
Doctoral Thesis

Application-level Fault Tolerance
and Resilience in HPC Applications

Nuria Losada

2018

Application-level Fault Tolerance

and Resilience in HPC

Applications

Nuria Losada

Doctoral Thesis

July 2018

PhD Advisors:

Maŕıa J. Mart́ın

Patricia González

PhD Program in Information Technology Research

Dra. Maŕıa José Mart́ın Santamaŕıa

Profesora Titular de Universidad

Dpto. de Ingenieŕıa de Computadores

Universidade da Coruña

Dra. Patricia González Gómez

Profesora Titular de Universidad

Dpto. de Ingenieŕıa de Computadores

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Application-level Fault Tolerance and Resilience in HPC

Applications” ha sido realizada por Dña. Nuria Losada López-Valcárcel bajo nuestra

dirección en el Departamento de Ingenieŕıa de Computadores de la Universidade da

Coruña, y concluye la Tesis Doctoral que presenta para optar al grado de Doctora

en Ingenieŕıa Informática con la Mención de Doctor Internacional.

En A Coruña, a 26 de Julio de 2018

Fdo.: Maŕıa José Mart́ın Santamaŕıa

Directora de la Tesis Doctoral

Fdo.: Patricia González Gómez

Directora de la Tesis Doctoral

Fdo.: Nuria Losada López-Valcárcel

Autora de la Tesis Doctoral

A todos los que lo habéis hecho posible.

Acknowledgments

I would especially like to thank my advisors, Maŕıa and Patricia, for all their

support, hard work, and all the opportunities they’ve handed me. I consider my-

self very lucky to have worked with them during these years. I would also like to

thank Gabriel and Basilio for their collaboration and valuable contributions to the

development of this work. I would like to say thanks to all my past and present

colleagues in the Computer Architecture Group and in the Faculty of Informatics

for their fellowship, support, and all the coffee breaks and dinners we held together.

Huge thanks to my parents, my brother, and my extended family; and to my clos-

est friends who have always been there for me. A special mention to Jorge and Laura

for their kindness, support, and all the good times we’ve shared during these years.

I would like to thank George Bosilca, Aurélien Bouteiller, Thomas Hérault,

Damien Genet, Anthony Danalis, and all their colleagues and friends that made

my visit at the ICL (Knoxville, US) a great experience both professionally and per-

sonally. I would also like to show my gratitude to Leonardo Bautista, Kai Keller

and Osman Unsal for hosting me during my visit at BSC-CNS (Spain).

Last but not least, I want to acknowledge the following funders of this work:

the Computer Architecture Group, the Department of Computer Engineering, and

the University of A Coruña for the human and material support; the HiPEAC

network (EU ICT-287759, 687698, and 779656) and its collaboration grants program;

the NESUS network under the COST Action IC1305; the SIAM Student Travel

Awards to attend SIAM PP’18; the Galician Government (ref. ED431G/01, ED431C

2017/04, and GRC2013-055); and the Ministry of Economy and Competitiveness

of Spain (TIN2016-75845-P, TIN2013-42148-P, FPI grant BES-2014-068066, and

mobility grant EEBB-I-17-12005).

Nuria.

vii

Resumo

As necesidades computacionais das distintas ramas da ciencia medraron enorme-

mente nos últimos anos, o que provocou un gran crecemento no rendemento propor-

cionado polos supercomputadores. Cada vez constrúense sistemas de computación

de altas prestacións de maior tamaño, con máis recursos hardware de distintos ti-

pos, o que fai que as taxas de fallo destes sistemas tamén medren. Polo tanto, o

estudo de técnicas de tolerancia a fallos eficientes é indispensábel para garantires

que os programas cient́ıficos poidan completar a súa execución, evitando ademais

que se dispare o consumo de enerx́ıa. O checkpoint/restart é unha das técnicas máis

populares. Sen embargo, a maioŕıa da investigación levada a cabo nas últimas déca-

das céntrase en estratexias stop-and-restart para aplicacións de memoria distribúıda

tralo acontecemento dun fallo-parada. Esta tese propón técnicas checkpoint/restart

a nivel de aplicación para os modelos de programación paralela máis populares en

supercomputación. Implementáronse protocolos de checkpointing para aplicacións

h́ıbridas MPI-OpenMP e aplicacións heteroxéneas baseadas en OpenCL, en ámbolos

dous casos prestando especial coidado á portabilidade e maleabilidade da solución.

En canto a aplicacións de memoria distribúıda, proponse unha solución de resiliencia

que pode ser empregada de forma xenérica en aplicacións MPI SPMD, permitindo

detectar e reaccionar a fallos-parada sen abortar a execución. Neste caso, os procesos

fallidos vólvense a lanzar e o estado da aplicación recupérase cunha volta atrás glo-

bal. A maiores, esta solución de resiliencia optimizouse implementando unha volta

atrás local, na que só os procesos fallidos volven atrás, empregando un protocolo de

almacenaxe de mensaxes para garantires a consistencia e o progreso da execución.

Por último, proponse a extensión dunha libreŕıa de checkpointing para facilitares a

implementación de estratexias de recuperación ad hoc ante corrupcións de memoria.

En moitas ocasións, estos erros poden ser xestionados a nivel de aplicación, evitando

desencadear un fallo-parada e permitindo unha recuperación máis eficiente.

ix

Resumen

El rápido aumento de las necesidades de cómputo de distintas ramas de la ciencia

ha provocado un gran crecimiento en el rendimiento ofrecido por los supercompu-

tadores. Cada vez se construyen sistemas de computación de altas prestaciones ma-

yores, con más recursos hardware de distintos tipos, lo que hace que las tasas de

fallo del sistema aumenten. Por tanto, el estudio de técnicas de tolerancia a fallos

eficientes resulta indispensable para garantizar que los programas cient́ıficos puedan

completar su ejecución, evitando además que se dispare el consumo de enerǵıa. La

técnica checkpoint/restart es una de las más populares. Sin embargo, la mayor par-

te de la investigación en este campo se ha centrado en estrategias stop-and-restart

para aplicaciones de memoria distribuida tras la ocurrencia de fallos-parada. Esta

tesis propone técnicas checkpoint/restart a nivel de aplicación para los modelos de

programación paralela más populares en supercomputación. Se han implementado

protocolos de checkpointing para aplicaciones h́ıbridas MPI-OpenMP y aplicaciones

heterogéneas basadas en OpenCL, prestando en ambos casos especial atención a la

portabilidad y la maleabilidad de la solución. Con respecto a aplicaciones de memo-

ria distribuida, se propone una solución de resiliencia que puede ser usada de forma

genérica en aplicaciones MPI SPMD, permitiendo detectar y reaccionar a fallos-

parada sin abortar la ejecución. En su lugar, se vuelven a lanzar los procesos fallidos

y se recupera el estado de la aplicación con una vuelta atrás global. A mayores, esta

solución de resiliencia ha sido optimizada implementando una vuelta atrás local, en

la que solo los procesos fallidos vuelven atrás, empleando un protocolo de almace-

naje de mensajes para garantizar la consistencia y el progreso de la ejecución. Por

último, se propone una extensión de una libreŕıa de checkpointing para facilitar la

implementación de estrategias de recuperación ad hoc ante corrupciones de memoria.

Muchas veces, este tipo de errores puede gestionarse a nivel de aplicación, evitando

desencadenar un fallo-parada y permitiendo una recuperación más eficiente.

xi

Abstract

The rapid increase in the computational demands of science has lead to a pro-

nounced growth in the performance offered by supercomputers. As High Perfor-

mance Computing (HPC) systems grow larger, including more hardware compo-

nents of different types, the system’s failure rate becomes higher. Efficient fault

tolerance techniques are essential not only to ensure the execution completion but

also to save energy. Checkpoint/restart is one of the most popular fault tolerance

techniques. However, most of the research in this field is focused on stop-and-restart

strategies for distributed-memory applications in the event of fail-stop failures. This

thesis focuses on the implementation of application-level checkpoint/restart solu-

tions for the most popular parallel programming models used in HPC. Hence, we

have implemented checkpointing solutions to cope with fail-stop failures in hybrid

MPI-OpenMP applications and OpenCL-based programs. Both strategies maxi-

mize the restart portability and malleability, i.e., the recovery can take place on

machines with different CPU/accelerator architectures, and/or operating systems,

and can be adapted to the available resources (number of cores/accelerators). Re-

garding distributed-memory applications, we propose a resilience solution that can

be generally applied to SPMD MPI programs. Resilient applications can detect and

react to failures without aborting their execution upon fail-stop failures. Instead,

failed processes are re-spawned, and the application state is recovered through a

global rollback. Moreover, we have optimized this resilience proposal by implement-

ing a local rollback protocol, in which only failed processes rollback to a previous

state, while message logging enables global consistency and further progress of the

computation. Finally, we have extended a checkpointing library to facilitate the

implementation of ad hoc recovery strategies in the event of soft errors, caused by

memory corruptions. Many times, these errors can be handled at the software-level,

thus, avoiding fail-stop failures and enabling a more efficient recovery.

xiii

Preface

High Performance Computing (HPC) and the use of supercomputers are key in

the development of many fields of science. The large calculation capacity of these

machines enables the resolution of scientific, engineering, and analytic problems.

For more than two decades, the performance offered by supercomputers has grown

exponentially as a response to the rapid increase in the computational demands

of science. Current HPC systems are clusters of commodity and purpose built

processors interconnected by high-speed communication networks. The usage of

multicore nodes has dominated the scene since early 2000s, favoring the use of

a hybrid programming model (combining distributed-memory and shared-memory

parallel programming models). Since mid-2000s, the presence of accelerator devices

(e.g. GPUs, Xeon Phi) in supercomputing sites has heavily increased because of the

notable improvements in runtime and power consumption they provide, and new

programming models to exploit these processors have emerged, such as OpenCL or

CUDA.

Heterogeneous, large-scale supercomputers are a great opportunity for HPC ap-

plications, however, they are also a hazard for the completion of their execution.

As HPC systems continue to grow larger and include more hardware components

of different types, the meantime to failure for a given application also shrinks, re-

sulting in a high failure rate. Efficient fault tolerance techniques need to be studied

not only to ensure the scientific application completion in these systems, but also

to save energy. However, the most popular parallel programming models that HPC

applications use to exploit the computation power provided by supercomputers, lack

fault tolerance support.

Checkpoint/restart is one of the most popular fault tolerance techniques in HPC.

xv

xvi

However, most of the research in this field is focused on stop-and-restart strategies

in the event of fail-stop failures, aborting the execution to recover the computation

from a past saved state. In addition, most proposals target only distributed-memory

applications, for which the Message Passing Interface (MPI) is the de-facto standard.

This thesis focuses on the implementation of application-level checkpoint/restart

solutions for the most popular parallel programming models used in HPC. Most of

the developments of this thesis have been implemented on top of the checkpointing

tool ComPiler for Portable Checkpointing (CPPC) [112] because of the transpar-

ent, portable, application-level checkpointing it provides. We provide fault tolerance

support to hybrid MPI-OpenMP applications and to OpenCL-based heterogeneous

codes, implementing checkpointing strategies to cope with fail-stop failures. Both

proposals pay special attention to the portability and malleability of the recovery,

enabling the recovery of the applications in machines with different architectures

and/or operating systems, and adapting the execution to a different the number

and/or type of resources (different number of cores in the nodes, different num-

ber/architecture of accelerator devices). This thesis also explores new possibilities in

fault tolerance support for distributed-memory applications. We exploit the ULFM

interface—the most recent effort to add resilience features in the MPI standard—

to transparently obtain resilient applications from generic Single Program, Multiple

Data (SPMD) programs. Resilient applications can detect and react to failures with-

out aborting their execution upon fail-stop failures. Instead, the failed processes are

re-spawned, and the application state is recovered through a global rollback. More-

over, we have optimized that resilience proposal by implementing a local rollback

protocol for generic SPMD codes, in which only failed processes rollback to a previ-

ous state. Because failures usually have a localized scope, this technique significantly

improves the overhead and the energy consumption introduced by a failure. Finally,

this thesis explores how to reduce the impact of soft errors. These types of errors

are caused by transiently corrupted bits on the DRAM and SRAM that cannot be

corrected by hardware mechanisms, and they are among the most common causes of

failures. This thesis extends the Fault Tolerance Interface (FTI) [12], an application-

level checkpointing library, to facilitate the implementation of custom recoveries for

MPI applications in the event of soft errors. Custom recovery strategies enable

the management of soft errors at the application-level, before they cause fail-stop

failures, and therefore, these recovery strategies reduce the overall failure overhead.

xvii

Main contributions

The main contributions of this thesis are:

A portable and malleable application-level checkpointing solution to cope with

fail-stop failures on hybrid MPI-OpenMP applications [83, 84, 85].

A portable and malleable application-level checkpointing solution to cope with

fail-stop failures on heterogeneous applications [80].

A global rollback checkpointing solution that can be generally applied to

SPMD MPI programs to obtain resilient applications [53, 78, 79, 81, 82].

A local rollback protocol based on application-level checkpointing and mes-

sage logging that can be generally applied to SPMD MPI programs to obtain

resilient applications [76, 77].

A set of extensions to an application-level checkpointing library to facilitate

the implementation of custom recovery strategies for MPI applications to cope

with soft errors [75].

Structure of the thesis

The remainder of the thesis is organized as follows:

Chapter 1 introduces the thesis. This chapter presents the current trends

in HPC systems and programming models. It exposes why these types of

machines need fault tolerance support, and it presents one of the most popular

fault tolerance techniques: checkpointing. Finally, this chapter presents the

CPPC checkpointing tool, which is used as the based infrastructure for the

majority of the developments of this thesis.

Chapter 2 proposes a checkpointing solution to cope with fail-stop failures

in hybrid MPI-OpenMP applications. A new checkpointing protocol ensures

checkpoint consistency, while the portability features enable the restart on ma-

chines with different architectures, operating systems and/or number of cores,

xviii

adapting the number of running OpenMP threads for the best exploitation of

the available resources.

Chapter 3 focuses on heterogeneous systems and proposes a fault tolerance

solution to tolerate fail-stop failures in the host CPU or in any of the accelera-

tors devices used. The proposal enables applications to be restarted changing

the host CPU and/or the architecture of the accelerator devices and adapting

the computation to the number of devices available during the recovery.

Chapter 4 extends the CPPC checkpointing framework to exploit the new

features provided by the ULFM interface. This extension transparently ob-

tains resilient MPI applications, i.e., applications that can detect and react to

failures without aborting their execution, from generic SPMD programs.

Chapter 5 extends and optimizes the resilience proposal described in Chapter 4

to implement a local rollback protocol by combining ULFM, the CPPC check-

pointing tool, and a two-level message logging protocol. Using this protocol,

only failed processes are recovered from the last checkpoint, thus, avoiding

the repetition of computation by the survivor processes and reducing both the

time and energy consumption of the recovery process.

Chapter 6 is focused on soft errors, that is, errors originated by transiently

corrupted bits on the Dynamic Random Access Memory (DRAM) and Static

Random Access Memory (SRAM). In this chapter, the FTI application-level

checkpointing library is extended to facilitate the implementation of custom

recovery strategies for MPI applications. Custom recovery techniques aim

to handle soft errors before they trigger fail-stop failures and to exploit the

characteristics of the algorithm, thus, minimizing the recovery overhead both

in terms of time and energy.

Funding and Technical Means

The means necessary to carry out this thesis have been the following:

Working material, human and financial support primarily by the Computer

Architecture Group of the University of A Coruña, along with the Fellowship

xix

funded by the Ministry of Economy and Competitiveness of Spain (FPI ref.

BES-2014-068066).

Access to bibliographical material through the library of the University of A

Coruña.

Additional funding through the following research projects and networks:

• European funding: “High-Performance and Embedded Architecture and

Compilation (HiPEAC–5)” ref. 779656, “High-Performance and Embed-

ded Architecture and Compilation (HiPEAC–4)” ref. 687698, “Network

For Sustainable Ultrascale Computing (NESUS)” COST Action IC1305,

and “High-Performance Embedded Architecture and Compilation Net-

work of Excellence (HiPEAC–3)” ref. ICT-287759.

• State funding by the Ministry of Economy and Competitiveness of Spain:

“New Challenges in High Performance Computing: from Architectures

to Applications (II)” ref. TIN2016-75845-P, and “New Challenges in

High Performance Computing: from Architectures to Applications” ref.

TIN2013-42148-P.

• Regional funding by the Galician Government (Xunta de Galicia): “Ac-

creditation, Structuring and Improvement of Singular Research Centers:

Research Center on Information and Communication Technologies (CITIC)

of the University of A Coruña” ref. ED431G/01, and under the Consoli-

dation Program of Competitive Research Groups (Computer Architecture

Group, refs. ED431C 2017/04 and GRC2013-055)

Access to clusters and supercomputers:

• FinisTerrae-II supercomputer (Galicia Supercomputing Center, CESGA,

Spain): 306 nodes with two Intel Xeon E5-2680 v3 @ 2.50GHz processors,

with 12 cores per processor and 128 GB of RAM, interconnected via

InfiniBand FDR 56Gb/s.

• Pluton cluster (Computer Architecture Group, the University of A Coruña,

Spain):

◦ 16 nodes with two Intel Xeon E5-2660 @ 2.20GHz processors, with 8

cores per processor, 64 GB of memory, interconnected via InfiniBand

xx

FDR: eight of the nodes with 1 NVIDIA Tesla Kepler K20m 5 GB,

one of them with 2 NVIDIA Tesla Kepler K20m 5 GB, and one of

them with one Xeon PHI 5110P 8 GB.

◦ 4 nodes with one Intel Xeon hexa-core Westmere-EP processor, 12 GB

of memory and 2 GPUs NVIDIA Tesla Fermi 2050 per node, inter-

connected via InfiniBand QDR.

• CTE-KNL cluster (Barcelona Supercomputing Center – Centro Nacional

de Supercomputación, BSC-CNS, Spain): 16 nodes, each one with In-

tel(R) Xeon Phi(TM) CPU 7230 @ 1.30GHz 64-core processor, 94 GB

of main memory with 16 GB high bandwidth memory (HBM) in cache

mode, 120 GB SSD as local storage, and Intel OPA interconnection.

A one-month research visit at the Barcelona Supercomputing Center – Cen-

tro Nacional de Supercomputación (BSC-CNS), Spain, from October 2017 to

November 2017. Working on recovery mechanisms for parallel applications in

the event of soft errors (memory corruptions) within the FTI checkpointing

tool. This research visit was supported by a Mobility Support Grant Severo

Ochoa Centre of Excellence Program from the BSC-CNS.

A five-month research visit at the Innovative Computing Laboratory (ICL)

at the University of Tennessee, Knoxville, USA, from September 2016 to

March 2017. Working on a local recovery protocol based on message log-

ging and the CPPC checkpointing tool. The first three months of the visit

were financially supported by a 2016 Collaboration Grant from the Euro-

pean Network on High-Performance and Embedded Architecture and Com-

pilation (HiPEAC–4), and the last two months were supported by the Min-

istry of Economy and Competitiveness of Spain under the FPI program (ref.

EEBB-I-17-12005).

Contents

1. Introduction and Background 1

1.1. Current Trends in High Performance Computing 1

1.2. Fault Tolerance on HPC Applications 7

1.2.1. Faults, Errors, and Failures 8

1.2.2. Checkpoint/Restart . 9

1.3. CPPC Overview . 12

2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps. 17

2.1. Checkpoint/Restart of OpenMP Applications 18

2.2. Checkpoint/Restart of Hybrid MPI-OpenMP Applications 20

2.2.1. Coordination Protocol . 20

2.2.2. Restart Portability and Adaptability 24

2.3. Experimental Evaluation . 24

2.3.1. Operation Overhead in the Absence of Failures 25

2.3.2. Operation Overhead in the Presence of Failures 28

2.3.3. Portability and Adaptability Benefits 29

2.4. Related Work . 30

xxi

xxii Contents

2.5. Concluding Remarks . 31

3. Application-level Checkpointing for Heterogeneous Applications 33

3.1. Heterogeneous Computing using HPL 34

3.2. Portable and Adaptable Checkpoint/Restart of Heterogeneous Appli-

cations . 37

3.2.1. Design Decisions . 37

3.2.2. Implementation Details . 40

3.2.3. Restart Portability and Adaptability 42

3.3. Experimental Evaluation . 48

3.3.1. Operation Overhead in the Absence of Failures 51

3.3.2. Operation Overhead in the Presence of Failures 54

3.3.3. Portability and Adaptability Benefits 55

3.4. Related Work . 58

3.5. Concluding Remarks . 62

4. Application-Level Approach for Resilient MPI Applications 63

4.1. Combining CPPC and ULFM to Obtain Resilience 64

4.1.1. Failure Detection . 65

4.1.2. Reconfiguration of the MPI Global Communicator 68

4.1.3. Recovery of the Application 69

4.2. Improving Scalability: Multithreaded Multilevel Checkpointing 70

4.3. Experimental Evaluation . 71

4.3.1. Operation Overhead in the Absence of Failures 71

4.3.2. Operation Overhead in the Presence of Failures 73

Contents xxiii

4.3.3. Resilience vs. Stop-and-Restart Global Rollback 77

4.4. Related work . 84

4.5. Concluding Remarks . 85

5. Local Rollback for Resilient MPI Applications 89

5.1. Local Rollback Protocol Outline . 90

5.2. Message Logging . 93

5.2.1. Logging Point-to-Point Communications 93

5.2.2. Logging Collective Communications 94

5.2.3. Implications for the Log Size 96

5.3. Communications Interrupted by a Failure 97

5.4. Tracking Messages and Emission Replay 99

5.4.1. Tracking Protocol . 100

5.4.2. Ordered Replay . 101

5.5. Experimental Evaluation . 102

5.5.1. Operation Overhead in the Absence of Failures 105

5.5.2. Operation Overhead in the Presence of Failures 110

5.5.3. Weak scaling experiments . 114

5.6. Related Work . 117

5.7. Concluding Remarks . 118

6. Local Recovery For Soft Errors 121

6.1. Soft Errors . 122

6.2. The FTI Checkpointing Library . 122

6.3. FTI Extensions to Facilitate Soft Error Recovery 123

xxiv Contents

6.4. Ad Hoc Local Recovery on HPC Applications 127

6.4.1. Himeno . 127

6.4.2. CoMD . 127

6.4.3. TeaLeaf . 129

6.5. Experimental Evaluation . 132

6.5.1. Memory Characterization . 133

6.5.2. Overhead in the Absence of Failures 135

6.5.3. Overhead in the Presence of Failures 136

6.6. Related Work . 138

6.7. Concluding Remarks . 139

7. Conclusions and Future Work 141

A. Extended summary in Spanish 147

References 163

List of Tables

2.1. Hardware platform details. 25

2.2. Configuration parameters of the testbed applications. 25

3.1. Maximum kernel times (seconds) of the most time-consuming appli-

cations from popular benchmarks suites for heterogeneous computing

(test performed on System#1 from Table 3.2). 39

3.2. Hardware platform details. 49

3.3. Testbed benchmarks description and original runtimes. 49

3.4. Testbed benchmarks characterization. 50

3.5. Instrumentation and checkpoint overhead analysis for the testbed

benchmarks. 52

3.6. Related work overview. 61

4.1. Configuration parameters of the testbed applications. 72

4.2. Hardware platform details. 72

4.3. Number of calls to the MPI library per second performed by the

process that less calls does, which determines the detection time. . . . 74

4.4. Average size (MB) of data registered by each process (including zero-

blocks) and average size (MB) of the checkpoint file generated by each

process (excluding zero-blocks). 75

xxv

xxvi List of Tables

4.5. Configuration parameters of the testbed applications. 78

4.6. Hardware platform details. 78

4.7. Original runtimes (in minutes) and aggregated checkpoint file sizes. . 78

4.8. Testbed checkpointing frequencies and elapsed time (in minutes) be-

tween two consecutive checkpoints for different checkpointing frequen-

cies. 80

4.9. Recovery operations in each proposal. 81

5.1. Hardware platform details. 103

5.2. Configuration parameters of the testbed applications. 103

5.3. Original runtimes of the testbed applications in minutes. 104

5.4. Benchmarks characterization by MPI calls and log behavior. 106

5.5. Original runtimes (in minutes) and configuration parameters of the

Himeno weak scaling experiments. 115

5.6. Himeno characterization by MPI calls and log behavior (weak scaling).115

6.1. Hardware platform details. 132

6.2. Weak scaling configurations and original application runtimes. 133

6.3. Memory characterization of the tested applications. 134

6.4. Reduction in the overhead when using the local recovery instead of

the global rollback upon a soft error: absolute value (in seconds) and

percentage value (normalized with respect to the original execution

runtime). 138

List of Figures

1.1. Microprocessors trend during the last 42 years (from [64]). 2

1.2. Development of the number of cores per socket over time in the sys-

tems included on the TOP500 lists. 3

1.3. Development of architectures over time in the systems included on

the TOP500 lists. 4

1.4. Systems presenting accelerators on the TOP500 lists. 4

1.5. Simplified diagram of a hybrid distributed shared memory architecture. 6

1.6. Simplified diagram of a heterogeneous architecture. 6

1.7. Performance development over time: aggregated performance of all

the systems, and performance of first (#1) and last (#500) ranked

systems on the TOP500 lists. 7

1.8. Relation between faults, errors, and failures. 9

1.9. Inconsistencies caused by communications crossing a recovery line. . . 11

1.10. CPPC global flow. 13

1.11. CPPC instrumentation example. 13

1.12. Spatial coordination protocol. 14

2.1. CPPC on OpenMP applications: coordinated checkpointing across

OpenMP threads initiated by fastest thread. 19

xxvii

xxviii List of Figures

2.2. CPPC on hybrid MPI-OpenMP applications: coordinated checkpoint-

ing across OpenMP threads and uncoordinated across MPI processes. 21

2.3. Example of a fault-tolerant code: OpenMP coordination protocol can

break the spatial coordination between the teams of threads in hybrid

applications. 22

2.4. Need for a new coordination protocol for hybrid MPI-OpenMP pro-

grams. 23

2.5. Runtimes for the testbed applications varying the number of cores. . 26

2.6. Absolute overheads varying the number of cores. 26

2.7. CPPC checkpointing operations times varying the number of cores. . 27

2.8. CPPC restart operations times varying the number of cores. 29

2.9. Recovery varying the computation nodes. 30

3.1. OpenCL hardware model. 35

3.2. Example of an HPL application where two different kernels are in-

voked nIters times. 36

3.3. Fault tolerance instrumentation of an HPL application. 43

3.4. Adaptability in heterogeneous applications. 45

3.5. Automatic instrumentation of pseudo-malleable applications. 46

3.6. Automatic instrumentation of malleable applications. 47

3.7. Checkpointing runtimes normalized with respect to the original run-

times for the testbed benchmarks. 53

3.8. Original runtimes and restart runtimes on the same hardware for the

testbed benchmarks. 55

3.9. Restart runtimes for the testbed benchmarks on different device ar-

chitectures. 56

List of Figures xxix

3.10. Restart runtimes for the testbed benchmarks using a different number

of GPUs. 57

3.11. Restart runtimes for Shwa1ls using a different host, a different number

and architecture of devices, and a different operating system. 57

4.1. Instrumentation for resilient MPI applications with CPPC and ULFM. 66

4.2. Global overview of the recovery procedure for resilient MPI applica-

tions with CPPC and ULFM. 67

4.3. CPPC Check errors pseudocode: failure detection and triggering of

the recovery. 67

4.4. Runtimes and aggregated checkpoint file size for the testbed bench-

marks when varying the number of processes. 73

4.5. Times of the operations performed to obtain resilience. 74

4.6. Runtimes when introducing failures varying the number of processes.

The baseline runtime in which no overhead is introduced (apart from

recomputation after the failure) is included for comparison purposes. 77

4.7. Checkpointing overhead varying the checkpointing frequency. 79

4.8. Recovery times: addition of the times of all the recovery operations

performed by each proposal (the lower, the better). 81

4.9. Time of the different recovery operations. 83

4.10. Reduction in the extra runtime when introducing a failure and using

resilience proposal instead of stop-and-restart rollback (higher is better). 84

5.1. Local rollback protocol overview. 91

5.2. Binomial-tree staging of AllReduce collective operation. 95

5.3. States of non-blocking communications. 98

xxx List of Figures

5.4. Application level vs. internal point-to-point logging of collective com-

munications: performance, logged data, and number of entries in the

log. 108

5.5. Log parameters when checkpointing: maximum log size expressed as

the percentage of the total memory available and number of entries. . 108

5.6. Absolute checkpointing overhead with respect to the non fault-tolerant

version and aggregated checkpoint file sizes. 110

5.7. Reduction of the recovery times of survivor and failed processes with

the local rollback (the higher, the better). 111

5.8. Times of the different operations performed during the recovery. . . . 112

5.9. Percentage that each recovery operation represents over the reduction

in the failed processes’ recovery times. 112

5.10. Reduction in the extra runtime and energy consumption when intro-

ducing a failure and using local rollback instead of global rollback

(higher is better). 114

5.11. Results for the Himeno benchmark doing weak scaling (keeping the

problem size by process constant). 116

6.1. FTI instrumentation example . 123

6.2. Detection of a soft error. 125

6.3. Memory Protection . 126

6.4. Himeno simplified pseudocode. 128

6.5. CoMD simplified pseudocode. 130

6.6. TeaLeaf simplified pseudocode. 131

6.7. Relative overheads with respect to application original runtimes in a

fault-free execution. 136

List of Figures xxxi

6.8. Relative overheads with respect to application original runtimes when

introducing a failure. 137

List of Acronyms

ABFT Algorithm-Based Fault Tolerance

CID Communicator ID

CPPC ComPiler for Portable Checkpointing

DCE Detectable Correctable Error

DRAM Dynamic Random Access Memory

DUE Detectable Uncorrectable Error

ECCs Error Correcting Codes

FIFO First In, First Out

FLOPs Floating Point Operations per Second

FTI Fault Tolerance Interface

HPC High Performance Computing

HPL Heterogeneous Programming Library

hwloc Portable Hardware Locality

MPI Message Passing Interface

MPPs Massively Parallel Processing

MTTF Mean Time To Failure

xxxiii

xxxiv List of Figures

PEs Processing Elements

PMPI Profiling MPI API

SDC Silent Data Corruption

SE Silent Error

SIMD Single Instruction, Multiple Data

SMPs Shared-Memory Multiprocessors

SPMD Single Program,Multiple Data

SRAM Static Random Access Memory

SSID Sender Sequence ID

ULFM User Level Failure Mitigation

Chapter 1

Introduction and Background

This chapter presents the background related to the research carried out in this

thesis. It is structured as follows. Section 1.1 briefly introduces current trends

in HPC systems and programming models. Section 1.2 exposes the need for fault

tolerance support of these type of infrastructures, describing the most popular fault

tolerance technique in the last decades, i.e. checkpointing. Section 1.3 describes

the main characteristics of the CPPC checkpointing tool, which is used as the base

framework on top of which most of the developments of this thesis have been built.

1.1. Current Trends in High Performance Com-

puting

Many fields of science rely on HPC and in supercomputers for their advance.

The large computation power these machines provide—today, in the order of 1015

floating point operations per second—enables the resolution of scientific, engineer-

ing, and analytic problems. However, the computational demands of science keep

growing mainly because of two factors: new problems in which the resolution time is

critical (such as the design of personalized pharmaceutical drugs, in which patients

cannot wait years for the specific molecule they need), and the exponential growing

on the amount of data that must be processed (for instance, data originated by

large telescopes, particle accelerators and detectors, social networks, or smart cities

1

2 Chapter 1. Introduction and Background

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

 1
97

0

 1
97

2

 1
97

4

 1
97

6

 1
97

8

 1
98

0

 1
98

2

 1
98

4

 1
98

6

 1
98

8

 1
99

0

 1
99

2

 1
99

4

 1
99

6

 1
99

8

 2
00

0

 2
00

2

 2
00

4

 2
00

6

 2
00

8

 2
01

0

 2
01

2

 2
01

4

 2
01

6

 2
01

8

 2
02

0

Year

Number of

Logical Cores

Frequency (MHz)

Single−Thread

Performance

(SpecINT x 10
3
)

Transistors

(thousands)

Typical Power

(Watts)

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun,
L. Hammond, and C. Batten. New plot and data collected for 2010−2017 by K. Rupp

Figure 1.1: Microprocessors trend during the last 42 years (from [64]).

sensors).

Figure 1.1 shows the trends in microprocessors during the last 40 years. Until

2005, the silicon industry responded to the growing computational demand following

the Moore’s Law [93]. By reducing the size of transistors, their number was doubled

in an integrated circuit every two years. This enabled higher clock speeds, bigger

cache memories, and more flexible microarchitectures. The existing sequential pro-

gramming model was preserved, as programs run faster with each new generation of

processors. In the early 2000s computer architecture trends switched to multicore

scaling as a response to various architectural challenges that severely diminished the

gains of further frequency scaling.

The switch within the industry to the multicore era can also be observed in the

development of supercomputers over the years. Since 1993, the TOP500 list [44] has

gathered, twice a year, the information about the 500 most powerful supercomputers

in the world. Using the TOP500’s data, Figure 1.2 presents the development over

time of the number of cores per socket on supercomputers. The number of cores

per socket has increased rapidly and, nowadays, 95% of the entries of the list have

between 6 and 24 cores per socket. The supercomputer architectures built up with

1.1 Current Trends in High Performance Computing 3

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

P
e
rc

e
n
ta

g
e
 o

f
s
y
s
te

m
s

1
2
4
6
8
9

10
12
14
16
18
20
22
24
32
60

>=64

Figure 1.2: Development of the number of cores per socket over time in the systems
included on the TOP500 lists.

those microprocessors are studied on Figure 1.3. In the 1980s vector supercomputing

dominated HPC. The 1990s saw the rise of Massively Parallel Processing (MPPs)

and Shared-Memory Multiprocessors (SMPs). Today, the scene is dominated by

clusters of commodity and purpose-built processors interconnected by high-speed

communication networks. In addition to this, since 2006 the usage of accelerator

devices has become increasingly popular, as they provide notable improvements in

runtime and power consumption with respect to approaches solely based on general-

purpose CPUs [65]. This trend can be observed in Figure 1.4, which reports the

number of systems using accelerators from the TOP500 lists.

Users in HPC sites exploit the computational power provided by supercomputers

by means of parallel programming models. Subsequent paragraphs introduce the

approaches that have become the most popular ones for the different hardware

models that dominate the scene nowadays: distributed-memory systems, shared-

memory systems, and heterogeneous systems exploiting accelerators.

Distributed-memory systems present multiple processors, each one of them with

its own memory space, and interconnected by a communication network. MPI [132]

is the de-facto standard for programming HPC parallel applications in distributed-

4 Chapter 1. Introduction and Background

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

P
e
rc

e
n
ta

g
e
 o

f
s
y
s
te

m
s

Single processor

Constellations

SMP

MPP

SIMD

Cluster

Figure 1.3: Development of architectures over time in the systems included on the
TOP500 lists.

0

10

20

30

40

50

60

70

80

90

100

110

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

N
u
m

b
e
r

o
f
s
y
s
te

m
s

IBM

Clearspeed

Intel MIC

NVIDIA

XeonPhi

Hybrid

AMD

ATI

PEZY−SC

Figure 1.4: Systems presenting accelerators on the TOP500 lists.

1.1 Current Trends in High Performance Computing 5

memory architectures. MPI provides essential virtual topology, synchronization, and

communication functionalities between a set of processes mapped to nodes/servers.

Each process has its own address space, and processes communicate and synchronize

by exchanging data over the network.

Shared-memory systems present multiple cores/processors that share the same

address space. OpenMP [97] is the de-facto standard for parallel programming on

these systems. The OpenMP specification defines a collection of compiler directives,

library routines and environment variables that implement multithreading with the

fork-join model. A main thread runs the sequential parts of the program, while

additional threads are forked to execute parallel tasks. Threads communicate and

synchronize by using the shared memory.

Current HPC systems are clusters of multicore nodes (architecture illustrated in

Figure 1.5) that can benefit from the use of a hybrid programming model, in which

MPI is used for the inter-node communications while a shared-memory programming

model, such as OpenMP, is used intra-node [62, 127]. Even though programming

using a hybrid MPI-OpenMP model requires some effort from application devel-

opers, this model provides several advantages such as reducing the communication

needs and memory consumption, as well as improving load balance and numerical

convergence [62, 106].

Heterogeneous applications are those capable of exploiting more than one type

of computing system, gaining performance not only by using CPU cores but also by

incorporating specialized accelerator devices such as GPUs or Xeon Phis. Acceler-

ator devices are computing systems that cannot operate on their own and to which

the CPUs can offload computations. Among the large number of frameworks for

the development of applications that exploit heterogeneous devices, OpenCL [66] is

the most widely supported and, thus, the one that provides the largest portability

across different device families. Figure 1.6 depicts a general view of the hardware

model. It is comprised of a host CPU, where the sequential parts of the execution

are run, and a set of attached accelerator devices where the parallel tasks are run.

Accelerator devices are comprised of several processing elements. The processing

elements execute Single Instruction, Multiple Data (SIMD) operations so that the

same instruction is executed simultaneously on different data in several processing

elements. The host is responsible for allocating and transferring to the memory of

6 Chapter 1. Introduction and Background

Figure 1.5: Simplified diagram of a hybrid distributed shared memory architecture.

Figure 1.6: Simplified diagram of a heterogeneous architecture.

the devices the data necessary for the offload computations.

The growing popularity of accelerator devices in HPC systems has also con-

tributed to their exploitation cooperatively with other programming models, such

as MPI [60, 67], leading to efforts to extending MPI with accelerator awareness [61,

136].

1.2 Fault Tolerance on HPC Applications 7

100MFlop/s

1GFlop/s

10GFlop/s

100GFlop/s

1TFlop/s

10TFlop/s

100TFlop/s

1PFlop/s

10PFlop/s

100PFlop/s

1EFlop/s

10EFlop/s

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

P
e
rf

o
rm

a
n
c
e
 (

F
L
O

P
s
)

Sum #1 #500

Figure 1.7: Performance development over time: aggregated performance of all the
systems, and performance of first (#1) and last (#500) ranked systems on the
TOP500 lists.

1.2. Fault Tolerance on HPC Applications

The rapid increase in the computational demands of science has lead to a growth

in the performance offered by supercomputers. This trend is shown in Figure 1.7,

which depicts the exponential growth of supercomputing power as recorded by the

TOP500 list in Floating Point Operations per Second (FLOPs) over time. The

performance of these systems is measured using the Linpack Benchmark [43]. In

the near future, the exascale era is expected to be reached, building supercomputers

comprised of millions of cores and able to perform 1018 operations per second. This

is a great opportunity for HPC applications, however, it is also a hazard for the

completion of their execution. Recent studies show that, as HPC systems continue to

grow larger and include more hardware components of different types, the meantime

to failure for a given application also shrinks, resulting in a high failure rate overall.

Even if one computation node presents a failure every one century, a machine with

100 000 nodes will encounter a failure every 9 hours on average [42]. More alarming,

a machine built up with 1 000 000 of those nodes will be hit by a failure every 53

minutes on average. Di Martino et al. [40] have studied the Cray supercomputer Blue

8 Chapter 1. Introduction and Background

Waters during 261 days, reporting that 1.53% of applications running on the machine

failed because of system-related issues. Moreover, applications using heterogeneous

nodes displayed a higher percentage of failures due to system errors, which also grew

larger when scaling. Overall, failed applications noticeably run for about 9% of the

total production node hours. The electricity cost of not using any fault tolerance

mechanism in the failed applications was estimated at almost half a million dollars

during the studied period of time. Future exascale systems will be formed by several

millions of cores, and they will present higher failure rates due to their scale and

complexity. Therefore, long-running applications will need to rely on fault tolerance

techniques, not only to ensure the completion of their execution in these systems, but

also to save energy. However, the most popular parallel programming models that

HPC applications use to exploit the computation power provided by supercomputers,

lack fault tolerance support.

1.2.1. Faults, Errors, and Failures

The terminology used in this thesis follows the taxonomy of Avižienis and oth-

ers [7, 26, 118], summarized in Figure 1.8. Faults (e.g. a physical defect in the

hardware) can cause system errors, that is, system’s incorrect states. Errors may

propagate and lead to failures when they cause the incorrect service of the system,

i.e., an incorrect system’s functionality and/or performance that can be externally

perceived. Faults can be active or inactive, depending on whether or not they cause

errors; and permanent or transient, depending on whether or not their presence is

continuous in time. Resilience is defined as the collection of techniques for keeping

applications running to a correct solution in a timely and efficient manner despite

underlying system faults.

Hardware faults correspond with physical faults, i.e. permanent or transient

faults in any of the components of the system and can result in: (1) Detectable

Correctable Error (DCE), (2) Detectable Uncorrectable Error (DUE), and (3) Silent

Error (SE) or Silent Data Corruption (SDC). DCEs are managed by hardware mech-

anisms such as Error Correcting Codes (ECCs), parity checks, and Chipkill-Correct

ECC, and are oblivious to the applications. DUEs can lead to the interruption of

the execution, while SDCs can lead to a scenario in which the application returns

1.2 Fault Tolerance on HPC Applications 9

Fault Error Failure

Activation Propagation

Figure 1.8: Relation between faults, errors, and failures.

incorrect results, although the user might not be aware of it.

