
PhD Thesis

Towards Efficient Exploitation
of GPUs: A Methodology for

Mapping Index-Digit Algorithms

Jacobo Lobeiras Blanco

2014

Departamento de Electrónica y Sistemas

Universidade da Coruña

Departamento de Electrónica y Sistemas

Universidade da Coruña

PhD Thesis

Towards Efficient Exploitation

of GPUs: A Methodology for

Mapping Index-Digit Algorithms

Jacobo Lobeiras Blanco

June 2014

PhD Advisors:

Margarita Amor López

Ramón Doallo Biempica

3

Dr. Margarita Amor López

Titular de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Towards Efficient Exploitation of GPUs: A Methodol-

ogy for Mapping Index-Digit Algorithms” ha sido realizada por D. Jacobo Lobeiras

Blanco bajo nuestra dirección en el Departamento de Electrónica y Sistemas de la

Universidade da Coruña y concluye la Tesis Doctoral que presenta para optar al

grado de Doctor en Ingenieŕıa Informática.

En A Coruña, a de de 2014.

Fdo.: Margarita Amor López

Directora de la Tesis Doctoral

Fdo.: Ramón Doallo Biempica

Director de la Tesis Doctoral

VoBo: Carlos José Escudero Cascón

Director del Dpto. de Electrónica y Sistemas

5

The Dissertation Committee for Jacobo Lobeiras Blanco certifies that this is the

approved version of the following dissertation:

Towards Efficient Exploitation of GPUs: A Methodology for

Mapping Index-Digit Algorithms

Committe

President,

Member,

Member,

Member,

Secretary

7

A mis padres.

9

Acknowledgements

It has been a long way since I began computer science engineering in the Uni-

versity of A Coruña. I have met a lot of interesting people and learned a lot, not

only academically speaking but also in personal experiences. I am grateful to the

Electronics and Systems Department for the opportunity to continue my studies as

a PhD student. Since my initial steps in parallel computing, I found it very enter-

taining and developed great interest in the subject. When the first general purpose

programming languages for GPUs emerged my department offered me the chance to

work on a related project, providing all the required resources and tools. Margarita

Amor, Manuel Arenaz and Basilio B. Fraguela offered guidance and encouragement

during this first stages of my work. The collaboration with Jose A. Garćıa from the

applied mathematics department was a great opportunity to work in a joint project,

parallelizing a shallow water simulation on CPU and GPU architectures with very

successful results. As I advanced in the thesis, the work became more focused on sig-

nal processing algorithms for GPU architectures, which is my main research topic. I

would like to specially thank my PhD advisors Margarita Amor and Ramón Doallo,

for their kind support and patience during these last years, because the work has

been possible thanks to their guidance and commitment.

During all these years I had a comfortable and stimulating work place, mainly

thanks to the nice company and cheerful members of the GAC (Computer Archi-

tecture Group), specially people at Lab 0.2. Many of my colleagues are no longer

related to the university or are working abroad, but these words of appreciation are

also dedicated to them. Additionally, I would like to thank my friends for their

company and entertainment during weekends and holidays, which provided many

memorable moments and served to disconnect from work once in a while. Of course

I am also in debt with my parents, because I received great and unconditional sup-

port every single day and without their help I probably would have not managed to

reach so far.

Finally, I would also like to thank the institutions and projects that have funded

my work during these years, as well as the Computer Architecture Group and the

Electronics and Systems Department for their support because they always did

whatever was in their hands when something was needed. This research has been

10

financially supported by the Ministry of Education and Science and the former Min-

istry of Science and Innovation of Spain under the projects TIN2007-67537-C03-02

and TIN2010-16735, the Galician Government (Xunta de Galicia) under the Con-

solidation Program of Competitive Reference Groups Ref. 2010/6, 08TIC001206PR

and INCITE08PXIB105161PR, cofunded by FEDER funds. We also would like to

thank the European Network of Excellence on High Performance and Embedded

Architecture and Compilation (HiPEAC) and the G-HPC network (ref. 2010/53)

for promoting interdisciplinary collaborations between groups of the network.

Jacobo Lobeiras Blanco

11

Resumen

La computación de propósito general en GPUs supuso un gran paso, llevando la

computación de alto rendimiento a los equipos domésticos. Lenguajes de programa-

ción de alto nivel como OpenCL y CUDA redujeron en gran medida la complejidad

de programación. Sin embargo, para poder explotar totalmente el poder computacio-

nal de las GPUs, se requieren algoritmos paralelos especializados. La complejidad

en la jerarqúıa de memoria y su arquitectura masivamente paralela hace que la

programación de GPUs sea una tarea compleja incluso para programadores experi-

mentados. Debido a la novedad, las libreŕıas de propósito general son escasas y las

versiones paralelas de los algoritmos no siempre están disponibles.

En lugar de centrarnos en la paralelización de algoritmos concretos, en esta tesis

proponemos una metodoloǵıa general aplicable a la mayoŕıa de los problemas de tipo

divide y vencerás con una estructura de mariposa que puedan formularse a través de

la representación Índice-Dı́gito. En primer lugar, se analizan los diferentes factores

que afectan al rendimiento de la arquitectura de las GPUs. A continuación, estudia-

mos varias técnicas de optimización y diseñamos una serie de bloques constructivos

modulares y reutilizables, que se emplean para crear los diferentes algoritmos. Por

último, estudiamos el equilibrio óptimo de los recursos, y usando vectores de mapeo

y operadores algebraicos ajustamos los algoritmos para las configuraciones deseadas.

A pesar del enfoque centrado en la flexibilidad y la facilidad de programación, las

implementaciones resultantes ofrecen un rendimiento muy competitivo, que llega a

superar conocidas libreŕıas recientes.

12

Resumo

A computación de propósito xeral en GPUs supuxo un gran paso, levando a

computación de alto rendemento aos equipos domésticos. Linguaxes de programa-

ción de alto nivel como OpenCL e CUDA reduciron en boa medida a complexidade

da programación. Con todo, para poder aproveitar totalmente o poder computacio-

nal das GPUs, reqúırense algoritmos paralelos especializados. A complexidade na

xerarqúıa de memoria e a súa arquitectura masivamente paralela fai que a progra-

mación de GPUs sexa unha tarefa complexa mesmo para programadores experimen-

tados. Debido á novidade, as libraŕıas de propósito xeral son escasas e as versións

paralelas dos algoritmos non sempre están dispoñibles.

En lugar de centrarnos na paralelización de algoritmos concretos, nesta tese pro-

poñemos unha metodolox́ıa xeral aplicable á maioŕıa dos problemas de tipo divide e

vencerás cunha estrutura de bolboreta que poidan formularse a través da represen-

tación Índice-Dı́xito. En primeiro lugar, anaĺızanse os diferentes factores que afectan

ao rendemento da arquitectura das GPUs. A continuación, estudamos varias técni-

cas de optimización e deseñamos unha serie de bloques construtivos modulares e

reutilizables, que se empregan para crear os diferentes algoritmos. Por último, estu-

damos o equilibrio óptimo dos recursos, e usando vectores de mapeo e operadores

alxébricos axustamos os algoritmos para as configuracións desexadas. A pesar do en-

foque centrado na flexibilidade e a facilidade de programación, as implementacións

resultantes ofrecen un rendemento moi competitivo, que chega a superar coñecidas

libraŕıas recentes.

13

Abstract

GPU computing supposed a major step forward, bringing high performance com-

puting to commodity hardware. Feature-rich parallel languages like CUDA and

OpenCL reduced the programming complexity. However, to fully take advantage of

their computing power, specialized parallel algorithms are required. Moreover, the

complex GPU memory hierarchy and highly threaded architecture makes program-

ming a difficult task even for experienced programmers. Due to the novelty of GPU

programming, common general purpose libraries are scarce and parallel versions of

the algorithms are not always readily available.

Instead of focusing in the parallelization of particular algorithms, in this the-

sis we propose a general methodology applicable to most divide-and-conquer prob-

lems with a butterfly structure which can be formulated through the Index-Digit

representation. First, we analyze the different performance factors of the GPU ar-

chitecture. Next, we study several optimization techniques and design a series of

modular and reusable building blocks, which will be used to create the different

algorithms. Finally, we study the optimal resource balance, and through a mapping

vector representation and operator algebra, we tune the algorithms for the desired

configurations. Despite the focus on programmability and flexibility, the resulting

implementations offer very competitive performance, being able to surpass other

well-known state of the art libraries.

14

Resumen de la Tesis

El hardware especializado de las GPUs modernas (Graphics Processing Units)

es capaz de ofrecer un rendimiento muy superior al de las CPUs (Central Processing

Units) convencionales en muchas aplicaciones paralelas. Las GPUs son poderosos

procesadores paralelos optimizados para hacer grandes cantidades de operaciones

aritméticas, ofreciendo un desempeño especialmente bueno en algoritmos con es-

tructura regular y código con pocos saltos o divergencia durante la ejecución. En

general, las GPUs tienen un gran número de núcleos de procesado en comparación

con las CPUs, pudiendo además asignar un cierto número de hilos a cada núcleo, con

lo que consiguen reducir los ciclos de procesamiento ociosos a través de técnicas de

multi-threading para aprovechar más eficientemente su enorme poder computacional.

Desde el punto de vista de la programabilidad, las CPUs tienen muchas ventajas

sobre las GPUs, ya que son mucho más rápidas en algoritmos secuenciales, pueden

ser programadas usando lenguajes estándar como C++ o Java, cuentan con potentes

herramientas de desarrollo y depuración, y existen APIs (Application Programming

Interface) para su programación paralelas, tales como OpenMP [10] o libreŕıas de

programación paralela como MPI [106]. La mayoŕıa de los lenguajes de programación

para GPU normalmente exponen ciertas caracteŕısticas y limitaciones del hardware,

lo que puede restringir en cierta medida la flexibilidad de los programas en la GPU

y forzar al programador a adquirir cierto conocimiento sobre la arquitectura para

poder aprovechar eficientemente los recursos disponibles.

Puesto que los lenguajes de programación de alto nivel para GPUs son relativa-

mente recientes, las herramientas de programación o libreŕıas especializadas todav́ıa

no son muy abundantes. Esto puede suponer un problema durante el desarrollo

de nuevas aplicaciones, puesto que con frecuencia es requerido implementar todos

los módulos auxiliares desde cero. También es necesario considerar que normalmen-

te no es posible portar las libreŕıas existentes directamente a las GPUs, ya que

a causa de su arquitectura especializada y su modelo más complejo de jerarqúıa

de memoria, normalmente requieren el uso de algoritmos especiales o modificados,

además de ajustar el código para evitar ciertos problemas potenciales que afectaŕıan

negativamente al rendimiento. Incluso, a causa de la rápida evolución que están ex-

perimentado las GPUs durante los últimos años, los parámetros de ejecución o los

15

algoritmo más adecuados para la arquitectura podŕıan variar de una generación a

otra. En resumen, a pesar de los avances actuales en los lenguajes y herramientas

para GPU, ser capaz de explotar eficientemente su arquitectura paralela es bastante

más complejo que la programación de procesadores multi-núcleo convencionales. El

desarrollo de algoritmos eficientes puede resultar un desaf́ıo incluso para programa-

dores experimentados.

El objetivo de esta tesis es proponer una metodoloǵıa que pueda ser usada en el

desarrollo de aplicaciones paralelas para GPU. Más concretamente, nuestro trabajo

se ha enfocado en el desarrollo de algoritmos Índice-Dı́gito para GPUs. La notación

Índice-Dı́gito propuesta permite una representación compacta de la asignación de los

datos a la jerarqúıa de memoria de la GPU, describiendo las operaciones de reorde-

namiento de la información en función de una serie de permutaciones comunes en los

d́ıgitos que determinan la posición relativa de los elementos. Usando la metodoloǵıa

propuesta es posible diseñar algoritmos tales como la FFT (Fast Fourier Transform)

o algoritmos para la resolución de sistemas tridiagonales, demostrando que nuestro

trabajo es capaz de sobrepasar el rendimiento ofrecido por otras libreŕıas eficientes

de la bibliograf́ıa.

Con el fin de alcanzar nuestro objetivo final, la investigación ha evoluciona-

do a través de cuatro etapas progresivas. Inicialmente estudiamos la paralelización

manual de dos aplicaciones: la transformada de Fourier y la simulación de aguas

superficiales. Estos trabajos fueron usados para probar diferentes estrategias de pa-

ralelización y técnicas de optimización. En segundo lugar, analizamos el impacto de

rendimiento de distintos factores en relación a la jerarqúıa de memoria. Usando el

conocimiento adquirido, en la tercera etapa desarrollamos una libreŕıa para algorit-

mos representables mediante la notación ı́ndice-d́ıgito, basándonos en un conjunto

de sencillos bloques constructivos, gracias a los cuales es posible una implementación

compacta y flexible. Finalmente, desarrollamos una metodoloǵıa para el diseño de

algoritmos basada en dos etapas, que incluye análisis de los recursos de la GPU y

manipulación de las cadenas de operadores que definen los algoritmos para ajustarlos

a la arquitectura deseada.

La tesis ha sido estructurada en seis caṕıtulos. El primero de los caṕıtulos con-

siste en una pequeña introducción a la programación de las GPUs, describiendo

las arquitecturas usadas y los lenguajes más importantes. También se presentan

16

brevemente los distintos algoritmos que serán usados a lo largo de la tesis:

La transformada rápida de Fourier [70] o FFT, es una operación vital en mu-

chas aplicaciones, como el procesado de imágenes, el filtrado de datos, distintas

técnicas de compresión con pérdidas, la resolución de ecuaciones diferenciales

parciales o la manipulación de grandes números, entre otros ejemplos.

La transformada de Fourier real [26], que se trata de una variante especializada

de la FFT diseñada para trabajar exclusivamente sobre datos reales. Esto es

útil en muchos campos como el procesado del audio digital, donde es conocido

que la señal de entrada será puramente real.

La transformada de Hartley [112] es especialmente interesante para el pro-

cesado en tiempo real de señales en dispositivos de baja potencia o recursos

limitados, como podŕıa ser el caso de los sistemas empotrados o los DSPs (Pro-

cesadores Digitales de Señales). Entre sus aplicaciones comunes [6] puede ser

usada para realizar convoluciones rápidas, correlaciones de datos o interpola-

ción de señales.

La DCT [95] o transformada discreta del coseno es un algoritmo ampliamente

usado en el ámbito de procesado multimedia y distintos algoritmos de compre-

sión. También trabaja sobre señales reales, y gracias a su capacidad de com-

pactar la enerǵıa (parte predominante de las señales para su reconstrucción)

es extensamente usada en algoritmos multimedia de compresión con pérdi-

das [5, 130,138].

La resolución de sistemas de ecuaciones tridiagonales [119]. Este tipo de sis-

temas aparece un muchos problemas cient́ıficos como la simulación de flui-

dos [139], modelos oceánicos [39], o el método ADI [14, 51] (Alternating Di-

rection Implicit) para la conducción y difusión del calor.

En el segundo caṕıtulo nos centramos en el desarrollo y optimización manual

para GPU de algoritmos conocidos. A pesar del esfuerzo que requiere diseñar de

forma totalmente manual los algoritmos, se trata de una de las formas más comunes

al portar algoritmos existentes de CPU, especialmente cuando el rendimiento es un

17

aspecto cŕıtico. Por ejemplo, el procesado de señales normalmente requiere imple-

mentaciones muy eficientes, sobre todo si se desea el procesamiento en tiempo real,

donde la latencia de respuesta es un factor cŕıtico. Por ello, a causa del coste compu-

tacional y el amplio ámbito de aplicación de los algoritmos de procesado de señales,

como por ejemplo la transformada de Fourier, han motivado que se investigue el

desarrollo de implementaciones eficientes para las diversas arquitecturas.

En concreto, en el primer caṕıtulo estudiamos el diseño de una versión opti-

mizada manualmente [55] de la FFT para las GPUs Radeon de AMD usando el

lenguaje de programación Brook+ [7]. La única implementación conocida existente

para este tipo de lenguajes de programación streaming pertenece al proyecto original

BrookGPU [46] de la universidad de Stanford (California), sin embargo su rendi-

miento en la GPU era ligeramente inferior al obtenido por algoritmos recientes de

CPU. En la segunda parte del caṕıtulo estudiamos la implementación de un simula-

dor de aguas superficiales con contaminante [61,86,87] para GPU usando el lenguaje

de programación CUDA para tarjetas NVIDIA. La simulación de este tipo de pro-

blemas requiere much́ısima capacidad de cómputo, de hecho, la simulación detallada

de peŕıodos largos de tiempo sobre grandes superficies podŕıa necesitar varios d́ıas o

incluso semanas para completarse. En el caṕıtulo se analizan en profundidad varias

estrategias de implementación, explicando sus ventajes, desventajas y comparan-

do su eficiencia relativa. Los resultados obtenidos son comparados con una versión

paralela desarrollada con OpenMP optimizada para procesadores multinúcleo.

El tercer caṕıtulo se centra en el análisis de la arquitectura de las GPUs con el fin

de proporcionar conocimiento que ayude a comprender y estimar con más precisión

distintos factores que afectan al rendimiento [56,57]. El análisis se centra principal-

mente en la jerarqúıa de memoria, estudiando el rendimiento de la memoria global,

la memoria de texturas y la memoria compartida en diferentes escenarios. Cuando

se procesan grandes problemas en la GPU, muchos algoritmos están principalmente

limitados por el ancho de banda de la memoria, por lo que en dichos casos es espe-

cialmente importante hacer un uso eficiente, optimizando el empleo de la memoria

caché en la medida de lo posible. La inclusión de la caché de propósito general L2

en la arquitectura de las GPUs fue un importante avance, aliviando una serie de

restricciones que afectaban al acceso eficiente de los datos. No obstante, incluso esta

mejora todav́ıa no es suficiente para ocultar totalmente los requisitos especiales de

18

localidad espacial por parte de los hilos de las GPUs para evitar malgastar ancho

de banda durante los accesos. En este caṕıtulo hemos usado la FFT como algoritmo

para las pruebas, ya que a causa de sus requisitos de ancho de banda, flexibilidad en

los patrones de acceso y distribución de los datos, supone una herramienta adecuada

para el análisis de rendimiento y el estudio de las distintas estrategias de implemen-

tación. El conocimiento adquirido será usado en caṕıtulos posteriores para ajustar

el código a las caracteŕısticas de la arquitectura y diseñar implementaciones más

eficientes.

El cuarto caṕıtulo tiene como objetivo principal el desarrollo de una libreŕıa

basada en una serie de funciones generales que serán los bloques constructivos de los

distintos algoritmos [58], lo que reduce en gran medida la complejidad del código y el

tiempo de desarrollo. Más espećıficamente, el diseño de estos bloques constructivos se

basa en el uso de templates de C++ [24]. Esta estrategia de implementación basada

en templates ha demostrado ser bastante útil en el desarrollo de libreŕıas para GPU,

por ejemplo en el caso de Thrust [96] o Bolt [11], otorgando a los programadores

herramientas poderosas y flexibles para la implementación de métodos genéricos

aplicables en múltiples contextos y trabajando con distintos tipos de dato. Varias

técnicas son usadas para generar código estático siempre que sea posible, que puede

ser optimizado de forma más eficiente por los compiladores de GPU. Adicionalmente,

las funciones de la libreŕıa propuesta pueden ser ajustadas en función de una serie

de factores, como la cantidad de registros, el tamaño de la memoria compartida

o el nivel de paralelismo deseado. La libreŕıa desarrollada en este caṕıtulo soporta

varios algoritmos conocidos y ampliamente usados, como son la FFT (tanto en su

versión real como compleja), la transformada de Hartley, la transformada del coseno

o DCT, e incluso la resolución de sistemas de ecuaciones tridiagonales. Aunque el

enfoque principal de nuestra implementación es la modularidad y la flexibilidad de

los algoritmos resultantes, ofrece rendimiento competitivo en comparación con otras

libreŕıas de GPU reciente y ampliamente extendidas. El diseño de los algoritmos

basado en templates y la estrategia de optimización aplicada son bastante generales,

por lo que puede ser reutilizados en otros trabajos y contextos relacionados que

puedan ser representados usando un patrón de comunicación tipo mariposa.

En el quinto caṕıtulo usamos todo el conocimiento previamente adquirido para

presentar una metodoloǵıa basada en dos etapas de desarrollo, que es aplicable para

19

aquellos algoritmos que puedan ser expresados mediante permutaciones en la repre-

sentación ı́ndice-d́ıgito. En la primera etapa se hace un análisis de recursos para

obtienen una serie de factores que caracterizan el comportamiento de la GPU con

respecto al rendimiento. En la segunda etapa, se usa la manipulación algebraica de

cadenas de operadores [30] combinada con una representación de datos basada en

un vector de mapeo, que permite el ajuste de las distribuciones de los datos en la

jerarqúıa de memoria de la GPU, aśı como la distribución de los recursos conforme

al análisis de recursos realizado en la primera etapa. Las cadenas de operadores per-

miten representar de forma compacta las secuencias ejecutadas por los algoritmos, y

gracias a su manipulación algebraica conforme a una serie de propiedades descritas,

es posible diseñar códigos altamente modulares para GPU, ajustados para la arqui-

tectura concreta, lo que permite obtener una gran eficiencia en el uso de los recursos

hardware disponibles. Nuevamente, nuestro diseño se basa en la programación usan-

do templates de C++ [104], por lo que muchas operaciones pueden ser realizadas en

tiempo de compilación, reduciendo el coste de computación asociado a la vez que

se minimiza la replicación de código. En concreto, nuestra metodoloǵıa fue aplicada

para el desarrollo de dos algoritmos Índice-Dı́gito para tarjetas con soporte CUDA;

un algoritmo para el cálculo de la transformada de Fourier (llamado ID-FFT) y un

resolutor de sistemas de ecuaciones tridiagonales (llamado ID-TS). Los resultados

obtenidos demuestran que con esta metodoloǵıa es posible sobrepasar el rendimien-

to de las libreŕıas CUFFT [100] y CUSPARSE [101] de NVIDIA, aśı como otras

propuestas de la bibliograf́ıa conocidas por su eficiencia.

Finalmente, en el sexto caṕıtulo se presentan las conclusiones de nuestro traba-

jo, detallando las contribuciones y logros de mayor interés. También se comentan

posibles ĺıneas de investigación y trabajos futuros relacionados con la tesis. Por últi-

mo, incluimos un listado de las publicaciones de revista y art́ıculos presentados en

congresos derivados del trabajo presentado en esta tesis.

Contents

1. Introduction to general purpose GPU programming 33

1.1. GPU parallel programming . 35

1.1.1. General-purpose computing on Radeon GPUs 35

1.1.2. General-purpose computing on GeForce GPUs 37

1.1.3. GPU programming languages 44

1.2. Signal processing algorithms on GPU architectures 49

1.2.1. Fourier Transform . 50

1.2.2. Real Fourier Transform . 54

1.2.3. Hartley Transform . 55

1.2.4. Discrete Cosine Transform . 57

1.3. Tridiagonal equation system resolution on GPUs 58

1.3.1. The Wang and Mou tridiagonal algorithm 60

1.4. Work structure summary . 63

2. Efficient hand-tuned implementations on a GPU 67

2.1. FFT processing on a streaming architecture using Brook+ 68

2.1.1. FFT implementation using Brook+ 68

2.1.1.1. Blending/fusion of FFT stages 68

21

22 CONTENTS

2.1.1.2. FFT mapping techniques 70

2.1.1.3. Scheduling layouts 72

2.1.1.4. Generic performance optimizations 73

2.1.2. Experimental results . 75

2.1.2.1. Optimal streaming strategy 77

2.1.2.2. Stage fusion impact 78

2.1.3. Performance comparison with previous work 79

2.2. Shallow Water Simulation . 81

2.2.1. Coupled model: 2D shallow water equations with pollutant

transport . 83

2.2.2. Finite volume numerical scheme. 86

2.2.2.1. Wet-dry fronts . 90

2.2.3. Naive GPU solution . 92

2.2.4. Optimized GPU solution . 95

2.2.4.1. Ghost cell decoupling solution 95

2.2.4.2. Two-phase reduction 99

2.2.4.3. Usage of the texture memory 100

2.2.5. Experimental results . 100

2.2.5.1. Simulator accuracy: Comparison with a reference

CPU implementation 101

2.2.5.2. Simulator behavior: synthetic test on Rı́a de Arousa

(Spain) . 103

2.2.5.3. Isolated impact of the improvements applied 106

3. Influence of memory access patterns to small-scale FFT 109

3.1. FFT benchmarks using CUDA . 109

CONTENTS 23

3.1.1. Storage type for thread data 114

3.1.2. Storage type for input data 115

3.1.3. Memory access pattern . 115

3.2. Experimental results . 116

3.2.1. Cache and ECC configuration 117

3.2.2. Registers vs Shared memory 118

3.2.3. Global memory vs Texture memory 120

3.2.4. Coalescent memory access vs Non-coalescent 122

3.2.5. Comparison with other state-of-the-art implementations . . . 125

4. BPLG: A tuned butterfly processing library for GPU 127

4.1. BPLG basic functions . 128

4.1.1. Reordering blocks . 129

4.1.2. Computing blocks . 131

4.2. Algorithm design based on BPLG . 134

4.2.1. Signal processing transforms 135

4.2.2. Tridiagonal system algorithm 137

4.3. Obtaining optimal parallelism . 140

4.3.1. Streaming Multiprocessor (SM) parallelism 141

4.3.2. Batch execution in order to increase parallelism 142

4.3.3. Simultaneous block processing optimization 142

4.4. Experimental results . 143

4.4.1. Orthogonal signal transforms performance 144

4.4.1.1. Balancing warp and block parallelism 145

4.4.1.2. Complex FFT performance 146

24 CONTENTS

4.4.1.3. Real FFT performance 147

4.4.1.4. Discrete Cosine Transform performance 148

4.4.1.5. Hartley Transform performance 149

4.4.2. Tridiagonal Equations System performance analysis 150

4.4.2.1. Balancing warp and block parallelism 151

4.4.2.2. Tridiagonal system resolution performance 152

5. Efficient Index-Digit Algorithms Design for GPU Architectures 155

5.1. A 2-stage methodology for efficient index-digit algorithms design . . . 156

5.1.1. Applying Mapping Vector Techniques to GPUs 157

5.1.2. Index-digit permutations . 159

5.1.3. Operator string algebraic properties 161

5.1.4. Optimized algorithm mapping using operator strings 163

5.2. GPU resources utilization analysis stage 166

5.2.1. Resource utilization analysis for FFT 169

5.2.2. Resource utilization analysis for tridiagonal systems 171

5.3. Operators string manipulation stage 173

5.3.1. The FFT Case . 173

5.3.2. The Tridiagonal System case 177

5.4. Algorithm implementation strategies and optimizations 179

5.4.1. Implementation of operators 179

5.4.2. GPU memory access optimization examples 180

5.4.3. Obtaining the code from the operator strings 183

5.5. Experimental results . 186

5.5.1. Complex FFT . 186

CONTENTS 25

5.5.2. Tridiagonal Equation System 190

6. Conclusions and Future Work 195

6.1. Future work . 198

6.2. Publications from the Thesis . 201

References 204

List of Tables

1.1. Fermi GPUs used in the thesis . 42

2.1. L1 norm at time T = 1 s for several meshes. The reference solution

is CPU sequential . 103

2.2. Execution times (in seconds) and speedups 106

2.3. Execution times (in seconds) and speedups after applying each im-

provement separately . 107

3.1. Compiler information for the FFT kernel (Fermi CUDA cap. 2.0) . . 113

4.1. Parameter configuration for the complex FFT algorithm 143

4.2. Description of the test platforms . 145

4.3. Impact of the task number for the FFT using Radix-2, Radix-4 and

Radix-8 (Platform 1) . 146

4.4. Impact of the task number for the FFT using Radix-2, Radix-4 and

Radix-8 (Platform 2) . 147

4.5. Impact of the task number for tridiagonal systems using Radix-2 and

Radix-4 for BPLG-TS (Platform 2) 152

5.1. Resource factors table depending on warps/block 169

5.2. Description of the test platforms . 187

27

28 LIST OF TABLES

5.3. Complex FFT kernel performance and profiler analysis for the differ-

ent versions (Platform 1) . 188

5.4. Tridiagonal system performance (Platform 2) 191

List of Figures

1.1. Evergreen architecture used in the Radeon 5870 38

1.2. Tesla architecture used in the GeForce 280 40

1.3. Fermi architecture used in the GeForce 480 41

1.4. Kepler architecture used in the GeForce Titan 43

1.5. Memory hierarchy used by the CUDA programming model 48

1.6. Examples of FFT algorithms for radix-2 and N=16 53

1.7. Detail of the butterfly operator for the Wang and Mou algorithm . . 61

1.8. Example of the Wang and Mou algorithm for a system with 4 equations 62

2.1. Butterfly blending/fusion in Brook+, N = 16 70

2.2. Brook+ mapping techniques. 71

2.3. Optimal scheduling layout . 74

2.4. FFT batch data storage in 2D texture 74

2.5. FFT optimized code example . 76

2.6. Butterfly fusion strategy analysis . 78

2.7. Butterfly fusion performance . 79

2.8. Comparison with CUFFT and SPIRAL 80

2.9. Sketch: pollutant transport. 85

29

30 LIST OF FIGURES

2.10. Finite volume: structured mesh. 87

2.11. Naive algorithm . 93

2.12. Recomputation-based solution on a multithreading system 94

2.13. Optimized GPU solution . 96

2.14. The two phases of the Ghost cell decoupling solution 98

2.15. Diagram of the academic 2D test used for verification. 102

2.16. Evolution of the academic 2D test used for verification. 103

2.17. Evolution of the Ŕıa de Arousa simulation. 104

3.1. FFT kernel for N=8 . 111

3.2. General kernel template . 112

3.3. Test configuration . 114

3.4. Memory access patterns . 116

3.5. 48L1 vs 16L1 cache configuration and ECC performance (T2050) . . 118

3.6. RGC vs SGC performance (GF480 & S2050) 119

3.7. RGC vs SGC performance (GF480 & GF280) 119

3.8. RGC vs RTC performance (GF480 & S2050) 121

3.9. RGC vs RTC performance (GF480 & GF280) 121

3.10. RGC vs RGN performance (GF480 & S2050) 123

3.11. RGC vs RGN performance (GF480 & GF280) 123

3.12. SGN vs STN performance (GF480 & S2050) 124

3.13. SGN vs STN performance (GF480 & GF280) 124

3.14. Comparison with other solutions . 126

4.1. Classification and module dependences of the building blocks involved

in the library. 129

LIST OF FIGURES 31

4.2. Template code for the reordering building blocks used by the butterfly

transform. 130

4.3. Template code for computing building blocks used by the signal trans-

form algorithms. 132

4.4. Specialized template code for the tridiagonal solver algorithm. 134

4.5. Kernel code for the DCT algorithm 136

4.6. Kernel code for the tridiagonal algorithm 138

4.7. Algorithm performance for the complex FFT algorithm 148

4.8. Algorithm performance for the real FFT algorithm 149

4.9. Algorithm performance for the Discrete Cosine Transform algorithm . 150

4.10. Algorithm performance for the Hartley Transform algorithm 151

4.11. Algorithm performance for tridiagonal equation system resolution . . 153

5.1. Input data mapping on the GPU resources where r = 2, n = 4, s = 9

and p = 4 . 159

5.2. Simultaneous hardware blocks per SM in Fermi architecture depend-

ing on registers per thread . 167

5.3. Simultaneous hardware blocks per SM in Fermi architecture depend-

ing on the shared memory bytes per thread 168

5.4. Data exchange, from shared memory directly to registers 181

5.5. Problematic global and shared memory access pattern for n = l =

p = r = 2, s = 4 . 183

5.6. Coalescent and bank conflict-free access pattern for n = l = p = r =

2, s = 4 . 184

5.7. Example of pseudocode used for the 3D version of the algorithm . . . 185

5.8. Performance comparison of Complex ID-FFT proposal 189

5.9. Comparison of performance of ID-TS proposal 192

32 LIST OF FIGURES

6.1. Performance comparison: BPLG-cFFT vs ID-FFT 199

6.2. Performance comparison: BPLG-TS vs ID-TS 200

Chapter 1

Introduction to general purpose

GPU programming

The specialized hardware design of modern GPUs (Graphics Processing Units)

can perform much faster than normal CPUs (Central Processing Units) in many gen-

eral purpose parallel applications. They are powerful parallel processors optimized

for intensive arithmetic operations, performing specially well in regular algorithms

with reduced flow control. In general, GPUs feature a large number of cores in

comparison with CPUs, moreover, they can map a certain number of threads to

each core, reducing idle cycles through multi-threading and exploiting even more

effectively their huge computational power.

From a programmability standpoint CPUs have many advantages over GPUs,

as they are much faster in serial algorithms, they can be programmed using stan-

dard languages like C++ or Java, there are very powerful tools for software devel-

opment and debugging, and there are well known parallel programming APIs like

OpenMP [10] or parallel programming libraries like MPI [106]. Most GPU program-

ming languages often expose hardware features or limitations, which may restrict

the flexibility of GPU programs and force the programmer to have some knowledge

about the hardware to efficiently exploit the GPU resources.

As high level GPU languages are quite recent, specialized programming tools and

libraries are still quite scarce. This poses a problem when developing new applica-

tions because it is required to write all necessary auxiliary modules from scratch.

33

34 Chapter 1. Introduction to general purpose GPU programming

Moreover, it is not possible to port the existing libraries directly to GPUs, because

their special architecture and more complex memory hierarchy usually requires spe-

cial or modified algorithms, or at least to tweak the code to avoid some potential

performance issues. Due to the fast GPU evolution, the execution parameters or

the most suited algorithm may even vary from one hardware generation to another.

In summary, despite the current advances in GPU languages and tools, taking ad-

vantage of their parallel architecture is still far more complex than programming

standard multi-core CPUs. Developing efficient algorithms may be a challenge even

for experienced programmers.

