
A New Intermediate Representation for
GCC based on the XARK Compiler
Framework

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems
University of A Coruña
Spain

Jan 23, 2010 1 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Index

  Introduction: Motivation & Foundations
 New Kernel-based IR

  Kernel-based Data Dependence Graph (K-DDG)
  Kernel-based Control Flow Graph (K-CFG)

  Automatic Parallelization
  Task Decomposition

 Conclusions & Future Work

Jan 23, 2010 2 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Index

  Introduction: Motivation & Foundations
 New Kernel-based IR

  Kernel-based Data Dependence Graph (K-DDG)
  Kernel-based Control Flow Graph (K-CFG)

  Automatic Parallelization
  Task Decomposition

 Conclusions & Future Work

Jan 23, 2010 3 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Motivation

  Increase in the number of cores available in
commodity processors

  Make an efficient use of the computer
architecture is a complex time-consuming task

  Current compiler technology based on ASTs
does not expose the parallelism available in
real applications

  We propose a new intermediate
representation that exposes multiple levels of
parallelism in whole programs

Jan 23, 2010 4 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Case Study: EQUAKE

  An example of full-scale application is
EQUAKE, from SPEC CPU2000

  Simulation of seismic waves in large, highly
heterogeneous valleys

  Finite element method
  Simulation phase
  Time integration phase

  70 % of execution time is consumed by
smvp()

Jan 23, 2010 5 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Domain Independent
Computational Kernels

TEXT LEVEL
(ASCII code)

SYNTACTIC LEVEL
(abstract syntax tree)

SEMANTIC LEVEL
(control flow and

data dependence graphs)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

DOMAIN-SPECIFIC
CONCEPT LEVEL

(problem solving methods
and application domain)

String matching & replacement

Variable renaming

Constant propagation
Common subexpression elimination

Reuse of platform-optimized parallel software libraries
Software re-engineering
Program synthesis

K
no

w
le

dg
e

+

-

Induction variable substitution
Parallelizing transformations for inductions, reductions

Jan 23, 2010 6 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

The XARK Compiler Framework
  General and extensible

solution for automatic kernel
recognition at the domain-
independent concept level.

  Properties:
  Completeness: scalars/arrays/

pointers, ifs-endifs
  Robustness: different versions

of a kernel
  Delocalization: statements

spread over the source code
  Uniqueness: one code, one

kernel
  Extensibility: user-defined

kernels TEXT LEVEL
(ASCII code)

SYNTACTIC LEVEL
(abstract syntax tree)

SEMANTIC LEVEL
(control flow and

data dependence graphs)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

DOMAIN-SPECIFIC
CONCEPT LEVEL

(problem solving methods
and application domain)

M. Arenaz, J. Touriño and R. Doallo: “XARK: An eXtensible framework for Automatic
Recognition of computational Kernels“, ACM Trans. Program. Lang. Syst., 30(6):1-56,
October 2008

Jan 23, 2010 7 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Recognition of smvp()
void smvp(int nodes, double ***A, int *Acol, int *Aindex, double **v, double **w) {
 int i, Anext, Alast, col; double sum0, sum1, sum2;

 for (i = 0; i < nodes; i++) {
 Anext = Aindex[i]; Alast = Aindex[i + 1];
 sum0 = A[Anext][0][0]*v[i][0] + A[Anext][0][1]*v[i][1] + A[Anext][0][2]*v[i][2];
 sum1 = A[Anext][1][0]*v[i][0] + A[Anext][1][1]*v[i][1] + A[Anext][1][2]*v[i][2];
 sum2 = A[Anext][2][0]*v[i][0] + A[Anext][2][1]*v[i][1] + A[Anext][2][2]*v[i][2];
 Anext++;
 while (Anext < Alast) {
 col = Acol[Anext];
 sum0 += A[Anext][0][0]*v[col][0] + A[Anext][0][1]*v[col][1] + A[Anext][0][2]*v[col][2];
 sum1 += A[Anext][1][0]*v[col][0] + A[Anext][1][1]*v[col][1] + A[Anext][1][2]*v[col][2];

 sum2 += A[Anext][2][0]*v[col][0] + A[Anext][2][1]*v[col][1] + A[Anext][2][2]*v[col][2];
 w[col][0] += A[Anext][0][0]*v[i][0] + A[Anext][1][0]*v[i][1] + A[Anext][2][0]*v[i][2];
 w[col][1] += A[Anext][0][1]*v[i][0] + A[Anext][1][1]*v[i][1] + A[Anext][2][1]*v[i][2];

 w[col][2] += A[Anext][0][2]*v[i][0] + A[Anext][1][2]*v[i][1] + A[Anext][2][2]*v[i][2];
 Anext++;
 }
 w[i][0] += sum0; w[i][1] += sum1; w[i][2] += sum2;
 }
}

Jan 23, 2010 8 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Recognition of smvp()

