reused data in registers. In this case, as the number of registers is finite and
the previous transformation in sgemm-hmpp3 increased register pressure, we have
used the shared memory to store slices of B.

Finally, the last variant is sgemm-cublas, the implementation provided by the
NVIDIA CUBLAS library [24]. CUBLAS has been designed assuming a column-ma-
jor order, thus a transformation is needed before and after calling the library.

Overall, in this section we have shown how two representative sequential codes
from scientific applications can be automatically transformed into parallel counter-
parts that target the GPU programming features mentioned in points (1)–(8) of Sect. 2
following the technique introduced in Sect. 4. The next section presents the perfor-
mance evaluation of these case studies.
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Case Study: SGEMM (and III)

• sgemm-hmpp2: Tiling preserving coalescing
1.int i, j, l, m, n, k; 
2.float A[m][k], B[k][n], C[m][n]; 
3.float alpha, beta, prod; 
4.  
5.for (i = 0; i < m; i++) { 
6.  for (j = 0; j < n; j++) { 
7.    prod = 0; 
8.    for (l = 0; l < k; l++) { 
9.      prod += A[i][l] * B[l][j]; 
10.   } 
11.   C[i][j] = alpha * prod + beta * C[i][j]; 
12. } 
13.}

José M. Andión et al.

Algorithm 2 Usage of registers to store reused data within a GPU thread
1: procedure STOREREUSEDDATAINREGISTERS

Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1,L2, . . . ,Ll where L1 is the threadified loop
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k 2 {1, . . . ,m}
3: CHRECS xk  [{fk,1,+,gk,1}][{fk,2,+,gk,2}] . . . [{fk,n,+,gk,n}]
4: for each thread Ti do
5: CHRECS xTi

k  [{f Ti
k,1,+,gTi

k,1}][{f Ti
k,2,+,gTi

k,2}] . . . [{f Ti
k,n,+,gTi

k,n}]
6: if

Tm
k=1 CHRECS xTi

k 6= /0 then
7: store reused data between the accesses made by Ti in registers if data are private
8: end if
9: end for

10: end procedure

Algorithm 3 Usage of the GPU shared memory for data shared between the threads
of a warp
1: procedure STORESHAREDDATAINSHAREDMEMORY

Input: n-dimensional array x[s1][s2] . . . [sn]
Input: loop nest L = L1,L2, . . . ,Ll where L1 is the threadified loop
2: collect accesses xk[ik,1][ik,2] . . . [ik,n] with k 2 {1, . . . ,m}
3: CHRECS xk  [{fk,1,+,gk,1}][{fk,2,+,gk,2}] . . . [{fk,n,+,gk,n}]
4: for each block B do
5: for each thread Ti of B do
6: CHRECS xTi

k  [{f Ti
k,1,+,gTi

k,1}][{f Ti
k,2,+,gTi

k,2}] . . . [{f Ti
k,n,+,gTi

k,n}]
7: end for
8: SHDATA x 

TTi CHRECS xTi
k with k 2 {1, . . . ,m}

9: if (SHDATA x 6= /0) then
10: store data shared between the threads of block B in the shared memory
11: end if
12: end for
13: end procedure

Algorithm 4 Increase the computational load of a GPU thread
1: procedure INCREASELOAD

Input: access xk[ik,1][ik,2] . . . [ik,n] to an n-dimensional array x stored in row-major order
Input: loop nest L = L1,L2, . . . ,Ll where both L1,L2 are threadified
Input: amount of data D to be processed by a GPU thread
2: increment the step of the outer loop L1 to D
3: for each scalar variable s in L do
4: promote s to an array s[D ]
5: transform reads and writes to s into loops of D iterations
6: end for
7: end procedure

locality. As can be observed, if the index of the threadified loop does not drive the
access to the last dimension of x, a general strategy to try to exploit coalescing is to
permute the loops.

The second extension is a set of algorithms to maximize the usage of registers
and shared memory. As mentioned in Sect. 2, the GPU global memory is the biggest
but slowest one. Both registers and shared memory are faster, but they have much less

• sgemm-hmpp3: Let the compiler use the registers (unroll) 

• sgemm-hmpp4: Use the shared memory for B 

• sgemm-cublas: NVIDIA CUBLAS library
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Performance Evaluation: CONV3D
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Performance Evaluation: SGEMM
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Conclusions

KIR-based locality-aware automatic parallelization 
technique that targets GPU-based heterogeneous systems


• exploit data locality in the complex GPU memory hierarchy 

• two representative case studies: CONV3D & SGEMM 

• chains of recurrences model accesses to n-dimensional 
arrays 

• OpenHMPP directives enabled a great understandability 
and portability of the generated GPU code
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Future Work

• New automatic partitioning algorithm of the KIR to handle 
the interactions between computations in full-scale 
applications 

• Auto-tuning approaches to select the best performance 
on a given hardware architecture 

• Test with larger benchmark suite and on other manycore 
accelerators
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