The aim of this thesis is to propose a tuning methodology that can be used in

the development of GPU parallel applications. Specifically, our work has followed

the path towards the development of efficient Index-Digit algorithms for CUDA

GPUs. The Index-Digit notation allows a compact representation of the data map-

ping, describing the reordering operations according to common permutations in

the digits of each element’s index, which symbolize the relative position in the data

arrays. Using the proposed methodology is possible to design algorithms such as

the FFT (Fast Fourier Transform) or a tridiagonal solver algorithm, showing that

our work is able to surpass the performance of NVIDIA’s libraries and other effi-

cient proposals from the bibliography. To accomplish our objective, the research

work has passed four distinct progressive stages. Initially, we studied the manual

implementation of two applications, the Fourier transform and the parallelization

of a shallow water simulator with pollutant transport. This was used to test differ-

ent parallelization strategies and optimization techniques. Second, we analyzed the

performance impact of different factors related to the memory hierarchy. Using the

gathered knowledge, in the third stage we developed a library for index-digit algo-

rithms based on a set of simple building blocks that enable a compact and flexible

implementation. Finally, a tuning methodology based on 2-stages, resource analysis

and operator string manipulation, was developed.

The remaining of this chapter is structured as follows: In Section 1.1 we will

make a small introduction to general purpose computing on GPUs, explaining the

programming languages and the GPU architectures used in this thesis. Next, Sec-

tion 1.2 will do a brief description of the different signal transforms and in Section 1.3

we will explain some basic concepts about the resolution of tridiagonal systems. The

1.1 GPU parallel programming 35

described algorithms will be used several times during the work, therefore it is impor-

tant to provide some notions about their properties and the associated terminology.

Finally, in Section 1.4 we will describe the structure of the thesis, summarizing the

different chapters and their objectives.

1.1. GPU parallel programming

Speed of computer processors has quickly increased over time thanks to the re-

duction of transistor size and evolution of manufacturing technology. Unfortunately,

due to thermal constraints and signal integrity issues among other issues, these speed

gains have stagnated. To overcome this limit and further improve performance, the

focus has changed from serial to parallel processing. Thanks to the interest on com-

puter graphics, many rendering tasks were offloaded to a dedicated processor called

the GPU.

GPUs are optimized for parallel processing of a function or kernel over a domain

of elements, being able to efficiently execute a large number of threads in a trans-

parent way, and can hide their own instruction latency by using time multiplexing

techniques. Furthermore, GPUs hide memory access latencies changing the active

threads each time a memory stall occurs.

Despite the advantage in computing power and bandwidth, not all kind of tasks

are suited for the GPU. For instance, when working with inherently sequential algo-

rithms, programs with very irregular memory access patterns, dynamic algorithms,

complex data structures or software that require adaptive refinement, CPUs are

generally more efficient, as they have comparatively high working frequencies and

are capable of extracting a certain instruction parallelism at runtime.

Following we will describe the architecture of the GPUs used in this work.

1.1.1. General-purpose computing on Radeon GPUs

36 Chapter 1. Introduction to general purpose GPU programming

In 2007 AMD (back then still ATI) introduced their first discrete GPUs with

unified shader architecture. The basic processing units are pipelined ALUs, each

five of them are grouped in a SP (stream processor) to handle VLIW (Very Long

Instruction Word) instructions. One of those units is more complex and can handle

double precision and transcendental operations.

The VLIW design allowed the GPU to pack lots of these simple processing

units in a small space, easily surpassing the TFLOP barrier. Each sixteen SPs

form a SIMD module: these modules are the basic processing blocks of the GPU

and support multi-threading to hide latencies due to memory accesses and stream

operations. All the SPs in a SIMD module share a common register file (relatively

large compared to normal CPUs) and must execute the same code path, thus the

execution of conditional code or loops is serialized. Each SIMD has associated a

texture unit and small texture cache. Later, a small memory called LDS (local data

share) was added to each SIMD module, allowing its threads to efficiently exchange

data. Regarding the memory, with the exception of some integrated models which

rely only on system memory, the GPU board usually has several high speed but

high latency GDDR memory chips connected to a wide memory bus. This is the

main memory of the GPU, where textures, models or normal data will be stored. It

is also possible to access the system memory through the PCI-Express bus, however,

it can be up to an order of magnitude slower.

Depending on the model, each GPU may be composed by one or more SIMD

modules. In some cases a few modules may be disabled to improve chip yields, spe-

cially in less expensive products. The explained architecture remained quite similar

until the GCN (Graphics Core Next) generation presented in 2012. GCN drops the

VLIW configuration in favor of a RISC SIMD architecture coupled with a scalar

processor. The new architecture is more oriented for general purpose computing

and has better resource utilization, specially in those cases where the compiler was

not able to obtain independent instructions to fill the VLIW slots.

From a programming perspective, threads are executed in groups called wave-

fronts (currently each wavefront has 64 threads). Due to the internal design of the

SIMD modules, the threads in each wavefront share the same program counter. This

greatly reduces branch control hardware, but divergent code execution is serialized,

which may lead to inefficient execution where some of the threads in the wavefront

1.1 GPU parallel programming 37

remain idle. The wavefronts are grouped into blocks and each block can be com-

posed of up to 4 wavefronts (256 threads). The execution of a block cannot finalize

until the slower thread has finished. The main memory of the GPU can be accessed

directly or through the texture unit, which provides some additional functions and

improved speed when 2D locality is exploited.

In the tests programmed using the Brook+ language we have used a Radeon

5870 GPU as the hardware platform. Figure 1.1 presents a basic diagram of the

Radeon 5870, which is based on the Evergreen architecture. Specifically, Radeon

5870 has 20 SIMD modules, each module has 16 SPs and each SP is composed

by 5 processing elements. In total, each chip has 1600 scalar processing elements

providing a maximum theoretical computational power of 2.7 TFLOPS in single

precision or 0.54 TFLOPS in double precision. Each SIMD module has associated

a 256 KB register file, 8 KB of L1 texture cache and 32 KB of locally shared

memory called LDS to enable collaborative work among its threads. The whole

chip has another 512 KB of L2 texture cache and 64 KB of globally shared memory

called GDS. The SIMD modules do not access the memory directly, memory accesses

are managed by dedicated hardware units instead. The Radeon 5870 has a 256-bit

wide memory bus (4 × 64 bit memory controllers) using GDDR5 memory which is

able to provide up to 153 GB/s of bandwidth.

1.1.2. General-purpose computing on GeForce GPUs

At the end of 2006 NVIDIA presented their first GPUs based on a unified shader

architecture. Previously the GPUs used separate resources for the pixel and vertex

shaders. The specialization of the resources was more efficient and required less

area, but in case of load imbalance when rendering the scene, some of the resources

will remain idle. With the unified shader architecture the GPU just has a single

type of generic processors called SPs (Streaming Processors), which are dynamically

assigned to the required workload. In contrast to the Radeon architecture and

previous NVIDIA GPUs which used vector units, the SPs are small scalar processors.

The SPs are grouped in SMs (Streaming Multiprocessors), which share a control

38 Chapter 1. Introduction to general purpose GPU programming

Figure 1.1: Evergreen architecture used in the Radeon 5870

unit and execute instructions in a SIMD (Single Instruction Multiple Data) fashion.

Each SM also has a certain number of SFUs (Special Function Units) to handle

more complex operations like transcendental mathematical functions. The SMs are

grouped in processing clusters, and the number of SMs and SPs per cluster can vary

for each specific model. The total amount of clusters also depends on the particular

GPU.

Regarding the memory subsystem, each GPU has a certain amount of memory

mounted in the same board, called the global memory. High-end GPUs usually

have a very wide memory bus, which combined with fast memory provides high

bandwidth. Nonetheless, this memory has an elevated latency that has to be com-

pensated by using a large number of threads, so the GPU can switch the active

group of threads when a memory stall occurs. GPUs commonly store the texture

data in the global memory and access it using an spatially coherent access pattern.

1.1 GPU parallel programming 39

To render smooth graphics they sample textures using data spatial interpolation

and decompression on the flight. For this purpose, GPUs have dedicated hardware

called texture units with a small texture cache to improve performance. GPUs also

have a small constant cache, which is a fast on-die memory that can be read by all

the SPs, however it cannot be modified by the GPU kernels, only by the CPU. This

constant memory is normally used to store small arrays like filter data, thus saving

global memory bandwidth. Inside each SM there is a set of common registers and

a small amount of shared memory. Both are dynamically allocated based on the

kernel requirements, and depending on the amount of resources required by each

block, the SM may be able to execute several blocks simultaneously. The registers

are private to each thread and offer the highest effective bandwidth. The shared

memory can be accessed by all the threads within the same block, thus it can be

used to communicate data among them.

The GPU is connected to the system CPU through the PCI-Express bus, which

does not provide much bandwidth. Thus, memory transfers are expensive and should

be minimized. Although the GPU is able to directly access CPU memory from

kernels doing so would heavily reduce the maximum bandwidth, which for many

applications already is a performance bottleneck. A more detailed description of

NVIDIA’s GPU architecture can be found in [25].

Tesla architecture

The first tests using the CUDA SDK in this thesis were performed in a GeForce

280 GPU. This model was launched in 2008 and although the basic architecture

remained unchanged from the previous Tesla generation, it added some features like

double precision and better atomic instruction support. Memory coalescence rules

were somewhat relaxed with respect to the initial Tesla generation. Now it was

easier to obtain higher bandwidth in unaligned or permuted memory access without

having to perform data rearrangements in shared memory.

Figure 1.2 presents a diagram of the Tesla architecture used by NVIDIA in the

GeForce 280 GPU. This particular model has 10 processing clusters, each one with 3

SMs (30 SMs in total) and 24 KB of texture cache. Inside each SM there are 8 SPs

and 2 SFUs. Each SM also has a 64 KB register file (16384 32-bit registers), 8 KB of

40 Chapter 1. Introduction to general purpose GPU programming

Figure 1.2: Tesla architecture used in the GeForce 280

constant cache and 16 KB of shared memory (distributed in 16 banks). The shared

memory is a user-managed cache that can be used to store or exchange data within

each block, specially useful to distribute work among different threads in computing

applications. The whole chip has 256 KB of L2 texture cache distributed among

eight memory controllers. The GeForce 280 has 1 GB of GDDR3 memory on a 512-

bit wide memory bus, which provides a maximum bandwidth of 141.7 GB/s. Its

theoretical computing power is rated by NVIDIA at 933 GFlops in single precision

or 78 GFlops in double precision.

Fermi architecture

The Fermi architecture was launched in 2010 and included many improvements

that supposed a big step forward in performance (like larger shared memory or the

addition of global memory cache) and programmability (like printf inside kernels,

unified virtual address space for simpler pointers, or stack support for dynamic

1.1 GPU parallel programming 41

Figure 1.3: Fermi architecture used in the GeForce 480

memory allocation and recursion). In this thesis we will use three GPUs based

on the Fermi architecture, the GeForce 480 and the GeForce 580 oriented for the

consumer market, and the Tesla T2050 oriented for the professional market. The

architecture is basically the same, however they differ in the memory bandwidth,

amount of disabled multiprocessors and special capabilities, like ECC support and

double precision performance in the professional line.

Figure 1.3 presents a diagram of the Fermi architecture used in the three named

GPUs. It is quite similar to the previous Tesla architecture, but the amount of

resources was significantly increased. The GPU has 4 processing clusters or GPCs,

with 4 SMs per cluster and 32 SPs per SM. Thus, the GeForce 580 has 4×4×32 =

512 SPs in total, however only 480 (15 SMs) are enabled in the case of the GeForce

42 Chapter 1. Introduction to general purpose GPU programming

Table 1.1: Fermi GPUs used in the thesis
Tesla S2050 GeForce 480 GeForce 580

Enabled SMs 14 15 16

GFLOPs (single) 1030 1345 1581

GFLOPs (double) 515 168 198

Bandwidth (MB/s) 148 177 192

480 and 448 (14 SMs) in the case of the Tesla S2050. Each SM also has 4 SFUs, a

128 KB register file (32768 registers of 32-bit), 64 KB of uniform cache and 64 KB

of additional cache, which is distributed in 32 banks and can be partially configured

as L1 cache or shared memory. The L2 texture cache is increased to 768 KB and

distributed in six GDDR5 memory controllers (384-bit memory bus). Table 1.1

summarizes the theoretical computing power and maximum memory bandwidth of

these three cards.

Compared to the previous Tesla architecture used by NVIDIA, Fermi has a more

complex memory hierarchy with the addition of a small L1 cache to each SM and

a L2 cache to each memory controller. In contrast to the texture cache used in

the Tesla architecture, the global memory cache is now enabled by default for com-

puting tasks. This further reduces coalescence issues and greatly improves effective

bandwidth in many scenarios, where data is read from cache without wasting global

memory bandwidth. Local memory is also cached, which improves performance in

cases like register spilling or dynamic indexing.

Kepler architecture

The Kepler architecture was launched in 2012. It has many performance and

power efficiency improvements, however it does not introduce as many new features

as the Fermi architecture. The most significant additions are the shuffle instructions

(to exchange data in a warp without using shared memory) and dynamic parallelism

(to launch new kernels from a kernel). There are also other features reserved for the

professional product line, like Hyper-Q (which enables multiple independent work

queues) or GPUDirect (which allows to perform direct data transfers with other

devices with minimal impact on the system CPU).

Regarding the architecture it remains quite similar compared to Fermi, but with

1.1 GPU parallel programming 43

Figure 1.4: Kepler architecture used in the GeForce Titan

much more execution resources. In fact, most changes are at the SM level. Figure 1.4

presents a diagram of the new processing clusters used on the GeForce Titan, which

is the Kepler GPU that we will use in some experiments of this thesis. As can

be observed in the figure, the GPU now has 192 SPs and 32 SFUs in each SM.

This does not directly translate in a 6× benefit as one may expect, because the

instruction scheduler was simplified and the SPs in Fermi operated at twice the

frequency. However, the GeForce Titan has 14 of this SMs, 192× 14 = 2688 SPs in

total, which is more than five times the amount of the GeForce 580 and can provide

up to 4500 GFLOPs in single precision or 1270 GFLOPs in double precision. The

L2 global cache was increased to 1536 KB, and the GDDR5 memory speed was

upgraded, providing 288 GB/s over a 384-bit memory bus.

Many supercomputers of the TOP500 [128] integrate NVIDIA K20x GPUs based

on the Kepler architecture, like the Titan [102] (Oak Ridge National Laboratory),

44 Chapter 1. Introduction to general purpose GPU programming

the Piz Daint [122] (Swiss National Supercomputing Centre) or the TSUBAME

2.5 [40] (Tokyo Institute of Technology).

1.1.3. GPU programming languages

The first general programming languages that appeared for GPUs, for instance

Cg [34], were graphics oriented APIs that required low level code, exposing graphics

pipeline structure and limitations directly to the programmer. Despite the advances

in the GPU architecture for general purpose computing and the evolution of the

compilers, GPU programming is still complex, as it requires special languages and

dedicated algorithms to exploit the high degree of fine-grained and coarse-grained

parallelism.

Recent efforts to standardize the programming of modern GPUs have led to

the creation of NVIDIA’s CUDA [98], DirectCompute [13] for DirectX applications,

C++ AMP [67], an open specification from Microsoft, and OpenCL [69], a standard

programming language for heterogeneous computing. There are also other inter-

esting proposals for high-level GPU programming, like OpenACC [103], which is

mainly based on code annotated with directives and can target multiple devices,

HMPP [109], which also supports several devices and provides a superset of Ope-

nACC with some additional features or HPL [88], a high level C++ framework that

generates OpenCL code. Other interesting approaches include ATI’s Brook+ [7],

based on a stream programming model, hiCUDA [123], an OpenMP -like extension of

CUDA based on compiler directives, or BSGP [107], based on the bulk synchronous

parallel paradigm that makes extensive use of parallel regions and synchronization

constructs. Other related works include rCUDA [52], an interesting framework for

remote CUDA execution and UPC (Unified Parallel C) for GPU clusters [71].

The programs executed by the GPU are usually called kernels (in general purpose

computing) or shaders (in graphics). The execution of the each kernel is configured

by the programmer and can be distributed among several blocks. However, one

hardware limitation is that these blocks cannot directly communicate or synchro-

nize during the kernel execution. Even if more than one block is allowed to write

the same memory address, doing so will result in undefined behavior unless the

kernel is finalized so the memory is consistent for the next kernel launch. Atomic

1.1 GPU parallel programming 45

instructions may be supported by the hardware, but due to the threading model

they cannot be used to synchronize different blocks and its abuse will result in very

poor performance. Nonetheless, threads within each block can exchange data using

a small shared memory, enabling the collaboration in the same task.

Following we will explain with more detail Brook+, OpenCL and CUDA. They

are high-level GPU programming languages designed to address a wide range of

problems and reduce the development effort, but with different features and philos-

ophy.

Brook+

Brook+ is a C language extension for AMD GPUs that exposes a stream pro-

gramming model. In this paradigm the same function (called the streaming kernel)

is applied to a set of inputs (input streams) in parallel, producing another set of out-

puts (output streams). In particular, a thread is created for each output element.

The streaming kernel is allowed to read several locations of the input streams but it

can only write to one location of each output stream. Thus, the programmer is re-

sponsible for writing streaming kernels that are free of race conditions (there should

be no data dependencies between the inputs and the outputs of a given kernel).

There are also random access streams, but this kind of access reduces performance,

specially in random write streams. Brook+ natively supports reduction operations,

for example to obtain the maximum or the sum of a vector. The language also

supports short SIMD vectors, like float4, used to operate on several elements of the

same data type at once. Brook+ uses texture memory in order to access input data

through GPU texture units, a dedicated hardware which provides cached memory

access, good 2D locality or memory access clamping. Although Brook+ latest ver-

sion (v1.4) permits the utilization of shared memory, it is a beta feature and in our

tests it resulted in poor performance or even incorrect results.

Although AMD initially promoted Brook+, several years later after its introduc-

tion AMD switched to promote OpenCL as their primary programming language

for Radeon GPUs. OpenCL more advanced features and better suitability for AMD

APU processors that combine a CPU and a GPU were the reason for Brook+

abandonment.

46 Chapter 1. Introduction to general purpose GPU programming

OpenCL

OpenCL is a standard language for heterogeneous computing backed by many

important manufacturers. One important advantage is that it can be used in other

devices than GPUs, for instance, in conventional CPUs (where it can take advantage

of multi-core CPUs and SIMD instructions) or even in other accelerator devices like

FPGAs. Nonetheless, even if thanks to the portability of OpenCL the same code

can run on several devices, it is highly recommended to tune the kernels for the

target hardware platform. Some devices offer custom extensions to expose additional

functionality supported by the hardware.

AMD was one of the early OpenCL adopters, enabling programmers to take

advantage of GPUs and multi-core CPUs to accelerate multimedia and computing

applications. One interesting project by AMD is the development of APUs (Ac-

celerated Processing Units), which are the unification of the CPU and the GPU

in a single product. This is an important milestone because the impact of memory

transfers is eliminated, therefore enabling the acceleration of many applications that

otherwise would not result in any performance benefit. Moreover, AMD’s commit-

ment to their OpenCL implementation brought some features still not supported in

the current standard, like C++ template programming and static object support.

NVIDIA also was one of the early OpenCL adopters, which is supported in all

GPUs based on the Tesla architecture or newer. Unfortunately, many features of

the recent GPU generations are not exposed in OpenCL, for instance printf support,

shuffle instructions or dynamic parallelism. Moreover, currently only OpenCL 1.1

is supported. Profiling and debugging tools are also far behind CUDA, which is

the main language that NVIDIA is trying to push for high performance computing

applications in their GPUs.

CUDA

Although current NVIDIA GPUs support OpenCL, CUDA is usually the pre-

ferred language because it has more advanced features and it is updated regularly

by NVIDIA. Moreover, CUDA runtime management code is usually simpler and im-

plementations typically outperform OpenCL. Despite the fact that the language is

1.1 GPU parallel programming 47

only supported by NVIDIA GPUs, it has been very successful for high performance

computing applications. One of the most interesting features from the programma-

bility standpoint is that CUDA offers full C++ support. Template programming

is specially interesting and will be used extensively in this work to obtain easily

configurable algorithms with very compact code.

More recently, NVIDIA also added support for advanced features like shuffle

instructions, dynamic parallelism and unified memory. Shuffle instructions enable

the efficient exchange of data among threads from the same warp without having

to resort to shared memory. Dynamic parallelism enables GPU threads to spawn

new kernels and results specially interesting for algorithms that require dynamic

exploration or refinement. Unified memory facilitates programming by avoiding

explicit memory transfers, which can be useful when porting existing code or in the

case of complex data structures.

Regarding the CUDA programming model, Figure 1.5 presents a diagram that

summarizes the work distribution and the memory hierarchy. The programs exe-

cuted by the GPU are called kernels. The execution of these kernels is assigned

by the programmer to one or more computing blocks (for instance, in the figure

there are two blocks, [0, 0] and [1, 0]). The blocks are distributed by the hardware

among the available SMs, and depending on the amount of required resources, each

SM may be able to simultaneously execute several blocks thanks to multithreading.

Each block is composed by a certain amount of threads, for instance in the figure

there are just two threads per block; thread (0, 0) and thread (1, 0). Threads are

executed by the hardware in small groups called warps (since the first CUDA capa-

ble GPUs, each warp is composed by 32 threads). All the threads within a given

warp share the same program counter, therefore in case of conditional code or loop

divergence, the execution is serialized.

As can be seen in Figure 1.5, each thread has associated a certain amount of

private registers and local memory. The local memory is also private to each thread

and it is used to store dynamically addressed register arrays or data that does not

fit in registers. Despite its name, it physically resides in global memory, thus being

relatively slow. The shared memory is common to each block and can be used to

exchange thread data. Internally, the shared memory is divided in banks and when

several threads from the same warp try to simultaneously access different shared

48 Chapter 1. Introduction to general purpose GPU programming

Figure 1.5: Memory hierarchy used by the CUDA programming model

memory locations stored in the same bank, a bank conflict occurs and the access

is serialized. In the last level of the hierarchy, threads can only read from constant

and texture memory, but they have read/write access to global memory. It is also

possible to exchange thread data in global memory, but only at a fraction of the speed

compared to shared memory, specially if atomic instructions are used. Execution

can be synchronized within each block through barriers, however the only way to

perform global synchronization among all the blocks is to finish the kernel execution

and launch a new one. To increase efficiency, global memory access is performed in

small segments instead of at the word level. For optimal performance, threads should

fulfill a series of coalescence rules (that depend on the hardware capabilities) to

avoid generating multiple memory requests, thus lowering the maximum attainable

bandwidth.

1.2 Signal processing algorithms on GPU architectures 49

To achieve good efficiency in CUDA there are some features that affect perfor-

mance and need to be considered when designing applications. The main important

features influencing GPU performance are:

- Synchronization barrier. Thread synchronization instructions reduce parallelism

and their cost depends on the number of warps within each CUDA block. In particu-

lar, when using a single warp no synchronization instructions are required, however,

for two or more warps the overhead of synchronizing the threads within the block

increases. Therefore, the number of synchronization points should be minimized.

- Available threading. GPUs largely rely on multi-threading to hide memory access

and instruction latency. Hardware resources are shared among threads within the

same SM : registers and shared memory among others. Thus, there is a trade-off

between available threading and shared resources. In the next subsection it will be

seen that this can be described by means of what we call resource factors.

- Coalescence issues in global memory access. When the threads within a CUDA

warp access memory locations in different segments several memory requests are

generated. Depending on the algorithm and the cache hit rate, the effective memory

bandwidth may be greatly reduced.

- Shared memory bank conflicts. When several threads within the same CUDA warp

operate on different memory locations from the same shared memory bank, a bank

conflict occurs and the accesses are serialized, thus the total available shared memory

bandwidth is proportionally reduced.

1.2. Signal processing algorithms on GPU archi-

tectures

Signal processing algorithms are highly versatile and can be used in many areas,

for example multimedia processing, data compression, pattern recognition or artifi-

cial vision. Most signal processing algorithms can be expressed using a divide and

conquer strategy, which enables their parallel execution. Thanks to the advances

in GPU computing power it is possible to efficiently process large amounts of data,

50 Chapter 1. Introduction to general purpose GPU programming

even enabling realtime processing in many areas were previously was impossible or

resulted computationally too expensive. In the next subsection we will describe

the FFT (Fast Fourier Transform), the Hartley transform and the DCT (Discrete

Cosine Transform), which will be used in order to check our proposals.

1.2.1. Fourier Transform

The Discrete Fourier Transform [70] (DFT) is a very important operation for

many applications, such as image and digital signal processing, filtering and compres-

sion, partial differential equation resolution or large number manipulation among

others.

The equation used to calculate the DFT is:

yk =
N−1∑
i=0

xiW
ik
N , 0 ≤ k < N (1.1)

where x is the input signal, y is the output, and WN = e−j
2π
N are called twiddle

factors and are constants for a given signal of size N . Another common alternative

formulation after applying Euler’s formula ejx = cos(x) + j sin(x) to WN is:

yk =
N−1∑
i=0

xi

[
cos

(
2π

N
ik

)
− j sin

(
2π

N
ik

)]
(1.2)

This operation can be easily reversed to obtain the original time domain signal.

The equation used to calculate the inverse DFT is:

xi =
1

N

N−1∑
k=0

ykW
−ik
N , 0 ≤ i < N (1.3)

This simple approach requires a lot of computational power, because the number

of operations is proportional to the square of the signal size. The FFT reorganizes

the computation of the DFT such that the transform can be performed in logRN

1.2 Signal processing algorithms on GPU architectures 51

stages, each one of them calculating N coefficients. A divide-and-conquer strategy

is applied to the DFT of size N = Rn by dividing the initial data sequence into

R subsequences of length N/R (R depends on the used radix-R algorithm). Each

subsequence is subdivided again into R subsequences repeating the scheme n times

until the minimum sequence of size R is obtained. The DFT calculation for these

small pieces of the signal is simple, and then they can be successively recombined

into larger DFTs in n steps. Thus, the computational complexity is reduced from

O(N2) to O(NlogRN). The FFT performance is usually expressed in GFlops. The

GFlop rate of the complex FFT can be easily obtained through the commonly used

expression [66]:

5N · log2(N) · batch · 10−9/t , (1.4)

where batch is the total amount of signals processed and t is the time in seconds. A

similar expression can be used for the real FFT :

2.5N · log2(N) · batch · 10−9/t . (1.5)

Many algorithms are based on a similar divide and conquer strategy as described

for the FFT, where the main problem is recursively subdivided until reaching the

base case or a point that can be easily managed by the threads.

The FFT algorithm has two distinct parts, computation and data management,

and depending on how the computation and the data flow are organized a large

number of algorithms have been designed, for instance, Cooley-Tukey [66], Stock-

ham [127], Pease [89]. There are also other definitions like the Good-Thomas al-

gorithm [47, 74] (based on factorizations), Bruun’s [37] algorithm (based on poly-

nomials), Bluestein’s [75] and Rader ’s [17] algorithms (based on convolutions) or

Winograd [118] FFT (an extension of the Rader’s algorithm). There are very flexi-

ble CPU implementations like SPIRAL [32,33] that support several algorithms, but

the complex or irregular structure of some of them makes their implementation in

GPU more difficult of inefficient.

The Cooley-Tukey algorithm [66] is widely used for FFT processing. It recur-

sively re-expresses the DFT of an arbitrary composite size N = N1N2 in terms of

smaller DFTs of sizes N1 and N2, one over the even-numbered indices 2i and the

52 Chapter 1. Introduction to general purpose GPU programming

other over the odd-numbered indices 2i+ 1:

yk =

N/2−1∑
i=0

x2iW
(2i)k
N +

N/2−1∑
i=0

x2i+1W
(2i+1)k
N , 0 ≤ k < N, (1.6)

Figure 1.6(a) presents an example of decimation in time (DIT) FFT with N =

16, while Figure 1.6(b) presents an example of decimation in frequency (DIF) for

the same problem size. Both examples are based on the Cooley-Tukey algorithm,

that requires an explicit bit-reversal reordering (a kind of permutation where the

digits in the binary representation of the sequence index are reversed). If the bit-

reversal stage is applied at the beginning this is called decimation in time, whereas

if it is applied at the end of the process, it is called decimation in frequency. Due

to the bit-reversal stage it may not be the most efficient algorithm, however, it is

well-known and easy to implement.

The computations performed by the butterfly stages are represented by small

circles, and as we are using the basic radix-2 algorithm, two values are read, operated

and written each time. Higher radix versions operate on more values at once, thus

reducing the number of stages. For instance, for N = 16 a radix-4 algorithm would

require just 2 butterfly stages instead of 4. Observe how in Figure 1.6(a) (DIT) the

bit reversal is followed by 4 stages, while in Figure 1.6(b) (DIF) the 4 butterfly stages

are executed first followed by the bit reversal exchange. Nonetheless, regardless we

use decimation in time or decimation in frequency, the order in which the signals

elements are operated is preserved. That means one butterfly (in this case the first)

is combining elements 0 and 8, and in the next stage one of the results will be

operated with element 4 while the other will be operated with element 12, and so

on.

The Pease [89] algorithm (see Figure 1.6(c)) also requires an explicit bit-reversal

operation like Cooley-Tukey, but has the advantage of presenting a constant geom-

etry in the other data reordering stages, therefore it may be more adequate in some

architectures like FPGAs or ASICs. Self-sorting algorithms like Stockham [127] pro-

vide an output sequence that is digit reversed with respect to the input sequence,

so a specific bit reversal stage is not required. Figure 1.6(d) presents an example

of the Stockham algorithm for N = 16. Observe the uniformity of the read stride

1.2 Signal processing algorithms on GPU architectures 53

(a) Cooley-Tukey algorithm (decimation in
time)

(b) Cooley-Tukey algorithm (decimation in
frequency)

(c) Pease algorithm (d) Stockham algorithm

Figure 1.6: Examples of FFT algorithms for radix-2 and N=16

across the stages, which also coincides with the stride of the last write operation.

The memory access pattern of the Stockham algorithm is usually more efficient on

GPU architectures.

In addition to the different memory access patterns, there are many FFT vari-

ants, for instance, implementations optimized for Digital Signal Processors (DSPs)

and low power embedded systems that use fixed-point arithmetic [36] or integer

data [117]. The wide application range of the FFT and other related signal pro-

cessing algorithms has motivated the investigation of efficient implementations that

could exploit different hardware features to improve performance, like vector in-

structions, multi-core processing or hardware coprocessors.

Currently there are several efficient FFT proposals for multi-core CPUs, for

example the implementations included in Intel ’s MKL [48], IPP library [49], the

54 Chapter 1. Introduction to general purpose GPU programming

FFTW (Fastest Fourier Transform in the West) [78], or the FFT from the Spiral

project [85]. The use of GPUs for general purpose computation or GPU computing

is becoming more interesting due to their great computational power, scalability

and low cost, so GPU FFT implementations have appeared, like [55], designed for

the Brook+ language, or [133] optimized for CUDA. Maybe the most used and well-

known GPU implementations are NVIDIA’s CUFFT [100] and AMD’s clAmdFft [8]

included in the APPML library. Their main advantage is that they are regularly

updated and official support is provided by the hardware manufacturers. However,

none of these GPU libraries directly supports other transforms like the DCT or the

Hartley transform that are also considered in this thesis.

1.2.2. Real Fourier Transform

There is a specialized variant of the FFT algorithm designed to work on real

data [26]. This is useful in many fields like audio processing where it is known that

the input signal only takes real values. Despite the real input, the required arithmetic

operations and the output signal are still complex. Nonetheless, the advantage of

using a dedicate real FFT algorithm is that the memory usage is reduced in a half,

while the processing speed can be nearly doubled.

There are many approaches to perform the real FFT efficiently [45]. For instance,

it is possible to use the same complex algorithm, but storing another signal in the

unused imaginary part. Thus, instead of processing a single signal, we use the same

amount of operations to compute the transform of two signals. An additional pass

is required to separate both signals. The main disadvantage of this method is that if

the signals have very different magnitudes, there may be some numerical instability

issues. Another approach, which is the one used in this thesis, is to pack the signal

in a vector with half of the size (basically reading each two consecutive real values

as a single complex number), and then use a post-processing stage to combine the

output and obtain the final result.

The proposed optimization is based on the fact that given a signal of real data

1.2 Signal processing algorithms on GPU architectures 55

x and its transform y (both of length N) the following symmetry is verified:

yk = yN−k, 1 ≤ k ≤ N/2 (1.7)

Where yN−k is the complex conjugate, such that given a complex number a+ b j =

a − b j. The values in the range
[
y1 . . . yN/2−1

]
can have an imaginary component,

however, when N is even, both y0 and yN/2 are pure real numbers (in fact, for conve-

nience in some implementations yN/2 is stored in the imaginary part of y0). Notice

that in consequence of this property, half of the information in the transformed sig-

nal is redundant. Hereby, if the real signal x is processed as a complex signal of half

the length such that:

x′k = xk + x2k+1 j (1.8)

then
[
y0 . . . yN/2−1

]
can be obtained as:

yk =
1

2

(
zk + zN/2−k

)
− j

2
e

−2π
N

k
(
zk − zN/2−k

)
(1.9)

being z the complex transform of the signal x′k. Finally, due to the periodicity of z

the special case yN/2 can be computed as follows:

yN/2 =
1

2
(z0 + z0) +

j

2
(z0 − z0) = Re(z0) + j Im(z0) (1.10)

The remaining values in the range
[
yN/2+1 . . . yN−1

]
can be easily obtained using

the symmetry enunciated in Expression 1.7.

1.2.3. Hartley Transform

The Hartley Transform [112] also operates on real data, but in contrast to the

real Fourier transform which produces an output with complex data, the result will

also be real. Not only half the memory is required, but also some implementations

can completely avoid complex arithmetic operations. It is specially interesting for

real-time signal processing in low power or resource limited embedded processors

and DSPs. Among its common applications [6], it can be used to perform fast con-

56 Chapter 1. Introduction to general purpose GPU programming

volution, correlation or signal interpolation. It is also useful in acoustics and speech

processing, spectrum analysis, image reconstruction, pattern matching or feature

extraction. Other applications include artificial neural networks and biomedical

imagery applications.