Software faults can result in: (1) pure-software errors, (2) hardware problems

mishandled by software, and (3) software causing a hardware problem. Pure-

software errors correspond with classical correctness issues (such as incorrect control

flows), concurrency errors (concurrent code is hard to develop and debug), and per-

formance errors (originated by resource exhaustion that can lead to actual crashes

due to timeouts). Examples of the second category correspond with node failures

not being handled by software at other nodes, or a disk failure causing a file system

failure. Finally, software can trigger an unusual usage pattern for the hardware,

causing hardware errors.

Most of the research in this thesis (Chapters 2 to 5) is focused on fail-stop fail-

ures, which interrupt the execution of the application, both derived from hardware

errors and software errors. In addition, Chapter 6 is focused on handling errors

originated by transiently corrupted bits on the DRAM and the SRAM before they

cause failures.

1.2.2. Checkpoint/Restart

From all the techniques focused on limiting the impact of fail-stop failures, Check-

point/restart [42, 46] is the most popular. With this technique, each process in the

application periodically saves its state to stable storage into checkpoint files that

allow the restart on intermediate states of the execution in case of failure.

A process checkpoint is characterized by the software stack level where it is

created, and by how it is generated and stored. At the lowest level, system-level

checkpointing tools, such as operating system extensions like BLCR [55], provide a

transparent checkpointing of the process. These solutions treat the application as a

10 Chapter 1. Introduction and Background

black box and need no effort from the user or programmer to obtain fault tolerance

support. However, they save the entire state of the process (including CPU registers,

the application stack, etc). This detriments portability because the restart needs to

take place on the same hardware and software environment. In addition, system-

level checkpointing couples the checkpoint overhead to the memory footprint of the

process. On the other hand, application-level approaches checkpoint only the criti-

cal data in the application. These techniques exploit application-specific knowledge,

whether provided by the user or programmer [12] or from compilers that analyse

the application code [22, 72, 112]. Application-level checkpointing contributes to-

wards reducing the checkpoint size (and thus, the checkpointing overhead) while it

can generate portable checkpoint files that enable the restart on different machines.

Besides, with this approach, the user can potentially change the behaviour of the

application during the restart. For instance, the application can be adapted for the

best exploitation of the restart resources. Alternatively, checkpoint/restart tech-

niques can be used to avoid the repetition of computation, e.g, avoiding a costly

initialization step in a simulation by restarting the application to the state after

the initialization, enabling running different simulations by changing other param-

eters. Regarding how checkpoints are generated and stored, different works in the

literature study techniques to improve both performance and reliability. This is

the case of asynchronous generation of checkpoints [73], which reduces the check-

pointing overhead by dumping the state files to stable storage in background, and

multilevel checkpointing [12], which exploits different levels of the memory hierarchy.

Moreover, different optimization techniques focus on the reduction of the amount

of checkpointed data to further reduce the checkpointing cost, such as incremental

checkpointing [1, 52], data compression of the checkpoint files [72, 102], and memory

exclusion [101].

Parallel applications introduce complexities in the checkpointing protocol. In

distributed-memory applications, inter-process dependencies preclude the recovery

of individual processes independently. Instead, a successful recovery requires the

application state to be restored from a consistent global image. For this purpose,

all the processes in the application must identify the most recent consistent set of

checkpoint files that correspond with a consistent global image of the application,

i.e. a valid recovery line. Coordinated checkpointing [28, 35] guarantees that the

last recovery line is consistent by coordinating all processes when checkpointing.

1.2 Fault Tolerance on HPC Applications 11

Figure 1.9: Inconsistencies caused by communications crossing a recovery line.

These protocols simplify the recovery and garbage collection, however, they require

global coordination among all the application processes and force the rollback of

all the processes upon failure. On the other hand, uncoordinated checkpointing

allows processes to checkpoint independently. This enables checkpointing when it is

more convenient, e.g. when less data needs to be saved. However, the most recent

set of checkpoint files generated by each process may not represent a consistent

global state. In MPI applications, inconsistencies due to communications crossing a

possible recovery line, such as orphan or in-transit messages illustrated in Figure 1.9,

may force a process to rollback to a previous checkpoint file, which might also force

other processes to do so. Garbage collection is more complex for uncoordinated

protocols, and, even if all the checkpoint files generated during the execution are

kept, interprocess dependencies can lead to a situation in which all processes need

to restart from the beginning of the execution, i.e. domino effect, which poses an

unacceptable recovery cost. Combining uncoordinated checkpointing and message

logging protocols [18, 20, 88, 89, 113] avoids this problem. Message logging provides

a more flexible restart since, potentially, a process can be restarted without forcing

the rollback of other processes. However, the memory requirements and overhead

introduced by the logging operation can represent a limiting factor.

This thesis proposes new and efficient application-level fault tolerance techniques

for the most popular parallel programming models for HPC systems.

12 Chapter 1. Introduction and Background

1.3. CPPC Overview

Most of the solutions proposed make use of the CPPC [112] application-level

checkpointing tool. CPPC is an application-level open-source checkpointing tool

for MPI applications available under GPL license at http://cppc.des.udc.es. It

appears to the final user as a compiler tool and a runtime library.

The original proposal of CPPC provides fault tolerance to MPI applications

by applying a stop-and-restart checkpointing strategy [112]: during its execution

the application periodically saves its computation state into checkpoint files, so

that, in case of failure, the application can be relaunched, and its state recovered

using those files. As exemplified in Figure 1.10, the CPPC compiler automatically

instruments the application code to obtain an equivalent fault-tolerant version by

adding calls to the CPPC library. The resulting fault tolerant code for the stop-and-

restart proposal can be seen in Figure 1.11. Instrumentation is added to perform

the following actions:

Configuration and initialization: at the beginning of the application the

routines CPPC Init configuration and CPPC Init state configure and ini-

tialize the necessary data structures for the library management.

Registration of variables: the routine CPPC Register explicitly marks for

their inclusion in checkpoint files the variables necessary for the successful

recovery of the application. During restart, this routine also recovers the

values from the checkpoint files to their proper memory location.

Checkpoint: the CPPC Do checkpoint routine dumps the checkpoint file. At

restart time this routine checks restart completion.

Shutdown: the CPPC Shutdown routine is added at the end of the application

to ensure the consistent system shutdown.

To allow users to specify an adequate checkpointing frequency, the compiler uses

a heuristic evaluation of the computational cost to place the checkpoint calls in the

most expensive loops of the application. Checkpoint consistency is guaranteed by

locating the checkpoint function in the first safe point of these loops. The CPPC

1.3 CPPC Overview 13

Parallel
application

FT Parallel
application

CPPC
library

Stable
storage

CPPC compiler: inserts
fault tolerance and
flow control code

CPPC library: manages
application state, saving and
recovering it when necessary

Figure 1.10: CPPC global flow.

1 int main(int argc , char* argv[])

2 {

3 CPPC Init configuration();

4 MPI_Init(&argc , &argv);

5 CPPC Init state();

6

7 if (CPPC Jump next()) goto REGISTER BLOCK 1;

8 [...]

9

10 REGISTER BLOCK 1:

11 <CPPC Register(...) block>

12 [...]

13 if (CPPC Jump next()) goto RECOVERY BLOCK 1

14 [...]

15

16 for(i = 0; i < nIters; i++){

17 CKPT BLOCK 1:

18 CPPC Do checkpoint();

19 [...]

20

21 }

22 <CPPC Unregister(...) block>

23 CPPC Shutdown();

24 MPI_Finalize ();

25 }

Figure 1.11: CPPC instrumentation example.

compiler performs a static analysis of inter-process communications and identifies

safe points as code locations where it is guaranteed that there are no in-transit,

nor inconsistent messages. Safe points allow CPPC to apply a spatial coordination

protocol [111]: processes perform an uncoordinated checkpointing, generating the

checkpoint files independently without the need of inter-process communications or

runtime synchronization. Instead, processes are implicitly coordinated: they check-

point at the same selected safe locations (checkpoint calls) and at the same relative

14 Chapter 1. Introduction and Background

Figure 1.12: Spatial coordination protocol.

moments according to the checkpointing frequency. Figure 1.12 shows an example

for a checkpointing frequency N = 2. All processes checkpoint at the second, fourth

and sixth checkpoint calls, which are invoked by each process at different instants

of time. The recovery line is formed by the checkpoint files generated by all the

processes at the same safe location and at the same relative moment, thus, no com-

munications can cross the recovery line and no communications need to be replayed

during the recovery.

Upon a failure, the application is relaunched, and the restart process takes place.

First, the application processes perform a negotiation phase to identify the most

recent valid recovery line. Therefore, coordination is delayed until the restart oper-

ation, a much less frequent operation. Besides, processes have just been re-spawned

and coordination during the recovery imposes minimum overhead. The restart phase

has two parts: reading the checkpoint data into memory and reconstructing the ap-

plication state. The reading is encapsulated inside the routine CPPC Init state.

The reconstruction of the state is achieved through the ordered execution of certain

blocks of code called RECs (Required-Execution Code): the configuration and ini-

tialization block, variable registration blocks, checkpoint blocks, and non-portable

state recovery blocks, such as the creation of communicators. When the execution

flow reaches the CPPC Do checkpoint call where the checkpoint file was generated,

the recovery process ends, and the execution resumes normally. The compiler inserts

control flow code (labels and conditional jumps using the CPPC Jump next routine)

to ensure an ordered re-execution.

CPPC implements several optimizations to reduce the checkpointing overhead.

1.3 CPPC Overview 15

The checkpoint file sizes are reduced by using a liveness analysis to save only those

user variables indispensable for the application recovery; and by using the zero-

blocks exclusion technique, which avoids the storage of memory blocks that contain

only zeros [34]. In addition, a multithreaded checkpointing overlaps the checkpoint

file writing to disk with the computation of the application.

Also, another CPPC feature is its portability. Applications can be restarted on

machines with different architectures and/or operating systems than those in which

the checkpoint files were originally generated. Checkpoint files are portable because

of the use of a portable storage format (HDF5 http://www.hdfgroup.org/HDF5/)

and the exclusion of architecture-dependent state from checkpoint files. Such non-

portable state is recovered through the re-execution of the code responsible for

its creation in the original execution. This is especially useful in heterogeneous

clusters, where this feature enables the completion of the applications even when

those resources that were being used are no longer available or the waiting time to

access them is prohibitive.

For more details about CPPC and its restart protocol the reader is referred

to [111, 112].

http://www.hdfgroup.org/HDF5/

Chapter 2

Application-level Checkpointing

for Hybrid MPI-OpenMP

Applications

Most of the current HPC systems are built as clusters of multicores, and the

hybrid MPI-OpenMP paradigm provides numerous benefits on these systems. Hy-

brid applications are based on the use of MPI for the inter-node communications

while OpenMP is used for intra-node. During the execution, each MPI process

(usually one per node) creates a team of OpenMP threads to exploit the cores in

that node. This chapter presents the extensions performed in CPPC to cope with

fail-stop failures in hybrid MPI-OpenMP applications.

The chapter is structured as follows. Section 2.1 introduces the checkpointing of

OpenMP applications. Section 2.2 describes how CPPC is modified and extended

to cope with hybrid MPI-OpenMP codes. Section 2.3 presents the experimental

evaluation of the proposal. Section 2.4 covers the related work. Finally, Section 2.5

concludes the chapter.

17

18 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

2.1. Checkpoint/Restart of OpenMP Applications

CPPC was originally developed for its operation on MPI applications. Thus, it

needs to be extended to cope with fail-stop failures on OpenMP applications [83, 84].

The CPPC library is modified to allow the management of the necessary data struc-

tures for each thread and new functionalities are introduced to deal with OpenMP

main features. This extension supports the creation and destruction of threads

in multiple parallel regions, parallelized loops with different scheduling types, and

reduction operations.

In order to checkpoint OpenMP applications, the registration of variables now

distinguishes between private and shared state. For private variables, each thread

saves its copy into its own checkpoint file, while only one copy of the shared variables

is dumped to disk. Regarding checkpoint consistency, in OpenMP applications

safe points are defined as code locations outside or inside of an OpenMP parallel

region, as long as they are reachable by all running threads. The shared state in

OpenMP applications requires a coordinated checkpointing protocol to ensure the

consistency of all the saved variables: all threads must checkpoint at the same time,

guaranteeing that none of them modify the shared state when it is being saved,

ensuring that both private and shared variables are consistently checkpointed, and

allowing the recovery of a consistent global state. In the coordination protocol

used, when a thread determines that a checkpoint file must be generated (according

to the user-defined checkpointing frequency), it forces all the other threads to do

so in the next CPPC Do checkpoint call. The coordination protocol, illustrated in

Figure 2.1, is implemented using OpenMP barrier directives, which both synchronize

threads and flush the shared variables, guaranteeing a consistent view of memory

when checkpointing. Note that the inclusion of barriers in the checkpoint operation

can interfere with other barriers present in the application (including implicit ones

present in some OpenMP directives, such as the for directive). Those barriers

are thus replaced with a call to CPPC Barrier, a library routine that includes an

OpenMP barrier and a conditional call to the checkpoint routine. This strategy

enables those threads blocked in a CPPC Barrier call to generate checkpoint files

when a faster thread forces them to do so, therefore, avoiding possible deadlocks.

In contrast with MPI applications, the CPPC Do checkpoint call neither needs to

be placed in the same relative point of the code nor the checkpoint file dumping is

2.1 Checkpoint/Restart of OpenMP Applications 19

Figure 2.1: CPPC on OpenMP applications: coordinated checkpointing across
OpenMP threads initiated by fastest thread.

performed in the same iteration of the loop, e.g. a checkpoint call can be placed

in an OpenMP parallelized loop, in which each thread of the team runs a different

subset of the iterations in the loop.

CPPC optimizes the checkpoint operation by balancing the load of this opera-

tion among the threads running the application. Commonly, the shared state of an

OpenMP application corresponds with large variables that need to be included in

the checkpoint files, while most private variables are small and/or do not need to be

saved. CPPC reduces the checkpointing overhead by distributing both the manage-

ment and the dumping to stable storage of some of the shared variables among the

threads in the application. This strategy avoids bottlenecks due to the checkpoint-

ing of the shared variables, therefore, reducing the checkpointing overhead. For this

purpose, CPPC applies a heuristic analysis at runtime [84]. The heuristic can be

summarized as follows: 20% of the largest shared variables registered (larger than

1 MB) are distributed among the OpenMP threads executing the application only

when they represent more than 80% of the checkpointed data in bytes.

Support for parallelized loops with different scheduling types and for the reduc-

tion operations is added to the library. For more details about the CPPC extension

for OpenMP applications the reader is referred to [83, 84].

20 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

2.2. Checkpoint/Restart of Hybrid MPI-OpenMP

Applications

This section describes the modifications performed in CPPC to cope with fail-

stop failures in hybrid MPI-OpenMP applications [85]. In hybrid codes, checkpoints

can be located inside or outside an OpenMP parallel region. Many hybrid codes

present the optimal checkpoint location outside an OpenMP parallel region, and

thus, they can be adequately checkpointed just by treating them as regular MPI

programs. This is the case of those hybrid applications in which the most expensive

loop contains several OpenMP parallel regions, allowing the checkpoint call to be

placed between two of them. However, there are hybrid codes that do not follow

this pattern, and their most expensive loops—those in which a checkpoint should be

located to meet an adequate checkpoint frequency—are inside an OpenMP parallel

region. Thus, these codes cannot be treated as regular MPI or OpenMP programs.

To obtain the most general solution for the hybrid MPI-OpenMP programming

model, its specific characteristics must be studied.

As in OpenMP and in MPI applications, in hybrid MPI-OpenMP programs

checkpoints must be located at safe points. These safe points correspond with code

locations that verify the conditions applied both for MPI and OpenMP applications:

(1) safe points must be code locations where it is guaranteed that no inconsistencies

due to MPI messages may occur, and (2) safe points placed inside an OpenMP

parallel region must be reachable by all the threads in the team. The CPPC compiler

automatically detects the most costly loops and inserts a checkpoint call in the first

safe point of these loops. Both the relevant shared and private variables in the

application are identified by the CPPC liveness analysis for their inclusion in the

checkpoint files. Additionally, shared variables are distributed among the running

threads for minimizing the checkpointing overhead.

2.2.1. Coordination Protocol

To ensure data consistency when checkpointing hybrid applications, we need to

fulfill two conditions: (1) the state shared among the threads in one OpenMP team

cannot be modified while it is being saved by any of them, and (2) both the private

2.2 Checkpoint/Restart of Hybrid MPI-OpenMP Applications 21

Figure 2.2: CPPC on hybrid MPI-OpenMP applications: coordinated checkpointing
across OpenMP threads and uncoordinated across MPI processes.

and shared variables need to be consistently checkpointing. Thus, the proposal

applies a coordination protocol that ensures all threads in the same team checkpoint

at the same time. From the perspective of MPI communications, consistency is

guaranteed by the spatial coordination between teams of threads that is obtained

by the use of safe points. Therefore, the proposed solution, illustrated in Figure 2.2,

applies a coordinated checkpointing among the threads in the same OpenMP team,

while an uncoordinated checkpointing is applied among different teams of threads.

The CPPC coordination protocol for OpenMP applications forces all threads in

the same team to checkpoint at the same time. However, it cannot be used in hybrid

MPI-OpenMP codes because it can transform a safe point into an unsafe one. This is

the case of the example code shown in Figure 2.3, in which MPI communications are

performed by the master thread of each process. Using a checkpointing frequency

of 4 (a checkpoint file will be generated every four checkpoint calls), it is possible

to reach the scenario shown in Figure 2.4a, in which the fastest thread forces every

other thread within its team to take a checkpoint, breaking the spatial coordination

among the different teams of threads. In this case, if the application is recovered

22 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

1 [...]

2 #pragma omp parallel private(i,j) default(shared)

3 {

4 [...]

5 for(i=0;i<nIters;i++){/* Application main loop*/

6 CPPC Do checkpoint();

7 [...]

8 if(processRank ==0){

9 #pragma omp master

10 {

11 for(j=1;j<Nproc;j++){

12 MPI_Irecv([from process j]);

13 }

14 MPI_Waitall([Irecvs from process 1... Nproc]);

15 }

16 }else{

17 #pragma omp barrier

18 #pragma omp master

19 {

20 MPI_Send([to processRank 0]);

21 }

22 }

23 [...]

24 }

25 }

26 [...]

Figure 2.3: Example of a fault-tolerant code: OpenMP coordination protocol can
break the spatial coordination between the teams of threads in hybrid applications.

from checkpoint files in recovery line RL1, the master thread of process 0 will expect

to receive a message from process 1 that will never be sent, leading to an inconsistent

global state. Therefore, to guarantee global consistency when checkpointing hybrid

MPI-OpenMP applications, a new coordination protocol is implemented. In this

protocol, instead of bringing forward the checkpointing by the fastest thread in the

team, it is postponed. When the fastest thread determines that a checkpoint file

must be generated, it waits within the CPPC Do checkpoint routine until all other

threads in the same team also determine, according to the checkpointing frequency,

that a checkpoint file must be generated (as shown in Figure 2.4b). This strategy

may appear costly for those applications in which the threads from the same team

run asynchronously, because of the stalls in the fastest threads when checkpointing.

However, many times these stalls will not introduce extra overhead in the applica-

tion, as they only bring forward synchronizations further along in the execution.

2.2 Checkpoint/Restart of Hybrid MPI-OpenMP Applications 23

(a) OpenMP coordination protocol breaks spatial coordination between teams
of threads.

(b) New coordination protocol for hybrid applications preserving spatial coor-
dination.

Figure 2.4: Need for a new coordination protocol for hybrid MPI-OpenMP programs.

24 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

2.2.2. Restart Portability and Adaptability

This proposal enhances the portability features of CPPC. It does not only enable

applications to be restarted in machines with different architectures and/or operat-

ing systems, but it also allows building adaptable applications. The application-level

checkpointing and the portability of the state files, preserves the adaptability pro-

vided by OpenMP. This feature enables the restart process to adapt the number of

OpenMP running threads for the best exploitation of the available resources, i.e.,

using a number of threads per team different from that of the original run. The

CPPC instrumentation only maintains the original number of threads per team on

the parallel region in which the checkpoint files were generated (necessary for the re-

covery of the application state), while further parallel regions run with the updated

number of threads per team. This feature will be especially useful on heterogeneous

clusters, allowing the adaptation of the application to the available resources.

2.3. Experimental Evaluation

The experimental evaluation of the proposed solution with hybrid MPI-OpenMP

applications was performed at CESGA (Galicia Supercomputing Center, Spain) in

the FinisTerrae-II supercomputer. The hardware platform is detailed in Table 2.1.

The experiments were run spawning one MPI process per node and a team of 24

OpenMP threads per MPI process, thus, using one thread per core. Tests were

performed storing the checkpoint files in a remote disk (using Lustre over InfiniBand)

or in the local storage of the nodes (1TB SATA3 disk). The average runtimes of 5

executions are reported. The standard deviation is always below 3.5% of the original

runtimes.

The application testbed used is comprised of two different programs. The ASC

Sequoia Benchmark SPhot [5] is a physics package that implements a Monte Carlo

Scalar PHOTon transport code. SNAP is a proxy application from the NERSC-

8/Trinity benchmarks [94] to model the performance of a modern discrete ordinates

neutral particle transport application. The configuration parameters of the testbed

applications are shown in Table 2.2

2.3 Experimental Evaluation 25

Table 2.1: Hardware platform details.

Finisterrae II Supercomputer

Operating System Red Hat 6.7

Nodes 2x Intel Xeon E5-2680

2.50 GHz, 12 cores per processor

128 GB main memory

Network InfiniBand FDR@56Gb/s & Gigabit Ethernet

Local storage 1 TB SATA3 disk

Remote storage Lustre over InfiniBand

MPI Version Open MPI v1.10.1

GNU Compilers v5.3, optimization level O3

Table 2.2: Configuration parameters of the testbed applications.

Configuration parameters

SPhot NRUNS=3× 216

SNAP 219 cells, 32 groups & 400 angles

2.3.1. Operation Overhead in the Absence of Failures

In a failure-free scenario, two main sources of overhead can be distinguished: the

instrumentation of the code and the checkpoint operation overhead. The instru-

mentation overhead corresponds to the CPPC instrumented applications without

generating any checkpoint files. The checkpoint overhead is measured in the ex-

ecution of the CPPC instrumented versions generating one checkpoint file, and it

includes the instrumentation, the consistency protocol and the checkpoint file gen-

eration overheads.

Figure 2.5 presents the runtimes without checkpointing (but including the in-

strumentation overhead) and the runtimes when generating a checkpoint file in the

remote and in the local disk of the nodes for different number of cores. The aggre-

gated checkpoint file sizes (the addition of the checkpoint file sizes of every thread)

are also represented in the figure. In the experiments generating a checkpoint file,

the checkpointing frequency for each application is set so that only one checkpoint

file is generated when 75% of the computation is completed. Note that the mul-

tithreaded dumping implemented by CPPC is being used, thus, the checkpointed

data is dumped to disk in background. Both the instrumentation and checkpointing

26 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

96 192 384 768 1536 3072 6144 96 192 384 768 1536 3072 6144

0GB

25GB

50GB

75GB

100GB

T
im

e
 (

s
e
c
o
n
d
s
)

C
h

e
c
k
p

o
in

t
fi
le

 s
iz

e

Original runtime

Intrumentation runtime

Checkpointing runtime (remote disk)

Checkpointing runtime (local disk)

Aggregated checkpoint file size

45.54MB 178.8MB 711.8MB 2.8GB

50GB 50.01GB 50.02GB 50.09GB

89.96MB 356.5MB 1.4GB

50GB 50.01GB 50.05GB

SPhot SNAP

Figure 2.5: Runtimes for the testbed applications varying the number of cores.

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 60

96 19
2

38
4

76
8
15

36
30

72
61

44 96 19
2

38
4

76
8
15

36
30

72
61

44

T
im

e
 (

s
e

c
o

n
d

s
)

Instrumentation overhead

Standard deviation Average Value

SPhot SNAP

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 60

96 19
2

38
4

76
8
15

36
30

72
61

44 96 19
2

38
4

76
8
15

36
30

72
61

44

Checkpointing overhead (remote disk)

SPhot SNAP

−40

−30

−20

−10

 0

 10

 20

 30

 40

 50

 60

96 19
2

38
4

76
8
15

36
30

72
61

44 96 19
2

38
4

76
8
15

36
30

72
61

44

Checkpointing overhead (local disk)

SPhot SNAP

Figure 2.6: Absolute overheads varying the number of cores.

overheads are low. The instrumentation overhead is always below 0.7%. The maxi-

mum relative checkpointing overhead is 1.1% when checkpointing in the remote disk,

and 0.8% when using the local storage. Figure 2.6 shows the average and standard

deviation of the absolute overheads (in seconds), that is, the difference between the

original parallel runtimes and the parallel runtimes of each scenario presented in

Figure 2.5. Note that, when increasing the number of cores, the overheads do not

increase, and the variability of the results decreases. This proves the scalability of

the proposal, which applies a massively parallel checkpointing at software and hard-

ware level: a large number of threads checkpoint small contexts and checkpointing is

now spread over several processors/nodes/networks/switches/disks. In some experi-

2.3 Experimental Evaluation 27

 0

 20

 40

 60

 80

 100

 120

 140

 160

96 192 384 768 1536 3072 6144

T
im

e
 (

s
e

c
o

n
d

s
)

Synchronization protocol time

SPhot remote disk Snap remote disk SPhot local disk Snap local disk

0.0

0.5

1.0

1.5

2.0

2.5

3.0

96 192 384 768 1536 3072 6144

Checkpoint preparation time

0

5

10

15

20

25

96 192 384 768 1536 3072 6144

Background dumping time

Figure 2.7: CPPC checkpointing operations times varying the number of cores.

ments, the overhead takes negative values. The CPPC instrumentation modifies the

application code, thus, the optimizations applied by the compiler (and their benefit)

may differ.

Figure 2.7 presents the times of the CPPC checkpointing operations: the coor-

dination protocol, the checkpoint preparation, and the background dumping. First,

the coordination protocol time measures the time spent by the synchronization be-

tween the threads created by each process to guarantee checkpoint consistency, and

it is tightly tied to the application. For SNAP these times are negligible. On the

other hand, tests using a small number of processes in SPhot show higher protocol

times, due to the synchronization patterns between threads used in this application.

However, note that threads in hybrid MPI-OpenMP applications present synchro-

nizations at some point of their execution. In SPhot, the coordination protocol

brings forward synchronizations already present in the original application code,

and therefore, the protocol time is not translated into overhead. Moreover, in this

application, the synchronization times decrease as more cores are used because the

distribution of work among the processes and threads is more balanced when scal-

ing out. Secondly, the checkpoint preparation arranges the checkpointed data for

its dumping to disk, including the copy in memory of the data and the creation of

the auxiliary threads for the data background dumping. The checkpoint prepara-

tion times are consistent with the checkpoint files sizes. For SPhot, the aggregated

checkpoint file size increases with the number of processes because the individual

contribution of each process remains constant when scaling out. Thus, the check-

point preparation times remain constant for SPhot. On the other hand, for SNAP,

28 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

the application data is distributed among the processes. As such, the aggregated

checkpoint file size remains almost constant, and each individual checkpoint file size

decreases as more processes run the application. Therefore, the checkpoint prepa-

ration times for SNAP decrease with the number of processes, as each one of them

manages less data. Finally, the checkpointed data is dumped to disk in background

by the auxiliary threads. The background dumping times are also explained by the

checkpoint file sizes. The use of the multithreaded dumping implemented by CPPC

contributes to hide almost completely these dumping times.

2.3.2. Operation Overhead in the Presence of Failures

Figure 2.8 shows the reading and reconstructing times when restarting from

the checkpoint files generated when 75% of the computation is completed. The

reading phase includes identifying the most recent valid recovery line and reading the

checkpoint data into memory. The reconstructing phase includes all the necessary

operations to restore the application state and to position the application control

flow in the point in which the checkpoint files were generated. Both reading and

reconstructing times depend on the aggregated checkpoint file size. For SPhot, the

aggregated checkpoint file size increases with the number of processes, and thus both

the reading and reconstructing times slightly increase as more processes execute the

applications. On the other hand, the aggregated checkpoint file size for SNAP

remains almost constant when varying the number of running processes. Thus, as

more processes are used, reading and reconstructing times decrease.

Note that the reconstructing times for SPhot are sometimes larger than those

of SNAP, especially when scaling out the application. However, the aggregated

checkpoint file sizes are significantly larger for the SNAP application. These results

are explained by the use of the zero-blocks exclusion technique in CPPC [34]. This

technique avoids the dumping to disk of the memory blocks containing only zeros.

However, upon restart, these zero-blocks must be rebuilt. In SPhot, the zero-blocks

exclusion technique reduces the aggregated checkpoint file size from several tens of

gigabytes to less than 3 GB. Therefore, the reconstructing times are higher because

of the reconstruction of the zero-blocks.

2.3 Experimental Evaluation 29

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

96 192 384 768 1536 3072 6144 96 192 384 768 1536 3072 6144

0GB

25GB

50GB

75GB

100GB

T
im

e
 (

s
e
c
o
n
d
s
)

C
h

e
c
k
p

o
in

t
fi
le

 s
iz

e

Reading remote disk

Reconstructing remote disk

Reading local disk

Reconstructing local disk

Aggregated checkpoint file size

45.54MB 178.8MB 711.8MB 2.8GB

50GB 50.01GB 50.02GB 50.09GB

89.96MB 356.5MB 1.4GB

50GB 50.01GB 50.05GB

SPhot SNAP

Figure 2.8: CPPC restart operations times varying the number of cores.

2.3.3. Portability and Adaptability Benefits

The independence between the CPPC checkpoint files and the MPI implemen-

tation, the OpenMP implementation, the operating system, and the machine ar-

chitecture allows for restarting the execution in different machines. Furthermore,

the application-level approach, enables hybrid MPI-OpenMP applications to be

restarted varying the number of threads per process/team for the best exploitation

of the available resources. CPPC only maintains the original number of threads

during the reading and reconstructing phases, i.e., in the parallel region in which

the checkpoint files were generated. On heterogeneous clusters, applications can be

started in the available set of resources, to later continue their execution using a

more appropriate or powerful set of resources.

The experimental study of the restart on different machines was carried out in

a heterogeneous system. Figure 2.9 presents the computation nodes used and the

restart runtimes in both configurations. Tests were performed using the optimal

number of threads for each compute node (as many threads as cores) and the maxi-

mum number of nodes available, i.e., 4 computation nodes. The checkpoint files used

for restarting were generated on NODES#1 when 75% of the computation was com-

pleted in an NFS mounted directory. The restart runtimes include the full restart

execution, that is, the restart process (reading and reconstructing the application

30 Chapter 2. Application-level Checkpointing for Hybrid MPI-OpenMP Apps.

Nodes #0 (16 cores)

2x Intel E5-2660

2.20GHz, 8 cores, 64GB memory

Nodes #1 (6 cores)

1x Intel X5650 Westmere-EP

2.66GHz, 6 cores, 12GB memory

(a) Hardware platform details.

 0

 50

 100

 150

 200

 250

24 64
T

im
e

 (
s
e

c
o

n
d

s
)

Reading Reconstructing Computation

NODES#1 NODES#0

SPhot

 0

 50

 100

 150

 200

 250

24 64

NODES#1 NODES#0

SNAP

(b) Restart runtimes.

Figure 2.9: Recovery varying the computation nodes.

state), and the computation from the restart point to the end (25% of the total

execution in these experiments). SPhot was run setting the parameter NRUNS to

214 and SNAP processing 215 cells, 24 groups and 192 angles. For SPhot, restarting

in NODES#0 instead of using NODES#1 shows an improvement of 7.5%. This improve-

ment is low because most of the computation in this application is performed within

the parallel region in which the checkpoint is located, and thus CPPC maintains the

original number of threads in that parallel region. However, this is not the case for

SNAP, which can be fully adapted to the restart nodes and presents an improvement

of 43% when changing from NODES#1 to NODES#0.

2.4. Related Work

In the last decades, most of the research on fault tolerance for parallel applica-

tions has focused on the message-passing model and the distributed memory sys-

tems [13, 19, 30, 120, 121, 135]. Those solutions focused on the checkpointing of

shared-memory applications lack of portability, whether code portability (allowing

its use on different architectures) or checkpoint files portability (allowing to restart in

different machines). Hardware solutions, such as ReVive [104] and SafetyNet [119],

are platform dependent, as well as [41], which proposes a checkpointing library for

POSIX multithreaded programs. Other solutions generate non-portable checkpoint-

ing files that cannot be used for the restart in different machines, e.g., DMTCP [4]

2.5 Concluding Remarks 31

stores and recovers the entire user space, while C3 [23, 24] forces the checkpointed

data recovery at the same virtual address as in the original execution to achieve

pointer consistency. Additionally, Martsinkevich et al. [87] have focused on hybrid

MPI-OmpSs programs.

This work provides a portable and adaptable application-level checkpointing so-

lution for hybrid programs. The proposal allows the applications to be restarted on

different systems, with different architectures, operating systems and/or number of

cores, adapting the number of OpenMP threads accordingly.

2.5. Concluding Remarks

This chapter presented the extension of the CPPC checkpointing tool to cope

with hybrid MPI-OpenMP applications in supercomputing clusters. The proposal

provides a general application-level checkpointing approach for hybrid codes. Check-

point consistency is guaranteed by using an intra-node coordination protocol, while

inter-node coordination is avoided by performing a static analysis of communica-

tions. The proposal reduces network utilization and storage resources in order to

optimize the I/O cost of fault tolerance, while minimizing the checkpointing over-

head. In addition, the portability of the solution and the dynamic parallelism pro-

vided by OpenMP enable the restart of the applications on machines with different

architectures, operating systems and/or number of cores, adapting the number of

running OpenMP threads for the best exploitation of the available resources. The

experimental evaluation, using up to 6144 cores, shows the scalability of the proposed

approach with a negligible instrumentation overhead (<0.7%), and a low checkpoint-

ing overhead (below 1.1% when checkpointing in a remote disk and less than 0.8%

when using the local storage of the computation nodes). The restart experiments

using a different system architecture with a different number of cores confirm the

portability and adaptability of the proposal. This characteristic will allow improving

the use of available resources in heterogeneous cluster supercomputers.

Chapter 3

Application-level Checkpointing

for Heterogeneous Applications

Current HPC systems frequently include specialized accelerator devices such as

Xeon Phis or GPUs. Heterogeneous applications are those capable of exploiting

more than one type of computing system, taking advantage both from CPU cores

and accelerators. This chapter describes a checkpoint-based fault tolerance solu-

tion for heterogeneous applications. The proposed solution allows applications to

survive fail-stop failures in the host CPU or in any of the accelerators used. As

well, applications can be restarted changing the host CPU and/or the accelerator

device architecture, and adapting the computation to the number of devices avail-

able during recovery. This proposal is built combining the CPPC application-level

checkpointing tool, and the Heterogeneous Programming Library (HPL), a library

that facilitates the development of OpenCL-based applications.

This chapter is structured as follows. Section 3.1 comments upon the main

characteristics of HPL and heterogeneous computing. The proposed portable and

adaptable fault tolerance solution for heterogeneous applications is described in

Section 3.2. The experimental results are presented in Section 3.3. Section 3.4

covers the related work. Finally, Section 3.5 concludes the chapter.

33

34 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

3.1. Heterogeneous Computing using HPL

Heterogeneous systems have increased their popularity in recent years due to the

high performance and reduced energy consumption capabilities provided by using

devices such as GPUs or Xeon Phi accelerators. HPL [129], available under GPL

license at http://hpl.des.udc.es, is a C++ library for programming heteroge-

neous systems on top of OpenCL [66]. Among the large number of frameworks for

the development of applications that exploit heterogeneous devices, OpenCL is the

most widely supported and, thus, the one that provides the largest portability across

different device families.

Figure 3.1 depicts the general hardware model for heterogeneous computing pro-

vided by OpenCL. HPL supports this model, comprised of a host with a standard

CPU and memory, to which a number of computing devices are attached. The se-

quential portions of the application run on the host and they can only access its

memory. The parallel tasks are called kernels and they are expressed as functions

that run in the attached devices at the request of the host program. Each device

has one or more Processing Elements (PEs). All of the PEs in the same device

run the same code and can only operate on data found within the memory of the

associated device. PEs in different devices, however, can execute different pieces of

code. Thus, both data and task parallelism are supported. Also, in some devices

the PEs are organized into groups, called computing units in Figure 3.1, which may

share a small and fast scratchpad memory, called local memory.

Regarding the memory model, the devices have four kinds of memory. First, the

global memory is the largest one and can be both read and written by the host or

by any PE in the device. Second, a device may have a constant memory, which can

be set up by the host and it is read-only memory for its PEs. Third, there is a local

memory restricted to a single group of PEs. Finally, each PE in an accelerator has

private memory that neither the other PEs nor the host can access.

Since the device and host memories are separated, the inputs and outputs of

a kernel are specified by means of some of its arguments. The host program is

responsible for the memory allocations of these arguments in the memory of the

device. In addition, the host program must transfer the data between the host and

the device memory for the input arguments, and vice versa for the output arguments.

3.1 Heterogeneous Computing using HPL 35

Figure 3.1: OpenCL hardware model.

The HPL library provides three main components to users:

A template class Array that allows the definition of the variables that need to

be communicated between the host and the devices.

An API that allows inspecting the available devices and requesting the execu-

tion of kernels.

An API to express the kernels. Kernels can be written using a language em-

bedded in C++, which allows HPL to capture the computations requested

and build a binary for them that can run in the chosen device. Another possi-

bility is to use HPL as an OpenCL wrapper [130], enabling the use of kernels

written in native OpenCL C in a string, just as regular OpenCL programs do,

and thus, easing code reuse.

The data type Array<type, ndim[, memoryFlag]> is used to represent an ndim-

dimensional array of elements of the C++ type type, or a scalar for ndim=0. The

optional memoryFlag specifies one of the kinds of memory supported (Global, Local,

Constant, and Private). By default, the memory is global for variables declared in

the host and private for those defined inside the kernels. Variables that need to be

communicated between the host and the devices are declared as Constant or Global

Arrays in the host, while those local to the kernels can be declared Private inside

the kernels or Local both in the host and inside the kernels.

36 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

1 void kernel_1(Array <int , 1, Global > a1 ,/* INPUT */

2 Array <int , 1, Global > a2 ,/* INPUT */

3 Array <float , 1, Global > tmp ,/* OUTPUT */

4 Array <float , 1, Constant > b,/* INPUT */

5 Array <int , 0, Global > i);/* INPUT */

6

7 void kernel_2(Array <int , 1, Global > a2 ,/* OUTPUT */

8 Array <float , 1, Global > tmp ,/* INPUT */

9 Array <int , 1, Local > c,

10 Array <float , 1, Global > a3);/* INPUT&OUTPUT */

11

12 Array <int , 1, Global > a1(N), a2(N);

13 Array <float , 1, Global > a3(N), tmp(N);

14 Array <float , 1, Constant > b(M);

15 Array <int , 1, Local > c(M);

16

17 int main(int argc , char* argv[])

18 {

19 [...]

20 /* kernel_1 and kernel_2 are associated to their

21 OpenCL C kernels using the HPL API (not shown) */

22 [...]

23

24 for(i = 0; i < nIters; i++){

25 eval(kernel_1)(a1, a2, tmp , b, i);

26 eval(kernel_2)(a2, tmp , c, a3);

27 }

28

29 [...]

30 }

31 [...]

Figure 3.2: Example of an HPL application where two different kernels are invoked
nIters times.

Figure 3.2 shows an example of an HPL application. The host code invokes

the kernels with the HPL function eval, specifying with arguments the kernels

inputs and outputs. These arguments can be Arrays in global, constant or local

memory, as well as scalars. Global and Constant Arrays are initially stored only

in the host memory. When they are used as kernel arguments, the HPL runtime

transparently builds a buffer for each of them in the required device if that buffer

does not yet exist. Additionally, the library automatically performs the appropriate

data transfers to ensure that all the kernels inputs are in the devices memory before

their execution. Local Arrays can be also used as kernels arguments. In this case,

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 37

the appropriate buffers will be allocated in the devices, however, no data transfers

will be performed, as Local Arrays are invalidated between kernel runs. As for the

output arrays, necessarily in global memory, they are only copied to the host when

needed, for instance, when the Array data method is used. This method returns a

raw pointer to the array data in the host. When this method is called, HPL ensures

that the data in the host is consistent by checking if any device has modified the

array, and only in that case HPL transfers the newest version of the data from the

device to the host. In fact, HPL always applies a lazy copying policy to the kernels

arguments that ensures that transfers are only performed when they are actually

needed.

3.2. Portable and Adaptable Checkpoint/Restart

of Heterogeneous Applications

As mentioned in Chapter 1, applications using heterogeneous nodes display a

higher percentage of failures due to system errors, which also grow larger when scal-

ing. Thus, it is necessary to use fault tolerance mechanisms in HPC heterogeneous

applications to ensure the completion of their execution. This section describes

our proposal combining CPPC and HPL to obtain adaptable fault tolerant HPC

heterogeneous applications [80].

