A New Intermediate Representation for
GCC based on the XARK Compiler
Framework

José M. Andion, Manuel Arenaz, and Juan Tourino

Computer Architecture Group

Department of Electronics and Systems
University of A Coruia
Spain

Jan 23, 2010 // 2nd Intl. Workshop on GCC Research Opportunities
fg" (GROW"0)

Index

Introduction: Motivation & Foundations

New Kernel-based IR
B Kernel-based Data Dependence Graph (K-DDG)
B Kernel-based Control Flow Graph (K-CFG)

Automatic Parallelization
B Task Decomposition

Conclusions & Future Work

2nd Intl. Workshop on GCC Research Opportunities 2

Jan 23, 2010 5 ‘GROW0)

Index

Introduction: Motivation & Foundations

New Kernel-based IR
B Kernel-based Data Dependence Graph (K-DDG)
B Kernel-based Control Flow Graph (K-CFG)

Automatic Parallelization
B Task Decomposition

Conclusions & Future Work

2nd Intl. Workshop on GCC Research Opportunities 3

Jan 23, 2010 . ‘GROW0)

Motivation

Increase in the number of cores available in
commodity processors

Make an efficient use of the computer
architecture is a complex time-consuming task

Current compiler technology based on ASTs
does not expose the parallelism available in
real applications

We propose a new intermediate
representation that exposes multiple levels of
parallelism in whole programs

Jan 23. 2010 éﬁ” ?Gngg&';/\cl)c))rkshop on GCC Research Opportunities 4

Case Study: EQUAKE

An example of full-scale application is
EQUAKE, from SPEC CPU2000

Simulation of seismic waves in large, highly
heterogeneous valleys

Finite element method

B Simulation phase

B Time integration phase

70 % of execution time is consumed by
smvp()

Jan 23, 2010 \éﬁﬁ ?Gngg&';/\g))rkshop on GCC Researc h Opportunities

Knowledge

Domain Independent
Computational Kernels

Reuse of platform-optimized parallel software libraries
Software re-engineering
Program synthesis

DOMAIN-SPECIFIC
CONCEPT LEVEL
(problem solving methods
and application domain)

Induction variable substitution
Parallelizing transformations for inductions, reductions

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

SEMANTIC LEVEL

(control flow and
data dependence graphs)

Constant propagation
Common subexpression elimination

SYNTACTIC LEVEL Variable renaming

(abstract syntax tree)

TEXT LEVEL
(ASCII code)

String matching & replacement

Jan 23, 2010 é;@ 2nd Intl. Workshop on GCC Research Opportunities 6

¢ . (GROW"0)

(
o

General and extensible
solution for automatic kernel
recognition at the domain-
independent concept level.

Properties:

B Completeness: scalars/arrays/
pointers, ifs-endifs

B Robustness: different versions
of a kernel

B Delocalization: statements
spread over the source code

B Uniqueness: one code, one

DOMAIN-SPECIFIC
CONCEPT LEVEL
(problem solving methods
and application domain)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

SEMANTIC LEVEL

(control flow and
data dependence graphs)

SYNTACTIC LEVEL

kernel (abstract syntax tree)
B Extensibility: user-defined TEXT LEVEL
kernels

(ASCII code)

M. Arenaz, J. Tourino and R. Doallo: “XARK: An eXtensible framework for Automatic
Recognition of computational Kernels“, ACM Trans. Program. Lang. Syst., 30(6):1-56,
October 2008

Jan 23, 2010 é@ 2nd Intl. Workshop on GCC Research Opportunities

<\ (GROW'10)

Recogn

void smvp (int nodes,

int i, Anext, Alast,

ition of smvp()

double ***A, int *Acol, int *Aindex, double **v,

col; double sumO, suml, sum?2;

for (i = 0; i < nodes; i++) {

double **w)

{

Anext = Aindex[i]; Alast = Aindex[i1 + 1];

sum0 = A[Anext] [0] [0]*v[i] [O] A[Anext] [0][1]1*v[i][1] + A[Anext][0][2]1*VvI[i][2];

suml = A[Anext][1][0]1*v[i]][0] A[Anext] [1]1[1]*v[i][1l] + A[Anext][1][2]*vI[i]I[2]:

sum?2 = A[Anext][2][0]1*v[i][0] A[Anext] [2][1]*v[i][1l] + A[Anext][2][2]*vI[i][2];