The Discrete Hartley Transform (DHT) of a real signal x of size N is defined as:

hk =
N−1∑
i=0

xi

[
cos

(
2π

N
ik

)
+ sin

(
2π

N
ik

)]
=

N−1∑
i=0

xi

[√
2 cos

(
2π

N
ik − π

4

)]
(1.11)

The Hartley transform is its own inverse, therefore if we apply the DHT formula

twice we will obtain the original data (scaled by a constant factor proportional to

the signal size). Notice the similarity between Expression 1.11 and Expression 1.2,

where the sin term is multiplied by −j.

Observe that if computed by the definition given in Expression 1.11, this trans-

form would have O(N2) complexity, however the computation can be factorized

reducing the complexity to O(N log N). As in the case of the real FFT many fast

algorithms have been designed for the Hartley transform [44, 68], nonetheless, as

far as we know, up to the current date only one work [41] was published about its

acceleration on the GPU. The implementation approach used in this thesis is to

take advantage of the existing relation between the two transforms and compute the

DHT using the FFT :

yk =
1

2
(hk + hN−k)−

j

2
(hk − hN−k) (1.12)

Where yk is the real Fourier transform and hk is the result of applying the Hartley

transform to the real signal xk. When N/2 ≤ k ≤ N −1 the output signal is defined

taking advantage of the symmetry yk = yN−k. The explained process can be easily

reversed by applying:

hk = Re(yk)− Im(yk) (1.13)

Remember that the original signal xk is real, therefore due to the property for-

mulated in Expression 1.7 the transformed signal yk is symmetric and only half the

data needs to be computed. Despite the fact that we would be using complex arith-

1.2 Signal processing algorithms on GPU architectures 57

metic, the Hartley algorithm is computationally light and mainly bandwidth bound

in the GPU, as it only requires half the data compared to a complex FFT.

1.2.4. Discrete Cosine Transform

The Discrete Cosine Transform [95] (DCT) is a widely used algorithm for mul-

timedia processing and compression which also works on real data. Thanks to its

energy compaction properties it is extensively used in lossy compression algorithms,

such as image compression [5, 80] like the JPEG image format, audio compres-

sion [64,83,138] like the MP3 audio files or video compression [63,130], such as the

different MPEG video formats.

Like in the case of the Hartley transform, the DCT also has a real signal as

input and a real signal as output. The DCT-II is the most common form used to

compute the forward transform. For a real signal x of size N it is defined as follows:

yk =
N−1∑
i=0

xi cos

[
π

N

(
i+

1

2

)
k

]
(1.14)

The DCT-III is commonly used to compute the inverse DCT, it is defined as:

yk =
1

2
x0

N−1∑
i=0

xi cos

[
π

N

(
k +

1

2

)
i

]
(1.15)

Many optimized algorithms were defined to compute the DCT [70] reducing the

complexity from O(N2) to O(N log N). These optimized versions are commonly

referred as Fast Cosine Transform (FCT) algorithms. As far as we now, only a few

implementations were proposed for CUDA [84, 105] and OpenCL [12, 15]. In our

case, due to its simplicity and performance, we decided to use a similar approach

to the real FFT and the Hartley transforms. To compute the DCT based on the

58 Chapter 1. Introduction to general purpose GPU programming

complex FFT first we generate a sequence x′k of the form:

x′k = x2k, 0 ≤ k < N/2 (1.16)

x′k = x2(N−i)−1, N/2 ≤ k < N (1.17)

Now taking the sequence x′k as the new input, the DCT can be computed as:

yk = Re
(
e

−jπ
2N

kzk

)
(1.18)

being zk the complex transform of the signal x′k. Notice that as x′k is real, zk

is symmetric and only half the length needs to be computed due to the property

explained in Expression 1.7. This process can be reversed by doing:

zk = Re
(
e

−jπ
2N

kyk

)
, (1.19)

next, x′k is recovered doing the inverse Fourier transform of zk and finally:

x2k = x′k, 0 ≤ k < N/2 (1.20)

x2k+1 = x′N−1−m, 0 ≤ k ≤ N/2 (1.21)

1.3. Tridiagonal equation system resolution on GPUs

The resolution of tridiagonal equation systems is another interesting problem

that also poses a great challenge for efficient execution on GPU architectures. This

kind of equations appear in many scientific and engineering problems, like fluid

simulation [139], spectral Poisson solvers [113], numerical ocean models [39], pre-

conditioners for iterative linear solvers [2], or the Alternating Direction Implicit

method [14,51] for heat conduction and diffusion equations.

There are many sequential algorithms for solving tridiagonal systems, such as

Gaussian elimination [73], LU factorization [76] or cyclic reduction [134]. Parallel

algorithms have also been developed, such as PARACR [114], recursive doubling [27]

or substitution schemes applied to continued fractions [35]. There are other parallel

1.3 Tridiagonal equation system resolution on GPUs 59

algorithms based on a divide-and-conquer strategy, like successive doubling [135] or

recursive decoupling [38]. There is also a group called hybrid algorithms [16,27,115,

120] where the system is partitioned into blocks of equations, using a local algorithm

to reduce the subsystem in each block and a global algorithm to solve the reduced

system.

Well-known CPU parallel implementations of tridiagonal equation solvers in-

clude MKL [48] and SPIKE [28]. There were several efforts to port tridiagonal

parallel solvers to GPUs, like [97], designed to simulate 3D viscid incompressible

fluid with the ADI (Alternating Direction Implicit) method, cyclic reduction imple-

mentations [19,21], a derived version of the SPIKE algorithm [72], and other hybrid

algorithms like [42, 54] or [142] (which later was used in the CUDPP [18] library).

NVIDIA also proposed its own tridiagonal solver, included in the CUSPARSE [101]

library.

Tridiagonal systems are a kind of linear equation systems where only the main

diagonal, the diagonal above and the diagonal below contain non zero values. This

property allows a more compact data representation and specific algorithms, more

efficient than the standard methods used for general linear systems. Tridiagonal

systems are composed by a set of N linear equations with N unknowns

Au = d, (1.22)

where A is a tridiagonal matrix N ×N of the form

A =



b0 c0

a1 b1 c1

a2 b2 c2

· · ·
· · ·

aN−2 bN−2 cN−2

aN−1 bN−1


(1.23)

The i-th initial equation is of the type

E0
i = {a0ixi−1 + b0ixi + c0ixi+1 = d0i } (1.24)

60 Chapter 1. Introduction to general purpose GPU programming

As far as we now, there is no standard formula to measure the performance of

the tridiagonal solvers. In this thesis the performance will be measured in million

rows per second [72], using the formula:

MRows/s = N · batch · 10−6/t , (1.25)

where N is the number of single-precision equations per tridiagonal system, batch

is the total amount of problems processed and t is the time in seconds.

1.3.1. The Wang and Mou tridiagonal algorithm

In this thesis we will describe a tridiagonal solver based on the Wang and Mou

algorithm [135]. This algorithm offers excellent performance due to its suitability for

GPU architectures, thanks to the regular structure based on a successive doubling

method. The algorithm also offers good numerical stability for diagonal dominant

matrices or when no pivoting is needed. Instead of operating directly on signal data

the algorithm operates on triads of equations, labeled Left, Center and Right, and

each row is represented by a triad:

[i]t−1 = [Et−1
q·2t−1︸ ︷︷ ︸
Li

, Et−1
i︸︷︷︸
Ci

, Et−1
(q+1)2t−1−1︸ ︷︷ ︸

Ri

] (1.26)

where q = bi/2t−1c and the equation i-th in t− 1 stage is of the type:

Et−1
i = {at−1i xq2t−1−1 + bt−1i xi + ct−1i x(q+1)2t−1 = dt−1i } (1.27)

The computation is divided into logRN stages, operating each butterfly on R

elements and following a pattern similar to the decimation in time Cooley-Tukey,

but excluding the initial bit-reversal stage. Figure 1.7 show details of how each pair

of triads ([i]t−1 and [j]t−1) are combined by the Wang and Mou algorithm. Each

circle represents a reduction operation, where one equation is used to exchange one

of the unknowns in another equation. First, the last term of equation Ri is used

to reduce the first term in the three equations of [j]. Next, the middle term of the

1.3 Tridiagonal equation system resolution on GPUs 61

Figure 1.7: Detail of the butterfly operator for the Wang and Mou algorithm

new equation in Lj is used to reduce all the other equations. At the end of the

sequence both left equations will be identical (see L′), the same happens with both

right equations (see R′). This is the basic computation stage in the case of the

tridiagonal solver, but higher radix versions can be used.

Figure 1.8 displays how the algorithm would handle the four equations to obtain

the solution. Each box is one triad and the numbers inside the rows represent non-

zero coefficients. Only the corresponding subindexs are displayed in the figure. For

example, the first triad of Stage 0 is:

[1]0 = [E0
1 , E

0
1 , E

0
1] (1.28)

being

E0
1 = a01x0 + b01x1 + c01x2 = d01 (1.29)

which is represented as [0 1 2] in Figure 1.8). Observe that initially the three

members of each triad are initialized with the same value, which is given by the

corresponding equation E0
i , that is L0

i = C0
i = R0

i = E0
i . Following the triads are

62 Chapter 1. Introduction to general purpose GPU programming

Figure 1.8: Example of the Wang and Mou algorithm for a system with 4 equations

operated pairwise until at the last stage, when t = logRN , we have

Li = {at0, bt1, ctn+1, d
t
0}

Ci = {at0, bti, ctn+1, d
t
i} (1.30)

Ri = {at0, btn, ctn+1, d
t
n}

At this point the solution is computed as xi = bti/d
t
i, with 1 ≤ i ≤ N .

An interesting property of the algorithm is that, for each stage, the left and right

equations are equal to two of the center equations. More specifically, in stage j the

left and right equations of row i can be obtained as follows:

Li = Ca → a = 2j ×
⌊
i/2j

⌋
(1.31)

Ri = Cb → b = 2j × (1 +
⌊
i/2j

⌋
)− 1 (1.32)

This can be observed in Figure 1.8, for instance, in Stage 2 all the left equations Li

are equal to C1 and all the right equations Ri are equal to C4.

1.4 Work structure summary 63

1.4. Work structure summary

The structure of this thesis has been divided into six chapters. The objective of

this first chapter has been to provide a general overview of the state of the art in

GPU programming, describing the most significant languages.

In the second chapter we focus on developing hand-tuned versions of known al-

gorithms. Despite the required effort, this is one of the most common approaches for

porting CPU applications to GPU when performance is critical. For instance, signal

processing requires very efficient implementations, specially if real time applications

are used, where response time is a decisive factor. Thus, the computational cost

and wide application range of signal processing algorithms like the Fourier trans-

forms has motivated the research of efficient implementations. In the first part of

the chapter we study the design of a hand-tuned implementation of the FFT for

AMD Radeon GPUs using the Brook+ [7] programming language [55]. Regarding

FFT implementations on Brook+, the only previous work found is an implemen-

tation from the original BrookGPU [46] project, but the performance of the GPU

algorithm was slightly less than the one obtained for recent CPU algorithms. In the

second part of the chapter we study the implementation of a shallow water simu-

lator [61, 86, 87] on the GPU using CUDA. Shallow water algorithms requires huge

amounts of computing power, and detailed simulations using large areas can take

several days or even weeks to complete. Several parallelization techniques are thor-

oughly explored, explaining their advantages, disadvantages and comparing their

efficiency. The results are also compared to a parallel CPU implementation using

OpenMP.

The third chapter is focused on analyzing the GPU architecture [56, 57] to pro-

vide a better understanding of the performance impact of several hardware features

and techniques. The analysis is mainly centered on the memory hierarchy, studying

the performance of global memory, texture memory and shared memory in different

scenarios. On the GPU, when processing large problems, many algorithms become

bandwidth bound and the efficient exploitation of the memory is a key factor. The

inclusion of general purpose L2 cache in the GPU was an important step forward,

but not enough to conceal the special locality requirements for efficient memory

64 Chapter 1. Introduction to general purpose GPU programming

access. The FFT algorithm was used in this chapter because it has a fair com-

putational cost, as well as notable bandwidth requirements with good flexibility in

the memory access pattern and data distribution, which makes it an adequate tool

for performance analysis and study the most appropriate implementation strategies.

The obtained knowledge will be used in the following chapters to tune the code and

design more efficient implementations.

The fourth chapter addresses the development of a library [58] based on a set

of functions that serve as the building blocks for the construction of different algo-

rithms, allowing us to reduce code complexity and development time. Specifically,

our design makes extensive usage of template metaprogramming [24]. Template

programming for GPU libraries have proved to be very useful in other works like

Thrust [96] or Bolt [11], giving a powerful set of tools to the programmer. Several

techniques are used to generate static code whenever possible, which can be more

efficiently optimized by the compiler. This allowed us to design a flexible implemen-

tation while minimizing code replication. Furthermore, the functions of this library

can be tuned depending on various factors like the amount of registers, the shared

memory size or the desired parallelism level. The proposed library supports many

algorithms, like the complex and real FFT, the Hartley transform, the Discrete

Cosine Transform or the resolution of tridiagonal equation systems. Although the

implementation is focused on modularity and flexibility, it offers competitive perfor-

mance compared to other state-of-the art alternatives. The template based design

and the tuning approach can be reused in many other works and scenarios. Fur-

thermore, the implementation strategy used here is general and can be extended to

other algorithms that can be represented using a butterfly communication pattern.

The fifth chapter uses all the previously gathered knowledge to present an ad-

vanced methodology based on a two-stage methodology, which is suitable for al-

gorithms that can be expressed as index-digit permutations. In the first stage a

set of factors, that characterize the behavior of GPU in terms of performance, is

obtained from a resource analysis. In the second stage, operator string manipula-

tion [30] combined with tuning mapping vector is used to describe and adjust the

data distribution in the GPU resources according to the resource analysis made at

the first stage. Furthermore, the operator string manipulation enables the design of

modular yet efficient kernels tuned for the GPU architecture, with a compact no-

1.4 Work structure summary 65

tation to represent the operations carried by the algorithm. Once again our design

makes extensive usage of template metaprogramming [104], so many operations are

performed at compile-time reducing any performance penalty, with the advantage

of designing a flexible implementation while minimizing code replication. Specifi-

cally, our methodology has been applied to develop flexible Index-Digit algorithms

for CUDA GPUs such as the FFT (Fast Fourier Transform) algorithm (ID-FFT)

and a tridiagonal solver algorithm (ID-TS), showing that our work is able to sur-

pass the performance of NVIDIA’s libraries and other efficient proposals from the

bibliography.

In the sixth chapter the conclusions are presented, commenting the most inter-

esting contributions and achievements of each chapter. Some possible future work

and research topics are also proposed. Last, we include a list of the conference and

journal publications derived from this thesis.

Chapter 2

Efficient hand-tuned

implementations on a GPU

In this chapter we analyze and propose a set of efficient implementation tech-

niques for AMD and NVIDIA GPUs as an example of the first step of our path to-

wards a methodology for efficient algorithm design for GPUs. The implementations

in this chapter have been straightforwardly developed as any experienced software

developer would do after receiving some concepts about GPU architectures and pro-

gramming. We describe several features and implementation strategies, analyzing

the scalability and performance compared to other well-known existing solutions.

In the first part of the chapter (Section 2.1.1) we study the FFT implementation

on a Radeon GPU using the Brook+ language. This work was previously presented

in [55]. In the second part (Section 2.2), we study the parallelization of a shallow

water simulator on a GeForce GPU using CUDA. The CUDA implementation de-

scribed in this chapter is based on [86, 87]. Some of the explained parallelization

techniques were previously analyzed for a Radeon architecture using Brook+ in [61].

Both implementations were hand-tuned for efficient GPU usage using several opti-

mization techniques as described. Some of these optimizations are quite common

in GPU programming, resulting general enough to be also applied in other areas or

algorithms.

67

68 Chapter 2. Efficient hand-tuned implementations on a GPU

2.1. FFT processing on a streaming architecture

using Brook+

This section is included in the thesis due to historical reasons. At the beginning of

this research work Brook+ was still a state-of-the-art GPU programming language,

nevertheless CUDA and OpenCL have progressively prevailed as better options.

Here we present a FFT implementation that is able to exploit the power of current

GPUs, outperforming existing CPU implementations like the Spiral library and

being competitive with NVIDIA’s CUFFT. Different optimization techniques are

explained, like the use of stage fusion to reduce the number of kernels, scheduling

layouts to execute the optimal sequences, or recomputation to take advantage of

GPU arithmetic resources.

2.1.1. FFT implementation using Brook+

The FFT is an essential operation in a wide range of areas like digital audio

or image processing, hence the importance of the availability of efficient libraries

implementing it in the different platforms (for more details about the FFT and its

related terminology see Section 1.2.1). Regarding FFT implementations on Brook+,

the only previous work found in the literature is an implementation from the original

BrookGPU [46] project, but the performance of the GPU algorithm was slightly

less than the one obtained for the CPU algorithm. Following we discuss the main

features and optimizations to efficiently implement the FFT operation using the

Brook+ streaming model (for more information about the Brook+ language and its

programming model see Section 1.1.3).

2.1.1.1. Blending/fusion of FFT stages

In order to efficiently exploit the computing power and hide latencies, GPUs need

to execute a large number of threads. Thus, most algorithms require some way of

2.1 FFT processing on a streaming architecture using Brook+ 69

coordination or collaboration among the threads. Brook+ latest release (v1.4) sup-

ports local memory (see Section 1.1.1 for a description of the Radeon GPU memory

hierarchy and information about the architecture). This special memory can be

shared among a group of threads resulting very useful to speed up computations

when a group can collaborate in the same problem. However, in our tests due to

language/driver issues this feature did not work as expected, leading to very poor

performance or even incorrect results. Due to this constraint, we rely on global

memory to perform inter-core communication, requiring a separate kernel call for

the computation stages; however, the main problem is that kernel calls have quite

high initialization cost. Thus, it is important to reduce the number of kernel calls

while increasing the number of operations per thread. A good strategy is to unify

several radix-2 stages into a single kernel, for example blending the bit reversal with

the first butterfly stage. This blending reduces the usage of global memory band-

width and minimizes the kernel call overhead when multiple stages are required.

Another problem resides on computing a single butterfly stage per kernel, so

each thread will perform few arithmetic operations comparatively to the memory

read/write operations. In this case, GPU latency hiding techniques will not work as

well as expected. Also, ATI Radeon’s architecture has a VLIW (Very Long Instruc-

tion Word) design, so in order to make an efficient usage of the processing resources,

the code should have enough independent instructions to fill slots of the VLIW in-

struction packing. In a similar fashion to bit reversal and butterfly blending, we can

merge two or more butterfly operations in a single kernel execution (from now on,

butterfly fusion).

Figure 2.1(b) shows an example using the first 3 kernel calls for a N = 16 signal.

In Figure 2.1(a) a separate kernel call is used to explicitly perform each compute

and reorder operation. In Figure 2.1(b) the fusion of the two butterfly stages saves

one kernel call and increases the number of operations per kernel. Finally, if we

modify the memory access pattern of the resulting kernel, we can change the data

locations that it reads according to the previous reordering, so the three stages are

unified in a single kernel call as shown in Figure 2.1(c). We will denote the number

of fused butterfly stages per kernel as q, thus, in this example we have q = 2.

70 Chapter 2. Efficient hand-tuned implementations on a GPU

(a) Explicit operations (b) Butterfly fusion (c) Blending of opera-
tions

Figure 2.1: Butterfly blending/fusion in Brook+, N = 16

2.1.1.2. FFT mapping techniques

In principle, each thread of the stream processors can only write to a single

location of the output, which is fixed and depends on the thread identifier. In

Brook+, writing to arbitrary locations of a stream is possible, however it uses global

buffers and performs uncached scatter memory writes, so it is slow and should be

avoided if possible. Notice that both the bit reversal and the computing stages of

the algorithm have diverse read and write patterns. For example, depending on the

number of butterfly stage i, each computation writes at least two values (that is,

xj and xj+2i−1), or even more if we fuse several butterfly operation together as in

Figure 2.1(b). Thus, to fuse the butterfly operations and avoid scatter writes there

are several possibilities, and to decide which solution works best we will implement

them and analyze their advantages and disadvantages:

a) Recomputation (R): In this implementation we only write one output value

per thread. Each thread will perform the computations to obtain only one complex

value of the output (see Figure 2.2(a), where only one element is written by each

2.1 FFT processing on a streaming architecture using Brook+ 71

(a) Recomputation (and single stream)

(b) Several Streams

(c) Multiple Outputs using floatN (and single stream)

Figure 2.2: Brook+ mapping techniques.

72 Chapter 2. Efficient hand-tuned implementations on a GPU

thread, although it will perform redundant operations with other threads). As we

do not use shared memory, even though several threads work with the same input

set, they can not directly collaborate by sharing their partial results, so as we try

to increase the number of steps per kernel more work is wasted. However, for small

q values, each thread can recompute the necessary data with minor performance

penalty.

b) Several Streams (SS): In this solution we use two or more output streams, so

that several values can be written at once and less or no data must be recomputed

(see Figure 2.2(b), where four outputs are computed by two threads). This looks

quite efficient, but the more outputs we use, the more streams are needed, and

the stream recombination and conditional read operations can become expensive

so the performance is degraded. A related strategy to process large problems was

previously proposed in [110].

c) Multiple Outputs (MO): For problems with batches of small FFTs it is possible

to use a pure streaming model, where each thread receives a set of data inputs

and computes the solution for that set, writing the result in another stream. This

strategy unrolls the whole FFT expression directly into a single Brook+ kernel, so

very efficient code can be generated. Each thread will work on a different input and

produce its own output, so there is no data recomputation (see Figure 2.2(c)). It

behaves like having two big floatN SIMD input and output vectors, but in Brook+

this strategy is limited by the maximum size of kernel output, which is at most 128

bytes; if more are used a slower multiple pass shader will be generated, which would

severely degrade performance.

2.1.1.3. Scheduling layouts

As stated in Section 2.1.1.1, stage fusion can be applied on FFTs to perform

several steps in a single kernel. However, for large inputs, the number of stages q to

use for optimal performance has proved to be variable, so for the sake of flexibility

we created a set of tables with execution schedules to determine the sequence of

kernels to use for each case. For example, the optimal sequence using float4 as the

base data type is shown in Figure 2.3. Observe that to obtain the best performance,

there is a specific sequence depending on the problem size. The optimal kernel

2.1 FFT processing on a streaming architecture using Brook+ 73

combination to use may vary depending on the input size, data locality and stride,

so the best sequence may be difficult to predict, thus it was obtained empirically

testing every combination. For example, normally for a signal size like N = 512, in

addition to the first bit reversal operation, we would require nine butterfly stages,

but using the variable q approach we can perform several stages in a single kernel

executing it in just three kernel calls. In this case, instead of using a fixed q size,

the initial step blends an implicit reordering with the three first butterfly stages,

the following step performs four fused butterfly stages, and lastly the remaining

two butterfly are also computed in a single step. This sequence is represented in

Figure 2.3 as 512 → [3, 4, 2], observe that the first value is highlighted in cursive

because it has blended a bit reversal operation together with the three butterfly

stages, thus requiring a special kernel.

2.1.1.4. Generic performance optimizations

In Brook+ many optimization strategies are similar to the ones used in computer

graphics. For example, we can use SIMD short vector data types (like float4) to

read and write two complex values at once reducing the number of memory fetch

operations.

Brook+ uses texture memory to store the data, which is cached in a small texture

cache optimized for 2D spatial locality, so threads in the same module that read

texture addresses that are close together in 2D will achieve the best performance.

Depending on the memory access pattern of the kernels many read operations could

hit the cache, thus reducing the cost of the additional data that is read, specially in

the recomputation approach (R in Section 2.1.1.2). This makes easy and efficient

to implement batch execution using one of the texture dimensions to store an array

of A input signals, processing all the signals at once (see Figure 2.4(a), where the

vertical dimension of the texture is used to store A problems. We can also implement

batch execution in the horizontal dimension (see Figure 2.4(b)) using bit masking

of the thread identifiers within the kernels. Mixing both approaches is possible and

provides the best performance, thus it was the batch mode used in our tests.

Code vectorization and proper VLIW slots usage is also important, but in the

case of Brook+, AMD’s compiler does a good role in vectorization and expression

74 Chapter 2. Efficient hand-tuned implementations on a GPU

SL = { 1 → [0] 128 → [3, 4]
2 → [1] 256 → [3, 3, 2]
4 → [2] 512 → [3, 4, 2]
8 → [3] 1024 → [3, 3, 2, 2]

16 → [4] 2048 → [3, 4, 2, 2]
32 → [5] 4096 → [3, 4, 3, 2]
64 → [3, 3] 8192 → [3, 3, 3, 2, 2] }

Figure 2.3: Optimal scheduling layout

Figure 2.4: FFT batch data storage in 2D texture

optimization. We still can help writing more compiler friendly code, for example

using floating point arrays indexes (texture coordinates), or modifying the code to

take advantage of MADD (fused multiply-add) hardware capabilities.

In comparison to standard CPUs, current GPUs have a large number of registers,

so small FFTs can be completely loaded into them and carried out efficiently using

just registers. Also, taking advantage of predication or turning conditional state-

ments into arithmetical expressions generally benefits GPU architectures, where

branch cost is usually high. To further improve performance and make a more effi-

cient usage of the computational resources, there are a few general techniques that

can be applied. For example, small loops can be written as unrolled expressions,

and because Brook+ does not support private array variables we have to simulate

them using sets of registers.

In order to exemplify some of the optimizations introduced in the previous para-

graphs, Figure 2.5 shows a Brook+ implementation of Figure 2.1(c) using the re-

2.1 FFT processing on a streaming architecture using Brook+ 75

computation strategy (see (R) in Section 2.1.1.2), where a single kernel performs

an implicit reordering and two butterfly stages at once, and each thread (identi-

fier pos.xy) performs all the computations involved to obtain only its output value

(sOut) independently of other threads. We can see how the array indirections use

floating point index values in lines 10 to 13 to load all the required data in registers

at the beginning of the thread execution (variables x1 to x4). Also note that many

expressions of the form s = a × b + c were used (for example in lines 12 and 18),

these sentences will be optimized into MADD instructions by the compiler. Sign

dependent operations on lines 15 and 16 have a simple statement that can be pred-

icated to conditionally change the sign in the expressions 18 and 19 using a single

MADD instruction. Notice how the twiddle factors where also simplified for this

kernel, using simple scalar multiplications instead of complex number operations

(see mul1 and mul2 in lines 18, 19 and 25). The omitted code between lines 7 and

8 obtains the first input location to read (offset) applying a bit reversal. The oper-

ation will be masked to split the address into current pos and current grp, enabling

batch execution in both dimensions.

2.1.2. Experimental results

Several experiments to study and evaluate the performance of our FFT imple-

mentations have been conducted. All the tests were run in single precision and using

power of two input signals in the range N = 4, . . . , 8192, using batch execution to

perform several FFTs each time. The size of the batch depends on the input size

and is given by the expression batch = 224/N , so as the input signal increases the

number of batch executions decreases. Test data is already on the GPU, thus there

are no data transfers during the benchmarks. The performance of the experiments is

measured in GFLOPS, computed the commonly used formula from Equation (1.4).

FFT libraries are usually optimized for power of two signal sizes because other

inputs could be processed padding the data with zeros. Some implementations even

use pruned algorithms [31] to take advantage of the zero elements to save some

operations. Batch execution is specially adequate for processing small signals on

GPUs due to their massive parallel architecture, otherwise the GPU would not be

76 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.5: FFT optimized code example

able to properly exploit its computational resources and the cost of device memory

transfers and kernel launch would outweigh any benefits of using the GPU.

Our test platform is composed by a Core i7 920 processor running at 2.66 GHz, 6

GB DDR3 1866 CL9 memory, X58 chipset based motherboard and a Radeon 5870

2.1 FFT processing on a streaming architecture using Brook+ 77

GPU. The software setup is Windows XP x64 operating system, using Microsoft

Visual C++ 2008 compiler (x64, release profile) and Brook+ 1.4 with Catalyst 10.3

driver.

2.1.2.1. Optimal streaming strategy

First, we will study the most adequate strategy to use for butterfly fusion from

the three proposals (R, SS and MO) introduced in Section 2.1.1.2, trying to find

the optimal q value. This test is restricted to small q values, up to q = 6 (thus

64 complex values at most); there are many applications like image filters that only

need to process the input in small blocks, so they can benefit from special algorithms

developed for a particular problem size.

As we can see in Figure 2.6 the three implementations offer very good perfor-

mance, however the best performance up to N = 16 is obtained using the multiple

output strategy (MO). This implementation is very efficient, reaching 170 GFlops

for 16 point FFT (q = 4), but it needs the input and output data to be placed

in special streams and can not scale well beyond that size because a multiple pass

shader would be automatically generated by the compiler.

The use of several streams (SS) tends to have a similar performance to MO,

albeit a little lower. The major problem of this implementation is the additional

cost if the application needs an explicit step to recombine the streams, and that

only 8 output streams can be used at most to avoid multiple pass shaders, thus

restricting its applicability.

The strategy of recomputation (R) performs quite well on the GPU, reaching 180

GFlops for 32 point FFT (q = 5), however above that size, too much computing

power would be wasted. This strategy also requires reading several times the same

inputs, however due to temporal and spatial texture cache locality, the memory fetch

is usually performed only the first time the data is requested.

We also conducted a test using scatter writes, but it offered the worst perfor-

mance, always under 2 GFlops. On the one hand it tends to be a very slow operation

in Brook+, and on the other hand, using small problems with little arithmetic in-

tensity makes hard to compensate for its slower speed using computations.

78 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.6: Butterfly fusion strategy analysis

2.1.2.2. Stage fusion impact

The most scalable streaming implementation was obtained using the recalcula-

tion approach. It is possible to combine recalculation stages to implement larger

FFTs while offering good performance, so we will study the performance of the

implementation using this strategy.

In order to examine the performance impact of stage fusion we can modify the

value of q. In Figure 2.7 we can see the performance results when varying q between

1 and 4; it also displays the result of using the optimal scheduling layout (qA). The

best performance is obtained with this adaptive solution, but it is quite close to the

implementation using q = 3. Both methods are able to double the performance of

the basic version (q = 1) for sizes up to 1024 elements. Using q = 2 or q = 4 the

performance is lower, and for the q = 4 case we can even see some degradation for

certain problem sizes. From 1024 elements onwards the data set is quite big and the

2.1 FFT processing on a streaming architecture using Brook+ 79

Figure 2.7: Butterfly fusion performance

memory spatial locality is not so good, starting the performance to degrade for all

versions.

2.1.3. Performance comparison with previous work

In order to have a better overview of the performance offered by our proposal,

we present in Figure 2.8 a global comparison with two representative FFT libraries,

CUFFT 3.0 and SPIRAL 6.0. The measures were obtained using the same envi-

ronment and conditions as described in Section 2.1.2, except for the CUFFT, where

we used a GeForce GTX 280. The SPIRAL library was compiled in x64 mode us-

ing the SSE version and OpenMP to launch 8 simultaneous threads. Our Brook+

version uses the adaptive q approach and float4 base data type. This provides very

good performance at the expense of code complexity, now easily reaching over 100

GFlops for signals up to 512 elements, with a peak of 180 GFlops for N = 32. After

80 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.8: Comparison with CUFFT and SPIRAL

N = 512, due to the worse memory locality, the performance starts to degrade, but

always surpasses 50 GFlops.

As we can see, for large batch groups of small transforms (up to N = 64) the

performance of our solution is excellent, the Radeon GPU has an impressive raw

power that can be very efficiently exploited using our strategy.

Starting at N = 128 the CUFFT library takes over the lead, thanks to an

efficient usage of the shared memory. Recall that shared memory could not be

used in Brook+, and as thread data is limited to register space, several passes are

required for larger FFTs (see Figure 2.3), thus increasing the number of kernel

invocations and bandwidth requirements (each pass needs to read and write N

complex values). Large FFTs tend to have poorer memory locality as well, and in

some stages the GPU texture cache may not be efficiently used. For large signals

our solution offers quite less performance than the CUFFT, but always above the

SPIRAL SSE/OpenMP version, providing at least double the performance between

2.2 Shallow Water Simulation 81

N = 128 and N = 1024. As it will be shown in the next chapters, more efficient FFT

implementations will be designed achieving very competitive results with respect to

state-of-the-art libraries.

2.2. Shallow Water Simulation

This section presents several cost-effective parallel implementations of a finite

volume numerical scheme for solving pollutant transport problems in bidimensional

domains. The fluid is modelled by 2D shallow water equations, while the transport

of pollutant is modelled by a transport equation. The 2D domain is discretized

using a first order Roe finite volume scheme. Specifically, this section presents both

a solution that exploits recomputation on the GPU, and an optimized solution that

is based on a ghost cell decoupling approach.

Shallow water systems describe the evolution of an incompressible fluid in re-

sponse to gravitational accelerations, where the vertical flow is small compared to

the horizontal flow. These systems have many applications, enabling the simulation

of rivers, canals, coastal hydrodynamics or dam-break problems, among others. In

particular, the transport of pollutant in a fluid, that is modelled by a transport equa-

tion, has particular relevance in many ecological and environmental studies. Our

solution uses a mathematical model that consists in the coupling of a shallow water

system and a transport equation. These coupled equations constitute a hyperbolic

system of conservation laws with source terms, that can be discretized using finite

volume schemes [29,111].

Finite volume schemes solve the integral form of the shallow water equations

in computational cells of a geometrical mesh that describes the computational do-

main. Some main benefits of using explicit finite volume schemes are observed.

