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Abstract

Genomics is a very interesting and growing field. Specifically, the analysis of RNA-seq data
helps researchers to continue to discover new information about all types of organisms and
to fight diseases. In this project we have tested different implementations of this technique
and have obtained more than remarkable results that provide a clear perception of what is
the state of the art of the technique and on which step of the analysis we should focus to
accelerate it to the maximum. In addition, knowing these challenges, it has been possible to
implement an RNA-seq data pre-processing pipeline for researches to use.

Resumo

A xenómica é un campo moi interesante e que está en aumento. En concreto, a análise de
datos de RNA-seq axuda aos investigadores a seguir descubrindo nova información sobre todo
tipo de organismos e loitando contra as enfermidades. Neste proxecto probáronse diferentes
implementacións desta técnica e obtivérnse resultados máis que notables que proporcionan
unha clara percepción de cal é o estado do arte da técnica e en qué pasos da análise deberiamos
centrarnos para acelerala namedida do posible. Ademais, coñecendo estes desafíos, foi posible
implementar unha pipeline de pre-procesamento de datos RNA-seq para que a usen diferentes
investigadores.
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Chapter 1

Introduction

Genomics is an interdisciplinary branch of biology that focuses on the structure, function,
evolution and mapping of genomes. In contrast to genetics, that aims to study individ-

ual genes, the objective of genomics is to study, characterize and quantify the collection of
all of an organism’s genes. With the emergence of massive parallel next-generation sequenc-
ing technologies, tremendous progress has been made in these studies. This technique has
revolutionized genomics, allowing labs to produce ultra-high throughput, scalable and quick
applications for processing huge batches of data.

This chapter will provide an introduction to the study of the RNA-sequencing (RNA-seq)
technology, a sequencing technique used to reveal the presence and quantity of Ribonucleic
acid (RNA) in a biological sample. This technique has been key in the understanding of a wide
spectrum of new diseases[1] or even muscle disorders[2]. First, a brief look into the gaps that
exist in the current topic will be addressed, following with the justification of the research
that is being carried out. Besides, the goals and limitations of this project will be stated, along
with the structure of the dissertation.

1.1 Justification

RNA-seq is known for being a convoluted amalgam of processes, files and general rules that
naturally match a pipeline structure, that is, a series of processes that are chained, where the
output of one process is the input of the next one. Due to the complexity and the need to
know both the field of computer science and biology, researches can have a hard time getting
acquainted with this technique.

There are several well-stablished tools and workflows that are very well known among
researches, but novices in the field may find themselves overwhelmed by so many options.
This is because very little effort has been put in the standardization of these technologies, not
counting Broad Institute of MIT and Harvard’s endeavours.
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1.2. Objectives

In addition, due to the computational burdens that RNA-seq presents, special attention is
being paid to improve the efficiency and performance of the workflows. Fine-tuning has to
be conducted by the end user when researching, as there is no rule of thumb that applies to
every kind of sample data.

1.2 Objectives

Themain objective of this project is to assess the performance of several state-of-the-art tools
and pipelines to find out, broadly speaking, which are the main bottlenecks that may arise in
these applications. With this, some of the steps and processing that are done on genomic data
will also be presented, thus helping novice users to get a general idea of the RNA-seq data
analysis process. Moreover, since both Central Processing Unit (CPU) and Graphical Process-
ing Unit (GPU) based approaches are being tested, this thesis will serve as a short introduction
to the importance of accelerators in High-Performance Computing (HPC) environments.

Finally, with clear ideas after benchmarking and understanding of the different work-
flow alternatives, the development of a proprietary pipeline will be carried out, based on the
GATK’s best practices for data pre-processing. This pipeline will contain all mandatory steps
and tools, as well as different optimizations collected throughout the aforementioned tests
and quality control and visualization tools for researches.

1.3 Structure

This thesis will start with a dedicated chapter for the state-of-the-art of RNA-seq. As so, a
brief look into the biological background is needed to educate the reader regarding biological
terms. First, the common methods for library preparation will be addressed, followed with
the disclosure of the general steps of the downstream data analysis. A short introduction to
the Broad Institute’s Genome Analysis Toolkit for CPU-based pipelines will be given, along
with its GPU counterpart, NVIDIA Clara Parabricks. Finally, some mentions will be made
about the different files that are handled, as well as the common containerization technologies
employed.

Chapter 4 will initially present a couple of pipelines subjected to testing. Within this sec-
tion, all the tools that make up these pipelines will be discussed, along with the configuration
requirements and execution process. Following that, an introduction to how both the CPU
and GPU based variant calling are composed and executed will be conveyed. Lastly, the tech-
nologies employed for the development of the proprietary pipeline and the container used
will be presented.

Chapter 5 will introduce the reader to the results, with every application tested against the

2



CHAPTER 1. INTRODUCTION

same batches of sample data for consistency. Also, it is necessary to describe the execution
environment and metrics used for the comparison.

Finally, in the last two chapters, the development methodology used, planning and costs
for this thesis will be provided, along with a final conclusion and future lines of work.
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Chapter 2

State of the art

Due to the complexity and the need to know the biological field on which the technique is
based, it is essential to explain the current state of knowledge. To do so, it is necessary

to talk not only about the central tenets of biology but also to know the history behind this
technique that aims to classify and quantify, in broad strokes, the amount of RNA in a sample.

In these next sections, a series of topics will be discussed to become further familiar with
this technique and gain a full understanding of the matter that will help to reflect on the
computational challenges it presents.

2.1 Biological background and RNA-seq until today

Chemically, Deoxyribonucleic acid (DNA) is defined as a polymer of nucleotides —with the
commonly known nitrogenous bases guanine, thymine, cytosine and adenine—. Usually, it
is visualized as this helical chain that everyone is familiar with, containing letters G-T-C-A
which correspond to the previously mentioned nitrogenous bases. The so-called genes are
pieces of this strand of DNA that contain the genetic information and instructions necessary
for the development and functioning of the organism of every living being. These are used
to manufacture the corresponding protein in a process called gene expression. Enzymes that
metabolize nutrients or generate the material necessary to prepare for cell division are all
proteins.

This is where RNA comes into play. DNA can’t act alone and needs an intermediate agent
to act as a messenger expressing genes. All of these agents or molecules constitute what is
called transciptome and they define the cell itself and its functions within the big scheme.
Messenger RNA (mRNA) is in charge of carrying the genetic information to the ribosomes
where protein synthesis will take place via a process called transcription, hence the name.
This is one of the reasons why mRNA is referred to as coding RNA, and also why it has been
the most widely and frequently studied species. However, RNA is very versatile and some
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2.1. Biological background and RNA-seq until today

molecules perform several functions unrelated to gene expression, such as catalysts or simple
regulators. This group is known as non-coding RNA and some are being discovered today,
expanding the repertoire.

Advances in high-throughput Next-Generation Sequencing (NGS) have made it possi-
ble to revolutionize transcriptomics by allowing the analysis of both coding and not coding
species. To do so, one must transcribe RNA back to complementary DNA, thus enabling the
opportunity to research and deep profile the transciptome. This technique is what is known
as RNA-seq[3]. Over the years, the process of obtaining RNA-seq data has been standard-
ized and consists mainly of two universal steps: the complementary DNA (cDNA) library
preparation and transcriptome sequencing.

RNA isolation
RNA selection

or
depletion

cDNA
synthesis cDNA sequencing

Library preparation

Figure 2.1: Obtaining RNA-seq data

In biology, a library is known as a group of DNA fragments that are meant to be prop-
agated in a population of micro-organisms by inserting them into a cloning vector. Conse-
quently, a series of steps must be taken to ensure its quality and reproducibility in any lab.

1. The experiment should begin by isolating the RNA from the biological sample bymixing
it with different chemicals to reduce the amount of genomic DNA. Then, the quality
of the remaining RNA after the degradation must be checked to ensure a sufficient
measurement obtained by a bioanalyzer — this measurement is known as RNA Integrity
Number—. This score must be taken later into consideration during the subsequent
steps, as it can alter the results and the ending sequencing data.

2. Previously, emphasis has been placed on the variety of RNA types present in a sam-
ple. This must be taken into account when preparing the transciptome. The next step
must be, then, the selection or depletion of specific types of RNA molecules to ensure
the signals of interest are being analyzed. Therefore, the biological instance must be
manipulated thoroughly to enhance or limitate the detection of certain transcripts.

As instance, the ribosomal RNA account for over 95% of the total cellular pool. If the
objective is analyzing non-coding RNA (ncRNA) and ribosomal RNA (rRNA) is not care-
fully eliminated from the sample, it will consume the bulk of the sequencing reads, re-
ducing the overall coverage of reads of interest. Nevertheless, there must be a prior
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CHAPTER 2. STATE OF THE ART

understanding of the quality of the sample and protocol used in this step, as they may
not be compatible and could be detrimental to the experiment.

3. Lastly, RNA must be converted into cDNA, as most sequencing technologies require
DNA libraries because they leverage modern techniques and are more stable. As a
curiosity, this conversion causes the strand orientation to be lost, although this infor-
mation is particularly valuable in some experiments. Thus, adapters must be ligated in
predetermined directions to either RNA or cDNA.

Finally, a sequencing platform for transcriptomics must be chosen to obtain a computer-
readable format of the library. There are a lot of decisions to be made regarding cost, time
and quality of the sample ratio. The majority of high-throughput sequencing platforms use
methods involving sequencing many identical copies of a DNAmolecule —ensemble-based—,
but there are others that use a single-molecule approach.

Each protocol introduces several quantitive and quality standards, such as the introduc-
tion of spike-ins to assess coverage, quantification and sensitivity. The goal of this is to lower
the variability of the experiment in differential transcriptome profiling studies. Also, the tech-
niques employed in converting short reads into full-length transcripts are dependant of the
platform used and can consequently affect the downstream analysis and must be taken into
account.

2.2 Data analysis pipeline and tools

Right after getting the RNA-seq data, a series of pre-established steps must be followed to try
to avoid inconsistencies in the scientific process. It should be remembered that we are talking
about technologies such as Whole Genome Sequencing (WGS) that aim at determining the
full genomic sequencing of an organism. Therefore, these analyses result in a high computa-
tional burden and require a certain infrastructure and power not achievable in many research
centers.

Most of the public tools used in this study process focus on only one step of the entire
workflow and do not provide information on a standardize pipeline or golden method. How-
ever, many tools have ended up paired with others by working well together and have ended
up consolidating within the scientific world as one. Some attempts at standardization by
Genome Analysis Toolkit (GATK) will be discussed later in this section.

2.2.1 Universal steps for analysis

The most important step of any RNA-seq data analysis experiment is the alignment and tran-
script assembly. In fact, it is so important that any other step or tool prior or subsequent to it
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2.2. Data analysis pipeline and tools

is treated as a pre-alignment or post-alignment procedure, respectively.
Generally, in this step, reads are mapped —i.e. aligned— to a reference genome for its

later reconstruction into transcripts. Mapping RNA reads is way more challenging than map-
ping DNA, due to the nature and variability of the aforementioned. For this exact reason,
alignment tools must have the ability to detect reads that map to non-contiguous portions of
the reference genome. In order to help these tools, an index of the genome can be supplied,
similar to the index of a book. Therefore, analogous to the way we find a chapter of a book
faster by looking at the table of contents than by looking through every page of it, indices
help the aligner by narrowing down the potential match of the sequence, saving not only
time, but also memory. Additionally and in combination of these indexes, these tools make
use of dynamic programming in order to find the optimal alignment. Currently and thanks to
the efforts of institutions such as the National Center for Biotechnology Information (NCBI)1,
the current human genome reference sequence is readily available online for anyone to use
in their experiments.

However, what happens if there are no reference genomes available due to the novelty of
the experiment, the ignorance of the organism at issue or because the source material is com-
pletely altered from the reference model? To answer this question, a new technique called de

novo was born. This approach does not need a reference genome, as its objective is to deter-
mine which reads go well together and should be considered as a consensus region (contigs).
To do so, the main algorithms employed are overlap graphs —which identifies all associations
between reads pair-wisely— and Bruijin graphs, that make use of k-mers (sub-sequences of
length k) paired with hash tables to do the job. As this technique uses these fragments to infer
transcriptomemodels, if the data is composed primarily of short-read sequences, it may be not
sufficiently reliable. A hybrid solution for this would be to use a long-read-sequence-sample
to mirror it and use as skeleton. Computationally, these approaches achieve an increase of
speed at the cost of a small loss in sensitivity.

The most common following issue is the gene expression or transcriptome quantification.
Depending on the method previously chosen for the alignment, the techniques vary from
simply counting the k-mers to generating a matrix containing the number of reads of the
transcript mapped to each part of the reference genome. Also, the aforementioned spike-ins
that would have been carefully introduced in the library preparation step would now help in
the absolute quantification, since RNA fragments concentrations would be known and could
be used to infer the ratio of reads that mapped to each gene.

From this point onwards, there are several paths that can be taken depending on what has
been designed for the experiment in particular. For starters, one of the most straight forward
uses after accounting for gene expression quantification is differential expression. That is,

1 https://www.ncbi.nlm.nih.gov/
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Pre-
alignment

FastQC2 Quality control tool for high-throughput sequencing data
Adapter
Removal

Removes adapter sequences and trims low quality bases.
It can also merge overlapping adapter sequences.