3.2.1. Design Decisions

From a fault tolerance perspective, heterogeneous applications can suffer failures

both in the main processor (host) or in the accelerators. The first design decision

is to determine the optimal location for the checkpoints, i.e., in which points of

the application code its state should be saved to stable storage. This proposal is

focused on long-running HPC heterogeneous applications to deal with fail-stop fail-

ures both in the host CPU and in the accelerator devices. The choice of a host-side

checkpointing (placing checkpoints in the host code between kernels invocations)

provides several performance, portability and adaptability benefits, further com-

mented in the remain of this section. Moreover, a host-side approach guarantees in

38 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

most practical situations an adequate checkpointing frequency because the execu-

tion times of kernels are not expected to exceed the Mean Time To Failure (MTTF)

of the underlying system. This expectation is based both on physical limitations

and on practical observations. Regarding the limitations, a very relevant one is that,

as can be seen in Table 3.2, which describes the hardware used in our evaluation,

accelerators usually have memories that are considerably smaller than those of reg-

ular multi-core servers. As a result, when huge computational loads are executed in

them, it is quite common to have to alternate stages of transfers to/from the host

memory with stages of kernel computation to be able to process all the data. As

for the practical observations, to analyze the typical kernel runtimes, we performed

an experimental evaluation of the most popular benchmark suites developed with

OpenCL: Rodinia [29], SHOC [37], and SNU-NPB [115]. Table 3.1 shows the re-

sults for the four most time-consuming applications in each benchmark suite. The

experiments took place in System#1, described in Table 3.2 of Section 3.3. Rodinia

benchmarks were executed using the default parameters, while in SHOC the largest

problem available (size 4) was used. Finally, in SUN-NPB the configuration used

was class B, as it was the largest problem that fits in the device memory. The

studied applications execute a large number of kernels whose maximum times range

from 0.32 milliseconds in application cfd to 4.1 seconds in CG, thus making host-side

checkpointing a very appropriate alternative.

The next step consists in studying which application data should be included in

the checkpoint files. The state of a heterogeneous application can be split into three

parts: the host private state, the devices private state (data in the local and private

memory of the accelerators), and the state shared among the host and the devices

(data in the global and constant memory of the accelerators, which may or may

not also be in the host memory). By locating checkpoints in the host code, only

the host private state and the shared state need to be included in the checkpoint

files. The fact that neither private nor local memory data of the devices need to be

checkpointed improves the performance of the proposal because smaller checkpoint

file sizes are obtained, a key factor for reducing the checkpoint overhead.

Also, the solution must guarantee the consistency of the checkpointed data.

During the execution of a heterogeneous application, computations performed in

the host and in the devices can overlap, as the host can launch several kernels

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 39

Table 3.1: Maximum kernel times (seconds) of the most time-consuming applications
from popular benchmarks suites for heterogeneous computing (test performed on
System#1 from Table 3.2).

Kernels characterization

Number of kernels Max. time (seconds)

Rodinia
benchmarks

default
parameters

cfd 14 004 0.000 32

streamcluster 4833 0.000 69

particlefilter 36 0.917 75

hybridsort 21 0.103 81

SHOC
benchmarks

size 4

SCAN 15 360 0.001 38

Spmv 10 000 0.003 20

MD 162 0.009 01

Stencil2D 22 044 0.003 18

SNUNPB
BENCHMARKS

CLASS B

CG 8076 4.108 87

FT 111 0.518 84

SP 5637 0.057 43

BT 3842 0.105 04

for their execution in the devices and continue with its own computation. Thus,

a consistency protocol is needed to ensure a successful restart upon failure. The

protocol must include synchronizations so that the kernels that may modify the data

included in the checkpoint files are finished before the checkpointing. In addition,

those checkpointed shared variables modified by the kernels must be transferred

back to the host memory.

Finally, further design decisions aim to improve the portability and adaptability

of the proposal in order to obtain a solution completely independent of the machine.

Therefore, this proposal can be employed to restart the applications using different

hosts and/or devices. The benefits of the migration to a different device architecture

may include performance, however, its main advantage is the fact that it enables

the execution to be completed when the original resources are no longer available

or, for instance, when the waiting time to access them is prohibitive.

As checkpointing back-end, the CPPC tool was chosen because of the portable

application-level approach it provides. The checkpoint files generated by CPPC

allow the restart on a different host, while their size is reduced by checkpointing

only the user-variables necessary for the recovery of the application, thus, reducing

40 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

the checkpointing overhead.

When placing the checkpoints in the host code, if a non-vendor specific het-

erogeneous framework is used, the application can be potentially recovered using

a different device architecture. Moreover, if the distribution of data and compu-

tation performed by the application is not tied to the number of devices available

at runtime, applications could be restarted adapting the computation to a different

number of devices. However, decoupling the distribution of data and computation

from the number of devices available at runtime can be a difficult task in some

applications. The high programmability of HPL simplifies the implementation of

programs in which the application data and computation is not tied to the available

devices at runtime. This, together with the fact that HPL is not tied to any specific

vendor, operating system or hardware platform, facilitates the implementation of a

fault tolerance solution that enables applications to be restarted using a different

device architecture and/or a different number of devices.

3.2.2. Implementation Details

While no modifications are performed in the HPL library to implement this

proposal, the CPPC tool is extended to cope with the particularities of HPL ap-

plications. Given an HPL program, the CPPC compiler automatically instruments

its code to add fault tolerance support by performing three major actions: insert-

ing checkpoints, registering the necessary host private variables or shared variables,

generating the appropriate consistency protocol routines, and identifying the non-

portable state recovery blocks.

First, the CPPC compiler identifies the most computationally expensive loops in

the host code by performing a heuristic computational load analysis [111] and the

CPPC Do checkpoint call is inserted at the beginning of the body of these loops,

in between kernel invocations. The most computationally expensive loops are those

that perform the core of the computation, and thus take the longest time to execute,

allowing the user to specify an adequate checkpointing frequency.

Once the checkpoints are located, the CPPC compiler automatically registers

the necessary data for the successful recovery of the application during restart. As

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 41

established by the design of the proposal, by locating checkpoints in the host code,

only the host private state and the shared state between host and devices need to

be included in the checkpoint files. The CPPC compiler analyses the host code

to identify which host private variables are alive when checkpointing, inserting the

appropriate calls to CPPC Register. The compiler is extended to cope with HPL

Array objects, identifying which of them correspond to shared variables alive when

checkpointing, and using the HPL data method to obtain a raw pointer to the data

to be registered.

Regarding data consistency, both the CPPC compiler and the CPPC library

have been extended. Now, the CPPC compiler automatically generates a con-

sistency protocol routine (CONSISTENCY <checkpoint number>) related to each

checkpoint call introduced in the application code. This routine performs the syn-

chronizations and data transfers required to ensure the consistency of the data in-

cluded in the checkpoint files. The consistency protocol routine works as a callback

function: it is passed as an argument to the new routine of the CPPC library

CPPC Consistency protocol ref so that, when a checkpoint call triggers a check-

point generation, the appropriate callback routine for the consistency protocol is

invoked. The protocol must ensure the consistency of those registered shared vari-

ables that are passed as arguments to the kernels. These potentially inconsistent

shared variables necessarily correspond with shared Arrays in global memory. The

consistency protocol routine is implemented by invoking the HPL data method on

those shared Arrays, which performs the necessary synchronizations and data trans-

fers. Moreover, both synchronizations and data transfers are only performed when

the host copy of the variable is inconsistent, otherwise, both operations are avoided,

thus, minimizing the consistency protocol overhead.

In order to preserve the portability features of both the checkpointing and the

heterogeneous framework back-ends, the CPPC compiler is extended to avoid the

inclusion in the checkpoint files of the non-portable state specific to heterogeneous

applications. Instead, such non-portable state is recovered by the re-execution of

those blocks of code responsible for its creation in the original execution. The CPPC

compiler identifies as non-portable state the setup of the available devices at runtime,

as well as the kernels’ definitions and compilations. As a result, the proposal is

completely independent of the machine, and applications can be restarted using

42 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

different hosts and/or devices.

Figure 3.3 highlights the instrumentation generated by the compiler for the HPL

application used as example in Section 3.1 (Figure 3.2). The CPPC compiler lo-

cates the checkpoint at the beginning of the main loop, generates the appropriate

registration calls for the live variables, and determines that the consistency protocol

must be applied only to the Arrays a2 and a3, as no other registered Array may be

modified by the kernels. HPL simplifies the application of the consistency protocol,

as the library automatically tracks at runtime the most recently updated copy of

a variable. For example, if OpenCL applications were targeted, there could exist

situations in which a compile-time analysis might not be able to detect which copy

of a shared variable is the most recent one. This is the case of variables that can

be modified both by the host and by the device/s depending on the values of other

variables. For example, if both the host and the device code modify a checkpointed

variable v1 depending of the value of another variable v2 and the value of v2 is not

known at compile-time, the compiler cannot know which copy of v1 is the valid one.

In that situation, to ensure correctness, the compiler would need to register both

the copy of the variable in the host memory and the copy in the device memory (as-

suming for simplicity that it is only used in one device), doubling the state included

in the checkpoint files and, thus, introducing more overhead when checkpointing.

HPL, instead, ensures that the correct copy of a shared variable is saved.

3.2.3. Restart Portability and Adaptability

As commented previously, the implementation of the proposal pays special at-

tention to the preservation of the portability features of both frameworks, allowing

applications to be restarted using different hosts and/or devices. Additionally, by

exploiting the high programmability of HPL via the instrumentation introduced by

CPPC, applications can be restarted using a different number of devices. Two types

of applications can be distinguished: pseudo-malleable applications and malleable

applications, the latter being able to fully adapt to a different number of devices at

restart time. The CPPC compiler inserts the same instrumentation for both types

of applications and it distinguishes one from another by activating a flag in the

instrumentation code. The distinction between pseudo-malleability and malleabil-

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 43

1 void kernel_1(Array <int , 1, Global > a1 ,/* INPUT */

2 Array <int , 1, Global > a2 ,/* INPUT */

3 Array <float , 1, Global > tmp ,/* OUTPUT */

4 Array <float , 1, Constant > b,/* INPUT */

5 Array <int , 0, Global > i);/* INPUT */

6 void kernel_2(Array <int , 1, Global > a2 ,/* OUTPUT */

7 Array <float , 1, Global > tmp ,/* INPUT */

8 Array <int , 1, Local > c,

9 Array <float , 1, Global > a3);/* INPUT&OUTPUT */

10

11 void CONSISTENCY 1(){
12 a1.data();a2.data();a3.data();

13 }
14

15 Array <int , 1, Global > a1(N), a2(N);

16 Array <float , 1, Global > a3(N), tmp(N);

17 Array <float , 1, Constant > b(M);

18 Array <int , 1, Local > c(M);

19

20 int main(int argc , char* argv[])

21 {

22 CPPC Init configuration();

23 CPPC Init state();

24 if (CPPC Jump next()) goto REGISTER BLOCK 1;

25 [...]

26 REGISTER BLOCK 1:

27 CPPC Register(&i, ...);

28 CPPC Register(a1.data(), ...);CPPC Register(a2.data(), ...);

29 CPPC Register(a3.data(), ...);CPPC Register(b.data(), ...);

30 if (CPPC Jump next()) goto RECOVERY BLOCK 1

31 [...]

32 RECOVERY BLOCK 1:

33 /* kernel_1 and kernel_2 are associated to their

34 OpenCL C kernels using the HPL API (not shown) */

35 CPPC Consistency protocol ref(&CONSISTENCY 1);

36 if (CPPC Jump next()) goto CKPT BLOCK 1;

37 [...]

38 for(i = 0; i < nIters; i++){

39 CKPT BLOCK 1:

40 CPPC Do checkpoint();

41 eval(kernel_1)(a1, a2, tmp , b, i);

42 eval(kernel_2)(a2, tmp , c, a3);

43 }

44 [...]

45 CPPC Shutdown();

46 }

Figure 3.3: Fault tolerance instrumentation of an HPL application.

44 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

ity depends on the dependencies between the application data and the number of

devices used, and whether or not they can be overcome. Figure 3.4 presents the

different cases that are studied in the following paragraphs.

Pseudo-malleable applications are those in which the distribution of data and/or

computation must be preserved when restarting, otherwise, the restart will not be

successful. The CPPC compiler determines that an application is pseudo-malleable

when any of the checkpointed variables has a dependency with the number of devices

available at runtime. For instance, in the example code shown in Figure 3.4a the

registered variable d has such a dependency. These applications can be restarted

using a larger or smaller number of physical devices but preserving the same number

of virtual devices. When fewer physical devices are used to recover the application,

some of them will have to perform extra computations. When using a larger number

of physical devices, some of them will not perform any computation. Thus, the

load balancing between devices is not optimal. As shown in Figure 3.5, the CPPC

compiler inserts the instrumentation to perform the following actions:

Saving and recovering the number of devices originally used by the application

(with the variable orig devices).

Setting the number of devices used to the original number when activating the

pseudomalleable flag.

Modifying all the references to particular devices to ensure they correspond

with a physical device by using the real devices variable.

At runtime, HPL transparently manages the data allocations and transfers into the

devices memory, releasing the CPPC instrumentation of this duty.

On the other hand, malleable applications are those which can be adapted to a

different number of devices during the restart, obtaining an optimal data and compu-

tation distribution while ensuring the correctness of the results. The CPPC compiler

identifies malleable applications when none of the registered variables presents de-

pendencies with the number of devices available at runtime. The high programma-

bility of HPL simplifies the implementation of malleable applications. A typical

pattern is shown in Figure 3.4b, in which an array of references v d is built from a

single unified image of the data, the array d. These references represent a particular

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 45

1 [...]

2 int num_devices = /* Available number of devices */

3 [...]

4 Array <int , 1, Global > d(num_devices*N);

5 [...]

6 for(j = 0; j < T; j++){

7 for(i = 0; i < num_devices; i++){

8 device = HPL:: Device(DEV_TYPE , i);

9 eval(kernel_1). device(device)(

10 d(Tuple(i*N, (i+1)*N -1)));

11 }

12 [...]

13 }

14 [...]

(a) Example code that can be instrumented for pseudo-malleability.

1 [...]

2 int num_devices = /* Available number of devices */

3 [...]

4 Array <int , 1, Global > d(N);

5 Array <int , 1, Global > * v_d[MAX_GPU_COUNT];

6 [...]

7 for(i = 0; i < num_devices; ++i){

8 /* Tuple builds HPL subarrays references */

9 v_d[i] = &d(Tuple(ini_p ,end_p));

10 }

11 [...]

12 for(j = 0; j < T; j++){

13 eval(kernel_1). device(v_devices)(v_d);

14 [...]

15 }

16 [...]

(b) Example code that can be instrumented for malleability.

Figure 3.4: Adaptability in heterogeneous applications.

distribution of data among the devices, which is actually performed by the eval

routine. As shown in Figure 3.6, the CPPC compiler registers the single unified

image of each array, which can then be split among an arbitrary different number of

devices when the application is restarted. Thus, the load balancing between devices

is optimal. The compiler includes the instrumentation used for pseudomalleable

applications, but now the pseudomalleable flag is deactivated.

To achieve both pseudo-malleability or malleability, the focus is only on check-

46 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

1 [...]

2 int pseudomalleable=1;

3 int num_devices = /* Available number of devices */

4 int real devices=num devices;

5 int orig devices=num devices;

6 [...]

7

8 REGISTER BLOCK 1:

9 /* Register/Recover original number of devices */

10 CPPC Register(&orig devices,[...]);

11 if(CPPC Jump next() && (pseudomalleable==1)){
12 /* Force same number of devices during restart */

13 num devices=orig devices;

14 }
15

16 Array <int , 1, Global > d(num_devices*N);

17

18 CPPC Register(&j, ...);

19 CPPC Register(d.data(),[...]);

20 if (CPPC Jump next()) goto RECOVERY BLOCK 1

21 [...]

22

23 RECOVERY BLOCK 1:

24 /* kernel_1 is associated to its OpenCL C

25 kernel using the HPL API (not shown) */

26

27 CPPC Consistency protocol ref(&CONSISTENCY ROUTINE);

28

29 /* Array data has been recovered and its size */

30 /* is dependent on num devices*/

31

32 if (CPPC Jump next()) goto CKPT BLOCK 1;

33 [...]

34 for(j = 0; j < T; j++){

35 CKPT BLOCK 1:

36 CPPC Do checkpoint();

37 for(i = 0; i < num_devices; i++){

38 device = HPL:: Device(DEV_TYPE , i%real devices);

39 eval(kernel_1). device(device)(

40 d(Tuple(i*N, (i+1)*N -1)));

41 }

42 [...]

43 }

44 [...]

Figure 3.5: Automatic instrumentation of pseudo-malleable applications.

3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications 47

1 [...]

2 int pseudomalleable=0;

3 int num_devices = /* Available number of devices */

4 int real devices=num devices;

5 int orig devices=num devices;

6 [...]

7

8 REGISTER BLOCK 1:

9 /* Register/Recover original number of devices */

10 CPPC Register(&orig devices,[...]);

11 if(CPPC Jump next() && (pseudomalleable==1)){
12 /* Force same number of devices during restart */

13 num devices=orig devices;

14 }
15

16 Array <int , 1, Global > d(N);

17 Array <int , 1, Global > * v_d[MAX_GPU_COUNT];

18 CPPC Register(&j, ...);

19 CPPC Register(d.data(),[...]);

20 if (CPPC Jump next()) goto RECOVERY BLOCK 1

21 [...]

22

23 RECOVERY BLOCK 1:

24 /* kernel_1 is associated to its OpenCL C

25 kernel using the HPL API (not shown) */

26

27 CPPC Consistency protocol ref(&CONSISTENCY ROUTINE);

28

29 /* Block of code re-executed upon restart */

30 for(i = 0; i < num_devices; ++i){

31 /* Tuple builds HPL subarrays references */

32 v_d[i%real devices] = &d(Tuple(ini_p ,end_p));

33 }

34

35 if (CPPC Jump next()) goto CKPT BLOCK 1;

36 [...]

37

38 for(j = 0; j < T; j++){

39 CKPT BLOCK 1:

40 CPPC Do checkpoint();

41 eval(kernel_1). device(v_devices)(v_d);

42 [...]

43 }

44 [...]

Figure 3.6: Automatic instrumentation of malleable applications.

48 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

pointed variables, as any other data dependency with the number of available devices

can be solved through regeneration by means of re-execution of code. Note that,

although the adaptability of an application when its execution starts is a feature of

HPL, the adaptability achieved during the restart operation is exclusively enabled by

the design and implementation decisions presented in this section. The contributions

to support adaptability can be summarized in three main points. First, applications

are analyzed to determine how they should be modified to be restarted in different

device architectures and different numbers of devices. Second, CPPC is extended to

make the required changes in the source codes. Third, as the restarted code must be

executed in a different way depending whether the application is pseudo-malleable

or malleable, an algorithm to detect the kind of adaptability of the application is

designed and implemented in the CPPC compiler.

3.3. Experimental Evaluation

The experiments presented in this section took place in the hardware described

in Table 3.2. The first system has two GPUs and it is used for the experiments

in Sections 3.3.1 and 3.3.2, while all the systems are used in Section 3.3.3 to show

the portability and adaptability of the solution. The tests were performed writing

and reading the checkpoint files from the local storage of the node (SATA magnetic

disks). The CPPC version used was 0.8.1, working in tandem with HDF5 v1.8.11.

The GNU compiler v4.7.2 was used with optimization level O3 in systems #1 and

#2, while Apple LLVM version 7.3.0 (clang-703.0.31) is used in system#3. Each

result presented in this section corresponds to the average of 15 executions.

The application testbed used, summarized in Table 3.3, is comprised of seven

applications already implemented in HPL by our research group: three single-device

applications (FT, Floyd, Spmv) and four multi-device applications (FTMD, Summa,

MGMD, and Shwa1ls). Spmv is a benchmark of the SHOC Benchmarks suite [37].

Floyd is from the AMD APP SDK. FT, FTMD, and MGMD are benchmarks of the

SNU NPB suite [115]. Summa implements the algorithm for matrix multiplication

described in [128]. Finally, Shwa1ls is a real application that performs a shallow

water simulation parallelized for multiple GPUs in [131]. Most of the experimental

results shown in this section were carried out using Shwa1ls-Short configuration,

3.3 Experimental Evaluation 49

Table 3.2: Hardware platform details.

System#1 System#2 System#3

H
o
st

Operating system CentOS 6.7 CentOS 6.7 MacOS X 10.11

Processor 2x Intel E5-2660 2x Intel E5-2660 Intel I7-3770

Frequency GHz 2.20 2.20 3.4

#Cores 8 (16 HT) 8 (16 HT) 4 (8 HT)

Mem. capacity GB 64 64 16

Mem. bandwidthGB/s 51.2 51.2 25.6

Compilers GNU v4.7.2,
optimization O3

GNU v4.7.2,
optimization O3

LLVM v7.3.0
(clang-703.0.31)

D
e
v
ic
e

Processor Nvidia K20m Xeon PHI 5110P Nvidia GeForce
GTX 675MX

Frequency GHz 0.705 1.053 0.6

#Cores 2496 60 (240 HT) 960

Mem. capacity GB 5 8 1

Mem. bandwidth GB/s 208 320 115.2

Driver NVIDIA 325.15 Intel OpenCL 4.5.0.8 NVIDIA 310.42

Table 3.3: Testbed benchmarks description and original runtimes.

Benchmark description N.GPUs Runtime (seconds)

S
in
g
l
e
d
e
v
ic
e FT Fourier Transform

Class B
1 43.31

Floyd Floyd-Warshall algorithm
on 214 nodes

1 260.64

Spmv Sparse matrix-vector product
215rows, 1e4 iters

1 153.14

M
u
lt

id
e
v
ic
e

FTMD Fourier Transform
Class B

1 51.27

2 34.58

Summa Matrix multiplication
NxN, N=213

1 45.50

2 26.20

MGMD Multi-Grid
Class B

1 26.45

2 20.06

Shwa1ls
Short

Simulation of a contaminant
1 week, 400x400 cell mesh

1 271.48

2 238.03

Shwa1ls
Large

Simulation of a contaminant
6 week, 800x800 cell mesh

1 10 203.89

2 6515.67

since it presents a reasonable execution time to carry out exhaustive experiments.

However, some of the experiments have also been conducted using the Shwa1ls-Large

configuration, so as to show the impact of the checkpointing operation in a long-

running application. The original runtimes of the testbed benchmarks on system#1

50 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

Table 3.4: Testbed benchmarks characterization.

Kernels Global buff. Local buff.

#
G
P
U

Number

of calls

Longest

Kernel (s)

Size
(MB)

Size
(B)

App.*
data
ratio

S
in
g
l
e
d
e
v
ic
e FT 1 8 111 0.637 57 10 2307 1 512 0.64

Floyd 1 1 16 384 0.019 59 3 2048 0 0 0.60

Spmv 1 1 10 000 0.013 69 6 410 1 512 1.00

M
u
lt

id
e
v
ic
e

FTMD
1 17 156 0.491 46 22 2560 1 736 0.80

2 17 312 0.246 30 22 3072 1 736 0.80

Summa
1 1 8 4.973 66 14 1536 2 256 0.92

2 1 64 0.619 72 50 1536 8 512 0.92

MGMD
1 43 5623 6.508 12 25 456 2 16 0.57

2 43 17 182 3.255 74 25 466 4 32 0.57

Shwa1ls
Short

1 3 3 356 465 0.000 24 17 17 1 256 0.68

2 3 6 712 930 0.000 25 23 17 2 256 0.81

Shwa1ls
Large

1 3 40 327 770 0.000 83 17 68 1 256 0.68

2 3 80 655 540 0.000 72 23 68 2 256 0.81

*Application data ratio calculated as InputData+OutputData
InputData+OutputData+IntermediateData

are shown in Table 3.3, and, on average, they are only 0.4% slower than their native

OpenCL equivalents. Table 3.4 further characterizes the testbed heterogeneous ap-

plications. Regarding the kernels, it shows the number of kernel functions, the total

number of invocations to the kernels, and the execution time of the longest kernel

in the application. Additionally, the table presents how many buffers in global and

local memory are used (showing both the number and their total size), and the

overall ratio between the application data inputs and outputs and the intermediate

results. As can be seen in the table, the testbed applications cover a wide range of

scenarios.

3.3 Experimental Evaluation 51

3.3.1. Operation Overhead in the Absence of Failures

Table 3.5 analyses the instrumentation and checkpoint overheads. First, the orig-

inal runtimes (in seconds) are presented. Then, both the instrumentation overhead

absolute value (the difference with the original runtimes, in seconds) and relative

value (that difference normalized with respect to the original times, in percentage)

are shown. The instrumentation overhead is negligible, always below a few seconds.

In the application Summa running on two GPUs, the instrumentation overhead is

negative, explained by the optimizations applied by the GNU compiler. Regarding

the checkpoint overhead, in all the experiments the dumping frequency is set to

take a single checkpoint when 75% of the computation has been completed, as this

accounts for an adequate checkpointing frequency given the testbed applications

runtimes. In order to assess the performance as well in long-running applications

where more checkpoints would have to be done during a normal execution, we also

show results for the Shwa1ls-Large application, where 10 checkpoint files (one every

17 minutes when using one GPU and one every 11 minutes when using 2 GPUs) are

performed.

Table 3.5 also presents, for each experiment, the number of checkpoints taken,

and their frequency, i.e., every how many iterations of the most computationally

expensive loop a checkpoint file is generated, as well as the absolute and relative

values of the checkpoint overhead. Note that the checkpointing overhead includes

both the cost of the instrumentation and the cost of taking as many checkpoints as

specified in the table. In addition to this, the times of the actions performed when a

single checkpoint is taken, as well as the checkpoint file size, are included in the table

under the title “Checkpoint operation analysis”. Figure 3.7 presents a summary of

this information: the runtimes when generating one checkpoint file are normalized

with respect to the original runtimes of each application. In addition, both the

consistency protocol and the checkpoint file generation times are highlighted.

The total overhead introduced in the applications when checkpointing is small.

Its absolute value ranges from a minimum of 0.78 seconds for Shwa1ls running on

one GPU and generating a 5.96 MB checkpoint file, to a maximum value of 6.03

seconds for Floyd when saving 2 GB of data. The checkpoint file generation overhead

includes the state management operations, the copy in memory of the data, and the

52
C

h
ap

ter
3.

A
p
p
lication

-level
C

h
eck

p
oin

tin
g

for
H

eterogen
eou

s
A

p
p
lication

s
Table 3.5: Instrumentation and checkpoint overhead analysis for the testbed benchmarks.

N
.G

P
U

Original

runtime

Instrum.

overhead∗1
Checkpoints

taken∗2
Checkpoint

overhead∗1
Checkpoint operation analysis

Consistency

protocol(s)

Checkpoint

generat.(s)

File size

(MB)(s) ∆(s) [%] # N ∆(s) [%]

S
in
g
l
e
d
e
v
ic
e FT 1 43.31 0.65 1.5 1 15 2.56 5.9 0.140 1.835 769.54

Floyd 1 260.64 0.31 0.12 1 12 288 6.03 2.32 4.323 4.878 2048.02

Spmv 1 153.14 0.18 0.12 1 7500 1.95 1.27 3.320 0.980 410.15

M
u
lt

id
e
v
ic
e

FTMD
1 51.27 0.98 1.91 1 15 2.74 5.34 0.138 1.823 768.04

2 34.58 0.58 1.67 1 15 1.79 5.17 0.145 1.827 768.04

Summa
1 45.50 0.26 0.57 1 3 4.08 8.97 5.101 3.665 1536.07

2 26.20 −0.09 −0.35 1 12 4.21 16.06 0.768 3.660 1536.10

MGMD
1 26.45 0.55 2.08 1 15 1.77 6.71 0.513 1.072 300.78

2 20.06 0.74 3.7 1 15 1.8 8.98 0.130 1.085 303.53

Shwa1ls

Short

1 271.48 0.78 0.29 1 503 470 0.78 0.29 0.003 0.022 5.96

2 238.03 0.98 0.41 1 503 470 1.04 0.44 0.003 0.022 5.96

Shwa1ls

Large

1 10 203.89 1.18 0.01 10 733 236 2.61 0.03 0.010 0.077 21.42

2 6567.82 1.39 0.02 10 733 236 2.33 0.04 0.013 0.082 21.41

∗1) ∆(s): absolute overhead in seconds. [%]: relative overhead with respect to the original runtimes.

∗2) #: Total number of Checkpoints taken. N: Checkpointing frequency, iterations between checkpoints.

3.3 Experimental Evaluation 53

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

N
o

rm
a
liz

e
d
 t
im

e

1 checkpoint taken

Consistency protocol time

Checkpoint file generation time

FT Floyd Spmv FTMD Summa MGMD Shwa1ls
Short

1
G

P
U

1
G

P
U

1
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

Checkpoint file size

2.00GB

768.04MB

1.50GB

300.78MB
5.96MB

769.54MB
410.15MB

768.04MB

1.50GB

303.53MB
5.96MB

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

C
h
e
c
k
p
o
in

t
fi
le

 s
iz

e

10 checkpoints
taken

Shwa1ls
Large

1
G

P
U

2
G

P
U

21.42MB
21.41MB

Figure 3.7: Checkpointing runtimes normalized with respect to the original runtimes
for the testbed benchmarks.

creation of a thread to dump the data to disk. The actual dumping to disk is

performed by the multithreaded dumping of CPPC in background, overlapping the

checkpoint file writing to disk with the computation of the application. As can

be observed, the checkpoint file generation overhead heavily depends on the size of

the checkpoint files. Besides, the impact of this overhead obviously depends on the

original application runtime.

Regarding the consistency protocol times, they are inherently dependent on the

application. These times are the addition of the time spent in the synchronizations

and the data transfers performed by the protocol. For the applications Floyd, Spmv

and Summa, the absolute checkpoint overhead is lower than the addition of the

consistency protocol and checkpoint file generation times. This situation can also

be observed in Figure 3.7, where the consistency protocol is represented below the

value 1 for those applications. This occurs because some operations in the original

application take slightly less time when a checkpoint file is generated, due to the syn-

chronizations performed by the consistency protocol. In Floyd, experimental results

show that these synchronizations reduce the time spent by OpenCL, used as back-

54 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

end by HPL, in some inner operations. In Summa and Spmv these synchronizations

reduce the time spent in synchronizations that exist further along in the original

application code. This situation can happen quite frequently, since heterogeneous

applications present synchronizations at some point of their execution.

3.3.2. Operation Overhead in the Presence of Failures

The restart overhead plays a fundamental role in the global execution time when

failures arise. The restart process includes all the operations required to reach the

point where the checkpoint file was generated. It can be broken down into two

parts: reading the checkpoint file and positioning in the application. In heteroge-

neous applications, the positioning overhead can be split in the host and the devices

positioning. The host positioning is determined by the operations that must be

re-executed in the host during the restart and by the state that must be moved to

the proper memory location. The devices positioning is the set-up of the devices,

including the kernels compilation and the transfers of the recovery data to their

memory. Figure 3.8 shows the original runtimes without fault tolerance support

(left bars) and the restart runtimes when the applications are recovered from a fail-

ure using the checkpoint files generated when the application has completed 75% of

its computation (right bars). These times include all the costs: the restart overhead

(reading and positioning) and the application computation from the restart point

to the end (25% of the total execution in these experiments).

Note that the restart overhead is always below 25 seconds, the positioning over-

head being at most 3 seconds. Thus, the restart overhead is mainly determined by

the reading phase, which is related to the checkpoint file sizes. Only in Shwa1ls the

positioning times represent a larger percentage of the restart overhead, due to the

small checkpoint file size of this application. In some applications the reading phase

has a high impact due to the short runtimes, making the restart runtime close to the

original runtime. However, restarting the application from a previous checkpoint is

always better than starting it from the beginning of the computation, and the ben-

efits of including fault tolerance mechanisms in long-running HPC heterogeneous

applications will be unquestionable.

3.3 Experimental Evaluation 55

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

T
im

e
 (

s
e

c
o

n
d

s
)

C
h

e
c
k
p

o
in

t
fi
le

 s
iz

e

Original runtime

Checkpoint file size

Reading time

Host positioning time

Devices positioning time

Computation time

260.63
153.13

271.47
238.02

FT Floyd Spmv FTMD Summa MGMD Shwa1ls
Short

1
G

P
U

1
G

P
U

1
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

2.00GB

768.04MB

1.50GB

300.78MB
5.96MB

769.54MB

410.15MB

768.04MB

1.50GB

303.53MB
5.96MB

Figure 3.8: Original runtimes and restart runtimes on the same hardware for the
testbed benchmarks.

3.3.3. Portability and Adaptability Benefits

The restart experiments presented in the previous subsection recovered the ap-

plication using the same host and devices available during the original execution.

This subsection presents the results when restarting using a different host or de-

vice architecture and/or a different number of devices. All the systems described in

Table 3.2 will now be used.

Figure 3.9 shows the restart runtimes when recovering the applications using the

same host and different devices: the same GPUs, Xeon Phi accelerators, and the

CPU. The checkpoint file sizes are also shown. The devices positioning times vary

with the device architecture, as the kernels compilation times are larger when using

the Intel OpenCL driver in the Xeon Phi and CPU experiments. The computation

times on the different devices are consistent with the original runtimes in the same

device. For instance, in Spmv the original runtime is larger when using a GPU than

when using a Xeon Phi accelerator, thus, the same tendency can be observed in the

restart runtimes.

56 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1
G

P
U

1
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

2
G

P
U

2
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

2
G

P
U

2
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

2
G

P
U

2
X

P
h

i
2

C
P

U

1
G

P
U

1
X

P
h

i
2

C
P

U

2
G

P
U

2
X

P
h

i
2

C
P

U

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

T
im

e
 (

s
e

c
o

n
d

s
)

C
h

e
c
k
p

o
in

t
fi
le

 s
iz

e

Restart
devices

Original
devices

Reading time

Host positioning time

Devices positioning time

Computation time

299.71
364.73

321.35

190.42
318.08

319.06

Checkpoint file size

2.00GB

768.04MB

1.50GB

300.78MB
5.96MB

769.54MB

410.15MB

768.04MB

1.50GB

303.53MB
5.96MB

FT Floyd Spmv FTMD Summa MGMD Shwa1ls
Short

1GPU 1GPU 1GPU 1GPU 2GPU 1GPU 2GPU 1GPU 2GPU 1GPU 2GPU

Figure 3.9: Restart runtimes for the testbed benchmarks on different device archi-
tectures.

Figure 3.10 presents the restart runtimes when using a number of GPUs that

is different from the one used in the execution where the checkpoint files were gen-

erated. In our testbed benchmarks, Summa and MGMD are pseudo-malleable ap-

plications, while FTMD and Shwa1ls are fully malleable applications. As can be

observed, it is possible to restart all the applications using a larger or a smaller num-

ber of devices. Besides, the restart runtimes of the malleable applications (FTMD

and Shwa1ls) are not conditioned by the number of devices used for the checkpoint

file generation, and, instead, these times are only influenced by the number of de-

vices used during the restart execution, as an optimal distribution among them is

performed.

Finally, Figure 3.11 shows the restart times when the application Shwa1ls is

recovered in system#3 and system#1 from the checkpoint files generated in sys-

tem#3. In this scenario, the application is restarted using a different host with a

different operating system, a different device architecture and a different number

of devices, demonstrating the portability and adaptability benefits of the proposal.

The combination of CPPC and HPL allows applications to continue the execution

3.3 Experimental Evaluation 57

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

1
G

P
U

2
G

P
U

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

T
im

e
 (

s
e

c
o

n
d

s
)

C
h

e
c
k
p

o
in

t
fi
le

 s
iz

e

Restart
devices

Original
devices

Reading time

Host positioning time

Devices positioning time

Computation time

Checkpoint file size

768.04MB

1.50GB

303.53MB
5.96MB

768.04MB

1.50GB

300.78MB
5.96MB

FTMD Summa MGMD Shwa1ls
Short

1GPU 2GPU 1GPU 2GPU 1GPU 2GPU 1GPU 2GPU

Figure 3.10: Restart runtimes for the testbed benchmarks using a different number
of GPUs.

 0

 100

 200

 300

 400

 500

SYSTEM#3

1GPU
SYSTEM#1

1GPU
SYSTEM#1

2GPU

0.0GB

0.5GB

1.0GB

1.5GB

T
im

e
 (

s
e
c
o
n
d
s
)

C
h
e
c
k
p
o
in

t
fi
le

 s
iz

e

Restart
system

Original
system

Reading time

Host positioning time

Devices positioning time

Computation time

Checkpoint file size

5.96MB

5.96MB 5.96MB

SYSTEM#3

1GPU

Figure 3.11: Restart runtimes for Shwa1ls using a different host, a different number
and architecture of devices, and a different operating system.

58 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

after a failure occurs in one or several of the running devices, and/or in the host

CPUs. In addition, in heterogeneous cluster systems, the proposed solution allows

any application to start its execution using the available devices, even without using

any accelerators at all, and to later continue its execution using a more appropriate

set of devices, or vice-versa, depending on the availability of resources in the cluster.

3.4. Related Work

Fault tolerance for heterogeneous parallel applications is a very active research

topic with many approaches published in the last years. Approaches exist based

on Algorithm-Based Fault Tolerance (ABFT), in which extra information in the

application is used to check the results for errors. Such a solution is presented in

A-ABFT [21], which describes an ABFT proposal for matrix operations on GPUs.

However, these solutions are highly specific for each particular application and al-

gorithm.

More generic solutions are based on checkpointing. On the one hand, solutions

exist that have focused on detecting soft errors, which usually do not result in a fail-

stop error but cause a data corruption. A solution of this kind is VOCL-FT [100],

which combines ECC error checking, logging of OpenCL inputs and commands, and

checkpointing for correcting those ECC errors in the device memory that cannot be

corrected by the device. On the other hand, the following paragraphs comment on

other proposals that, like the one presented in this paper, are focused on fail-stop

failures.

Bautista et al. [11] propose a user-level diskless checkpointing using Reed-Solomon

encoding for CPU-GPU applications. The checkpointing frequency is determined by

the data transfers in the host code. When the CUDA kernels and the data transfers

are finished, an application-level strategy checkpoints the host memory. The main

drawback of diskless checkpointing is its large memory requirements. As such, this

scheme is only adequate for applications with a relatively small memory footprint

at checkpoint. Besides, some GPU applications postpone the data transfers until

the end of the execution, which will be translated in an unsuitable checkpointing

frequency.

3.4 Related Work 59

CheCUDA [124] and CheCL [123] are checkpointing tools for CUDA and OpenCL

applications, respectively. Both are implemented as add-on packages of BLCR [55],

a system-level checkpoint/restart implementation for Linux clusters. Checkpointing

is triggered by POSIX signals: after receiving the signal, in the next synchronization

between the host and the devices, the user data from the device memory is trans-

ferred to the host memory, and the host memory is checkpointed using BLCR. Also,

both use wrapper functions to log the CUDA or OpenCL calls, in order to enable

their re-execution during the restart process. CheCUDA requires no CUDA context

to exist when checkpointing, as otherwise BLCR fails to restart. For this reason,

the context is destroyed before every checkpoint and recreated afterwards, as well

as during the restart process, using the log of CUDA calls. In CheCL a different

strategy is used. The OpenCL application is executed by at least two processes: an

application process and an API proxy. The API proxy is an OpenCL process and

the devices are mapped to its memory space, allowing the application process to be

safely checkpointable.

NVCR [95] uses a protocol similar to CheCUDA, however, it supports CUDA

applications developed using the CUDA driver API and CUDA runtime API , with-

out the need to recompile the application code. NVCR uses wrapper functions to

log the CUDA calls. It is also based in BLCR, thus, as in CheCUDA, all CUDA

resources have to be released before every checkpoint and recreated afterwards, as

well as during the restart process, using a replay strategy to re-execute the CUDA

calls from the log. However, the replay during the restart process relays on the real-

location of the memory chunks at the same address as before checkpointing, which

is not guaranteed by NVIDIA and could not work correctly in certain environments.

Laosooksathit et al. [71] model and perform simulations to estimate the perfor-

mance of checkpoints relying on virtualization and CUDA streams that are applied

at synchronization points under the control of a model, but they offer no actual

implementations.

HeteroCheckpoint [63] presents a CPU-GPU checkpointing mechanism using

non-volatile memory (NVM). The application is instrumented by the programmer,

explicitly indicating where and when a checkpoint is taken and which CUDA vari-

ables need to be checkpointed. CUDA streams are used to enable parallel data

movement and the programmer can specify which CUDA variables are not modi-

60 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

fied in the kernels executed before a checkpoint, allowing variables to be pre-copied

before a checkpoint starts. Also, redundant data between two checkpoints, as in

an incremental checkpointing, do not cause unnecessary data transfers. In this pro-

posal, when checkpointing, the host and the device are synchronized, and data is

transferred from the device memory to the NVM via the host memory.

Snapify [108] is a specific solution for Xeon Phi accelerators. It is a transpar-

ent, coordinated approach to take consistent snapshots of the host and coprocessor

processes of Xeon Phi offload applications. It is based on BLCR and it applies a

device-side checkpointing taking into account the data private to an offload process

and dealing with the distributed states of the processes that conform the offload

application. When the host receives a checkpoint signal, it pauses the offload ap-

plication, drains all the communication channels, captures a snapshot of the offload

processes and the host, and resumes the execution. Snapify can be used for check-

point and restart, process migration, and process swapping.