First, mass and momentum are conserved in each cell, even in the presence of flow

discontinuities. A good approximation of fast waves as moving shocks or wet-dry

fronts appears in fluid or coastal hydraulics. Furthermore, much reduced memory

overheads are involved, as complex iterative matrix solvers are not required. Finally,

explicit finite volume schemes are easy to implement in multi-core and many-core

82 Chapter 2. Efficient hand-tuned implementations on a GPU

systems as the most intensive computational part of the algorithm consists of a set

of operations that can be performed independently (and thus asynchronously) at

each edge of the mesh. This set of operations can be identified with a lightweight

computational kernel, which is invoked a large number of times for big meshes, and

thus the algorithm fits perfectly a stream programming model.

The simulations of these problems have very large computing requirements which

grow with the size of the space and time dimensions of the domain. For example, in

the simulation of marine systems, the spatial domain can have many kilometers and

the time integration of the problem can last several weeks or even months. Precise

simulations over large detailed terrains require big meshes that usually result in

prohibitive execution times.

Thus, due to the interest of this kind of problems and its high computational

demands together with the fact that explicit FV solvers fit well with the streaming

programming model, several parallel implementations have been proposed on a wide

variety of platforms, such as computer clusters using MPI [91], a version combining

MPI and SSE (Streaming SIMD Extensions) instructions [92] and other generic

multi-platform implementations like [23]. Despite these efforts, the increasing com-

puting power required by the most complex simulations motivated the development

of GPU (Graphics Processing Unit) solvers [82, 125, 129] based on the first gen-

eration of GPU programming languages like Cg or GLSL. The rapidly increasing

computational power and low cost of GPUs and the advances in GPU high-level pro-

gramming languages motivated the development of new parallel versions for modern

GPUs. Examples of CUDA implementations are a one-layer simulator [22, 79], a

multi-GPU version [94] or high order implementations [9, 62]. The parallel imple-

mentations mentioned above do not handle pollutant transport problems. Even if

single species transport does not introduce any mathematical difficulties, we have

decided to consider SWE together with pollutant transport equation as this sys-

tem is the basis of more complicated models as turbidity current system presented

in [124]. Turbidity currents are of great interest as those have a big impact on the

morphology of the continental shelves and ocean basins. Thus, the scheme presented

in here can be easily adapted to solve 2D turbidity currents following the aforemen-

tioned work. A direct implementation for pollutant transport simulation on CUDA

GPUs was presented in [86].

2.2 Shallow Water Simulation 83

Here we propose a parallel shallow water simulator that solves a broad variety

of problems, even with pollutant transport and the presence of wet-dry fronts in

emerging bottom situations. We propose two different approaches. First we propose

a naive solution that exploits recomputation on the GPU ; and second, an optimized

solution that is based on ghost cell decoupling, on the efficient use of the GPU shared

memory to minimize global memory accesses, and on the use of the texture memory

to optimize uncoalesced global memory accesses. The resulting implementations

achieve excellent performance on CUDA-enabled GPUs, which makes feasible the

execution of really large simulations even when dealing with pollutant transport

problems and wet-dry zones on very complex terrains. Overall, this work shows

that shallow water problems are well suited for exploiting the power of GPUs.

2.2.1. Coupled model: 2D shallow water equations with pol-

lutant transport

A pollutant transport model consists in the coupling of a fluid model and a trans-

port equation. In order to model the fluid dynamics we consider the bidimensional

shallow water equations, which describe the evolution of a fluid over a bottom, where

the thickness and the vertical flow is small compared to the horizontal flow:

∂h

∂t
+
∂qx
∂x

+
∂qy
∂x

= 0,

∂qx
∂t

+
∂

∂x

(
q2x
h

+
1

2
gh2
)

+
∂

∂y

(qxqy
h

)
= gh

∂H

∂x
+ ghSf,x,

∂qy
∂t

+
∂

∂x

(qxqy
h

)
+

∂

∂y

(
q2y
h

+
1

2
gh2
)

= gh
∂H

∂y
+ ghSf,y.

(2.1)

The unknowns of the problem are the vertically averaged height of the water column

h(x, t) and the flux q(x, t) = (qx(x, t), qy(x, t)) = h(x, t) · u(x, t), where u(x, t) =

(ux(x, t), uy(x, t)) is the vertical averaged velocity of the fluid, at each point xxx =

(x, y) of the computational domain and at time t. H(x) is the function that describes

the bottom bathymetry, measured from a fixed reference level (see Figure 2.9), and

g is the gravitational constant.

84 Chapter 2. Efficient hand-tuned implementations on a GPU

The friction forces are given by a Manning Law:

Sf,x = n2ux‖u‖
h1/3

, Sf,y = n2uy‖u‖
h1/3

, (2.2)

where n is the bed roughness coefficient.

The pollutant transport equation is given by:

∂(hC)

∂t
+
∂(qxC)

∂x
+
∂(qyC)

∂y
= 0, (2.3)

where C(x, t) is the pollutant concentration.

The system given by Equations (2.1) and (2.3) can be written as a system of

conservation laws with source terms :

∂W

∂t
+

∂

∂x
F1(W) +

∂

∂y
F2(W) = S1(W)

∂

∂x
H(x) + S2(W)

∂

∂y
H(y) + Sf , (2.4)

where W is the vector of unknowns:

W =


h

qx

qy

hC

 , (2.5)

where h(xxx, t)C(xxx, t) is the amount of pollutant dissolved in the fluid, and

F1(W) =



qx

q2x
h

+
1

2
gh2

qxqy
h

qxC


, F2(W) =



qy
qxqy
h

q2y
h

+
1

2
gh2

qyC


,

2.2 Shallow Water Simulation 85

Figure 2.9: Sketch: pollutant transport.

S1(W) =


0

gh

0

0

 , S2(W) =


0

0

gh

0

 , (2.6)

and

Sf =


0

ghSf,x

ghSf,y

0

 . (2.7)

System (2.4) can be written in a more compact form:

∂W

∂t
(xxx, t) + divFFF (W) = S(W) · ∇H(x) + Sf , (2.8)

where FFF = (F1, F2) is the flux function and S(W) = (S1(W), S2(W)).

Given an unitary vector η = (ηx, ηy), we define the matrix

A(W,η) = A1(W)ηx + A2(W)ηy, (2.9)

86 Chapter 2. Efficient hand-tuned implementations on a GPU

where

A1(W) =
∂

∂W
F1(W), A2(W) =

∂

∂W
F2(W) (2.10)

are the jacobian matrices of F1(W) and F2(W), respectively.

System (2.8) is hyperbolic if h(x, t) > 0. Effectively, A(W,η) is diagonalizable

and the eigenvalues of A(W,η) are

λ1 = u · η, λ2 = u · η −
√
gh, λ3 = u · η +

√
gh, λ4 = u · η. (2.11)

2.2.2. Finite volume numerical scheme.

In this section we briefly describe the finite volume scheme that we use to dis-

cretize the Equation (2.8). More details can be found in [90,91,93].

Let us remark that the term Sf is discretized in a semi-implicit way as detailed

in [93], thus in what follows we focus on the discretization of Equation (2.8) where

Sf is supposed to be zero.

To discretize the Equation (2.8), we split the computational domain in cells or

control volumes, Vi ⊂ R2, i = 1, . . . , L. In our case we will consider a structured

mesh given by squares. We will use the following notation: given a finite volume Vi,

xxxi is its center, |Vi| its area, Ni is the set of indexes j such that Vj is the neighbor

of Vi, Eij is the edge shared by two neighbor cells Vi and Vj and |Eij| is its length,

and ηij = (ηij,x, ηij,y) is the unitary vectorial normal to edge Eij and that points

towards the cell Vj (see Figure 2.10). Finally, we call Vij the triangular subcell with

one edge given by Eij and the opposite vertex given by xxxi (see Figure 2.10).

In finite volume schemes, constant approximations of the solution at each cell

are computed. More precisely, if W (x, t) is the exact solution at point xxx and at

time t, we will denote by W n
i an approximation of the average of the solution on

the volume Vi at time tn,

W n
i '

1

|Vi|

∫
Vi

W (x, tn)dx. (2.12)

2.2 Shallow Water Simulation 87

Figure 2.10: Finite volume: structured mesh.

Integrating the Equation (2.8) over each finite volume Vi

∂

∂t

∫
Vi

W (xxx, t) dV +

∫
Vi

(divF(W)) dV =

∫
Vi

S(W) · ∇H(x) dV. (2.13)

Dividing by |Vi| and applying the Divergence Theorem:

∂

∂t

(
1

|Vi|

∫
Vi

W (xxx, t) dV

)
=

− 1

|Vi|

(∑
j∈Ni

∫
Eij

F(W) · ηηηij dγ −
∫
Vi

S(W) · ∇H(x) dV

)
. (2.14)

To discretize Equation (2.14) we will use the finite volume numerical scheme

presented in [93]. Once the approximation of Wi is known at time tn, W n
i , the

approximation at time tn+1 is given by:

W n+1
i = W n

i −
∆t

|Vi|
∑
j∈Ni

|Eij|F−ij (W n
i ,W

n
j ,ηij), (2.15)

with

F−ij (W n
i ,W

n
j ,ηij) = Pnij

(
F (W n

j) · ηij − F (W n
i) · ηij − Snij

)
−
F (W n

j) · ηij − F (W n
i) · ηij

2
+ Fα(W n

i ,W
n
j ,ηij)− Snα,ij, (2.16)

88 Chapter 2. Efficient hand-tuned implementations on a GPU

where the projection matrix, Pij, is given by:

Pnij =
1

2
Kn
ij

(
I − sgn(Dn

ij)
)

(Kn
ij)
−1, (2.17)

being I the identity matrix and Kn
ij the matrix whose columns are the eigenvectors

related to the Roe matrix Anij given by

Anij = A(W n
ij, ηηηij) = A1(W

n
ij)ηij,x + A2(W

n
ij)ηij,y, (2.18)

where

W n
ij =


hnij

hniju
n
ij,x

hniju
n
ij,y

hnijC
n
ij

 , (2.19)

is the intermediate Roe’s state, which is the state that satisfies the equation

F (W n
j) · ηij − F (W n

i) · ηij = Anij(W
n
j −W n

i) (2.20)

and it is given by:

hnij =
hni + hnj

2
, (2.21)

unij,l =

√
hni u

n
i,l +

√
hnj u

n
j,l√

hni +
√
hnj

, l = x, y, (2.22)

Cn
ij =

√
hni C

n
i +

√
hnjC

n
j√

hni +
√
hnj

. (2.23)

Dn
ij the diagonal matrix whose elements are the eigenvalues of Anij that are given

by: 

λij,1 = uuunij · ηηηij,

λij,2 = uuunij · ηηηij −
√
ghnij,

λij,3 = uuunij · ηηηij +
√
ghnij,

λij,4 = uuunij · ηηηij,

(2.24)

2.2 Shallow Water Simulation 89

and

sgn Dn
ij =


sgn λij,1

sgn λij,2

sgn λij,3

sgn λij,4

 . (2.25)

The term Snij is given by

Snij =


0

ghnij(Hj −Hi)ηij,x

ghnij(Hj −Hi)ηij,y

0

 . (2.26)

FFFα(W n
i ,W

n
j , ηηηij) =

FFF (W(1−α)i+αj) · ηij +FFF (Wαi+(1−α)j) · ηij
2

, (2.27)

where we denote:

W(1−α)i+αj =


h(1−α)i+αj

(qx)(1−α)i+αj

(qy)(1−α)i+αj

hC(1−α)i+αj

 = (1− α)W n
i + αW n

j , α ∈ [0, 1], (2.28)

a convex combination of W n
i and W n

j , and finally,

Snα,ij =



0

g

2

(
h(1−α)i+αj + hni

2
(H(1−α)i+αj −Hi) +

hαi+(1−α)j + hnj
2

(Hαi+(1−α)j −Hj)

)
ηij,x

g

2

(
h(1−α)i+αj + hni

2
(H(1−α)i+αj −Hi) +

hαi+(1−α)j + hnj
2

(Hαi+(1−α)j −Hj)

)
ηij,y

0


,

(2.29)

where

Hαi+(1−α)j = αHi + (1− α)Hj, (2.30)

is again a convex combination of Hi and Hj.

90 Chapter 2. Efficient hand-tuned implementations on a GPU

The Equations (2.27) and (2.29) are used to avoid entropy corrections needed

by the Roe scheme in critical points (see [93]). The authors propose different values

of the parameter α. In practice, the value α = 1/8 gives good results (see [93]), so

here we take α = 1/8. Note that in the case α = 0 we obtain the usual Roe Scheme

(see [93]).

The previous numerical scheme is exactly well-balanced for the stationary solu-

tion corresponding to water at rest (see [93]) and linearly L∞ under the usual CFL

condition:

∆t = min
i=1,...,L

{∑
j∈Ni |Eij| ‖D

n
ij‖∞

2γ|Vi|

}
(2.31)

where γ, 0 < γ ≤ 1, is the CFL parameter and ‖Dn
ij‖∞ is the infinite norm of the

matrix Dn
ij, that is, the maximum eigenvalue of the matrix Anij.

The resulting time step can be small, which gives rise to a large number of

time steps for simulations that occur on large time scales, which is the case for

many geophysical flow problems. Thus, from the computational point of view, the

solution of the problem is reduced to a huge number of matrix operations and vectors

of size 4× 4.

Finally, let us recall that the finite volume scheme described in this section

is of first order. High order schemes have been implemented in CPU [90] and in

GPUs [9,62] and they provide very good results in academic examples. Nevertheless,

the extension of those schemes to simulate real flows with real bathymetries is not

a simple task and sometimes, they produce inaccurate results in wet-dry fronts. Let

us also remark that this scheme is a generalization of Roe scheme, which gives very

precise results and, moreover, it can approximate stationary regular solutions up to

second order (see Theorem 10 in [90]).

2.2.2.1. Wet-dry fronts

One of the main difficulties that can appear in practical applications is the pres-

ence of wet-dry fronts. These fronts develop when, due to the initial conditions or as

a consequence of the fluid motion, the thickness of the layer vanishes. These situa-

tions arise very frequently in practical applications such as flood waves, dam-breaks

or coastal tidal currents. We handle this situation in two ways. First, we compute

2.2 Shallow Water Simulation 91

the velocities and concentrations as follows [3]:

lui,x =

√
2hiqi,x√

h4i +max(hi, ε)4
, (2.32)

ui,y =

√
2hiqi,y√

h4i +max(hi, ε)4
, (2.33)

Ci =

√
2hiqi,C√

h4i +max(hi, ε)4
, (2.34)

where ε = 10−6 is the single precision limit. In practical situations this value gives

good results.

Second, if the thickness of the layer of fluid becomes tiny at both cells Vi and

Vj, that is hi, hj < heps = 10−4, then the fourth component of the numerical flux

F−ij (W n
i ,W

n
j ,ηij) is defined as follows:

F−ij [4] =

F
−
ij [1]
· Cj if uuuij · ηηηij < 0,

F−ij [1] · Ci if uuuij · ηηηij > 0,
(2.35)

where F−ij [l], denotes the l-th component of the vector F−ij . This value of heps has

been chosen such as it gives the best results in the numerical experiments we have

performed.

It must be remarked that the numerical scheme described in the previous sec-

tion corresponds to the case where the fluid occupies the whole domain. If this

numerical scheme is applied without any modification to a case with wet-dry fronts

(situations with emerging bottom topography), the results obtained have spurious

values. In those cases it is necessary to modify the scheme, as is proposed in [93].

This modification allows to balance the fluxes against the driving forces so that the

non-physical pressure forces disappear in the case of bottom emerging topographies.

Finally, let us remark that in order to provide numerical simulations in real

domains, friction terms are very important to reproduce the correct position of wet-

dry fronts. Moreover, the semi-implicit way of discretizing the friction terms enforces

the numerical stability of the scheme in areas where h is small (see [93] for more

details).

92 Chapter 2. Efficient hand-tuned implementations on a GPU

2.2.3. Naive GPU solution

This section explains a naive GPU solution that uses a recomputation-based

algorithm to take advantage of the computational power of the GPU. To test our

application we will use an NVIDIA GPU and CUDA as the programming language

(see Section 2.2.5 for a description of the execution platform and Section 1.1.2 for

detailed information about the architecture). This initial naive version is devel-

oped using only the basic features of CUDA programming and avoiding hardware-

dependent tuning techniques. In Section 2.2.4 the implementation will be refined

using a more advanced strategy with platform specific parallelization techniques.

Figure 2.11 shows the algorithm corresponding to the numerical scheme of the

coupled system given by Equation 2.4. The main loop performs the simulation

through time. In each time step, the amount of flow that crosses through each

edge is calculated in order to compute the flow of data for all finite volumes. This

algorithm performs a huge number of small vector and matrix operations to solve

the equations of the coupled system for each edge of the mesh. Each time iteration

is divided into 3 stages:

Stage1. Computation of the flow of data ∆M and the time step ∆t for each volume

v applying a recomputation-based solution (see À in Figure 2.11). For each

volume, the recomputation-based algorithm calculates four flow contributions

(up, down, left and right) that are associated to each of the four edges of a

volume. This implies that each edge is processed twice, once for each neigh-

bor volume. For each volume, ∆t[v] is computed in a similar way. Our naive

CUDA implementation maps volumes to threads that run concurrently in a

conflict-free manner. Although one half of the computations will be redundant,

the great computational power of the GPUs allows to obtain a competitive

performance. Figure 2.12 depicts an example for four threads. For example,

the contribution that volume V2,2 does to volume V2,3 takes the same value

(though opposite sign) as the contribution of volume V2,3 does to volume V2,2.

However this contribution is recalculated when volume V2,2 computes the con-

tribution from its neighbors. This first kernel only performs accesses to global

memory and thus, it saves arrays ∆M and ∆t in global memory.

Stage2. Computation of the global time step ∆tGlobal as the minimum of the local

2.2 Shallow Water Simulation 93

Figure 2.11: Naive algorithm

time steps ∆t computed for each volume in Stage1 (see Á in Figure 2.11).

CUDA supports atomic operations on global memory, but we do not use them

because their performance is very poor in practice. The implementation of

Stage2 is based on a reduction kernel that is launched many times in order

to reduce the array ∆t allocated in global memory. In each invocation of this

reduction kernel, the set of loop iterations is partitioned among thread blocks

so that read accesses to global memory are coalesced. Each thread block runs a

tree-based parallel reduction that operates only on a buffer allocated in shared

memory. The partial result is saved in a private copy of ∆tGlobal allocated in

94 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.12: Recomputation-based solution on a multithreading system

shared memory. At the end of the kernel invocation, each thread block writes

this partial result into a different element of array ∆tGlobal allocated in global

memory. Finally, when the size of the array is twice the thread block size, no

more reduction kernels are launched and this array is reduced by the CPU.

Stage3. Computation of the simulated flow data M for each volume (see Â in Fig-

ure 2.11). This is achieved by updating in each volume the pollutant density

and the fluid data using ∆M from Stage1 and ∆tGlobal from Stage2. This

stage computes a set of operations that do not depend on each other and that,

therefore, will be executed in parallel in different threads.

The naive GPU implementation described above differs from the solution pre-

sented in [86], where a reduction kernel based on reduce3 of the CUDA SDK [81]

is used in the Stage2. Now we use a kernel based on the reduce5 implementation of

the CUDA SDK. This kernel is completely unrolled, and avoids divergence, shared

memory bank conflicts and unnecessary synchronization points.

The first stage is the most computationally intensive part of the algorithm, being

the huge number of small vector and matrix operations needed to solve the equations

specially costly. This way, a profiling execution for an example mesh of 1000× 1000

volumes shows that about 80% of the runtime is consumed by the computations

done in this first stage.

2.2 Shallow Water Simulation 95

2.2.4. Optimized GPU solution

In this section, an efficient GPU implementation based on the ghost cell de-

coupling technique is proposed. This implementation, whose structure is shown in

Figure 2.13, contains three improvements with respect to the naive implementation

presented in Section 2.2.3. The first improvement is the application of a ghost cell

decoupling technique to Stage1 in order to avoid most of the duplicated computa-

tions of the recomputation-based solution. Our ghost cell decoupling strategy uses

shared memory to save the local time steps (see À a© in Figure 2.13) before storing

them into global memory (see À b© in Figure 2.13). This leads naturally to the

second improvement, which consists in splitting the reduction of Stage2 into two

phases: first, each thread block of the kernel of Stage1 reduces its local time steps in

shared memory and saves partial results in global memory (see À c© in Figure 2.13);

and second, the kernel of Stage2 reduces the partial results using the reduce5 CUDA

implementation (see Á in Figure 2.13). The third improvement is the usage of tex-

ture memory when uncoalesced memory accesses occur, provided that the arrays

affected by those accesses do not change during the execution and the consistency

of the texture memory can be guaranteed. This avoids the time penalties of un-

coalesced accesses to global memory. The rest of this section describes these three

improvements in more detail. Their impact on the execution time will be studied in

Section 2.2.5.

2.2.4.1. Ghost cell decoupling solution

This improvement is aimed to reduce the large number of duplicated computa-

tions that arise in the recomputation-based solution used in Stage1 (see À in Fig-

ure 2.11). This improvement starts with a decomposition of the 2D domain using the

ghost cell decoupling technique. This technique enables a memory conflict-free exe-

cution of the thread blocks (avoiding communications and synchronization between

thread blocks). For this purpose, the 2D domain is splitted into 2D subdomains

that include several ghost cells. The ghost cells represent flux contributions that

are recomputed in two neighbor thread blocks. In our shallow water problem, these

ghost cells are a row and a column of each 2D subdomain. This way, this memory

region (ghost region from now on) is read by two thread blocks, although it is only

96 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.13: Optimized GPU solution

2.2 Shallow Water Simulation 97

updated by one. The reason is that the ghost region, together with the rows and

columns whose updating is responsibility of the thread block, provide the informa-

tion the thread block needs to perform its computations, making therefore the block

self-sufficient. Overall, the ghost cell decoupling technique removes the replicated

computations for most of the cells, the exception being the ghost cells of each thread

block.

The algorithm shown in Figure 2.13 shows the implementation details of the

ghost cell decoupling technique. In stage À a© the thread responsible for volume v

computes the flow from the neighbor volumes on the right (flR) and bottom (flD).

Next, a partial flow ∆M [v] is calculated as flR[v] + flD[v]. The same procedure

is followed to obtain the partial ∆t[v]. These partial values flR[v], flD[v], dtR[v]

and dtD[v] are stored in the shared memory, so that in a second phase (see À b© in

Figure 2.13) the thread responsible for volume v only has to add to its partial flow

the opposite contribution of its left and up neighbors. A synchronization barrier is

needed between the first and the second phase because in the second phase À b© each

thread reads the partial flows stored in shared memory by another thread in the first

phase À a©. In CUDA, a synchronization barrier (syncthreads()) stops all warps

within a given thread block until all the warps have reached the synchronization

barrier. This way, the synchronization barrier guarantees that all threads of the

thread block have stored their partial flows and timesteps in shared memory before

another thread makes use of them.

The first two phases of this approach are illustrated in Figure 2.14 using a thread

block size of 3× 3. In each volume there are two arrows that symbolize the storage

of its right and down flux contributions in buffers allocated in shared memory. The

ghost region of a thread block consists of the volumes located in the frontiers of the

3× 3 thread block (see shaded boxes in Figure 2.14). Note that in order to achieve

a conflict free concurrent execution of the thread blocks, the computations of some

frontier volumes (like volumes V3,3, V3,4, V3,5, V4,3 and V5,3) are replicated among

the blocks. In the second phase, the volumes that do not belong to a ghost region

update their flux by accumulating the left and up contributions saved in the shared

memory buffers at the end of the first phase. Therefore, in the example only four

(2×2) threads of each block do work in this second phase.

The improvement obtained with the implementation of the ghost cell decoupling

98 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.14: The two phases of the Ghost cell decoupling solution

technique grows with the thread block size because there are fewer threads that do

not work in the second phase. For a block size blockdimX×blockdimY, the ratio of

threads that perform the second stage is given by:

% threads =
(blockdimX − 1)× (blockdimY − 1)

blockdimX × blockdimY
× 100

For example, if the block size is 64 (8×8), then 49 (7×7) threads work in the second

phase, which represents 76% of the threads in the block. If the block size is 16× 16,

this ratio increases to 88%. Thus, the percentage of threads by block that do not

make the second phase is smaller for larger block sizes.

2.2 Shallow Water Simulation 99

2.2.4.2. Two-phase reduction

This improvement consists in executing a part of the reduction of Stage2 at

the end of Stage1, thus reducing the amount of work of the reduction kernel of

Stage2. Following this strategy, in the kernel of Stage1 each thread block makes a

local reduction of the ∆t[v] calculated by the threads belonging to this block (see

∆tLocal[v] in À c© of Figure 2.13) and that have already been stored in shared

memory buffers (see À b© in Figure 2.13). Next, in Stage2 the ∆tGlobal is computed

reducing just the ∆tLocal obtained for each block in the previous stage.

For example, without this improvement, given a grid of 1000 × 1000 volumes,

there would be 1000000 time steps (one per volume) to be reduced by the reduction

kernel. Considering a thread block size of 8× 8 in Stage1, the size of the vector ∆t

would be 1000000/49 ≈ 20408 elements. Note that the denominator is 49 because

although the thread block size is 64 (8×8 threads), only 49 (7×7) of the threads are

responsible for computing the time step (∆tLocal) in Stage1 (see À c© in Figure 2.13).

The remaining 15 threads process the volumes of the ghost regions and therefore

do not compute time steps. Furthermore, let us realize that the thread block has

the 49 values of ∆t[v] it has computed (see À b© in Figure 2.13) in shared memory,

where the accesses needed to reduce them to a single value are much faster than in

global memory. As a result, in this example only 20408 accesses to global memory

will be required in the kernel of Stage2.

Another important performance consideration is that the thread block size must

be well-balanced. On one hand, it must be large enough so that the percentage of

threads that perform useful work in the second phase of the Stage1 is high. On

the other hand, it must be small enough to enable the parallel execution of enough

thread blocks to keep busy the cores in the device. According to this, we have tried

a set of thread block sizes and we have obtained the best performance for 8 × 8.

Note that with size 8 × 8, each thread block needs 4 KB of shared memory. For

a configuration of 48 KB for shared memory, it enables more than 8 simultaneous

blocks in a single SM. Finally, this optimization requires another two changes with

respect to the naive implementation: a buffer to perform the local reduction in the

kernel of Stage1, and an adjustment of the grid size of the kernel of Stage2.

100 Chapter 2. Efficient hand-tuned implementations on a GPU

2.2.4.3. Usage of the texture memory

Despite the optimization described above, this algorithm still presents uncoa-

lesced accesses to the GPU global memory because of the accesses in the y-direction

of the grid of volumes. Specifically, the threads belonging to the same halfwarp ac-

cess to different memory segments. NVIDIA advises in [99] to use texture memory

for these cases, and this exploits its higher bandwidth if there is 2D locality in the

texture fetches, avoiding this way uncoalesced loads. Although this recommendation

is for devices with compute capability 1.X, in the case of the compute capability 2.X

the performance is still better than the one obtained using global accesses and the

L1 cache [57], reason why we have applied this optimization.

It is important to mention that we use texture memory both for reads and

writes. NVIDIA indicates [99] that if the global memory pointed by a texture is

overwritten, the texture cache will stay in an inconsistent state and the following

reads (within the same kernel) to these texture memory positions will return wrong

values. Nevertheless, we have used the texture memory for arrays that are read

and written by different kernels, therefore this problem does not exist in our case.

The arrays that are accessed by the texture unit are: (1) the array of fluid of the

previous iteration, which is stored as a 2D texture of float4 elements and which

changes in each iteration; and (2) the array of parameters, which is stored as a 2D

texture of float elements and remains constant during the whole simulation. Let

us emphasize that these data cannot be stored into constant memory because they

require more than 64 KB, which is the maximum of constant memory size for devices

of compute capability 2.X.

In [77] the texture memory is used instead of shared memory, meanwhile we store

the parameters of the fluid in shared memory but we access to the global memory

through the texture memory in order to avoid the uncoalesced accesses that would

appear when the y-direction of the grid is followed.

2.2.5. Experimental results

Our evaluation has been performed in a NVIDIA S2050 preconfigured cluster

with 4 M2050 GPUs. The nodes have 12 GB of host DDR3 memory and the general

2.2 Shallow Water Simulation 101

purpose CPU is an Intel Xeon X5650 at 2.67 GHz, with 6 cores and hyperthreading

of 2 threads per core reaching a maximum memory bandwidth of 32 GB/s. Each

M2050 GPU has 448 streaming processors and 3 GB of GDDR5 memory. The

software setup is Debian GNU/Linux 6.0.1 (squeeze) operating system using g++

4.3.5 and nvcc 4.0 compilers.

Following we will describe two different problems. The first one, presented in

Section 2.2.5.1, is a simple academic test designed to measure the accuracy of the

GPU simulator. The second, introduced in Section 2.2.5.2, is a more complex test

designed to test the performance of the proposed implementations. It is based on a

realistic world scenario that analyzes the evolution of a pollutant discharged in an

estuary.

2.2.5.1. Simulator accuracy: Comparison with a reference CPU imple-

mentation

In this section a simple academic 2D test case is presented to verify the accuracy

of the simulator. The test consists of a dam-break problem where a water column

falls in a water tank creating a series of ripples that can be easily examined. We use

a small [−5,−5]× [5, 5] domain with the depth function defined as:

H(x, y) = 1− 0.4e−x
2−y2 , (2.36)

and with the following initial condition:

W (x, y, 0) =


h(x, y, 0)

0

0

0

 (2.37)

where

h(x, y, 0) =

 4 when x2 + y2 ≤ 0.36

2 otherwise
. (2.38)

and the size of the side ∆x = ∆y = 10 / number of volumes per side.

102 Chapter 2. Efficient hand-tuned implementations on a GPU

Figure 2.15: Diagram of the academic 2D test used for verification.

The simulations are executed in the time interval [0, 1] for several mesh sizes using

wall boundary conditions (q · η = 0) and CFL = 0.9. Figure 2.15 shows a diagram

of the initial setup. This test does not require wet-dry zone processing and serves

to study the proper behavior of the forces and conservation of the fluid. Figure 2.16

represents the evolution of the test showing a bisection plane of the domain for 0.33,

0.66 and 1.00 seconds. In each figure there are two lines representing the water

height: the CPU reference version (thick solid line), which is using a very fine mesh

of 3200 × 3200 volumes and the initial waves were purposely quite high and sharp

to be able to observe the behavior in the test; and GPU optimized version (thin

dashed line), which is using a 400 × 400 mesh size and due to the lower resolution

presents a slight difference with respect to the reference solution in the inflection

points, where their contour tends to be more rounded.

Table 2.1 shows the value of the L1 norm for T = 1 second for the meshes

100 × 100, 400 × 400, 1000 × 1000 using the GPU optimized version compared to

the CPU reference version executed with the same resolution. The rows of the table

show the error for each conformant parameter of the fluid. The measured numerical

error for single precision data is negligible, so it does not affect the accuracy of the

parallel shallow waters simulator.

2.2 Shallow Water Simulation 103

(a) Time = 0.33 seconds (b) Time = 0.66 seconds (c) Time = 1.00 seconds

Figure 2.16: Evolution of the academic 2D test used for verification.

Table 2.1: L1 norm at time T = 1 s for several meshes. The reference solution is
CPU sequential

L1error 100× 100 400× 400 1000× 1000

h 1,10e-7 8,75e-8 1,79e-7

qx 1,40e-7 1,78e-7 5,79e-7

qy 9,00e-8 1,28e-7 3,58e-7

2.2.5.2. Simulator behavior: synthetic test on Rı́a de Arousa (Spain)

This second test uses a synthetic case in order to study the simulator behavior

in a real world scenario. The simulation is based on an estuary in Northwest Spain

called the Rı́a de Arousa, whose satellite image is displayed in Figure 2.17(a). This

natural environment is simulated using the real terrain and bathymetry data in our

test. While the north and east limits of the area involved in the simulation have free

boundary conditions, the tides in the west and south borders are simulated using

the main barotropic tidal components. Wet-dry fronts appear very often in this test

in the coastal zones and emerging islands. The purpose of the simulation is to study

the evolution of a pollutant that is discharged in this environment, determining its

propagation and which are the most affected areas. The total simulated period is

one week of real time.

The initial setup is represented in Figure 2.17(b). It corresponds to the moment

when the pollutant is discharged in a circle with a radius of 400 m in the middle of

the estuary. The normalized concentration of pollutant is given by the color scale

104 Chapter 2. Efficient hand-tuned implementations on a GPU

(a) Satellite image (GoogleMaps) (b) Initial setup

(c) Pollutant concentration after one day (d) Pollutant concentration after two days

(e) Pollutant concentration after four days (f) Pollutant concentration after eight days

Figure 2.17: Evolution of the Ŕıa de Arousa simulation.

2.2 Shallow Water Simulation 105

at the bottom of the figure. Figure 2.17(c) is a capture of our simulation after 24

hours. Here the sea currents have started to extend the pollutant along the estuary,

but if containment measures and cleanup activities started at this moment, it would

be possible to safely remove a large part of the contaminant. After another 24

hours of simulated time we reach the situation depicted in Figure 2.17(d), where

the pollutant has spread further, increasing portions of it beginning to reach the

seashore. Cleaning efforts could still be concentrated in a well defined zone and

remove most of the contamination. In Figure 2.17(e), four days after the spill, the

pollutant has spread over a large area, but a reasonable amount of waste material

could still be drawn from the center of the stain. Cleaning activities can begin in

some coastal zones too. After eight days (see Figure 2.17(f)) the damage is extensive

and only a few areas remain relatively safe, such as the two north bays and the south

one. Now most of the shore requires cleaning efforts, specially the south zone, but

depending on the toxicity of the pollutant the process may have reached catastrophic

dimensions. The test benchmark only simulates seven days, but here we used the

eighth day to display an image during low tide, in which we can observe some

small emerging islets. The model has provided a valuable simulation of the disaster

evolution that makes possible to predict the most affected areas. Pollutant discharge

may not only have a deep impact on the natural environmental, but also affect very

negatively the economy of regions where seafood products or tourism are relevant

industries.