Trimmo-
matic For trimming raw reads of Illumina NGS data.

FLASh Fast Length Adjustment of SHort reads is
used for merging paired-end data.

Aligment

Bowtie 2 Memory-efficient tool for
aligning sequencing reads to long reference sequences.

HISAT2 HISAT2 allows to map reads to both DNA and RNA.

Salmon Salmon is able to quantify the expression of transcripts
and map using different techniques.

STAR STAR is an ultrafast universal RNA-seq aligner.
TopHat TopHat can only align reads to mammalian-sized genomes.

Post-
alignment

BamTools This tool helps handling BAM files.

Picard Picard is a suite that enables users to
manipulate high-throughput sequencing data.

SamTools Samtools covers a variety of post-processing techniques
for sequencing data.

VCFTools VCFTools is able to manage and process VCF files.

Table 2.1: Some of the tools

to detect transcripts revealing differences in gene expression across two or more conditions
—e.g., treated vs not treated—. To do so, a series of statistical models have been developed.
Historical approaches such as the Poisson or normal distributions have been discarded due
to biological variability not being correctly accounted by these assumptions. As instance,
a highly expressed gene can ”get all the attention” and be matched with most of the reads,
reducing statistical variability. This bias and the common underestimation of sampling error
often mislead these analysis. Choosing a tool that works well with the data in advance is hint
a of good experimental design.

Another common objective of this experiments is variant discovery. RNA-seq data is
used to discover and process variations in DNA helical stranding. The exchange of a single
nucleotide at a specific spot in the genome may greatly affect an individual’s susceptibility to
a certain disease. If this substitution is present in a considerable fraction of the population it
is considered a single-nucleotide polymorphism. If, on the contrary, this substitution is due to
a somatic mutation caused by a disease, it is considered a single-nucleotide variation —e.g., a
viral DNA sample obtained by means of a polymerase chain reaction (PCR) test may contain
several single-nucleotide variation (SNV)—. Additionally, variant calling also accounts for

2 To avoid the bulk of references to every bioinformatic tool used in this project, the interested reader
can check this listing of several tools: https://en.wikipedia.org/wiki/List_of_RNA-Seq_
bioinformatics_tools
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2.2. Data analysis pipeline and tools

insertions and deletions of bases in the genome, known as indels.
Lastly, it is worth mentioning that RNA-seq is a convoluted multistep process that gen-

erates tons of bias and corruption in data, as it involves thousands of small manipulations.
Thus, quality control and assessment throughout the workflow is key to achieve good results
and to avoid cumulative errors in the downstream analysis.

2.2.2 GATK

This last process is what GATK3 is trying to standardize. The Genome Analysis Toolkit devel-
oped by the Broad Institute of MIT and Harvard aims to be the industry standard for variant
calling —i.e., identifying single-nucleotide polymorphism (SNP) and indels in germline RNA-
seq data—. Additionally to continuing to expand and broaden the spectrum of variant calling
applications, GATK also includes several quality control and processing of high-throughput
sequencing data, often generated by the Illumina4 protocol. Although conceived initially for
human genomics, these utilities also apply to the genomic data of any organism.

GATK in its current version provides best practices workflow recommendations, having
in mind maximum computational efficiency and results accuracy. Although workflows are
tailored to particular applications, their general structure and analysis phases are:

1. Pre-processing. It involves the pre-processing of raw data in order to produce analysis
ready Binary Alignment Map (BAM) files. It is usually comprised of the alignment step
followed by any other data cleanup operation needed to account for technical biases.

2. Variant discovery. From analysis ready BAM files to Variant Call Format (VCF) files,
this step involves identifying genomic variation.

3. Other. Additional steps are required depending on the application.

Workflow scripts are also provided as reference implementations. These are written in
Workflow Description Language (WDL) and are executed by an execution engine, such as
Cromwell. The preferred way to execute these is on Terra, the Broad Institute’s Cloud plat-
form.

2.2.3 Input and output files

Since there are many file types that are being worked with and traverse the pipeline, it is best
to talk about some of the best known ones. In the following, a brief explanation on what they
are used for, their format and a few examples are going to be given.

3 https://gatk.broadinstitute.org/hc/en-us
4 https://emea.support.illumina.com/s
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>NR_036753 1
CCATGTGCCATATGTGAGAAATCCTTCTGTC
TTATCAGAGAATCCACACAGAGGGAAAATCC
TGGCAGCAGTCAGCACTCAGGGT
>NR_125392 1
ATGTTTATCTGGCAGAAGAAATGTTATGATC
AGCAAGGCTTAGCAGTTTTACTGTGGATGTG
CGAATGTGGGAATCT

Figure 2.2: FASTA format sample

1. FASTA.This type of file contains genomic sequences and optionally information about
them, each nucleotide being represented by a single-letter code. Although simple, this
format requires some specific rules that must be followed. This makes it easier for
text-processing tools such as R or parsing languages such as Python to manipulate the
data. A FASTA file must always begin with a greater-than symbol (”>”) containing a
summary description of the sequence. Besides, any line preceded by a semicolon (”;”)
will be treated as a comment. After the first line, the sequence must be written without
spaces, tabs, etc…, and usually, not mandatory, finish with an asterisk. Since these files
are usually downloaded from the NCBI database, this format also supports a series of
identifiers used to define additional metadata like access identifiers or patents. In the
RNA-seq data analysis pipeline, the reference genome used for alignment usually comes
in this format.

2. GTF. Used in conjunction with a FASTA file, the general transfer format is used to store
gene descriptions and other DNA or RNA features. This opens the possibility to validate
and verify that the data is correct and there are no errors. This file is comprised of 9
fields tab delimited by line.

3. FASTQ. The only difference with a FASTA file is that it contains the additional corre-
sponding quality score of each sequence letter. The two first lines of the format are
also similar: the greater-than symbol is substituted by a (”@”) character followed by
the sequence identifier or description and continues with the raw sequence letters. The
line following the sequence contains a ”+” sign. Finally, the last line encodes the qual-
ity score from the above sequence and, of course, matches its length. The quality value
corresponds to a byte going from 0x21 to 0x7e —i.e., from ”!” to ”~” in ASCII—. Also,
some of the identifiers proposed by the NCBI are also supported. These files are used
to store the RNA-seq reads generated by the Illumina protocol.

4. SAM/BAM. This file format is used to save information about reads mapped against
the reference genome. It’s composed of a header section and the alignment information
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@r0
GAACGATACCCACCCAACTATCGCCATTCCAGCAT
+
EDCCCBAAAA@@@@?>===<;;9:99987776554
@r1
CCGAACTGGATGTCTCATGGGATAAAAATCATCCG
+
EDCCCBAAAA@@@@?>===<;;9:99987776554

Figure 2.3: FASTQ format sample

section as tab delimited fields for each read. There are eleven mandatory fields and as
many extra optional fields as necessary.

5. VCF. This file is pretty much exclusively used as the output of the variant calling step
of the pipeline. As such, it stores gene sequence variations at single-nucleotide level. It
has a header containing metadata. These lines start with a single (”#”) symbol or two
if it contains a keyword —e.g., filedate or source—. It is followed by eight mandatory
columns describing the variation information and as many dedicated ones as samples
are included.

6. TAB. These are general purpose tab delimited text files. They are commonly used for
parsers to manipulate and represent data.

2.2.4 Nvidia Clara Parabricks

Nvidia Clara Parabricks5 is a computational suite for genomics. Borrowing from Artifical
Intelligence (AI), HPC and Nvidia Compute Unified Device Arquitechture (CUDA)6 stacks, it
can be used to address many needs of genomic labs with its GPU accelerated libraries and
workflows[4].

But why are GPUs computational power the most attractive option when it comes to
genomic analysis? And not only that, but for many other high performance applications
that manipulate heavy workloads? In recent years, there has been an exponential growth in
demand for graphic processing units due to them having specific characteristics that make
them perfect for these types of loads previously mentioned.

A CPU and a GPU differ greatly in architecture and it’s not the latter being intrinsically
better. This component is characterized by having many small processing cores and high
memory bandwidth. Fundamentally, they are perfectly ready to run single instruction multi-
ple data stream workloads. A GPU basically runs a single programmany times over a dataset,

5 https://developer.nvidia.com/clara-parabricks
6 https://developer.nvidia.com/cuda-zone
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having the possibility to execute those in parallel. If there is a need to run a single program
over vast ranges of the same input and they can be treated independently, a GPU-based ap-
proach will work multiple times faster than a CPU can thanks to its parallel nature. It’s all
about getting dozens of operations all running at once on each thread —i.e., CUDA cores—.
Also, GPUs often surpass the processor clock speed.

These are the reasons why they are primarily used for graphics processing. Programs
called shaders are executed on each pixel. A GPU processing a high demanding application
such as a game run at 1920x1080 and 60 frames per second would have to update the millions
of pixels in less than a 1/60th of a second. Ultimately, a CPU couldn’t even compete against
that dedicated hardware.

This high computer power is also interesting for non-graphical, general purpose applica-
tions. As instance, with the cryptocurrency mining boom, another use was found, as GPUs
can complete ”blocks” of verified transactions on the blockchain at lightning-speeds and very
efficiently. Also, the emergence of new deep-learning algorithms and huge data warehouses
have made it necessary to leverage the performance and power of these components.

With Parabricks, NVidia has succeeded in developing GPU-accelerated GATK pipelines
and some other third-party tools such as Google’s DeepVariant7, a deep learning-based vari-
ant caller. This framework was designed not only to optimize acceleration, but also to main-
tain a high degree of quality and accuracy in the results. Besides, although centered around
GATK best practices, it allows full configuration of the pipeline and parameters, in addition
to choosing which software versions to run.

Although this framework supports a lot of different genomic applications, there aremainly
twoworkflows specific for RNA-seq data analysis. The FQ2BAM application is considered as a
standalone tool that has the conversion of reads into aligned sequences as objective. To do so,
it employs the STAR8 tool to map reads to a reference genome and also uses the SortSam and
MarkDuplicates programs included in the Picard9 suite. The other major application is the
GPU-accelerated GATK workflow for RNA-seq short read variant discovery (SNPs + Indels).
As shown in figure 2.4, the three first steps make up the FQ2BAM tool. Additionally, a cou-
ple of quality control and data make-up tools in SplitNCigar and BQSR follow the alignment.
Finally, the Haplotype Caller is run to account for variant calling.

2.3 Container technologies

As shown, there’s plenty of applications and software involved in the process of analyzing
RNA-seq data. As such, and to make life easier for researchers that are not that acquainted

7 https://github.com/google/deepvariant
8 https://github.com/alexdobin/STAR
9 https://broadinstitute.github.io/picard/
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FASTQ
input files STAR

Co-ordinate
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Duplicates SplitNCigar

BQSR Apply
BQSR

Haplotype
Caller VCF files

Figure 2.4: Nvidia Clara Parabricks RNA Pipeline

with the use of such technologies, we find ourselves in the need of using something to help us
package that software and its dependencies. That way, this methodology can be standardized
and homogeneous results can be achieved with no further complications or variations. That’s
where container technologies can come in handy.

These containers are instances that package the application and host all the dependen-
cies it needs for its correct operation. The name is a perfect analogy to what happens on a
cargo ship. Goods are placed into —usually— steel containers instead of being shipped in a
specific way. This method not only standardizes keeping the goods together so that they can
be transported from one ship to another, but also reduces costs. Container are the ideal so-
lution for moving software between machines or different development environments, such
as a real production environment in a company or a test server. The fact that these machines
can have different operative systems, libraries or network topologies is not a problem, since
the application is perfectly isolated and cannot behave in an anomalous manner.

A distinctionmust bemade between a virtual machine and a container: the first virtualizes
an entire operating system and the application —or several, due to the dimension—, while
the latter runs on the same host operating system in isolation without needing their own
Operative System (OS), since they share the same Kernel. This is the exact reason why a
container is lighter. A physical server cannot run but a few virtual machines with their own
OS, since there is a lot of overhead on the server as resources get used. However, a server could
also run a single operating system with containers sharing its Kernel and resources, which
should be treated as read-only to avoid interferences. Because of these advantages, many
companies have opted for the use of containers accompanied by an orchestration software
such as Kubernetes10 or Docker Swarm.

2.3.1 Docker

Although there are several alternatives such as RKT11 or Linux Containers12, Docker13 is the
de facto choice when it comes to running these pipelines.

10 https://kubernetes.io
11 https://cloud.redhat.com/learn/topics/rkt
12 https://linuxcontainers.org/
13 https://www.docker.com/
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The background service that builds, runs and distributes the Docker containers is called
”dockerd” (Docker daemon). It communicates with the Docker client through a Rest Applica-
tion Programming Interfaces (API) on top of a UNIX socket if they are running on the same
system or through a network interface in the case of connecting remotely. A Docker client
can communicate with one or more daemons. There is also the possibility that a Docker dae-
mon communicates with other daemons to manage different services. Thus, a call from the
client to docker pull would notify the daemon and it would transparently perform the
necessary operations to access a registry containing the requested image.

As shown in figure 2.5, there are threemain steps to be taken before obtaining a functional
Docker container.

1. A Dockerfile is not but a text file containing a set of instructions needed to build an
image. This way, a simple call to docker buildwould be enough to start executing
those instructions sequentially. The format of this file is mainly composed by a series of
instructions of the form <keyword, arguments>. A series of best practices are suggested
in order to standardize the creation of efficient and as light as possible images, and that
are easily maintainable in terms of layer creation.

