
UNIVERSIDADE DA CORUÑA

SPAIN

taboada@udc.es IEEE Symposium on Computers and Communications (ISCC’07), Aveiro (PT)

Guillermo L. Taboada*, Carlos Teijeiro, Juan Touriño

High Performance Java
Remote Method Invocation for

Parallel Computing on Clusters

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 2July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Outline

Introduction

Designing Java RMI Optimization

Implementation: Opt RMI

Transport Protocol Optimization

Serialization Overhead Reduction

Object Manipulation Improvements

Performance Evaluation

Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 3July 2, 2007

Introduction Design Implementation Evaluation Conclusions

↑ interest on clusters (↑ comput. ↓ cost)

Growing solution:
Java (and HPC Java) on clusters

Challenge: scalable peformance
cluster+Java

Network performance is scalable

Java middleware less efficient than native
code, especially Java RMI

→ Java is not going to scale performance

High Performance Networks not supported or
supported with poor performance

Ways of support:

IP Emulations

High Performance Sockets

Introduction (I)

Cluster Node

Java

middleware

NIC

Interconnection Network
(SCI,GbE,Myrinet,IB,Quadrics...)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 4July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Introduction (II)

Target platform: High-speed Network Clusters
High-speed networks + associated software libraries play a key
role in High Performance Clustering Technology

Diferent technologies:
Gigabit & 10Gigabit Ethernet

Scalable Coherent Interface (SCI)

Myrinet, Myrinet 2k, Myri-10G (10GbMyrinet & 10GbE)

Infiniband

Qsnet, Giganet, Quadrics, GSN - HIPPI

Small hw latencies (1.3-30us)

High bandwidths (>= 1Gbps)

Experimental results presented on Gigabit Ethernet and SCI

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 5July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Introduction (III)

Java RMI on Clusters
Java RMI is a framework for developing parallel and
distributed applications. It’s a higher level solution
compared to sockets programming, allowing for rapid
development.

But… inefficient protocol on clusters, showing high
latencies

Considerable inefficiency on high-speed network clusters
Java’s portability means in networking only TCP/IP support
High-speed network clusters use (inefficient) IP emulation libs.

SCIP, ScaIP, IPoGM, IPoMX, IPoIB

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 6July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Introduction (&IV)

Java RMI on clusters. Optimization projects:
KaRMI (JavaParty/Univ. Karlsruhe). RMI replacement for clusters.
Good performance with small transfers and Myrinet support

RMIX. (Emory Univ. Atlanta) RMI extension including new
communication protocols, but still inefficient on High-speed clusters
(oriented to semantic protocols)

Manta. (Vrije Univ. Amsterdam) Java to native code compilation.
Myrinet support.

Ibis. (Vrije Univ. Amsterdam) RMI extension for grid computing.
Myrinet support.

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 7July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Designing Java RMI Optimization (I)

Java RMI layered architecture

Profiling 3KB Object call on SCI

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 8July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Designing Java RMI Optimization (II)

Java RMI Optimization tailored for High performance
Java parallel applications on Clusters:

Restricted to the most typical configuration in a cluster
Goal: higher performance with little tradeoffs

Assumptions:
Shared file system for class loading

Homogeneous architecture of compute nodes

Use of a single JVM version

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 9July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Designing Java RMI Optimization (&III)

Java RMI Optimizations

Transport Protocol Optimizations

High Performance Sockets Support

Block-data information reduction: minimizing block-data control in
serialization. Avoid block-data buffering for serialized data

Serialization Overhead Reduction

Native Array Serialization. A high-performance sockets
implementation allows for sending primitive data types directly

Object Manipulation Improvements

Versioning Information Reduction (description of serialized class)

Class Annotation Reduction (class location)

Array Processing Improvement

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 10July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Java RMI Parallel Application Stack

Software architecture overview

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 11July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Transport Protocol Optimization (I)

High Peformance Sockets Support with Java Fast
Sockets (JFS):

1st High Performance Java Sockets implementation

High Performance Network libraries support
Through native libraries on SCI, MX & native Sockets

Implements an API widely spread (Java Sockets)

Avoids the use of IP emulations (less efficient protocol for
error-prone environments, with several layers)

Numerous libraries → ↑ communication overhead

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 12July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Java Fast Sockets (JFS) implements Java Sockets
API in a way:

Efficient & portable through:
general “pure” Java solution
Specific solutions that access native communication libraries
(SCI Sockets), reducing data copies
The fail-over approach applied to the selection of libraries: the
system tryes to use native communication libraries with higher
performance. If this is not possible, JFS uses the “pure” Java
general solution

User transparency:
Setting JFSFactory as the default Sockets Factory in a small
launcher application with Socket.setSocketImplFactory().

This application will invoke using reflection the main method. All
Sockets communications wil use JFS from then on.

user@host $ java Application parameter0 …
user@host $ java jfs.runtime.RunApp Application parameter0

Transport Protocol Optimization (&II)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 13July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Java Sockets restriction: sending only byte[]

Primitive datatype arrays have to be serialized

Optimized in Java for int[] and double[] (native serialization)

JFS avoids serialization by throwing away the restriction!