Table 2.2 shows the execution time and the speedups for several mesh sizes. All

our implementations use single precision data. The CPU times were taken on the

system that was described above, using OpenMP [108] to take advantage of that

multicore chip. Since the second thread provided by hyperthreading typically only

provides 15% to 20% of the performance of a real core, we can see that our OpenMP

implementation is very efficient. The speedups of the naive GPU implementation

are calculated with respect to the CPU times. The speedups of the GPU optimized

version have been obtained with respect to the GPU naive version. The simulation

of the biggest mesh requires about 36 hours in a multithreaded CPU implementa-

tion and just 107 minutes for the GPU version based in recomputation. With the

optimized GPU version the same simulation takes only 91 minutes.

106 Chapter 2. Efficient hand-tuned implementations on a GPU

Table 2.2: Execution times (in seconds) and speedups
Mesh CPU GPU
size sequential OpenMP naive optimized

time time speedup time speedup time speedup

100× 100 932 157 5.92x 12.28 12.78x 11.6 1.06x

200× 200 7440 1086 6.85x 64.96 16.71x 59.04 1.10x

300× 300 23912 3443 6.95x 203.90 16.89x 169.77 1.20x

400× 400 56256 8361 6.73x 447.19 19.71x 387.69 1.15x

500× 500 109201 16527 6.61x 878.55 18.81x 730.09 1.20x

600× 600 188125 28580 6.58x 1455.18 19.64x 1231.97 1.18x

700× 700 297849 45344 6.57x 2343.87 19.35x 1928.40 1.22x

800× 800 443247 67110 6.60x 3322.87 20.20x 2849.49 1.17x

900× 900 629210 95461 6.59x 4848.76 19.69x 4020.39 1.21x

1000× 1000 860457 130815 6.58x 6448.80 20.29x 5455.51 1.18x

2.2.5.3. Isolated impact of the improvements applied

Table 2.3 shows the evolution of the performance after applying step by step

the improvements explained in Section 2.2.4 to the naive implementation. It is

an incremental development so that each version includes all the improvements of

the previous ones. The speedups of each version have been measured with respect

to the times of the previous version. There are two intermediate versions: evol-I

and evol-II. The evol-I version is equal to the GPU naive version after replacing

its first recomputation-based kernel of Stage1 with the ghost cell decoupling-based

kernel (see details in Section 2.2.4.1). The evol-II version includes additionally the

local reduction in the kernel of Stage1 taking advantage of using shared memory

buffers and the subsequent modifications of the size of the kernel of Stage2 (see

Section 2.2.4.2). Finally, the last version, GPU optimized, also contains the last

improvement applied in our development, i.e., the usage of texture memory (see

Section 2.2.4.3).

The local reduction improvement evaluated in the evol-II column represents a

poor contribution to the overall speedup. This improvement is aimed at reducing

the work and the number of accesses to global memory of the reduction kernel

of Stage2. This kernel performs little work for the smaller meshes and applying

this improvement has no impact on performance. As the work of the reduction

kernel increases, the speedup provided by this optimization grows too. The best

2.2 Shallow Water Simulation 107

Table 2.3: Execution times (in seconds) and speedups after applying each improve-
ment separately

Mesh Num. GPU evol-I evol-II GPU
size Iter. naive optimized

time time speedup time speedup time speedup

100× 100 164243 12.28 11.71 1.05x 11.95 0.98x 11.55 1.03x

200× 200 335514 64.96 63.35 1.03x 64.84 0.98x 59.04 1.10x

300× 300 503362 203.90 187.49 1.09x 189.06 0.99x 169.77 1.11x

400× 400 671293 447.19 424.27 1.05x 426.26 1.00x 387.69 1.10x

500× 500 839237 878.55 797.99 1.10x 799.51 1.00x 730.09 1.10x

600× 600 1007255 1455.18 1337.99 1.09x 1334.99 1.00x 1231.97 1.08x

700× 700 1175349 2343.87 2141.43 1.09x 2139.18 1.00x 1928.40 1.11x

800× 800 1343453 3322.87 3196.86 1.04x 3128.72 1.02x 2849.49 1.10x

900× 900 1511582 4848.76 4550.57 1.07x 4458.91 1.02x 4020.39 1.11x

1000× 1000 1679708 6448.80 6146.36 1.05x 6025.03 1.02x 5455.51 1.10x

improvement percentage is achieved by the usage of the texture memory. The GPU

used in this study (Tesla S2050) is a device with 2.0 compute capability, which has

L1 cache for the global memory. The usage of texture memory is more recommended

for GPUs of lower compute capabilities because the use of texture cache has a bigger

impact in devices that have no L1 cache for their global memory. However, in our

case the usage of texture memory means a noticeable 10% of improvement percentage

the optimization of the uncoalesced memory accesses (see details in Section 2.2.4.3).

Chapter 3

Influence of memory access

patterns to small-scale FFT

performance

In this chapter we use the FFT (Fast Fourier Transform) as a benchmark tool

to analyze different aspects of GPU architectures, like the influence of the memory

access pattern or the impact of the register pressure. The FFT is a good tool for

performance analysis because it is used in many digital signal processing applica-

tions and has a good balance between computational cost and memory bandwidth

requirements. This chapter represents a second step towards our methodology for

efficient algorithm design on GPU architectures where memory access patterns and

register usage are analyzed. The work presented in this chapter was originally in-

troduced in [56,57].

3.1. FFT benchmarks using CUDA

To analyze the performance of the different GPU storage types a set of different

FFT configurations were executed in CUDA. For information about the NVIDIA

GPU architecture and a description of the memory hierarchy exposed by CUDA

see Section 1.1.2. The FFT requires a significant amount of computation, and

109

110 Chapter 3. Influence of memory access patterns to small-scale FFT

using transforms of different sizes and distributions [66, 89] it is possible to study

the influence of several parameters separately. Our implementation is based on

the Cooley-Tukey algorithm [66], characterized by its regular structure and easy

implementation. This algorithm performs a bit-reversal operation at the beginning

of the process, and then it operates on the data in pairs while increasing the stride

in each stage.

In our FFT benchmarks each thread calculates an independent FFT and each

block is composed by L threads which operate on different input data in batch

mode. Therefore, we have developed a set of kernels for each signal of size N =

{4, 8, 16, 32}. The kernels are recursively subdivided into smaller problems until

reaching the base case of N = 2. The tests are centered on architecture analysis,

therefore, in order to exercise different configurations in analogous conditions, only

small problems were used to simulate a computational workload. Twiddle factors

wikN are stored in constant memory. This memory can be used to store the result of

precalculated formulas, thus avoiding redundant computations or expensive global

memory requests. Constant memory is optimized for broadcast memory access,

where many threads read the same location, otherwise the requests may be serialized.

Figure 3.1 shows an example of the kernel used to compute the FFT for a signal

of N = 8 data. It presents a complex input signal which can be processed in either

registers or shared memory, recursively performing an in-place FFT (functions in

lines 2, 9 and 18). Global and texture memory can also be used directly as inputs

for the FFT time kernel (line 32), however in our tests data will reside locally in the

SPs (Streaming Processors) before calling the FFT. FFT time is part of a bigger

function FFTy (see Figure 3.2), which is the main kernel that manages the storage

type and it will be called by the host. In line 5, FFTy reads the stride that will be

used to access the different input signals within the batch, and in line 6 this stride

is used to obtain a pointer to the problem that will be processed by the current

thread. Following, the memory to store the signal is reserved, either using shared

memory (lines 9 and 10) or registers (line 12), and then the data is copied to the

current thread from texture memory (line 16) or global memory (line 18). Next, the

FFT is performed, calling a forward FFT function (line 23) or a reverse and scale

function (lines 25 and 26) depending on the direction DIR, which is a compile-time

parameter. Finally, in line 29 the data is copied back to global memory. Notice

3.1 FFT benchmarks using CUDA 111

Figure 3.1: FFT kernel for N=8

that data could also be directly operated using the src pointer without performing

the explicit register copy operations (like in conventional CPU code), however this

would result in only a quarter of the performance. In line 32 the template FFTy

(line 1) is instantiated with different parameters in a table of function pointers.

Table 3.1 depicts some information for each kernel compiled for CUDA 2.0 capa-

bilities using the verbose flag –ptxas-options=-v and allowing the compiler to take

as many registers as necessary, up to a maximum of 63 registers for the Fermi ar-

chitecture. If the maximum number of registers is reached, the compiler will resort

112 Chapter 3. Influence of memory access patterns to small-scale FFT

Figure 3.2: General kernel template

to local memory to supply enough space for the private thread data. For example,

in the register based implementation for N = 16, 63 registers and 16 bytes of lo-

cal memory will be required, while for N = 32, the private space requirements are

doubled, however no more than 63 registers can be allocated. Thus, the compiler

will reserve 336 bytes of local memory (42 single precision complex values), which

will cause a performance degradation when accessing these data. The older Tesla

architecture allows up to 128 registers per thread. If the same kernel is compiled

for GPUs with CUDA 1.3 capabilities, 58 registers would be allocated for N = 16

and 123 registers would be allocated for N = 32, thus, preventing the local memory

3.1 FFT benchmarks using CUDA 113

Table 3.1: Compiler information for the FFT kernel (Fermi CUDA cap. 2.0)
Register based (RGC) Shared memory based (SGC)

N Registers Local Const Registers Local Const Shared
(bytes) (bytes) (bytes) (bytes) (bytes)

4 18 0 0 20 0 0 1280
8 36 0 4 26 0 4 2304
16 63 16 12 44 0 12 4352
32 63 336 28 63 52 28 8448

spilling in both cases. In the shared memory based implementation the local mem-

ory spilling is reduced. For N = 16 the kernel uses 4352 bytes of shared memory,

44 registers and no local memory, while for N = 32 the kernel uses 8448 bytes of

shared memory, 63 registers and only 28 local memory bytes are allocated. Notice

that this amount of shared memory can reduce the GPU ability to handle block

level parallelism. Depending on the cache configuration, only one block may be

scheduled per SM, resulting in idle resources and thus, leading to a performance

degradation. Regarding the GPU occupancy, according to the NVIDIA Compute

Visual Profiler tool, it is only at 16.6% when using L = 32 and 8 concurrent blocks.

In this case, lowering the occupancy provides more resources for each thread. Even

at lower occupancies the GPU can offer very good performance if the code presents

enough opportunities to hide both instruction and memory latency using SM paral-

lelism (the Fermi architecture is able to simultaneously schedule up to 48 warps or

up to 8 blocks per SM) and useful computations [131, 132]. Table 3.1 also displays

information about the total constant memory reserved by the kernel (in bytes), for

example used by twiddle factors.

Our tests will be executed with L = 32 threads per block. The utilization with

just 32 threads may seem rather low but, according to our tests, in most cases

there is no significant advantage using 64 threads per block, and with 128 a small

performance drop is experienced. Also note that the amount of shared memory in

some of the tests may be too tight, thus restricting the maximum block size, so a

common size of 32 was used for all the executions. Using just 32 threads it is possible

to take advantage of the maximum number of GPU registers and, whenever enough

resources remain available, the GPU will be able to transparently execute up to 8

blocks per SM.

Following, three decisive parameters will be analyzed for an optimal CUDA im-

114 Chapter 3. Influence of memory access patterns to small-scale FFT

Figure 3.3: Test configuration

plementation: Storage type for Local Data on the SPs, storage type for input data,

and access pattern of global data. The different configurations considered in our

tests are shown in Figure 3.3. Each test will be assigned a three letter code accord-

ing to its configuration parameters. For example, STC will mean that the test was

performed using Shared memory, reading data from Textures with a Coalescent

memory access pattern.

3.1.1. Storage type for thread data

With respect to the register-based solution (R), a key feature of this implemen-

tation is how the register pressure of an algorithm may affect performance. When

more registers than the maximum allowed by the compiler configuration or available

in the architecture are required, local memory is allocated. Local memory is private

in the scope of each thread and does not offer very good performance because at the

hardware level on the Fermi architecture is implemented using normal cached global

memory. In the shared memory implementation (S), to avoid bank conflicts the data

is stored in the shared memory using one element of padding between consecutive

signals. This slightly increases the amount of shared memory required by the test

from N × L to (N + 1)× L elements, but it is far more efficient.

3.1 FFT benchmarks using CUDA 115

3.1.2. Storage type for input data

Storage type for input data is also analyzed. There are two different memory

spaces accessible by all the SPs : Global (G) and Texture (T) memory. Texture

memory can only be used for reading data, but the texture cache is specially efficient

if there are redundant read operations or there is spatial coherency in the access

pattern.

3.1.3. Memory access pattern

The impact of the memory access pattern and coalescence is studied using two

different data distributions. Coalescent memory access is used to group several

global memory requests in a single one, thus reducing effective bandwidth usage and

also pressure in the memory controller, that will receive less requests. In a coalescent

access pattern the tasks within a half-warp access data in the same memory segment,

and in a non coalescent access two or more tasks access different segments, so they

are not performed simultaneously.

Figure 3.4 shows the two signal distributions used in this work. The first data

distribution (see Figure 3.4(a)) is a coalescent memory access pattern (C), where

the data of the input signals is stored sequentially, so each thread Li is assigned

to read {xi0, xi1, . . . , xiN}, therefore the data read by the corresponding warp in each

iteration is located in the same segment. For example, the first read request of the

first warp will be {xi0, xi+1
0 , . . . , xi+32

0 } (elements shaded in Figure 3.4(a)). The total

amount of bytes required by the block will be BSize = L×N × 8 bytes per single

precision complex value, and the total number of read operations is BSize/128 bytes

per transaction for aligned data. The second data distribution is a non-coalescent

pattern (N). Figure 3.4(b) displays this distribution in which each signal is stored

sequentially, so the accesses in the same segment are only segment size/N . For

example, in the case of Figure 3.4(b) (assuming N × batchx > segment size), the

first read performed by the first warp will be composed by the shaded elements

{x00, x10, . . . , xL0 }, which in principle will originate L read requests in different seg-

ments. Depending on the data alignment and the hardware CUDA capabilities,

a non-coalescent access may generate up to N × L different memory requests per

116 Chapter 3. Influence of memory access patterns to small-scale FFT

(a) Coalescent (b) Non-coalescent

Figure 3.4: Memory access patterns

block. Both access patterns are important, as sometimes applications may require

complex changes in order to prevent non-coalescent data access.

3.2. Experimental results

All the tests were run in single precision using complex input signals in the

range N = {4, 8, 16, 32} and batch execution to perform several FFTs each time.

The memory requirements are kept constant at 224 elements and the size of the

batch depends on the input size and is given by the expression batch = 224/N , so

as the input signal increases the number of batch executions decreases. To prevent

interactions with the study of the memory hierarchy all the data resides on the GPU

device memory at the beginning of each test. The performance of the experiments is

measured in GFLOPS through the commonly used formula given by Equation (1.4).

One of our test platforms is a Core 2 Duo E8400 processor with 2 GB DDR3

1333 memory and two GPUs : a GeForce 280, based on the Tesla architecture, and

a GeForce 480, based on the Fermi architecture. The software setup is Windows

XP x64 operating system, using Microsoft Visual C++ 2008 compiler (x64, release

profile) and CUDA 4.0 SDK with the 270.81 GPU driver. The other test platform is

a dedicated server composed by a Xeon X5650 processor, 4 GB DDR3 1333 memory

and a Tesla S2050 GPU node with ECC disabled. The software setup is Debian

6.0.5, using gcc 4.3.5 compiler (x64 mode, -02 optimization level) and CUDA 4.0

SDK with the 270.41 GPU driver.

3.2 Experimental results 117

3.2.1. Cache and ECC configuration

GPUs based on the Fermi architecture let the user choose the cache configuration

between having either 48 kB of shared memory but only 16 kB of L1 cache, or just

16 kB of shared memory and 48 kB of L1. The Tesla S2050 also allows the user to

enable ECC (Error-Correcting Code) memory capability. Figure 3.5 compares the

efficiency of the two cache configurations and the ECC memory on the Tesla S2050

(the GeForce 480 does not support ECC and the cache configuration results are

similar). Only the best cache configuration ECC results are presented in the figure.

Regarding the influence of the cache mode, for small problems the difference using

RGC configuration is not significant (see 48L1 RGC S2050 and 16L1 RGC S2050),

but for N = 16 the bigger L1 cache configuration offers a bit more performance

(around 5%), while SGC configuration loses about a 12% for N = 8 and nearly a

50% for N = 16 (see 48L1 SGC S2050 and 16L1 SGC S2050). For N = 32 both

differences increase, using the 48L1 cache configuration it is possible to improve

the result in about a 33% in RGC, while losing 65% of the performance for SGC.

The big difference between cache configurations in this case points to a limitation

in the number of simultaneous blocks per SM : Each thread requires enough shared

memory to fit a whole FFT, thus more than 8 kB of shared memory are reserved

for N = 32 and only one block will be executed with 16 kB of shared memory, so

latency hiding techniques will not work as expected. In the following experiments of

this work, the 48L1 configuration will be used for register based tests and the 16L1

configuration for shared memory based tests.

Regarding the influence of enabling ECC it causes about a 10% performance

degradation in the SGC test, and between 13% and 25% degradation in the RGC

test because it is more sensitive to the reduction in the memory bandwidth. Based

on the results, the RGC configuration is mostly memory bandwidth bound, as the

performance drop is proportional to the 23.6% effective bandwidth reduction due

to ECC. Additionally, the Compute Visual Profiler tool confirms that the non-ECC

version of the RGC test achieves 128 GB/s for N ≤ 8, which is an 86% usage of the

available memory bandwidth. For N = 16 the computing part gains more weight,

but the effective bandwidth only decreases to 127 GB/s, reinforcing the bandwidth

bound hypothesis. For N = 32 only 118 GB/s are obtained.

118 Chapter 3. Influence of memory access patterns to small-scale FFT

Figure 3.5: 48L1 vs 16L1 cache configuration and ECC performance (T2050)

3.2.2. Registers vs Shared memory

In Figure 3.6 the performance of the register implementation (RGC) is compared

to the shared memory version (SGC) for both Fermi GPUs, using coalesced access to

global memory. Observe that the performance of RGC configuration is always higher

than SGC configuration. For example, for N = 16 RGC achieves 185 GFLOPS on

the GeForce 480 and 176 GFLOPS on the Tesla 2050, while SGC obtains just 144

GFLOPS on the GeForce 480 and 111 GFLOPS on the Tesla 2050. The bandwidth

of the shared memory is lower than the register bandwidth, therefore it results in

reduced performance for the SGC test. The results are similar for small N , but if

N increases the difference between SGC and RGC also increases. Observe how the

performance improves for all cases until N = 16 but then decreases for N = 32. The

number of operations per thread increases with the size of the problem, therefore

the GPU can make better usage of the execution resources. However, if a thread

has a big working set which does not completely fit in the registers, its content is

spilled to the next level in the GPU memory hierarchy, the slower local memory, as

seen in Table 3.1. Additionally, when kernels require too many registers, less blocks

3.2 Experimental results 119

Figure 3.6: RGC vs SGC performance (GF480 & S2050)

Figure 3.7: RGC vs SGC performance (GF480 & GF280)

120 Chapter 3. Influence of memory access patterns to small-scale FFT

may be simultaneously scheduled in the GPU. To avoid the performance degradation

experienced for N ≥ 32 due to the high register pressure, a different implementation

where several threads cooperate in the same problem would be more suited.

Figure 3.7 repeats the test, but comparing the GeForce 480 using its two different

cache configurations and the GeForce 280. The results are quite close for N = 4,

but as N increases the difference becomes quite significant, specially for N = 16.

The performance of the RGC configuration for the GeForce 280 also improves until

N = 16, slightly decreasing for N = 32. Interestingly, for N = 32 the difference

between the two GPUs is quite small. The reason behind the small performance drop

for the GeForce 280 (just about a 6%, compared to more than a 40% for the GeForce

480) is that the architecture supports up to 128 registers per thread, therefore

preventing local memory spilling. Nonetheless, allocating too many registers for

a single thread reduces the parallelism leading to the observed 6% performance

drop. Observe that in the SGC tests, the GeForce 280 has a proportional scaling

behavior to the GeForce 480 when using the smaller shared memory configuration.

For N = 32 SGC it barely reaches a 26% of the RGC performance, since allocating

such big portions of shared memory for a block reduces too much the number of

simultaneous blocks per SM. Moreover, the performance of SGC for N = 32 in the

GeForce 280 is less than half compared to N = 16, nonetheless it is slightly better

than the GeForce 480 when using just 16 KB of shared memory.

3.2.3. Global memory vs Texture memory

The second configuration parameter that will be studied is the impact of the

choice between texture memory (RTC configuration) and global memory (RGC

configuration). Only test results using register configuration (R) are shown, as it

was the best performing option according to Section 3.2.2. As seen in Figure 3.8,

both Fermi GPUs experience a similar degradation using texture memory. Under

10% for N ≤ 16 and under 20% for N = 32. According to the CUDA C Best

Practices Guide, the L1 data cache of the Fermi architecture has higher bandwidth

than the texture cache. In contrast, for the GeForce 280 (see Figure 3.9) the texture

memory provides up to a 32% improvement over the global memory version. This is

the normal behavior, as on the Tesla architecture the global memory is uncached, so

3.2 Experimental results 121

Figure 3.8: RGC vs RTC performance (GF480 & S2050)

Figure 3.9: RGC vs RTC performance (GF480 & GF280)

122 Chapter 3. Influence of memory access patterns to small-scale FFT

the texture cache can be used to reduce the number of memory fetches. Furthermore,

for the particular case of N = 32, RTC executed in the GeForce 280 is able to

outperform both RGC and RTC configurations on the GeForce 480 thanks to the

greater number of registers per thread available in the Tesla architecture and the

usage of the texure cache.

3.2.4. Coalescent memory access vs Non-coalescent

The last parameter considered was the impact of the access pattern. In Fig-

ure 3.10 RGC and RGN are compared when executed in the Fermi architecture.

Changing the global memory access pattern to force a non-coalescent access causes

a performance drop in both GPUs, as it was expected. For instance, for N = 8

the GeForce 480 loses around a 36% of the performance, while the Tesla 2050 loses

around a 42%. Nevertheless remark that, even with the advances in Fermi with the

cached memory access, nearly half the performance may be lost for non-coalescent

memory access patterns. In the case of the GeForce 280 based on the Tesla architec-

ture there is no global memory cache. Thus, it becomes around seven times slower

for some problem sizes (see Figure 3.11). Observe that even with the advantage

of the global memory cache, the GeForce 480 using the RGN configuration offers

lower performance than the GeForce 280 in the RGC test, therefore this is a very

important factor.

An interesting additional comparison is the impact of the coalescence when mak-

ing heavy use of shared memory and trying to minimize the performance cost of the

uncoalesced access through texture memory. In this sense, the texture cache can be

exploited playing a similar role to the L1 cache. Figure 3.12 compares the perfor-

mance of SGN and STN configurations in the Fermi architecture. Notice how in

this case (in contrast to Figure 3.8), texture cache memory improves performance in

about a 20% for both GPUs, because additional cache memory can be used without

decreasing the amount of cache assigned to shared memory. Comparing RGN and

RTN configurations does not yield a similar improvement because the kernel is al-

ready using L1 for caching, which provides slightly better bandwidth than texture

cache. Thus, in this case RGN performs about 15% better than RTN .

Figure 3.13 repeats the previous test comparing the GeForce 480 and the GeForce

3.2 Experimental results 123

Figure 3.10: RGC vs RGN performance (GF480 & S2050)

Figure 3.11: RGC vs RGN performance (GF480 & GF280)

124 Chapter 3. Influence of memory access patterns to small-scale FFT

Figure 3.12: SGN vs STN performance (GF480 & S2050)

Figure 3.13: SGN vs STN performance (GF480 & GF280)

3.2 Experimental results 125

280. The GeForce 280 experiences a similar improvement due to the texture cache

except for N = 32, where the dispersion of data and pressure on the texture cache

is too big. It is very interesting to observe that for N = 16 the texture cache con-

figuration (STN) is able to double the performance of the standard global memory

access (SGN). Even with the improvement of the texture cache, the coalescence is

a critical factor in the Tesla architecture and the GeForce 280 is too far form the

GeForce 480, only offering around a third of the performance.

3.2.5. Comparison with other state-of-the-art implementa-

tions

Finally, although this chapter had the initial aim of developing a FFT imple-

mentation focusing on flexibility and programmability instead of performance, the

results are very competitive for the addressed problem sizes.

Figure 3.14 compares RGC executed in the GeForce 480 (which in general is

between 15% and 30% faster than the Tesla S2050) with the CUFFT 4.0 (also

executed on the GeForce 480), the RTC version executed on the GeForce 280,

the Brook+ GPU version presented in [55] (running on a Radeon 5870 GPU), and

the Spiral 6.0 library as a reference CPU implementation. With exception of the

Brook+ version, the rest of the tests were executed on the first platform described in

Section 3.2. As can be observed, GPU based solutions offer a clear advantage over

CPU (in this case Spiral, but other solutions like the Intel IPP library [49] offer

similar performance), resulting at least twelve times faster. Comparing our two

best implementations, RGC running on the GeForce 480 is around 23% faster than

RTC running on the GeForce 280, which nonetheless is a good result for the older

generation GPU. Furthermore, for N = 32 due to the additional registers the Tesla

GPU obtains a 14% advantage over Fermi, showing the importance of preventing

local memory spilling. Last, observe that the proposed FFT is quite efficient, in fact

when executed on the Fermi architecture it is slightly faster than the CUFFT for

small signals up to 16 elements. The good scaling for these signal sizes also reveals

that the main limiting factor is not the computing power but the effective memory

bandwidth. Again, remark that next chapters will show new FFT implementations

achieving competitive performance for larger signal sizes.

126 Chapter 3. Influence of memory access patterns to small-scale FFT

Figure 3.14: Comparison with other solutions

Chapter 4

BPLG: A tuned butterfly

processing library for GPU

architectures

In this chapter we present a library for butterfly algorithms, Butterfly Processing

Library for GPUs (BPLG); more specifically, a set of orthogonal signal transforms

and an algorithm to solve tridiagonal equation systems are implemented using this

library. The methodology used in our library is based on a series of building blocks

that enable us to easily design several well-known algorithms with little effort. The

library was built paying special attention to flexibility and adaptability. In this

chapter we focus on how a generic approach can be used to easily design these GPU

algorithms while obtaining competitive performance on two recent NVIDIA GPU

architectures, which results specially interesting from the productivity point of view.

Specifically, we make two main contributions. The first one is the CUDA imple-

mentation of a compact yet very efficient tuned library using a CPU -like method-

ology based on a set of functions used as building blocks; its careful design allows

to greatly reduce the complexity of the code without compromising performance.

The second one is the performance characterization of the algorithms on two recent

NVIDIA GPU architectures, which allows us to obtain a set of parameters in order

to achieve the optimal level of parallelism to be exploited on the architecture. The

analysis takes advantage of the parametrization capabilities of the proposed library,

127

128 Chapter 4. BPLG: A tuned butterfly processing library for GPU

which allows to study the most adequate programming practices and task distri-

bution for optimal parallelism. The work presented in this chapter was originally

introduced in [58,59].

4.1. BPLG basic functions

This section describes the basic functions that will be used to build our library.

The building blocks of the algorithms are created in several layers, and each func-

tion only performs a small part of the work. Thanks to the behavior of templates

many optimizations will take place at compile-time, like reducing code complexity

or avoiding temporal registers for function calls. Furthermore, more efficient code is

generated using the additional information that is provided to the compiler about

things like the problem size, the thread configuration or the radix-sequence. In fact,

when this information is known at compile-time, private thread data reordering is

performed using register renaming and data are directly accessed in the original

structures instead of navigating through pointers. Another advantage is that array

data can be processed using loops without being a major efficiency concern because

static loops will be fully unrolled. In particular this avoids dynamic addressing of

register arrays, which in the current GPU generations and latest SDK produces

local memory spilling (see CUDA C Best Practices Guide [99], Section 6.2.3).

Section 4.1.1 and Section 4.1.2 will present the function templates that will

become the building blocks of our library for butterfly algorithms. All the described

functions were designed to operate in any space of the GPU memory hierarchy, but

it is recommended to use data in registers for computations because they offer the

highest bandwidth. However, when making heavy use of registers it is important

to check the compiler statistics, because if too many registers are used the compiler

will generate local memory spilling with the consequent performance loss. Due to

this space limitation, to handle the processing of a large problem the input data has

to be split in smaller chunks among the threads collaborating in each CUDA block.

Each thread usually operates over a subset of data stored in registers, therefore it

should be aware of the relative position in the data input.

In summary, the proposed library is mainly composed by optimized high level

4.1 BPLG basic functions 129

Figure 4.1: Classification and module dependences of the building blocks involved
in the library.

blocks that implement the basic functions and one parametrized kernel for each al-

gorithm that properly combines these blocks. The building blocks can be classified

in computation (butterfly, twiddles or signal scaling) and reordering operations (like

the bit-reversal or the family of strided copy operations). Figure 4.1 presents a

scheme with the classification of the principal functions used to build the five algo-

rithms: Complex FFT, Real FFT, Hartley Transform, Discrete Cosine Transform

and Tridiagonal System Solver. The solid line indicates a dependency while the

dashed line represents an optional component.

4.1.1. Reordering blocks

Data are passed among the different blocks as pointers, without worrying about

the amount of modules cooperating. The blocks are combined in a final kernel

with the appropriate code to manage the parallel work distribution, creating the

sequences of the different algorithms.

Data is moved inside the GPU using the Copy function (see Figure 4.2(a)), which

reads an array X of N elements with stride ss and writes the result to a different

array Y of the same size N but with stride sd: X [1 : N : sd] := Y [1 : N : ss].

Both data buffers can be pointers to arrays in global memory, shared memory or

registers; the input buffer can also point to read-only constant memory or texture

memory. The source Y and destination X do not have to reside in the same memory

130 Chapter 4. BPLG: A tuned butterfly processing library for GPU

(a) Copy (b) BitReverse

Figure 4.2: Template code for the reordering building blocks used by the butterfly
transform.

space, however it is recommended to minimize memory transfers, specially on the

lower levels of the GPU memory hierarchy where bandwidth is a precious resource.

The strides sd and ss are optional parameters and by default consecutive data is

assumed. When the strides are known at compile time, the data offsets can also be

precomputed. The caller function has the responsibility to use the adequate strides

in order to minimize bank conflicts or to perform coalescent global memory access.

Thanks to the C++ function overloading mechanism it is possible to define source

stride without explicitly specifying a value for the destination stride. Observe that

the amount of elements is known at compile time, thus, the unroll directive in line

4 will instruct the compiler to unroll the loop in line 5 and optimize the stride

expression whenever possible. It is very important to prevent runtime addressing of

thread-private arrays declared in the kernel as local variables, because the compiler

would use slow local memory to store the data instead of registers.

The bit-reversal operation is a kind of binary data permutation efficiently per-

formed by the BitReverse function (see Figure 4.2(b)). It reads an array of N

elements with stride sd and writes the result to the same array using the same

stride: X [1 : N : sd] := X [1 : N : sd]. For example, the function prototype (line

1) and the N = 4 (lines 4 to 7) and N = 8 (lines 9 to 13) specializations are

displayed in the figure. The definition of a series of specializations usually results

more efficient than the same operation performed by a size-independent generalized

algorithm. Furthermore, if sd is known at compile-time the function performs static

4.1 BPLG basic functions 131

indexing and the source code will be optimized by the compiler into a simple register

renaming.

4.1.2. Computing blocks

In contrast to the reordering blocks, the computing blocks modify their input

data. The different algorithms will be defined properly combining the basic reorder-

ing and computing blocks. Although some parts like size-dependent specializations

or function overloads will be omitted due to space constraints, most of the code

will be shown in the corresponding figures. Note that small auxiliary functions may

be required for some tasks, for instance, our DCT and Hartley implementations

are derived from the complex FFT, therefore a pre-processing or post-processing

filtering stage is required [68, 70]. The real FFT is also a specialized version of the

complex FFT algorithm that treats the real input signal as a complex array of half

the length, avoiding redundant computations [68]. Last, tridiagonal systems have a

similar algorithm structure, but use another data exchange pattern and a radically

different radix operator as will be seen in Figure 4.4.

If problem data scaling for inverse transform is desired the Scale operator can

be applied to the data array (see Figure 4.3(a)). The input data (X) is multiplied

by a scalar value, which is inversely proportional to the specified scaling factor F .

In our case, the value of F is the complete problem size being processed, which is

used in line 3 to calculate at compile-time the corresponding factor value. Then,

for each element of the array the scaling factor is applied (see line 6) taking into

account the optional stride parameter ss. As the number of iterations is known at

compile-time the loop in line 5 will be fully unrolled. Furthermore, if the stride is

known at compile time, the data offsets can also be precomputed.

The Butterfly function handles the computations associated to each radix stage,

receiving a data vector X and a stride value ss. The function prototype is indicated

in Figure 4.3(b) (lines 1 and 2), however the actual computations are performed by

the corresponding specializations (in the example line 5 for N = 2 and line 12 for

N = 4). Two sets of specializations are defined depending on the direction of the

transform (D = 1 for forward transforms like in the figure, and D = −1 for inverse

transforms). Observe that when N > 2 the operation is implemented splitting the

132 Chapter 4. BPLG: A tuned butterfly processing library for GPU

(a) Scale (b) Twiddle

(c) Butterfly (d) Radix

Figure 4.3: Template code for computing building blocks used by the signal trans-
form algorithms.

input and calling the same operation again over each part (with a different data

pointer X and stride ss) until reaching a two element butterfly. This is not a real

recursion, because a different specialization is called. All the stride and pointer

arithmetics involved in the Butterfly function template will be resolved at compile-

time, without any runtime performance penalty. In the case of tridiagonal systems,

as detailed in Section 1.3.1, the butterfly operator is quite different. Figure 4.4

displays two examples of the corresponding code. Butterfly step (Figure 4.4(b)) is

the general case and Butterfly init (Figure 4.4(a)) is a specialization optimized for

the first stage of the algorithm, where the three equations of each triad are equal.