2. A Docker Image is defined as a read-only template on which the container is to be
created. Typically, it is based on a base image with an additional customization layer.
Each instruction in the Dockerfile is considered as a layer. When an alteration is made
in that template, only the affected layers are reconstructed when it comes to rebuilding
that image. This is exactly what makes Docker so lightweight and fast compared to
other virtualization technologies.

An image can be pulled directly from an image repository. By default, the daemon
will always look for it on Docker Hub14, unless another registry is specified in the
configuration files.

3. A container is the running instance of an image. In the specific case of Docker, the
latter becomes a container when it is run on Docker Engine. This way, containerized
software will always run the same, regardless of infrastructure.

However, the fact that Docker needs root privilege can be a threat[5] in shared environ-
ments. Alternative implementations such as uDocker15 may be attractive for this kind of
situations. The other container software that solves this problem is Singularity16. It is one
of the most widely used systems for high-performance computing (HPC), as it offers close to

14 https://hub.docker.com/
15 https://github.com/indigo-dc/udocker
16 https://sylabs.io/singularity/
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Dockerfile Docker Image Docker Container

Docker Hub

build run

pull

Figure 2.5: Minimal steps for creating a Docker container

bare-metal performance while being secure. It also can be used with Docker Images. This
integration is due to the fact that developers and scientists are still eager to using Docker and
have already put much resources into creating those images.
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Chapter 3

Methodology and planning

FoR this project, it was decided to use an agile methodology, adapting on of its strands: the
Scrum framework.
In this chapter, the characteristics and advantages of agile methodologies will be pre-

sented, along with some basic notions of Scrum. Of course, this methodology had to be
adapted to this project. Finally, clear reference will be made to the final planning of the
entire thesis, including costs.

3.1 Agile methodologies

There are many methodologies designed for application in software development projects. In
fact, the study of this methodologies is a fully consolidated field of software engineering. On
of the most widespread in recent years is the agile methodology. It allows to adapt the way
of working to the project conditions, providing both flexibility and efficiency to the planning,
thus often obtaining a better final product.

The agile methodology emerges as an alternative to traditional work methods, usually too
structured and unchanging. It mainly focuses on obtaining a final working product for each
iterative life cycle. That is, with this clear divisions and iterations, fundamental requirements
can be met sooner to focus later on extra functionalities or refinements of a feature.

All the characteristics of this methodology are gathered in the Agile manifesto[6], elab-
orated as a result of several meetings of many of the most recognized software developers.
Some of its key points are:

1. Individuals and their interactions over tools and processes. This allows the focus to be
placed on people, achieving a more pleasant working environment and better theoret-
ical results. Regarding the interactions, the aim is to promote the responsibility of the
individual within a team, providing greater autonomy and transparency to the rest of
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the members of said team. Fluid team communication, equal participation and collab-
orative work are key to ensure that all parts are focused towards a common objective.

2. Total collaboration with the client. Quick and accurate feedback helps building a bet-
ter communication model, closer to the client. The client feels like a member of the
team, thus achieving a better relationship and satisfaction for both parties. In addition,
the proximity to the client provides differential value that would not be achieved oth-
erwise, including knowledge about the customer’s vision of the product and avoiding
deviations in the planning.

3. Quick response to changes. Since this continuous work environment is promoted and
hierarchies are avoided, the operation in the face of changes is much faster: efficiency
and optimization are sought. This review rhythm allows to better resize projects, min-
imizing risks, time, and costs.

3.2 SCRUM

SCRUM[7] is a framework based on partial and regular deliveries of the product, prioritizing
the most important functionalities and always seeking the greatest benefit for the client. Its
use is recommended primarily in environments where results are needed soon and specifica-
tions are subject to many changes or poorly defined initially. Needless to say, SCRUM inherits
most of the characteristics of agile methodologies: greater productivity[8], continuous com-
munication among individuals and clients, flexibility to changes… The two main components
of the SCRUM working model are presented below.

3.2.1 Roles and events

Each individual must assume one of the following roles:

1. ProductOwner. He/she is in charge of optimizing andmaximizing the product’s value.
The product owner is also in charge of managing the value flow of the product through
the Product Backlog. His/her work as an interlocutor with stakeholders and project
sponsors is essential, along with his/her role as a loudspeaker for client requests and
requirements. In each Sprint, the Product Owner must make an investment in devel-
opment that has to constantly increase the value of the product. It is essential to give
the necessary value to this role so that any decision that ultimately affects the project
can be made without issues and prior consultations.

2. SCRUM Master. At the same time, the Scrum Master has to main roles, in addition to
being responsible for mentoring and training, organizing meetings and events:
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(a) Managing the Scrum process. He/she is in charge of ensuring that the SCRUM
process is carried out correctly, as well as facilitating its execution and mechanics.
The SCRUM Master has to always keep in mind that the methodology must be a
source of value generation.

(b) Remove obstacles. The integrity of this methodology must always be kept, so
emerging impediments should not affect its ability to deliver value. Thus, the
transmission of its benefits to the organization and ease of implementation is al-
ways present.

3. Development team. Usually consists of three to nine professionals who are responsi-
ble for developing the product, managing to deliver a software increment at the end of
the development cycle. All members of the teammust know their role. How they decide
to manage themselves internally is their own responsibility and they will be account-
able for it as one. All external individuals should avoid intervening in the development
team dynamic.

Product development is organized in iterations consisting of the following events:

1. Sprint. It is the basic SCRUM time unit, and it covers all other events. With each Sprint,
the development team must achieve a product increment, that is, a partial delivery
consisting of the current version of the product. Each increment must be functional
and an improvement over the previous one. Each Sprint usually lasts between two and
four weeks, although it is variable.

2. Sprint planning. A reunion where the objectives for the Sprint are discussed. Re-
quirements for the product are presented by the Product Owner and the development
team is responsible of selecting which requirements are up to be included in the current
Sprint. The tasks to be done in the iteration will be distributed among the team mem-
bers and they are in charge of self-regulating and self-managing themselves to achieve
and efficient development.

3. Sprint review. The last reunion of the Sprint where the Product Owner presents the
software increment to the client and the development team shows its functionalities.
Of course, the client may propose some changes, and the Product Owner is in charge
of taking them into account and add them to the Product Backlog. Additionally, an
internal reunion can be arranged to discuss how good of an implementation of the
methodology that Sprint has been.

4. Daily Meetings. A small meeting is held everyday to organize the team and have a
general talk about the progress of the Sprint. The SCRUM Master must participate on
this meetings.
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3.2.2 Logs

Finally, the work team builds some assets proposed by the SCRUM framework that aim to
offer maximum cohesion and transparency among its members:

1. Product Backlog. All tasks necessary to complete the final product are gathered here.
The Product Owner manages this log.

2. Sprint Backlog. It is a subset of the Product Backlog, containing all tasks that are to
be completed within the current Sprint.

3.3 Adaptation to the project

As stated before, minor modifications have had to be made to the SCRUM framework to adapt
it to the development of an undergraduate thesis.

The first key point to address is the distribution of roles. The methodology is designed for
medium sized teams of 4-10 people. However, as there are only three people available —i.e.,
the student and both the tutors—, roles have had to be modified. On one hand, the student
has had to take on the roles of SCRUMMaster and development team. On the other hand, the
tutors have been assigned the role of Product Owner.

Sprints have been used as a temporal division for the project, with an average duration of
each one of about 3 weeks. Nevertheless, this is a rough estimate, since the student has not
always been able to dedicate himself exclusively to the development of the thesis. Unforeseen
events and periods of partial abandonment of the project arose, during which the student has
had to focus on other subjects of the degree.

The format of the Sprints is as follows: at the beginning of each sprint, meetings were
held covering both the Sprint planning and the Sprint review. That is, in each iteration the
Product Owner defined the tasks and objectives to be accomplished for the sprint —i.e., Sprint
Backlog—. Additionally, these meetings served to review what was done in the previous
Sprint, observing the result of the development iteration and proposing improvements or
resolving doubts.

The only exception to this rule was the first Sprint meeting, where the Product Owner
built the Product Backlog and defined all the priorities of the tasks, so no Sprint review was
needed as there was no previous iteration. Moreover, the Product Backlog received several
modifications throughout the development, adapting it to the remaining time of the school
year and depending on the progress that had been made up to that point.

It is key to highlight the flexibility that this type of methodology provides, since a research
work always raises difficulties as one goes deeper into a topic. Being the first serious research
work of the student, this flexibility helped him to organize himself and always maintain a
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common objective with the tutors, as a development team would do in normal circumstances
under this development framework.

3.4 Planning

In this section, an explanation of all the work that has been done in each Sprint will be pre-
sented:

(a) Sprint 0. In this Sprint, the student carefully read a lot of documentation and several
papers related to the RNA-seq technique, as well as searching for tools and implemen-
tation alternatives. A general analysis was also made of the project planning. The
appearance of difficulties and not knowing the limits of the subject made this Sprint
last longer than the 3 weeks initially proposed per iteration. Regarding SCRUM events,
a reunion was held to prepare the Product Backlog and Sprint Backlog for this iteration.

(b) Sprint 1. This Sprint focused mainly on learning Docker, as it is a powerful tool that
allows every implementation to achieve good reproducibility of the process and same
conditions for every user. This Sprint’s tasks were not planned initially, and they had to
be introduced in the Product Backlog in this Sprint’s reunion. Also, this Sprint shares
some of its duration with the previous one, as more insight was needed regarding RNA-
seq.

(c) Sprint 2. Once sufficient knowledge of the subject was obtained, the student tried a
couple of the best-known general purpose RNA-seq data analysis implementations and
a use-case scenario was prepared for each of them. Again, a reunion was held at the
beginning of this iteration to prepare the Sprint Backlog.

(d) Sprint 3. In the Sprint planning for this iteration, the team chose to learn about differ-
ent alternatives to the classic pipeline focused on differential expression. It was decided
to investigate the best practices proposed by GATK for variant calling.

(e) Sprint 4. This Sprint followed the previous one very similarly, with a careful review of
Parabricks’ GPU-accelerated solution.

(f) Sprint 5. Knowing enough about the different implementations and having already
achieved several use cases, testing on the CITIC’s Pluton cluster was initiated. This
Sprint began in the middle of the previous one, as 3 weeks seemed a bit excessive to
learn about Nvidia’s application and this tool was the last one needed in order to start
testing.
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(g) Sprint 6. Parallel to the previous iteration, the development of the proprietary pipeline
started, leveraging the different optimizations achieved by testing. This Sprint and the
previous one lasted almost twice as long as the marked Sprint time due to the difficulty
of these tasks.

(h) Sprint 7. Using the Product Backlog, notes and documents profiled during all these
Sprints, the dissertation of this thesis was written. In the end it added up to most of the
time, also due to the coincidence with the final exams and the loss of concentration on
the project.

In Figure 3.1 the reader can see a high-level Gantt Diagram, where the relationships be-
tween Sprints have been graphically represented. Although most of the relations are Finish-
to-Start there a couple key differences.

The first two Sprints share a Start-to-Start relation due to the fact that the student couldn’t
start researching Docker until some insight on the topic was already collected. Also, both
iterations had to be finished before starting to play aroundwith the different implementations.

Additionally, the Sprints 4 and 5 share a Start-to-Start relationship because the student
could start testing all the tools while still learning a bit more about the most different of them
all: the GPU-based approach.

Finally, Sprints 5 and 6 share a Finish-to-Finish relation, because the development of the
pipeline couldn’t finish until all the tests finished and the results were obtained, as they were
used to optimize the final pipeline.

3.5 Costs

The total cost of the project would be that corresponding to the individuals that were part
of it, as the only tool that costs money was used under a free trial license thanks to NVIDIA
allowing researches to use it freely due to the current situation of the pandemic.

In Table 3.1 shows the numbers of hours dedicated to the project for each Sprint by each
of the members.

To calculate the final human cost of the project, it is enough to consult public average
salaries that are available online and multiply them by the total hours that each one has
dedicated to the project. In Table 3.2 the reader can see the final cost for this project.

Regarding materials and physical resources, all necessary hardware was provided by the
Centro de Investigacion en TIC (CITIC). However, should this not be the case, we must ac-
count for it. Using the Amazon Web Service (AWS) pricing calculator1, we can find out that
the nodes used for testing would cost about 3.47€/h. If we multiply that by the number of

1 https://calculator.aws/#/createCalculator/EC2
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Sprint Student Director 1 Director 2

0 42 4 4
1 12 2 2
2 35 2 2
3 27 2 2
4 11 2 2
5 55 4 4
6 35 2 2
7 80 2 2

Total 297 20 20

Table 3.1: Breakdown of hours dedicated

Resource Time (hours) Cost (€/hour) Total cost (€)

Director 1 20 45 900
Director 2 20 45 900
Student 297 20 5940

Final cost 7740

Table 3.2: Project costs

hours spent testing plus the computation time of all the execution alternatives, we get a rough
estimate of 329.65€ that we would have to sum to the final cost of the project.
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Chapter 4

Development

AfteR this brief introduction, this chapter provides information of the actual development
bulk of the project, including some of the most well known pipelines.

4.1 Benchmarking options

To assess the computational scope and importance of each tool, the next two applications
were investigated as an entry point for the RNA-seq data analysis. Within this section, some
of the information necessary and fundamental for the characterization of the two approaches
will be found. This includes not only not only the tweaks that have been made in order to run
them properly, but some of the code and insight of the two applications.

