
Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

1

Automatic Partitioning of Sequential
Applications Driven by
Domain-Independent Kernels

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems
University of A Coruña
Spain

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 2 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 3 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Motivation
  Emergence and widespread use of multicore

and manycore systems
  Partitioning of sequential applications

  By the developer
  Domain-specific languages
  Complex and time-consuming
  In-depth knowledge about application and

computer architecture
  We propose

  New kernel-based IR
  Automatic approach to application partitioning

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

4

Domain-Independent
Computational Kernels

TEXT LEVEL
(ASCII code)

SYNTACTIC LEVEL
(abstract syntax tree)

SEMANTIC LEVEL
(control flow and

data dependence graphs)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

DOMAIN-SPECIFIC
CONCEPT LEVEL

(problem solving methods
and application domain)

String matching & replacement

Variable renaming

Constant propagation
Common subexpression elimination

Reuse of platform-optimized parallel software libraries
Software re-engineering
Program synthesis

K
no

w
le

dg
e

+

-

Induction variable substitution
Parallelizing transformations for inductions, reductions

Jul 8, 2010 5 15th Workshop on Compilers for Parallel Computing
(CPC'10)

The XARK Compiler Framework
  General and extensible

solution for automatic kernel
recognition at the domain-
independent concept level.

  Properties:
  Completeness: scalars/arrays/

pointers, ifs-endifs
  Robustness: different versions

of a kernel
  Delocalization: statements

spread over the source code
  Uniqueness: one code, one

kernel
  Extensibility: user-defined

kernels TEXT LEVEL
(ASCII code)

SYNTACTIC LEVEL
(abstract syntax tree)

SEMANTIC LEVEL
(control flow and

data dependence graphs)

DOMAIN-INDEPENDENT
CONCEPT LEVEL

(programming practice)

DOMAIN-SPECIFIC
CONCEPT LEVEL

(problem solving methods
and application domain)

M. Arenaz, J. Touriño and R. Doallo: “XARK: An eXtensible framework for Automatic
Recognition of computational Kernels“, ACM Trans. Program. Lang. Syst., 30(6):1-56,
October 2008

Jul 8, 2010 6 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Kernel Recognition

Excerpt of smvp() from
EQUAKE

for(i) {
 Anext = …
 sum0 = A[Anext]…
 Anext++;
 while(Anext) {
 col = Acol[Anext];
 sum0 += A[Anext]…
 w[col][0] += …
 Anext++;
 }
 w[i][0] += sum0;
}

Forest of ASTs + DDG + CFG

Europar
2007

Jul 8, 2010 7 15th Workshop on Compilers for Parallel Computing
(CPC'10)

i for

while Anext
col Acol

w
<<irregular reduction>>

sum0

col Anext

sparse matrix-vector product

sum0 w

Domain-Independent Kernel

Domain-Specific Kernel

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 8 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Kernel-based
Data Dependence Graph (KDDG)

Jul 8, 2010 9 15th Workshop on Compilers for Parallel Computing
(CPC'10)

  KDDG = <N, E>
 N = set of kernels K(x1…xn)

  K(x1…xn) = sentences s1…sn that define x1…xn
in Gated Single Assignment (GSA) form
  Header of K: sh that dominates remaining

statements
  Latch of K: sl that posdominates remaining

statements

  E = set of edges K(x1…xn) K(y1…ym)
  Connect statements of different kernels

Kernel-based
Control Flow Graph (KCFG)

Jul 8, 2010 10 15th Workshop on Compilers for Parallel Computing
(CPC'10)

if (c == 0) {
 a = 5;
 b = a + 3;
} else {
 a = 2;
 b = a + 1;
}

a

b

<<flow>>

a = 5;
b = a + 1;

a = 5;
if (c == 0) {
 b = a + 3;
} else {
 b = a + 1;
}

if (c == 0) {
 a = 5;
 b = a + 3;
} else {
 b = 2;
}

  K(x1…xn) K(y1…ym) is a flow dependence if a
dominance relationship exists

  K1 dominates K2 if and only if for all s2 in K2
there exists s1 in K1 such that
1.  s1 and s2 in same BB, then s1 precedes s2
or
2.  s1 in BB1 and s2 in BB2, then BB1 dominates BB2

in Dominator Tree

Construction of the KCFG

Jul 8, 2010 11 15th Workshop on Compilers for Parallel Computing
(CPC'10)

1.  Group kernels into execution scopes

Algorithm 1 Construction of the KCFG.
Input: KDDG, CFG, DT

1: procedure build KCFG
2: compute execution scopes()
3: detect flow dependences()
4: end procedure

5: procedure compute execution scopes
6: compute hierarchy of loops
7: foreach kernel K in the KDDG do
8: bb dom = basic block of CFG that contains a stmt of K (excluding µ-stmt)
9: foreach statement sK in K do