Table 3.6 summarizes the main features of the fail-stop checkpoint-based solu-

tions commented above, specifying: the supported devices, the checkpointing gran-

ularity (application level vs. system-level) and frequency, and whether the restart

process is portable (can take place in a different machine, using both different host

and devices) and adaptable (can take place using a different number of accelerator

devices). Most of the proposals are focused on CUDA applications, which restricts

them to GPUs from a specific vendor. Five of them use a system-level approach.

System-level checkpointing simplifies the implementation of a transparent solution,

in which no effort from users is needed to obtain fault tolerance support, however, it

results in larger checkpoint files and, thus, in larger overhead introduced in the appli-

cation. Moreover, system-level checkpointing binds the restart process to the same

host, thus, the restart will not be possible on different host architectures and/or

operating systems, as the checkpoint files may contain non-portable host state. Fur-

thermore, to allow the successful checkpointing of the application, the system-level

strategy forces the use of an API proxy in CheCL, or the destruction and recon-

struction of the devices context every time a checkpoint is taken in CheCUDA and

NVCR, which have a negative influence in the checkpointing overhead.

The solution presented in this work targets HPL applications, based on OpenCL.

Thus, this proposal is not tied to a specific device architecture or vendor. By com-

3.4 Related Work 61

Table 3.6: Related work overview.

Suported

devices
Checkpointing strategy Restart

N
v
id
ia

X
e
o
n
P
h
i

G
e
n
e
r
ic

Granularity Frequency

P
o
r
t
a
b
l
e

A
d
a
p
t
a
b
l
e

Bautista
et al. [11]

X Application
level

Timer decides when data
transfer originates ckpt

CheCUDA [124] X System level
(BLCR [55])

Signal triggers ckpt in
next host-devs synchro.

CheCL [123] X System level
(BLCR [55])

Signal triggers ckpt in
next host-devs synchro.

NVCR [95] X System level
(BLCR [55])

Signal triggers
checkpoint

Laosooksathit
et al. [71]

X System level
(VCCP [96])

In kernels at synchros.
chosen by a model

HeteroCkpt [63] X Application
level

Indicated by the
user in the host code

Snapify [108] X System level
(BLCR [55])

Signal triggers
checkpoint

Proposal:
CPPC+HPL

X Application
level

User-defined freq. at
points chosen by the tool

X X

bining an OpenCL back-end and a host-side checkpointing strategy, the approach

provides several advantages to the checkpoint files: their size is reduced, and they

are decoupled from the particular characteristics and number of devices used dur-

ing their generation. Moreover, the application-level portable checkpointing further

reduces the checkpoint files size and also decouples them from the host machine.

Therefore, applications can be recovered not only using a different device architec-

ture and/or a different number of devices, but also using a host with a different

architecture and/or operating system. To the best of our knowledge, no other work

provides such portability and adaptability benefits to heterogeneous applications.

62 Chapter 3. Application-level Checkpointing for Heterogeneous Applications

3.5. Concluding Remarks

This chapter presented a fault tolerance solution for heterogeneous applications.

The proposal is implemented by combining CPPC, a portable and transparent check-

pointing infrastructure, and HPL, a C++ library for programming heterogeneous

systems on top of OpenCL, thus, it is not tied to any particular accelerator vendor.

Fault tolerance support is obtained by using a host-side application-level check-

pointing. The host-side approach avoids the inclusion in the checkpoint files of the

device’s private state, while the application-level strategy avoids the inclusion of

non-relevant host data, thus minimizing the checkpoint files size. This approach

provides portability and efficiency, while ensuring an adequate checkpointing fre-

quency, as most of HPC heterogeneous applications execute a large number of short

kernels. A consistency protocol, based on synchronizations and data transfers, en-

sures the correctness of the saved data. The protocol overhead is minimized by the

HPL lazy copying policy for the data transfers. The host-side application-level strat-

egy and the combination of CPPC and HPL maximizes portability and adaptability,

allowing failed executions to be resumed using a different number of heterogeneous

computing resources and/or different resource architectures. The ability of appli-

cations to adapt to the available resources is particularly useful for heterogeneous

cluster systems.

The experimental evaluation shows the low overhead of the proposed solution,

which is mainly determined by the saved state size. The restart experiments using

hosts with different operating systems, different device architectures and different

numbers of devices demonstrate the portability and adaptability of the proposal.

Chapter 4

Application-Level Approach for

Resilient MPI Applications

Traditionally, MPI failures are addressed with stop-and-restart checkpointing

solutions. The proposal of the ULFM interface for the inclusion of resilience capa-

bilities in the MPI standard provides new opportunities in this field, allowing the

implementation of resilient MPI applications, i.e., applications that are able to de-

tect and react to failures without aborting their execution. This chapter describes

how the CPPC checkpointing framework is extended to exploit the new ULFM func-

tionalities. The proposed solution transparently obtains resilient MPI applications

by instrumenting the original application code.

This chapter is structured as follows. Section 4.1 details the extension of CPPC

to obtain resilient MPI applications. An optimization to improve scalability, the

multithreaded multilevel checkpointing technique, is described in Section 4.2. The

experimental results are presented in Section 4.3, while Section 4.4 covers the related

work. Finally, Section 4.5 concludes the chapter.

63

64 Chapter 4. Application-Level Approach for Resilient MPI Applications

4.1. Combining CPPC and ULFM to Obtain Re-

silience

Even though the MPI standard is the most popular parallel programming model

in distributed-memory systems, it lacks fault tolerance support. Upon a single

process failure, the state of MPI will be undefined, and there are no guarantees that

the MPI program can successfully continue its execution. Thus, the default behavior

is to abort the entire MPI application. However, when a failure arises it frequently

has a limited impact and affects only a subset of the cores or computation nodes in

which the application is being run. Thus, most of the nodes will still be alive. In this

context, aborting the MPI application to relaunch it again introduces unnecessary

recovery overheads and more efficient solutions need to be explored.

In recent years new methods have emerged to provide fault tolerance to MPI ap-

plications, such as failure avoidance approaches [33, 133] that preemptively migrate

processes from processors that are about to fail. Unfortunately, these solutions are

not able to cope with already happened failures.

In line with previous works [6, 48, 58], the ULFM interface [14], under discussion

in the MPI Forum, proposes to extend the MPI standard with resilience capabili-

ties to make MPI more suitable for fault-prone environments (e.g., future exascale

systems). Resilient MPI programs are able to detect and react to failures without

stopping their execution, thus avoiding re-spawning the entire application. ULFM

includes new semantics for process failure detection, communicator revocation, and

reconfiguration, but it does not include any specialized mechanism to recover the

application state at failed processes. This leaves flexibility to the application devel-

opers to implement the most optimal checkpoint methodology, taking into account

the properties of the target application.

The CPPC checkpointing tool is extended to use the new functionalities provided

by ULFM to transparently obtain resilient MPI applications from generic SPMD

codes [79]. To maximize the applicability, this proposal is non-shrinking, and it uses

a global backward recovery based on checkpointing:

Non-shrinking recovery: the number of running processes is preserved after

a failure. MPI SPMD applications generally base their distribution of data

4.1 Combining CPPC and ULFM to Obtain Resilience 65

and computation on the number of running processes. Thus, shrinking solu-

tions are restricted to applications which tolerate a redistribution of data and

workload among the processes during runtime.

Backward recovery based on checkpoint: after a failure the application is

restarted from a previous saved state. Forward recovery solutions attempt to

find a new state to successfully continue the execution of the application. Un-

fortunately, forward recovery solutions are application-dependent, and, thus,

unsuitable to be applied in a general approach.

Global recovery: the application repairs a global state to survive the failure.

In MPI SPMD applications that means restoring the state of all application

processes to a saved state, in order to obtain the necessary global consistency

to resume the execution. Local recovery solutions attempt to repair failures

by restoring a small part of the application, e.g., a single process. However,

due to interprocess communication dependencies, these solutions require the

use of message logging techniques for its general application.

Subsequent subsections describe the strategy upon failure: all the survivor pro-

cesses need to detect the failure, so that the global communicator is reconfigured

and a global consistent application state is recovered, allowing the execution to be

resumed. Figure 4.1 shows an example of the new CPPC instrumentation added to

perform these tasks, while Figure 4.2 illustrates the whole procedure.

4.1.1. Failure Detection

By default, when a process fails, the MPI application is aborted. The rou-

tine MPI Comm set errhandler is used to set MPI ERRORS RETURN as the default

error handler on each communicator, so that ULFM defined error codes are re-

turned after a failure. Each MPI function call is instrumented with a call to the

CPPC Check errors routine to check whether the returned value corresponds with

a failure, as shown in Figure 4.1. Within the CPPC Check errors routine, whose

pseudocode is shown in Figure 4.3, the survivor processes detect failures and trigger

the recovery process.

66 Chapter 4. Application-Level Approach for Resilient MPI Applications

1 int error;

2 int GLOBAL COMM;

3

4 void function1 (){

5 [...]

6 error = MPI_ ...(..., GLOBAL COMM, ...);

7 if(CPPC Check errors(error)) return;

8 function2 ();/* MPI calls inside */

9 if(CPPC Go init()) return;

10 [...]

11 }

12

13 void function2 (){ /* MPI calls inside */ }

14

15 int main(int argc , char* argv[])

16 CPPC GOBACK REC 0:

17 CPPC Init configuration();

18 if(!CPPC Go init()) MPI_Init ()

19 CPPC Init state();

20

21 GLOCAL COMM=CPPC Get comm();

22 error = MPI_Comm_split(GLOBAL COMM, ..., NEW COMM);

23 if(CPPC Check errors(error)) goto CPPC GOBACK REC 0;

24 CPPC Register comm(NEW COMM);

25 if (CPPC Jump next()) goto CPPC REC 1;

26 [...]

27

28 CPPC REC 1:

29 <CPPC Register() block>

30 if (CPPC Jump next()) goto CPPC REC 2;

31 [...]

32

33 for(i=0;i<niters;i++){

34 CPPC REC 2:

35 CPPC Do Checkpoint();

36 if(CPPC Go init()) goto CPPC GOBACK REC 0;

37 [...]

38 error = MPI_ ...(..., GLOBAL COMM, ...);

39 if(CPPC Check errors(error)) goto CPPC GOBACK REC 0;

40

41 function1 (); /*MPI calls inside */

42 if(CPPC Go init()) goto CPPC GOBACK REC 0;

43 }

44 [...]

45 <CPPC Unregister() block>

46 CPPC Shutdown();

47 }

Figure 4.1: Instrumentation for resilient MPI applications with CPPC and ULFM.

4.1 Combining CPPC and ULFM to Obtain Resilience 67

Figure 4.2: Global overview of the recovery procedure for resilient MPI applications
with CPPC and ULFM.

1 bool CPPC_Check_errors(int error_code){

2 if(error_code == process failure){

3 /* Revoke communicators */

4 for comm in application_communicators {

5 MPI_Comm_revoke (..., comm , ...);

6 }

7

8 /* Shrink global communicator */

9 MPI_Comm_shrink (...);

10 /* Re-spawn failed processes */

11 MPI_Comm_spawn_multiple (...);

12 /* Reconstruct communicator */

13 MPI_Intercomm_merge (...);

14 MPI_Comm_group (...);

15 MPI_Group_incl (...);

16 MPI_Comm_create (...);

17

18 /* Start the recovery */

19 return true;

20

21 }

22 return false; /* No error detected */

23 }

Failure
detection

Reconfiguration
of the global
communicator

Start the
recovery

Figure 4.3: CPPC Check errors pseudocode: failure detection and triggering of the
recovery.

68 Chapter 4. Application-Level Approach for Resilient MPI Applications

However, the failure is only detected locally by those survivor processes involved

in communications with failed ones. To reach a global detection, the failure must

be propagated to all other survivors by revoking all the communicators used by

the application. CPPC keeps a reference to the new communicators created by

the application by means of the CPPC Register comm function. When a failure is

locally detected, the ULFM MPI Comm revoke function is invoked over the global

(MPI COMM WORLD) and the registered communicators, assuring a global failure de-

tection. In the example shown in Figure 4.2, process P1 detects that P0 failed

because they are involved in a communication, while processes P2 and P3 detect

the failure after the communicators are revoked by P1.

Lastly, in order to guarantee failure detection in reasonable time, the function

MPI Iprobe is invoked within the CPPC Do checkpoint routine. This avoids exces-

sive delays in failure detection in absence of communications.

4.1.2. Reconfiguration of the MPI Global Communicator

In the SPMD model, the processes ranks distinguish their role in the execu-

tion, therefore, ranks must be preserved after a failure. During the recovery, not

only the failed processes need to be re-spawned and the communicators need to be

reconstruct, but also, the processes ranks in the communicators need to be restored.

Those communicators created by the application, which derive from the global

communicator (MPI COMM WORLD), will be reconstructed by re-executing the MPI

calls used for creating them in the original execution. On the other hand, the

global communicator has to be reconfigured after failure detection. First, the

failed processes are excluded from the global communicator using the ULFM func-

tion MPI Comm shrink and they are re-spawned by means of the MPI function

MPI Comm spawn multiple. Then, the dynamic communicator management facil-

ities provided in MPI-2 are used to reconstruct the global communicator, so that,

after a failure, the survivor processes keep their original ranks, while each one of the

re-spawned ones takes over a failed process. To ensure that the correct global com-

municator is used, the application obtains it by means of the new CPPC Get comm

function, and stores it in a global variable, as shown in Figure 4.1. The application

uses this global variable instead of the named constant MPI COMM WORLD, allowing

4.1 Combining CPPC and ULFM to Obtain Resilience 69

CPPC to transparently replace it with the reconfigured communicator after a failure.

4.1.3. Recovery of the Application

A crucial step in ensuring the success of the restart is to be able to conduct the

application to a consistent global state before resuming the execution. Solutions

based on checkpoint, like this proposal, recover the application state rolling back

to the most recent valid recovery line. However, CPPC only dumps to checkpoint

files portable state, while non-portable state is recovered through the ordered re-

execution of certain blocks of code (RECs). Therefore, to achieve a consistent global

state, all processes must go back to the beginning of the application code so that

they can re-execute the necessary RECs (including those for the creation of the de-

rived communicators). The re-spawned processes are already in this function after

the reconfiguration of the communicators. However, survivor processes are located

at the point of the application code where they have detected the failure and they

need to go back in the application control flow. This is performed by reversed con-

ditional jumps introduced in two instrumentation blocks: the CPPC Check errors

and the CPPC Go init blocks. While the CPPC Check errors blocks are placed af-

ter MPI calls, the CPPC Go init blocks are located after those application functions

containing MPI calls. As shown in Figure 4.1, the reversed conditional jumps con-

sist in a goto with a label or a return instruction, depending if it is placed in

the main program or in an internal function. Although this strategy increases the

CPPC instrumentation of the application’s code, it can be directly applied both in

C and Fortran programs. Alternatives, such as the use of a MPI custom handler

and non-local jumps [68] would require workarounds for its usage in Fortran codes.

Once all the processes reach the beginning of the application code, a regular

CPPC restart takes place. First, processes negotiate the most recent valid recovery

line. In the example shown in Figure 4.2, all processes will negotiate to recover

the application state from recovery line i. Then, the negotiated checkpoint files

containing portable state are read and the actual reconstruction of the application

state is achieved through the ordered re-execution of RECs, recovering also the

non-portable state. Finally, the application resumes the regular execution when the

point where the checkpoint files were generated is reached.

70 Chapter 4. Application-Level Approach for Resilient MPI Applications

4.2. Improving Scalability: Multithreaded Multi-

level Checkpointing

CPPC uses a multithreaded dumping to minimize the overhead introduced when

checkpointing. The multithreaded dumping overlaps the checkpoint file writing

with the computation of the application. When a MPI process determines that

a checkpoint file must be generated (according to the checkpointing frequency), it

prepares the checkpointed data, performs a copy in memory of that data, and creates

an auxiliary thread that builds and dumps to disk the checkpoint file in background,

while the application processes continue their execution.

With the extension of CPPC to exploit the ULFM functionalities, a multilevel

checkpointing is implemented to minimize the amount of data to be moved across

the cluster, thus, reducing the recovery overhead when failures arise and increasing

the scalability of the proposal. As in a memory hierarchy, in which higher levels

present lower access time but less capacity and larger miss rates, this technique

stores the checkpoint files in three different locations:

Memory of the compute node: each process maintains a copy in memory of

the last checkpoint file generated until a new checkpoint file is built.

Local disk: processes also save their checkpoint files in local storage.

Remote disk: all the checkpoint files generated by the application are stored

in a remote disk.

The multilevel checkpointing is performed in background by the auxiliary threads,

thus, the cost of checkpointing is not increased. During recovery, the application

processes perform a negotiation phase to identify the most recent valid recovery

line, formed by the newest checkpoint file available simultaneously to all processes.

When using the multilevel technique, the three checkpointing levels are inspected

during the negotiation, and the application processes choose the closest copy of the

negotiated checkpoint files.

4.3 Experimental Evaluation 71

4.3. Experimental Evaluation

The experimental evaluation of the resilience proposal is split in two parts. First,

a thorough study of the overheads introduced by the operations necessary to obtain

resilience is presented using up to 128 processes. Secondly, the proposal is evaluated

on a different machine up to 3072 processes and comparing the benefits of the

resilience global rollback versus the stop-and-restart global rollback.

The application testbed used is comprised of three benchmarks with different

checkpoint file sizes and communication patterns. The ASC Sequoia Benchmark

SPhot [5] is a physics package that implements a Monte Carlo Scalar PHOTon

transport code. The Himeno benchmark [56] is a Poisson equation solver using the

Jacobi iteration method. Finally, MOCFE-Bone [134] simulates the main procedures

in a 3D method of characteristics (MOC) code for numerical solution of the steady

state neutron transport equation. The CPPC version used was 0.8.1, working along

with HDF5 v1.8.11 and GCC v4.4.7. The Portable Hardware Locality (hwloc) [25]

is used for binding the processes to the cores. Experiments are always run using one

process per core, and applications were compiled with optimization level O3.

The configuration parameters of the testbed applications and the hardware plat-

form are detailed in Table 4.1 and Table 4.2, respectively. For these experiments,

the ULFM commit 67d6cc5b9cfa beta 4 was used with the default configuration

parameters and the agreement algorithm number 1. Each node of the cluster used

for the experiments consists of two Intel Xeon E5-2660 Sandy Bridge-EP 2.2 GHz

processors with Hyper-Threading support, with 8 cores per processor and 64 GB of

RAM, interconnected to an InfiniBand FDR and a Gigabit Ethernet networks. The

experiments are run spawning 16 MPI process per node, one per core. When check-

pointing, each MPI process creates an auxiliary thread to dump data to disk and

uses the multithreaded multilevel checkpointing technique described in Section 4.2.

4.3.1. Operation Overhead in the Absence of Failures

This section analyzes the instrumentation and checkpointing overheads. The

instrumentation overhead is measured in the execution of the CPPC instrumented

applications without generating any checkpoint files. On the other hand, the check-

72 Chapter 4. Application-Level Approach for Resilient MPI Applications

Table 4.1: Configuration parameters of the testbed applications.

Configuration parameters

SPhot NRUNS=6144

Himeno Gridsize: 512x256x256, NN=24000

Mocfe Energy groups: 4, angles: 8, mesh: 193,

strong scaling in space, trajectory spacing = 0.5cm2

Table 4.2: Hardware platform details.

Pluton cluster details

Operating system CentOS 6.7

Nodes 2x Intel E5-2660

2.20 GHz, 8 cores per processor (16 HT)

64 GB main memory

Network InfiniBand FDR@56Gb/s & Gigabit Ethernet

Local storage 800GB HDD

Remote storage NFS over Gigabit Ethernet

MPI version ULFM commit 67d6cc5b9cfa (beta 4)

GNU Compilers v4.4.7, optimization level O3

pointing runtime corresponds with the execution in which only one checkpoint is

taken when 50% of the computation has completed. Figure 4.4 shows the original,

the instrumentation, and the checkpointing runtimes varying the number of pro-

cesses. The aggregated checkpoint file size saved to disk in each application (the

addition of the checkpoint files generated by each process) is also represented in

the figure. For SPhot the checkpoint file of each individual process is constant, no

matter how many processes run the application, thus, the aggregated checkpoint file

size increases with the number of processes. On the other hand, for Himeno and

MOCFE-Bone, the application data is distributed among the processes, therefore,

each individual checkpoint file size decreases as more processes run the application,

and the aggregated checkpoint file size remains almost constant.

The instrumentation overhead is always very low, below 1.7 seconds. As regards

the checkpointing, the maximum overhead is 7.9 seconds. The two main sources of

overhead in the checkpointing operation are: the copy in memory of the checkpointed

data (including the application of the CPPC zero-blocks exclusion technique), and

4.3 Experimental Evaluation 73

 0

 100

 200

 300

 400

 500

 600

 700

 800

32 64 128 32 64 128 32 64 128

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

T
im

e
 (

s
e
c
o
n
d
s
)

C
h
e
c
k
p
o
in

t
fi
le

 s
iz

e

Original runtime

Instrumentation runtime

Checkpointing runtime

Aggregated checkpoint file size

22.47MB 89.8MB

1.35GB 1.41GB

889.42MB 878.25MB

44.91MB

1.37GB

863.67MB

SPhot Himeno Mocfe

Figure 4.4: Runtimes and aggregated checkpoint file size for the testbed benchmarks
when varying the number of processes.

the dumping to disk. Thanks to the use of the multithreaded checkpointing tech-

nique, the overhead of dumping the checkpoint files to disk is significantly reduced.

4.3.2. Operation Overhead in the Presence of Failures

The performance of the proposal is evaluated inserting one-process or full-node

failures by killing one or sixteen MPI processes, respectively. Failures are introduced

when 75% of the application has completed and the applications are recovered using

the checkpoint files generated at 50% of the execution. In all the experiments,

the survivor processes recover from the copy in memory of the checkpoint files.

When one process fails, it is re-spawned in the same compute node, thus, it uses

the checkpoint file in local storage. When a node fails, the failed processes are re-

spawned in a different compute node: an already in use node, overloading it; or an

spare node, pre-allocated for this purpose when scheduling the MPI job. In both

cases, the failed processes use the checkpoint files located in the remote disk.

The analysis of the overhead introduced by the proposal requires the study of

the different operations it involves. Figure 4.5 shows the times, in seconds, of each

operation performed to obtain resilient MPI applications, indicating whether one-

74 Chapter 4. Application-Level Approach for Resilient MPI Applications

0.0e
+0

1.6e
+0

3.2e
+0

4.8e
+0

32 64 128

T
im

e
 (

s
e

c
o

n
d

s
)

Failure detection

SPhot one process failure

Himeno one process failure

Mocfe one process failure

SPhot node failure sparse

Himeno node failure sparse

Mocfe node failure sparse

SPhot node failure overload

Himeno node failure overload

Mocfe node failure overload

0.0e
+0

2.5e
−4

4.9e
−4

7.4e
−4

32 64 128

Communicator revocation

0.0e
+0

6.4e
−1

1.3e
+0

1.9e
+0

32 64 128

Communicator shrinking

0.0e
+0

2.4e
−1

4.7e
−1

7.1e
−1

32 64 128

T
im

e
 (

s
e
c
o
n
d
s
)

Process re−spawning

0.0e
+0

8.0e
−1

1.6e
+0

2.4e
+0

32 64 128

Communicator reconstruction

0.0e
+0

4.9e
−5

9.8e
−5

1.5e
−4

32 64 128

Reversed jumps

0.0e
+0

2.6e
+0

5.3e
+0

7.9e
+0

32 64 128

T
im

e
 (

s
e
c
o
n
d
s
)

Reading

0.0e
+0

1.1e
+0

2.2e
+0

3.3e
+0

32 64 128

Positioning

0.0e
+0

6.9e
−1

1.4e
+0

2.1e
+0

32 64 128

Checkpoint generation

Figure 4.5: Times of the operations performed to obtain resilience.

Table 4.3: Number of calls to the MPI library per second performed by the process
that less calls does, which determines the detection time.

MPI calls per second done by
the process with fewest calls

32 Processes 64 Processes 128 Processes

SPhot 1.36 1.43 1.57

Himeno 815.18 1498.38 2652.24

Mocfe 1352.21 3034.68 5431.90

process or full-node failures are introduced, and for the late one, if a compute node

is overloaded or a spare one is used for the recovery. Failure detection times are

deeply dependent on the application, as they depend on the frequency of MPI calls.

Table 4.3 shows, for each application, the average number of MPI calls per second

in the process that performs the fewest MPI calls. The more the application invokes

4.3 Experimental Evaluation 75

Table 4.4: Average size (MB) of data registered by each process (including zero-
blocks) and average size (MB) of the checkpoint file generated by each process
(excluding zero-blocks).

Average size per process (MB):
Registered data → ckpt file excluding zero-blocks

32 Processes 64 Processes 128 Processes

SPhot 586.23 → 0.70 586.23 → 0.70 586.23 → 0.70

Himeno 61.49 → 43.25 31.49 → 21.97 16.15 → 11.32

Mocfe 44.90 → 27.79 22.89 → 13.49 12.30 → 6.86

the MPI library, the sooner the failure will be detected. SPhot is the application

with the smallest number and it also presents the largest detection time. The com-

municator revocation times are low, and they slightly increase with the number of

processes. The same tendency can be observed in the reconfiguration operations:

the communicator shrinking, the process spawning and the communicator recon-

struction. Even though the processes spawning times remain low, they increase

with the number of failed processes. Furthermore, spawning times are larger when

processes are launched in a spare node than when the target is an already-in-use

node, because all the MPI environment (including a new ORTE daemon) has to be

launched in the spare one.

Regarding the CPPC operations, the time spent in the reversed conditional

jumps for the recovery upon failure is negligible in all cases. The checkpoint, read-

ing, and positioning times are consistent with the state registered by each process

for its inclusion in the checkpoint files. Note that, the size of the registered state

can be different from the size of the generated checkpoint file, as CPPC applies the

zero-blocks exclusion technique [34], which avoids the dumping to disk of the mem-

ory blocks containing only zeros. During the checkpoint operation, all the registered

data is inspected to identify zero-blocks. Also, during the reading and positioning

operations, zero-blocks are reconstructed and moved to their proper memory loca-

tion, respectively. Thus, checkpoint, reading, and positioning are influenced by the

size of registered data. Table 4.4 shows, for each application, the average size of

state registered by each process, and the average checkpoint file size that each pro-

cess generates after applying the zero-blocks exclusion technique. For instance, in

SPhot even though the aggregated checkpoint file size is inferior to 100 MB, the to-

76 Chapter 4. Application-Level Approach for Resilient MPI Applications

tal registered state corresponds with several gigabytes before the application of the

zero-blocks exclusion technique. Therefore, the CPPC operations are more costly

for SPhot when comparing with applications that generate larger checkpoint files.

Besides, due to the use of the multilevel checkpointing, the reading phase depends

on the location of the negotiated checkpoint files. Consequently, the reading times

for the experiments introducing one process failures present the lowest reading time,

as the failed process reads the checkpoint file from the local storage of the compute

node. On the other hand, in the experiments introducing node failures, the reading

operation presents a higher cost because the failed processes use the copy of the

checkpoint files in the remote disk.

Finally, the total overhead introduced by the proposal is studied. The failure-

introduced runtimes are measured, including the execution until the failure, the

detection and recovery from it, and the completion of the execution afterwards. As

checkpointing takes place at 50% of the execution and the failure is introduced at

75%, the minimum runtime of an execution tolerating a failure will be 125% of the

original runtime (75% until failure plus 50% from the recovery point until the end

of the execution). Therefore, we consider this time as the baseline runtime, and

the overhead of the proposal is measured as the difference between the baseline and

runtime when a failure is introduced.

Figure 4.6 shows the original runtimes, as well as the baseline and the testbed

failure-introduced runtimes. In the experiments, when only one MPI process is

killed, the total cost of tolerating the failure is, on average, 6.6 seconds, introducing

3.6% of relative overhead with respect to the baseline runtimes. Similarly, when a

full-node failure is recovered using a spare node, the absolute overhead is 8.7 seconds

on average, introducing 3.7% of relative overhead. However, when an already in use

node is overloaded, runtimes are larger, as both the computation after the failure

and the operations to recover the applications are slower.

Regarding the relation between the number of running processes and the total

overhead, we observed that there are not significant differences for the experiments

introducing one process failures or node failures using a spare node. However, in

the experiments overloading a computation node, the total overhead decreases with

the number of processes. As more processes execute the applications, less work

corresponds to each one of them, and the impact of the overloading is reduced.

4.3 Experimental Evaluation 77

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 64 128 32 64 128 32 64 128

0.0GB

0.5GB

1.0GB

1.5GB

2.0GB

T
im

e
 (

s
e
c
o
n
d
s
)

C
h
e
c
k
p
o
in

t
fi
le

 s
iz

e

Original runtime

Baseline runtime

One process failure runtime

Node failure runtime (sparse node)

Node failure runtime (overload node)

Aggregated checkpoint file size

22.47MB 89.8MB

1.35GB 1.41GB

889.42MB 878.25MB

44.91MB

1.37GB

863.67MB

SPhot Himeno Mocfe

Figure 4.6: Runtimes when introducing failures varying the number of processes.
The baseline runtime in which no overhead is introduced (apart from recomputation
after the failure) is included for comparison purposes.

4.3.3. Resilience vs. Stop-and-Restart Global Rollback

In order to further study the behavior of the resilience proposal, this section com-

pares its performance with an equivalent traditional stop-and-restart checkpointing

solution [82]. The same applications are tested on a larger machine and using larger

problem sizes. The configuration parameters of the testbed applications and the

hardware platform are detailed in Table 4.5 and Table 4.6, respectively. The experi-

ments presented in this section were performed at CESGA (Galicia Supercomputing

Center) in the “FinisTerrae-II” supercomputer, comprised of nodes with two Intel

Haswell E5-2680 v3 @ 2.50GHz processors, with 12 cores per processor and 128 GB

of RAM, interconnected to an InfiniBand FDR 56Gb/s. The experiments were run

spawning 24 MPI process per node (one per core).

For each application and varying the number of MPI processes, Table 4.7 shows

the original runtime (without fault tolerance support), and the aggregated check-

point file size generated when one checkpoint is taken, that is, the addition of the

individual checkpoint file size generated by each process. The reminder of this

section evaluates and compares the resilience protocol described in this chapter,

78 Chapter 4. Application-Level Approach for Resilient MPI Applications

Table 4.5: Configuration parameters of the testbed applications.

Configuration parameters

SPhot NRUNS=24× 216

Himeno Gridsize: 2048x2048x1024, NN=24000

Mocfe Energy groups: 4, angles: 8, mesh: 283,

strong scaling in space, trajectory spacing = 0.01cm2

Table 4.6: Hardware platform details.

Finisterrae II Supercomputer

Operating system Red Hat 6.7

Nodes 2x Intel Haswell E5-2680 v3

2.50 GHz, 12 cores per processor

128 GB main memory

Network InfiniBand FDR@56Gb/s & Gigabit Ethernet

Local storage 1 TB HDD

Remote storage Lustre over InfiniBand

MPI version ULFM commit a1e241f816d7 (release 1.0)

GNU Compilers v4.4.7, optimization level O3

Table 4.7: Original runtimes (in minutes) and aggregated checkpoint file sizes.

Original runtimes
(minutes)

Aggregated checkpoint
file size (GB)

of MPI processes # of MPI processes

384 768 1536 3072 384 768 1536 3072

SPhot 60.3 30.4 15.6 8.9 0.3 0.5 1.0 2.0

Himeno 77.4 39.1 19.5 10.7 165.1 166.2 168.6 170.6

Mocfe 155.9 64.5 29.7 10.6 160.2 146.4 153.2 136.0

with the equivalent stop-and-restart strategy provided by CPPC and described in

[110, 112]. For a fair comparison, the same Open MPI version was used in all tests.

In both proposals, checkpoint files are stored in a remote disk using the Lustre par-

allel file system over InfiniBand. In the experiments of this section the multilevel

checkpointing technique is not used.

The instrumentation overhead corresponds to the CPPC instrumented applica-

tions without generating any checkpoint files. It is tagged as “NoCkpt” in Figure 4.7,

4.3 Experimental Evaluation 79

 0

 50

 100

 150

 200

 250

 300

 350

N
oC

kp
t

50
%

40
%

20
%

10
% 5%

N
oC

kp
t

50
%

40
%

20
%

10
% 5%

T
im

e
 (

s
e

c
o

n
d
s
)

384 PROCESSES

Stop−and−restart Resilience

SPhot Himeno Mocfe

 0

 50

 100

 150

 200

 250

 300

 350

N
oC

kp
t

50
%

40
%

20
%

10
%

N
oC

kp
t

50
%

40
%

20
%

10
%

T
im

e
 (

s
e

c
o

n
d
s
)

768 PROCESSES

Stop−and−restart Resilience

 0

 50

 100

 150

 200

 250

 300

 350

N
oC

kp
t

50
%

40
%

20
%

N
oC

kp
t

50
%

40
%

20
%

T
im

e
 (

s
e

c
o

n
d

s
)

1536 PROCESSES

Stop−and−restart Resilience

 0

 50

 100

 150

 200

 250

 300

 350

N
oC

kp
t

50
%

N
oC

kp
t

50
%

T
im

e
 (

s
e

c
o

n
d

s
)

3072 PROCESSES

Stop−and−restart Resilience

(a) Absolute checkpointing overhead (seconds).

0%

5%

10%

15%

20%

N
oC

kp
t

50
%

40
%

20
%

10
% 5%

N
oC

kp
t

50
%

40
%

20
%

10
% 5%

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 (
%

)

384 PROCESSES

Stop−and−restart Resilience

SPhot Himeno Mocfe

0%

5%

10%

15%

20%

N
oC

kp
t

50
%

40
%

20
%

10
%

N
oC

kp
t

50
%

40
%

20
%

10
%

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 (
%

)

768 PROCESSES

Stop−and−restart Resilience

0%

5%

10%

15%

20%

N
oC

kp
t

50
%

40
%

20
%

N
oC

kp
t

50
%

40
%

20
%

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 (
%

)

1536 PROCESSES

Stop−and−restart Resilience

0%

5%

10%

15%

20%

N
oC

kp
t

50
%

N
oC

kp
t

50
%

R
e

la
ti
v
e

 o
v
e

rh
e

a
d

 (
%

)

3072 PROCESSES

Stop−and−restart Resilience

(b) Relative checkpointing overhead (normalized with repect to the original runtimes).

Figure 4.7: Checkpointing overhead varying the checkpointing frequency.

80 Chapter 4. Application-Level Approach for Resilient MPI Applications

Table 4.8: Testbed checkpointing frequencies and elapsed time (in minutes) between
two consecutive checkpoints for different checkpointing frequencies.

50% 40% 20% 10% 5%

1 ckpt

taken

2 ckpts

taken

4 ckpts

taken

8 ckpts

taken

16 ckpts

taken

S
P
h
o
t

H
im

e
n
o

M
o
c
f
e

S
P
h
o
t

H
im

e
n
o

M
o
c
f
e

S
P
h
o
t

H
im

e
n
o

M
o
c
f
e

S
P
h
o
t

H
im

e
n
o

M
o
c
f
e

S
P
h
o
t

H
im

e
n
o

M
o
c
f
e

384 Processes 31 39 80 25 32 64 13 16 33 7 9 17 4 5 9

768 Processes 16 20 33 12 16 26 6 8 14 3 4 7 – – –

1536 Processes 8 10 15 6 8 12 3 4 6 – – – – – –

3072 Processes 5 5 5 – – – – – – – – – – – –

which reports the absolute instrumentation overhead (in seconds), and the relative

value (normalized with respect to the original runtimes), respectively. As observed,

the instrumentation overhead is larger when using the resilience proposal, which

relies on a more extensive instrumentation, adding blocks of code around every MPI

call for failure detection and backwards conditional jumping during the recovery.

Figure 4.7 also reports the absolute and relative checkpointing overheads for dif-

ferent checkpointing frequencies. Table 4.8 shows frequencies used (e.g. 20% means

checkpointing every time 20% of the computation has been completed). The table

also specifies the number of checkpoint files generated and the time elapsed between

two consecutives checkpoints in each case. Note that the checkpointing frequency

is increased until checkpoints are generated every 3-5 minutes with each number of

processes. The checkpointing operation presents no differences whether using the

stop-and-restart or the resilience proposals. However, the checkpointing overhead

is larger for the resilience proposal. This is explained because the checkpointing

overhead also includes the instrumentation cost, which, as commented previously,

is larger in the resilience proposal. As observed, when increasing the checkpointing

frequency, more checkpoint calls are taken, and thus, the checkpointing overhead

increases. All in all, the absolute overhead does not increase with the number of

cores, while the relative overhead, which in general is below 5%, increases when

scaling out the applications because the original runtimes decrease.

The performance of both the stop-and-restart and the resilience proposal is eval-

4.3 Experimental Evaluation 81

Table 4.9: Recovery operations in each proposal.

Stop-and-restart Resilience

Failure Detection
Until application aborted

due to failure

Until global knowledge of the

failure (includes comm. revoke)

Resilience

operations (A)
–

Agreement about failed proc.

and comm. shrinking

(MPI Comm shrink)

Re-spawning
Application is relaunched,

all processes re-spawned

Failed processes are

re-spawned & initialized

Resilience

operations (B)
–

Global comm. reconstruction

& backwards conditional jumps

Restart
Reading Find recovery line and read checkpoint files

Positioning Recover application state and positioning in the code

0

20

40

60

80

100

120

140

160

384 768 1536 3072 384 768 1536 3072 384 768 1536 3072

T
im

e
 (

s
e
c
o
n
d
s
)

Process failure stop−and−restart

Node failure stop−and−restart

Process failure resilience

Node failure resilience

SPhot Himeno Mocfe

Figure 4.8: Recovery times: addition of the times of all the recovery operations
performed by each proposal (the lower, the better).

uated inserting one-process or full-node failures by killing the last ranked MPI pro-

cess or twenty-four of them, respectively. Failures are introduced when 75% of the

application has completed and the applications are recovered using the checkpoint

files generated at 50% of the execution. Table 4.9 summarizes the recovery op-

erations performed in each proposal to tolerate the failure. The times that these

operations consume in each proposal is represented in Figure 4.8, showing the times

spent since the failure is triggered (by killing the process/es) until the end of the

82 Chapter 4. Application-Level Approach for Resilient MPI Applications

positioning. OOn average, the resilience proposal reduces the recovery times of the

stop-and-restart solution by 65%.

Figure 4.9 breaks down the recovery operation times for each application. Failure

detection times measure the time spent from the introduction of the failure until

its detection. In the resilience proposal, it includes the time spent revoking all

the communicators in the application, which is inferior to 5 milliseconds in all the

experiments. Detection times are better in the resilience proposal because of the

detection mechanisms provided by ULFM. On average, detection is twice faster for

one process failures and 6 times faster in the presence of node failures than when

using the traditional stop-and-restart solution. In both proposals, as the number of

failed processes increases, the time to detect the failure decreases.

In both proposals, the re-spawning times also include the initialization of the

failed processes (time spent in the MPI Init routine). The backwards conditional

jumps, with a maximum value of 0.5 milliseconds in all the tests, were not included in

the figures. Note that, relaunching the entire application is always more costly than

relaunching only the processes that have actually failed. However, this difference

decreases as the number of failed processes increases, and, more important, when

scaling out the application. As a result, the cost of re-spawning 24 processes when

there are 3048 surviving processes, is close to the cost of relaunching 3072 processes

from scratch.

The reading of the checkpoint files is faster in the resilience proposal, because the

surviving processes benefit from the use of the page cache in which the checkpoint

files from the most recent recovery line will frequently be present. In other scenar-

ios, reading times can be reduced by using optimizations techniques, such as diskless

checkpointing [103, 126] in which copies of the checkpoint files are stored in the mem-

ory of neighbor nodes, or multilevel checkpointing [79, 92], which saves those copies

in different levels of the memory hierarchy. The restart positioning times are tight

to the particular applications and the re-execution of the non-portable state recov-

ery blocks. In SPhot positioning times are lower in the resilience proposal because

the re-execution of these blocks benefits from the usage of page cache. Finally, the

shrinking and the global communicator reconstruction are also represented in the

figures. In both cases, these times increases with the number of processes running

the applications. Shrinking times are larger when more survivors participate in the

4.3 Experimental Evaluation 83

 0

 10

 20

 30

 40

 50

 60

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

T
im

e
 (

s
e
c
o
n
d
s
)

Failure detection

SPhot Himeno Mocfe

Process failure stop−and−restart

Node failure stop−and−restart

Process failure resilience

Node failure resilience

 0

 5

 10

 15

 20

 25

 30

 35

 40

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

Process re−spawning

SPhot Himeno Mocfe

 0

 10

 20

 30

 40

 50

 60

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

T
im

e
 (

s
e
c
o
n
d
s
)

Reading

SPhot Himeno Mocfe

 0

 5

 10

 15

 20

 25

 30

 35

 40

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

Positioning

SPhot Himeno Mocfe

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

T
im

e
 (

s
e
c
o
n
d
s
)

MPI_Comm_shrink routine

SPhot Himeno Mocfe

0

2

4

6

8

10

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

3
8
4

7
6
8

1
5
3
6

3
0
7
2

Reconstruction global communicator

SPhot Himeno Mocfe

Figure 4.9: Time of the different recovery operations.

operation, as more survivors must agree about the subset of failed processes.