4.1.1 GEO2RNA-seq R package

To get acquainted with this topic, a quick look online may be enough to realize that most
of the attention in the RNA-seq data analysis pipeline has been focused on differential ex-
pression analysis. Two pipelines for processing of RNA-seq data exist and and are widely
used. The Total RNA-Seq Analysis Package for R1 is a partial RNA-seq pipeline implemented
in R. However, does not include mapping and counting, and uses counts per genes as input.
Given counts, TRAPR performs all following steps necessary for the detection of Differentially
Expressed Genes (DEG), but the statistical analysis is limited to DESeq2 and edgeR. EasyR-
NASeq2 is a package available through Bioconductor. Again, it can only be used after initial
mapping was performed. As well the statistical analysis is limited to DESeq2 and edgeR.

Consequentially, a more powerful library that comprised all the steps of the pipeline was
needed as an initial contact. The GEO2RNA-SEQ3 package turned out to be the best R imple-

1 http://www.snubi.org/software/trapr/
2 https://bioconductor.org/packages/release/bioc/html/easyRNASeq.html
3 https://anaconda.org/xentrics/r-geo2rnaseq
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mentation for this[9], as it has a modular programming approach and alternative workflow
options. Being a R package, it’s also lightweight and easy to install. One of the most notorious
features is the fact that this implementation takes advantage of all the amount ofmetadata that
often comes with the raw reads after sequencing. This includes important wet-lab metadata
such as the temperature at which the experiment as been conducted and more direct dry-lab
data like the version number of the reference genome. This is of particular importance for
reproducibility and helps to decide how to compare two different datasets. Providing specific
metadata for the analysis and incorporating it is key not only to comply with a scientific rigor
but also for interpretation.

Although Conda is the preferred method of installation, the Docker alternative ended up
being more appropriate for the shared environment where the tests were run. Pulling and
executing its image opens a R-studio server, where the client can have easy access to all the
tools and pipeline scripts.

Under the pipelines folder, a couple of files can be found that contain example applications,
as well as some annotations. These files are completely configurable and customizable to the
experimental needs. Due to its modularity, the user can then skip some of the steps, add new
samples without the need of rerunning some of the most time-consuming or add external
software. Also, the pipeline offers the option to be run with multiple cores/threads by just
changing one variable (”MAX_CPUS”). The pre-processing steps of native R computation can
get some speedup thanks to its Rmpi4 package support. This is specially attractive for cluster
computing.

Another suitable feature is that you can directly download the raw data fromGene Expres-
sion Omnibus (GEO)5 given an its specific accession number. It also automatically extracts its
metadata, retrieving information like applied protocols in the reads preparation or sequenc-
ing methods. However, this data has to be converted from its Sequence Read Archive (SRA)
format to the FASTQ format. This can be done with the NCBI’s SRA toolkit, also included
in the Docker image. Besides, users can just input FASTQ files locally if there’s no need to
download them. The next steps and corresponding tools chosen to execute for this thesis
were:

1. FastQC. For the actual data pre-processing, a quality check of raw read data is executed.
To run FastQC, only the paths to the FastQ filesmust be supplied to its wrapper function.

1 fq <- system.file("extdata", "my.fastq.gz", package = "Geo2RNAseq")
2

3 rawQualDir <- file.path(outDir, "quality", "raw")
4

4 https://cran.r-project.org/web/packages/Rmpi/index.html
5 https://www.ncbi.nlm.nih.gov/geo
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5 fq_raw_res <- run_FastQC(files = fq, outDir = rawQualDir, cpus = 2,
workers = 2)

2. Trimmomatic. In this steps, the removal of adapter or low quality sequences is per-
formed. Leading and trailing quality bases of the read are removed. Also, we are given
the option of computing the average quality of a sliding window. The whole window
sequence is cut if the quality falls under a given threshold. Also, minimal sequences of
under 30 nucleotides are completely removed to avoid possible bias.

1 trimDir <- file.path(outDir, "fastq")
2 trim_res <- run_Trimmomatic(fq, outDir = trimDir, is.paired =

FALSE, compress = TRUE, cpus = 2, workers = 2)

3. SortMeRNA. This tool is needed in order to filter rRNA fragments, abundant through-
out the sample. Its wrapper function only requires the reference file that matches to
the sets of input reads and optional paralelization parameters.

4. TopHat2Themapping step is critical for the analysis. Therefore, GEO2RNA-seq allows
the user to include several cutting-edge tools such as STAR. However, it was decided
to use one of the officially supported tools included in the Docker image for simplicity.
The reference genome FASTA file of the organism of interest is needed. Besides, it is
recommended to include additional annotation files or the index to ease the process. If
the latter can’t be found, this package contains a wrapper function to create one.

1 tophat_index <- make_Tophat_index(genomeFile = genome)
2 topDir <- file.path(outDir, "mapping", "tophat")
3 map_tophat_res <- run_Tophat(
4 files = fq,
5 index = map_index,
6 outDir = topDir,
7 is.paired = FALSE,
8 cpus = 2,
9 workers = 2

10 )

5. FeatureCounts For quantifying the number of reads assigned to each feature in the ref-
erence genome, the Gene Transfer Format (GTF) file containing the annotationsmust be
supplied. This file must imperatively contain the gene_type and feature_type columns.

1 bamFiles <- map_hisat_res$files
2 gene_type <- "ID"
3 feature_type <- "sequence_feature"
4 count_res <- run_featureCounts(
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5 files = bamFiles,
6 annotation = file.path(outDir, "generatedGTF.gtf"),
7 outDir = file.path(outDir, "counting"),
8 featureType = feature_type,
9 IDtype = gene_type,

10 isPairedEnd = FALSE,
11 cpus = 2,
12 workers = 2
13 )

6. MultiQC. Finally, this tool is included to generate report files. MultiQC supports sev-
eral of the best known RNA-seq analysis applications. It searches their output directory
and subdirectories for their respective report files to combine them into a single Hy-
perText Markup Language (HTML) interactive report.

To ensure that execution times are kept to a minimum, GEO2RNAseq takes advantage
of parallelization —i.e., multi-threading and concurrent execution—. Although native high-
throughput sequencing data functions are optimized in R, the most critical steps are handled
by third-party software, so it’s up to them to achieve low run-times and accuracy in the results.
These critical steps are parallelized with the execution of any intermediate R code to reduce
total runtime drastically.

Subsequent steps of the downstream analysis such as differential expression or visualiza-
tion of the results were not run, as they are mainly focused for researchers and are natively
integrated in R due to its statistical nature and plotting capabilities.

4.1.2 nfcore/RNA-seq

nf-core/RNA-seq6 shows itself to be yet another very interesting and valid option for dif-
ferential expression analysis. This bioinformatics pipeline is implemented using Nextflow7, a
workflow tool based on the dataflow programming model which ultimately simplifies writing
complex distributed pipelines[10]. It uses Docker or Singularity containers for its portabil-
ity. Also, thanks to its Amazon Web Service8 support, the pipeline is ready to run real-world
datasets on cloud infrastructure and provides persistent storage for results to be easily com-
pared with other workflow results from other pipelines.

The pipeline itself contains mainly the same steps and tools used in the GEO2RNA-SEQ
package, with some additional inclusions. Unlike the previous option, this application hardly
allows you to include external software or make major modifications.

6 https://nf-co.re/rnaseq
7 https://www.nextflow.io/
8 https://aws.amazon.com/
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sample,fastq_1,fastq_2,strandedness
TFG_TEST1,GSM2072350_R1_001.fastq.gz,GSM2072350_R2_001.fastq.gz,unstranded
TFG_TEST1,GSM2072351_R1_001.fastq.gz,GSM2072351_R2_001.fastq.gz,unstranded

Figure 4.1: Inclusion of several re-sequenced reads
for depth coverage on a samplesheet

Contrary to how the previous example was able to download input data and its metadata
given an identifier, all files must findable and accessible locally. For the tool to use them, a
samplesheet must be created with information about them. This samplesheet must contain
the sample name, both FASTQ files if they are paired-end data and the strandedness. In the
case of having several re-sequenced samples just to increase sequencing depth, all entries
must share the same sample identifier. This tool will automatically concatenate them before
continuing with the analysis.

This time, the pre-processing stage consists of:

1. FastQC and SortMeRNA. Much like in the GEO2RNA-seq package, quality control
and removal of ribosomic RNA is carried out by the same tools.

2. Trim Galore. For adapter and quality trimming, a different tool is used. Trim Galore
is known for its better reads pair-awareness.

3. UMI-TOOLS. An extra tool is included to deal with Unique Molecular Identifiers —
i.e., extra indices added to sequencing libraries that enable better quantification and
removal of duplicates—.

Several options are available for the alignment and quanitification steps. By default, STAR
is used to map the reads to the reference genome, followed by a BAM-level quantification
with Salmon or RSEM. HISAT2 is also available for alignment, preferably in low-memory
environments, but no quantification is supported for that tool. Besides, Salmon can be run at
the same time as the standard alignment process for a pseudo-alignment and quantification
workflow, as it provides extra quality control (QC) metrics. The minimal reference genome
files needed for this step are a FASTA and its corresponding annotation file. Every other file
needed, such as the index, can be generated from those. However, its preferable to have them
already stored locally, as it would improve execution-times drastically.

Post-processing is comprised of several steps. Most of these are also available for the
GEO2RNA-SEQ bundle but, given the possibility of avoiding them, it was chosen not to exe-
cute them.

1. SAMTOOLS. This is the go-to application for reading, writing, editing or indexing
Sequence Alignment Map (SAM) and BAM format files. In this specific step, it is used
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to sort and index the alignments. This process is not mandatory for the analysis, but it
is recommended as it leverages on the fact that it is not very time consuming and helps
the following tools to run faster.

2. UMI-TOOLS. Similar to how FastQC can be run after any other tool to ensure the
quality of the reads after processing, this software is run again to accommodate for
UMI-based deduplication.

3. MarkDuplicates. Included in the Picard suite, this is one of the most well known
tools in today’s analysis. It locates and tags reads duplicated reads that originated from
a single fragment of RNA.

4. StringTie. Used for transcript assembly and quantification. Although a quantification
step is performed by Salmon, it is not executed in the HISAT workflow due to incom-
patibility.

5. BEDtools and bedGraphToBigWig. They are used for generating bigWig coverage
files. These come in handy for visualizing continuous data.

6. Quality Control. Several quality control tools are executed, including plots and spe-
cific data used for the downstream scientific interpretation.

7. MultiQC. Again, MultiQC is used to group all reporting output data of the previous
tools into a HTML file.

For its execution, Nextflow allows the user to choose different configuration profiles.
These profiles instruct the pipeline to use their respective container technology to bundle the
software —e.g., Docker, Singularity—. Besides, Nextflow also loads different configurations
depending on whether we are executing it from an institutional cluster or not. These con-
figurations are dynamically loaded from a repository at runtime if they are available for that
system. When running the pipeline under any profile, the code will be pulled from GitHub
and will be cached. If available, this cached version will be used even if it is outdated.

By default, each step has a predefined set of requirements such as number of cores, mem-
ory and maximum time but these can easily produce errors if they are not properly met due
to limits in infrastructure. The pipeline execution will stop if any of the jobs fail and it’s up
to the user to customize the requirements. Custom configurations can be introduced in the
pipeline to account for that. These configurations not only apply to the processes but they
can also be used to input non mandatory tool-specific parameters.
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4.2 Best practices variant calling workflow

To further delve into some of the cutting-edge workflow designs, research on GATK’s best
practices was carried out. As previously discussed, these approaches focus on the RNA-seq
data analysis for variant calling. This results in a change of subject, as previously discussed
methods regard differential expression analysis and have no native support for the detection of
indels and SNPs. GATK’s RNA-seq short variant discovery best practices workflow provides
the minimum steps necessary to achieve not only accurate results, but to ensure maximum
computational efficiency and reproducibility.

Regarding the pipeline and unlike previous approaches, no quality control steps are re-
quired prior to the alignment. This is mainly due to the pipeline only accepting unmapped
BAM (uBAM) format files as input. This is a variation of normal BAM files, where raw reads
contain no mapping information. It is considered an ”off-label” use, as gathering alignment
information is the whole point of these files. However, there are many benefits when it comes
to storing additional metadata of the reads and using this information to help subsequent tools
work optimally.

For further context, some of the major shortcomings of the FASTQ files should be dis-
cussed. The main problems regard metadata conventions for paired end reads. Also, there
is this situation where some tools want a single FASTQ file containing both the forward and
reversed reads interleaved, similar to how the nfcore tool concatenated the samplesheet files.
Nevertheless, other tools prefer them to be completely separated. Finally, there are many
ways to manage the inherent quality scores of the reads, as some protocols handle these
as they fit. GATK tends to use this format, even when it results in slightly more complex
workflows, but the documentation reflects the use of FASTQ files in order to please novice
researchers.

Continuing with the workflow, STAR is the recommended option for alignment, as it
maintains a special sensitivity for indels, beneficial in the downstream analysis. This first
processing step is designed to map read pairs individually. This isolation is computationally
beneficial, as it can be massively parallelized to increase throughput.