10: if sK is not a µ-statement then
11: bb sK = basic block of CFG that contains sK

12: if bb sK dominates bb dom then
13: bb dom = bb sK

14: end if
15: end if
16: end for
17: L = innermost enclosing loop of bb dom
18: if L includes loop indices that address the output variable of K then
19: K.execution scope = L
20: end if
21: end for
22: remove non-attached loops from hierarchy
23: end procedure

24: procedure detect flow dependences
25: foreach kernel-level dependence K1 → K2 of the KDDG do
26: L1 = execution scope(K1); L2 = execution scope(K2)
27: if (L1.parent == L2.parent) && (L1 precedes L2 in the hierarchy) then
28: mark K1 → K2 as flow dependence
29: else if K1.latch dominates K2.header then
30: mark K1 → K2 as flow dependence
31: else
32: mark = true
33: foreach sK2 ∈ K2 (excluding µ-stmt) do
34: dom stmt found = false
35: foreach sK1 ∈ K1 (excluding µ-stmt) do
36: BB1 = basic block(sK1); BB2 = basic block(sK2)
37: if (BB1 == BB2) && (sK1 precedes sK2) then
38: dom stmt found = true; break
39: else if (BB1 �= BB2) && (BB1 dominates BB2) then
40: dom stmt found = true; break
41: end if
42: end for
43: mark = mark && dom stmt found
44: end for
45: if mark == true then
46: mark K1 → K2 as flow dependence
47: end if
48: end if
49: end for
50: end procedure

Construction of the KCFG

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

12

2.  Search for flow dependences

Algorithm 1 Construction of the KCFG.
Input: KDDG, CFG, DT

1: procedure build KCFG
2: compute execution scopes()
3: detect flow dependences()
4: end procedure

5: procedure compute execution scopes
6: compute hierarchy of loops
7: foreach kernel K in the KDDG do
8: bb dom = basic block of CFG that contains a stmt of K (excluding µ-stmt)
9: foreach statement sK in K do

10: if sK is not a µ-statement then
11: bb sK = basic block of CFG that contains sK

12: if bb sK dominates bb dom then
13: bb dom = bb sK

14: end if
15: end if
16: end for
17: L = innermost enclosing loop of bb dom
18: if L includes loop indices that address the output variable of K then
19: K.execution scope = L
20: end if
21: end for
22: remove non-attached loops from hierarchy
23: end procedure

24: procedure detect flow dependences
25: foreach kernel-level dependence K1 → K2 of the KDDG do
26: L1 = execution scope(K1); L2 = execution scope(K2)
27: if (L1.parent == L2.parent) && (L1 precedes L2 in the hierarchy) then
28: mark K1 → K2 as flow dependence
29: else if K1.latch dominates K2.header then
30: mark K1 → K2 as flow dependence
31: else
32: mark = true
33: foreach sK2 ∈ K2 (excluding µ-stmt) do
34: dom stmt found = false
35: foreach sK1 ∈ K1 (excluding µ-stmt) do
36: BB1 = basic block(sK1); BB2 = basic block(sK2)
37: if (BB1 == BB2) && (sK1 precedes sK2) then
38: dom stmt found = true; break
39: else if (BB1 �= BB2) && (BB1 dominates BB2) then
40: dom stmt found = true; break
41: end if
42: end for
43: mark = mark && dom stmt found
44: end for
45: if mark == true then
46: mark K1 → K2 as flow dependence
47: end if
48: end if
49: end for
50: end procedure

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

 Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 13 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Automatic Partitioning

  Kernel-based IR exposes multiple levels of
parallelism
  intra- and inter-kernel

 Modern hardware architectures also
expose multiple levels of parallelism
  cluster, multicores, Intel SSE or AMD 3DNow!

  Kernel-based IR complexity is lower than
statement-based IR
  Exhaustive search (vs. heuristics)

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

14

Automatic Partitioning

  Initialization
  Kernels with low computational load $

non-splittable SIMD-like vector instructions
  Merge consecutive execution scopes with one

flow dependence
  Search best partitioning

  Recursive function
  Bottom-up traversal of KCFG looking for

splittable kernels to be mapped to the system

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

15

Automatic Partitioning

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

16

 Map kernels2arch
  Create as many tasks as needed to fill-in a

given number of processing elements with a
given set of splittable kernels

  Estimate cost
  Computational load of the kernels
  Computational capacity of processing elements
  Amount of data that needs to be transferred
  Synchronization
  Etc.