Note that, in both proposals the restart overhead would also include the re-

execution of the computation done from the point in which checkpoint files were

generated until the failure occurrence, an overhead that will be tight to the selected

checkpointing frequency (more frequent checkpoints imply less re-execution over-

head in the event of a failure, although more overhead is introduced during the

fault free execution). Additionally, in some systems, the stop-and-restart proposal

would also imply the re-queueing of a new job to the scheduling system, introducing

an overhead dependent of the availability of the cluster resources. All in all, the

84 Chapter 4. Application-Level Approach for Resilient MPI Applications

−10%

0%

10%

20%

30%

40%

50%

60%

384 768 1536 3072 384 768 1536 3072 384 768 1536 3072

R
e
d
u
c
ti
o
n
 (

%
)

Process failure Node failure

SPhot Himeno Mocfe

Figure 4.10: Reduction in the extra runtime when introducing a failure and using
resilience proposal instead of stop-and-restart rollback (higher is better).

improvement in overall execution runtime when tolerating a failure is represented

in Figure 4.10, showing the reduction in the extra runtime achieved when using the

resilience proposal instead of the stop-and-restart technique to tolerate the failure.

The extra runtime is calculated as the difference between the original runtime and

the runtime when a failure occurs. On average, the overhead is reduced by 15.72%,

and the percentage reduction increases as the applications scale out.

4.4. Related work

Some works in the literature have focused on implementing resilient applications

using ULFM [2, 15, 50, 51, 68, 98, 109, 116, 126]. Most of those proposals are

specific to one or a set of applications [2, 15, 68, 98, 109]. Bland et al. [15] and Pauli

et al. [98] focused on Monte Carlo methods. Laguna et al. evaluate ULFM on a

massively scalar molecular dynamics code [68]. Partial Differential Equation (PDE)

codes are targeted by Ali et al. [2] and by Rizzi et al. [109]. All these proposals

consider the particular characteristics of the applications to simplify the recovery

process. A customized solution allows reducing the recovery overhead upon failure,

e.g., simplifying the detection of failures by checking the status of the execution in

4.5 Concluding Remarks 85

specific points; avoiding the re-spawning of the failed processes when the algorithm

tolerates shrinking the number of the MPI processes; or recovering the application

data by means of its properties as an alternative to checkpointing. In contrast,

unlike our proposal, they cannot be generally applied to any SPMD application.

Other alternatives to ULFM to build resilient applications are NR-MPI [122],

FMI [114], or Reinit [69]. In contrast to ULFM, which proposes a low-level API that

supports a variety of fault tolerance models, these alternatives propose a simplified

interface towards a non-shrinking model, repairing the MPI inner state upon failure,

and re-spawning the failed processes. Reinit [69] proposes a prototype fault-tolerance

interface for MPI, suitable for global, backward, non-shrinking recovery. FMI [114]

is a prototype programming model with a similar semantic to MPI that handles fault

tolerance, including checkpointing application state, restarting failed processes, and

allocating additional nodes when needed. Finally, NR-MPI [122] is a non-stop and

fault resilient MPI built on top of MPICH that implements the semantics of FT-

MPI [48]. These proposals hide the complexities of repairing the MPI state, however,

they still rely on the programmers to instrument and modify the application code

to obtain fault-tolerance support, including the responsibility of identifying which

application data should be saved and in which points of the program.

In contrast, the CPPC resilience proposal provides a transparent solution in

which the application code is automatically instrumented by the CPPC compiler

adding full fault tolerance support, both for detecting failures and repairing the

MPI inner state as well as for checkpointing and recovering the application data.

The fact that this proposal provides a transparent solution is especially useful for

those scientific applications already developed over the years in HPC centers, in

which manually adding fault tolerance support by programmers is, in general, a

complex and time-consuming task.

4.5. Concluding Remarks

In this chapter the CPPC checkpointing tool is extended to exploit the new

ULFM functionalities to transparently obtain resilient applications from general

MPI SPMD programs. By means of the CPPC instrumentation of the original

86 Chapter 4. Application-Level Approach for Resilient MPI Applications

application code, failures in one or several MPI processes are tolerated using a non-

shrinking backwards recovery based on checkpointing. Besides, a multithreaded

multilevel checkpointing stores a copy of the checkpoint files in different levels of

storage, minimizing the amount of data to be moved upon failure, and thus, reducing

the recovery overhead without increasing the checkpointing overhead.

The experimental evaluation analyzes the behavior when one process or an en-

tire node fails. Furthermore, in case of a node failure, two different scenarios are

considered: the failed processes are re-spawned in a spare node or in an already in

use one (overloading it). Results show the low overhead of the solution.

In addition, the evaluation assesses the performance as well as compares two

application-level fault-tolerant solutions for MPI programs: a traditional stop-and-

restart approach and its equivalent resilience proposal using ULFM capabilities. The

resilience solution clearly outperforms the stop-and-restart approach, reducing the

time consumed in the recovery operations between 1.6x and 4x, and avoiding the

resubmission of the job. During the recovery, the most costly steps are the failure

detection and the re-spawning of failed processes. In the resilience proposal, the

failure detection times are between 2x and 6x faster and the re-spawning times are

also notably smaller. However, the re-spawning times significantly increase when

the number of failed processes grow and when scaling out the application. Thus,

optimizations to minimize the re-spawning cost should be studied, such as the use

of spare processes initialized at the beginning of the execution that can take over

the failed ranks upon failure [126].

The evaluation performed in this work is done on the basis of a general so-

lution that can be applied to any SPMD code. However, ULFM allows for the

implementation of different fault-tolerant strategies, depending on the nature of the

applications at hand. Ad-hoc solutions could reduce the failure-free or the recovery

overhead upon a failure. For instance, simplifying the detection of failures by check-

ing the status of the execution in specific points, or avoiding the re-spawning of the

failed processes in those applications that tolerate the shrinking of MPI processes.

Finally, in the evaluated resilience solution, all the application processes roll back

to the last valid recovery line, thus, all processes re-execute the computation done

from the checkpoint until the point where the failure have occurred. We believe

4.5 Concluding Remarks 87

that a global recovery should be avoided to improve the application performance

both in time and energy consumption. Thus, in the next chapter, we will explore

this direction further considering the development of a message-logging protocol to

avoid the roll back of the surviving processes.

Chapter 5

Local Rollback for Resilient MPI

Applications

The resilience approach presented in the previous chapter relies on a global roll-

back checkpoint/restart, rolling back all processes in the application after a failure.

However, in many instances, the failure has a localized scope and its impact is usu-

ally restricted to a subset of the resources being used. The ULFM interface enables

the deployment of more flexible recovery strategies, including localized recovery.

This chapter proposes a local rollback approach that can be generally applied to

SPMD applications by combining ULFM, the CPPC checkpointing tool, and mes-

sage logging.

This chapter is structured as follows. Section 5.1 gives a global overview of the

local rollback protocol. Section 5.2 explains the message logging strategy. Section 5.3

presents the management of the communications interrupted by the failure, and

Section 5.4 describes the tracking protocol developed to ensure the consistency of

the replay process. The experimental results are presented in Section 5.5. Section 5.6

covers the related work. Finally, Section 5.7 concludes this chapter.

89

90 Chapter 5. Local Rollback for Resilient MPI Applications

5.1. Local Rollback Protocol Outline

Traditional checkpointing solutions for MPI applications force all processes run-

ning the application, disregarding their statuses, to restart from the last checkpoint.

This implies rolling back to the last recovery line and repeating a computation that

has already been done. In many instances a complete restart is unnecessary, since

most of the computation nodes used by a parallel job will still be alive. Thus, a

global rollback introduces unnecessary overheads and energy consumption, and more

efficient solutions need to be explored.

In order to restrict the number of processes rolling back to those that have failed,

this chapter proposes a local rollback protocol. The goal is to reach, in the event of a

failure, a consistent global state from which the application can resume the execution

by rolling back only the failed processes. Figure 5.1 shows a global overview of the

operation. In the left part of the figure, the application is executed normally until

a failure occurs. The point of the execution where the failure takes place, from the

survivors’ perspective, is called the “failure line”. The right part of the figure shows

the recovery using the local rollback protocol, which is split into two phases: (1) the

“processes recovery” phase detects the failure and re-spawns failed processes, and

(2) the “consistency recovery” phase leads the application to a consistent state from

which the execution can resume.

During the processes recovery, CPPC exploits the ULFM functionalities as ex-

plained in the previous chapter to avoid terminating the application in the event of

a failure. The default MPI error handler is replaced with a custom one, which is

invoked upon process failure. Within the error handler, survivors revoke all their

communicators to ensure global knowledge of the failure, agree about the failed

processes, and then re-spawn them. Together, all processes reconstruct the global

communicator of the application (conceptually similar to MPI COMM WORLD),

and then rebuild all revoked communicators. The fact that all communicators are

revoked to ensure failure detection implies that all communicators need to be recon-

structed, by substituting all failed processes with their new replacement processes.

CPPC tracks all communicators used by the application at compile time, and the

CPPC compiler replaces the communicators in the application with a custom CPPC

communicator that contains a pointer to the underlying MPI communicator actually

5.1 Local Rollback Protocol Outline 91

Figure 5.1: Local rollback protocol overview.

used by MPI. With this approach, all communicators used by the application are

known to CPPC, and they can be revoked and transparently substituted with their

repaired replacement.

In the consistency recovery phase, the state of a failed process is recovered using

the checkpoint file from the last valid recovery line. Then, to reach a consistent

global state, failed processes need to progress between that recovery line and the

failure line. In order to reach the same state as before the failure (a known consistent

state), this progress needs to occur exactly as in the original execution. For this

purpose, we use a message logging protocol detailed in Section 5.2.

Message logging protocols have two fundamental parts: (1) the logging of events,

and (2) the logging of the content of the messages. A particular piece of the execution

of a process is a sequence of states and events. An event corresponds with a compu-

tational or communication step of a process that, given a preceding state, leads the

process to a new state. By repeating the same events, the progress of the rolled back

processes will lead to the same state as before the failure. As the system is basically

asynchronous, there is no direct time relationship between events occurring on dif-

ferent processes; however, events are partially ordered by the Lamport “happened

before” relationship [70]. Events can be deterministic or non-deterministic, depend-

ing on whether or not, from a given state, the same outcome state would always

92 Chapter 5. Local Rollback for Resilient MPI Applications

be obtained. Deterministic events follow the code flow (e.g., message emission or

computations), while non-deterministic events, such as message receptions, depend

on the time constraints of message deliveries. Processes are considered “piecewise

deterministic”: only sparse non-deterministic events occur, separating large parts of

deterministic computation. To progress the failed processes from the recovery line

to the failure line and reach the same state, all events in that part of the execution

need to be replayed in the exact same order as the initial execution. Deterministic

events will be naturally replayed as the processes execute the application code. How-

ever, the same outcome must be ensured for non-deterministic events, and thus they

must be logged in the original execution. Event logging must be done reliably, and

different techniques (pessimistic, optimistic, and causal), providing different levels

of synchronicity and reliability, have been studied [3]. In addition, failed processes

replay any message reception that impacted their state in the original execution, and

thus the content of the messages (i.e. the message payload) needs to be available

without restarting the sender process. A variety of protocols have been proposed for

this purpose. Receiver-based approaches [91] perform the local copy of the message

contents in the receiver side. The main advantage here is that the log can be locally

available upon recovery; however, messages need to be committed to stable storage

or to a remote repository to make them available after the process fails. On the

other hand, in sender-based strategies [18, 20, 88, 89, 113], the logging is performed

on the sender process. This is the most-used approach, as it provides better per-

formance [107] than other approaches. In a sender-based approach, the local copy

can be made in parallel with the network transfer, and processes can keep the log in

their memory; if the process fails, the log is lost, but it will be regenerated during

the recovery. As a drawback, during the recovery, failed processes need to request

the replay of messages by the survivor processes. The message logging protocol

proposed in this chapter applies a sender-based payload logging and a pessimistic

event logging.

As illustrated in Figure 5.1, some communications need to be replayed during

the consistency recovery phase: those to be received by a failed process to enable

its progress (messages m2 and m4 in the figure) and those that were interrupted

by the failure (message m5). Other communications need to be skipped during

the recovery: those that were successfully received by a survivor process (messages

m1 and m3 in the figure). The success of the recovery is predicated on correctly

5.2 Message Logging 93

identifying the communications belonging to each subset. Section 5.4 explains how

this identification is performed and how the replay process takes place.

In addition, the reconstruction of communicators has an important implication

for replaying communication messages interrupted by failures: all communications

initiated but not completed before the failure are lost. We assume this includes the

communication call in which the failure is detected, because—as stated in the ULFM

specification—there are no guarantees regarding the outcome of that call. The

management of communications interrupted by failure(s) is explained in Section 5.3.

5.2. Message Logging

This section describes the message logging protocol that combines system-level

logging and application-level logging. Point-to-point communications are logged

using the Open MPI Vprotocol component. Collective communications are logged

by CPPC, at the application level. The spatial coordination protocol used by CPPC

contributes to a reduction of the log size by enabling processes to identify when a

log will never be used for future replays.

5.2.1. Logging Point-to-Point Communications

Point-to-point communications are logged using a pessimistic, sender-based mes-

sage logging, which saves every outgoing message in the senders’ volatile mem-

ory. Sender-based logging enables copying the messages, in parallel, while the net-

work transfers the data. Pessimistic event logging ensures that all previous non-

deterministic events of a process are logged before a process is allowed to impact

the rest of the system. In MPI, non-deterministic events to be logged correspond

to any-source receptions and non-deterministic deliveries (i.e., iProbe, WaitSome,

WaitAny, Test, TestAll, TestSome, and TestAny functions). Because MPI com-

munication channels are First In, First Out (FIFO), replaying message emissions

in order—and guaranteeing the same outcome for any-source receptions and non-

deterministic deliveries—will lead to a consistent global execution state.

The method proposed here uses the Vprotocol [18] message logging component,

94 Chapter 5. Local Rollback for Resilient MPI Applications

which provides sender-based message logging and pessimist event logging. The

sender-based logging is integrated into the data-type engine of Open MPI and copies

the data in a mmap-ed memory segment as it is packed [16] and, thus, moves the mem-

ory copies out of the critical path of the application. While log of the content of

the messages is kept in the memory of the sender processes, for event logging, the

outcome of non-deterministic events is stored on a stable remote server.

After a failure, communications must be replayed using the appropriate commu-

nicator. Because our approach is a hybrid between application-level and library-level

recovery, failures cannot be masked completely at the application level, as is custom-

ary in pure, system-level message logging. Instead, the communication capability is

restored at the application level. The ULFM communicator reconstruction implies

new MPI communicators, and—in our work—the Vprotocol component has been

extended to use translation tables between the old and new communicators, which

are identified by their internal Communicator ID (CID). The CID is included in

the log, and—during the recovery—hash tables are built with the correspondence

between old and new CIDs. This approach ensures the replay through the correct

communicator and a consistent log in the event of additional failures.

5.2.2. Logging Collective Communications

The original Vprotocol component, due to its location in the Open MPI software

stack, sees only point-to-point communications. Instead of noticing a collective com-

munication as such, it sees them unfolding as a set of point-to-point communications

according to the collective algorithm implementation. It therefore logs collective op-

erations by logging all of the corresponding point-to-point communications. This has

two detrimental effects: (1) it prevents operating with hardware-based or architec-

ture-aware collective communications, and (2) can result in a significant log volume

that is not semantically necessary. To overcome these limitations, the method pro-

posed here logs collective communications at the application level, thereby enabling

the use of different collective communication implementations and potentially reduc-

ing the total log size, as the buffers sent in the intermediate steps of the collective

are not logged. Conversely, when logging at the application level, the memory copies

of the logged data are in the critical path of the application.

5.2 Message Logging 95

Figure 5.2: Binomial-tree staging of AllReduce collective operation.

The benefits of this technique are tied to the implementation of the collective

operations, and they will appear when intermediary copies are performed. For in-

stance, Figure 5.2 presents a common binomial-tree staging of the AllReduce col-

lective operation. A first wave of point-to-point communications is performed to

reduce the result, and a second one broadcasts this result to all processes. There-

fore, the internal point-to-point implementation of this collective operation performs

2×(NProcs−1) send operations, which implies logging 2×(NProcs−1)×BuffSize
bytes of data. On the other hand, the application-level logging of the AllReduce

collective operation logs the contribution of each process involved in the collective

call, i.e., NProcs × BuffSize bytes of data. Therefore, both the number of entries

that are appended to the log and the total logged data are divided by a 2×(NProcs−1)
NProcs

factor when logging at the application level.

An MPI wrapper implemented on top of CPPC performs the application-level

logging. Instead of using the traditional Profiling MPI API (PMPI), we decided

to implement our own wrappers around MPI functions, leaving the PMPI layer

available for other usages, and therefore allowing CPPC-transformed applications

to benefit from any PMPI-enabled tools. The CPPC wrappers around MPI function

calls perform the logging of the pertinent data and then calls the actual MPI routine.

Each process logs the minimum data necessary to be able to re-execute the collective

96 Chapter 5. Local Rollback for Resilient MPI Applications

after a failure in a mmap-ed memory segment.

During the recovery, collective operations will be re-executed by all processes

in the communicator, including survivors of the previous faults and replacement

processes. Although survivor processes do not roll back, they will re-execute the

collective communications during the recovery procedure, taking their inputs directly

from their log. To ensure consistency, point-to-point and collective calls must be

replayed in the same order as in the original execution. Thus, when logging a

collective, Vprotocol is notified, and it introduces a mark within its log. During

the recovery, when a survivor process encounters a collective mark, the Vprotocol

component transfers control to CPPC to insert the collective re-execution call.

5.2.3. Implications for the Log Size

Traditional message logging, used in combination with uncoordinated check-

pointing, treats all messages in the application as possible in-transit or orphan mes-

sages, which can be requested at any time by a failed process. In contrast, in the

method proposed here—thanks to the spatially coordinated checkpoints provided

by CPPC—the recovery lines cannot be crossed by any communication. Thus, only

the messages from the last recovery line need to be available. Recovery lines, there-

fore, correspond with safe locations in which obsolete logs can be cleared, which

means we can avoid keeping the entire log of the application or including it in the

checkpoint files. However, with CPPC, processes checkpoint independently; the

only way to ensure that a recovery line is completed would be to introduce a global

acknowledgement between processes, which would add a synchronization point (and

corresponding overhead) during the checkpoint phase. Instead, the logs from the l

latest recovery lines are kept in the memory of the processes, l being a user-defined

parameter. After a failure, the appropriate log will be chosen depending on which

line is the selected recovery line. In the improbable case where an even older recovery

line needs to be used, the log would not be available. However, in this case, a global

rollback is always possible. This approach reduces the overhead and the memory us-

age introduced by the message logging. Furthermore, in most application patterns,

safe points are separated by semantically synchronizing collective communications

that prevent a rollback going further than the last recovery line.

5.3 Communications Interrupted by a Failure 97

Note that communicator creation calls correspond with a particular type of col-

lective operation. In many cases, derived communicators are created at the begin-

ning of the application code, and they are used during the whole execution. Thus,

these log entries are not cleared when checkpointing, as they will always be necessary

for the failure recovery procedure to recreate the necessary communicators.

5.3. Communications Interrupted by a Failure

Revoking and reconstructing communicators implies that all ongoing communi-

cations at the time of the failure are purged at all survivor processes. The incomplete

communications correspond to the communication call in which the failure was de-

tected and to all non-blocking communication calls that were not completed when

the failure hit. A communication crossing the failure line (including between survivor

processes) would then be lost and it would need to be reposted to ensure that the

execution resumes successfully. Note that this implies not only replaying emissions

(as in traditional system-level message logging) but also reposting, at the applica-

tion level, those receptions and collective communications that were interrupted by

the failure.

There are no guarantees regarding the outcome of the data transfer related to

an MPI call in which a failure is detected (i.e., output buffers may contain garbage

data). Therefore, to ensure consistency, the MPI calls mentioned above have to be

re-executed. As commented earlier, all MPI calls in the application are performed

through the MPI wrapper implemented on top of CPPC. Thus, within the MPI

function wrappers, the code returned by the MPI call is checked for errors, and

corrective actions are initiated when necessary. When an error is returned, the

call is re-executed with its original arguments. Note, however, that some of those

arguments are updated, such as the reconstructed communicators or—in the case of

non-blocking communications—the requests that were reposted during the recovery

replay.

For non-blocking communication calls, as stated in the MPI standard, a non-

blocking send call (e.g., MPI Isend) initiates the send operation but does not finish

it. A separate completion call (e.g., MPI Wait) is needed to finish the communication

98 Chapter 5. Local Rollback for Resilient MPI Applications

Figure 5.3: States of non-blocking communications.

i.e., to verify that the data has been copied out of the send buffer. Similarly, a non-

blocking receive call (e.g., MPI Irecv) initiates the receive operation, but a separate

completion call (e.g., MPI Wait) is needed to finish the operation and to verify that

the data has been received into the reception buffer.

We consider the following states for a non-blocking communication request, il-

lustrated in Figure 5.3. When the completion call is invoked over a request, the

request is considered delivered to the application. However, at any point between

the initiation of the request to its delivery to the application, the request might be

completed internally by CPPC; that is, the data has been received into the reception

buffer even though the application has not yet acknowledged it.

When a failure strikes, there could be a number of pending non-blocking send and

receive communications whose completion calls have not been invoked yet. Their

requests, even when internally completed (i.e. the correct result is available in the

output buffers), will not be delivered to the application after the recovery. The

reason is that these requests will be associated with an old communicator, and a

later invocation of a completion call will generate an error. On the other hand, those

that did not complete internally will be lost upon failure, and they will need to be

re-posted before the execution continues.

CPPC maintains a temporary log for non-blocking communication calls for both

emissions and receptions, which is discarded upon delivery of a request. Note that

a correctly designed MPI application will not modify the send buffers, nor will it

use the receive buffers until a completion routine (e.g., MPI Wait) has been invoked

5.4 Tracking Messages and Emission Replay 99

over the associated requests. Thus, this temporary log avoids doing memory copies

of the send buffers and instead keeps a reference to them. For each non-blocking

call, CPPC creates a log entry that permits the re-execution of the call, to again

initiate the send/receive operation, and it keeps a reference to the associated request

it generated. Due to the temporary characteristics of this log, a pool of log entries

is used to avoid the overhead from allocating and freeing these items.

The consistency of the temporary non-blocking log is maintained as follows.

First, when a request is internally completed by CPPC the associated log entry is

removed. However, the request becomes a non-delivered request until the applica-

tion layer is informed, and CPPC maintains a reference to it. Eventually, when

a completion routine (e.g., MPI Wait) is invoked and the request is delivered, the

CPPC reference is finally removed. The management described here applies for all

types of non-blocking requests and is purely local, we will detail in Section 5.4 the

distributed management including the ordering of communication reposts.

After a failure, the first step consists of freeing the resources associated with

the incomplete and non-delivered requests. The incomplete request will be reposted

within the survivors’ replay, as explained in Section 5.4. Note that when reposting a

non-blocking communication call, its associated request in the application needs to

be updated. This is solved using the same approach as is used with the communi-

cators: a custom CPPC request is used by the application, which actually contains

a pointer to the real MPI request, thereby enabling the MPI request to be updated

transparently after it has been reposted.

5.4. Tracking Messages and Emission Replay

In MPI, observing a communication completion at one peer does not imply that

it has also completed at other peers. For example, an MPI Send can complete as soon

as the send buffer can be reused at the local process. Meanwhile, the message may

be buffered, and the corresponding receive may still be pending. During the replay,

survivors have to resend the messages from their log to the restarting processes (as

in traditional message logging), but they also have to send some messages from

their log to other survivor processes whose receptions have been interrupted by the

100 Chapter 5. Local Rollback for Resilient MPI Applications

failure (i.e., those receptions that have been reposted by the protocol described in

Section 5.3). Said another way, the success of the replay relies on the receivers’

capability to inform the senders which communications have been received and on

the ability of the senders to distinguish which communications need to be replayed.

Since this list of completed or incomplete communications depends on post order

at the receiver, and not post order at the sender, the messages that need to be

replayed are not necessarily contiguous in the sender-based log. Thus, it is critical

that a given communication can be unequivocally identified by both peers involved.

Our strategy for identifying messages relies on sequence numbers. Every time a

message is sent over a particular communicator to a particular receiver, a per-channel

counter is increased, and its value is piggybacked in the message as the Sender

Sequence ID (SSID). This SSID is then used to implement a tracking protocol for

point-to-point communications to identify the messages that are expected by other

peers and need to be replayed and to identify those that were completed and need

to be skipped.

5.4.1. Tracking Protocol

During the execution, processes track the SSIDs for each send and receive oper-

ation they have completed over each communication channel. For the emissions on

a given channel, SSIDs grow sequentially. Thus, the sender only needs to keep the

most recent SSID for that communication channel. However, receiving a message

with a particular SSID does not ensure that all previous messages in that channel

have been received, because a receiver can enforce a different reception order (e.g.,

by using different tags). Thus, processes maintain the highest SSID (hssid) they have

received and a list of pending SSIDs ranges. Each range is represented with a pair

[assid, bssid], meaning that messages with SSIDs in that range are pending. When,

in a channel, a non-consecutive SSID is received:

If it is larger than the highest SSID received, a new range [hssid+1, currentssid−
1] is added to the pending reception list.

Otherwise, it is a pending SSID, and it must be removed from the pending

list. Note that the removal can imply splitting a pending range in two.

5.4 Tracking Messages and Emission Replay 101

Each checkpoint file includes the latest sent and the highest-received SSIDs. Note

that, when using CPPC, messages cannot cross the recovery line, and therefore there

are no pending ranges when checkpointing.

SSIDs tracking is only used for point-to-point communication replay. When

using Open MPI, the header of the message already contains a sequence number

for MPI point-to-point ordering. To avoid the extra cost of duplicate tracking

and piggybacking, we reuse that existing sequence number in the SSID tracking

algorithm. To prevent the collective communications—implemented using point-to-

point communications—from impacting the SSID tracking, they are run through a

different communicator. Additionally, when communicators are reconstructed with

ULFM, Open MPI SSIDs are reset. The tracking protocol deals with this issue

by calculating the SSID offsets. During the recovery, the value of the SSID before

the failure is restored, and the SSID tracking continues using the saved value as

a baseline and then adding the current value of the Open MPI sequence number.

This absolute indexing of SSIDs allows for tolerating future failures after the first

recovery and, notably, failures hitting the same recovery line multiple times.

5.4.2. Ordered Replay

Once the failed processes are recovered using the checkpoint files, all processes

exchange the tracking information. For each pair of processes that have exchanged

messages in the past, and for each particular communication channel they have used,

the receiver notifies the sender of the highest SSID it has received and of the pending

ranges (if any). With that remote information on board, if the sender is:

A failed process: it knows which emissions can be skipped because they were

successfully received during the previous execution, and which ones must be

re-emitted.

A survivor process: it can determine which messages from its log must be

replayed because other peers require them.

Then, failed processes continue their execution, skipping the communications al-

ready received by survivors, and emitting those that the peers expect to receive.

102 Chapter 5. Local Rollback for Resilient MPI Applications

Additionally, the information from the event logger is used by the failed processes

to ensure that non-deterministic events are replayed exactly as they were in the

original execution (e.g., an any-source and/or any-tag reception will be regenerated

as a named reception, with a well specified source and tag to prevent any potential

communication mismatch and deliver a deterministic re-execution in which the data

is received in exactly the same order as in the original execution). All collective com-

munications are normally executed; the collective protocol, detailed in Section 5.2.2,

guarantees both correctness and native collective performance.

Meanwhile, survivors start the replay of logged communications and invoke Vpro-

tocol’s replay—replaying the necessary point-to-point communications from the log.

When a survivor encounters a collective log mark in its log, it transfers control to

CPPC to re-execute the appropriate collective. Towards the end of the log, the

survivor can encounter gaps originated from non-blocking emissions that were in-

terrupted by the failure, which—again—results in control transfers to CPPC to

re-execute the pending emissions. As mentioned in Section 5.3, there can also be

pending receptions interrupted by a failure that need to be reposted. However,

there are no marks for non-blocking receptions interrupted by the failure in Vpro-

tocol’s log (the only logged information for receptions relates to the ordering on

non-deterministic events to the remote event logging server, when applicable). Pend-

ing receptions that were interrupted (i.e. produced an error code) are tracked by

the CPPC component and are re-posted and ordered with respect to the collective

communications and pending non-blocking emissions, thereby ensuring consistency.

Once a survivor finishes processing its log, it continues the execution.

5.5. Experimental Evaluation

The experimental evaluation was performed at the Galicia Supercomputing Cen-

ter using the “FinisTerrae-II” supercomputer. The hardware platform is detailed

in Table 5.1. The experiments spawned 24 MPI process per node (one per core).

Checkpoint files are dumped on a remote parallel file system using Lustre over

InfiniBand. For our testing, we used CPPC version 0.8.1, working with HDF5 ver-

sion 1.8.11 and GCC version 4.4.7. The Open MPI version used corresponds with

ULFM 1.1, modified for the integration of Vprotocol and CPPC. The hwloc package

5.5 Experimental Evaluation 103

Table 5.1: Hardware platform details.

Finisterrae II Supercomputer

Operating system Red Hat 6.7

Nodes 2x Intel Haswell E5-2680 v3

2.50 GHz, 12 cores per processor

128 GB main memory

Network InfiniBand FDR@56Gb/s & Gigabit Ethernet

Local storage 1 TB HDD

Remote storage Lustre over InfiniBand

MPI version ULFM commit a1e241f816d7

GNU Compilers v4.4.7, optimization level O3

Table 5.2: Configuration parameters of the testbed applications.

Configuration parameters

Himeno Gridsize: 1024× 512× 512, NN=12 000

Mocfe Energy groups: 4, angles: 8, mesh: 573,

strong scaling in space, trajectory spacing = 0.01cm2

SPhot NRUNS=24× 216

TeaLeaf x cells=4096, y cells=4096, 100 time steps

was used for binding the processes to the cores. Applications were compiled with

optimization level O3. We report the average times of 20 executions.

We used an application testbed comprised of four domain science MPI applica-

tions with different checkpoint file sizes and communication patterns. The configura-

tion parameters of the testbed applications are detailed in Table 5.2. The application

TeaLeaf is tested in addition to the applications presented in the previous chapter

(see Section 4.3 for more details about the other applications). TeaLeaf [125] is a

mini-app, originally part of the Mantevo project, that solves a linear heat conduction

equation on a spatially decomposed regular grid using a five-point stencil with im-

plicit solvers. The original runtimes of the applications, in minutes, are reported in

Table 5.3. Most of the experiments were run doing strong scaling (i.e., maintaining

the global problem size constant as the application scales out), with the exception

of the tests reported in Section 5.5.3, which study the behavior of the proposal when

doing weak scaling (i.e., maintaining the problem size by process constant as the

104 Chapter 5. Local Rollback for Resilient MPI Applications

Table 5.3: Original runtimes of the testbed applications in minutes.

48P 96P 192P 384P 768P

Himeno 18.48 9.22 4.76 2.45 1.56

Mocfe 20.49 8.26 4.75 2.41 1.48

SPhot 16.38 8.25 3.78 2.25 1.48

Tealeaf 17.50 9.31 4.28 2.35 1.79

application scales out) in the Himeno application.

In order to measure the benefits of the proposed solution in recovery scenarios,

the experiments compare the local rollback with the global rollback strategy pre-

sented in Chapter 4. In both cases, the checkpointing frequency (N) is fixed so that

two checkpoint files are generated during the execution of the applications—the first

one at 40% of the execution progress and the second one at 80%. The N value for

each application is shown in Table 5.4. In all experiments, a failure is introduced by

killing the last rank in the application when 75% of the computation is completed.

Once the failure is detected, communicators are revoked, survivors agree about the

failed process, and a replacement process is spawned. In the global rollback, all

processes roll back to the checkpoint generated at 40% of the execution. In the local

rollback, the replacement processes continue from the last checkpoint; meanwhile,

the survivors use their logs to provide the restarting process with messages that

enable the progress of the failed process until it reaches a consistent state. In the

global rollback, no extra overhead besides CPPC instrumentation and checkpoint-

ing is introduced. On the other hand, the local rollback proposal introduces extra

operations to maintain the logs. In these experiments, only the logs from the last

recovery line are kept in memory (l = 1). Below, Section 5.5.1 describes the extra

fault-free overhead, and Section 5.5.2 studies the benefits (upon recovery) of the

local rollback proposal.

The settings for the experiments (i.e., checkpointing and failure frequencies) es-

tablish homogeneous parameters across the different tests, simplifying a thorough

study of the performance of the local rollback protocol. In realistic scenarios, ap-

plications runtimes would be in the order of days, thus, multiple failures would

hit the execution. Therefore, checkpoints would need to be taken with a higher

frequency to ensure the execution completion. In this scenario, the local rollback

would provide more efficient recoveries each time a failure strikes, thus, improving

5.5 Experimental Evaluation 105

the overall execution time under those conditions. Even though a logging over-

head is introduced during the execution, the fact that the log can be cleared upon

checkpointing provides an important advantage over traditional message logging

techniques. More precisely, this characteristic can enable the operation of the pro-

posal on communication-bound applications that otherwise, will exceed the memory

limitations of the running environment.

5.5.1. Operation Overhead in the Absence of Failures

The overhead introduced by the local rollback is influenced by the communi-

cation pattern of the applications and how the logs evolve during the execution.

Table 5.4 characterizes the applications in terms of their log volume. It shows the

MPI routines that are called in the main loop of the application (where the check-

point call is located). The table also shows the number of processes running the

experiment, the total number of iterations run by the application, and the check-

pointing frequency (N) indicating the number of iterations between two consecu-

tive checkpoints. Regarding event logging, only SPhot generates non-deterministic

events—precisely (num procs − 1) × 5 per iteration. Finally, the aggregated aver-

age log behavior per iteration is reported, that is, the average among all iterations,

where the aggregated value for each iteration is computed as the addition of the log

from all processes (i.e. the total log generated by the application in one iteration).

The number of entries and the size of the log generated by the proposal are reported

for both point-to-point and collective calls. For the latter, the table also shows the

reduction, in percentage, that the application-level logging provides over the internal

point-to-point logging.

In the target applications, one can see a very significant reduction in the col-

lective communications log volume thanks to application-level logging of collective

operations. Even though the log size of the testbed applications is dominated by

point-to-point operations, other scenarios may present a larger contribution from

collective communications. The results from a profiling study performed by Raben-

seifner [105] show that nearly every MPI production job uses collective operations

and that they consume almost 60% of the MPI time, AllReduce being the most

called collective operation. In traditional HPC MPI applications, AllReduce oper-

106
C

h
ap

ter
5.

L
o
cal

R
ollb

ack
for

R
esilien

t
M

P
I

A
p
p
lication

s

Table 5.4: Benchmarks characterization by MPI calls and log behavior.

MPI Aggregated average log behavior per iteration

calls in Point-to-Point Collective Communications

main loop #
P
r
o
c
s

#
It
e
r
s

N Entries Size Entries (%↓) Size (%↓)
H
im

e
n
o

MPI Irecv,

MPI Isend,

MPI Wait,

MPI AllReduce

48 12K 5K 208 28.5MB 48(↓75.00%) 1.5KB(↓81.82%)

96 12K 5K 448 34.8MB 96(↓78.57%) 3.0KB(↓84.42%)

192 12K 5K 944 51.5MB 192(↓81.25%) 6.0KB(↓86.36%)

384 12K 5K 2.0K 68.7MB 384(↓83.33%) 12.0KB(↓87.88%)

768 12K 5K 4.1K 82.2MB 768(↓85.00%) 24.0KB(↓89.09%)

M
o
c
f
e

MPI Irecv,

MPI Isend,

MPI Waitall,

MPI Allreduce,

MPI Reduce

48 10 4 69.9K 1.7GB 2.0K(↓75.00%) 140.4KB(↓78.53%)

96 10 4 150.5K 2.3GB 3.9K(↓78.57%) 280.9KB(↓81.59%)

192 10 4 317.2K 3.0GB 7.9K(↓81.25%) 561.8KB(↓83.89%)

384 10 4 666.6K 3.9GB 15.7K(↓83.33%) 1.1MB(↓85.68%)

768 10 4 1376.3K 5.0GB 31.5K(↓85.00%) 2.2MB(↓87.12%)

S
P
h
o
t

MPI Irecv,

MPI Send,

MPI Waitall,

MPI Barrier

48 1K 400 235 29.3KB 192(↓83.33%) 1.5KB(↓96.67%)

96 500 200 475 59.2KB 384(↓85.71%) 3.0KB(↓97.14%)

192 250 100 955 118.8KB 768(↓87.50%) 6.0KB(↓97.50%)

384 125 50 1.9K 238.0KB 1.5K(↓88.89%) 12.0KB(↓97.78%)

768 62 25 3.8K 476.5KB 3.1K(↓90.00%) 24.0KB(↓98.00%)

T
e
a
l
e
a
f MPI Irecv,

MPI Isend,

MPI Waitall,

MPI AllReduce

48 100 40 184.6K 1.7GB 107.9K(↓75.00%) 3.7MB(↓81.25%)

96 100 40 387.4K 2.5GB 216.0K(↓78.57%) 7.4MB(↓83.93%)

192 100 40 800.7K 3.7GB 431.3K(↓81.25%) 14.8MB(↓85.94%)

384 100 40 1638.6K 5.4GB 863.3K(↓83.33%) 29.6MB(↓87.50%)

768 100 40 3331.1K 7.8GB 1726.6K(↓85.00%) 59.3MB(↓88.75%)

5.5 Experimental Evaluation 107

ations frequently work with relatively small message sizes, however, emerging disci-

plines, such as deep learning, usually rely on medium and large messages sizes [8].

To illustrate the performance effect of this technique with different message sizes,

we refine the analysis with the behavior of relevant collective communications in the

Intel MPI Benchmarks [59] (IMB). Figure 5.4 compares the two logging methods

on 48 processes (24 per node), showing—for different message sizes—the overhead

induced over a non-fault-tolerant deployment (100% means that the logging method

imparts no overhead). The volume of log data and the number of log entries are

reported for the collective operations Allgather, AllReduce, and Bcast. For these

collective operations, application logging shows notable reductions in the size and

number of entries in the log, which in turn translates to a notable reduction in col-

lective communication latency. Note that sudden changes in the logged data and the

number of entries in the log correspond with Open MPI choosing a different imple-

mentation of collective communications depending on message size. In the general

case, the reduction in the logging overhead when logging collective communications

at the application level depends on the operation’s semantic requirements and on

the communication pattern in the point-to-point implementation of the collective

communication. In the collective operations not presented here, application logging

yields minor advantages over point-to-point logging in terms of log volume. This,

in turn, translates to smaller performance differences between the two approaches.

Note that, in any case, point-to-point collective logging is not compatible with the

use of hardware-accelerated collective communication. Thus, point-to-point collec-

tive logging is expected to impart a significant overhead from which application

logging is immune, independent of the log volume.

Figure 5.5 shows the memory consumption overhead introduced by the log for

the testbed applications. To provide a better overview of the impact of this memory

consumption, the maximum total size of the log has been normalized with respect

to the available memory (number of nodes × 128 GB per node). Using CPPC and

its spatial coordination protocol allows the log to be cleared upon checkpointing;

thus, the maximum log size corresponds to the product of the number of iterations

between checkpoints (N) and the addition of both point-to-point and collective

communications log sizes per iteration (values shown in Table 5.4). Equivalently,

the maximum number of entries in the log corresponds to the product of N and the

total number of entries in the log. Figure 5.5 also presents this maximum. Both

108 Chapter 5. Local Rollback for Resilient MPI Applications

Logging at the application level Logging internal point to point communications

0%

20%

40%

60%

80%

100%

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allgather − Performance (% of vanilla OpenMPI)

0B

1KB

1MB

1GB

80GB

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allgather − Logged data

0

10

100

1K

10K

50K

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allgather − Number of entries in the log

0%

20%

40%

60%

80%

100%

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allreduce − Performance (% of vanilla OpenMPI)

0B

1KB

1MB

1GB

80GB

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allreduce − Logged data

0

10

100

1K

10K

50K

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Allreduce − Number of entries in the log

0%

20%

40%

60%

80%

100%

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Bcast − Performance (% of vanilla OpenMPI)

0B

1KB

1MB

1GB

80GB

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Bcast − Logged data

0

10

100

1K

10K

50K

8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M 32
M

Message size (bytes)

Bcast − Number of entries in the log

Figure 5.4: Application level vs. internal point-to-point logging of collective com-
munications: performance, logged data, and number of entries in the log.

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8 1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

L
o
g
 s

iz
e
 (

%
)

N
u
m

b
e
r

o
f
e
n
tr

ie
s
 i
n
 t
h
e
 l
o
g

Log size over total memory available (%) Number of entries in the log

Himeno Mocfe Sphot Tealeaf

Figure 5.5: Log parameters when checkpointing: maximum log size expressed as the
percentage of the total memory available and number of entries.