The next step involves Picard’s MarkDuplicates tool. Here, read pairs that are likely dupli-
cated due to previous processes are all tagged but one. This read pair becomes the represen-
tative, and all other are ignored during the variant calling process. Sorting of the alignments
is also performed in this step. Additionally, the SplitNCigar tool is run to help reformat the
alignments that would cause problems in the variant calling step. This also entails the reas-
signment of mapping quality scores to match DNA conventions.

Systematic errors in the base quality scores are probably present at this point in the anal-
ysis. To correct them, a base quality recalibration is performed using machine learning al-
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gorithms to detect patterns for these errors. A statistical model from the collection of biases
from all base calls of the dataset is built and adjustments are performed based on it. The
recollection of statistics can be parallelized by spreading the resources throughout different
coordinates of the genome. After this, you get a file ready for analysis. The variant calling is
then performed by GATK’s HaplotypeCaller.

4.2.1 Pipeline implementation

But how does GATK implement its workflows? The preferred pipelining solution involves
the creation of WDL9 files and Cromwell10 as its execution engine. Repositories containing
these workflows are available to the user and are maintained by its git organization. Intel
also contributes creating optimized versions with the objective of increasing performance
and achieving low execution times.

WDL is an open source scripting language whose objective is to help the user create
human-readable genomic processing workflows. Themain components forming the structure
of the script are workflow, task, call, command and output. Additional components also
exist and are optional. They are usually employed to specify environment conditions, runtime
parameters and scripting metadata.

The top level is composed by the workflow component. One can look at it as the main

function of a program written in C. It houses call statements, as well as workflow-level input
variables —i.e., call to functions and global variables—. These call components specify that a
particular task is to be executed. The simplest call just needs a task name, but the user can also
add a code block specifying input variables. In addition, there is the possibility of calling an
alias, that is, run the same task multiple times within the same workflow but with a different
input setup to reuse code and help maintenance. Here’s an example code:

1 workflow RNAseq {
2

3 File inputBam
4 String sampleName = basename(inputBam,".bam")
5

6 File refFasta
7 File refFastaIndex
8 File refDict
9 .

10 .
11 .
12 call StarAlign {
13 input:

9 https://openwdl.org
10 https://cromwell.readthedocs.io/en/stable/
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14 star_genome_refs_zipped = starReferences,
15 fastq1 = SamToFastq.fastq1,
16 fastq2 = SamToFastq.fastq2,
17 base_name = sampleName + ".star",
18 read_length = readLength,
19 preemptible_count = preemptible_count,
20 docker = star_docker
21 }
22

23 call SamToFastq {
24 input:
25 unmapped_bam = RevertSam.output_bam,
26 base_name = sampleName,
27 preemptible_count = preemptible_count,
28 docker = gatk4_docker,
29 gatk_path = gatk_path
30 }
31 }

One important thing to notice is that the order in which the statements are written does
not define by any stretch of the imagination the order in which they are going to be executed.
Instead, the executing engine is in charge of evaluating input and output relations to infer
and create a dependency graph between tasks. In the example, we can easily check that the
StarAlign task receives the output of the SamToFastq one, implying that the latter should be
executed first, even if it appears later in the workflow block.

Outside of the workflow segment, the tasks are defined. They are called from within the
workflow block –i.e., the main function—, which is what causes them to be executed. Here’s
an example task:

1 task SamToFastq {
2

3 File unmapped_bam
4 String base_name
5 String gatk_path
6 String docker
7 Int preemptible_count
8

9 command <<<
10 ${gatk_path} \
11 SamToFastq \
12 --INPUT ${unmapped_bam} \
13 --VALIDATION_STRINGENCY SILENT \
14 --FASTQ ${base_name}.1.fastq.gz \
15 --SECOND_END_FASTQ ${base_name}.2.fastq.gz
16 >>>
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17

18 output {
19 File fastq1 = "${base_name}.1.fastq.gz"
20 File fastq2 = "${base_name}.2.fastq.gz"
21 }
22

23 runtime {
24 docker: docker
25 memory: "4 GB"
26 disks: "local-disk " +

sub(((size(unmapped_bam,"GB")+1)*5),"\\..*","") + " HDD"
27 preemptible: preemptible_count
28 }
29 }

Tasks can be considered as standard functions, with their respective input and output
parameters. Thus, it is the functional component that contains the information of what is
going to be done. This information is centered around the command component, which is
required. Inside of it, the user can specify the literal command that she/he would run in a
terminal shell, with the exception of the variable parts, otherwise substituted by a placeholder.

These placeholders have to be previously defined in its respective input definition seg-
ment. Thanks to them, the user can specify these values at runtime without having to modify
the script, as hardcoding the variables would be a very inefficient way to deal with it. Check-
ing the above example, a segment with the declaration —i.e., name and type— of the variables
can be seen at the top of the task definition. These can now be introduced as placeholders by
typing their name within curly braces prefaced by a dollar sign.

Besides, an output component is usually required in the definition of the tasks, similar to
how a function would return a certain value. The explicit mention of these outputs, together
with the inputs, is what guides the execution engine in the creation of the dependency graph.
In the example, two output fileswill be producedwhen running this task, with a concatenation
of the base_name string used as input and the fastq.gz file extension as name. Paying attention
to detail, these fastq1 and fastq2 file variables are the ones used in the call StarAlign segment
example as input, prefaced by the name of the task.

This chaining is what makes the creation of sophisticated pipelines possible. OpenWDL
developers call this ”plumbing”. Up until now, with all the information that has been covered,
linear or very simple branching and merging workflows can be built, it’s a matter of chaining
multiple inputs and outputs. However, in this very same variant calling workflow, several
conditional statements are specified, depending on input data. These built-in features allow
further sophistication and open paths to new possibilities.

Although not present in the pipeline, one of the most interesting and worth-mentioning
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aspects is the scatter-gather parallelism feature, that, although similar, has some key differ-
ences with the technique called multi-threading. In the latter, a program can achieve very
quick execution times at core and machine level, where a program sends several threads to
the processor at the same time to get the work done. However, by running a program with a
scatter-gather approach, cluster level parallelism can be achieved. This strategy involves the
execution of several copies of the same program, independent among them, over a portion of
the input data —i.e., the scattering—. The results are then merged —i.e., the gathering— as if it
had just been one single command. In WDL, the scatter part must be explicitly defined with
specific keywords, but the gather part is automatic or implicit.

4.2.2 WDL execution

WDL scripts are not executable by themselves, and need an execution engine to do so. Cromwell
is an open-source workflow execution engine that supports, among other description lan-
guages, WDL. It’s written in Java and can be run in a wide variety of platforms, including
local machines, shared computer environments regulated by a job scheduler —e.g., SLURM—,
or cloud platforms. Different versions of the Cromwell executables are available to the pub-
lic in the Cromwell GitHub11 repository as pre-compiled jar files. These must support the
features of the WDL version specification.

Remember the runtime component found within the task block in the above examples?
It can be used to customize runtime parameters such as memory limitations or number of
tries before the workflow stops with an output error. It can also be manipulated to specify
the runtime backend of use when executing the script. GATK’s WDL files are, by default,
customized to run on the Google Cloud Platform12. This is because the Broad Institute leans
more towards cloud-based computing environments. To run locally, the user is in charge
of making the necessary changes in the configuration files. Cromwell provides users with a
minimal ”default” configuration file example that is intended to be edited with their respective
needs.

For this specific project, several small changes had to be made in order to run the scripts
on a cluster with a job scheduler and uDocker —more on that later—. Regarding the latter,
Docker images are tagged with different versions —e.g., image:latest is referring to the latest
tag of the image—. However and by default, Cromwell uses their hash specifier to pull and run
them. This is because this strategy is consistent with Docker’s best practices due to hashes
being better version specifiers for those images. The problem arises when implementations
such as uDocker don’t support this feature and thus, has to be deactivated. Additionally, a
uDocker command wrapper has to be specified for it to work locally:

11 https://github.com/broadinstitute/cromwell/
12 https://cloud.google.com/
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1 docker {
2 hash-lookup {
3 enabled = false
4 }
5 }
6

7 backend {
8 #default = "Localudocker"
9 providers {

10 Localudocker {
11 config {
12 run-in-background = true
13 runtime-attributes = """
14 String? docker
15 String? docker_user
16 """
17 submit = "/usr/bin/env bash ${script}"
18

19 submit-docker = """
20 udocker run \
21 --rm -i \
22 ${"--user " + docker_user} \
23 --entrypoint ${job_shell} \
24 -v ${cwd}:${docker_cwd} \
25 ${docker} ${docker_script}
26 """
27 }
28 }
29 }
30 }

Therefore, this configuration file must be specified when executing theWDL file, together
with a JavaScript Object Notation (JSON) file containing the inputs. This is the best way to
customize and specify all the input values that are subject to change between run to run,
instead of being hardcoded in the script. Cromwell will execute the workflow with these new
batches of data, that will run through the pipeline. To facilitate the creation of this file, WDL
comes with a package that parses the script to look for variables and generates a template
JSON file containing them, as doing it by hand would be tedious and problematic. In any
case, each WDL script found in GATK’s repository comes with its respective JSON template
file, already specifying testing sample data. These data are found in Google Buckets, so it is
up to the user whether to change the inputs to some local ones or leave them as they are.
Here is an example of the input file generated from the variant calling workflow WDL script.
It not only contains all input variables specified in it, but also the runtime attributes for the
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execution engine:

1 {
2 "##_COMMENT1": "Input",
3 "RNAseq.inputBam": "path/to/sample/data.bam",
4

5 "##_COMMENT2": "REFERENCE FILES",
6 "RNAseq.refFasta": "path/to/sample/data.fasta",
7 "RNAseq.refFastaIndex": "path/to/sample/data.fasta.fai",
8 "RNAseq.refDict": "path/to/sample/data.dict",
9

10 "##_COMMENT3": "INTERVALS",
11 "RNAseq.wgsCallingIntervalList":

"path/to/sample/data.interval_list",
12

13 "##_COMMENT4": "RESOURCE FILES",
14 "RNAseq.dbSnpVcf": "path/to/sample/data.vcf",
15 "RNAseq.dbSnpVcfIndex": "path/to/sample/data.vcf.idx",
16 "RNAseq.knownVcfs": [
17 "path/to/sample/data.sites.vcf",
18 "path/to/sample/data.known_indels.vcf"
19 ],
20 "RNAseq.knownVcfsIndices": [
21 "path/to/sample/data.sites.vcf.idx",
22 "path/to/sample/data.vcf.idx"
23 ],
24 "RNAseq.annotationsGTF": "path/to/sample/data.gtf",
25

26 "##_COMMENT4": "DOCKERS",
27 "#RNAseq.gatk4_docker_override": "String? (optional)",
28 "#RNAseq.star_docker_override": "String? (optional)",
29 "#RNAseq.gitc_docker_override": "String? (optional)",
30

31 "##_COMMENT5": "PATHS",
32 "#RNAseq.gatk_path_override": "path/to/gatk/gatk",
33

34 "##_COMMENT6": "PREEMPTIBLES",
35 "##RNAseq.preemptible_tries": "(optional) Int?",
36

37 "##_COMMENT7": "Misc",
38 "#RNAseq.StarAlign.num_threads": "(optional) Int?",
39 "#RNAseq.StarAlign.star_limitOutSJcollapsed": "(optional) Int?",
40 "RNAseq.StarAlign.additional_disk": "50",
41 "#RNAseq.StarAlign.star_mem_max_gb": "(optional) Int?",
42 "RNAseq.StarGenerateReferences.addtional_disk": 50,
43 "#RNAseq.StarGenerateReferences.num_threads": "(optional) Int?",
44 "#RNAseq.StarGenerateReferences.mem_gb": "(optional) Int?",
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45 "#RNAseq.haplotypeScatterCount": "(optional) Int?",
46 "#RNAseq.use_gatk4_for_all_tools": "(optional) Boolean",
47 "#RNAseq.minConfidenceForVariantCalling": "(optional) Int?",
48 "#RNAseq.zippedStarReferences": "(optional) File?",
49 "#RNAseq.readLength": "(optional) Int?"
50 }

Cromwell will print out logs containing information about the current status of the work-
flow and, once it completes, it will specify the location of all the output files generated by the
pipeline.

4.2.3 GPU-based workflow

So far, only workflows that are executed by the CPU have been discussed. As previously
mentioned, Nvidia Clara Parabricks offers GPU-accelerated solutions for genomics. It is very
easy to start using it, as downloading and installing it only takes minutes. The package uses
a Python application wrapper to execute the workflows, so Python and nvidia-drivers sup-
porting CUDA architecture must be up to date. As powerful of a tool as it is, the user must
request a trial access, as the suite only works under licence. Parabricks is a containerized
software, and it supports Docker and Singularity solutions that are handled automatically by
the software and installer. Again, small modifications had to be made in order to wrap all
Docker commands with the udocker alternative.

Parabricks can only run on machines that have Nvidia GPUs available. Both the installer
and the executing of workflows check for them by launching the command nvidia-smi,
that lists all GPUs available.