These functions work over equations, progressively reducing the variables as defined

4.1 BPLG basic functions 133

by the algorithm. As the equations are represented by a single float4 no information

is provided about the relative position of the variables, therefore the reduce function

receives a parameter to properly align the equation data for the reduction operation.

The twiddle factors are computed and applied by the corresponding Twiddle

function template (see Figure 4.3(c)). It just multiplies the elements of the input

array X accessed with a stride ss by a complex number. This value is derived

from the location of the element being operated (the iteration index i, declared

in line 4 and used in lines 6 and 7) and the twiddle angle ang that was specified

when calling the function. As in other examples, the size parameter N is used to

statically unroll the loop in line 4. In line 5 a complex variable is defined to hold

the twiddle factor. The trigonometric computation is performed in line 6 using the

iteration number, the value specified by ang and the fastCosSin function. This

will call the CUDA native sincosf intrinsic, which normally executes faster than

many separated requests on a relatively long precalculated table stored in constant

memory (see [99], Section 6.2.5). The angle parameter will always be in the [0 . . . π]

range and there is no loss of precision.

Finally, the Radix function (see Figure 4.3(d)) is used to perform the compu-

tations of each stage. The parameter N determines the radix size, which is used

to select the basic Twiddle, Butterfly and BitReverse kernels to call inside the

template. When the transform direction D is 0 operations are disabled, thus only

the bit-reversal (line 5) and other data permutation take place. As in the previous

cases, the data is stored in the array X and will be accessed using the stride specified

by ss. The optional ang parameter is only used to specify the corresponding twiddle

for line 3 in multi-stage FFTs after the first stage. A mixed-radix overload is defined

for those cases when the input array X contains data from different signals, which

have to be processed in batch mode without interactions among them. Figure 4.4

presents two examples of the Radix function used by the tridiagonal algorithm.

Tridiagonal systems do not use the bit-reversal operator nor the computation of the

twiddle, however they still require the code to handle mixed-radix cases. This task

is performed by the MixR specialization (Figure 4.4(c)), which will always perform

the first stage of the algorithm, thus instead of calling the general Butterfly step

function (like in Figure 4.4(d)) it will use Butterfly init.

134 Chapter 4. BPLG: A tuned butterfly processing library for GPU

(a) Butterfly init (b) Butterfly step

(c) Radix MixR (d) Radix R

Figure 4.4: Specialized template code for the tridiagonal solver algorithm.

4.2. Algorithm design based on BPLG

Thanks to the functions that were introduced in Section 4.1 it is possible to

generate the code of the different algorithms in an easy and compact way. Each

algorithm is implemented by a single main kernel, which is a template with four

parameters: the problem size N , the transform direction D used in the orthogonal

transforms, the radix size R and the amount of shared memory S. These parame-

ters are known at compile-time, therefore conditional execution and many function

calls involving offsets and strides can be easily optimized by the compiler as stated

before. When S > N each CUDA block will be assigned to process S/N indepen-

dent problems in batch mode, therefore increasing performance for large quantities

of small problems. In the general structure of the algorithm, each task will be as-

signed a small part of the computation using a divide and conquer approach. The

portion of the problem and the assigned batch depends on the thread and block

identifiers. After performing the required computations, the threads collaborating

in the same problem will exchange data before the next computing stage. Data

exchanges among threads will be performed in shared memory, which is much faster

and more energy efficient than global memory, however it is relatively small, thus

restricting the maximum problem. Following we will describe two of the library

4.2 Algorithm design based on BPLG 135

kernels in order to explain the general form of the algorithms with more detail.

4.2.1. Signal processing transforms

As already explained, the real FFT (see Section 1.2.2), the DCT (see Sec-

tion 1.2.4) and the Hartley transform (see Section 1.2.3) will be derived from the

complex FFT algorithm using a pre-processing and/or post-processing stage [68,70].

In Figure 4.5 the kernel code for the DCT algorithm is presented. This example will

also allow us to display the usage of the functions that were introduced in Section 4.1.

The kernel has four template parameters which are supplied at compile-time (see N ,

D, R and S in line 1). The signal transforms are performed in-place and the kernel

only requires two runtime parameters (see line 2): a data pointer src (used as both

input and output) and size (which is the actual signal size and can be used to add

padding in order to process non power of two problems). Regarding the structure

of the algorithm, it can be divided into six main sections:

1) Initialization section (represented by lines 3 and 4), where thread and group iden-

tifiers are used to obtain the global memory offsets. In this section the registers and

shared memory resources are also statically allocated based on the kernel template

parameters. Although they are reserved as two simple arrays (shm and reg), the

code completely avoids dynamic indexing of registers because the compiler would

move the structure to local memory.

2) Pre-processing stage (lines 6 to 11), which loads data from global memory and

may also perform some operations over it depending on the particular algorithm

and the direction parameter. For instance, in the case of the forward DCT data

has to be reordered before the execution of the radix stages (packDCT in line 10),

while in the case of the Complex-FFT data is loaded directly to registers with no

pre-processing.

3) First radix stage of the algorithm (lines 13 to 15). When N mod R 6= 0 a mixed-

radix algorithm [26] is performed. There is an optional template argument MixR

(computed at compile-time) which just orders the radix function to perform several

independent radix operators of smaller size with data in the registers. This section

also includes the signal scaling operation for the inverse transform (scale in line 14).

136 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Figure 4.5: Kernel code for the DCT algorithm

4) Remaining radix stages (lines 17 to 33). They are computed using a loop and

each iteration is composed by a reordering stage (lines 24 to 28), which uses shared

memory to exchange information among the threads, and a computing stage (lines

4.2 Algorithm design based on BPLG 137

30 to 32). The data exchange is easily performed by the copy function (lines 26 and

28) when called with different offsets and strides (obtained in lines 20 to 22). The

computing stage is performed by the radix function (line 32), which only requires

the angle for the current iteration and thread (obtained in 31).

5) Post-processing stage (lines 35 to 40), that depending on the algorithm may

perform some computations or reorder the previous results before writing to global

memory.

6) Results are written to global memory (lines 42 to 44). In the case of the DCT

signal data will reside in shared memory, while in the case of the Complex-FFT

no post-processing is required, therefore data can be directly written from registers

after the final radix stage (either line 15 or line 32, depending on N).

4.2.2. Tridiagonal system algorithm

Figure 4.6 presents the code structure for tridiagonal systems, which shares many

similarities with Figure 4.5. The algorithm will solve tridiagonal systems of N

equations using radix R, and once again when S > N each CUDA block will be

assigned to process S/N independent problems in batch mode. Observe that in

this case problem data is stored in a sparse format (see lines 2 and 3 with the

function prototype), using four separate arrays like in NVIDIA’s CUSPARSE library

(gtsvStridedBatch function). There are three read-only buffers for the diagonals

(srcL for lower, srcC for main and srcR for upper) plus another read/write buffer

(dstX) for the right-hand-side term, that will be also used to store the solution

at the end of the kernel. The read only buffers are declared as const restrict

pointers, which in the Kepler architecture enables to optimize the memory access

using texture cache. In contrast to signal processing algorithms there are no pre-

processing or post-processing stages and the code can be divided into five main

sections:

1) Initialization section (lines 5 to 8). Thread and group identifiers are used to

obtain global memory offsets. Register data (line 7) and shared memory space (line

8) are allocated for the equations. The equations are represented by the customized

Float4 data type, and each row requires three equations (regL, regC and regR)

138 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Figure 4.6: Kernel code for the tridiagonal algorithm

to store the triads in the registers. However, to minimize shared memory usage, a

single equation array shm will be allocated.

4.2 Algorithm design based on BPLG 139

2) Load data from global memory (lines 10 to 17). The algorithm can easily perform

coalescent read operations to load data at the beginning of the algorithm without

any shared memory reordering stage. Instead of accessing a single data element per

memory request, we will use 64 bit loads for radix-2 (lines 12 and 13) to fetch 2

consecutive elements from each array, or 128 bit loads for radix-4 (lines 14 and 15),

which provides 4 consecutive elements. These elements can be directly used as the

input arguments of the first radix stage. Remember that initially the three equation

of the triad will be equal, therefore only regC needs to be initialized.

3) First radix stage of the algorithm (lines 19 to 20). In a similar fashion to the

signal processing algorithms, in order to reduce the number of processing stages (and

consequently the amount of intra-block synchronizations) it is possible to define a

radix-R algorithm. The first radix stage is separated from the rest because when

N mod R 6= 0 an initial mixed-radix MixR stage is performed. The higher radix

operators can be defined either recursively or using a specialization for the desired

size, which helps reducing the amount of private registers. For instance, line 20 uses

an optimized version: To keep track of the state of the algorithm, each row needs to

store 3 equations (left, center and right). However at the beginning of the process,

the three equations will be identical, therefore the computations can be simplified.

4) Remaining radix stages (lines 22 to 39). Each iteration of the loop (line 23)

reorganizes data (lines 29 to 35) and then performs a radix stage (line 38). In lines

26 and 27 the offset and strides for the data exchange are efficiently computed using

bit masks, binary operators and displacements. Following, the data exchange is

performed using shared memory.

An interesting optimization over the original algorithm proposed in [135] is to use

only the center equation when performing the exchange. Each thread still requires

to read 3×R equations (lines 33 to 35) to perform the radix-R stage, however it only

needs to write R equations (line 31). This is based on a property of the algorithm,

which relies on the fact that the left and right equations are equal to two of the

center equations (see Section 1.3.1 for more details). This way, the shared memory

bandwidth required by the algorithm can be reduced. Shared memory multiplexing

techniques [140] can be used to further reduce the size of the buffer that exchanges

the equations. Notice that nonetheless computations are performed in registers, and

a radix-4 algorithm requires at least 4 rows × 3 equations × float4 = 48 registers

140 Chapter 4. BPLG: A tuned butterfly processing library for GPU

just to store problem data, not including any temporal storage or intermediate

variables generated by the compiler. Therefore, a radix-8 version would need 96

registers and consequently not suited for the current GPU architectures.

5) Results are written to global memory (lines 41 to 44). Due to the topology of the

Cooley-Tukey algorithm when using decimation in time, coalescence will be good

for equation systems where N ≥ 32 × R. In practice, even for smaller problems

coalescence will not be an issue thanks to the cache hierarchy of the GPU.

4.3. Obtaining optimal parallelism

One of the main requirements for GPU performance is to explicitly expose suffi-

cient parallelism. The parallelism is controlled through the CUDA grid configuration

(block parallelism) and block size (thread parallelism). In order to tune the kernel

and configure the execution for optimal parallelism it is recommended to determine

the main performance limiting factor.

The most relevant factors are the amount of registers assigned per thread, the

shared memory per block, the desired number of concurrent blocks per SM (up to

16 in Kepler and up to 8 in Fermi), and last, the block size (up to 1024 threads per

block in both architectures). Blocks are not started until enough resources are avail-

able, and once started they lock their resources until completion. The programmer

can tweak the balance between the number of simultaneous blocks and the amount

of threads per block in order to offer the hardware enough independent instructions

to accommodate multi-issue scheduling and enough tasks to take advantage of la-

tency hiding techniques. Note that large block sizes may result in more expensive

synchronizations, furthermore a high number of very light tasks may introduce some

overhead. In fact, one of the most time consuming tasks in order to achieve high

performance on the GPU is profiling and tuning the code to find the right balance

among the resources.

4.3 Obtaining optimal parallelism 141

4.3.1. Streaming Multiprocessor (SM) parallelism

Regarding the SM parallelism limiting factor, suppose that BSM is the amount

of blocks that can be processed simultaneously by each SM. It is given by the

expression:

BSM = Min(Br
SM , B

s
SM , B

l
SM , B

max
SM) (4.1)

Where the first term Br
SM is the amount of blocks limited by the number of registers

available in the SM and how many are allocated for each block, and is computed

as:

Br
SM = Rmax

SM /RB, with RB = Rt × L. (4.2)

with Rmax
SM the total number of registers per SM (65536 in Kepler and 32768 in

Fermi architectures) and RB are the amount of registers used by each block, which

is computed as the amount of registers per task Rt (obtained with the –ptxas-

options=-v nvcc compiler flag) multiplied by the number of tasks per block L (can

be adjusted independently for each problem size).

The second term of Expression 4.1 (Bs
SM) is the amount of blocks limited by

shared memory, computed as:

Bs
SM = SmaxSM /SB, with SB = sizeof(Dt)×R× L (4.3)

where SmaxSM is the size of the shared memory (49152 bytes for both architectures)

and SB is the amount of shared memory reserved for each block, which is computed

as the size of the data type (4 bytes for float data, 8 bytes for complex data and

16 bytes for float4 used in tridiagonal equations) multiplied by the product of the

amount of registers R used to store signal data in each thread (depends on the

desired radix size) and the amount of tasks L created in each CUDA block.

The third term of Expression 4.1 (Bl
SM) is the maximum amount of blocks,

limited by the number of warps in-flight of the architecture:

Bl
SM = 32× LmaxSM /L (4.4)

142 Chapter 4. BPLG: A tuned butterfly processing library for GPU

where LmaxSM is the SM warp limit of the architecture (64 for Kepler and 48 for

Fermi).

Finally, Bmax
SM is the last term of Expression 4.1 and represents the SM block

limit of the hardware, which is 16 for Kepler and 8 for Fermi architectures.

4.3.2. Batch execution in order to increase parallelism

In our algorithms each thread performs the computations associated to a R

butterfly in each stage, with data being stored in private registers. Thus, without

considering temporal data storage used by the compiler for any operations, our

algorithm would require at least sizeof(Dt) × R bytes, where Dt is the data type

used by the algorithm. Each problem is processed by L1 = N/R tasks and, in order

to increase the thread parallelism, when L1 is low the amount of tasks per block

can be increased using batch execution L2. Therefore, each block will be composed

by L = L1 × L2 tasks. Although computations are entirely performed in registers,

data interchanges within each block rely on shared memory, which should be large

enough to fit the data stored in registers during the exchanges.

Depending on the data type, the problem size and the desired batch execution,

the required shared memory will be SB = sizeof(Dt)×N×L2 bytes. The maximum

size for our algorithm using real signal data is N = 8192, for complex signals is

N = 4096, and for tridiagonal systems is N = 2048. These limits are given by the

maximum shared memory that can be allocated for a single block. Bigger problems

would require a different approach, like a staggered data exchange or a multi-pass

algorithm, which will be studied in a future work.

4.3.3. Simultaneous block processing optimization

Our main objective in the optimization of the algorithm is to maximize BSM ,

adjusting R and L2 to tune the algorithm for each problem size on each architecture.

To illustrate our proposal, suppose that we are trying to optimize the processing

of the complex FFT with N = 128 and R = 4 for the Kepler architecture. According

to the compiler this kernel requires 28 registers, therefore Br
SM = 65536/(28 × L).

4.4 Experimental results 143

Table 4.1: Parameter configuration for the complex FFT algorithm
N n R Rt L1 L2 SB BSM
4 2 2 14 2 64 2048 16
8 3 2 18 4 32 2048 16

16 4 2 18 8 16 2048 16
32 5 2 18 16 8 2048 16
64 3 4 28 16 8 4096 12

128 3.5 4 28 32 4 4096 12
256 4 4 27 64 2 4096 12
512 4.5 4 28 128 1 4096 12

1024 5 4 27 256 1 8192 6
2048 3.6 8 37 256 1 16384 3
4096 4 8 36 512 1 32768 1

On the other hand, Bs
SM = 49152/(sizeof(Dt)× 4× L) and Bl

SM = 32× 64/L. In

order to maximize these expressions they can be rewritten assuming that Bx
SM = 16,

which is the maximum allowed value given by Bmax
SM . Consequently: Br

SM → L =

65536/(28 × 16) = 146.3, Bs
SM → L = 49152/(8 × 4 × 16) = 96, and Bl

SM → L =

32 × 64/16 = 128. Therefore, the recommended values for L are 96 or, rounding

to the next power of two, 128 (in practice both configurations offer nearly identical

results).

Regarding the amount of threads per block, L = L1×L2 and L1 = 128/4 = 32,

which is exactly one warp, therefore in this case L2 = 128/32 = 4, thus 4 warps

will be working in batch mode processing different signals within each block and 12

blocks will be simultaneously processed by each SM. In the example, using R = 4 the

algorithm will perform n = log4(128) = 3.5 stages, which means one radix-2 stage

followed by three radix-4 stages (the optimal R will be analyzed in Section 4.4).

For more information, the final configuration table for the complex FFT is pre-

sented in Table 4.1. Observe that for N > 512 BSM keeps decreasing as more shared

memory SB is reserved for each block, however the performance impact is mitigated

by the increase in thread parallelism L1.

4.4. Experimental results

144 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Table 4.2 describes the test platforms. All the tests were evaluated in single

precision using problem sizes in the range N = {4, . . . , 4096}, with data already on

the GPU memory at the beginning of each test. Batch execution is used to process

224/N different problems, therefore as the input signal increases the number of batch

executions decreases. In the case of the FFT the performance will be expressed in

GFlops using Equation (1.4) for the complex FFT and Equation (1.5) for the real

FFT. As far as we know there is no standardized expression for the DCT and the

Hartley transform, therefore to offer a similar measurement we will use the same

formula as the real FFT.

The Titan GPU is based on the Kepler architecture and allows the programmer

to select the desired bank size configuration for the shared memory, which can be

either 4 bytes (by default, offers finer grained access) or 8 bytes (improved band-

width). After testing the influence of this parameter we saw little difference in our

algorithms (around 0.1% better for 4 bytes), therefore the default configuration will

be used. Regarding the configurable L1 cache and shared memory size of the GPUs,

the default configuration with 48 KB of shared memory and only 16 KB of L1 cache

was used. Our implementation makes extensive usage of shared memory for data

exchange among the tasks, however it does not benefit from the increased L1 config-

urations. Therefore, the smaller shared memory configuration would result in lower

performance due to the reduced amount of SM block parallelism.

4.4.1. Orthogonal signal transforms performance

In this section we will analyze the global performance of the complex FFT, real

FFT, DCT and Hartley transforms in the two GPU architectures. Obviously the

more powerful Kepler GPU will offer better performance, but it is also interesting to

check the scalability of the algorithm. For comparison purposes, NVIDIA’s CUFFT

5.0 results will be included in the figures. As the CUFFT does not support the

Hartley and the DCT transforms, they were implemented using a similar strategy

to BPLG. However, as we do not have access to the source code, this requires to

launch at least two separate kernels, thus limiting the maximum performance. As far

as we know there are no other general GPU implementations for these algorithms.

The DCT included in the CUDA SDK is an specialized version for small 2D blocks

4.4 Experimental results 145

Table 4.2: Description of the test platforms
Platform 1 Platform 2

CPU Core i7 2600 Core 2 Duo E8400
Memory 8 GB DDR3 1333 2 GB DDR3 1333
OS Win7 x64 SP1 WinXP x64 SP2
Compiler MSVC 2010 SP1 MSVC 2010 SP1
GPU GeForce 580 GeForce Titan
GPU v320.17, SDK 5.0 v320.17, SDK 5.0

with a fixed size of 8 × 8, and other publications like [84] do not offer comparable

benchmarks. The FFTW 3.3.3 library [78] will be also included as a reference point

to represent the performance of a SSE (Streaming SIMD Extensions [50]) optimized

implementation running on a recent multi-core CPU (only Platform 1 results are

used for the FFTW).

4.4.1.1. Balancing warp and block parallelism

As mentioned in Section 4.3 it is very important to configure the kernel for

optimal SM usage. In fact, finding the right balance between warp parallelism

and block parallelism usually results a time-consuming task for programmers. To

facilitate the study of this factor Table 4.3 presents the complex FFT performance

on Platform 1 (GeForce 580) for three different radix configurations depending on

the signal size N and the amount of tasks per block L. Unavailable configurations

are shaded in gray, while the best cases are marked in bold. The first group shows

the results for the radix-2 algorithm. Observe that with some exceptions L = 128

tends to offer the best performance. The next group repeats the analysis for radix-4.

Excluding the first three cases, the best configuration is again L = 128. Finally,

the third group displays the results for radix-8. In this case the best performance

is usually obtained for L = 64, however the results do not outperform the radix-4

version. The only exceptions are the two last cases, N = 2048 which requires 256

threads (L = 256) and N = 4096 which requires L = 512. Comparing the results

for the different radix values it can be observed that for N = {4 . . . 64} the best

performance is obtained with the radix-2 version of the algorithm. In general, due

to the small step size, radix-2 algorithms are only suitable for these smaller problems

or to perform the mixed-radix stage. For N = {128 . . . 1024} the situation changes

and radix-4 performs better. Finally, for N = {2048, 4096} the radix-8 version

146 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Table 4.3: Impact of the task number for the FFT using Radix-2, Radix-4 and
Radix-8 (Platform 1)

Radix-2 Radix-4 Radix-8
N L64 L128 L256 L64 L128 L256 L512 L64 L128 L256 L512
4 103.5 105.9 105.5 76.1 75.7 75.5 71.0
8 149.1 156.3 155.5 117.2 116.5 116.4 104.5 77.4 77.3 76.7 72.7

16 159.9 192.6 192.6 156.4 154.1 152.5 141.2 81.6 81.4 80.3 65.7
32 188.7 251.1 249.4 211.4 213.0 212.4 205.6 157.3 156.8 153.2 117.3
64 266.1 315.1 316.4 312.5 315.9 315.8 312.9 261.6 256.7 251.0 182.5

128 239.5 317.5 301.4 366.4 368.2 368.0 358.7 316.7 305.4 288.0 172.8
256 323.9 308.3 418.7 421.1 420.8 407.9 407.1 399.0 372.1 216.2
512 317.5 473.6 468.5 416.8 453.0 442.2 404.1 239.6

1024 521.8 461.2 484.9 441.8 254.1
2048 455.0 486.0 278.0
4096 300.9

comes ahead. The radix-16 configuration requires too many registers per thread,

resulting in local memory spilling.

Table 4.4 repeats the same analysis for Platform 2 (GeForce Titan). In the case

of radix-2, once again L = 128 tends to offer the best performance. In the case of

radix-4 the results are a bit different, and excluding those few cases where radix-2

performs better, the best configuration is now L = 256. Finally, for radix-8 the

best performance is usually obtained for L = 64, but like in the previous platform,

the results do not outperform the radix-4 version (except the two last cases). The

optimal ranges for each radix are similar, for N = {4 . . . 32} the best performance

is obtained with the radix-2, for N = {64 . . . 1024} radix-4 performs better and for

N = {2048 . . . 4096} the radix-8 version is faster. According to our tests, going to a

radix-16 configuration would not increase the performance.

4.4.1.2. Complex FFT performance

Figure 4.7 shows the performance of the complex FFT on both platforms. As

it can be observed, on Platform 2 our generic approach (BPLG-cFFT) offers very

similar performance to the CUFFT for problem sizes up to N = 1024 with 701.9

GFlops, while the CUFFT only offers 680.2 GFlops. For bigger problems the shared

memory becomes the main limiting factor of our algorithm. Surprisingly, although

the reduced complexity of the proposed algorithm, the average advantage of the

4.4 Experimental results 147

Table 4.4: Impact of the task number for the FFT using Radix-2, Radix-4 and
Radix-8 (Platform 2)

Radix-2 Radix-4 Radix-8
N L64 L128 L256 L128 L256 L512 L1024 L64 L128 L256 L512
4 143.6 143.7 142.1 111.3 111.8 106.1 80.6
8 211.6 220.3 220.2 171.3 172.9 155.4 117.0 116.1 115.9 114.9 108.0

16 222.8 266.6 271.0 227.4 224.4 207.4 170.3 123.5 123.1 121.0 98.1
32 273.9 344.7 343.0 302.5 308.4 299.4 203.2 236.9 235.7 228.5 175.9
64 369.2 434.0 432.4 438.7 439.4 432.9 265.4 358.9 353.1 339.0 266.5

128 316.5 371.6 370.4 511.9 513.2 495.1 283.8 436.5 418.7 395.8 248.1
256 391.3 391.1 584.2 585.9 562.0 325.7 574.3 560.1 519.3 309.9
512 383.0 646.2 628.5 576.1 324.9 618.9 596.0 562.8 343.5

1024 701.9 628.4 364.7 663.6 619.6 368.2
2048 629.5 360.5 667.3 401.3
4096 396.0 436.1

CUFFT is only 7.3%. Our BPLG-cFFT algorithm is able to adapt quite well to

the Fermi architecture of Platform 1, however in this case the CUFFT is very

optimized and has more advantage (around 14.2% on average). Nonetheless, in

some cases our algorithm is able to overtake the CUFFT, for instance, for N = 128

we achieve 322.9 GFlops, while NVIDIA’s implementation only offers 313.2 GFlops.

The FFTW library is one of the most efficient CPU libraries, nonetheless, it only

achieves around 50 GFlops for the best cases.

4.4.1.3. Real FFT performance

Next, Figure 4.8 analyzes the performance of the real FFT. Although the amount

of transforms per second is higher than the complex FFT, each transform performs

fewer arithmetic operations, thus penalizing the GFlop estimation. The optimal

radix is similar to the complex FFT, but as half the data is required it is displaced one

location. For instance, while for N = 2048 BPLG-cFFT performs better with radix-

8, BPLG-rFFT would obtain the optimal behavior using radix-4. The performance

scaling is not so proportional to the signal size, but is quite good, specially compared

to the CUFFT. Excluding the outlier case for N = 4, the average improvement

over the CUFFT on Platform 1 is on average 42.2%, while on Platform 2 reaches a

remarkable 60.4%. Observe that our BPLG-rFFT algorithm executed on Platform 2

has very similar performance to the CUFFT executed on Platform 1, which is quite

148 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Figure 4.7: Algorithm performance for the complex FFT algorithm

more powerful. The reason behind this behavior is that according to NVIDIA’s

profiler the CUFFT is launching two separate kernels for each transform, therefore

requiring twice the global memory bandwidth for the same signal size. The real

FFTW offers around half the performance of the complex transform, at around 25

GFlops when N > 256.

4.4.1.4. Discrete Cosine Transform performance

Figure 4.9 displays the test results for DCT algorithm on both platforms. The

CUFFT results are also displayed, but recall that NVIDIA’s library does not directly

support this transform, therefore it is computed with the aid of a second filtering

kernel, doubling the global memory bandwidth requirements. As expected BPLG-

DCT outperforms the CUFFT version, moreover, in many cases it is able to offer

more than twice the computation rate. On average our library is around 87.1%

faster on Platform 1 and 149.0% faster on Platform 2. Both GPU libraries clearly

4.4 Experimental results 149

Figure 4.8: Algorithm performance for the real FFT algorithm

outperform the FFTW, which is always below 16 GFlops.

According to the profiler analysis, the pre-processing and post-processing stages

introduce some overhead, and the shared memory access pattern generates more

replays than the real FFT, which explains that lower performance. For instance, for

N = 1024 the BPLG-DCT algorithm reaches 142.9 GFlops on Platform 2 and 346.3

GFlops on Platform 1, while in the real FFT transform BPLG-rFFT was able to

obtain 365.9 GFlops and 580.2 GFlops, respectively.

4.4.1.5. Hartley Transform performance

Figure 4.10 presents the execution results of our library for the Hartley algorithm

using both platforms. Once again the CUFFT version is computed using the FFT

and filtering stage kernel, offering about half the performance. More specifically, on

Platform 1 our library is on average 110% faster than the CUFFT, while on Platform

150 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Figure 4.9: Algorithm performance for the Discrete Cosine Transform algorithm

2 our mean advantage is 118% (in both cases excluding the outlier observed for

N = 4). Notice that although the overall graphic outline is very similar to the DCT,

both GPU libraries obtain better results in the Hartley transform. For instance,

for N = 1024 BPLG-Hart obtains 216.2 GFlops on Platform 1 and 408.1 GFlops

on Platform 2. The reason behind this is the shared memory access pattern of the

filtering stage, which is simpler in the Hartley transform. Observe that the FFTW

is also a bit faster than in the case of the DCT, although always below 20 GFlops.

4.4.2. Tridiagonal Equations System performance analysis

The performance of the tridiagonal solvers will be measured in million rows per

second as described in Expression 1.25. The batch size was defined as batch = 222/N ,

therefore all the tests will process the same number of rows. Two reference points

are provided for comparison purposes: one is NVIDIA’s CUSPARSE library (v5.0),

4.4 Experimental results 151

Figure 4.10: Algorithm performance for the Hartley Transform algorithm

and the other is the algorithm presented in [142], which is available as part of the

CUDPP library (v2.1).

4.4.2.1. Balancing warp and block parallelism

Once again it is important to find the optimal balance between warp-level paral-

lelism and block-level parallelism to maximize SM utilization. Table 4.5 shows the

tridiagonal system resolution performance of BPLG-TS on Platform 2 depending

on the radix size R, the problem size N and the amount of tasks per block L. Un-

available configurations are shaded in gray, while the best cases are marked in bold.

Observe that L = 128 tends to offer better performance for radix-2, only the two

first system sizes (N = 4 and N = 8) perform faster with L = 64. If R is increased

to radix-4 L = 64 is the preferred option, though L = 128 is competitive at the

beginning, as size increases the gap between L = 64 and L = 128 becomes wider. In

this case radix-8 results are not provided because the algorithm requires too many

152 Chapter 4. BPLG: A tuned butterfly processing library for GPU

Table 4.5: Impact of the task number for tridiagonal systems using Radix-2 and
Radix-4 for BPLG-TS (Platform 2)

Radix-2 Radix-4
N L32 L64 L128 L256 L512 L1024 L32 L64 L128 L256 L512
4 6003 9272 9610 9512 9228 5511 7635 9314 6326 6365 6478
8 5459 7412 7568 7535 7072 4433 5724 6509 6468 6216 4098

16 3887 5367 5479 5474 5231 3634 5390 7396 7299 7094 4463
32 3194 4670 4786 4700 4550 3257 5545 6744 6641 6265 4264
64 3252 5289 5656 5431 5014 3384 5292 6993 6845 6353 3870

128 4652 5013 4872 4061 3054 4666 5838 5721 5288 4568
256 4501 4037 3677 2777 6030 5768 5420 3195
512 3582 3348 2551 4522 4482 3072

1024 3092 2350 4332 2814
2048 2179 2693

registers, which incurs in local memory spilling and the consequent performance

degradation. Notice that there is a similar resource balance when using radix-2

and L = 128 compared to radix-4 and L = 64, as both process 256 equations per

block. Nonetheless, radix-4 is usually better because it minimizes shared memory

exchanges and synchronizations, which are more expensive compared to the BPLG

signal processing algorithms because more data is exchanged in each stage.

4.4.2.2. Tridiagonal system resolution performance

As it can be seen in the Figure 4.11, BPLG-TS implementation offers excellent

performance compared with other two state-of-the-art solutions. The batch support

provides a very good startup, which makes the library suitable for small problems

(up to 9609.8 Mrows/sec for N = 4 running on Platform 2). The percentages near

the lines of BPLG-TS represent the performance improvement over the fastest one

from the other two implementations (CUDPP or CUSPARSE) running on the same

platform. Even in the worst case BPLG-TS achieves over an 83.6% advantage over

CUSPARSE. Furthermore, BPLG-TS executed on Platform 1 is usually faster than

the other two running on Platform 2. The jagged outline, like in N = 32 or N = 128,

is due to the mixed-radix stage. Performance tends to decrease with the number of

stages because more synchronizations are required and the shared memory becomes

a scarce resource, which reduces SM block parallelism. As in the case of the signal

transforms, for equation systems where N > 2048 a different approach would be

4.4 Experimental results 153

Figure 4.11: Algorithm performance for tridiagonal equation system resolution

required, like using a multi-kernel algorithm. This will be considered on future

work.

Regarding the other two libraries, CUSPARSE and CUDPP, the observed per-

formance difference between the two GPU architectures is smaller, specially in the

case of CUDPP. Surprisingly, NVIDIA’s own library usually offers the worst per-

formance. Profiling CUSPARSE reveals that it is launching several kernels to solve

the batch of problems, therefore the global memory bandwidth becomes a limiting

factor. Only for the larger problems it is able to amortize the cost of the multi-kernel

approach, which hints that it was probably designed with large equation systems

in mind. Last, regarding CUDPP, at the beginning is quite similar to CUSPARSE,

however as the problem size increases it gets better, being able to improve NVIDIA’s

library performance. Nonetheless, for N > 512 it becomes slower. This behavior is

easily explained by the fact that each system is assigned to a single CUDA block. For

small systems the kernel will be launched with a single warp per block, furthermore

154 Chapter 4. BPLG: A tuned butterfly processing library for GPU

some of the threads will be idle. For larger problems the shared memory becomes a

limiting factor.

As a brief summary of this chapter, remark that BPLG outperforms other state-

of-the-art solutions for all the considered algorithms but for BPLG-cFFT case. Next

chapter of this thesis shows how even for the complex FFT, the proposed method-

ology is able to be competitive respect to the NVIDIA CUFFT.

Chapter 5

Efficient Index-Digit Algorithms

Design for GPU Architectures

Detailed hardware specification and theoretical performance study provide in-

formation that can be used by the programmer in the optimization of applications.

Many works were proposed about the elaboration of models for GPU performance

analysis [116, 121], while other works study concrete GPU architectures through

micro-benchmarks [43,126,141].

Autotuning [53,65,136,137] is also a very interesting topic for GPU code devel-

opment, although additional programming efforts are required. Autotuning requires

writing code in a parametrized way to accommodate various performance tuning

parameters, a pruned search-based strategy is commonly used to select the most

efficient solution.

Regarding FFT autotuning, in [136] a wide range of variants are generated and

the best solution is selected, however the methodology is centered only in the FFT.

In [137] a different methodology of autotuning for OpenCL is used, it is based on

compiler technology with a two-stage adaptation approach in different levels. In [4]

3D FFTs are performed on GPU with autotuning, but this approach does not

explicitly consider some main performance factors such as the right balance between

the high number of simultaneous tasks and the proper utilization of the shared

resources.