5.5 Experimental Evaluation 109

the number of entries in the log and the log size are represented in log scale. In

all applications tested here, we see that the number of log entries increases as more

processes run the applications, while the percentage of the total memory occupied

by the log decreases. The Himeno application has the largest log size, ranging from

52% of the available memory when using 48 processes to 9% of the available memory

when using 768 processes. Tealeaf has the second largest log, with a maximum

log size ranging from 26.2% to 7.7% of the available memory when scaling up the

application. In these applications, the bulk of the communication employs point-to-

point calls, and the collective operations do not account for a significant portion of

the logged data.

In fault-free executions, the local rollback protocol also introduces overhead in

the form of communication latency and checkpoint volume. Figure 5.6 compares the

overhead of global rollback and local rollback resilience in the absence of failures.

It reports the absolute overhead in seconds, with respect to the original runtime

(shown in Table 5.3), and reports the aggregated checkpoint file size (i.e., the total

checkpoint volume from all processes). First, the amount of log management data

that needs to be added to the checkpoint data is negligible. Therefore, checkpoint

file sizes do not present a relevant difference between the local and global rollback

solutions. Second, the overhead introduced by the local rollback is close to the

overhead introduced by the global rollback solution. Most of the logging latency

overhead is hidden, and its contribution to the total overhead of the local rollback

approach is small compared to the contribution of the checkpoint cost. The overhead

grows with the size of the checkpoint file. The SPhot and Tealeaf applications

present the smallest checkpoint file sizes, with SPhot having checkpoint file sizes

of 46–742 MB and TeaLeaf having checkpoint file sizes of 261–302 MB, with the

upper ranges representing an increased number of processes. Given the very small

overhead imparted by checkpointing on Tealeaf, for some experiments the overhead

for the global rollback for Tealeaf is very slightly negative (less than 0.5% of the

original runtime), presumably because of the optimizations applied by the compiler

when the code is instrumented with CPPC routines. The overhead of the logging

latency, while minimal in the overall runtime of this application, comes to dominate

the cost of checkpointing in the failure-free overhead breakdown.

110 Chapter 5. Local Rollback for Resilient MPI Applications

−5

0

5

10

15

20

25

30

35

40

45

50

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

0GB

10GB

20GB

30GB

40GB

50GB

60GB

70GB

T
im

e
 (

s
e
c
o
n
d
s
)

A
g
re

g
a
te

d
 c

k
p
t
fi
le

 s
iz

e
 (

G
B

)

Local rollback overhead

 Global rollback overhead

Local rollback aggregated ckpt size

Global rollback aggregated ckpt size

Himeno Mocfe Sphot Tealeaf

Figure 5.6: Absolute checkpointing overhead with respect to the non fault-tolerant
version and aggregated checkpoint file sizes.

5.5.2. Operation Overhead in the Presence of Failures

The local rollback solution reduces the time required for recovering the applica-

tions when a failure occurs. The application is considered to have fully recovered

when all processes (failed and survivors) have reached the execution step at which

the failure originally interrupted the computation. In both the global and local re-

covery approaches, for a failed process this point is attained when it has finished

re-executing the lost work. A survivor process is considered fully recovered when it

has either re-executed all lost work in the global recovery scheme, or when it has

served all necessary parts of the log to the failed (restarting) processes, and to other

survivors that require it.

Figure 5.7 presents the reduction percentage of the local rollback recovery time

over the global rollback recovery for both the survivor and failed processes. The

improvement in the recovery times is very similar for all processes: these applica-

tions perform collective operations in the main loop, and all survivor processes that

originally participated in the collective communications are also involved in their

replay during recovery.

5.5 Experimental Evaluation 111

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

R
e
d
u
c
ti
o
n
 (

%
)

Survivor recovery Failed recovery

Himeno Mocfe Sphot Tealeaf

Figure 5.7: Reduction of the recovery times of survivor and failed processes with
the local rollback (the higher, the better).

Figure 5.8 shows the times (in seconds) of the different operations performed

during the recovery. The ULFM recovery times include the failure detection, the

re-spawning of the replacement processes and the entire reconstruction of the MPI

environment, including the communicators’ revocation, shrinking and reconfigura-

tion. The CPPC reading times measure the time spent during the negotiation of all

processes about the recovery line to be used, and the reading of the selected check-

point files by the failed ones. The CPPC positioning times include the time to recover

the application’s state of the rolled back processes, including the reconstruction of

the application data (moving it to the proper memory location, i.e., the application

variables), and the re-execution of non-portable recovery blocks (such as the creation

of communicators). The CPPC positioning finishes when the failed processes reach

the checkpoint call in which the checkpoint file was originally generated. Finally, we

included the failed processes re-computation time which corresponds with the time

spent from the checkpoint call in which the recovery files where generated until the

failed processes have reached the execution step at which the failure originally in-

terrupted the computation. The results in Figure 5.8 are summarized in Figure 5.9,

which represents the percentage of the reduction in the recovery times that is due

to each recovery operation in the failed processes.

Both approaches, local and global, perform the same ULFM operations during

112 Chapter 5. Local Rollback for Resilient MPI Applications

0.0

0.5

1.0

1.5

2.0

2.5

3.0

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

T
im

e
 (

s
e
c
o
n
d
s
)

ULFM recovery operations

Local rollback Global rollback

Himeno Mocfe Sphot Tealeaf

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

CPPC reading

Himeno Mocfe Sphot Tealeaf

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

T
im

e
 (

s
e
c
o
n
d
s
)

CPPC positioning

Himeno Mocfe Sphot Tealeaf

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0
4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

Failed re−computation

Himeno Mocfe Sphot Tealeaf

Figure 5.8: Times of the different operations performed during the recovery.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

%
 o

f
re

c
o
v
e
ry

 r
e
d
u
c
ti
o
n

Failed recomputation

ULFM recovery

CPPC reading

CPPC positioning

Himeno Mocfe Sphot Tealeaf

Figure 5.9: Percentage that each recovery operation represents over the reduction
in the failed processes’ recovery times.

5.5 Experimental Evaluation 113

the recovery, thus, no relevant differences arise. In the general case, the CPPC read-

ing and positioning operations benefit from the local rollback strategy, as the number

of processes reading checkpoint files and moving data in memory decreases. As can

be observed in both figures, the re-computation of failed processes is the recovery

operation with the largest weight in the reduction of the failed processes’ recovery

times. This happens because the failed processes perform a more efficient execution

of the computation: no communications waits are introduced, received messages are

rapidly available, and unnecessary message emissions from past states of the com-

putation are skipped (although failed processes log them). Note that, in the testbed

applications, the collective operations synchronize the failed and survivor processes

recovery, thus, the time spent by the survivors in the replay of communications is

almost the same as the failed processes re-computation times. In applications that

do not present collective communications in the main loop, and where the applica-

tions are less tightly coupled, i.e the communications patterns between survivor and

failed processes are less synchronizing, a larger improvement is expected.

The reduction in recovery time has a direct impact on the improvement of the

overall execution time when a failure occurs. Figure 5.10 shows the reduction in

runtime and energy consumption achieved when using local rollback instead of global

rollback when faced with a failure. The extra runtime and the energy consumption

are calculated as the difference between the original runtime/energy use and the

runtime/energy use when a failure occurs. Energy consumption data is obtained

using the sacct Slurm command. As an example, in the 48 processes execution,

the overhead added (upon failure) to MOCFE’s runtime is reduced by 53.09% when

using the local rollback instead of the global rollback, and the extra energy consumed

by failure management is reduced by 74%.

The SPhot application shows the lowest performance benefit. In this application,

all point-to-point communications consist of sends from non-root processes to the

root process. Thus, during the recovery, survivor processes do not replay any point-

to-point communications to the failed rank, although they do participate in the

re-execution of the collective communications. For this reason, the performance

benefit for SPhot during the recovery is mainly due to the execution of the failed

process computation without synchronization with other ranks. The receives are

served from the message log, and most of its emissions have already been delivered

114 Chapter 5. Local Rollback for Resilient MPI Applications

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

4
8

9
6

1
9
2

3
8
4

7
6
8

R
e
d
u
c
ti
o
n
 (

%
)

Reduction in the failure overhead Reduction in the energy consumption

Himeno Mocfe Sphot Tealeaf

Figure 5.10: Reduction in the extra runtime and energy consumption when intro-
ducing a failure and using local rollback instead of global rollback (higher is better).

at the root process and are avoided. Even though these messages are not sent,

they are still being logged to enable the recovery from future failures. In the other

applications, where the communication pattern is more favorable, the local recovery

permits a significant reduction in the extra time when compared to the global restart

strategy.

5.5.3. Weak scaling experiments

In addition to the previous experiments, this section reports the results when

doing weak scaling on the Himeno application, i.e., maintaining the problem size by

process constant as the application scales out. These experiments compare the local

rollback and global rollback under the same conditions as in the previous experi-

ments (checkpointing frequency, failure introduction, etc.). Table 5.5 reports the

configuration parameters and the original runtimes of the application, in minutes.

Table 5.6 (equivalent to Table 5.4 in the strong scaling experiments) character-

izes these tests in terms of their log volume, reporting the MPI routines that are

called in the main loop of the application (where the checkpoint call is located),

the number of processes running the experiment, the total number of iterations run

5.5 Experimental Evaluation 115

Table 5.5: Original runtimes (in minutes) and configuration parameters of the Hi-
meno weak scaling experiments.

Himeno - Weak Scaling

Configuration parameters Run time (minutes)

48 processes Gridsize: 512× 512× 512, NN=12 000 9.16

96 processes Gridsize: 1024× 512× 512, NN=12 000 9.14

192 processes Gridsize: 1024× 1024× 512, NN=12 000 9.72

384 processes Gridsize: 1024× 1024× 1024, NN=12 000 10.11

768 processes Gridsize: 2048× 1024× 1024, NN=12 000 10.24

Table 5.6: Himeno characterization by MPI calls and log behavior (weak scaling).

MPI Aggregated average log behavior per iteration

calls in Point-to-Point Collective Communications

main loop #
P
r
o
c
s

#
It
e
r
s

N Entries Size Entries (%↓) Size (%↓)

H
im

e
n
o

MPI Irecv,

MPI Isend,

MPI Wait,

AllReduce

48 12K 5K 208 16.3MB 48(↓75.00%) 1.5KB(↓81.82%)

96 12K 5K 448 34.8MB 96(↓78.57%) 3.0KB(↓84.42%)

192 12K 5K 944 90.0MB 192(↓81.25%) 6.0KB(↓86.36%)

384 12K 5K 2.0K 155.8MB 384(↓83.33%) 12.0KB(↓87.88%)

768 12K 5K 4.1K 320.1MB 768(↓85.00%) 24.0KB(↓89.09%)

by the application, and the checkpointing frequency (N) indicating the number of

iterations between two consecutive checkpoints. Table 5.6 also presents the aggre-

gated average log behavior per iteration for the point-to-point and collective calls in

terms of number of entries and size of the log. In comparison with the strong scaling

experiments, there are no changes in the number of collective communications per-

formed during the execution. On the other hand, even though the same number of

point-to-point communications are performed in one iteration, the data transmitted

presents a more abrupt increase when scaling out. Figure 5.11a shows, in log scale,

the memory consumption overhead introduced by the log (equivalent to Figure 5.5

in the strong scaling experiments). As can be observed, in these experiments the

increase in the data transmitted by the point-to-point communications results in a

more steady maximum percentage of the total memory that is occupied by the log

(between 31-42% of the available memory) when scaling out.

Figure 5.11b reports the absolute overheads introduce by the local rollback and

global rollback in the absence of failures, and aggregated checkpoint file size (equiv-

116 Chapter 5. Local Rollback for Resilient MPI Applications

0.0001%

0.001%

0.01%

0.1%

1%

10%

100%

48 96 192 384 768
1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

L
o

g
 s

iz
e

 (
%

)

N
u

m
b

e
r

o
f

e
n

tr
ie

s
 i
n

 t
h

e
 l
o

g

Log size over total memory available (%)

Number of entries in the log

(a) Log parameters when checkpointing: maxi-
mum log’s sizes expressed as the percentage of
the total memory available and number of en-
tries during the execution.

−5

0

5

10

15

20

25

30

35

40

45

50

48 96 192 384 768

0GB

10GB

20GB

30GB

40GB

50GB

60GB

70GB

80GB

90GB

T
im

e
 (

s
e

c
o

n
d

s
)

A
g

re
g

a
te

d
 c

k
p

t
fi
le

 s
iz

e
 (

G
B

)

Local rollback overhead

 Global rollback overhead

Local rollback ckpt size

Global rollback ckpt size

(b) Absolute checkpointing overhead with re-
spect to the non fault-tolerant version and ag-
gregated checkpoint file sizes.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

48 96 192 384 768

R
e

d
u

c
ti
o

n
 (

%
)

Survivor recovery time

Failed recovery time

(c) Reduction of the recovery times of survivor
and failed processes with respect to the global
rollback recovery.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

48 96 192 384 768

R
e

d
u

c
ti
o

n
 (

%
)

Reduction in the failure overhead

Reduction in the energy consumption

(d) Reduction of the overall failure overhad and
energy consumption with the local rollback with
respect to the global rollback recovery.

Figure 5.11: Results for the Himeno benchmark doing weak scaling (keeping the
problem size by process constant).

alent to Figure 5.6). The overhead introduced by both proposals is low, and the

aggregated checkpoint file size increases when scaling out, as the contribution from

each process remains constant.

Figure 5.11c reports the reduction in the failed and survivors processes recovery

times, while Figure 5.11d shows the reduction in run time and energy consumption

achieved when using local rollback instead of global rollback when faced with a failure

(equivalent to Figures 5.7 and 5.10). On average, the reduction on the total run time

5.6 Related Work 117

is 42.9%, while the reduction in the energy consumption corresponds with a 49.7%

on average. As in Himeno strong scaling experiments, most of the improvement is

due to a more efficient execution of the failed processes.

5.6. Related Work

Message logging has been a very active research topic in the past decades because

the flexibility it provides to the restart operations [3, 18, 20, 88, 89, 91, 107, 113].

Main drawbacks of this technique are related to the overhead introduced by the

payload logging and its memory requirements. Sender-based logging is the most

popular approach because it provides better performance during the fault-free exe-

cution. However, hybrid solutions have also been studied [90] to join the benefits of

receiver-based strategies, i.e., lower restart overhead because the log can be locally

available upon recovery. In any case, the memory requirements to maintain the log

can represent a limiting factor. Strategies to reduce the memory consumption of the

payload logging have been studied and are available in the literature. For instance,

hierarchical checkpointing reduces the memory cost of logging by combining it with

coordinated checkpointing [20, 89, 113]. Coordination is applied within a group of

processes, while only messages between different groups are logged. When a process

fails, all processes within its group have to roll back. This idea is also combined

in [113] with “send-determinism” [27], to also reduce the number of logged events

by assuming that processes send the same sequence of messages in any correct ex-

ecution. In [86], dedicated resources (logger nodes) cooperate with the compute

nodes by storing part of their message logs in the memory. Other strategies offer

special consideration when logging collective communications—in order to decrease

the memory footprint—by reducing the number of internal point-to-point messages

of the logged collective [88] or by logging their result on a remote logger [74].

Our approach implements a local rollback protocol where only the failed pro-

cesses are recovered from the last checkpoint, while consistency and further progress

of the computation are enabled using ULFM and the message logging capabili-

ties. A two-level message logging protocol is implemented: (1) at the MPI-level the

Vprotocol [18] message logging component is used for sender-based message logging

and pessimist event logging of point-to-point communications, while (2) collective

118 Chapter 5. Local Rollback for Resilient MPI Applications

communications are optimally logged at the application level by CPPC. This strat-

egy dissociates the collective communications from their underlying point-to-point

expression, allowing the use of architecture-aware collective communications and re-

ducing the memory footprint for their message logging. Additionally, the spatially

coordinated protocol used for checkpointing by CPPC further contributes to this

reduction, as checkpoints provide locations in which the log can be cleared. The

proposal solves the issues that arise when a hard failure terminates one or several

processes in the application by dealing with the communications that were inter-

rupted by the failure and ensuring a consistent ordered replay so that the application

can successfully resume the execution.

5.7. Concluding Remarks

This chapter proposed a novel local rollback solution for SPMD MPI applications

that combines several methods to provide efficient resilience support to applications.

ULFM fault mitigation constructs, together with a compiler-driven application-level

checkpointing tool, CPPC, and the message logging capabilities of the Open MPI

library-level Vprotocol combine to significantly reduce the resilience overhead of

checkpoint and recovery. The ULFM resilience features are used to detect failures

of one or several processes, maintain communication capabilities among survivor

processes, re-spawn replacement processes for the failed processes, and reconstruct

the communicators. Failed processes are recovered from the last checkpoint, while

global consistency and further progress of the computation is enabled by means

of message logging capabilities. Fine tracking of message sequences and partial

message completion after failures permit the deployment of message logging over

ULFM, and an original two-level logging protocol permits alternating the recovery

level from library-level message logging to application-directed semantic-aware re-

play. Collective communications are logged at the application level, thereby reducing

the log size and enabling the use with architecture-aware collective communications

even after faults. The resultant local rollback protocol avoids the unnecessary re-

execution overheads and energy consumption introduced by a global rollback, as

survivor processes do not roll back to repeat computation already done; yet, the

spatially coordinated protocol used by CPPC helps reduce the volume of stall logs

5.7 Concluding Remarks 119

carried from past checkpoints. This combination of protocols proves singularly sym-

biotic in alleviating the shortcomings of each individual strategy.

The experimental evaluation was carried out using four real MPI applications

with different checkpoint file sizes and communication patterns. The performance

of the local rollback protocol has been compared with an equivalent global rollback

solution. While in a failure-free execution, the required operations to maintain the

logs imply a small increase in the overhead compared to the global rollback solution,

in the presence of failures, the recovery times of both failed and survivor processes

are noticeably improved. This improvement translates to a considerable reduction

in the extra runtime and energy consumption introduced by a failure when using

local rollback instead of global rollback.

Chapter 6

Local Recovery For Soft Errors

Detectable soft errors can be corrected by replacing corrupted data with correct

data. Handling these types of errors at the software level before they are translated

into failures enable the use of more efficient recovery techniques. In this chapter,

we extend the FTI application-level checkpointing library to allow the developers

of MPI applications the handling of soft errors during runtime. The new routines

enable the construction of an ad hoc local recovery mechanism that considers the

characteristics of the applications to minimize the overhead introduced when coping

with soft errors.

This chapter is structured as follows. Section 6.1 introduces soft errors. The FTI

library is briefly described in Section 6.2, and its extensions to support ad hoc local

recovery are presented in Section 6.3. The integration of these new functionalities

on three HPC applications is described in Section 6.4. The experimental evaluation

of the tested applications is presented in Section 6.5. Section 6.6 provides an insight

into related work. Finally, Section 6.7 comments on the main conclusions of this

chapter.

121

122 Chapter 6. Local Recovery For Soft Errors

6.1. Soft Errors

Corrupted memory regions are among the most common causes of failures. Mem-

ory faults lead to hard errors, when bits are repeatedly corrupted due to a physical

defect (e.g., a short-circuit in a device that make a bit to be permanently at 1), and

soft errors, when bits are transiently corrupted [9]. Most modern systems employ

hardware mechanisms such as ECCs, parity checks or Chipkill-Correct ECC against

data corruption to prevent SDCs and reduce DUEs [39]. Software techniques can be

used to handle the remaining DUEs, reducing the number of fail-stop failures caused

by them. Thus, reducing the recovery overhead, as it would prevent the overheads

related to the re-spawning, the repairing of the communication environment, and

even the repetition of computation originated by these failures.

Generally, in order to tolerate fail-stop failures, checkpointing APIs enable pro-

grammers to save a subset of the application variables in different levels of the

memory hierarchy at a specific frequency. Such frequency is usually calculated as

defined by Young [138] and Daly [36], taking into account the checkpoint cost and

the MTTF of the underlying system. Recovery mechanisms for soft errors, may

require access to past values of variables that differ from the ones checkpointed,

and/or require a different frequency.

6.2. The FTI Checkpointing Library

FTI [12] is an application-level checkpointing library that provides programmers

with a fault tolerance API. It is available at https://github.com/leobago/fti.

Figure 6.1 shows an example of a fault tolerant code for the stop-and-restart check-

pointing. The user is on charge of instrumenting the application code by: (1) mark-

ing those variables necessary for the recovery for their inclusion in the checkpoint

files using the FTI Protect routine, and (2) inserting the FTI Snapshot in the com-

putationally most expensive loops of the application. The FTI Snapshot routine

will generate checkpoint files (according to the checkpointing frequency specified by

the user) and it will recover the application data during the restart operation. FTI

applies a multi-level checkpointing protocol, which leverages local storage plus data

replication and erasure codes to provide several levels of reliability and performance.

6.3 FTI Extensions to Facilitate Soft Error Recovery 123

1 int main(int argc , char* argv[])

2 {

3 MPI_Init(&argc , &argv);

4 FTI Init();

5

6 [...]

7

8 REGISTER BLOCK 1:

9 <FTI Protect(...) block>

10 [...]

11

12 for(i = 0; i < nIters; i++){

13 FTI Snapshot();

14 [...]

15 }

16 [...]

17

18 FTI Finalize();

19 MPI_Finalize ();

20 }

Figure 6.1: FTI instrumentation example

The user specifies a checkpoint interval (in minutes), for each one of the checkpoint-

ing levels. Consistency is guaranteed by using a coordinated checkpointing protocol

(i.e., synchronizing processes during checkpointing), and locating checkpoints at safe

points (i.e., code locations where no pending communications may exist). For more

details about FTI and its operation the reader is referred to [11, 12].

6.3. FTI Extensions to Facilitate Soft Error Re-

covery

Fault tolerance techniques for HPC applications usually focus on fail-stop fail-

ures. One of the most widely used technique to cope with these failures is check-

point/restart, which enforces a rollback to the last checkpoint upon a failure. Soft

errors (i.e., errors affecting/corrupting part of the data in a non-permanent fashion)

are usually handled using the same fault tolerance mechanisms. When a soft error

arises, the recovery process is determined by how the application has been protected

against failures. No protection will force the complete re-execution of the application

124 Chapter 6. Local Recovery For Soft Errors

from the beginning. Protecting the application with traditional checkpoint/restart

enables the recovery from the last checkpoint. This is inefficient because many of

those soft errors could be handled locally in a much more time and energy efficient

way.

In this work, we provide a framework that allows developers to exploit the char-

acteristics of their MPI applications in order to achieve a more efficient resilience

strategy against soft errors. We leverage the FTI library [12] with an extended API

for this purpose. Two types of soft errors are considered: (1) DUEs, and (2) SDCs

that are detected by software mechanisms [10, 99]. We implement a signal handler

to inform the local process about the occurrence of a soft error. This is achieved

by the handling of the signal sent to the affected process by the operating system

when a DUE occurs, or by means of software error/data-corruption detection (e.g.,

online data monitoring). The OS can provide information of the affected memory

page which allows to derive the affected variables. In any case, the MPI process

handles the error and triggers a recovery (example code shown in Figure 6.2). Once

the soft error is locally detected, the process will notify FTI of the error event by

means of the extended API function FTI RankAffectedBySoftError. The call to

this function is non-collective and merely sets a flag in the local address space.

The recovery strategy relies on protecting as much application data as possible

against soft errors by implementing an ad hoc mechanism that allows the regen-

eration of the protected variables to correct values when corrupted. Two different

scenarios are possible: (1) the process affected by the soft error can regenerate the

affected data using only local information, and (2) the process affected by the soft

error needs the neighbor processes to be involved in the recovery. The second sce-

nario requires knowledge of the soft error by those unaffected peers that need to

participate in the recovery. In this work we focus on the first scenario, in which

data can be recovered locally.

The FTI Snapshot function, which is inserted in the computationally most ex-

pensive loop of the application, has been modified to check for soft error status at

a user defined interval. The default soft error detection mechanism is global, in-

volving all processes running the application. However, the programmer may also

implement a custom detection mechanism in which only a subset of the application

processes detect the soft error, i.e., scenarios in which the application processes are

6.3 FTI Extensions to Facilitate Soft Error Recovery 125

1 void sig handler sigdue(int signo){
2 FTI RankAffectedBySoftError();

3 /* Algorithm recovery code */

4 [...]

5 }
6

7 int main(int argc , char* argv[])

8 /* SIGDUE: signal reporting a DUE */

9 signal(SIGDUE, sig handler sigdue);

10 /* Application initialization */

11 [...]

12 for(i=0; i<N; i++){ /* Main loop */

13 int ret=FTI Snapshot();

14 if (ret==FTI SB FAIL) {
15 int* status array;

16 FTI RecoverLocalVars({ ... })

17 /* Algorithm recovery code */

18 [...]

19 }
20 [...]

21 }

22 [...]

23 }

Figure 6.2: Detection of a soft error.

divided in groups, and only those in the group of the failed peer need to participate

in the recovery of the failed process.

In most situations the regeneration of the protected variables will imply access-

ing a subset of data from a past state of the computation. The extended API

function FTI RecoverLocalVars allows the calling process to recover only a sub-

set of the checkpointed variables from its last checkpoint. This is a non-collective

function, thus, for completely local recoveries, it is called only by the processes ac-

tually affected by the soft error. Relying on the data from the last checkpoint to

implement an ad hoc local recovery is useful for some applications, however, this is

not the general case. For instance, let’s consider an iterative application in which

a relevant amount of the data used by the algorithm can be protected against soft

errors by using the values of some variables at the beginning of the last iteration.

Those variables may not be needed to perform a rollback when a fail-stop failure

occurs. Thus, checkpointing them will lead to larger checkpoint files, and therefore,

higher overheads. In addition to this, the ad hoc soft error recovery would imply

126 Chapter 6. Local Recovery For Soft Errors

Checkpointed
data

Memory-saved
data

Soft error
protected

data

Figure 6.3: Memory Protection

checkpointing at every iteration of the execution, which will be translated in most

cases into an inadequate checkpointing frequency for the application. To prevent

this situation, a fast memory-saving mechanism is added to FTI. The FTI MemSave

and FTI MemLoad routines are added to the library to perform a copy in-memory

of a given variable and restore its contents, respectively. These routines allow the

programmer to save only the subset of variables that are mandatory for the ad hoc

soft error recovery procedure, and to do so with the required frequency.

The flexibility of these new extensions to the FTI API enables developers to

implement a more efficient recovery strategy exploiting the particular characteristics

of the application over a wide range of scenarios. As commented before, some

variables can be checkpointed and some variables can be memory-saved using a

different frequency in each case. Figure 6.3 shows a schematic view of the memory

used by the application. Note that there is no restriction regarding the checkpointed,

memory-saved, and protected data: the intersections between these three sets may or

may not be empty. Protected data is defined as data that can be regenerated by using

the checkpointed variables, the memory-saved ones, both, or neither of them (e.g.,

read-only data initialized to constant values can be recovered by reinitialization).

The fact that a variable is checkpointed and/or memory-saved depends only on the

application requirements when doing a rollback from a fail-stop failure or when doing

an ad hoc soft error recovery.

6.4 Ad Hoc Local Recovery on HPC Applications 127

6.4. Ad Hoc Local Recovery on HPC Applica-

tions

In order to demonstrate the value of the new extensions to the FTI library, this

section describes the implementation of an ad hoc local recovery on three different

HPC applications. All applications are instrumented with FTI to obtain check-

point/restart fault tolerance support. Then, the new functionalities are used to

protect a relevant part of the application data against soft errors.

6.4.1. Himeno

The Himeno benchmark [56] solves a 3D Poisson equation in generalized coordi-

nates on a structured curvilinear mesh. A simplified overview of the application code

instrumented with FTI is shown in Figure 6.4a. The call to FTI Snapshot is located

in the main loop of the application, i.e. the computationally most expensive loop.

The only variables that need to be checkpointed by FTI are the array p (pressure)

and the loop index n. The other variables used inside Himeno are either initialized

at the beginning of the execution and read-only (a, b, c, wrk1, bnd), initialized in

each iteration to constant values, or they merely depend on p(n). When a DUE hits,

the failed process can re-initialize the read-only variables locally at any point of the

execution, as shown in Figure 6.4b.

For Himeno, data protected against soft errors correspond with the read-only

variables, which account for 85% of the memory used by the application, as it will

be presented in Section 6.5. Himeno does not need to memory-save any variable

to tolerate soft errors. Also, none of the checkpointed variables (i.e., pressure) can

tolerate a soft error through local recovery. The data protected against soft errors

are read-only variables that can be regenerated without being saved or checkpointed.

6.4.2. CoMD

CoMD [32] is a reference implementation of classical molecular dynamics algo-

rithms and workloads as used in materials science. It is created and maintained by

128 Chapter 6. Local Recovery For Soft Errors

1 [...]

2

3 FTI Protect { n, p }
4 signal(SIGDUE, sig handler sigdue);

5

6 for(n=0 ; n<NN ; ++n){

7 /* Application main loop */

8

9 int checkpointed = FTI Snapshot();

10

11 for i=1:imax -1, j=1:imax -1, k=1:imax -1{

12 /* Read only data: { a,b,c,p,wrk1,bnd } */

13 /* Write only data: { s0,ss,gosa,wrk2 } */

14 }

15

16 for i=1:imax -1, j=1:imax -1, k=1:imax -1{

17 /* Read only data: { wrk2 } */

18 /* Write only data: { p } */

19 }

20

21 }

22

23 [...]

(a) Instrumenting for checkpointing and soft error correction.

1 void sig handler sigdue(int signo){

2

3 FTI RankAffectedBySoftError();

4

5 /* Algorithm recovery code */

6

7 /* Re-initializate the */

8 /* read -only data: */

9 /* { a, b, c, wrk1 , bnd } */

10

11 }

(b) Handler for local recovery.

Figure 6.4: Himeno simplified pseudocode.

6.4 Ad Hoc Local Recovery on HPC Applications 129

the Exascale Co-Design Center for Materials in Extreme Environments (ExMatEx).

Figure 6.5a presents the code instrumented with FTI. To tolerate fail-stop failures,

FTI checkpoints the variables nAtoms, gid, iSpecies, r, p, f, and iStep.

In contrast to the Himeno application, there are no read-only variables within

each timestep. However, some variables are read-only within each invocation of the

computeForce method, which consumes around 93% of the total runtime. These

read-only variables (gid, iSpecies, r, and p) can be protected against soft errors

by memory-saving their contents before the invocation of the computeForce method

and replacing the default error handler with a custom one within the scope of this

function. Within the error handler (shown in Figure 6.5b), their values will be set

to those valid when the method was invoked. In CoMD, the protected variables that

can be regenerated are both memory-saved and checkpointed.

6.4.3. TeaLeaf

TeaLeaf [125] is a mini-app from the Mantevo project that solves the linear heat

conduction equation. A simplified overview of the application FTI instrumented

code is shown in Figure 6.6a. A CG (Conjugate Gradient) solver is performed within

each step of the main loop. Most of the variables are initialized for each CG solver

run. Therefore, locating the checkpoint call in the most external main loop avoids

checkpointing all the internal data of the CG solver, reducing the checkpointed

data by 87% (and thus, the checkpointing overhead) while providing an adequate

checkpointing frequency. To tolerate fail-stop failures, only the main loop index tt

and the density and energy arrays need to be checkpointed.

There are read-only variables within a CG solver, initialized for each solver using

local density arrays. These read-only variables can be protected against soft errors:

they can be regenerated using the version of the density array when the CG solver

was invoked. Figure 6.6b shows the error handler for TeaLeaf to perform the local

recovery. Note that the handler can be invoked at any time during the CG solver

execution, and the density array may have been modified. Thus, the current value

of the density array is preserved in a temporal variable, while its memory-saved

version is used for the regeneration of the read-only protected variables. In TeaLeaf

none of the variables protected against soft errors are checkpointed or memory-saved.

130 Chapter 6. Local Recovery For Soft Errors

1 [...]

2

3 FTI Protect { nAtoms, gid, iSpecies, r, p, f, iStep }
4

5 for (iStep =0; iStep <nSteps; iStep ++){

6 /* Application main loop */

7

8 int checkpointed = FTI Snapshot();

9

10 if(iStep%printRate ==0) sumAtoms(s);

11 advanceVelocity(...);

12 advancePosition(...);

13 redistributeAtoms(...);

14

15 signal(SIGDUE, sig handler sigdue);

16 FTI MemSave { gid, iSpecies, r, p }
17 computeForce(...);

18 signal(SIGDUE, SIG DFL);

19

20 advanceVelocity(...);

21 kineticEnergy(s);

22

23 }

24

25 [...]

(a) Instrumenting for checkpointing and soft error correction.

1 void sig handler sigdue(int signo){

2

3 FTI RankAffectedBySoftError();

4

5 /* Algorithm recovery code */

6

7 /* Recover values of read -only */

8 /* variables within computeForce: */

9 FTI MemLoad { gid, iSpecies, r, p }
10

11 }

(b) Handler for local recovery.

Figure 6.5: CoMD simplified pseudocode.

6.4 Ad Hoc Local Recovery on HPC Applications 131

1 [...]

2

3 FTI Protect { tt, density, energy }
4 signal(SIGDUE, sig handler sigdue);

5

6 for(tt = 0; tt < end_step; ++tt){

7 /* Application main loop: diffuse method */

8

9 int checkpointed = FTI Snapshot();

10

11 FTI MemSave { density }
12

13 /* CG Solver */

14 cg_init_driver(chunks , settings , rx, ry, &rro);

15 for(t = 0; t < max_iters; ++t){

16 cg_main_step_driver(chunks , settings ,

17 t, &rro , error);

18 halo_update_driver(chunks , settings , 1);

19 if(fabs(*error) < eps) break;

20 }

21

22 solve_finished_driver(chunks , settings);

23

24 }

25

26 [...]

(a) Instrumenting for checkpointing and soft error correction.

1 void sig handler sigdue(int signo){

2

3 FTI RankAffectedBySoftError();

4

5 /* Algorithm recovery code */

6

7 memcpy(aux density, density, sizeof(double)*sizeD);

8 FTI MemLoad { density }
9 /* Regenerate read -only variables using */

10 /* the density values previous to the */

11 /* CG solver invocation */

12 [...]

13 memcpy(density, aux density, sizeof(double)*sizeD);

14

15 }

(b) Handler for local recovery.

Figure 6.6: TeaLeaf simplified pseudocode.

132 Chapter 6. Local Recovery For Soft Errors

Table 6.1: Hardware platform details.

CTE-KNL cluster

Operating system Linux Operating System

Nodes 1x Intel Xeon Phi CPU 7230

1.30 GHz, 64 cores

96 GB (@90 GB/s) main memory

16GB (@480 GB/s) High Bandwidth Memory (HBM) in cache mode

Network Intel OPA 100 Gbit/s Omni-Path interface

Local storage 120 GB SSD

Remote storage GPFS via ethernet 1 GBit/s

MPI version Intel MPI v2017.1.132

6.5. Experimental Evaluation

The experimental evaluation was performed on 4 nodes of the CTE-KNL cluster

at the Barcelona Supercomputing Center (BSC-CNS). Each node is composed by

an Intel Xeon Phi Knights Landing processor, described in Table 6.1 The technique

proposed in this work leverages all four storages levels efficiently: HBM in cache

mode is used to store the computation variables, the main memory is used to store

the extra data necessary for the local recovery, the SSDs are used to store the

multilevel checkpoint files and the file system is used to store checkpoints required

to comply with batch scheduler limitations (i.e., 24-48 hours jobs).

In order to quantify the results, we determined the relative overheads introduced

by our modifications with respect to the original code. The measurements are per-

formed by increasing the number of processes while keeping the problem size per

process constant (i.e., weak scaling). Experiments were run using 64 processes per

node, one per core, as hyperthreading is disabled on the CTE-KNL. The param-

eters used for each experiment are given in Table 6.2, together with the original

completion runtimes without any FTI instrumentation. For statistical robustness,

we performed the experiments multiple times, thus both in the table and in the rest

of the section, each reported measurement corresponds to the mean of ten execu-

tions.

6.5 Experimental Evaluation 133

Table 6.2: Weak scaling configurations and original application runtimes.

NProcs Parameters Runtime (seconds)

H
im

e
n
o 64 gridsize:513x2049x1025 498.54

128 gridsize:1025x1025x2049 501.92

256 gridsize:2049x2049x1025 502.61

C
o
M
D 64 x=128, y=128, z=256, N=100 561.69

128 x=128, y=256, z=256, N=100 582.10

256 x=256, y=256, z=256, N=100 591.66

T
e
a
L
e
a
f 64 cells:3000x3000, timesteps=20 256.71

128 cells:6000x3000, timesteps=20 482.70

256 cells:6000x6000, timesteps=20 765.25

6.5.1. Memory Characterization

As observed, Himeno is the application with the largest amount of used mem-

ory (82.03% of the total memory that is available for each experiment) which was

expected as Himeno is a memory bounded application. In contrast to that, CoMD

and TeaLeaf only use a small fraction of the available memory. Most molecular dy-

namic applications such as CoMD have small memory footprint. On the other hand,

TeaLeaf is a sparse-matrix computationally-bounded application, which explains its

reduced memory consumption. All in all, these three applications give us a wide

spectrum with significantly different memory usages to analyze the impact of the

proposed resilience schemes.

First, we characterize the memory footprint of the applications in Table 6.3. The

table reports as Used Memory the percentage of memory used by the application

in comparison to the total memory available in the running nodes. Additionally,

the table presents (1) the percentage of the used memory that needs to be Check-

pointed, (2) the percentage of the used memory that needs to be Memory-saved

using the new FTI extensions, and (3) the percentage of the used memory that is

Protected against soft error.

The checkpointed datasets are also heterogeneous across the different testbed

applications. Himeno checkpoints 7.14% of the used memory which corresponds to

aggregated checkpoint file sizes varying between 5.51GB and 22.03GB when increas-

ing the number of processes. CoMD generates checkpoint file sizes ranging between

134 Chapter 6. Local Recovery For Soft Errors

Table 6.3: Memory characterization of the tested applications.

Himeno CoMD TeaLeaf

64p 128p 256p 64p 128p 256p 64p 128p 256p

Used Memory
(%avail.) 82.03 82.03 82.03 10.92 10.90 10.92 1.05 1.05 1.05

Checkpointed
(%used) 7.14 7.14 7.14 89.24 89.29 89.24 13.88 13.88 13.88

Memory-saved
(%used) 0.00 0.00 0.00 62.42 62.46 62.42 6.94 6.94 6.94

Protected
(%used) 85.71 85.71 85.71 62.42 62.46 62.42 51.37 51.37 51.37

9.16GB and 36.65GB as the applications scale out, which correspond to checkpoint-

ing around 89.3% of the used memory. Finally, TeaLeaf checkpoints 13.88% of the

used memory, and generates the smallest checkpoint file sizes of the testbed ap-

plications, which range between 0.14GB and 0.55GB. This shows that not all the

data used by the applications needs to be checkpointed to perform a successful

global rollback after a failure, and accounts for significantly different checkpointing

overheads.

Another relevant difference between the three applications is the memory foot-

print of the recovery strategy (the data that is memory-saved) and the protection

coverage that is achieved by doing so. The table reports both quantities (Memory-

saved and Protected data) as the percentage of the used memory. As commented

before, a memory corruption on the protected data is tolerated using the local recov-

ery strategies described in Section 6.4, while corruptions on other datasets will lead

to a global rollback from the last checkpoint. The potential benefits of this technique

will be defined by the amount of protected, memory-saved, and checkpointed data;

as well as by the amount of computation that needs to be repeated when doing a

global rollback. Scenarios with a large protection coverage and small amounts of

memory-saved data (i.e. at a low cost) can introduce important performance bene-

fits in the recovery upon a soft error, and, thus, in the total execution runtime. In

the ideal scenario, a large amount of data can be regenerated from a small portion

of memory-saved data, however it is not always the case. The testbed applications

cover very different situations regarding protected and memory-saved data. For the

6.5 Experimental Evaluation 135

Himeno application, we can protect 85.71% of the used data without memory-saving

any variables, thus, at no cost. In the case of CoMD, we can protect 62.42% of the

application data from soft errors by memory-saving the same amount of data, which

accounts for datasets 30% smaller than the checkpointed data. Finally, for TeaLeaf,

51.37% of the used data is protected by memory-saving only 6.94% of the datasets,

which corresponds to half of the checkpointed data.

The following sections evaluate the overheads that the implementation of the

local recovery introduces in the applications during the fault-free execution and

study the benefits that are obtained when this technique is used to recover the

datasets affected by a soft error.

6.5.2. Overhead in the Absence of Failures

This section studies the overheads introduced in the fault-free execution. Fig-

ure 6.7 shows the relative overheads with respect to the original execution runtimes

(reported in Table 6.2) for three different experiments. Firstly, FTI-instrumented

experiments measure the performance penalty that is introduced by the calls to the

FTI library added to the application code, but neither checkpointing nor memory-

saving any dataset. The relative instrumentation overhead is low, on average, 0.66%

and always below 1.77%.