To test not only the GPU-accelerated pipelines, a couple of tests were run regarding its
standalone tools. The RNA FQ2BAM is dedicated to transforming FASTQ input files into
analysis-ready BAM files that can be used in the subsequent variant calling process. It is not
but a sequential execution of the three corresponding CPU-based applications:

1 #############################
2 # Parabricks fq2bam command #
3 #############################
4 $ pbrun rna_fq2bam --in-fq sample_X_1.fq.gz sample_X_2.fq.gz

--genome-lib-dir HG38 --output-dir sample_X/ --ref ref.fasta
5

6 #############################
7 # CPU-based counterpart #
8 #############################
9 #STAR Alignment

10 $ ./STAR --genomeDir HG38 --readFilesIn sample_X_1.fq.gz
sample_X_2.fq.gz --outFileNamePrefix sample_X/ --outSAMtype BAM
SortedByCoordinate
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11

12 #Coordinate Sorting
13 $ gatk SortSam --java-options -Xmx30g --MAX_RECORDS_IN_RAM=5000000

-I=Aligned.sortedByCoord.out.bam \ -O=cpu.bam
--SORT_ORDER=coordinate --TMP_DIR=/raid/myrun

14

15 # Mark Duplicates
16 $ gatk MarkDuplicates --java-options -Xmx30g -I=cpu.bam

-O=mark_dups_cpu.bam -M=metrics.txt --TMP_DIR=/raid/myrun

These two commands result in the same exact output. To compare them, the BamUtil diff
tool can be used, and no error report should result.

Finally, to run theGATK’s best practices variant callingworkflow, a simple run of Parabrick’s
RNA pipeline is enough. Again, all genome reference files, including indices and annotation
files, must be included in the execution. However, Nvidia’s approach utilizes raw FASTQ files
instead of the uBAM files that charactrized the GATK’s pipeline. Thus, when testing with
the same dataset, although redundant, uBAM files must be converted beforehand into FASTQ
files or viceversa.

Once again, matching outputs can be compared to check for sensitivity. This time and sim-
ilar to the BAM comparison, the BQSR report generated should be exactly the same. However,
they may be some inconsistencies in the VCF report, since the sensitivity and the specificity
is at its maximum in this step.

4.3 Nextflow pipeline

We have talked about the different alternatives that exist today, both for CPU and GPU based
workflows. Some of the technologies used in the implementation of these pipelines have also
been discussed. In this chapter, the development of a proprietary pipeline will be carried out
following GATK’s best practices, with some additional quality control tools. This is due to the
lack of this kind of applications in previous alternatives, as GATK seems to take for granted
the quality of the raw reads, thus avoiding extra computational workloads that could slow
down the execution of the pipelines.

Nextflow was chosen as the workflow developing framework for this duty, as it benefits
from several key features:

1. Ease of use. Nextflow requires no installation, as the user can easily download any
executable packages needed. It makes use of a programming domain-specific language
that aims to ease the writing of sophisticated pipelines. Besides, Nextflow is centered
around the idea of Linux providing simple command-line tools that can be chained
together to create complex workflows. This extension of the Unix pipes model provides
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extra functionality to the standard one-way flow of data. The dataflow programming
paradigm employed allows the user to define complex program interactions and the
abstraction of the parallel environment.

2. Container support and pipeline sharing. Of course, container techonologies are
supported for analysis reproducibility purposes, specifically Docker and Singularity.
Also, Nextflow introduces an abstraction layer that separates the pipeline’s logic and
the actual execution of the script, fitted to the needs of the platform in use. Besides,
thanks to its seamless integration with repository platforms such as GitHub, Nextflow
can look for scripts in public repositories. This files are then downloaded and executed
just by specifying its qualified name formed by the owner’s name and repository name
separated by a slash (”/”) character —e.g., santiagomillan/tfg—.

3. Implicit parallelism. Parallelization is implicit thanks to its dataflow programming
model. Similar to how WDL and the execution engine managed it, it is defined by the
input and outputs of the processes defined within the script. Nextflow is then in charge
of managing resources and creating the dependency graphs needed to run tasks with
inherent parallelism.

4. Several language support. The user is not limited to BASH scripts commands within
the processes. In the workflow definition, a mix of different scripting languages can
be put together, meaning that for each task definition you are free to use the specific
language that suits you best or that better fits the needs of the process declaration.

4.3.1 Nextflow script

It’s time to talk about the making of the script itself. The Nextflow scripting language syntax
is based on Groovy13, an object-oriented programming language implemented over the Java
platform for the Java Virtual Machine. Thus, Nextflow can make use of any library or piece
of Groovy code. This includes the ability to declare variables, lists, maps, apply conditional
statements or use regular expressions.

Similar to how WDL used tasks to define the most basic processing unit that executes
commands, in Nextflow it comes by the hand of processes. These must contain the strings that
represent the pieces of code to execute within its body. Additionally, the user can define up
to four more blocks, containing inputs, outputs, when clauses and directives.

Starting with the latter, directives are declarations that provide customization to the ex-
ecution of the process they appear in. They must be specified at the top of the process block
and usually depend on the executor —i.e., the system where the actual pipeline is executed

13 https://www.groovy-lang.org
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and supervised—. Some of the most commonly used are: CPU, to define the number of logi-
cal cores that are accessible by the process; containerOptions, specifying container-supported
options of the underlying execution engine; maxErrors and maxRetries, to declare how many
times the process can fail before the execution stops; and cache, to allow the storage of results
in a local cache to speedup subsequent executions under the same data or to abuse the resume
option of the workflow.

The when clause allows the user to sophisticate the pipeline by introducing conditional
statements. These make the execution of the process subject to a given condition, enabling
or disabling it depending on the state of the instance.

The script block itself is formed by a string that is to be executed by the process. It is
essentially what the user would use in a terminal shell or Bash script, limited by the execution
environment at stake. Like in the WDL example, one can introduce placeholders within the
command to account for variables or even use system environment variables that would not
normally be accessible due to the abstraction layer of the executor. Although considered as
Bash scripts by default, the commands can be written in any other scripting language, such
as Python or R.

Before talking about the input and output blocks, a brief mention should be made about
the concept of channels. As processes are isolated from one another and have no shared
memory, they must communicate among them sending values through channels. The sending
operation is asyncrhonous. That is, the operation is executed without a predictable time and
the process does not need to wait for the receiving one to continue its execution. However,
the receiving operation does stop and can’t continue its execution without the arrival of the
message. There are two types of channels:

1. Value channels: also known as a singleton channel, regulates a single value that can
be read any times necessary without consuming its content. The creation of a value
channel is implicit due to several cases involving the retrieval of a single piece of data
without specifying a queue-managing factory method —e.g., the method countretrieves
a single value, thus implicitly creating a value channel—. Also, a process creates a value
channel as its output when only value channels are defined as input.

2. Queue channels: conversely, a factorymethod such as from or into, thatwould retrieve
or place values among others, would result in the implicit declaration of queue channels.
These are non-blocking unidirectional ”first in, first out” queues that can store fleeting
values —i.e., can be consumed—.

Having sorted that one out, the comprehension of the input and output blocks is trivial.
With them, the user can define what the process is expecting from its peers and what it offers
to the other processes. Both the input and output definition start with a qualifier —e.g., val,
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path, file, stdin— that defines the type of data that is being handled. Next, the name of the
variable. Finally, the definition of the channel over which the data is received or sent.

Knowing all of this, a similar pipeline to that of theGATK’s best practices for pre-processing
workflow can be recreated14, with the inclusion of MultiQC to retrieve some statistics and
FastQC to check for the quality of the raw reads. Also, contrary to the use of uBAM files
as input on the GATK’s pipeline, a simpler approach was chosen and the input is comprised
directly of the FASTQ files. Everything else is exactly the same.

For this pipeline, several channels were created to chain the processes and avoid unnec-
essary Input/Output (IO) operations, achieving better execution times:

1 Channel
2 .fromFilePairs( params.reads )
3 .ifEmpty { error "Cannot find any reads matching:

${params.reads}" }
4 .into { read_pairs_ch; read_pairs_fastqc }
5

6 process fastqc {
7 tag "$pair_id"
8

9 input:
10 set val(name), file(reads) from read_pairs_fastqc
11

12 output:
13 file "*_fastqc.{zip,html}" into fastqc_results
14

15 script:
16 """
17 fastqc -q $reads
18 """
19 }
20

21 process buildIndex {
22 tag "$genome.baseName"
23 publishDir params.outdir, mode: 'copy'
24

25 input:
26 path genome from params.genome
27 path annot from params.annot
28

29 output:
30 path 'g_index' into index_ch
31 file "g_index/*out" into starindex_results

14 This pipeline can be found in this project’s repository: https://github.com/santimillang/
tfg_pipeline
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32

33 """
34 mkdir g_index
35 STAR --runThreadN 2 --runMode genomeGenerate

--sjdbGTFtagExonParentTranscript Parent --sjdbGTFfile ${annot}
--genomeDir g_index --genomeFastaFiles ${genome}

36 """
37 }

In this specific example, we can clearly see that two channels are created in the beginning
of the workflow to pipe the input FASTQ files directly into the first two processes. As these
processes have no relation whatsoever and having two queues avoids the consumption of
values, these two tasks can be executed in parallel without issues.

Finally, regarding the execution of the scripts, a configuration file can be supplied to ac-
count for any specific settings the user may want to apply at runtime. These include the
configuration of the executors. By default, the local one is used. It parallelizes the execution
of the pipeline by running multiple threads leveraging on the multi-core architectures the
environment may have. In this case, the configuration file was mainly used to specify the
container that would store all the tools:

1 process {
2 container = 'santiagomillan/tfg_pipeline@sha256:...'
3 }

4.3.2 Dockerfile

A brief introduction to how all the tools that are included in this pipeline are containerized15

will be given. Following best practices for writing Dockerfiles, a series of guidelines were
taken into account when creating it.

First, the base image used for the creation of the container was ubuntu:20.04. The specifi-
cation of the tag makes it more stable, as a latest tag would end up generating problems due
to the appearance of newer versions of the base image. Also, the option of using multi-stage
builds was considered, as it reduces the size of the final image by quite the amount. However,
for simplicity, the focus was on the reduction of intermediate layers and leveraging on build
cache. This is doable by ordering the commands —i.e., layers— from less frequently modified
to more frequently changed. This way, it’s less probable that a minimal change in the bottom
layers can affect the top ones, which would entail the re-build of the entire image. Besides,
the installation of ”just in case” packages was meticulously avoided to reduce complexity and,
mainly, image size.

15 https://hub.docker.com/repository/docker/santiagomillan/tfg_pipeline
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One of the most important decisions was to choose whether or not each application of the
pipeline should be executed in a completely dedicated container. Similar to how GATK han-
dled its containers, this would mean that, for each step, an image containing only the software
needed for that tool to run would be executed. Nextflow supports this feature, allowing the
user to specify the image that has to be pulled and executed within the block of the process,
thanks to one of the directives. This decoulpling of applications is actually encouraged not
only by Nextflow, but by the guidelines for writing good Dockerfiles. This approach has the
advantage of facilitating the scalability of the tool by adding more machines to the pool of
resources —i.e., horizontal scalability— and modularity, both tenets of software development.
However, with modularity comes the drawback of having to design a more sophisticated
amalgam of containers and dependencies between them, thus causing this project to be more
enclined for a simpler Dockerfile that encompasses all tools needed within a single container.

For this specific case, the order of the layers are as followed:

1. The specification of the base image using the FROM clause, that pulls the image from a
public repository. By default, this repository is Docker Hub.

2. The installation of pre-requisites comes by the hand of the RUN instruction. With it,
all software needed was found in the Ubuntu package repository and installed using
the Ubuntu packet manager apt. Following best practices, previous to the installation
of the tools, an update on the list of available packages and versions has to be carried
out. As the image building requires no user interaction, all the prompting that pops up
during the installation has to be taken care of including the ”assume-yes” option.

3. All the installation steps needed for the tools were carried out using a single RUN in-
struction, including the download, decompression and creation of the symbolic links
necessary as life-quality measures.

1 FROM ubuntu:20.04
2

3 LABEL maintainer = "Santiago Millan Gonzalez
<santiago.millang@udc.es>"

4

5 #
6 # Install pre-requistes
7 #
8

9 RUN apt-get update --fix-missing && \
10 apt-get install -q -y samtools python && \
11 apt-get install -y wget && \
12 apt-get install -y unzip && \
13 apt-get install -y python3-pip && \
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14 apt-get install -y openjdk-8-jre && \
15 apt-get install -y fastqc
16

17 #
18 # RNA-Seq tools
19 #
20

21 RUN wget -q https://github.com/alexdobin/STAR/archive/2.7.9a.tar.gz
-O- \

22 | tar -xz -C /opt/ && \
23 ln -s /opt/STAR-2.7.9a/ /opt/star
24

25 RUN wget -q -O gatk.zip
https://github.com/broadinstitute/gatk/releases/download/4.2.2.0/

26 gatk-4.2.2.0.zip && \
27 unzip gatk.zip -d /opt/ && \
28 rm gatk.zip
29

30 RUN \
31 pip3 install multiqc
32

33 #
34 # Finalize environment
35 #
36

37 ENV PATH=$PATH:/opt/star/bin/Linux_x86_64:/opt/gatk-4.2.2.0
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Chapter 5

Results

Having disclosed the different options considered for testing, the results will be presented in
this chaper, along with a description of the environment in which the tests were performed
and the metrics used in the comparison.

5.1 Evaluation

It is important to make a small exposition about the execution environment and how tests
have been carried out before showing the results themselves.