155

156 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Regarding autotuning for tridiagonal solvers, [1] uses an autotuning design for

large systems that cannot be stored on the shared memory and require a multi-stage

method.

In contrast, in this chapter we provide an alternative tuning optimization so-

lution based on resource analysis, obtaining a limited search space by pruning it

according to a series of performance features. More precisely, our approach is based

on a two-stage methodology suitable for algorithms described as index-digit permu-

tations. In the first stage a set of factors, that characterize the behavior of GPU

in terms of performance, is obtained from a resource analysis. In the second stage,

operator string manipulation [30] combined with tuning mapping vector is used to

describe and adjust the data distribution in the GPU resources according to the

resource analysis made at the first stage. Furthermore, the operator string ma-

nipulation enables the design of modular yet efficient kernels tuned for the GPU

architecture, with a compact notation to represent the operations carried by the al-

gorithm. Our design makes extensive usage of template metaprogramming [104], so

many operations are performed at compile-time reducing any performance penalty,

with the advantage of designing a flexible implementation while minimizing code

replication. Thanks to the template functions the main kernel code can be easily

obtained from the corresponding operator strings following simple conversion rules.

Specifically, our methodology has been applied to develop flexible Index-Digit

algorithms for CUDA GPUs such as the FFT (Fast Fourier Transform) algorithm

(ID-FFT) and a tridiagonal solver algorithm (ID-TS), showing that our work is able

to surpass the performance of NVIDIA’s libraries and other efficient proposals from

the bibliography.

5.1. A 2-stage methodology for efficient index-

digit algorithms design

Our approach is different from other tuning methodologies because only a few

kernels are generated according to a small number of parameters but providing

an efficient solution. Specifically, our methodology is based on two stages: GPU

resources utilization analysis and operators string manipulation.

5.1 A 2-stage methodology for efficient index-digit algorithms design 157

In the GPU resource utilization analysis stage, different features are analyzed

in order to obtain the main factors that affect to performance. Concretely, a key

property is to establish a balanced ratio between the number of parallel threads and

the amount of shared resources that can be assigned to each thread. This can be

described quantitatively through what we call resource factors.

In the operators string manipulation stage, algorithms are formulated with a set

of operators which allow us to describe the operations carried out and redistribution

of data among GPU resources. The distribution of data among GPU resources is

described as the combination of two techniques: mapping vector and index-digit

permutations [20], which allow us to define first the initial data distribution and

then the data redistribution in each stage of the algorithm among resources of each

SM of a GPU. The objective is to design efficient algorithms that can be easily

adapted to architecture characteristics while optimizing all the features described in

Section 1.1.3 using the tuning mapping vector explained in Section 5.1.1.

5.1.1. Applying Mapping Vector Techniques to GPUs

This section describes the data distribution on the SM resources using a mapping

vector based on the index-digit notation [30].

Let us consider the mapping of a one dimensional data sequence of size N = Rn,

where R depends on the selected radix size. We will denote this data sequence

using the index-digit representation. That is, data item x(t) with index t = tn ·
Rn−1 + · · ·+ t2 ·R+ t1 is written as [tn · · · t2t1]. In the GPU, kernel data is divided

among B = rb execution blocks, and each of these blocks executes L = rl threads.

A thread performs the calculation of P = rp data stored in private registers and

threads within a block have access to S = rs data stored in shared memory. Then,

the mapping of signal data of size N = rn within of rbatch number of signals that will

be simultaneously processed by the kernel in a single invocation is identified with

a 5-tuple of the form (n, p, s, l, b). Specifically, our proposal is based only on three

parameters of these (n, p, s) because s = p+ l, as all the data stored in registers also

has a copy in shared memory to perform the inter-stage memory exchanges, and

b = batch− (s− n) is given by the batch size, which is only known at runtime.

158 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Signals are stored on GPU ’s global memory with a consecutive data distribution

according to the following mapping vector:

[tn+batch · · · tn+1 tn · · · t1] (5.1)

This means that data from signals with size N will be stored consecutively in global

memory. Hence, the first signal of the batch will start at location 0, the second at

location N , and the i-th signal of the batch at location i×N .

The mapping vector of data on the SM resources that we consider is

[tn+batch · · · ts+1︸ ︷︷ ︸
b

l︷ ︸︸ ︷
tl+p · · · tp+1

p︷ ︸︸ ︷
tp · · · t1︸ ︷︷ ︸

s

] (5.2)

This means first that each block i = [tn+batch · · · ts+1] processes S data that are

stored in shared memory and second that thread j = [tl+p · · · tp+1] within a block

processes P data where datum [tl+p · · · tp+1 tp · · · t1] is stored on the register [tp · · · t1]
of thread j.

For example, Figure 5.1 displays the mapping to the GPU resources where s = 9

and p = 4 for the case r = 2 and n = 4. In this case, signals are of N = 16 data size,

so observe how each block receives a set of input signals, in this case 512/16 = 32

signals. Data are stored in shared memory, and evenly distributed to the registers

of the 32 threads within each block; and each thread processes only a signal of the

batch of 32 signals. The mapping vector for the example is:

(5.3)

For illustration purposes, suppose that data 1 from input signal 65 (element 1041

of Figure 5.1) is assigned to GPU’s global memory position:

[· · · 0 0 1 0 0 0 0 0 1︸ ︷︷ ︸
batch

0 0 0 1︸ ︷︷ ︸
n

] (5.4)

applying the mapping of Expression 5.3, it will result in the following distribution

5.1 A 2-stage methodology for efficient index-digit algorithms design 159

Figure 5.1: Input data mapping on the GPU resources where r = 2, n = 4, s = 9
and p = 4

in the SM :

[· · · 0 1 0︸ ︷︷ ︸
b

l︷ ︸︸ ︷
0 0 0 0 1

p︷ ︸︸ ︷
0 0 0 1︸ ︷︷ ︸

s

] (5.5)

This data is processed by thread 1 of block 2, stored in the register 1 and also stored

in shared memory location 17.

5.1.2. Index-digit permutations

In this section we present a set of algebraic operators [30] that allow the descrip-

tion and simplification of index-digit algorithms. Index-digit permutations show the

rearrangement of a data array according to a common permutation of the digits of

each element’s index. This formulation provides a clear and precise description of

the data reordering, being useful in the design and simplification of the different

160 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

algorithms.

For writing the expressions of the operators we will follow the convention of

composing operators from left to right. For example in the operator string φ1φ2,

we first execute φ1 and then, φ2. We will define two types of operators, which

correspond to computations and data permutations respectively. First, we define

the operator that represents the computations.

Definition 1. The butterfly operator, Br
i , with 1 ≤ i ≤ n, r = log2R, and n =

logRN , reads those sets of R data items whose position differs precisely in their i-th

digit, performs the required radix operation over them and writes the R results.

In general, to simplify the notation when using the basic radix-2 algorithm, the

expression of this operator will be simply referred to as Bi instead of B1
i . Further-

more, in order to clarify the explanation, we keep the index-digit representation with

R = 2 and n = log2N . Therefore, the butterfly operator Br
i , with 1 ≤ i ≤ n− r+ 1,

reads those sets of R data items whose position differs precisely in their [ti+r−1 · · · ti]
digits, performs the required radix operation over them and writes the R results.

The second type of operators represent memory access patterns and data per-

mutations.

Definition 2. The perfect unshuffle operator Γi,j, i ≥ j, performs a cyclic shift to

the right between the i and j-th digits of the index-digit representation of the data,

Γi,j[tn · · · t1] = [tn · · · ti+1tjti · · · tj+1tj−1 · · · t1]. (5.6)

We also define a generalization of this operator, Γmi,j. Instead of performing a

single cyclic shift to the right, it will performm consecutive shift operations, as an ex-

ample Γ2
i,j = Γi,jΓi,j. For instance, Γ2

7,2[t8 t7 t6 t5 t4 t3 t2 t1] = [t8 t3 t2 t7 t6 t5 t4 t1].

Definition 3. The perfect unshuffle operator Γi,j,k,l, i ≥ j ≥ k ≥ l, is similar to the

previous definition, however it is applied to two digit subfields {i . . . j} and {k . . . l}
of the index-digit representation,

Γi,j,k,l[tn · · · t1] = [tn · · · ti+1tlti · · · tj+1tj−1 · · · tk+1

tjtk · · · tl+1tl−1 · · · t1]. (5.7)

5.1 A 2-stage methodology for efficient index-digit algorithms design 161

Therefore data in the range {tj−1 · · · tk+1} remains unmodified. For instance,

Γ8,6,2,1[t8 t7 t6 t5 t4 t3 t2 t1] = [t1 t8 t7 t5 t4 t3 t6 t2]. An analogous operator σi,j,k,l

with two subfields is defined for the shuffle operator.

Definition 4. The digit reversal operator ρi,j, i ≥ j, performs the reversal of the

digits between the i and j-th digit of the index-digit representation of the data,

ρi,j[tn · · · t1] = [tn · · · ti+1tjtj+1 · · · titj−1 · · · t1]. (5.8)

For instance, the digit reversal of the sequence ρ7,2[t8 t7 t6 t5 t4 t3 t2 t1] =

[t8 t2 t3 t4 t5 t6 t7 t1]. This operator coincides with its inverse as ρi,jρi,j = 1.

5.1.3. Operator string algebraic properties

Following we will define some algebraic properties of the operators that will allow

us to manipulate the sequences and perform expression transformations [30]:

Lemma 1. Two or more butterfly operators can be grouped together increasing the

radix:

Br
i·r−1B

r
i·r = Br+r

i (5.9)

Proof: Immediate, having two bases δ and λ with δ = λk the following equality

is also true: (· · · a3a2a1)λ = (· · · q3q2q1)δ where qj = (akj+k−1 · · · akj+1akj)

Lemma 2. The butterfly operator Bi commutes with all those operators that do not

modify the i-th digit, for example, Biσj,k = σj,kBi when (i > j or i < k). Otherwise,

if an operator modifies the i-th digit:

σk,jBi =

Bi−1σk,j j < i ≤ k

Bkσk,j j = i, i ≤ k
(5.10)

For instance, suppose that k = 7, j = 2 and i = 4:

162 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

And in the case of the perfect unshuffle operator:

Γk,jBi =

Bi+1Γk,j j ≤ i < k

BjΓk,j j ≤ i, i = k
(5.11)

For example, suppose that k = 7, j = 2 and i = 5:

Lemma 3. When the exponent m of a shuffle operator is equal to the space between

i and j, the operator becomes the identity and does not modify the expression:

σmi,i−m+1 = Γmi,i−m+1 = 1 (5.12)

For instance, suppose that m = 4 and i = 6, Γ4
6,3 can be decomposed in four

consecutive Γ1
6,3 operators:

Lemma 4. The perfect shuffle operator σ and the perfect unshuffle operator Γ per-

form inverse displacements, therefore consecutive σ and Γ operators with the same

parameters results in the identity:

σmi,jΓ
m
i,j = Γmi,jσ

m
i,j = 1 (5.13)

5.1 A 2-stage methodology for efficient index-digit algorithms design 163

For example, suppose that m = 1, i = 7, j = 2:

The proofs of the last three lemmas are immediate by the definition of the corre-

sponding operators.

Lemma 5. A sequence of consecutive Γ operators can be rewritten using a single

Γm operator as follows:

m−1∏
k=0

Γi,j−k = Γmi,j−m+1ρi,i−m+1 (5.14)

The product symbol is just a notation used to generate the sequence, remember

that in general the operators do not satisfy the commutative property. This lemma

can be proven by induction on m. For instance, suppose that i = 7, j = 4 and

m = 3:

As it will be shown, thanks to the detailed operator string algebra it is possible

to derive other algorithms from a given expression.

5.1.4. Optimized algorithm mapping using operator strings

To show how the algebraic manipulation works we present an example.

164 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

The Stockham [127] algorithm can be represented using the following expression:

n∏
i=1

Γn,n−i+1B
r
n. (5.15)

Thanks to the intermediate Γ operators the output will be in bit-reversed order

without requiring an explicit ρ operator like the Cooley-Tukey [66] algorithm does.

Supposing that n = 6 and r = 1, the corresponding operator sequence would be:

Γ6,6B6Γ6,5B6Γ6,4B6Γ6,3B6Γ6,2B6Γ6,1B6 (5.16)

According to Lemma 2 the Γ operators in even positions can be moved before

their previous B6 operator, accordingly modifying the butterfly index to B5:

Γ6,6Γ6,5B5B6Γ6,4Γ6,3B5B6Γ6,2Γ6,1B5B6 (5.17)

For each sequence of the form B5B6 the property described in Lemma 1 is ap-

plied, the expression is simplified replacing the radix-2 butterfly operators with more

compact and efficient radix-4 operators:

Γ6,6Γ6,5B
2
5Γ6,4Γ6,3B

2
5Γ6,2Γ6,1B

2
5 (5.18)

Applying the property described in Lemma 5 it is possible to replace each se-

quence of two Γ operators by a single Γ2 followed by a ρ6,5 operator. Notice that

this property does not change the data communication pattern between butterfly

steps:

Γ2
6,5ρ6,5B

2
5Γ2

6,3ρ6,5B
2
5Γ2

6,1ρ6,5B
2
5 (5.19)

Using Lemma 3 the first operator of the sequence can be omitted, because Γ2
6,5

is an identity. The sequence ρ6,5B
2
5 will be treated as our basic building block. The

FFT is finally expressed using three identical blocks which operate on the most

significant bits of the signal, separated by two unshuffle operators that perform the

intermediate data exchanges:

ρ6,5B
2
5 Γ2

6,3 ρ6,5B
2
5 Γ2

6,1 ρ6,5B
2
5 (5.20)

5.1 A 2-stage methodology for efficient index-digit algorithms design 165

The last operator string only takes into account the problem data, but for the

final expression the batch within the shared memory space should be also considered.

In our example, using Lemma 4 we can add two opposite shuffles at the beginning

of the last expression, therefore:

Γ6
s,1σ

6
s,1 ρ6,5B

2
5 Γ2

6,3 ρ6,5B
2
5 Γ2

6,1 ρ6,5B
2
5 (5.21)

And now σns,1 can be displaced to the end of the string using Lemma 2, just

updating the affected indexes:

Γ6
s,1ρs,s−1B

2
s−1Γ

2
s,s−3ρs,s−1B

2
s−1Γ

2
s,s−3ρs,s−1B

2
s−1σ

6
s,1

Hereby, batch data is included, using the shared memory space to perform s−n shifts

at the beginning of the process, so the register data is in the higher bits. Omitting

the first and last displacements for simplicity, the expression can be rewritten as:

3∏
i=1

Γ2
s,s−2i+1ρs,s−1B

2
s−1 (5.22)

Expression 5.22 can also be obtained from the ID-FFT algorithm that we pro-

pose, which has the following expression:

bn/rc∏
i=1

Γrn,n−i·r+1 ρn,n−r+1 B
r
n−r+1 (5.23)

If generalized to use shared memory, assuming that s ≥ n and n mod r = 0, it can

be rewritten as:

bn/rc∏
i=1

Γrs,s−i·r+1 ρs,s−r+1 B
r
s−r+1 (5.24)

For the particular case of the example, when n = 6 and r = 2, the resulting expres-

sion is:

3∏
i=1

Γ2
s,s−2i+1 ρs,s−1 B

2
s−1 (5.25)

166 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

This is equal to Expression 5.22, which was originally derived from Expression 5.15

using the algebraic properties introduced in Section 5.1.3.

5.2. GPU resources utilization analysis stage

GPU performance depends on the right balance between the high number of

simultaneous tasks and the proper utilization of the shared resources in the hard-

ware. An optimal balance can be expressed by a series of resource factors that will

be established in this section.

Trying to improve performance by increasing the number of warps per SM may

not result the best option in many cases. In fact, the GPU hardware is able to

provide very good performance even at lower occupancies [131, 132]. Lowering the

occupancy provides more resources for each thread, thus, more work can be done

in a single thread and there will be more opportunities to hide both instruction

and memory latency. Instead of aiming to maximize the number of warps per SM

(SM warp parallelism) we will focus on the number of blocks per SM (SM block

parallelism), trying to keep processing the maximum amount of simultaneous blocks

per SM (8 in the case of Fermi and 16 in the case of Kepler based GPUs).

Figure 5.2 analyzes how in the Fermi architecture the number of blocks that

can be managed by each SM affects the maximum number of registers per thread

in terms of the warps within the block. In the case of Kepler the total amount of

registers per SM is doubled from 32768 to 65536, but so is the amount of maximum

blocks per SM from 8 to 16, therefore maintaining the same optimal proportions.

The number of registers used by each thread is assigned at compile-time. In hardware

with CUDA capabilities 2.x or 3.0 it is not possible to assign more than 63 to the

same thread. Hardware with CUDA capabilities 3.5 supports up to 255 registers

per thread, however this heavily impairs GPU parallel execution usually resulting

in bad performance. If the kernel requires more registers than supported by the

architecture, local memory spilling will be generated. Regarding the optimal register

balance three significant cases are highlighted in Figure 5.2 using a vertical line.

Creating 4 warps per block (128 threads) it is possible to maintain 8 blocks per SM

while allocating 32 registers. Alternatively, if the code is complex and additional

5.2 GPU resources utilization analysis stage 167

Figure 5.2: Simultaneous hardware blocks per SM in Fermi architecture depending
on registers per thread

registers are required, it is possible to maintain 8 blocks per SM using either 3 warps

(96 threads) and 42 registers or 2 warps (64 threads) and 64 registers.

In applications that require thread collaboration or communication, the avail-

ability of shared memory is essential. Figure 5.3 presents detailed information about

how the number of blocks that can be managed by each SM affects the amount of

shared memory bytes per thread in terms of the warps within the block. The thresh-

old to maintain 8 blocks per SM in the Fermi architecture or 16 blocks per SM in

the Kepler architecture depending on the amount of warps per block is highlighted

in the figure. Choosing 4 warps only 24 bytes in Fermi and 12 bytes in Kepler

of shared memory can be used by each thread. To fit more data per thread the

programmer is allowed to use 2 warps and 96 bytes of shared memory in Fermi or

48 bytes in Kepler.

168 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Figure 5.3: Simultaneous hardware blocks per SM in Fermi architecture depending
on the shared memory bytes per thread

In summary, as the goal of our proposal is to obtain a good resource utilization

and high available threading without increasing synchronization costs too much, it

is recommended to maintain a 100% SM block occupancy, even at the cost of some

SM warp parallelism. Table 5.1 summarizes the resource distribution imposed by

this requirement for Fermi and Kepler GPU architectures. The table shows the

maximum amount of registers per thread, shared memory elements per thread (as-

suming 32-bit values), and total SM warp occupancy ratio depending on the selected

number of warps per block. Notice that Kepler GPUs with compute capabilities

3.5 can allocate up to 255 registers for a single thread without spilling, however

128 registers is the maximum that can be allocated for 1 warp per block without

decreasing SM parallelism.

5.2 GPU resources utilization analysis stage 169

Table 5.1: Resource factors table depending on warps/block
Warps Registers Shared mem. SM warp

per block per thread bytes/thread occupancy
F

er
m

i 1 63 192 16.6%
2 63 96 33.3%
3 42 48 50.0%
4 32 24 66.6%

K
ep

le
r 1 63 / 128 96 25.0%

2 63 48 50.0%
3 42 24 75.0%
4 32 12 100.0%

Following the optimal values for those parameters (p, s, l) as defined in Sec-

tion 5.1.1 are obtained, first for the FFT and then for the tridiagonal system algo-

rithm.

5.2.1. Resource utilization analysis for FFT

Regarding the FFT, to find out the optimal resource factors (p, s, l) we rely on

the fact that the optimal choice is to calculate an FFT Butterfly with data stored

in the private registers of a task [57]. Therefore, the radix size will be determined

by p, being at most radix-P. The number of operations per thread increases with

the size of the butterfly, therefore the GPU can make better usage of the execution

resources. Therefore, the objective is choosing a p maximum but achieving the right

balance between the high number of simultaneous tasks and the proper utilization

of the shared resources.

The maximum number of registers that can be effectively allocated on NVIDIA’s

Fermi platform for a single thread without register spilling to local memory is 63,

therefore p < 5. For p = 5 the registers would be set to 32 complex elements,

reserving up to 64 registers for the algorithm and leaving no space to accommodate

the required temporary variables. For p = 4 the amount of reserved registers is

usually between 62 and 45 (it depends on the algorithm), including problem data,

as well as temporary variables for counters and strides, data reordering or twiddles.

Therefore, p has to be equal to or less than 4, and considering Figure 5.2 the available

options to have 8 simultaneous blocks per SM are to use blocks composed by 1 or 2

170 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

warps. From this information and based on Figure 5.3, it is possible to calculate that

in Fermi the most adequate options for shared memory are either 192 bytes/thread

for 1 warp, or 96 bytes/thread for 2 warps. In both cases:

192 bytes/thread× 32 threads/block =

96 bytes/thread× 64 threads/block =

6144 bytes/block

Using s = 9 it is possible to store up to 29 complex elements in shared memory and

we obtain

512 complex/block × 8 bytes/complex =

4096 bytes/block, where 512 = 2s = 29

however, if we were to use s = 10

1024 complex/block × 8 bytes/complex =

8192 bytes/block, where 1024 = 2s = 210

Accordingly, for maximum SM block occupancy s ≤ 9, so the shared memory space

will remain under the 6144 bytes limit. In this work we will consider s = 9, as

working with a smaller value will not provide any performance benefit. Shared

memory padding will be used to minimize bank conflicts, hence the blocks may

require slightly more than 4096 bytes.

Regarding the tuning targeted for the Kepler GPUs, the architecture doubles the

register file and can execute up to 16 blocks per SM (twice than Fermi, therefore

maintaining the register-per-block ratio), but the available shared memory remains

the same. Thus, the proposed solution is to split the permutations into two steps,

exchanging first the real part and then exchanging the imaginary part. This halves

the amount of shared memory required by the algorithm at the cost of one additional

synchronization, which has a negligible impact thanks to the small block size. This

can also be applied to Fermi to enable s = 10 but, depending on the implementation,

registers would become a limiting factor or the increased code complexity to take

advantage of it would probably negate any benefit.

5.2 GPU resources utilization analysis stage 171

Regarding p, two options are available (see Table 5.1), and as stated before this

parameter will also impose an upper limit to the maximum radix size. The options

are to use 1 warp (l = 5⇒ p = s− l = 9−5 = 4) and process data in radix-16 steps

at most, or to use 2 warps (l = 6⇒ p = 9−6 = 3) and process data in radix-8 steps

at most. In those cases where p = 3 and p = 4 are viable the option with the best

SM warp parallelism is preferred as can be observed in the results (see Section 5.5).

For 7 ≤ n ≤ 9 cases it is possible to choose between using p = 3 and two warps

favoring SM warp parallelism, or using p = 4 and just one warp minimizing block

synchronizations. In both cases the number of simultaneous blocks per SM will be

8, however for p = 4 a single warp per block is created (which results in 1/6 of

the SM occupancy), while p = 3 it is possible to use 2 warps, thus increasing the

number of simultaneous warps per SM and improving the GPU parallelism (1/3 of

the SM occupancy).

In Kepler GPUs according to Table 5.1, p could be 5 but this option is not

viable because l would be 4 that is the half of a warp (16 threads). This options is

on average 38% slower due to the best performances of current GPUs is obtained if

the size of a thread block is multiple of warp size.

For n ≥ 10 it was opted to use s = 12, thereby allowing to simplify the memory

access pattern. This configuration violates the optimal resource factor s = 9, but

the optimal implementation when the signal is larger than the shared memory space

(n > s) will be further studied in a future work. This presents several mapping

strategies, but in general the computation is divided into two or more kernels, which

will process a smaller portion of the signal at the cost of more global memory accesses

and additional kernel invocation time.

In summary according to our analysis for Kepler and Fermi GPUs, the resource

factors for a FFT of size n could be chosen from the following options:

(p, s, l) = { (4, 9, 5), (3, 9, 6), (4, 12, 8) }.

5.2.2. Resource utilization analysis for tridiagonal systems

Regarding the optimal resource factors for the tridiagonal system solver most

of the previous reasoning is still valid. However, in contrast to the complex input

172 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

data of the FFT, this algorithms uses equations as inputs (see Section 5.3.2 for

a description more detailed). Each row of the tridiagonal matrix is an equation

that requires four floating point values (three diagonals and the independent term),

therefore it can be easily stored in a float4 data type. Each float4 requires at

least 16 bytes of storage, which is twice the amount of Complex data, therefore the

optimal shared memory is proportionally reduced to s=8. Regarding p the Wang and

Mou algorithm internally operates with triads of equations, therefore the register

requirements is not twice, but six times as high compared to the FFT. Thus, a

radix-4 algorithm would require:

4× 3 eqn/triad× 4 floats/eqn = 48 registers (5.26)

Notice that in the case of radix-8:

8× 3 eqn/triad× 4 floats/eqn = 96 registers (5.27)

which will cause memory spilling in CUDA GPUs limited to 63 registers per thread.

GPUs with compute capabilities 3.5 allow up to 255 registers per thread, but

p = 3 implies l = 8 − 3 = 5. The computational load of ID-TS kernel is too light

per thread and the number of simultaneous warps should be increased in order to

efficiently hide memory and arithmetic latencies. Accordingly, the best performance

will be usually obtained using s = 8 and l ≥ 6, that is 64 threads (2 warps).

For n ≥ 9 it was opted to use a strategy similar to ID-FFT proposal. Neverthe-

less, ID-TS proposal using s = n obtains an efficient memory access pattern due to

the excluding of the bit-reversal ordering.

In summary, the resource factors for a ID-TS on Kepler or Fermi GPUs could

be chosen from the following options:

(p, s, l) ={ (2, 8, 6), (2, n, n− 2)}.

5.3 Operators string manipulation stage 173

5.3. Operators string manipulation stage

In this section, both efficient FFT algorithm, called ID-FFT (Index-Digit FFT),

and our proposal of solution for tridiagonal systems, called ID-TS (Index-Digit

TS), are presented. The objective is to design efficient algorithms that can be

easily adapted to architecture characteristics while optimizing all resource factors

described in the previous sections using the operators string manipulation. Remark

that this methodology is standard enough to be easily employed in the design of other

Index-Digit algorithms, for example extending previous developments for orthogonal

transforms algorithms in [58].

5.3.1. The FFT Case

Following we present the formulation of the general ID-FFT algorithm which is

able to overcome the GPU architecture performance features seen on Section 1.1.3.

bn/rc∏
i=1

Γrn,n−i·r+1 ρn,n−r+1 B
r
n−r+1 (5.28)

See [60] for a demonstration of the operator properties and how using the oper-

ator algebra it is possible to derive Equation (5.28) from the Stockham expression.

Equation (5.28) computes bn/rc radix-R steps. When m = n mod r 6= 0 a mixed-

radix approach is used, where any remaining work is performed by computing a

radix-2m step. For instance, the expression for the first formulation is:

Γmn,1 ρn,n−m+1 B
m
n−m+1 (5.29)

Although a single version of the algorithm is possible, generating four different

variants allows tweaking many specific details for optimal performance. These ver-

sions are derived from Equation (5.28) and match the cases for resource factors that

were described in Section 5.2.1. Thanks to the usage of parametrized templates it

was possible to obtain a compact and flexible algorithm for each case:

- ID-FFT.V1: The signal size is smaller or equal to the private register space and

174 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

fits in the shared memory space (n ≤ p):

(5.30)

The operator string used in these cases was obtained from Equation (5.28) and it is

the following:

ρn,1 B
n
1 (5.31)

In this case the radix size is always equal to the signal size (r = n) and each thread

can compute a whole problem of the batch in a single computation step. In fact, if

n < p each thread computes n/p problems at once, increasing arithmetic workload

and reducing scheduling overhead.

In this case the resource factors used are (p, s, l) = (4, 9, 5). A single warp will

be used (l = 5), taking advantage of the maximum amount of registers that can be

reserved while avoiding local memory spilling (p = 4). The shared memory space

(s = 9) is filled with batch problems. To clarify the assignment between mapping

vectors, consider the following example:

(5.32)

where n = 3, L = 25 = 32 threads, S = 29 = 512 shared memory assigned to

threads within a block and P = 24 = 16 registers. Thus, each thread is assigned to

process data from P/N = 16/8 = 2 different signals in batch mode (this is given

by the element in index-digit in location 4 which is inside p but not included in n).

Data that differs in [· · · t11 t10] is processed by different CUDA computing blocks

in batch mode.

- ID-FFT.V2: The signal is larger than the private register space and fits in the

5.3 Operators string manipulation stage 175

shared memory space with p < n ≤ 2p and 2p+ 1 = s.

(5.33)

The following operator string was obtained from Equation (5.28):(
ρs−p+m,s−p+1 B

m
s−p+1

)
Γps,s−p+1,p,1(

ρs,s−p+1 B
p
s−p+1

)
(5.34)

In this case, from the L threads of each CUDA block, 2n−p threads will collaborate

in the same signal, while the remaining will work over different signals in batch

mode. When n − p = l, the L threads within the block process the same signal.

This version of the algorithm performs two butterfly steps, addressing problems in

the range p < n ≤ 2p so b(n− 1)/rc = 1.

As in the previous case, this version uses l = 5 and p = 4. Therefore, each block

is composed by a single warp and it does not require explicit thread synchronizations

to access shared memory. The operator string is:

(5.35)

For example, for n = 6, s = 9 and p = 4 the data mapping in the GPU resources

will be as follows:

[· · · t11 t10︸ ︷︷ ︸
b

p︷ ︸︸ ︷
t8 t7 t6 t5

l︷ ︸︸ ︷
t9 t4 t3 t2 t1︸ ︷︷ ︸
s

] (5.36)

the signal data [t6 · · · t1] does not fit in the private space of a single thread. Thus,

each signal is processed among 4 threads ([t6 t5]), while the other 28 threads in the

same block work in seven different signals.

- ID-FFT.V3: The signal is larger than the private register space and fits in the

176 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

shared memory space and (2p < n ≤ 3p ≤ s).

(5.37)

The following operator string was obtained from Equation (5.28)(
ρs,s−p+1 B

p
s−p+1

)
Γps,s−2·p+1(

ρs−p+m,s−p+1 B
m
s−p+1

)
Γps,s−3·p+1 (5.38)(

ρs,s−p+1 B
p
s−p+1

)
The algorithm computes the FFT in three butterfly steps. Like in the previous

case, from the L threads of each CUDA block, 2n−p threads will collaborate in the

same signal, while the remaining will work over different signals in batch mode.

This version was designed to address larger problems in the range 2p < n ≤ 3p so

b(n− 1)/rc = 2. In this version, resource factors used are (p, s, l) = (3, 9, 6). The

operator string with p = 3 and s = 9 and m = n mod 3:

(ρ9,7 B
3
7)Γ3

9,4(ρ6+m,7 B
m
7)Γ3

9,1(ρ9,7 B
3
7) (5.39)

For example, for n = 7 the data mapping in the GPU resources will be as follows:

(5.40)

the signal data are distributed among 16 threads, while the other 48 threads in the

same block work in different signals. Observe how the middle part of the expression

contains the batch elements t9, t8.

- ID-FFT.V4: The signal does not fit in registers nor shared memory (n > s). In

this case there would be three different implementation strategies. The computation

could be divided into two or more kernels, which will process a smaller portion of the

signal at the cost of more global memory accesses and additional kernel invocation

time. Another option is to use shared memory multiplexing [140] to perform the data

5.3 Operators string manipulation stage 177

communication in several stages, which will result in additional synchronizations.

The third option, which was the one used in this work, is to increase the shared

memory space above the recommended value (see Table 5.1). Therefore, this case

falls back into the previous version (p ≤ n ≤ s). Due to its complexity, the different

options for the n > s case will be studied with more detail in a future work.

5.3.2. The Tridiagonal System case

ID-TS is based on the Wang and Mou algorithm [135], that offers excellent per-

formance due to its suitability for GPU architectures, thanks to the regular struc-

ture based on a successive doubling method. The algorithm offers good numerical

stability for diagonal dominant matrices or when no pivoting is needed.

The formulation of the general ID-TS algorithm with operator string is the

following: bn/pc∏
i=1

Γpi·p,(i−1)·p+1,p,1B
p
1

Γpn,1 (5.41)

After the application of the Bp
1 operator in the Wang and Mou algorithm, the

resulting 2p left equations will acquire the same value. Analogously, the 2p right

equations will also have the same value. Thus, it is possible to re-use some partial

results and save a few registers during the computation of the operator.

Although a single version of the algorithm is possible, generating three differ-

ent variants allows tweaking many specific details for optimal performance. These

versions are derived from previous equation. Thanks to the usage of parametrized

templates it was possible to obtain a compact and flexible algorithm for each case:

- ID-TS.W1: The signal size is smaller or equal to the private register space and

fits in the shared memory space (n ≤ p):

[tn+batch · · · ts+1︸ ︷︷ ︸
b

l︷ ︸︸ ︷
ts · · · tp+1

p︷ ︸︸ ︷
tp · · · tn · · · t1︸ ︷︷ ︸
s

] (5.42)

Each task can process up to P/N signals because when P > N the registers can

178 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

accommodate data from more than one signal. A single system is processed in a

radix-N step and the radix size will be always equal to the signal size (R = N). As

explained in Section 5.2.2 p = 3 at most, therefore n ≤ 3, therefore the resource

factors are (p, s, l) = {(3, 8, 5),(2, 8, 6)}. The operator string used in these cases

is the following one: Bn
1 .

- ID-TS.W2: The system of equations is larger than the private register space and

fits in the shared memory space (p < n ≤ s).