Secondly, we study the overhead introduced when checkpointing for a global

rollback. The Checkpointing experiments generate checkpoint files at the optimal

frequency, calculated as defined by Young [138] and Daly [36]. These experiments

show the overhead that is introduced when checkpointing to tolerate fail-stop fail-

ures, enabling a global rollback recovery after a failure. The relative checkpointing

overhead is, on average, 5.92% and never exceeds 14.88%. This overhead is tied to

the checkpoint file size (i.e., the time writing the data) and the synchronization cost

that is introduced by the coordinated checkpointing provided by FTI.

Lastly, Checkpointing+Memory-saving experiments study the overhead intro-

duced when not only checkpoints are taken but also the necessary variables are

memory-saved. Thus, allowing the recovery using a global rollback upon a fail-stop

failure and enabling the usage of the local recovery when a soft error hits any of the

136 Chapter 6. Local Recovery For Soft Errors

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

64 128 256 64 128 256 64 128 256

R
e
la

ti
v
e
 o

v
e
rh

e
a
d
 (

%
)

FTI−Instrumented

Checkpointing

Checkpointing + Memory−Saving

Himeno CoMD TeaLeaf

Figure 6.7: Relative overheads with respect to application original runtimes in a
fault-free execution.

protected variables. In these experiments, checkpointing is performed at the optimal

checkpointing frequency, while memory-saving data is performed at every iteration

of the main loop of the application. The overhead introduced by the memory-saving

operations is negligible, and the cost of the in-memory copy accounts for an increase

over the checkpointing overhead of, on average, 0.57%, and always below 2.36%. As

we see in Figure 6.7, Himeno does not incur any extra overhead because no data

is memory-saved. On the other hand, for CoMD and TeaLeaf the local recovery

strategies described in Section 6.4 require a memory copy of a subset of the appli-

cation data in every iteration for the regeneration of the protected variables upon

corruption.

6.5.3. Overhead in the Presence of Failures

This section compares the performance upon errors of the global rollback recov-

ery and the local recovery. In these experiments, a soft error is introduced when

approximately 75% of the execution has been completed by signaling one of the pro-

cesses running the application. In the local recovery, the affected process handles

the signal and recovers from the soft error to continue the execution, as depicted in

Section 6.4. On the other hand, in the global rollback the signal aborts the execution

6.5 Experimental Evaluation 137

−5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

64 128 256 64 128 256 64 128 256

R
e
la

ti
v
e
 o

v
e
rh

e
a
d
 (

%
)

Local forward recovery Global rollback recovery

Himeno CoMD TeaLeaf

Figure 6.8: Relative overheads with respect to application original runtimes when
introducing a failure.

and a global restart takes place, recovering all the processes running the application

from the most recent available checkpoint file.

Figure 6.8 presents the overheads introduced when handling the failure with

each strategy. The overheads are calculated as the difference between the original

execution runtimes (reported in Table 6.2) and the runtimes when introducing a soft

error. Thus, the overheads correspond to the extra time consumed by each proposal

in order to tolerate the error. Additionally, Table 6.4 details the reduction in the

failure overhead that the local recovery achieves over the global rollback, both in

absolute and relative terms.

The local recovery avoids that all processes read the checkpoint files at the same

instant, as it occurs in a global rollback recovery. More importantly, it avoids rolling

back the processes running the application, avoiding the repetition of computation

already done, and, therefore, reducing the failure overhead and energy consumption.

On average, the reduction corresponds to 7.38% of the execution time, with a max-

imum of 14.01% for CoMD. Note that this reduction is determined by two factors:

the size of the checkpoint files and the amount of re-computations that has to be

performed. For Himeno and CoMD, the reduction in the overhead increases as more

processes run the applications. On the other hand, for TeaLeaf, the reduction de-

138 Chapter 6. Local Recovery For Soft Errors

Table 6.4: Reduction in the overhead when using the local recovery instead of the
global rollback upon a soft error: absolute value (in seconds) and percentage value
(normalized with respect to the original execution runtime).

Reduction in the overhead: seconds [%]

NProcs Himeno CoMD TeaLeaf

64 17.93 [3.60%] 75.75 [13.49%] 17.65 [6.88%]

128 29.06 [5.79%] 77.01 [13.23%] 7.07 [1.46%]

256 37.51 [7.46%] 82.91 [14.01%] 3.93 [0.51%]

creases when scaling out, because when using the optimal checkpointing frequency,

the amount of computation to be repeated in the global rollback decreases, e.g. in

the 256 processes experiment a checkpoint is taken in every iteration and barely no

computation is repeated when rolling back.

6.6. Related Work

Detectable soft errors related to memory corruption may be handled by the

application before triggering a failure, and hence, avoiding the interruption of the

execution when they arise. Some of the techniques presented in the literature to

do that are based on redundancy [45, 47, 49]. Comparing the results of the repli-

cas enables error detection, and error correction in the case of triple-redundancy.

However, replication requires substantially more hardware resources which rapidly

becomes prohibitively expensive.

Other approaches exploit the characteristics of the particular application/algo-

rithm by implementing ad hoc recovery techniques, which can introduce significant

performance benefits in the recovery process. Traditionally, checkpoint/restart re-

lies on a global backward recovery, in which all processes in the application rollback

to a previous committed state and repeat the computation done from that point

on. Increasing the checkpointing frequency reduces the amount of computation to

be repeated, decreasing the failure overhead but increasing the checkpointing over-

head in terms of performance, storage and bandwidth. Forward recovery strategies

attempt to build a new application state from which the execution can resume,

6.7 Concluding Remarks 139

without rolling back to a past checkpointed state and repeating all the computation

already done, thus, significantly reducing the recovery overhead. This is the case of

partial re-computation [117] which is focused on limiting the scope of the recompu-

tation after a failure, and ABFT techniques. ABFT was originally introduced by

Huang and Abraham [57] to detect and correct permanent and transient errors on

matrix operations. The method is based on the encoding of data at a high level and

the design of algorithms to operate on the encoded data. ABFT has been used in

combination with disk-less checkpointing for its usage in matrix operations [17, 31],

and it has been implemented on algorithms such as the High Performance Lin-

pack (HPL) benchmark [38], Cholesky factorization [54], algorithms using sparse

matrices and dense vectors [99], and tasks-based applications [137]. Strategies such

as the proposed by Pawelczak et al. have implemented ABFT for TeaLeaf [99] as

an alternative method for protecting sparse matrices and dense vectors from data

corruptions, which can be combined with this proposal to obtain a fast local re-

covery upon a soft error corrupting the protected variables. Another key aspect of

the recovery process is the locality, i.e. the number of processes not affected by

the error that need to be involved in the recovery. Restricting the recovery actions

to only those processes affected by the error, or a subset of the processes (i.e., in

those scenarios that failed processes cannot recover on their own and require the

participation of neighbor processes) also contributes towards the efficiency of the

fault tolerance solution.

This work builds on top of those strategies exploiting the particularities of the

application to boost the recovery and aims to provide a generic and intuitive way

for applications to implement and leverage ad hoc recovery strategies. This new

extensions to the FTI library provide the necessary flexibility to facilitate the im-

plementation of custom recovery mechanisms.

6.7. Concluding Remarks

This work presents the extension of the FTI checkpointing library to facilitate the

implementation of ad hoc recovery strategies for HPC applications, to provide pro-

tection against those soft errors that cannot be corrected by hardware mechanisms.

The usage of these new extensions does not disturb the operation of traditional

140 Chapter 6. Local Recovery For Soft Errors

checkpoint/restart to handle any other type of failures by means of a global rollback

to the recovery line established by the last valid set of checkpoint files.

The evaluation of these new functionalities was achieved by implementing local

recovery strategies on three different applications. In all of them, the protected

data account for an important part of the memory used by the application, thus,

providing a good coverage ratio. In order to provide this protection, one applica-

tion does not need to memory-save any data, while the other two do: in one, the

amount of memory-saved and protected data is the same, while in the other the

protected data is 7.4 times larger than the memory-saved data. In all cases, any

process can recover locally from the soft error that corrupted the protected data

by re-initialize/regenerate it. The experimental evaluation demonstrates the low

overhead introduced by the proposal, while it has been proved to provide important

performance benefits when recovering from memory corruptions.

Although in the experimental evaluation the protected variables are identified

by the user, they could be automatically detected by a compiler as it only involves

a state analyses of the application code.

Chapter 7

Conclusions and Future Work

As HPC systems continue to grow larger and include more hardware components

of different types, the meantime to failure for a given application also shrinks, re-

sulting in a high failure rate overall. Long-running applications will need to rely on

fault tolerance techniques not only to ensure the completion of their execution in

these systems but also to save energy. However, the most popular parallel program-

ming models HPC applications use to exploit the computation power provided by

supercomputers lack fault tolerance support.

Checkpoint/restart is one of the most popular fault tolerance techniques, how-

ever, most of the research present in the literature is focused on stop-and-restart

strategies for distributed-memory applications in the event of fail-stop failures. In

this context, this thesis makes the following contributions:

An application-level checkpointing solution to cope with fail-stop

failures on hybrid MPI-OpenMP applications. A new consistency pro-

tocol applies coordination intra-node (within each OpenMP team of threads),

while no inter-node coordination is needed (between different MPI processes).

The proposal reduces network utilization and storage resources in order to

optimize the I/O cost of fault tolerance, while minimizing the checkpointing

overhead. As well, the portability of the solution and the dynamic parallelism

provided by OpenMP enable the restart of the applications on machines with

different architectures, operating systems and/or number of cores, adapting

141

142 Chapter 7. Conclusions and Future Work

the number of running OpenMP threads for the best exploitation of the avail-

able resources.

An application-level checkpointing solution to cope with fail-stop

failures on heterogeneous applications. This proposal is built upon HPL,

a library that facilitates the development of OpenCL-based applications, thus,

it is not tied to any specific vendor, operating system or hardware platform.

A host-side application-level checkpointing is implemented for fault tolerance

support. The host-side approach (placing checkpoints in the host code between

kernels invocations) avoids the inclusion in the checkpoint files of the device/s

private state, while the application-level strategy avoids the inclusion of not

relevant host data, thus minimizing the checkpoint files size. In addition, the

design decisions maximize portability and adaptability, allowing failed exe-

cutions to be resumed using a different number of heterogeneous computing

resources and/or different resource architecture. The ability of applications to

adapt to the available resources will be particularly useful for heterogeneous

cluster systems.

A resilience checkpointing solution that can be generally applied to

SPMD MPI applications. Traditional stop-and-restart recoveries strate-

gies are avoided by exploiting the new functionalities provided by the ULFM

interface, which proposes resilience features for their inclusion in the MPI

standard. The resulting resilient applications are able to detect and react

to failures without stopping their execution, instead, the failed processes are

re-spawned, and the application state is recovered through a global rollback.

A local rollback protocol that can be generally applied to SPMD

MPI applications by combining ULFM, application-level checkpoint-

ing and message logging. This proposal prevents processes not affected

by a fail-stop failure from discarding their state, performing a rollback to a

previous checkpoint, and repeating computations already done. Instead, the

rollback is restricted to those processes that have failed. Failed processes

are recovered from the last checkpoint, while global consistency and further

progress of the computation is enabled by means of an original two-level log-

ging protocol. Point-to-point communications are logged by the Open MPI

Vprotocol component, while collective communications are optimally logged

143

at the application level, thereby reducing the log size and enabling the use

with architecture-aware collective communications.

A set of extensions to an application-level checkpointing library,

FTI, to facilitate the implementation of custom recovery strategies

for MPI applications to cope with soft errors. These types of errors

correspond with data corruptions in DRAM or SRAM that cannot be corrected

by hardware mechanisms and, most of the time, they are translated into fail-

stop failures. Handling these types of errors at the software level before they

are translated into failures enables the use of more efficient recovery techniques.

The new functionalities provide programmers different mechanisms to save

and access data from a past state of the computation, without requiring it

to be checkpointed nor imposing restrictions on the saving frequency. The

flexibility of the extensions enables to exploit the particular characteristics of

the application over a wide range of scenarios, facilitating the implementation

of ABFT techniques, and local forward recoveries.

All these proposals were implemented on the CPPC checkpointing tool because

it provides a transparent, portable, application-level checkpointing solution, which

is based on the automatic instrumentation of code. The only exception corresponds

with the extensions to facilitate the implementation of custom recoveries upon soft

errors. These extensions require the participation from the programmer, and they

were implemented on the FTI application-level checkpointing library, whose opera-

tion is based on the instrumentation of code by the programmer.

To further reduce the cost of tolerating a failure, future work includes the op-

timization of the local rollback protocol presented in Chapter 5 to perform a more

efficient replay of the communications needed for the progress of the failed pro-

cesses. In the proposed strategy, all processes involved in the original execution

of a collective operation are also involved in its replay. A custom replay of col-

lective communications, e.g., replacing the collective operation by one or a set of

point-to-point operations, has the potential to further improve the performance of

the recovery and reduce its synchronicity. At the next level, the replay process can

benefit of using remote memory access operations provided by MPI to enable the

implementation of a receiver-driven replay. This strategy will allow failed processes

to obtain the message log from survivor processes without their active involvement

144 Chapter 7. Conclusions and Future Work

during the recovery procedure.

In addition, future work includes the study of ad hoc recovery strategies to handle

soft errors on Monte Carlo applications and Genetic Algorithms, in which memory

corruptions over random data can be regenerated on the fly.

The results of this research work have been published on the following journals

and conferences:

International Journals (5)

• N. Losada, G. Bosilca, A. Bouteiller, P. González, and M. J. Mart́ın.

Local Rollback for Resilient MPI Applications with Application-Level

Checkpointing and Message Logging. Under review in an interna-

tional journal, 2018

• N. Losada, B. B. Fraguela, P. González, and M. J. Mart́ın. A portable

and adaptable fault tolerance solution for heterogeneous applications.

Journal of Parallel and Distributed Computing, 104:146–158, 2017

• N. Losada, M. J. Mart́ın, and P. González. Assessing resilient versus stop-

and-restart fault-tolerant solutions in MPI applications. The Journal of

Supercomputing, 73(1):316–329, 2017

• N. Losada, I. Cores, M. J. Mart́ın, and P. González. Resilient MPI appli-

cations using an application-level checkpointing framework and ULFM.

The Journal of Supercomputing, 73(1):100–113, 2017

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Extending an

Application-Level Checkpointing Tool to Provide Fault Tolerance Sup-

port to OpenMP Applications. Journal of Universal Computer Science,

20(9):1352–1372, 2014

International Conferences (7)

• P. González, N. Losada, and M. J. Mart́ın. Insights into application-level

solutions towards resilient MPI applications. In International Conference

on High Performance Computing & Simulation (HPCS 2018), pages 610–

613. IEEE, 2018

145

• N. Losada, L. Bautista-Gomez, K. Keller, and O. Unsal. Towards Ad

Hoc Recovery For Soft Errors. Under review in an international

conference, 2018

• N. Losada, G. Bosilca, A. Bouteiller, P. González, T. Hérault, and M. J.

Mart́ın. Local Rollback of MPI Applications by Combining Application-

Level Checkpointing and Message Logging. In SIAM Conference on Par-

allel Processing for Scientific Computing (PP’18), 2018

• N. Losada, M. J. Mart́ın, and P. González. Stop&Restart vs Resilient

MPI applications. In International Conference on Computational and

Mathematical Methods in Science and Engineering, pages 817–820, 2016

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Portable

Application-level Checkpointing for Hybrid MPI-OpenMP Applications.

Procedia Computer Science, 80:19–29, 2016

• N. Losada, I. Cores, M. J. Mart́ın, and P. González. Towards resilience in

MPI applications using an application-level checkpointing framework. In

International Conference on Computational and Mathematical Methods

in Science and Engineering, pages 717–728, 2015

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. I/O optimiza-

tion in the checkpointing of OpenMP parallel applications. In Interna-

tional Conference on Parallel, Distributed and Network-Based Process-

ing, pages 222–229. IEEE, 2015

Appendix A

Extended summary in Spanish

Este apéndice contiene un resumen extendido de la tesis. Tras una introducción

que describe brevemente el contexto y la motivación de esta tesis, se presenta un

resumen de cada uno de los caṕıtulos que la componen. Finalmente, se enumeran

las principales conclusiones de esta investigación aśı como las principales ĺıneas de

trabajo futuro.

A.1. Introducción

La computación de altas prestaciones (High Performance Computing, HPC) y

el uso de supercomputadores se han convertido en factores clave para el avance

de muchas ramas de la ciencia. La gran capacidad de cálculo de estas máquinas,

hoy en d́ıa del orden de 1015 operaciones por segundo en punto flotante, permiten

la resolución de problemas cient́ıficos, de ingenieŕıa o anaĺıticos. Sin embargo, la

demanda computacional de la ciencia continúa creciendo, principalmente debido a

dos motivos: la aparición nuevos problemas en los que el tiempo de resolución es

cŕıtico (e.g. el diseño de fármacos personalizados, donde los pacientes no pueden

esperar años por la molécula espećıfica que necesitan), y el crecimiento exponen-

cial del volumen de datos que deben ser procesados (e.g. aquellos originados por

grandes telescopios, aceleradores de part́ıculas, redes sociales, redes de sensores en

smart cities, etc.). Para satisfacer esta creciente demanda cada vez se construyen

147

148 Appendix A. Extended summary in Spanish

clústers de supercomputación más grandes, en los que una red de comunicaciones

interconecta un gran número de nodos, cada uno de ellos con uno o varios proce-

sadores multinúcleo de propósito general y que, en muchos casos, incluyen también

procesadores especializados o aceleradores tales como GPUs o Xeon Phis. En los

próximos años está previsto que se construya el primer supercomputador exascale,

formado por millones de núcleos de procesamiento y capaz de realizar 1018 cálculos

por segundo.

Las máquinas exascale suponen una gran oportunidad para las aplicaciones HPC,

sin embargo, también representan una amenaza para la correcta finalización de la

ejecución de estos programas. Estudios recientes muestran como, a medida que los

sistemas HPC aumentan su tamaño e incluyen recursos hardware de diferentes tipos,

el tiempo medio entre fallos de una aplicación disminuye. Esto se traduce en un

considerable aumento de la tasa de fallos global del sistema. Incluso en el caso de

que un nodo de cómputo presentara un fallo cada siglo, una máquina formada por

100 000 de esos nodos se verá afectada por un fallo, de media, cada 9 horas [42].

Es más, una máquina construida con 1 000 000 de esos nodos, presentará un fallo,

de media, cada 53 minutos. La tolerancia a fallos se centra en estudiar técnicas que

permitan que las applicaciones alcancen una solución correcta, en un tiempo finito

y de una forma eficiente a pesar de los fallos subyacentes del sistema.

Las aplicaciones HPC cient́ıficas presentan tiempos de ejecución largos, general-

mente del orden de horas o d́ıas. En esta situación, resulta imprescindible el uso de

técnicas de tolerancia a fallos para que la ejecución de las aplicaciones se complete de

forma satisfactoria, y para evitar además que se dispare el consumo de enerǵıa (ya

que, de no utilizar ningún mecanismo de tolerancia a fallos, la ejecución tendŕıa que

volver a comenzar desde el principio). A pesar de esto, los modelos de programación

paralela más populares que las aplicaciones HPC utilizan para explotar el poder de

cómputo proporcionado por supercomputadores carecen de soporte de tolerancia a

fallos. Por ello, en las últimas décadas muchos trabajos se han centrado en el es-

tudio de técnicas y herramientas que permitan dotar de tolerancia a fallos a estas

aplicaciones. Una de las técnicas más populares es el checkpoint/restart [42, 46].

Esta técnica consiste en salvar periódicamente el estado de la aplicación a almace-

namiento estable en ficheros de checkpoint, que permiten reiniciar la ejecución desde

estados intermedios en caso de fallo. Debido a la gran popularidad de los sistemas

149

de memoria distribuida (t́ıpicamente clústers de nodos, cada uno con su memoria

privada, e interconectados por una red de comunicaciones), la mayor parte de la in-

vestigación en este campo se ha centrado en aplicaciones de memoria distribuida. En

concreto, la mayoŕıa de las propuestas se centran en aplicaciones paralelas de pase de

mensajes, ya que es el modelo de programación más usado en sistemas de memoria

distribuida, siendo MPI (Message Passing Interface, MPI) [132] el estándar de facto

para este modelo de programación. Además, la inmensa mayoŕıa de estas técnicas

se corresponden con estrategias stop-and-restart. Es decir, tras un fallo que aborta

la ejecución de la aplicación, esta se recupera a un estado salvado previamente a

partir del cual puede continúar la computación. Sin embargo, con la popularización

de otras arquitecturas hardware, otros paradigmas de programación paralela han co-

brado relevancia en los últimos años. Tal es el caso de los modelos de programación

h́ıbridos, que combinan pase de mensajes con modelos de programación de memo-

ria compartida, además de modelos de programación heterogéneos, en los que se

hace uso de procesadores especializados (e.g. GPUs o Xeon Phis) para cómputo de

propósito general. Además, cuando se produce un fallo, frecuentemente está limitado

a un subconjunto de los nodos en los que la aplicación está ejecutándose. En este

contexto abortar la aplicación y volver a enviarla a ejecución introduce sobrecargas

innecesarias, por lo que se necesitan explorar soluciones más eficientes que permitan

la implementación de aplicaciones resilientes.

Esta tesis propone técnicas checkpoint/restart a nivel de aplicación para los

modelos de programación paralela más populares en supercomputación. La inves-

tigación llevada a cabo se centra en fallos-parada derivados de errores hardware y

software en aplicaciones MPI, h́ıbridas y heterogéneas; además de propuestas pa-

ra la gestión de corrupciones transitorias de bits en memorias DRAM (Dynamic

Random Access Memory) y SRAM (Static Random Access Memory), evitando que

deriven en fallos-parada. La mayor parte de los desarrollos de esta tesis se han im-

plementado en la herramienta de checkpointing CPPC [112] (ComPiler for Portable

Checkpointing). Esta herramienta está formada por un compilador y una libreŕıa.

CPPC opera a nivel de aplicación y se basa en la instrumentación automática del

código por el compilador, que incluye llamadas a la libreŕıa para el registro de las

variables relevantes en la aplicación (para que sean salvadas/recuperadas en/de los

ficheros de checkpoint) y llamadas a funciones de checkpoint, que generarán los

ficheros de checkpoint con la frecuencia que el usuario especifique.

150 Appendix A. Extended summary in Spanish

A.2. Checkpointing en Aplicaciones Hı́bridas MPI-

OpenMP

Los sistemas HPC actuales son clústeres de nodos multinúcleo, con múltiples

núcleos de cómputo por nodo, que se pueden beneficiar del uso de un paradigma de

programación h́ıbrido, que emplea paradigmas de pase de mensajes, como MPI, para

la comunicación inter-nodo; mientras que un modelo de programación de memoria

compartida, tal como OpenMP, se usa intra-nodo [62, 127]. De esta forma, se permite

el uso de N hilos de ejecución que se comunican empleando la memoria compartida

dentro de un mismo nodo, mientras que la comunicación entre hilos de distintos

nodos se realiza utilizando pase de mensajes. A pesar de que el uso de un modelo

h́ıbrido MPI-OpenMP requiere cierto esfuerzo por parte de los desarrolladores soft-

ware, este modelo genera importantes ventajas tales como reducir las necesidades

de comunicación y el consumo de memoria, a la vez que mejora el balanceo de carga

y la convergencia numérica [62, 106].

Esta tesis propone un protocolo de checkpointing para aplicaciones h́ıbridas MPI-

OpenMP, implementado en la herramienta CPPC. Para poder operar en aplicacio-

nes h́ıbridas, en primer lugar se ha extendido CPPC para su uso en aplicaciones

de memoria compartida OpenMP. El estado de estas aplicaciones está formado por

variables privadas (para las cuales cada hilo de ejecución presenta su propia copia)

y variables compartidas (para las que existe una única copia accesible por todos los

hilos de ejecución del nodo). Por tanto, se han propuesto mecanismos que permitan

incluir en los ficheros de checkpoint ambos tipos de variables, aśı como gestionar las

funcionalidades proporcionadas por OpenMP tales como los bucles paralelizados o

las operaciones de reducción [83, 84]. Se ha implementado un protocolo de check-

pointing en CPPC que garantiza la consistencia de los ficheros generados basándose

en la coordinación intra-nodo, mientras que se evita el uso de sincronizaciones en-

tre distintos nodos [85]. Además, la portabilidad y adaptabilidad de esta propuesta

en combinación con el paralelismo dinámico que proporciona OpenMP, permiten

el reinicio no solo en máquinas con distintas arquitecturas o sistemas operativos,

sino también en aquellas máquinas con un número distinto de núcleos de cómputo,

permitiendo adaptar el número de hilos de ejecución para aprovechar de la forma

más óptima los recursos disponibles.

151

La evaluación experimental de esta propuesta se ha llevado a cabo utilizando

aplicaciones de las suites ASC Sequoia Benchmarks [5] y NERSC-8/Trinity Bench-

marks [94]. Se ha estudiado el rendimiento y escalabilidad de la propuesta empleando

hasta 6144 núcleos de cómputo. Los resultados obtenidos muestran una sobrecarga

despreciable debido a la instrumentación del código original (menos de un 0.7 %) y

una sobrecarga de checkpointing muy baja (menor a un 1.1 % cuando se almacenan

los ficheros en discos remotos y menor a un 0.8 % cuando se utilizan discos locales).

Los experimentos de reinicio en máquinas con distinta arquitectura y número de

núcleos de cómputo confirman la portabilidad y adaptabilidad de esta propuesta,

cualidades que permitirán mejorar el uso de los recursos disponibles en supercompu-

tadores formados por nodos con arquitecturas diferentes.

A.3. Checkpointing en Aplicaciones Heterogéneas

El uso de procesadores especializados o aceleradores tales como GPUs o Xeon

Phis se ha popularizado en los últimos años debido a su gran rendimiento y bajo

consumo de enerǵıa. Las listas del TOP500 [44] han recopilado la información de

los 500 supercomputadores más potentes del mundo durante los últimos 25 años.

Atendiendo a los datos disponibles, hace una década menos del 1 % de las máqui-

nas presentaban aceleradores, mientras que hoy en d́ıa más del 20 % de los sistemas

cuentan con ellos. Debido a su incipiente presencia en los supercomputadores actua-

les, resulta de especial interés dotar de tolerancia a fallos a las aplicaciones que los

utilizan.

Las aplicaciones heterogéneas son aquellas capaces de explotar más de un tipo

de sistema de cómputo, obteniendo rendimiento no solo de los núcleos de cómputo

de la CPU, sino también de recursos especilizados tales como aceleradores (GPUs,

Xeon Phi, etc.). En general, estas aplicaciones ejecutan las partes secuenciales del

programa principal en la CPU o host, mientras que las tareas paralelas se ejecutan

en los acelaradores a medida que el programa principal lo solicita. La comunicación

de datos entre host y aceleradores se hace a través de una memoria especial en la

que ambos pueden escribir y leer, mientras que el resto de la memoria únicamente

puede ser accedida por su propietario (o bien el host, o bien el acelerador). Existe un

gran número de frameworks para el desarrollo de aplicaciones heterogéneas, entre los

152 Appendix A. Extended summary in Spanish

cuales OpenCL es el más ampliamente soportado, y, por tanto, el que proporciona

la mayor portabilidad entre dispositivos de diferentes arquitecturas y fabricantes.

Por ello, el protocolo de checkpointing que esta tesis propone para aplicaciones he-

terogéneas se ha centrado en aplicaciones basadas en OpenCL. En particular, nos

centramos en aplicaciones implementadas en HPL (Heterogeneous Programming Li-

brary, HPL) [129], una libreŕıa que facilita el desarrollo de aplicaciones basadas en

OpenCL. Esta propuesta de tolerancia a fallos implementa un checkpointing host-

side (ubicando los checkpoints en el código del host entre invocaciones a kernels)

a nivel de aplicación utilizando la herramienta de checkpointing CPPC. El enfoque

host-side evita incluir el estado privado de los aceleradores en los ficheros de check-

point, mientras que la estrategia a nivel de aplicación salva únicamente los datos

relevantes del host. Ambas estrategias contribuyen a minimizar el tamaño de los

ficheros de checkpoint, minimizando aśı también la sobrecarga sin perjudicar la fre-

cuencia de checkpointing. Se ha implementado un protocolo de consistencia, basado

en sincronizaciones y transferencias de datos entre host y aceleradores, que garantiza

la consistencia de los datos salvados. Además, HPL aplica una poĺıtica de copia vaga

(lazy) que minimiza la sobrecarga introducida por las transferencias de datos.

La evaluación experimental de esta propuesta se ha llevado a cabo utilizando

aplicaciones heterogéneas de las suites SHOC Benchmarks [37] y SNU NPB [115],

además de una simulación real de la evolución de un contaminante en la Rı́a de

Arousa [131]. Las pruebas han demostrado la baja sobrecarga que introduce esta

propuesta, que está principalmente determinada por el estado que debe ser salvado

en los ficheros de checkpoint. Por otra parte, la elección de HPL y un host-side check-

pointing maximiza la portabilidad y adaptabilidad de esta propuesta, permitiendo

que las ejecuciones fallidas continúen en máquinas con diferente arquitectura y/o

número de aceleradores. Los experimentos reiniciando las aplicaciones en máquinas

con hosts de diferentes arquitecturas y/o sistemas operativos, y utilizando además

distinto número de aceleradores con arquitecturas diferentes, demuestran la porta-

bilidad y adaptabilidad de la propuesta, lo que constituye una funcionalidad muy

interesante en supercomputadores heterogéneos.

153

A.4. Aplicaciones MPI Resilientes

Debido a que los supercomputadores actuales son clústeres de nodos interconec-

tados con una red de comunicaciones, MPI continúa siendo el modelo programación

predominante para estos sistemas de memoria distribuida. A pesar de ello, MPI ca-

rece de soporte de tolerancia a fallos. Un fallo en uno de los procesos que ejecutan

la aplicación causa la terminación de ese proceso y provoca un estado indefinido en

MPI, en el que no existe ninguna garant́ıa de que el programa pueda continuar con

éxito la ejecución. Por tanto, el comportamiento por defecto es abortar la ejecución

de todos y cada uno de los procesos que ejecutan la aplicación, motivo por el que

tradicionalmente se han empleado soluciones de checkpointing stop-and-restart. A

gran escala, esto puede significar abortar la ejecución de cientos de miles de proce-

sos cuando únicamente uno de ellos falla, lo cual resulta sumamente ineficiente. En

este contexto, la interfaz ULFM (User Level Failure Mitigation) [14] es el último

esfuerzo para incluir caracteŕısticas de resiliencia en el estándar MPI. Las nuevas

extensiones que propone permiten detectar y reaccionar a fallos sin interrumpir la

ejecución de toda la aplicación. Se incluyen semánticas para detectar fallos, revocar

y reconfigurar comunicadores, pero no se incluye ningún mecanismo para recuperar

el estado de los procesos fallidos. Por tanto, deja flexibilidad a los desarrolladores de

la applicación para implementar la metodoloǵıa de checkpoint más óptima en cada

caso.

Esta tesis aprovecha estas nuevas funcionalidades para implementar una solución

de resiliencia que puede ser aplicada de forma genérica y transparente a aplicaciones

SPMD (Single Program, Multiple Data) dentro de la herramienta de checkpointing

CPPC. Para ello, se utilizan nuevos bloques de instrumentación, que permiten a las

aplicaciones resilientes detectar y reaccionar a fallos de forma autónoma y sin abortar

la ejecución cuando uno o varios de los procesos que la ejecutan se ven afectados

por fallos-parada. En lugar de abortar la ejecución, se vuelven a lanzar los procesos

fallidos y se recupera el estado de la aplicación con una vuelta atrás global, es decir,

el estado de todos los procesos de la aplicación se recupera utilizando el último

checkpoint generado. Además, se ha implementado un checkpointing multi-nivel y

multi-hilo, que guarda una copia de los ficheros de checkpoint en distintos niveles

de almacenamiento, minimizando la cantidad de datos que se deben mover a través

del sistema ante un fallo, reduciendo por tanto la sobrecarga de la recuperación sin

154 Appendix A. Extended summary in Spanish

aumentar la sobrecarga del checkpoining.

La evaluación experimental, utilizando aplicaciones con diferentes tamaños de

checkpoint y patrones de comunicaciones, pone de manifiesto la baja sobrecarga

introducida por esta propuesta, analizando para ello el comportamiento cuando uno

o todos los procesos de un nodo fallan, considerando además dos escenarios para la

recuperación: (1) utilizar un nuevo nodo libre para recuperar los procesos fallidos,

o (2) sobrecargar uno de los nodos ya en uso con los procesos fallidos. Además, se

han llevado a cabo experimentos utilizando hasta 3072 núcleos de cómputo para

evaluar el rendimiento y la escalabilidad de la solución, comparando esta propuesta

para aplicaciones resilientes MPI con una propuesta equivalente que realice un stop-

and-restart tradicional. La propuesta de resiliencia claramente supera a la solución

stop-and-restart, reduciendo el tiempo consumido por el proceso de recuperación

entre 1.6x y 4x; evitando además el reenv́ıo del trabajo al gestor de colas, que

introduciŕıa a mayores en la solución stop-and-restart una sobrecarga dependiente

de la carga del sistema.

A.5. Vuelta Atrás Local en Aplicaciones MPI Re-

silientes

La propuesta para obtener aplicaciones MPI resilientes descrita anteriormen-

te mejora notablemente el rendimiento frente a una solución stop-and-restart. Sin

embargo, en muchos casos, un fallo tiene un efecto localizado y su impacto está res-

tringido a un subconjunto de los recursos en uso. Una vuelta atrás global implica,

por tanto, un gasto de tiempo y enerǵıa innecesarios, ya que todos los procesos de

la aplicación (incluyendo aquellos no afectados por el fallo) descartan su estado y

vuelven atrás recuperando su estado del último checkpoint para repetir un cómputo

que ya han realizado anteriormente.

Para mejorar el rendimiento de la recuperación ante fallos-parada en aplicacio-

nes MPI resilientes, esta tesis propone un protocolo de vuelta atrás local en el que

sean únicamente los procesos afectados por un fallo los que vuelvan a un estado an-

terior y repitan cómputo. Este protocolo de recuperación local combina ULFM, la

herramienta de checkpointing CPPC, y registro de mensajes (message-logging). Las

155

funcionalidades proporcionadas por ULFM se utilizan para detectar fallos en uno o

múltiples procesos, mantener las capacidades de comunicación entre aquellos proce-

sos supervivientes, levantar procesos que reemplacen a los fallidos, y reconstruir los

comunicadores de la aplicación. Los procesos fallidos se recuperan del último check-

point, mientras que la consistencia global y el progreso del cómputo se conseguen

gracias al message-logging. Se ha implementado un protocolo de message-logging en

dos niveles que permite mantener un registro de las comunicaciones punto a pun-

to dentro de la libreŕıa Open MPI (utilizando el componente Vprotocol), mientras

que el registro de las comunicaciones colectivas se mantiene a nivel de aplicación en

CPPC, lo cual reduce el tamaño del registro y permite el uso de colectivas conscien-

tes de la arquitectura (architecture-aware collectives) incluso después de producirse

fallos. Además, se lleva a cabo un minucioso seguimiento de los números de secuen-

cia y de los mensajes completados y no completados tras un fallo para permitir el

despliegue del protocolo de message-logging sobre ULFM y el correcto reenv́ıo de

las comunicaciones necesarias para la recuperación. El protocolo resultante evita

la sobrecarga introducida por la re-ejecución y el consumo de enerǵıa innecesarios

introducidos por una vuelta atrás global. Además, el protocolo de checkpointing de

CPPC permite reducir el impacto del protocolo de almacenaje de mensajes, ya que

las operaciones de checkpoint se corresponden con puntos seguros para limpiar los

registros de mensajes anteriores.

La evaluación experimental de este protocolo se ha llevado a cabo utilizando

aplicaciones MPI reales con differentes tamaños de registros de mensajes y patrones

de comunicación, y se ha comparado el rendimiento del protocolo de recuperación

local con uno equivalente que realice una vuelta atrás global. A pesar de que en

la operación sin fallos el protocolo de recuperación local implica operaciones adi-

cionales para gestión del registro de mensajes, que hacen que aumente ligeramente

la sobrecarga cuando se introducen fallos, los tiempos de recuperación de procesos

fallidos y supervivientes mejoran notablemente. Las mejoras en los tiempos de re-

cuperación de los procesos se traducen en mejoras importantes, tanto en el tiempo

como en la enerǵıa consumidos a mayores en ejecuciones en las que se introducen

fallos.

156 Appendix A. Extended summary in Spanish

A.6. Recuperación Ad Hoc Ante Corrupciones de

Memoria Transitorias

Las corrupciones en memoria son responsables de un alto porcentaje de los fallos

en supercomputadores. Existen mecanismos hardware, tales como códigos de correc-

ción de errores (Error Correcting Codes, ECCs), que permiten detectar y corregir

errors en un bit, y que pueden además detectar algunos errores en múltiples bits.

Sin embargo, los errores en múltiples bits detectados se traducen en la mayoŕıa de

los casos en fallos-parada. Gestionar este tipo de errores a nivel software, antes de

que se traduzcan en fallos, permite el uso de técnicas de recuperación más eficientes.

Esta tesis propone un conjunto de extensiones a la libreŕıa de checkpointing a

nivel de aplicación FTI (Fault Tolerance Interface) [12] para facilitar la implementa-

ción de estrategias de recuperación ad hoc para aplicaciones HPC. Estas estrategias

proporcionan mecanismos de protección ante esas corrupciones de memoria que no

pueden ser corregidas mediante mecanismos hardware. Las nuevas funcionalidades

proporcionan a los programadores differentes mecanismos para salvar y acceder a

los datos de un estado anterior del cómputo, sin necesidad de que se incluya en los

ficheros de checkpoint, ni imponiendo restricciones en la frecuencia de salvado. La

flexibilidad de estas extensiones permite la implementación de protocolos de recu-

peración más eficientes, en los que se aprovechan las caracteŕısticas particulares de

las aplicaciones en un amplio rango de escenarios. Además, el uso de estas nuevas

extensiones es compatible con el uso de un checkpoint/restart tradicional.

Estas nuevas extensiones han sido evaluadas en tres aplicaciones HPC diferentes,

que cubren situaciones muy distintas respecto a uso de memoria y datos salvados

en los ficheros de checkpoint. En todas ellas, un porcentaje relevante de los datos

de la aplicación se protege frente a corrupciones de memoria, teniendo en cuenta

las particularidades de cada aplicación. La evaluación experimental demuestra la

baja sobrecarga introducida por esta propuesta, a la vez que pone de manifiesto los

importantes beneficios en el rendimiento que pueden obtenerse con la recuperación

ante corrupciones de memoria, alcanzando hasta un 14 % de reducción en los tiempos

de recuperación con respecto a una vuelta atrás global.

157

A.7. Conclusiones y Trabajo Futuro

A medida que los sistemas HPC aumentan su tamaño e incluyen más componen-

tes hardware de diferentes tipos, el tiempo medio entre fallos para una aplicación

concreta disminuye, lo cual resulta en una alta tasa de fallos. Las aplicaciones con

tiempos de ejecución largos necesitan usar técnicas de tolerancia a fallos no solo

para asegurar que completan su ejecución, sino también para ahorrar enerǵıa. Sin

embargo, los modelos de programación paralela más populares carecen de soporte

de tolerancia a fallos.

Checkpoint/restart es una de las técnicas de tolerancia a fallos más populares,

sin embargo, la mayor parte de las investigaciones utilizando esta técnica se centran

en estrategias stop-and-restart para aplicaciones de memoria distribuida ante fallos-

parada. En este contexto, esta tesis hace las siguientes contribuciones:

Una solución de checkpointing a nivel de aplicación para hacer fren-

te a fallos-parada en aplicaciones h́ıbridas MPI-OpenMP. Un nuevo

protocolo de consistencia aplica coordinación dentro del nodo (dentro de cada

equipo de hilos OpenMP) mientras que no utiliza coordinación entre distin-

tos nodos (entre differentes procesos MPI). Esta propuesta reduce el uso de

la red y recursos de almacenamiento para optimizar el coste de la entrada/-

salida introducido por el uso de tolerancia a fallos, mientras que se minimi-

za la sobrecarga de checkpointing. Además, la portabilidad de la solución y

el paralelismo dinámico de OpenMP permiten el reinicio de las aplicaciones

en máquinas con diferentes arquitecturas, sistemas operativos y/o número de

núcleos de cómputo, adaptando el número de hilos OpenMP para obtener un

mejor aprovechamiento de los recursos disponibles.

Una solución de checkpointing a nivel de aplicación para hacer frente

a fallos-parada en aplicaciones heterogéneas. Esta propuesta está cons-

truida sobre HPL, una libreŕıa que facilita el desarrollo de aplicaciones basadas

en OpenCL, por tanto, no está supeditada a ningún fabricante espećıfico, sis-

tema operativo, o plataforma hardware. La propuesta sigue una aproximación

host-side a nivel de aplicación (ubicando los checkpoints en el código del host

entre invocaciones a kernels). La estrategia host-side evita incluir en los fiche-

ros de checkpoint el estado privado de los aceleradores. Además, la estrategia

158 Appendix A. Extended summary in Spanish

a nivel de aplicación evita salvar los datos no relevantes del host. Ambos enfo-

ques contribuyen a minimizar el tamaño de los ficheros de checkpoint, además

de maximizar la portabilidad y adaptabilidad, permitiendo que las ejecucio-

nes fallidas pueden continuar usando un número diferente de aceleradores y/o

aceleradores con diferentes arquitecturas. La capacidad de las aplicaciones pa-

ra adaptarse a los recursos disponibles será particularmente útil en clústeres

heterogéneos

Una solución de resiliencia basada en checkpointing que puede ser

aplicada de forma genérica a aplicaciones MPI SPMD. Esta propuesta

evita la recuperación tradicional stop-and-restart en aplicaciones MPI, evitan-

do abortar la ejecución de todos los procesos de la aplicación ante un fallo.