Anext++;

while (Anext < Alast) {
col = Acol[Anext];
sum0 += A[Anext] [0][0]*v([col][0] + A[Anext][0][1]*v[col][1l] + A[Anext][0][2]*Vv[col]][
suml += A[Anext][1][0]*v[col][0] + A[Anext][1][1]1*v[col][l] + A[Anext][1l][2]*v[col]][
sum?2 += A[Anext][2][0]*v[col][0] + A[Anext][2][1]1*v[col][1l] + A[Anext][2][2]*v[col]l[
w[col] [0] += A[Anext] [0][0]*v[i][0] + A[Anext][1]1[0]*v[i][1] + Al[Anext][2][0]*vI[i][2
w[col]l[1] += A[Anext][0][1]*v[i][0] + A[Anext][1][1]*v[i][1l] + A[Anext][2][1l]*v[i][2
wlcol] [2] += A[Anext][0][2]1*v[i][0] + A[Anext][1l]1[2]*vI[i][1l] + A[Anext][2][2]*v[i][2
Anext++;

}

w[i] [0] 4= sumO; w[i][1l] += suml; w[i][2] += sum2;

}
}
Jan 23, 2010 /{;@; 2nd Intl. Workshop on GCC Research Opportunities 8

S’ (GROW'10)

Recognition of smvp()

for (i) {

Anext = .. .

sum0 = A[Anext].. sparse matrix-vector product

Anext++;

while (Anext) { .
col = Acol[Anext]; Linear Algebra
sum0 += A[Anext]..
wlcol] [0] += ..
Anext++;

}

w[i] [0] += sum0;

Source code

<<irregular reauction>>

W

- Computational Kernels /

Forest of ASTs + DDG + CFG

Jan 23, 2010 @ (2Gngg1\’;{}'¥\éc)>rkshop on GCC Research Opportunities 9

Index

Introduction: Motivation & Foundations

New Kernel-based IR
B Kernel-based Data Dependence Graph (K-DDG)
B Kernel-based Control Flow Graph (K-CFG)

Automatic Parallelization
B Task Decomposition

Conclusions & Future Work

2nd Intl. Workshop on GCC Research Opportunities 10

Jan 23, 2010 . ‘GROW0)

Kernel-based
Data Dependence Graph (K-DDG) @

[0 Provided by the XARK Compiler Framework

/* Simulation phase */
for (1 = 0; 1 < ARCHelems; i++) {

for (3 = 0; 3 < 12; j++) {

Me[j] = 0.0;
Ce[3] = 0.0;
}
for (3 = 0; 3 < 12; j++)
Ce[j] = Ce[7j] + alpha * Me[7]];
for (3 = 0; J < 4; J++) |
M[ARCHvertex[i1i][J]1][0] += Me[] *
M[ARCHvertex[i][J]][1] += Me[] *
M[ARCHvertex[1i][]J]]1[2] += Me[] *
C[ARCHvertex[1][]J]]I[0] += Ce[] *
C[ARCHvertex[1][J]1]1[1] += Ce[] *
C[ARCHvertex[1][]J]1]1[2] += Ce[] *
}
}
Jan 23, 2010 2nd Intl. Workshop on GCC Research Opportunities 11

(GROW'10)

Kernel-based
Control Flow Graph (K-CFG)

Similar to CFG

Problem: establishment of flow
dependences at the kernel level
(dominance relationship)

Two-phase construction
B Group kernels into execution scopes
B Search for flow dependences

Jan 23, 2010 \g@ 2nd Intl. Workshop on GCC Research Opportunities 12

(GROW'10)

Kernel-based
Control Flow Graph (K-CFG)

[J Execution scope
B Similarto BB in CFG
B Computed using the concept of region of a flow graph

B The program is split into a hierarchy of loop regions that represent the
execution scopes and kernels are attached to them

[1 All the sentences of a kernel belong to its execution scope

Algorithm 1 Computation of the execution scopes.
Input: K-DDG, CFG, DT
1: foreach kernel K in the K-DDG do

2: bb_dom = basic block of CFG that contains a stmt of K (excluding p-stmt)
3: foreach statement stmt in K do
4: if stmt is not a p-statement then
5: bb_stmt = basic block of CFG that contains stmt
6: if bb_stmt dominates bb_.dom then
7 bb-dom = bb_stmt
8: end if
9: end if
10: end for
11: K .execution_scope = innermost enclosing loop region of bb_dom:;
12: end for
Jan 23. 2010 /=" 2nd Intl. Workshop on GCC Research Opportunities 13

S’ (GROW'10)

Kernel-based
Control Flow Graph (K-CFG)

Algorithm 2 Detection of kernel-level flow dependences.
Input: K-DDG, K-CFG, CFG, DT
1: foreach kernel-level dependence K1 — K> of the K-DDG do

2: R, = execution_scope(K)
3: R, = execution_scope(K3)
4: if (R:.parent reg = Ry.parent_reg) & (R; precedes R2 in the hierarchy) then
5: mark K, — K3 as flow dependence
6: else if Vs, € K7 Js» € Ky such that statements s; and s»
T belong to the same basic block in the CFG
8: and s; precedes sz in the DT then
9: mark K; — K> as flow dependence
10: end if
11: end for
a = 5; a = b; if (¢ == 0) {
b=a+ 1; if (¢ == 0) { a = 5;
b =a+ 3; b=a+ 3;
} else { } else {
b =a+ 1; a = 2;
} b = + 1;
}
= 2nd Intl. Workshop on GCC Research Opportunities
Jan 23, 2010 @ (GROW10) 14