5.1.1 Cluster environment

To carry out these tests and to elaborate on the results, the CITIC’s1 cluster Pluton2 was used
as the computing infrastructure and environment. Pluton is an heterogeneous cluster used
mainly for High Performance Computing and has been receiving minor upgrades over the
years, thus consolidating itself as a no-compromise supercomputer.

The cluster is composed of what is called a frontend node and several backend nodes. This
frontend node functions as the only point accessible from the outside, so that end-users must
exclusively connect to it remotely. Additionally, it works as a setup environment, where one
can revise and compile his/her code and send a so-called job via scheduler or queue manage-
ment system for its subsequent execution on the backend nodes. This way, a job can never
be run on the frontend node.

As a final feature, this node also works as a Network Attached Storage (NAS) server, so
that all user files are stored there physically, functioning as permanent storage. These files
are then accessible from the compute nodes via Network File System (NFS) protocol under

1 https://citic.udc.es/
2 More can be found in Pluton’s user guide: http://pluton.dec.udc.es/guide/user-guide.

pdf
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compute-2-{0-5}
CPU Model 2 ×Intel Xeon Silver 4216 Cascade Lake-SP

CPU Speed/Turbo 2.1 GHz/3.2 GHz
#Cores per CPU 16
#Threads per core 2

#Cores/threads per node 32/64
Cache L1/L2/L3 32 KB/1 MB/22 MB
RAM Memory 256 GB DDR4 2933 Mhz

Storage 1 ×SDD 240 GB SATA3
1 ×HDD 2 TB SATA3 7.2K rpm

Accelerators 2 ×NVIDIA Tesla T4 16 GB GDDR6 (2-0)
Network interfaces InfiniBand EDR and Gigabit Ethernet

Table 5.1: Compute node description within rack 2

the InfiniBand (IB) network. Each node has its high-performance interconnection network
(low latency and high bandwidth) with their corresponding IB specifications. These specifi-
cations determine the maximum bandwidth the network allows, ranging from SDR to HDR.
Specifically, backend nodes are equipped with FDR or EDR network interfaces, allowing 56
Gbps bandwidths and 1-2 µs latencies.

Backend nodes are the ones that host the computational resources, including accelerators
such as GPUs. They are grouped logically in computing racks as follows:

1. Rack 0: 272 physical cores (544 threads) distributed in 17 compute nodes, 1088 GB of
memory, 17 NVIDIA Tesla GPU (Kepler architecture) and 3 manycore processors Intel
Xeon Phi.

2. Rack 1: 48 physical cores (96 threads) distributed in 17 compute nodes and 256 GB of
memory.

3. Rack 2: 192 physical cores (384 threads) distributed in 6 compute nodes, 1536 GB of
memory and 2 NVIDIA Tesla GPU (Turing architecture).

In summary, the cluster is made up of 25 compute nodes for a total of 512 physical cores
(1024 threads), 2.8 TiB of memory, 19 Nvidia Tesla GPU accelerators and 3 Intel Xeon Phi
manycore accelerators.

The Rack 0 is arguably the most powerful rack in the cluster and the one that was used for
this project. As seen in table 5.1, it contains 2 NVIDIA Tesla T4 GPUs. These NVIDIA series
are mainly focused in the field of high performance computing, deep learning and artificial
intelligence. They feature configurations that offer higher computational power workingwith
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datasets that are frequent in the scientific field. This means that they offer higher accuracy
when managing 64-bit floating point (double precision) operations, have larger amounts of
dedicated memory and come with error correction technology (ECC), which is key to perform
large simulations and comparative tasks with full validity. They also offer high scalability
and, of course, have no video output. These accelerators are a perfect match for the Nvidia
Clara Parabrick’s requirements, as their large dedicated memory are a must for good pipeline
executions with no interruptions.

The software chosen for managing the queue system is Slurm Workload Manager3. It is
in charge of distributing the user’s jobs and fetching all the resources required for their exe-
cution. Thus, when deemed appropriate by the manager (depending on system load, number
of users, total number of jobs…), the job will be executed at the compute nodes.

There are two type of jobs the user can execute:

1. Batch. These are simply a series of commands specified within a script file that are sent
to Slurm for its execution using the command sbatch:

1 # !/bin/bash
2 #
3 # SBATCH -J GATKtest
4 # SBATCH -o %x_%j.out
5 #
6 date
7 sleep 20
8 date

To obtain information about this job status, the command squeue can be run. Its
output contains, among other data, the job identifier and the current status in queue.
The job ID is used in the previous example to name the output file, concatenated with
the string ”GATKtest”, in this case. Batch jobs are also suited for parallel applications
—e.g., OpenMP and MPI—.

2. Interactive. Also known as ”interactive session”, consists of making use of the cor-
responding terminal of a computational node to launch jobs directly on it. The output
is obtained from the terminal itself. To do so, the user must use the srun command.
This is specially useful for the execution of dockerized applications that make use of
GPUs and make sure that the Docker image and the host where it is being executed
have matching versions of nvidia-drivers.

Also, there are several parameters the jobs require in order to be processed in the most
efficient way by Slurm. Not all parameters are mandatory and they can be introduced both
in the script or on the command line when running sbatch and srun. Some of them are:

3 https://slurm.schedmd.com/documentation.html
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1. Time. All users are required to use this parameter when executing their jobs. It is
an estimate of the maximum work duration and, if exceeded, the job will be forcibly
terminated. Calculating a good estimate can help Slurm plan the execution of these
in a more efficient way, prioritizing shorter jobs that require less resources instead of
waiting for larger ones.

2. Number of tasks and cores per task. Pretty self-explanatory, these parameters allow
the user to choose the maximum number of tasks that are going to be executed and how
many cores per process are going to be needed. By default, both parameters assign 1.

3. Memory. Allows us to specify the memory required per computational node.

4. Exclusive access. Thisway, a backend node can be reserved exclusively for the job, not
allowing any other user to interfere. This is specially attractive when benchmarking,
since no external meddling can happen that may alter the measurements.

5. Special resources. Such as GPUs, allows the user to specify the need for a job to have
a GPU available.

Finally, it is worth mentioning that Pluton uses the Lmod4 tool, an enhanced version of
Envornment Modules, to manage almost all software in order to support different versions of
the same package/library/application. This way, users can change versions without having to
expliclty specify different paths, minimizing dependency management. One of the most in-
teresting features of this tool is the hierarchical management of dependencies approach. This
way, when loading a module, only modules that depend on its version can be subsequently
loaded, easing the environment management. Some of the most used modules in this project
were the Java Runtime Environment and uDocker.

5.1.2 Input datasets and methodology

For these particular experiments, the polyAmRNARNA-seq data from the continuous cell line
K-5625 was selected[11]. Samples come from the pleural effusion of a 53-year-old female with
chronic myelogenous leukemia in terminal blast crises. These are stranded from independent
growths of the aforementioned cell line via the Illumina Hi-Seq RNA-Seq libraries from rRNA-
depleted Poly-A+ RNA > 200 nucleotides in size. There are two replicates available for depth
coverage, as seen in figure 5.2.

For the reference genome, the Genome Reference ConsortiumHuman Build 38 (GRCh38)6

was used in its 13th patch release —i.e., the latest—. Successive versions of these assemblies
4 https://lmod.readthedocs.io/en/latest/
5 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78557
6 https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
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have been published over the last few years, consequently bringing improvements in the
quality of the build. The latest version of the human reference genome has meant a major re-
finement in the representation of the alternate haplotypes, specially interesting for the variant
calling workflow accuracy.

Besides the main FASTA file containing the assembly, several supporting files such as the
index and genome annotation files were also used.

Regarding the methodology employed for this experiment, several tests were run with
the execution of the state-of-the-art tools previously discussed to gain some trivial insight.
This also entails a thorough documentary analysis of the tools that are being used. Both
example pipelines were run with their default configurations, such as the number of threads
and maximum memory cap, as they are already optimized according to their creators. To
evaluate their performance, the execution time of each tool and memory consumption was
recorded along with the impact of the input/output operations for the applications that are
not piped.

Finally, for the GPU vs CPU comparison, a series of test were executed using 1, 2, 4, 8, 16
and 32 CPU cores for the GATK version and up to 2 NVIDIA Tesla T4 accelerators for the GPU
counterpart. Speedup, efficiency and scalability data will be presented for these workflows,
as well as accuracy results.

But how are we computing these metrics? The speedup can be defined as the division of
sequential execution time of some particular software by its parallel execution time, taking
into account the number of processing units used for the parallelization:

speedup(n) =
Tbase

Tparallel(n)
, (5.1)

being Tbase the sequential execution time andTparallel(n) the execution time that has benefited
from the increase in n resources. Although the speedup typically takes values between 0 and
1, a linear or ideal speedup would take place when speedup(n) = n. In addition, a super-
linear speedup can be achieved with the help of, among other circumstances, good caching
management.

Efficiency is a direct product of the speedup achieved:

efficiency(n) =
speedup(n)

n
, (5.2)

where programs that have linear speedup have an efficiency value of 1, whereas many pro-
grams that are difficult to parallelize have efficiencies such as 1/ln(s) that approach 0 as the
number of processors increases.

This is exactly what scalability means. It represents whether the efficiency remains con-
stant as we increase the number of processing units or not.
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Run Accession Instrument Model Stranding Read Count Size

SRR3192408 Illumina
HiSeq 2000 PAIRED 92172367 11.5Gb

SRR3192409 Illumina
HiSeq 2000 PAIRED 113327735 14.1Gb

Table 5.2: Experiment input data

5.2 Benchmark results

The results of the execution of the GEO2RNA-seq pipeline, seen in figure 5.1 coincided with
the theory presented above, with the read alignment contributing most of the total run time.
In fact, TopHat2 is known for being particularly slow when used outside of the ”tuxedo”7

suite.
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Figure 5.1: GEO2RNA-seq execution times

What was really surprising was how slow the Trimmomatic tool turned out to be. How-
ever, this is because this tool is a java application, and further threading only contributes to
the Java Virtual Machine garbage collector. Also, the FastQC execution results showed that
the input FASTQ files used didn’t have the best quality on their bases, so the tool had to do
extra work when processing them.

Very similar execution times are presented in the nfcore/RNA-seq pipeline, with STAR
being particularly faster when it comes to read alignment. Star is the go-to mapping software

7 The tuxedo suite is a pipeline composed by BowTie for index building, TopHat2 for mapping and Cufflinks
for quantification. They work specially well together.
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nowadays, and it is clearly visible why. It is not only faster, but an aftermath comparison
between the GEO2RNA-seq’s TopHat2 and STAR using the BAMtools suite showed better
accuracy and higher quality mappings for the latter. The only downside to this tool is the
high memory consumption, as it consumed close to 40Gb of memory during its execution.
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Figure 5.2: nfcore/RNA-seq pipeline execution times.

The other tools and steps that these two pipelines have in common, including FastQC,
trimming, SortMeRNA, quantification and MultiQC; showed very similar results. However,
with the memory consumption report that Nextflow creates, we can see that a rather odd
detail. All tools seem to be in direct proportion tomemory consumption, besides TrimGalore!.
This is explained when we take a look to the IO operations performed. nfcore/RNA-seq uses
channels to pipe inputs and outputs and save on these rather slow operations except for this
tool, that needs towrite its results on a directory for its subsequent use byMultiQC to generate
reports. Also, the fact that the tool is working with no compressed files must be taken into
account.

Also, QualiMAP accounted for a good chunk of the execution time. This is because this
tool uses a sliding window technique when processing reads. Therefore, a fine tuning of the
window size and maximum memory for Java to run with is needed, depending on the testing
infrastructure.

5.3 GPU and CPU comparison

Moving on to the variant calling workflow comparison, one can easily appreciate in figure 5.4
that the GPU-based approach was completely demolishing in the standalone Parabrick’s tool
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Figure 5.3: nfcore/RNA-seq pipeline memory consumption.

test. With just 2 Nvidia Tesla T4 GPUs, the tool obtained a 29.18 speedup over the single-
threaded CPU approach. The tool managed to generate processing-ready BAM files from
FASTQ files in under 6 minutes.

Moreover, one detail that has emerged from this experiment is the scalability of STAR.
A full disclosure of the metrics can be seen in figure 5.3, where decent execution times were
achieved whenmulti-threading. In fact, this is information that helps to choose the number of
threads in the proprietary pipeline for this specific tool, as maximum efficiency and scalability
is sought. The sweet-spot looks to be the execution with 8 threads, where there is a balance
between speed and 70% efficiency.

Threads Speedup Efficiency[%]
1 1 100
2 1.59 79.80
4 3.13 78.49
8 5.52 69.04
16 8.44 52.75
32 11.85 37.04

Table 5.3: STAR metrics

Also, similar to what happened to the aforementioned Java applications, both MarkDupli-
cates and SortSam are part of the GATK’s Picard suite, where multiple threads only help the
garbage collector. No speedup is achieved whatsoever for these. Besides, tuning the memory
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Figure 5.4: fq2bam results

cap available for these tools does not help either, although it should, as the more memory
available, the less the garbage collector has to perform.

These applications are, in fact, historical choke points for this workflow, and GATK pro-
poses a SPARK8 version of them. With SPARK, GATK aims to speed the process relative to
the serial tools. Nevertheless, not every SPARK version is considered production quality and
they are optimized for their Terra platform.

To assess full pipeline turnaround time, both approaches were run with the same inputs
and configurations as the previous experiment, since the process of the standalone tool is
contained within the bigger pipeline.