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 17 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Case Study 1: Sobel

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

18

  The Sobel edge filter detects those pixels
whose intensity is very different from the
intensity of their neighbors

  Simple, but widely used in image
processing and computer vision

Sobel

Jul 8, 2010 (CPC'10) 19

1 void gradient_aprox (long ∗sum , unsigned char ∗∗ data ,
2 int cols , int Y , int X , int G [3] [3])
3 {
4 int I , J ;
5 for (I=−1; I<=1; I++)
6 for (J=−1; J<=1; J++)
7 (∗ sum) = (∗ sum) +
8 (int) ((∗ ((∗ data) + X + I + (Y + J)∗ cols)) ∗ G [I+1] [J+1]) ;
9 }

10
11 int main (void)
12 {
13 int originalImage_rows , originalImage_cols ,
14 int edgeImage_rows , edgeImage_cols ;
15 unsigned char∗ originalImage_data , edgeImage_data ;
16 int X , Y , I , J , GX [3] [3] , GY [3] [3] ;
17 long sumX , sumY , SUM ;
18
19 for (Y=0; Y<=(originalImage_rows −1); Y++) {
20 for (X=0; X<=(originalImage_cols −1); X++) {
21 sumX = 0 ;
22 sumY = 0 ;
23
24 i f (Y==0 | | Y==originalImage_rows −1)
25 SUM = 0 ;
26 else i f (X==0 | | X==originalImage_cols −1)
27 SUM = 0 ;
28 else {
29 gradient_aprox (&sumX , originalImage_data ,
30 originalImage_cols , Y , X , GX) ;
31 gradient_aprox (&sumY , originalImage_data ,
32 originalImage_cols , Y , X , GY) ;
33 SUM = abs (sumX) + abs (sumY) ;
34 }
35 i f (SUM >255) SUM=255;
36 i f (SUM <0) SUM=0;
37
38 ∗(edgeImage_data + X + Y∗ originalImage_cols) =
39 255 − (unsigned char) (SUM) ;
40 }
41 }
42 }

Fig. 1. Source code of the Sobel application.

K(sumX7,8,48,93) and K(@edgeImage data101,128,129). Thus, initialization()
marks K(sumY9,10,70,95) and K(sumX7,8,48,93) as not splittable because they are

attached to execution scopes of 3 iterations only (see lines 5–6 in Figure 1). As a

result, both kernels will be executed sequentally or accelerated with SIMD-like

vector instructions.

Next, search best partitioning() is invoked with KG being the whole

KCFG with root node K(@edgeImage data101,128,129), with Aspan depth = 1 and

Adepth = 0. For illustrative purposes, two multicore systems are considered. First,

ARCH1 is an homogeneous multicore processor. As KGdepth = ARCHdepth = 1,

the kernel nc/assig/lin:lin is parallelized by distributing the iteration space

among the cores. Second, ARCH2 is a cluster of homogeneous multicore nodes.

As KGdepth < ARCHdepth, the algorithm will evaluate the cost of parallelizing

the kernel either on level 0 or on level 1 of ARCH2. It will also evaluate the

splittable splittable non-splittable

splittable

non-splittable

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 20 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Case Study 2: EQUAKE

  An example of full-scale application is
EQUAKE, from SPEC CPU2000

  Simulation of seismic waves in large, highly
heterogeneous valleys

  Finite element method
  Simulation phase
  Time integration phase

  70 % of execution time is consumed by
smvp()

Jul 8, 2010 21 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Case Study 2: EQUAKE

Jul 8, 2010 22 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Initialization
merges the
execution scopes
LOOP4-9

Index

  Introduction: Motivation & Foundations
 Domain-Independent Kernel-based IR

  Kernel-based Data Dependence Graph (KDDG)
  Kernel-based Control Flow Graph (KCFG)

  Automatic Partitioning
 Case Studies

  Sobel Edge Filter
  EQUAKE from SPEC CPU2000

 Conclusions & Future Work

Jul 8, 2010 23 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Conclusions & Future Work
  Definition of a new kernel-based IR

  Domain and codification-style independent
  Inspired by standard statement-based IRs
  Exposes multiple levels of parallelism

  Partitioning algorithm takes advantage of multiple
levels in IR and architecture
  Kernel-based IR allows exhaustive search

  Work in progress
  Port of XARK from Polaris to GCC

  From F77 to C, Fortran, and even C++, Java…
  XARK is built on top of GSA form

  Interprocedural GSA on top of GIMPLE-SSA
  Implementation of automatic partitioning algorithm

Jul 8, 2010 24 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Conclusions & Future Work

  Future Work
  Obtention of hardware characteristics
  Estimation of the cost of a partition
  Experimental evaluation with representative

interprocedural implementations of well-known
benchmarks

Jul 8, 2010 25 15th Workshop on Compilers for Parallel Computing
(CPC'10)

Jul 8, 2010 15th Workshop on Compilers for Parallel Computing
(CPC'10)

26

Automatic Partitioning of Sequential
Applications Driven by
Domain-Independent Kernels

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems
University of A Coruña
Spain