JFSOUTPUTSTREAM

+ write(int array[])

+ write(long array[])

+ write(double array[])

+ write(float array[])

+ write(short array[])

+ write(ByteBuffer directBB, int position, int size)

+ write(Object array, int pos, ByteBuffer directBB, int init, int size)

Serialization Overhead Reduction (I)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 14July 2, 2007

Introduction Design Implementation Evaluation Conclusions

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

byte buf[]
HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

char *JVM_buffer

LEGEND:

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

char *JVM_buffer

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

Default scenario in Sun’s Java Sockets communication

Serialization Overhead Reduction (II)

byte data[] byte buf[]

byte data[]

(SENDER SIDE) (RECEIVER SIDE)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 15July 2, 2007

Introduction Design Implementation Evaluation Conclusions

JFS communication using Java NIO direct ByteBuffer

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

char *JVM_buffer

LEGEND:

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

char *JVM_buffer

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

direct ByteBuffer direct ByteBuffer

Serialization Overhead Reduction (III)

byte buf[]

byte data[] byte buf[]

byte data[]

(SENDER SIDE) (RECEIVER SIDE)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 16July 2, 2007

Introduction Design Implementation Evaluation Conclusions

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

send

LEGEND:

char *driver_buffer

NATIVE SOCKETS

IMPLEMENTATION

HEAP / “GARBAGE COLLECTABLE” AREA

Data to

receive

NET

{DE}SERIALIZATION COPY

JAVA VIRTUAL MACHINE JAVA VIRTUAL MACHINE

direct ByteBuffer direct ByteBuffer

JFS zero-copy communication. Avoids copying and serialization

Serialization Overhead Reduction (&IV)

(SENDER SIDE) (RECEIVER SIDE)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 17July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Object Manipulation Improvements (I)

Versioning Information Reduction
Send only the class name. Important payload reduction.
With a shared file system + single JVM reconstruction is
possible

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 18July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Object Manipulation Improvements (&II)

Class annotation reduction
Location (String) to load a class object from

With a single JVM it is guaranteed that java.* classes can be loaded
by the default class loader

Avoid serialization of java.* class names

Array processing improvement
Common communication pattern in parallel applications
By default arrays are handled as generic objects
Specific method for dealing with arrays

Early detection of arrays (cast)
Optimized data type checking (common case first)
JFS array type processing (avoids serialization and “extra
copies)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 19July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (I)

Experimental configuration:
PIV Xeon at 3.2 GHz 2GB mem (hyperthreading
disabled)

SCI (Dolphin), GbE (Intel PRO/1000 MT 82546 GB)

Java: Sun JVM 1.5.0_05

gcc 3.4.4

Libraries:

SCI SOCKET 3.0.3

DIS 3.0.3 (IRM/SISCI/SCILib/Mbox)

KaRMI 1.07i

Linux CentOS 4.2 kernel 2.6.9

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 20July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (II)

Benchmarking:
NetPIPE Java RMI and Java sockets

Ping and ping-pong test

Java Just in Time (JIT) compiler (warm-up 10000iter.)

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 21July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (III)

JFS can avoid native serialization -> sending int[] is the same as byte[]
JFS avoids TCP/IP processing (Java Sockets not, SCIP) and “extra” copies

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 22July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (IV)

KaRMI shows low latencies but also low bandwidths.
Opt. RMI and Java RMI results are similar for short messages, and for long
messages Opt. RMI slightly outperforms Java RMI

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 23July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (V)

KaRMI performs much better on SCI. It has been designed with high
performance libraries in mind.
SCIP is not competitive as transport layer
Opt. RMI improve performance for long messages

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 24July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (VI)

Opt RMI. optimizes RMI calls with small number of objects. Sending 1 object
the most common case!

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 25July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Performance Evaluation (VII)

Profiling of a 3KB Object call on SCI

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 26July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Conclusions (I)
Presented a more efficient Java RMI implementation (Opt RMI)

Transparent to the user
Interoperable with other systems
No source code modification
Widely spread API

Opt RMI protocol tailored for high-speed clusters
Basic assumptions about the target architecture reduce protocol
overhead (trade-off interoperability vs. performance)
Optimizing the “most common case” for parallel computing:
primitive datatype arrays
Implementing the protocol on top of Java Fast Sockets (JFS)

Avoiding serialization
Reducing unnecessary copies

Protocol optimizations focused on:
Reducing block-data information
Reducing versioning information
Reducing class annotations

Introduction Design Implementation Evaluation Conclusions

IEEE Symposium on Computers and Communicatons (ISCC'2007), Aveiro (PT) 27July 2, 2007

Introduction Design Implementation Evaluation Conclusions

Conclusions (&II)

The Opt RMI protocol reduces RMU call overhead,
mainly on high-speed interconnection networks and
for common communication patterns in Java parallel
applications

Experimental results on Gigabit Ethernet and SCI
have shown significant performance increase, both
for basic data type arrays and objects

Introduction Design Implementation Evaluation Conclusions

UNIVERSIDADE DA CORUÑA

SPAIN

taboada@udc.es IEEE Symposium on Computers and Communications (ISCC’07), Aveiro (PT)

Guillermo L. Taboada*, Carlos Teijeiro, Juan Touriño

High Performance Java
Remote Method Invocation for

Parallel Computing on Clusters