Index

Introduction: Motivation & Foundations

New Kernel-based IR
B Kernel-based Data Dependence Graph (K-DDG)
B Kernel-based Control Flow Graph (K-CFG)

Automatic Parallelization
B Task Decomposition

Conclusions & Future Work

2nd Intl. Workshop on GCC Research Opportunities 15

Jan 23, 2010 . ‘GROW0)

Automatic Parallelization

Automatic parallelization
B Detection of available parallelism
B Decomposition and parallel code generation

The kernel-based IR exposes multiple
levels of parallelism

B Intra-kernel parallelism: inside a kernel

[1 Widely studied in compiler literature in 90s,
specially irregular reductions

B Inter-kernel parallelism: between kernels

/=, 2nd Intl. Workshop on GCC Research Opportunities
Jan 23, 2010 % (GROW'10) °

Task decomposition for multi-cores

Algorithm 3 Task decomposition for multi-core processors.
Input: K-DDG, K-CFG

1: merge execution scopes with one kernel and one cross-boundary edge
2:d=0

3: foreach execution scope R at depth d in the K-CFG do

4: if ¥V kernel K € R such that K is parallelizable then

5: n_drain_kernels = number of kernels without outgoing edges in K-DDG
6: that cross the execution scope boundaries
7 if n_drain_kernels = P then
8: tasks = set of P drain kernels
9: else if n_drain_kernels < P then
10: tasks = split parallelizable drain kernels to create P tasks
11: else
12: tasks = merge drain kernels to create P tasks
13: end if
14: map tasks to different cores
15: end if
16: d++
17: end for
Jan 23, 2010 L 2nd Intl. Workshop on GCC Research Opportunities

¢ . (GROW'0) 17

SIMULATION PHASE

Case Study: EQUAKE

LOOP for i (Fig. 1, lines 11-26) |
depth 0

LOOP for j (Fig. 1, lines 12-15)[

depth 1

TASK 184 > <E—gular assignment»\ - «regular assignment»
Me y Ce
«flow» «flow»
LOOP for j (Fig. 1, 1
depth 1
~«regular reduction»
LOOP for j (Fig. 1,
depth 1
= 2nd Intl. Workshop on GCC Research Opportunities
Jan 23, 2010 @ 18
(GROW'"0)

Case Study: EQUAKE

|
LOOP for i (Fig. 1, lines 3@-.2)[

depth 0

LOOP for i (Fig. 2, lines 743d)

depth 0 «flow»

«flow» «flow»

LOOP for i (Fig. 1

Tines 34-38) ||

depth 0

LOOP for i (Fig. 1, lines 39-M) |

depth 0

>

TIME INTEGRATION PHASE

LOOP for i (Fig. 1

lines 4?-48)

depth 0

s

LOOP for i (Fig. 1, lines 49-52) |

depth 0

Jan 23, 2010 @ (2Gngg1\’;{}'¥\éc)>rkshop on GCC Research Opportunities

Index

Introduction: Motivation & Foundations

New Kernel-based IR
B Kernel-based Data Dependence Graph (K-DDG)
B Kernel-based Control Flow Graph (K-CFG)

Automatic Parallelization
B Task Decomposition

Conclusions & Future Work

2nd Intl. Workshop on GCC Research Opportunities 20

Jan 23, 2010 5 ‘GROW0)

Conclusions & Future Work

Definition of a kernel-based IR

B Exposes multiple levels of parallelism

B Inspired by standard statement-based IRs

B Framework for new whole program automatic
parallelization techniques

Work in progress

B Port of XARK from Polaris to GCC
0 From F77 to C, C++, Fortran, Java...

B XARK s built on top of GSA form
L1 Inter-procedural GSA on top of GIMPLE-SSA

7w’y 2nd Intl. Workshop on GCC Research Opportunities 21
Jan 23, 2010 T (GROW'10)

Conclusions & Future Work

Work in progress
B Give more knowledge to recognition engine

Future Work

B Improve the K-CFG construction algorithm
B Run tests with well-known benchmark suites

B Compare with existing auto-parallelization
frameworks

B Task decomposition for many-cores & GPUs

/=, 2nd Intl. Workshop on GCC Research Opportunities
Jan 23, 2010 % (GROW'10) “

A New Intermediate Representation for
GCC based on the XARK Compiler
Framework

José M. Andion, Manuel Arenaz, and Juan Tourino

Computer Architecture Group

Department of Electronics and Systems
University of A Coruia
Spain

Jan 23, 2010 // 2nd Intl. Workshop on GCC Research Opportunities 23
fg" (GROW"0)