Source code

for(i) {
 Anext = …
 sum0 = A[Anext]…
 Anext++;
 while(Anext) {
 col = Acol[Anext];
 sum0 += A[Anext]…
 w[col][0] += …
 Anext++;
 }
 w[i][0] += sum0;
}

Forest of ASTs + DDG + CFG

Europar
2007

Jan 23, 2010 9 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

i for

while Anext
col Acol

<<irregular reduction>>
w

sum0

col Anext

sparse matrix-vector product

sum0 w

Computational Kernels

Linear Algebra

Index

  Introduction: Motivation & Foundations
 New Kernel-based IR

  Kernel-based Data Dependence Graph (K-DDG)
  Kernel-based Control Flow Graph (K-CFG)

  Automatic Parallelization
  Task Decomposition

 Conclusions & Future Work

Jan 23, 2010 10 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Kernel-based
Data Dependence Graph (K-DDG)

/* Simulation phase */
for (i = 0; i < ARCHelems; i++) {

 for (j = 0; j < 12; j++) {
 Me[j] = 0.0;

 Ce[j] = 0.0;
 }
 for (j = 0; j < 12; j++)
 Ce[j] = Ce[j] + alpha * Me[j];
 for (j = 0; j < 4; j++) {
 M[ARCHvertex[i][j]][0] += Me[j * 3];
 M[ARCHvertex[i][j]][1] += Me[j * 3 + 1];

 M[ARCHvertex[i][j]][2] += Me[j * 3 + 2];
 C[ARCHvertex[i][j]][0] += Ce[j * 3];
 C[ARCHvertex[i][j]][1] += Ce[j * 3 + 1];
 C[ARCHvertex[i][j]][2] += Ce[j * 3 + 2];
 }
}

<<regular assignement>>
Ce

<<regular reduction>>
Ce

<<irregular reduction>>
C

Jan 23, 2010 11 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

  Provided by the XARK Compiler Framework

Kernel-based
Control Flow Graph (K-CFG)

  Similar to CFG
  Problem: establishment of flow

dependences at the kernel level
(dominance relationship)

  Two-phase construction
  Group kernels into execution scopes
  Search for flow dependences

Jan 23, 2010 12 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Kernel-based
Control Flow Graph (K-CFG)
  Execution scope

  Similar to BB in CFG
  Computed using the concept of region of a flow graph
  The program is split into a hierarchy of loop regions that represent the

execution scopes and kernels are attached to them
  All the sentences of a kernel belong to its execution scope

Jan 23, 2010 13 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Kernel-based
Control Flow Graph (K-CFG)

Jan 23, 2010 14 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

if (c == 0) {
 a = 5;
 b = a + 3;
} else {
 a = 2;
 b = a + 1;
}

a

b

<<flow>>

a = 5;
b = a + 1;

a = 5;
if (c == 0) {
 b = a + 3;
} else {
 b = a + 1;
}

if (c == 0) {
 a = 5;
 b = a + 3;
} else {
 a = 2;
}

Index

  Introduction: Motivation & Foundations
 New Kernel-based IR

  Kernel-based Data Dependence Graph (K-DDG)
  Kernel-based Control Flow Graph (K-CFG)

 Automatic Parallelization
  Task Decomposition

 Conclusions & Future Work

Jan 23, 2010 15 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Automatic Parallelization

  Automatic parallelization
  Detection of available parallelism
  Decomposition and parallel code generation

  The kernel-based IR exposes multiple
levels of parallelism
  Intra-kernel parallelism: inside a kernel

  Widely studied in compiler literature in 90s,
specially irregular reductions

  Inter-kernel parallelism: between kernels

Jan 23, 2010 16 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Task decomposition for multi-cores

Jan 23, 2010 17 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Case Study: EQUAKE

Jan 23, 2010 18 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Case Study: EQUAKE

Jan 23, 2010 19 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Index

  Introduction: Motivation & Foundations
 New Kernel-based IR

  Kernel-based Data Dependence Graph (K-DDG)
  Kernel-based Control Flow Graph (K-CFG)

  Automatic Parallelization
  Task Decomposition

 Conclusions & Future Work

Jan 23, 2010 20 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Conclusions & Future Work

 Definition of a kernel-based IR
  Exposes multiple levels of parallelism
  Inspired by standard statement-based IRs
  Framework for new whole program automatic

parallelization techniques
 Work in progress

  Port of XARK from Polaris to GCC
  From F77 to C, C++, Fortran, Java…

  XARK is built on top of GSA form
  Inter-procedural GSA on top of GIMPLE-SSA

Jan 23, 2010 21 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

Conclusions & Future Work

 Work in progress
  Give more knowledge to recognition engine

  Future Work
  Improve the K-CFG construction algorithm
  Run tests with well-known benchmark suites
  Compare with existing auto-parallelization

frameworks
  Task decomposition for many-cores & GPUs

Jan 23, 2010 22 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

A New Intermediate Representation for
GCC based on the XARK Compiler
Framework

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems
University of A Coruña
Spain

Jan 23, 2010 23 2nd Intl. Workshop on GCC Research Opportunities
(GROW'10)