As expected, the GPU-based approach ended up being way faster than its counterpart,
resulting in a 23.5 speedup over the single-threaded execution alternative. Again, as STAR is
the only non-GATK tool, every other application turned out to be choke points in this work-
flow. As explained before, these are essentially single-threaded tools that require optional
extra threads for garbage collection. In this case, special attention was given to the memory
limitations of the tools, as most of them require more than 20Gb of available memory for them
to work under the 2 threads that are used by default.

One extra thing that was tested was the consequences of using a sorting-by-name ap-
proach instead of the sorting-by-coordinate option that is used by default in the SortSam step
as both work nicely to ease some computational load for the subsequent analysis. However,
sorting by name resulted in a slight slowdown of the execution, not only in the actual execu-

8 https://gatk.broadinstitute.org/hc/en-us/articles/360035890591-Spark

55

https://gatk.broadinstitute.org/hc/en-us/articles/360035890591-Spark


5.3. GPU and CPU comparison

1 2 4 8 16 32 1-GPU 2-GPU0

100

200

300

400 392.51

351.81
318.61 308.91

287.5
305.5

25.4 16.7

n

Ex
ec

ut
io
n
tim

e
(m

in
ut
es
)

GPU-Pipeline
Variant Filtration
HaplotypeCaller
ApplyBQSR
BQSR
SplitNCigar
MarkDuplicates
SortSam
STAR

Figure 5.5: Pipeline resuls

tion of the tool itself, but for the downstream analysis, too.
Besides, predictably, only the output VCF files happened to have some kind of discordance

between the CPU and GPU pipeline. Since there are no publicly available reference variant
calling files for the sample data used, a quick comparison between both output files was run
using VCFtools, reaching a 97.4% coincidence, which implies that both pipelines achieve very
similar results. Therefore, Parabricks’s pipeline should always be chosen over the CPU one,
provided that there are available NVIDIA GPUs, due to both its speed and precision.

With all this information, extra care can be put to fine-tune all the required parameters
of the Nextflow pipeline devolped, including:

1. No more than 2 threads used for GATK-based applications, as no increase in perfor-
mance is apparent.

2. Input and output operations can slow down the execution of the workflow massively,
as seen in the nfcore pipeline. Thus, it is necessary to chain them and write directly to
the processes via the channels that Nextflow implements. If IO operations are strictly
needed, it is best to work with compressed files, such as BAM instead of SAM.

3. Sorting by coordinate works specially good for a variant calling workflow.

4. Checking the quality of reads is an extra step that can be useful and gives reasearches
more insight on the sample data. FastQC looks like a good enough option, as it involves
hardly any computational load.
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5. Same for MultiQC, as it helps researches to visualize data and interpret results with
minimal computational impact.

More insight could have been acquired by using the NVIDIA Visual Profiler9. This appli-
cation is a performance profiling tool part of the CUDA toolkit that helps developers optimize
CUDA applications and find bottlenecks. This[? ] could[? ] have been specially useful for
taking a look at how NVIDIA has achieved such speedups and find which drawbacks are
causing it to come close to some kind of bottleneck, if they exist.

9 https://developer.nvidia.com/nvidia-visual-profiler
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Chapter 6

Conclusion

As a closure, this chapter will outline both the conclusions and future lines of work that
are opened for revision.

6.1 Conclusion

This research aimed to identify the presence of bottlenecks and the largest computational
loads in the pipeline to get an overall view of this process. Based on empirical analysis of the
tools that compose the different workflow alternatives, it can be concluded that an original
rusty design of experiment that is not adapter to the sample data can be catastrophic. Not
only should much emphasis be placed on discerning the really necessary steps of the analysis,
but also, chain the different steps carefully in order to avoid extra input/output loads.

There are several paths for RNA-seq data analysis that have arisen over the past few years,
as illustrated in Section 2.2.1, but it also raises the question of whether at some point it will
be worth the creation of new alternatives for a process that is already sufficiently complex.
However, Chapter 5 clearly shows that that common steps of any pipeline —i.e., mapping
and assembly— are the most computationally intensive, hence the use of different tools for
post-alignment analysis should not be too much of a burden.

Regarding the benchmarking of the best practices variant calling pipelines, although dif-
ferent technologies were used for the workflow descriptions, this testing methodology ap-
proach provided new insight into the capabilities of GPU-based techniques. These accelera-
tors are fundamental for any data center infrastructure, as new HPC applications often lever-
age them to parallelize the processing of many data at the same time by applying the same
instruction to them over and over again.

Finally, this thesis has succeeded in bringing together all the general necessary knowledge
to introduce new people, such as me, the student, to this field. All the research and papers
that are already available on this technique can be very overwhelming. In fact, the study of
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the domain is probably the most-time consuming part of this kind of research, where both
informaticians and biologists are expected to learn about each other to fully generate com-
prehensive studies. Once this is clear, the development of applications for bioinformatics can
result in a big success, such as the pipeline developed in this project.

6.2 Future lines of work

Although the methodology used for benchmarking was enough to highlight the computa-
tional challenges and reasons as to why this technique is rather slow and computationally
intensive, in the future it would be interesting to make use of performance analysis tools,
that is, profilers. This way, profiling could be used during development and testing as method
for debugging and optimizing algorithms. Although this practice is essential for carefully
designed applications, the objectivity and veracity should be evaluated by truly specialized
personnel and in the right environment. In particular, NVIDIA’s profiler would be a nice
addition to the GPU-based pipeline testing, to obtain truly interesting insight on how it per-
forms.

Besides, the inclusion of new significative datasets to assess performance would suite the
whimsical nature of the tools that were tested, since some work better with a certain type of
data and specialize in a specifical type of RNA, for example.

Finally, work should be done on the developed pipeline. Although this version focuses on
the general pre-processing steps that any batch of data can use, the inclusion of conditional
statements to provide the user with more options should be a focus in the future. This way,
you could get a very complete pipeline that follows the best practices proposed by GATK but
also offers other types of workflows depending on the input data.
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Appendix A

Pre-processing pipeline user guide

A.1 Requirements

To run the pipeline1, the following requirements must be met before installation:

1. A POSIX compatible system (Linux, OS X, etc.).

2. Bash 3.2 (or later).

3. Java 8 (or later).

4. Windows Subsystem for Linux (WSL) when working under Windows.

A.2 Installation

Nextflow does not require installation, as the user can directly download the executable pack-
age:

$ wget -qO- https://get.nextflow.io | bash

This will create the nextflow main executable file in the current directory. Additionally,
the users must make the binary executable:

$ chmod +x nextflow

Optionally, the user may edit his/her PATH for ease of use by modifying their .bashrc file and
adding:

export PATH="/path/to/dir:$PATH"
1 https://github.com/santimillang/tfg_pipeline
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A.3 Execution

Finally, to execute the pipeline, the user must first pull the corresponding Docker image:

$ docker pull santiagomillan/tfg_pipeline:1.0

And execute it as follows:

$ nextflow run https://github.com/santimillang/tfg_pipeline
-with-docker

Extra arguments can be applied to the execution to automatically generate several kinds
of Nextflow pipeline reports:

1. Nextflow can generate an HTML execution report by adding the -with-report
option.

2. Also, the -with-trace option creates an execution tracing file that contains infor-
mation about each process executed in your pipeline script.

3. A timeline report render is available adding -with-timeline.

4. Finally, a direct acyclic graph can be generated using the -with-dag option.

The pipeline is prepared to align as many different FASTQ files as needed to the same
reference genome. As an example, four FASTQ files are provided as input, with half referring
to one batch of data and the other half to another. The input data used as an example is stored
in the data directory. To change it, the user must create a new directory containing their
local data (FASTQ files, FASTA and GFF) to generate analysis ready BAM files.

The output files are stored in the results directory, and it includes both the MultiQC
final report and the intermediate output of the tools.

64



List of Acronyms

AI Artifical Intelligence. 12

API Application Programming Interfaces. 15

AWS Amazon Web Service. 22

BAM Binary Alignment Map. 10

cDNA complementary DNA. 6

CITIC Centro de Investigacion en TIC. 22

CPU Central Processing Unit. 2

CUDA Compute Unified Device Arquitechture. 12

DEG Differentially Expressed Genes. 25

DNA Deoxyribonucleic acid. 5

GATK Genome Analysis Toolkit. 7

GEO Gene Expression Omnibus. 26

GPU Graphical Processing Unit. 2

GTF Gene Transfer Format. 27

HPC High-Performance Computing. 2

HTML HyperText Markup Language. 28

IB InfiniBand. 48
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List of Acronyms

IO Input/Output. 42

JSON JavaScript Object Notation. 36

mRNA Messenger RNA. 5

NAS Network Attached Storage. 47

NCBI National Center for Biotechnology Information. 8

ncRNA non-coding RNA. 6

NFS Network File System. 47

NGS Next-Generation Sequencing. 6

OS Operative System. 14

PCR polymerase chain reaction. 9

QC quality control. 29

RNA Ribonucleic acid. 1

RNA-seq RNA-sequencing. 1

rRNA ribosomal RNA. 6

SAM Sequence Alignment Map. 29

SNP single-nucleotide polymorphism. 10

SNV single-nucleotide variation. 9

SRA Sequence Read Archive. 26

VCF Variant Call Format. 10

WDL Workflow Description Language. 10

WGS Whole Genome Sequencing. 7
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Glossary

accelerators Hardware device or software program that enhances the performance of a ma-
chine.. 2

ASCII Character codification that employs 7 bits.. 11

bottlenecks Bottlenecks occurs when there is a restrictive element holding back the perfor-
mance that could otherwise be achieved.. 2

cluster Group of computers linked together usually by a high-speed network and behaving
logically as a single server.. 21

deep-learning Machine learning algorithms that mimic the human brain.. 13

high-throughput The use of many computing resources over long periods of time to ac-
complish a computational task.. 10

Java Virtual Machine Virtual machine that enables a computer to run any Java bytecodes..
40

kernel Also known as core, it is a fundamental part of any operative system that usually
requires root access to execute.. 14

multi-threading Process of executing multiple threads simultaneously.. 28

pipeline A pipeline is a set of data processing steps that are chained together through input-
output relations.. 1

shaders Computer program that performs graphical calculations.. 13

UNIX socket Abstraction that enables two processes to communicate. Used in POSIX oper-
ative systems.. 15

67



Glossary

68



Bibliography

[1] V. Costa, M. Aprile, R. Esposito, and A. Ciccodicola, “RNA-Seq and human complex dis-
eases: recent accomplishments and future perspectives,” European Journal of Human

Genetics, vol. 21, pp. 134–142, 2013.

[2] H. Gonorazky, M. Liang, B. Cummings, M. Lek, and J. M. et al., “RNAseq analysis for the
diagnosis of muscular dystrophy,” ANNALS of Clinica and Translational Nurology,
vol. 3, pp. 55–60, 2016.

[3] Z. Wang, M. Gerstein, and M. Snyder, “RNA-seq: a revolutionary tool for transcrip-
tomics,” Nature reviews. Genetics, vol. 10, pp. 57–63, 2009.

[4] T. Tanjo, Y. Kawai, K. Tokunaga, and et al., “Practical guide for managing large-scale
human genome data in research,” Journal of Human Genetics, vol. 66, pp. 39–52, 2021.

[5] B. Thanh, “Analysis of Docker Security,” arXiv e-prints, p. arXiv:1501.02967, 2015.

[6] M. Fowler and J. Highsmith, “The Agile Manifesto,” vol. 9, 2000.

[7] K. Schwaber, “SCRUM Development Process,” OOPSLA Conference, pp. 1–23, 1995.

[8] C. Verwijs and D. Russo, “ATheory of Scrum Team Effectiveness,” IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, 2021.

[9] B. Seelbinder, T. Wolf, S. Priebe, and S. M. et al., “GEO2RNAseq: An easy-to-use R
pipeline for complete pre-processing of RNA-seq data,” bioRxiv, 2019.

[10] P. D. Tomasso, M. Chatzou, E. W. Floden, and P. P. B. et al., “Nextflow enables repro-
ducible computational workflows,” Nature Biotechnology, vol. 35, pp. 316–319, 2017.

[11] T. Barrett, S. E. Wilhite, and P. L. et al., “NCBI GEO: archive for functional genomics data
sets—update,” Nucleic Acids Research, vol. 41, pp. D991–D995, 2012.

69



Bibliography

70


	Introduction
	Justification
	Objectives
	Structure

	State of the art
	Biological background and RNA-seq until today
	Data analysis pipeline and tools
	Universal steps for analysis
	GATK
	Input and output files
	Nvidia Clara Parabricks

	Container technologies
	Docker


	Methodology and planning
	Agile methodologies
	SCRUM
	Roles and events
	Logs

	Adaptation to the project
	Planning
	Costs

	Development
	Benchmarking options
	GEO2RNA-seq R package
	nfcore/RNA-seq

	Best practices variant calling workflow
	Pipeline implementation
	WDL execution
	GPU-based workflow

	Nextflow pipeline
	Nextflow script
	Dockerfile


	Results
	Evaluation
	Cluster environment
	Input datasets and methodology

	Benchmark results
	GPU and CPU comparison

	Conclusion
	Conclusion
	Future lines of work

	Pre-processing pipeline user guide
	Requirements
	Installation
	Execution

	List of Acronyms
	Glossary
	Bibliography