Para ello, se utilizan las nuevas funcionalidades proporcionadas por la inter-

faz ULFM, la cual propone caracteŕısticas resiliencia para su inclusión en el

estándar MPI. Las aplicaciones resilientes obtenidas son capaces de detectar y

reaccionar a fallos sin detener su ejecución; en su lugar, se vuelven a lanzar los

procesos fallidos y el estado de la aplicación se recupera con una vuelta atrás

global.

Un protocolo de vuelta atrás local que se puede aplicar de forma

genérica a aplicaciones MPI SPMD y que combina checkpointing a

nivel de aplicación, ULFM, y message-logging. Esta propuesta evita

que los procesos no afectados por el fallo descarten su estado, vuelvan atrás y

repitan cálculos que ya han hecho. En su lugar, la vuelta atrás está restringida

a esos procesos que han fallado. Los procesos fallidos se recuperan utilizan-

do el último checkpoint, mientras que la consistencia global y el progreso del

cómputo se consiguen mediante un protocolo de message-logging en dos ni-

veles. Las comunicaciones punto-a-punto son registradas por el componente

VProtocol de Open MPI, mientras que las comunicaciones colectivas se regis-

tran a nivel de aplicación, reduciendo de esta forma el tamaño de los registros

y permitiendo el uso de comunicaciones architecture-aware.

Un conjunto de extensiones en una libreŕıa de checkpointing a nivel

de aplicación que facilita la implemetación de estrategias de recu-

peración personalizadas en aplicaciones MPI ante corrupciones de

memoria. Este tipo de errores se corresponde con corrupciones de memoria

159

en DRAM o SRAM que no se pueden corregir con mecanismos hardware y

que, la mayoŕıa de las veces, se traducen en errores fallo-parada. Gestionar

estos errores a nivel software, antes de que se traduzcan en fallos, permite

el uso de técnicas de recuperación más eficientes. Las nuevas funcionalidades

proporcionan a los programadores diferentes mecanismos para salvar y acceder

a datos correspondientes a estados anteriores de la computación, sin necesidad

de que se incluyan en los ficheros de checkpoint, ni imponiendo restricciones

en la frecuencia de salvado. La flexibilidad de estas extensiones permite apro-

vechar las caracteŕısiticas particulares de la aplicación en un amplio rango de

escenarios, facilitando la implementación de técnicas ABFT (Algorithm-Based

Fault Tolerance) y recuperaciones locales sin vuelta atrás.

La mayoŕıa de estas propuestas han sido implementadas en la herramienta de

checkpointing CPPC porque proporciona un checkpointing transparente, portable y

a nivel de aplicación que está basado en la instrumentación automática del código.

La única excepción son las extensiones para facilitar la implementación de recupera-

ciones personalizadas ante corrupciones de memoria. Estas extensiones requieren de

la participación del programador, y han sido implementatadas en FTI, una libreŕıa

de checkpointing cuya operación se basa en la instrumentación del código por parte

del programador.

Para continuar reduciendo el coste de tolerar un fallo, el trabajo futuro incluye

la optimización del protocolo de vuelta atrás local para realizar una re-ejecución

de comunicaciones más eficiente. En la estrategia propuesta, todos los procesos que

participan en la ejecución original de una operación colectiva también deben de par-

ticipar en su re-ejecución durante la recuperación. Sin embargo, se puede optimizar

esta re-ejecución de comunicaciones colectivas, por ejemplo, sustituyendo la opera-

ción colectiva por una o un conjunto de comunicaciones punto-a-punto. Este tipo

de optimizaciones tienen el potencial de mejorar todav́ıa más el rendimiento de la

recuperación y de reducir el nivel de sincronización entre procesos durante esta ope-

ración. En el siguiente nivel, la re-ejecución de communicaciones también se puede

beneficiar del uso de las operaciones de acceso a memoria remota proporcionadas

por MPI para implementar una re-ejecución de comunicaciones dirigida por el re-

ceptor de los mensajes. Esta estrategia permitiŕıa a los procesos fallidos obtener los

mensajes del registro de mensajes de los procesos supervivientes sin su participación

160 Appendix A. Extended summary in Spanish

activa durante el proceso de recuperación.

A mayores, el trabajo futuro incluye también el estudio de estrategias de recupe-

ración ad hoc para gestionar corrupciones de memoria en aplicaciones Monte Carlo

y algoritmos genéticos, en los que se pueden gestionar corrupciones de memoria en

datos aleatorios sin apenas coste alguno.

Los resultados de estas investigaciones se han publicado en las siguientes revistas

y congresos:

International Journals (5)

• N. Losada, G. Bosilca, A. Bouteiller, P. González, and M. J. Mart́ın.

Local Rollback for Resilient MPI Applications with Application-Level

Checkpointing and Message Logging. En revisión en una revista in-

ternacional, 2018

• N. Losada, B. B. Fraguela, P. González, and M. J. Mart́ın. A portable and

adaptable fault tolerance solution for heterogeneous applications. Journal

of Parallel and Distributed Computing, 104:146–158, 2017

• N. Losada, M. J. Mart́ın, and P. González. Assessing resilient versus stop-

and-restart fault-tolerant solutions in MPI applications. The Journal of

Supercomputing, 73(1):316–329, 2017

• N. Losada, I. Cores, M. J. Mart́ın, and P. González. Resilient MPI appli-

cations using an application-level checkpointing framework and ULFM.

The Journal of Supercomputing, 73(1):100–113, 2017

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Extending an

Application-Level Checkpointing Tool to Provide Fault Tolerance Sup-

port to OpenMP Applications. Journal of Universal Computer Science,

20(9):1352–1372, 2014

International Conferences (7)

• P. González, N. Losada, and M. J. Mart́ın. Insights into application-level

solutions towards resilient MPI applications. In International Conference

on High Performance Computing & Simulation (HPCS 2018), pages 610–

613. IEEE, 2018

161

• N. Losada, L. Bautista-Gomez, K. Keller, and O. Unsal. Towards Ad Hoc

Recovery For Soft Errors. En revisión en una conferencia interna-

cional, 2018

• N. Losada, G. Bosilca, A. Bouteiller, P. González, T. Hérault, and M. J.

Mart́ın. Local Rollback of MPI Applications by Combining Application-

Level Checkpointing and Message Logging. In SIAM Conference on Pa-

rallel Processing for Scientific Computing (PP’18), 2018

• N. Losada, M. J. Mart́ın, and P. González. Stop&Restart vs Resilient MPI

applications. In International Conference on Computational and Mathe-

matical Methods in Science and Engineering, pages 817–820, 2016

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Portable Appli-

cation-level Checkpointing for Hybrid MPI-OpenMP Applications. Pro-

cedia Computer Science, 80:19–29, 2016

• N. Losada, I. Cores, M. J. Mart́ın, and P. González. Towards resilience in

MPI applications using an application-level checkpointing framework. In

International Conference on Computational and Mathematical Methods

in Science and Engineering, pages 717–728, 2015

• N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. I/O optimiza-

tion in the checkpointing of OpenMP parallel applications. In Internatio-

nal Conference on Parallel, Distributed and Network-Based Processing,

pages 222–229. IEEE, 2015

Bibliography

[1] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira. Adaptive incremental

checkpointing for massively parallel systems. In International Conference on

Supercomputing (ICS), pages 277–286, 2004.

[2] M. M. Ali, P. E. Strazdins, B. Harding, and M. Hegland. Complex scien-

tific applications made fault-tolerant with the sparse grid combination tech-

nique. The International Journal of High Performance Computing Applica-

tions, 30(3):335–359, 2016.

[3] L. Alvisi and K. Marzullo. Message logging: Pessimistic, optimistic, and

causal. In International Conference on Distributed Computing Systems, pages

229–236. IEEE, 1995.

[4] J. Ansel, K. Arya, and G. Cooperman. DMTCP: Transparent checkpoint-

ing for cluster computations and the desktop. In International Parallel and

Distributed Processing Symposium, pages 1–12. IEEE, 2009.

[5] ASC Sequoia Benchmark Codes. https://asc.llnl.gov/sequoia/

benchmarks/. Last accessed: July 2018.

[6] R. T. Aulwes, D. J. Daniel, N. N. Desai, R. L. Graham, L. D. Risinger,

M. A. Taylor, T. S. Woodall, and M. W. Sukalski. Architecture of LA-MPI,

a network-fault-tolerant MPI. In International Parallel and Distributed Pro-

cessing Symposium, page 15. IEEE, 2004.

[7] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions on

Dependable and Secure Computing, 1(1):11–33, 2004.

163

https://asc.llnl.gov/sequoia/benchmarks/
https://asc.llnl.gov/sequoia/benchmarks/

164 Bibliography

[8] A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda. Efficient large

message broadcast using NCCL and CUDA-aware MPI for deep learning. In

23rd European MPI Users’ Group Meeting, pages 15–22. ACM, 2016.

[9] R. Baumann. Soft errors in advanced computer systems. IEEE Design & Test

of Computers, 22(3):258–266, 2005.

[10] L. Bautista-Gomez and F. Cappello. Detecting and correcting data corruption

in stencil applications through multivariate interpolation. In IEEE Interna-

tional Conference on Cluster Computing (CLUSTER), pages 595–602. IEEE,

2015.

[11] L. Bautista-Gomez, A. Nukada, N. Maruyama, F. Cappello, and S. Matsuoka.

Low-overhead diskless checkpoint for hybrid computing systems. In Interna-

tional Conference on High Performance Computing, pages 1–10. IEEE, 2010.

[12] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, N. Maruyama,

and S. Matsuoka. FTI: high performance fault tolerance interface for hybrid

systems. In International Conference for High Performance Computing, Net-

working, Storage and Analysis (SC), pages 1–12. IEEE, 2011.

[13] A. Beguelin, E. Seligman, and M. Starkey. Dome: Distributed object migration

environment. Technical Report CMU-CS-94-153, Carnegie Mellon University,

1994.

[14] W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure

recovery of MPI communication capability: Design and rationale. The Interna-

tional Journal of High Performance Computing Applications, 27(3):244–254,

2013.

[15] W. Bland, K. Raffenetti, and P. Balaji. Simplifying the recovery model of

user-level failure mitigation. In Workshop on Exascale MPI at International

Conference for High Performance Computing, Networking, Storage and Anal-

ysis (SC), pages 20–25. IEEE, 2014.

[16] G. Bosilca, A. Bouteiller, T. Herault, P. Lemarinier, and J. J. Dongarra. Dodg-

ing the cost of unavoidable memory copies in message logging protocols. In

European MPI Users’ Group Meeting, pages 189–197. Springer, 2010.

Bibliography 165

[17] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou. Algorithm-based fault

tolerance applied to high performance computing. Journal of Parallel and

Distributed Computing, 69(4):410–416, 2009.

[18] A. Bouteiller, G. Bosilca, and J. Dongarra. Redesigning the message logging

model for high performance. Concurrency and Computation: Practice and

Experience, 22(16):2196–2211, 2010.

[19] A. Bouteiller, F. Cappello, T. Hérault, G. Krawezik, P. Lemarinier, and

F. Magniette. MPICH-V2: A Fault Tolerant MPI for Volatile Nodes Based

on Pessimistic Sender Based Message Logging. In International Conference

for High Performance Computing, Networking, Storage and Analysis (SC),

page 25. ACM, 2003.

[20] A. Bouteiller, T. Herault, G. Bosilca, and J. J. Dongarra. Correlated set coor-

dination in fault tolerant message logging protocols. In European Conference

on Parallel Processing, pages 51–64. Springer, 2011.

[21] C. Braun, S. Halder, and H. J. Wunderlich. A-ABFT: Autonomous algorithm-

based fault tolerance for matrix multiplications on graphics processing units.

In International Conference on Dependable Systems and Networks, pages 443–

454. IEEE, 2014.

[22] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill. C 3: A system for

automating application-level checkpointing of MPI programs. In International

Workshop on Languages and Compilers for Parallel Computing, pages 357–

373. Springer, 2003.

[23] G. Bronevetsky, D. Marques, K. Pingali, P. Szwed, and M. Schulz.

Application-level checkpointing for shared memory programs. ACM

SIGARCH Computer Architecture News, 32(5):235–247, 2004.

[24] G. Bronevetsky, K. Pingali, and P. Stodghill. Experimental evaluation of

application-level checkpointing for OpenMP programs. In International Con-

ference on Supercomputing (ICS), pages 2–13. ACM, 2006.

[25] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin, G. Mercier,

S. Thibault, and R. Namyst. hwloc: A generic framework for managing hard-

166 Bibliography

ware affinities in HPC applications. In International Conference on Parallel,

Distributed and Network-Based Processing, pages 180–186. IEEE, 2010.

[26] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward

exascale resilience: 2014 update. Supercomputing frontiers and innovations,

1(1):5–28, 2014.

[27] F. Cappello, A. Guermouche, and M. Snir. On Communication Determin-

ism in Parallel HPC Applications. In International Conference on Computer

Communications and Networks (ICCCN), pages 1–8, 2010.

[28] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global

states of distributed systems. Transactions on Computer Systems, 3(1):63–75,

1985.

[29] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and

K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In

International Symposium on Workload Characterization, pages 44–54. IEEE,

2009.

[30] Y. Chen, K. Li, and J. Plank. CLIP: A Checkpointing Tool for Message Passing

Parallel Programs. In International Conference for High Performance Com-

puting, Networking, Storage and Analysis (SC), pages 33–33. IEEE Computer

Society, 1997.

[31] Z. Chen and J. Dongarra. Algorithm-based fault tolerance for fail-stop failures.

IEEE Transactions on Parallel and Distributed Systems, 19(12):1628–1641,

2008.

[32] CoMD website. http://proxyapps.exascaleproject.org/apps/comd/.

Last accessed: July 2018.

[33] I. Cores, G. Rodŕıguez, P. González, and M. J. Mart́ın. Failure avoidance in

MPI applications using an application-level approach. The Computer Journal,

57(1):100–114, 2012.

[34] I. Cores, G. Rodŕıguez, M. J. Mart́ın, P. González, and R. R. Osorio. Improv-

ing scalability of application-level checkpoint-recovery by reducing checkpoint

sizes. New Generation Computing, 31(3):163–185, 2013.

http://proxyapps.exascaleproject.org/apps/comd/

Bibliography 167

[35] C. Coti, T. Herault, P. Lemarinier, L. Pilard, A. Rezmerita, E. Rodriguez, and

F. Cappello. Blocking vs. Non-Blocking Coordinated Checkpointing for Large-

Scale Fault Tolerant MPI. In International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), page 127. ACM, 2006.

[36] J. T. Daly. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Computer Systems, 22(3):303–312, 2006.

[37] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford,

V. Tipparaju, and J. S. Vetter. The scalable heterogeneous computing (SHOC)

benchmark suite. In Workshop on General-Purpose Computation on Graphics

Processing Units, pages 63–74. ACM, 2010.

[38] T. Davies, C. Karlsson, H. Liu, C. Ding, and Z. Chen. High performance

linpack benchmark: a fault tolerant implementation without checkpointing.

In International conference on Supercomputing (ICS), pages 162–171. ACM,

2011.

[39] T. J. Dell. A white paper on the benefits of chipkill-correct ECC for PC server

main memory. IBM Microelectronics Division, 11, 1997.

[40] C. Di Martino, Z. Kalbarczyk, and R. Iyer. Measuring the Resiliency of

Extreme-Scale Computing Environments. In Principles of Performance and

Reliability Modeling and Evaluation, pages 609–655. Springer, 2016.

[41] W. R. Dieter and J. E. Lumpp. A user-level checkpointing library for POSIX

threads programs. In International Symposium on Fault-Tolerant Computing.

Digest of Papers, pages 224–227. IEEE, 1999.

[42] J. Dongarra, T. Herault, and Y. Robert. Fault tolerance techniques for high-

performance computing. In Fault-Tolerance Techniques for High-Performance

Computing, pages 3–85. Springer, 2015.

[43] J. J. Dongarra. Performance of various computers using standard linear equa-

tions software. University of Tennessee, Computer Science Department, 1993.

[44] J. J. Dongarra, H. W. Meuer, E. Strohmaier, et al. Top500 supercomputer

sites, 1994.

168 Bibliography

[45] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. Ferreira, and C. Engelmann.

Combining Partial Redundancy and Checkpointing for HPC. In International

Conference on Distributed Computing Systems, pages 615–626. IEEE, 2012.

[46] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson. A survey of

rollback-recovery protocols in message-passing systems. Computing Surveys,

34(3):375–408, 2002.

[47] C. Engelmann, H. Ong, and S. L. Scott. The case for modular redundancy

in large-scale high performance computing systems. In IASTED International

Conference on Parallel and Distributed Computing and Networks, volume 641,

page 046, 2009.

[48] G. Fagg and J. Dongarra. FT-MPI: Fault tolerant MPI, supporting dynamic

applications in a dynamic world. Recent advances in parallel virtual machine

and message passing interface, pages 346–353, 2000.

[49] K. Ferreira, J. Stearley, J. H. Laros, R. Oldfield, K. Pedretti, R. Brightwell,

R. Riesen, P. G. Bridges, and D. Arnold. Evaluating the viability of process

replication reliability for exascale systems. In International Conference for

High Performance Computing, Networking, Storage and Analysis (SC), pages

1–12. IEEE, 2011.

[50] M. Gamell, D. S. Katz, K. Teranishi, M. A. Heroux, R. F. Van der Wijn-

gaart, T. G. Mattson, and M. Parashar. Evaluating online global recovery

with Fenix using application-aware in-memory checkpointing techniques. In

International Conference on Parallel Processing Workshops (ICPPW), pages

346–355. IEEE, 2016.

[51] M. Gamell, K. Teranishi, J. Mayo, H. Kolla, M. Heroux, J. Chen, and

M. Parashar. Modeling and Simulating Multiple Failure Masking Enabled

by Local Recovery for Stencil-based Applications at Extreme Scales. Trans-

actions on Parallel and Distributed Systems, 28(10):2881–2895, 2017.

[52] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis. Transparent,

Incremental Checkpointing at Kernel Level: a Foundation for Fault Tolerance

for Parallel Computers. In International Conference for High Performance

Bibliography 169

Computing, Networking, Storage and Analysis (SC), page 9. IEEE Computer

Society, 2005.

[53] P. González, N. Losada, and M. J. Mart́ın. Insights into application-level

solutions towards resilient MPI applications. In International Conference on

High Performance Computing & Simulation (HPCS 2018), pages 610–613.

IEEE, 2018.

[54] D. Hakkarinen and Z. Chen. Algorithmic Cholesky factorization fault recovery.

In International Symposium on Parallel & Distributed Processing, pages 1–10.

IEEE, 2010.

[55] P. H. Hargrove and J. C. Duell. Berkeley lab checkpoint/restart (BLCR) for

linux clusters. In Journal of Physics: Conference Series, volume 46, pages

494–499, 2006.

[56] Himeno Benchmark. http://accc.riken.jp/en/supercom/himenobmt/.

Last accessed: July 2018.

[57] K.-H. Huang and J. Abraham. Algorithm-Based Fault Tolerance for Matrix

Operations. Transactions on Computers, 33(6):518–528, 1984.

[58] J. Hursey, R. Graham, G. Bronevetsky, D. Buntinas, H. Pritchard, and D. Solt.

Run-through stabilization: An MPI proposal for process fault tolerance. Re-

cent advances in the message passing interface, pages 329–332, 2011.

[59] Intel MPI Benchmarks. https://software.intel.com/en-us/

imb-user-guide. Last accessed: July 2018.

[60] D. Jacobsen, J. Thibault, and I. Senocak. An MPI-CUDA implementation for

massively parallel incompressible flow computations on multi-GPU clusters.

In AIAA Aerospace Sciences Meeting Including the New Horizons Forum and

Aerospace Exposition, page 522, 2010.

[61] F. Ji, A. M. Aji, J. Dinan, D. Buntinas, P. Balaji, W.-c. Feng, and X. Ma.

Efficient intranode communication in GPU-accelerated systems. In IEEE In-

ternational Parallel and Distributed Processing Symposium Workshops & PhD

Forum (IPDPSW), pages 1838–1847. IEEE, 2012.

http://accc.riken.jp/en/supercom/himenobmt/
https://software.intel.com/en-us/imb-user-guide
https://software.intel.com/en-us/imb-user-guide

170 Bibliography

[62] H. Jin, D. Jespersen, P. Mehrotra, R. Biswas, L. Huang, and B. Chapman.

High performance computing using MPI and OpenMP on multi-core parallel

systems. Parallel Computing, 37(9):562–575, 2011.

[63] S. Kannan, N. Farooqui, A. Gavrilovska, and K. Schwan. HeteroCheckpoint:

Efficient checkpointing for accelerator-based systems. In International Con-

ference on Dependable Systems and Networks, pages 738–743. IEEE, 2014.

[64] Karl Rupp, Freelance Computational Scientist. https://www.karlrupp.net/

2018/02/42-years-of-microprocessor-trend-data/. Last accessed: July

2018.

[65] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs

and the future of parallel computing. Micro, 31(5):7–17, 2011.

[66] Khronos OpenCL Working Group. The OpenCL especification. Version 2.0,

2014.

[67] D. Komatitsch, G. Erlebacher, D. Göddeke, and D. Michéa. High-order finite-

element seismic wave propagation modeling with MPI on a large GPU cluster.

Journal of Computational Physics, 229(20):7692–7714, 2010.

[68] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, and B. R. de Supinski.

Evaluating user-level fault tolerance for MPI applications. In European MPI

Users’ Group Meeting, page 57. ACM, 2014.

[69] I. Laguna, D. F. Richards, T. Gamblin, M. Schulz, B. R. de Supinski,

K. Mohror, and H. Pritchard. Evaluating and extending user-level fault tol-

erance in MPI applications. The International Journal of High Performance

Computing Applications, 30(3):305–319, 2016.

[70] L. Lamport. Time, clocks, and the ordering of events in a distributed system.

Communications of the ACM, 21(7):558–565, 1978.

[71] S. Laosooksathit, N. Naksinehaboon, C. Leangsuksan, A. Dhungana, C. Chan-

dler, K. Chanchio, and A. Farbin. Lightweight checkpoint mechanism and

modeling in GPGPU environment. Computing (HPC Syst), 12:13–20, 2010.

https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/

Bibliography 171

[72] C.-C. Li and W. K. Fuchs. CATCH-compiler-assisted techniques for check-

pointing. In International Symposium on Fault-Tolerant Computing, pages

74–81. IEEE, 1990.

[73] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, concurrent checkpointing

for parallel programs. IEEE Transactions on Parallel and Distributed Systems,

5(8):874–879, 1994.

[74] X. Liu, X. Xu, X. Ren, Y. Tang, and Z. Dai. A message logging protocol based

on user level failure mitigation. In International Conference on Algorithms and

Architectures for Parallel Processing, pages 312–323. Springer, 2013.

[75] N. Losada, L. Bautista-Gomez, K. Keller, and O. Unsal. Towards Ad Hoc

Recovery For Soft Errors. In Under review in an international confer-

ence, 2018.

[76] N. Losada, G. Bosilca, A. Bouteiller, P. González, T. Hérault, and M. J.

Mart́ın. Local Rollback of MPI Applications by Combining Application-Level

Checkpointing and Message Logging. In SIAM Conference on Parallel Pro-

cessing for Scientific Computing (PP’18), 2018.

[77] N. Losada, G. Bosilca, A. Bouteiller, P. González, and M. J. Mart́ın. Local

Rollback for Resilient MPI Applications with Application-Level Checkpointing

and Message Logging. Under review in an international journal, 2018.

[78] N. Losada, I. Cores, M. J. Mart́ın, and P. González. Towards resilience in MPI

applications using an application-level checkpointing framework. In Interna-

tional Conference on Computational and Mathematical Methods in Science

and Engineering, pages 717–728, 2015.

[79] N. Losada, I. Cores, M. J. Mart́ın, and P. González. Resilient MPI applications

using an application-level checkpointing framework and ULFM. The Journal

of Supercomputing, 73(1):100–113, 2017.

[80] N. Losada, B. B. Fraguela, P. González, and M. J. Mart́ın. A portable and

adaptable fault tolerance solution for heterogeneous applications. Journal of

Parallel and Distributed Computing, 104:146–158, 2017.

172 Bibliography

[81] N. Losada, M. J. Mart́ın, and P. González. Stop&Restart vs Resilient MPI

applications. In International Conference on Computational and Mathematical

Methods in Science and Engineering, pages 817–820, 2016.

[82] N. Losada, M. J. Mart́ın, and P. González. Assessing resilient versus stop-

and-restart fault-tolerant solutions in MPI applications. The Journal of Su-

percomputing, 73(1):316–329, 2017.

[83] N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Extending an

Application-Level Checkpointing Tool to Provide Fault Tolerance Support to

OpenMP Applications. Journal of Universal Computer Science, 20(9):1352–

1372, 2014.

[84] N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. I/O optimization in

the checkpointing of OpenMP parallel applications. In International Confer-

ence on Parallel, Distributed and Network-Based Processing, pages 222–229.

IEEE, 2015.

[85] N. Losada, M. J. Mart́ın, G. Rodŕıguez, and P. González. Portable

Application-level Checkpointing for Hybrid MPI-OpenMP Applications. Pro-

cedia Computer Science, 80:19–29, 2016.

[86] T. Martsinkevich, T. Ropars, and F. Cappello. Addressing the Last Roadblock

for Message Logging in HPC: Alleviating the Memory Requirement Using

Dedicated Resources. In European Conference on Parallel Processing, pages

644–655. Springer, 2015.

[87] T. Martsinkevich, O. Subasi, O. Unsal, F. Cappello, and J. Labarta. Fault-

tolerant protocol for hybrid task-parallel message-passing applications. In

International Conference on Cluster Computing, pages 563–570. IEEE, 2015.

[88] E. Meneses and L. V. Kalé. CAMEL: collective-aware message logging. The

Journal of Supercomputing, 71(7):2516–2538, 2015.

[89] E. Meneses, C. L. Mendes, and L. V. Kalé. Team-based message logging:

Preliminary results. In International Conference on Cluster, Cloud and Grid

Computing, pages 697–702. IEEE, 2010.

Bibliography 173

[90] H. Meyer, R. Muresano, M. Castro-León, D. Rexachs, and E. Luque. Hybrid

Message Pessimistic Logging. Improving current pessimistic message logging

protocols. Journal of Parallel and Distributed Computing, 104:206–222, 2017.

[91] H. Meyer, D. Rexachs, and E. Luque. RADIC: A FaultTolerant Middleware

with Automatic Management of Spare Nodes. In International Conference on

Parallel and Distributed Processing Techniques and Applications, page 1. The

Steering Committee of The World Congress in Computer Science, Computer

Engineering and Applied Computing (WorldComp), 2012.

[92] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski. Design, model-

ing, and evaluation of a scalable multi-level checkpointing system. In Interna-

tional Conference for High Performance Computing, Networking, Storage and

Analysis (SC), pages 1–11. IEEE, 2010.

[93] G. E. Moore. Cramming more components onto integrated circuits. Proceed-

ings of the IEEE, 86(1):82–85, 1998.

[94] NERSC-8 / Trinity Benchmarks website: https://www.nersc.

gov/users/computational-systems/cori/nersc-8-procurement/

trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/. Last accessed:

July 2018.

[95] A. Nukada, H. Takizawa, and S. Matsuoka. NVCR: A transparent checkpoint-

restart library for NVIDIA CUDA. In International Symposium on Parallel

and Distributed Processing Workshops and Phd Forum, pages 104–113. IEEE,

2011.

[96] H. Ong, N. Saragol, K. Chanchio, and C. Leangsuksun. VCCP: A transparent,

coordinated checkpointing system for virtualization-based cluster computing.

In International Conference on Cluster Computing and Workshops, pages 1–

10. IEEE, 2009.

[97] OpenMP website: http://openmp.org/. Last accessed: July 2018.

[98] S. Pauli, M. Kohler, and P. Arbenz. A fault tolerant implementation of multi-

level Monte Carlo methods. Parallel Computing: Accelerating Computational

Science and Engineering, 25:471, 2014.

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/
http://openmp.org/

174 Bibliography

[99] G. Pawelczak, S. McIntosh-Smith, J. Price, and M. Martineau. Application-

Based Fault Tolerance Techniques for Fully Protecting Sparse Matrix Solvers.

In IEEE International Conference on Cluster Computing, pages 733–740.

IEEE, 2017.

[100] A. J. Peña, W. Bland, and P. Balaji. VOCL-FT: introducing techniques for

efficient soft error coprocessor recovery. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), pages 1–12.

IEEE, 2015.

[101] J. S. Plank, M. Beck, and G. Kingsley. Compiler-Assisted Memory Exclusion

for Fast Checkpointing. IEEE Technical Committee on Operating Systems and

Application Environments, 7(4):10–14, 1995.

[102] J. S. Plank and K. Li. ickp: A consistent checkpointer for multicomputers.

IEEE Parallel & Distributed Technology: Systems & Applications, 2(2):62–67,

1994.

[103] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpointing. IEEE Trans-

actions on Parallel and Distributed Systems, 9(10):972–986, 1998.

[104] M. Prvulovic, Z. Zhang, and J. Torrellas. ReVive: cost-effective architectural

support for rollback recovery in shared-memory multiprocessors. In Interna-

tional Symposium on Computer Architecture, pages 111–122. IEEE, 2002.

[105] R. Rabenseifner. Automatic MPI counter profiling of all users: First results

on a CRAY T3E 900-512. In Message Passing Interface Developers and Users

Conference (MPIDC99), pages 77–85, 1999.

[106] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP parallel pro-

gramming on clusters of multi-core SMP nodes. In International Conference

on Parallel, Distributed and Network-based Processing, pages 427–436. IEEE,

2009.

[107] S. Rao, L. Alvisi, and H. M. Vin. The cost of recovery in message logging

protocols. Transactions on Knowledge and Data Engineering, 12(2):160–173,

2000.

Bibliography 175

[108] A. Rezaei, G. Coviello, C.-H. Li, S. Chakradhar, and F. Mueller. Snapify:

Capturing snapshots of offload applications on Xeon Phi manycore processors.

In International Symposium on High-Performance Parallel and Distributed

Computing, pages 1–12. ACM, 2014.

[109] F. Rizzi, K. Morris, K. Sargsyan, P. Mycek, C. Safta, B. Debusschere,

O. LeMaitre, and O. Knio. ULFM-MPI implementation of a resilient task-

based partial differential equations preconditioner. In Workshop on Fault-

Tolerance for HPC at Extreme Scale, pages 19–26. ACM, 2016.

[110] G. Rodŕıguez, M. J. Mart́ın, and P. González. Reducing application-level

checkpoint file sizes: Towards scalable fault tolerance solutions. In IEEE Inter-

national Symposium on Parallel and Distributed Processing with Applications

(ISPA), pages 371–378. IEEE, 2012.

[111] G. Rodŕıguez, M. J. Mart́ın, P. González, and J. Touriño. A heuristic approach

for the automatic insertion of checkpoints in message-passing codes. Journal

of Universal Computer Science, 15(14):2894–2911, 2009.

[112] G. Rodŕıguez, M. J. Mart́ın, P. González, J. Touriño, and R. Doallo. CPPC:

a compiler-assisted tool for portable checkpointing of message-passing appli-

cations. Concurrency and Computation: Practice and Experience, 22(6):749–

766, 2010.

[113] T. Ropars, T. V. Martsinkevich, A. Guermouche, A. Schiper, and F. Cappello.

SPBC: Leveraging the characteristics of MPI HPC applications for scalable

checkpointing. In International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), page 8. ACM, 2013.

[114] K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. de Supinski, N. Maruyama,

and S. Matsuoka. FMI: Fault Tolerant Messaging Interface for Fast and Trans-

parent Recovery. In International Parallel and Distributed Processing Sympo-

sium, pages 1225–1234. IEEE, 2014.

[115] S. Seo, G. Jo, and J. Lee. Performance characterization of the NAS Parallel

Benchmarks in OpenCL. In International Symposium on Workload Charac-

terization, pages 137–148. IEEE, 2011.

176 Bibliography

[116] F. Shahzad, J. Thies, M. Kreutzer, T. Zeiser, G. Hager, and G. Wellein.

CRAFT: A library for easier application-level checkpoint/restart and auto-

matic fault tolerance. CoRR, abs/1708.02030, 2017.

[117] J. Sloan, R. Kumar, and G. Bronevetsky. An algorithmic approach to error

localization and partial recomputation for low-overhead fault tolerance. In

International Conference on Dependable Systems and Networks, pages 1–12.

IEEE, 2013.

[118] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi, P. Balaji,

J. Belak, P. Bose, F. Cappello, B. Carlson, et al. Addressing failures in exas-

cale computing. The International Journal of High Performance Computing

Applications, 28(2):129–173, 2014.

[119] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood. SafetyNet: improving

the availability of shared memory multiprocessors with global checkpoint/re-

covery. In International Symposium on Computer Architecture, pages 123–134.

IEEE, 2002.

[120] G. Stellner. CoCheck: Checkpointing and process migration for MPI. In

International Parallel Processing Symposium, (IPPS’96), pages 526–531. IEEE

Computer Society, 1996.

[121] A. Sunil, K. Jungwhan, and H. Sagyong. PC/MPI: Design and Implementa-

tion of a Portable MPI Checkpointer. In European PVM/MPI Users’ Group

Meeting, volume 2840 of Lecture Notes in Computer Science, pages 302–308.

Springer Verlag, 2003.

[122] G. Suo, Y. Lu, X. Liao, M. Xie, and H. Cao. NR-MPI: a Non-stop and

Fault Resilient MPI. In International Conference on Parallel and Distributed

Systems, pages 190–199. IEEE, 2013.

[123] H. Takizawa, K. Koyama, K. Sato, K. Komatsu, and H. Kobayashi. CheCL:

Transparent checkpointing and process migration of OpenCL applications. In

International Parallel & Distributed Processing Symposium, pages 864–876.

IEEE, 2011.

Bibliography 177

[124] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi. CheCUDA: A check-

point/restart tool for CUDA applications. In International Conference on Par-

allel and Distributed Computing, Applications and Technologies, pages 408–

413. IEEE, 2009.

[125] TeaLeaf website. https://github.com/UoB-HPC/TeaLeaf. Last accessed:

July 2018.

[126] K. Teranishi and M. A. Heroux. Toward local failure local recovery resilience

model using MPI-ULFM. In European MPI Users’ Group Meeting, page 51.

ACM, 2014.

[127] R. Thakur, P. Balaji, D. Buntinas, D. Goodell, W. Gropp, T. Hoefler, S. Ku-

mar, E. Lusk, and J. L. Träff. MPI at Exascale. Scientific Discovery through

Advanced Computing (SciDAC), 2:14–35, 2010.

[128] R. A. Van De Geijn and J. Watts. SUMMA: Scalable universal matrix multipli-

cation algorithm. Concurrency-Practice and Experience, 9(4):255–274, 1997.

[129] M. Viñas, Z. Bozkus, and B. B. Fraguela. Exploiting heterogeneous paral-

lelism with the Heterogeneous Programming Library. Journal of Parallel and

Distributed Computing, 73(12):1627–1638, 2013.

[130] M. Viñas, B. B. Fraguela, Z. Bozkus, and D. Andrade. Improving OpenCL

programmability with the heterogeneous programming library. Procedia Com-

puter Science, 51:110–119, 2015.

[131] M. Viñas, J. Lobeiras, B. B. Fraguela, M. Arenaz, M. Amor, J. A. Garćıa, M. J.

Castro, and R. Doallo. A multi-GPU shallow-water simulation with transport

of contaminants. Concurrency and Computation: Practice and Experience,

25(8):1153–1169, 2013.

[132] D. W. Walker and J. J. Dongarra. MPI: a standard message passing interface.

Supercomputer, 12:56–68, 1996.

[133] C. Wang, F. Mueller, C. Engelmann, and S. L. Scott. Proactive process-level

live migration in HPC environments. In International Conference for High

Performance Computing, Networking, Storage and Analysis (SC), page 43.

IEEE Press, 2008.

https://github.com/UoB-HPC/TeaLeaf

178 Bibliography

[134] E. Wolters and M. Smith. MOCFE-Bone: the 3D MOC mini-application

for exascale research. Technical Report ANL/NE-12/59, Argonne National

Laboratory (ANL), Argonne, IL (United States), 2012.

[135] N. Woo, H. Jung, H. Yeom, T. Park, and H. Park. MPICH-GF: Transparent

checkpointing and rollback-recovery for grid-enabled MPI processes. IEICE

Transactions on Information and Systems, 87(7):1820–1828, 2004.

[136] W. Wu, G. Bosilca, R. Vandevaart, S. Jeaugey, and J. Dongarra. GPU-Aware

Non-contiguous Data Movement In Open MPI. In ACM International Sym-

posium on High-Performance Parallel and Distributed Computing, pages 231–

242. ACM, 2016.

[137] J. Yeh, G. Pawelczak, J. Sewart, J. Price, A. A. Ibarra, S. McIntosh-Smith,

F. Zyulkyarov, L. Bautista-Gomez, and O. Unsal. Software-level Fault Toler-

ant Framework for Task-based Applications. 2016.

[138] J. W. Young. A first order approximation to the optimum checkpoint interval.

Communications of the ACM, 17(9):530–531, 1974.

	1 Introduction and Background
	1.1 Current Trends in High Performance Computing
	1.2 Fault Tolerance on HPC Applications
	1.2.1 Faults, Errors, and Failures
	1.2.2 Checkpoint/Restart

	1.3 CPPC Overview

	2 Application-level Checkpointing for Hybrid MPI-OpenMP Apps.
	2.1 Checkpoint/Restart of OpenMP Applications
	2.2 Checkpoint/Restart of Hybrid MPI-OpenMP Applications
	2.2.1 Coordination Protocol
	2.2.2 Restart Portability and Adaptability

	2.3 Experimental Evaluation
	2.3.1 Operation Overhead in the Absence of Failures
	2.3.2 Operation Overhead in the Presence of Failures
	2.3.3 Portability and Adaptability Benefits

	2.4 Related Work
	2.5 Concluding Remarks

	3 Application-level Checkpointing for Heterogeneous Applications
	3.1 Heterogeneous Computing using HPL
	3.2 Portable and Adaptable Checkpoint/Restart of Heterogeneous Applications
	3.2.1 Design Decisions
	3.2.2 Implementation Details
	3.2.3 Restart Portability and Adaptability

	3.3 Experimental Evaluation
	3.3.1 Operation Overhead in the Absence of Failures
	3.3.2 Operation Overhead in the Presence of Failures
	3.3.3 Portability and Adaptability Benefits

	3.4 Related Work
	3.5 Concluding Remarks

	4 Application-Level Approach for Resilient MPI Applications
	4.1 Combining CPPC and ULFM to Obtain Resilience
	4.1.1 Failure Detection
	4.1.2 Reconfiguration of the MPI Global Communicator
	4.1.3 Recovery of the Application

	4.2 Improving Scalability: Multithreaded Multilevel Checkpointing
	4.3 Experimental Evaluation
	4.3.1 Operation Overhead in the Absence of Failures
	4.3.2 Operation Overhead in the Presence of Failures
	4.3.3 Resilience vs. Stop-and-Restart Global Rollback

	4.4 Related work
	4.5 Concluding Remarks

	5 Local Rollback for Resilient MPI Applications
	5.1 Local Rollback Protocol Outline
	5.2 Message Logging
	5.2.1 Logging Point-to-Point Communications
	5.2.2 Logging Collective Communications
	5.2.3 Implications for the Log Size

	5.3 Communications Interrupted by a Failure
	5.4 Tracking Messages and Emission Replay
	5.4.1 Tracking Protocol
	5.4.2 Ordered Replay

	5.5 Experimental Evaluation
	5.5.1 Operation Overhead in the Absence of Failures
	5.5.2 Operation Overhead in the Presence of Failures
	5.5.3 Weak scaling experiments

	5.6 Related Work
	5.7 Concluding Remarks

	6 Local Recovery For Soft Errors
	6.1 Soft Errors
	6.2 The FTI Checkpointing Library
	6.3 FTI Extensions to Facilitate Soft Error Recovery
	6.4 Ad Hoc Local Recovery on HPC Applications
	6.4.1 Himeno
	6.4.2 CoMD
	6.4.3 TeaLeaf

	6.5 Experimental Evaluation
	6.5.1 Memory Characterization
	6.5.2 Overhead in the Absence of Failures
	6.5.3 Overhead in the Presence of Failures

	6.6 Related Work
	6.7 Concluding Remarks

	7 Conclusions and Future Work
	A Extended summary in Spanish
	References