[tn+batch · · · ts+1︸ ︷︷ ︸
b

l︷ ︸︸ ︷
ts · · · tn · · · tp

p︷ ︸︸ ︷
tp · · · t1︸ ︷︷ ︸

s

] (5.43)

In this version, resource factors used are (p, s, l) = (2, 8, 6). The operator string

used in these cases is the following:bn/2c∏
i=1

Γ2
i·2,(i−1)·2+1,2,1B

2
1

Γ2
n,1 (5.44)

from the 64 threads of each CUDA block, 2n−2 threads will collaborate in the system

of equations, while the remaining will work over different system of equations in

batch mode. For example, for n = 6 the data mapping in the GPU resources is as

follows:

(5.45)

from the 64 threads of each block, 26−2 = 16 threads collaborate in the system of

equations. In this example, the operator string used is:

B2
1 Γ2

4,3,2,1 B
2
1 Γ2

6,5,2,1 B
2
1 Γ2

6,1 (5.46)

- ID-TS.W3: The system of equations is larger than the private register space and

fits in the shared memory space (s < n). In this case, it is used a strategy similar

5.4 Algorithm implementation strategies and optimizations 179

to ID-FFT proposal, where shared memory above recommended value is increased:

[tn+batch · · · tn+1︸ ︷︷ ︸
b

l︷ ︸︸ ︷
tn · · · tp+1

p︷ ︸︸ ︷
tp · · · t1︸ ︷︷ ︸

s

] (5.47)

Specifically, resource factors used are (p, s, l) = (2, n, n − 2). All threads of each

block collaborate in the same system of equation, and each block works over different

system of equation in batch mode.

5.4. Algorithm implementation strategies and op-

timizations

Following we will study some details in the design and implementation of the

algorithms ID-FFT and ID-TS described in Section 5.3.

5.4.1. Implementation of operators

The efficiency of the proposed algorithm for GPU architectures lies on the fact

that shuffle and digit reversal operators do not involve any explicit data movement

within the shared memory or registers. Data permutations are implicitly performed

when exchanging thread data in shared memory by using different write and read

access patterns. The algorithm controls these access patterns in terms of offsets and

strides, which are very fast and easy to compute.

For instance, digit reversal operator ρ in ID-FFT only implies modifications in

the index-digits associated with the register private space p. The advantage is that it

does not require moving 2r complex data, it just changes the way data is accessed or

written by each task. The CUDA compiler can optimize the ρ operator at compile-

time replacing it by a simple register renaming when referencing the data after the

digit reversal.

On the other hand, the shift operator Γ for ID-FFT and ID-TS implies mod-

ifications in the shared memory access pattern when threads exchange data after

180 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

each butterfly step. Figure 5.4 illustrates how the data exchange works. Instead

of performing a redundant copy from a shared memory buffer to another shared

memory buffer (see the Γ2
6,3 permutation on the left), and then to private registers,

the operator can be directly implemented from shared memory to registers. This

way, each thread directly controls the offset and stride based on its thread identifier

(see the equivalent implicit permutation on the right).

5.4.2. GPU memory access optimization examples

In a direct mapping of the operator strings, when the first operator the string

requires consecutive data to be computed by a single thread, this kind of global

memory access would lead to bad performance due to noncoalesced access.

In the case of the tridiagonal solver ID-TS which usually has a small radix, co-

alescence issues can be easily solved by combined loads using the float2 or float4

data types, which are quite efficient in the CUDA architecture. Each component of

the equation is stored in a different vector, and each memory access reads up to four

consecutive elements from up to four equations. This implementation has the advan-

tage that it does not require any communication among the threads. Nevertheless,

ID-FFT may use larger radix values, therefore a different strategy is recommended.

ID-FFT.V1 requires consecutive data elements by a single thread, however this

pattern potentially results in uncoalesced memory access that wastes global memory

bandwidth. Following we will describe a strategy to prevent this issue. For simplicity

and a more compact representation of the examples, in the figures of this section it

will be assumed that due to register constraints p = 2, the memory segment size for

coalesced operation is 4 complex values (32 bytes), the warp size is composed by 4

threads, and the shared memory provides 4 independent memory banks.

ID-FFT.V1 is designed to process small signals, where each thread can compute

a whole problem of the batch in a single computation step (in fact, if n < p each

thread can compute N/P problems at once). If balance between computation and

memory operations is adequate a single warp can be used (l = 2), eliminating

block synchronization overhead and taking advantage of the maximum amount of

registers (p = 2) that can be reserved while avoiding local memory spilling. Even if

5.4 Algorithm implementation strategies and optimizations 181

Figure 5.4: Data exchange, from shared memory directly to registers

there are multiple computation steps like in ID-FFT.V2, when using a single warp

the blocks do not require any thread synchronizations to access shared memory,

because the threads within a warp will not present race conditions on the GPU. Fence

instructions may be still required to prevent the compiler from applying certain

optimizations. As we will see in the results section, despite the small block size

this solution will offer good performance thanks to the high number of simultaneous

blocks scheduled by the hardware. The shared memory space (s = 4) is filled with

batch problems.

In a straightforward implementation, the butterfly operator requires consecutive

data and this kind of global memory access would lead to bad performance due

to noncoalesced access. Figure 5.5 displays an illustrative example that presents

this coalescence problem. Observe how the first thread T1 reads the consecutive

data {0, 1, 2, 3} to its registers. The second thread T2 would also read consecutive

elements {a, b, c, d} presenting coalescence issues, in fact this problem affects all the

182 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

threads. The problem with this kind of memory access is that it generates more

transactions than needed. Furthermore, most of the data from each transaction

is discarded, thus wasting memory bandwidth. Even in GPU architectures with

global memory cache this access pattern will have overhead, reducing the maximum

effective bandwidth.

Figure 5.5 also presents many shared memory bank conflicts. The GPU shared

memory is divided in banks, and when several threads from the same warp try to

simultaneously access different addresses within the same memory bank the involved

accesses are serialized. In the example, when performing the data exchange in shared

memory each thread will write to a different memory bank without any issue. For

instance, T1 will write data {0, 2, 1, 3} to Bank1, T2 will write data {a, c, b, d} to

Bank2, and so on. However, when reading for shared memory, all threads will

try to access simultaneously the same bank generating a 4-way bank conflict. For

instance, T1 will access data in location 0 in Bank1, while at the same time T2 will be

trying to access data in location 1, which is also located in Bank1. Accordingly, the

memory requests will be serialized and each thread will read from shared memory

in a different cycle.

Figure 5.6 presents how to avoid the explained issues. At the beginning, instead

of loading data to registers, the signal is directly copied to shared memory (which

also prevents intermediate copies). Observe how initially threads access data in

a perfectly coalesced pattern. For example, thread T1 loads {0, a, x, α}, starting

in the first array location with a stride of 4 data locations (for coalescent access

it should be a multiple of the segment size). Remember that to perform useful

computation in the butterfly stage threads require consecutive data, for example,

T1 needs to operate on {0, 1, 2, 3}. To achieve this data distribution, the offset and

stride of the shared memory read pattern will be different, implicitly performing

a data exchange. Bank conflicts are easily avoided using padding, observe how

T1 writes its data ({0, a, x, α}) with a stride of banks + 1 = 5 data locations to

banks {0, 1, 2, 3}. Next, it reads data elements {0, 1, 2, 3} consecutively from banks

{0, 1, 2, 3}. After the exchange, each thread works on the assigned problem using

private registers. Next, the data exchange is reversed using shared memory and data

is written to global memory using a coalescent access pattern like at the beginning

of the process. For example, thread T1 writes {0, a, x, α} to locations {0, 4, 8, 12} of

5.4 Algorithm implementation strategies and optimizations 183

Figure 5.5: Problematic global and shared memory access pattern for n = l = p =
r = 2, s = 4

global memory.

In the remaining ID-FFT algorithms, the threads read data from global memory

with a coalescent access pattern thanks to the constant stride multiple of the segment

size. After loading the signal data, each thread can directly compute a radix FFT

step using data in registers without requiring any permutation with other threads.

5.4.3. Obtaining the code from the operator strings

Once the expression are generated, obtaining the code is quite straightforward.

The perfect shuffle and the perfect unshuffle operators are implemented using differ-

ent strides and offsets when transferring data between shared memory and registers

or global memory and registers. The bit-reverse and the butterfly operators are

obtained from their definition. The implementation does an extensive usage of tem-

plate functions to create several optimized versions for each function depending on

184 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Figure 5.6: Coalescent and bank conflict-free access pattern for n = l = p = r = 2,
s = 4

the problem size. Most of the function calls, register loops and redundant move

operations will be fully optimized at compile-time.

Figure 5.7 presents a simplified version of the pseudocode used to implement

the 3D case Equation (5.22). At the beginning of the algorithm (lines 1 to 3) the

different stride and offset are obtained based on the thread and block identifier.

These values are obtained from the corresponding operator string, although several

factors like padding to prevent shared memory bank conflicts have to be considered.

Next, in line 6 data is loaded from global memory to registers, which maps to the first

shuffle Γ6
s,1. Each call to the radix function in lines 10, 19 and 28 compute one radix

5.4 Algorithm implementation strategies and optimizations 185

Figure 5.7: Example of pseudocode used for the 3D version of the algorithm

stage, composed by a bit-reversal and a butterfly operator which maps to ρs,s−1 and

B2
s−1, respectively. The shared memory exchanges are performed by the function

shmExchange in lines 13 and 22. The first exchange corresponds to Γ2
s,s−3 and the

second to Γ2
s,s−3. Finally, the result is written to global memory in line 31, which

maps to σ6
s,1 and reverses the access pattern used in line 6. Regarding the function

getAngle used in lines 18 and 27, they just compute the corresponding twiddle factor

for each thread based on the current stage and the effect of the previous exchanges.

Observe how the operator string was easily mapped to the code, providing flexibility

and a compact representation.

186 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

5.5. Experimental results

All the tests were run in single precision using batch execution to compute

several problems each time. The size of the batch depends on the input size and

is given by the expression batch = 224/N . There are no data transfers to CPU

during the benchmarks to prevent interactions with other factors. The performance

of the experiments for the FFT is measured using the GFLOP metric given by

Equation (1.4). In the case of tridiagonal system resolution the performance is

expressed in million rows processed per second as given by Expression 1.25.

The test platforms used in our experiments are described in Table 5.2. The ker-

nels were executed setting the cudaFuncCachePreferShared cache configuration flag,

so it is possible to use up to 48 KB of shared memory, but only 16 KB of L1 cache

are available. The GeForce Titan is based on the Kepler architecture, and its config-

urable bank size was set to four bytes (cudaSharedMemBankSizeFourByte). Using

eight bytes resulted in slightly slower performance for many cases. The algorithms

were also designed to take advantage of the Kepler’s read-only data cache, which

slightly improves global memory effective read bandwidth. Different driver versions

were tested with little impact on performance, however in some cases older versions

of the CUDA SDK obtained around 2.4% better performance for the CUFFT on

the Fermi architecture.

5.5.1. Complex FFT

Table 5.3 presents the performance results for complex signals and the kernel

profile analysis of the different algorithms for Platform 1, highlighting the best

result for each signal size.

For small problems, even with only 1/6 of the maximum SM occupancy, the

ID-FFT.V1 algorithm offers very good results, up to 209.64 GFlops for n = 4. Due

to hardware limitations, if 32 or more complex values are simultaneously used by the

same thread, there would be a substantial performance drop due to register spilling,

being even slower than the n = 2 case. The ID-FFT.V2 algorithm also has 1/6 of the

SM occupancy and starts where the ID-FFT.V1 algorithm left off, scaling perfectly

as the signal size increases, up to 411.26 GFlops for n = 8. Nonetheless, for the last

5.5 Experimental results 187

Table 5.2: Description of the test platforms
Platform 1 Platform 2

CPU Core i7 2600 C2 Duo E8400
Memory 8 GB DDR3 1333 8 GB DDR3 1333
OS Win 7 x64 SP1 WinXP x64 SP2
Compiler MSVC 2010 SP1 MSVC 2010 SP1
GPU GeForce 580 GeForce Titan
Driver v310.90, SDK 5.0 v320.17, SDK 5.0
GPU Peak 1581 GFLOPS 4500 GFLOPS
GPU Bw. 192.4 GB/s 288.4 GB/s

two cases (n = 7 and n = 8) the ID-FFT.V3 version provides better computational

balance and improved parallelism (1/3 of the SM occupancy), achieving 418.59

GFlops for n = 8 with radix-8. The last signal size that can be processed by

the ID-FFT.V3 algorithm using radix-8 is n = 9, obtaining 471.97 GFlops. For

bigger signals the ID-FFT.V4 algorithm is used and the amount of available shared

memory becomes a limiting factor (for s = 12, 17408 bytes are required), hindering

the GPU SM parallelism. Nonetheless, the ID-FFT.V4 algorithm reaches 492.43

GFlops for n = 12. The efficiency drop for n ≥ 10 confirms that extending the

parameters beyond the recommended value has a noticeable effect diminishing the

performance, and other alternative parallelization strategies should also be studied,

however these problems are beyond the scope of this work.

Regarding the kernel profiler analysis, Table 5.3 has detailed information about

the block size, the number of registers, the amount of shared memory (in bytes),

the global memory bandwidth (in GB/s), the instruction replay rate and the SM

occupancy. Notice that the maximum number of registers for all cases is 52 and

there will be no local memory spilling. This is confirmed by the local memory re-

play rate, which was not included in the table because its value is always 0. To

take advantage of the maximum SM block parallelism, the shared memory is always

below 6 KB except for the last group, ID-FFT.V4. Observe the efficient access to

global memory, most configurations use more than 84% of the total memory band-

width. The instruction replay rate is fairly low, being the first test in each group

the worst obtained value because one of the steps performs fewer computations due

to the mixed-radix. Even using batch processing within that step there are not

enough independent computations to hide memory or instruction latency, specially

considering the small block sizes used by the algorithm. Last, observe that due to

188 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Table 5.3: Complex FFT kernel performance and profiler analysis for the different
versions (Platform 1)

Alg n p GFLOPS
Threads

Reg
Shared Gl. mem. Instruction Occupancy

/block memory bandw. replay (%) (%)

ID-FFT.V1
2 4 104.75

32
52

2112
162.50 4.4

∼163 4 157.09 50 162.42 3.2
4 4 209.64 49 162.53 2.2

ID-FFT.V2

5 4 261.82

32

42

2112

162.56 1.7

∼16
6 4 312.78 45 162.11 0.9
7 4 363.29 47 161.40 0.5
8 4 411.26 44 159.95 0.3

ID-FFT.V3
7 3 365.30

64
28

2304
162.45 1.2

∼338 3 418.59 29 162.45 0.8
9 3 471.97 30 163.05 0.4

ID-FFT.V4

9 4 413.12

256

46

17408

143.01 5.4

∼33
10 4 448.35 45 139.19 5.0
11 4 475.01 46 134.18 4.6
12 4 492.43 45 126.26 1.7

the small block size (see threads/block column) the SM occupancy is low, 1/3 or

even 1/6 depending on the test. Nevertheless, thanks to the SM block parallelism

and thorough resource allocation, the algorithms are able to use the hardware effi-

ciently. A similar profiler analysis was made for NVIDIA’s CUFFT 5.0. In contrast

to the algorithm proposed in this work, the profiling of NVIDIA’s implementation

reveals bank conflicts for some of the problem sizes (up to 17.5% for n = 6). In most

cases the kernels are executed with 128 or 256 threads per block, hence the GPU

occupancy (typically around 60%) is higher compared to our implementation. Nev-

ertheless, the lower computational load per thread usually increases the instruction

replay rate resulting in lower performance.

Figure 5.8 shows a global overview of the complex FFT performance. The results

are compared to NVIDIA’s CUFFT 5.0. Also, the NukadaFFT v1.0-20130518.15

was executed on Platform 1 and was added to offer a second comparison with an-

other recent GPU implementation. The Spiral 6.0 library was executed on Platform

1 and is also included to provide a reference point. As can be observed, GPU based

solutions offer a clear advantage over CPU implementations (in this case Spiral,

but other solutions like the Intel IPP library [49] offer very similar performance),

resulting about ten times faster. For signal sizes between N = 4 and N = 1024, our

algorithm is on average 5.9% faster than the NVIDIA library on Platform 1, and

5.5 Experimental results 189

Figure 5.8: Performance comparison of Complex ID-FFT proposal

around 0.8% faster on Platform 2. It also obtained quite competitive results for sig-

nal sizes above N = 1024 (these larger problems will be addressed in a future work).

In the best case, for Platform 1 and N=128 we achieve a 19.2% improvement, while

for Platform 2 and N = 128 we achieve a 1.4% improvement. The pronounced per-

formance drop experienced by the CUFFT for N = 128 and N = 256 on Platform 1

seems to be a regression in the CUDA SDK v5.0, because in previous releases it re-

sulted in a smoother line. The generated code in the latest release is probably more

tuned for the Kepler architecture. Regarding the difference between the two GPU

architectures, the results of our library shows identical tendency for most problem

sizes. Thanks to the efficient tuning of the mapping vector and the algorithm design

based on operators string, our complex FFT implementation offers near perfect scal-

ing with signal size up to N = 512. The work is well distributed among the threads,

190 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

and the latency of read operations is perfectly hidden by arithmetic instructions.

Nevertheless, for larger problems with N ≥ 512 the best performance was obtained

using the Titan GPU (up to 802.9 GFlops for N = 4096), followed by the GeForce

580 with 492.4 GFlops. Judging from the straight slope given by the evolution of

the graph scaling with the problem size, performance may be reaching some kind

of asymptotic limit imposed by the architecture. Observing the best results from

Table 5.3, the performance grows while the global memory bandwidth remains be-

tween 161 and 163 GB/s, therefore the theoretical memory bandwidth seems to be

the main limiting factor. Considering that the maximum memory bandwidth of

the GeForce 580 is 192.4 GB/s the algorithm is achieving almost 85% bandwidth

efficiency, which is quite impressive considering how difficult is to achieve nearly

peak efficiency on GPUs for real-world scenarios. The Titan has nearly three times

the raw computing power, but also seems limited by the total memory bandwidth,

which peaks at 288 GB/s achieving approximately a 82% bandwidth efficiency.

5.5.2. Tridiagonal Equation System

Regarding the performance of the tridiagonal system resolution algorithm, Ta-

ble 5.4 presents the profiler analysis for the different versions and problem sizes.

The performance is expressed in million rows processed per second (Mrow/s), and

the best solution for each size is highlighted using bold text.

In practice, as it is shown in the profiling of Table 5.4, the actual register re-

quirement per thread is a bit lower than estimated in Section 5.2.2, but not enough

to increase the radix size. Notice that, as previously commented, the resulting

2n left equations Et−1(q · 2t−1) acquire the same value and the 2n right equations

Et−1((q+ 1)2t−1− 1) also have the same value. This property means that there will

be only N unique equations per signal, therefore during the data exchanges just the

center equation Et−1(i), will be stored in shared memory. This also means that in-

stead of wasting registers to store both equations, this data can be directly accessed

from shared memory when performing the butterfly operator. As long as dynamic

register addressing is avoided (which leads to local memory spilling), the program-

mer can use high level code to implement the operators because the NV CC compiler

does a good job reducing temporal variables and intermediate copy operations.

5.5 Experimental results 191

Table 5.4: Tridiagonal system performance (Platform 2)

Alg n r Mrow/s
Threads

Reg
Shared Occup.

/block mem. (%)

ID-TS.W1
2 2 9381.2 64 28 0 47.1
2 3 5253.3 64 42 0 45.7
3 3 8013.0 32 46 0 24.5

ID-TS.W2

2 1 9643.5 128 26 4096 70.9

3
1 7588.1 128 26 4096 71.8
2 6653.8 64 43 4096 36.1

4
1 7691.0 128 26 4096 72.2
2 7940.3 64 43 4096 36.0
3 3894.2 32 68 4096 18.5

5
1 7130.6 128 26 4096 72.6
2 7032.9 64 53 4096 36.3
3 5678.4 32 66 4096 18.4

6
1 6675.4 128 26 4096 72.9
2 7561.7 64 54 4096 36.3
3 6808.0 32 66 4096 18.3

7
1 6021.1 128 26 4096 73.1
2 6134.8 64 50 4096 36.5
3 3934.6 32 82 4096 18.5

8
1 5478.3 128 26 4096 73.2
2 6770.5 64 50 4096 36.5
3 5271.4 32 82 4096 18.4

ID-TS.W3

9
1 4511.4 256 26 8192 73.3
2 5337.2 128 54 8192 36.5
3 4921.5 64 79 8192 18.4

10
1 3782.3 512 29 16384 73.6
2 5137.0 256 53 16384 36.5
3 3437.9 128 79 16384 18.4

11
1 2398.5 1024 29 32768 49.6
2 2948.8 512 54 32768 24.8
3 2926.6 256 80 32768 12.4

As computed in Section 5.2.2 the optimal shared memory reserved for each block

is 4096 bytes. Like in the case of the FFT, large problem sizes require to extend s

beyond the recommended limit. Processing problems where N > 2048 would require

a different approach, like a multi-kernel algorithm, which is beyond the scope of this

work.

On the other hand, in order to prove the advantage of our proposal Table 5.4

also displays the results with non-optimal resource factors (column p). For example,

for ID-TS.W2 the results with p = 1 and p = 3 obtain a lower performance than

optimal resource factor p = 2. The option p = 1 implies a high occupancy but a

192 Chapter 5. Efficient Index-Digit Algorithms Design for GPU Architectures

Figure 5.9: Comparison of performance of ID-TS proposal

low number of operations per thread. Meanwhile, the resource factor p = 3 does

not allow to maintain the minimum of occupancy.

Figure 5.9 compares our best results to CUDPP [142] and NVIDIA’s CuSparse

library. The percentages near the lines represent the performance increase over the

fastest of the other two solutions. As it can be observed, for batches of small equation

our library is much faster, for instance when solving systems of 64 equations it

obtains a 387% improvement in the case of the Platform 2 and a 278% improvement

in the case of Platform 1. Even for N = 2048 which is the worst case scenario, our

algorithm provides over 100% performance improvement. In fact, the difference is

so large that our algorithm running on Platform 1 readily outperforms the other

libraries running on Platform 2.

5.5 Experimental results 193

In summary, our methodology based on operators string manipulation directed

by the study of hardware features achieves good performance, independently of the

selected GPU architecture or Index-digit algorithm.

Chapter 6

Conclusions and Future Work

One of the main goals of this thesis was to propose a generalized methodology to

solve many types of divide-and-conquer problems which can be formulated through

the Index-Digit representation. Our aim was to be able to produce optimized imple-

mentations with competitive performance, assisting the programmer in the design

of new libraries through the use of our methodology. Next, the main conclusions are

presented.

At the beginning we have studied the parallelization of two applications using

a manual approach that relied on hand-tuning and well-known optimization tech-

niques. We implemented the FFT operation on a GPU using the Brook+ program-

ming language and a shallow water simulator using CUDA. Even though the inabil-

ity to properly exploit shared memory in Brook+ and the restrictions of its stream

programming model have been experienced, it has been proved that the Fourier

transform can be successfully mapped to the streaming model. We described sev-

eral optimization strategies, like stage blending and fusion using a recomputation

approach and scheduling layouts. This allowed us to achieve up to 180 GFlops

for small FFTs, and even for the worst case scenario, the performance is above 50

GFlops, outperforming the CPU implementations.

Regarding the shallow water simulator the described model is able to handle

wet-dry zones as well as the transport of inert substances such as a pollutant on am

esturary. Our aim was to develop a GPU implementation allowing quick studies

of the behavior of a pollutant in a realistic environment under different hypothesis,

195

196 Chapter 6. Conclusions and Future Work

and fast enough to take all the required decisions to deal with it. We started

from a naive implementation based on a recomputation solution in which redundant

computations and many accesses to global memory were performed. Following,

an optimized version that significantly reduces the number of computations was

implemented. A ghost cell decoupling strategy which exploits shared memory and

textures has been implemented, achieving an average speedup of 19% with respect

to the naive implementation for the five largest problem sizes, and a speedup of 24x

with respect to a parallel execution on a recent multicore CPU. Such performance,

measured using a realistic problem, enabled the calculation of solutions not only in

real-time, but orders of magnitude faster than the simulated time.

Following, we have analyzed several performance aspects of the GPU architec-

ture, like the influence of the memory access pattern, the texture cache, the shared

memory performance or the impact of register pressure. The results of this analysis

will be useful for the tuning of other future applications. We used an FFT kernel

to benchmark the different GPUs. The FFT offers good balance between compu-

tational cost and memory bandwidth, thus the results can be extrapolated to other

parallel algorithms with regular structure.

We studied the performance impact of uncoalesced memory access, as well as

the influence of texture cache or the global memory cache introduced in the Fermi

architecture. Access coalescence resulted a critical factor, even when performing

cached memory access. Texture cache proved to be useful to improve effective mem-

ory bandwidth in some scenarios. We also analyzed the effect of the configurable

L1 cache for different execution configurations and the cost of enabling ECC for

error correction. Regarding the thread data storage, shared memory provided less

effective bandwidth than registers even in the absence of bank conflicts. For the

largest signal size, the high register pressure generated local memory spilling, which

caused a significant performance reduction.

Although the primary objective of the analysis was to study the architecture

and several aspects of the memory hierarchy, the resulting implementation offered

competitive performance for batches of small problems. For example, we were able

to obtain up to 185 GFlops for the GeForce 480 and up to 154 GFlops for the Tesla

S2050 (in both cases the same performance as NVIDIA’s CUFFT).

197

Next, we used the knowledge gathered by the research conducted so far to design

a CUDA library for several well-known butterfly algorithms, namely the complex

and real version of the FFT, the DCT and the Hartley signal transform algorithms,

as well as a tridiagonal equation system solver. The resulting implementations were

tested on two different platforms, comparing the efficiency with other state of the

art libraries. Our approach provided excellent performance in many cases, like an

average 60.4% advantage in the real FFT or over 200% advantage for tridiagonal

equation systems, and as far as we know it is also the fastest general purpose imple-

mentation of the DCT and the Hartley transforms. Regarding the complex FFT,

BPLG still offers competitive results with respect to the CUFFT, especially con-

sidering that our primary focus on this work has been to provide a library flexible

enough to improve GPU programmability.

One of the most interesting features of the proposed library is the modular de-

sign based on small building blocks. The building blocks of the algorithms where

implemented using high-level C++ templates, with emphasis on flexibility and con-

figurability. The library parameters were adjusted to obtain good efficiency on two

recent GPU architectures.

Finally, we presented a tuning methodology which allowed us to create efficient

and flexible GPU algorithms. Our methodology addresses the parallelization of

divide and conquer problems which can be formulated through the Index-Digit rep-

resentation. This methodology is based on 2-stages: resource analysis and operator

string manipulation. A small number of performance factors were used to tune the

operator strings of two algorithms, ID-FFT for the complex Fourier transform and

ID-TS for the resolution of tridiagonal systems.

In summary, our methodology based on operators string manipulation directed

by the study of hardware features achieves good performance, independently of the

selected GPU architecture or Index-Digit algorithm.

The performance of the resulting proposals was analyzed using two different

architectures, obtaining very good efficiency over other well-known GPU libraries.

Compared to NVIDIA’s CUFFT, ID-FFT is up to 19.2% faster in the case of the

GeForce 580 and 1.4% faster in the case the GeForce Titan, being ID-TS up to

1821% (GeForce 580) and 3026% (GeForce Titan) faster respectively than other

198 Chapter 6. Conclusions and Future Work

state of art implementations like CuSparse or CUDPP.

One question remains regarding the performance improvement obtained thanks

to the proposed two-stage methodology and the algorithm tuning. Figure 6.1 com-

pares the final performance results of BPLG-cFFT (from Chapter 4) and ID-FFT

(from Chapter 5). Compared to the BPLG library proposed in the fourth chap-

ter the complex FFT algorithm experiences a significant speedup for most signal

sizes. In the case of the GeForce Titan there is on average an 11.3% performance

improvement, however in the case of the GeForce 580 the tuning advantage is even

larger, around a 22.8% improvement. The most relevant gains are concentrated in

the small signal sizes (8 ≤ N ≤ 32) and also the larger signals (1024 ≤ N ≤ 4096),

precisely those areas where the performance was more distant from the ideal straight

line given by the theoretical memory bandwidht.

Figure 6.2 repeats a similar analysis, but comparing BPLG-TS (from Chapter

4) and ID-TS (from Chapter 5). As it can be observed, for the tridiagonal solver

the performance advantage in the case of the GeForce 580 is smaller, nonetheless

on average there is a 3.6% performance improvement thanks to the algorithm tun-

ing. The GeForce Titan experiences more benefit, on average a 11.5% performance

gain. In the tridiagonal case the performance tuning benefit seems more evenly

distributed, with the exception of the smaller problems which can be efficiently ex-

ecuted in few stages, thus there is less room for improvement, and the largest size,

where the shared memory becomes a limiting factor reducing the parallelism. Due

to the amount of data required by the equation triads, the tridiagonal algorithm uses

a smaller radix size, hence larger blocks and more stages are required for the same

N , leading to a higher number of synchronizations which becomes a performance

limiting factor.

6.1. Future work

There are many interesting topics as future work, but considering the good results

one of the most promising topics is to apply the presented methodology to address

the design of other signal transforms or Index-Digit algorithms. Moreover, the

automatization of the methodology could further reduce the programming effort,

6.1 Future work 199

Figure 6.1: Performance comparison: BPLG-cFFT vs ID-FFT

enabling the automatic generation of the kernel skeletons from the operator strings.

Another interesting topic is to extend the methodology for other generic manycore

architectures supported by OpenCL.

In the case of the signal processing algorithms, we also plan to extend them for

larger signals and enable support for 2D transforms. Efficient processing of large

problems requires an in-depth study of the different implementation strategies to

allow appropriate work distribution and collaboration among different blocks. Pro-

visional tests show positive results, although further analysis is required to propose

a general solution.

Larger problems may cause numerical instability or result in lower than expected

200 Chapter 6. Conclusions and Future Work

Figure 6.2: Performance comparison: BPLG-TS vs ID-TS

precision, thus, a related topic is the development of double precision versions of the

algorithms. This approach can be further refined: taking advantage of the template-

based approach it is possible to create type-independent algorithms (for instance to

enable quadruple precision arithmetic). The performance tuning of this kind of

kernels is a complex subject due to the variability in the size of the data type and

the operator cost.

6.2 Publications from the Thesis 201

6.2. Publications from the Thesis

Journal Papers (5)

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. BPLG: A Tuned Butterfly

Processing Library for GPU Architectures. International Journal of Parallel

Programming (IJPP). (Accepted for publication).

JCR Impact Factor: 0.404, Q4 in Computer Science, Theory & Methods.

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. FFT Algorithm Design for

GPU Architectures Based on Operator String Representation. IEEE Transac-

tions on Parallel and Distributed Systems (TDPS). (Submitted, under second

review).

Jacobo Lobeiras, Moisés Vinãs, Margarita Amor, Basilio B. Fraguela, Manuel

C. Arenaz, Jose A. Garćıa, Manuel J. Castro. Parallelization of Shallow Water

Simulations on Current Multi-Threaded Systems. International Journal of

High Performance Computing Applications (IJHPCA). Vol. 27, no. 4, pages

493-512. November 2013.

JCR Impact Factor: 1.295, Q2 in Computer Science, Theory & Methods.

DOI: 10.1177/1094342012464800.

Moisés Viñas, Jacobo Lobeiras, Basilio B. Fraguela, Manuel C. Arenaz, Mar-

garita Amor, Jose A. Garćıa, Manuel J. Castro, Ramón Doallo. A Multi-GPU

Shallow-Water Simulation with Transport of Contaminants. Concurrency and

Computation: Practice and Experience. Vol. 25, issue 8, pages 1153-1169.

June 2013.

JCR Impact Factor: 0.845, Q2 in Computer Science, Theory & Methods.

DOI: 10.1002/cpe.2917.

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. Influence of Memory Access

Patterns to Small-Scale FFT Performance. The Journal of Supercomputing.

Vol. 64, issue 1, pages 120-131. April 2013.

JCR Impact Factor: 0.917, Q2 in Computer Science, Theory & Methods.

DOI: 10.1007/s11227-012-0807-5

202 Chapter 6. Conclusions and Future Work

International Conferences (6)

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. SPLG: A Tuned Signal

Processing Library for GPU Architectures. 25th International Symposium on

Computer Architecture and High Performance Computing (SBAC-PAD 2013),

pages 184-191. October 2013.

DOI: 10.1109/SBAC-PAD.2013.30

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. GPU Performance Analysis

using the FFT. Advanced Computer Architecture and Compilation for High-

Performance and Embedded Systems (ACACES), pages 215-218. July 2011.

ISBN: 978-90-382-1798-7

Moisés Viñas, Jacobo Lobeiras, Basilio B. Fraguela, Manuel C. Arenaz, Mar-

garita Amor, Ramón Doallo. Simulation of Pollutant Transport in Shallow

Water on a CUDA Architecture. II Workshop on Exploitation of Hardware

Accelerators, WEHA 2011, held in conjunction with the 2011 International

Conference on High Performance Computing and Simulations (HPCS 2011),

pages 664-670. July 2011.

DOI: 10.1109/HPCSim.2011.5999890

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. Performance Evaluation of

GPU Memory Hierarchy using the FFT. International Conference on Compu-

tational and Mathematical Methods in Science and Engineering (CMMSE),

pages 750-791. June 2011.

ISBN: 978-84-614-6167-7

Jacobo Lobeiras, Margarita Amor, Ramón Doallo. FFT Implementation on

a Streaming Architecture. Euromicro International Conf. on Parallel, Dis-

tributed and Network-Based Processing (PDP), pages 119-126. February 2011.

DOI: 10.1109/PDP.2011.31

Jacobo Lobeiras, Margarita Amor, Manuel C. Arenaz, Basilio B. Fraguela.

Streaming-Oriented Parallelization of Domain-Independent Irregular Kernels.

UnConventional High Performance Computing (UCHPC), Euro-Par 2010 Par-

allel Processing Workshops, pages 381-388. August 2010.

DOI: 10.1007/978-3-642-21878-1 47

6.2 Publications from the Thesis 203

National Conferences (2)

Jacobo Lobeiras, Margarita Amor, Manuel C. Arenaz, Basilio B. Fraguela.

Análisis del Rendimiento de Núcleos Computacionales sobre una GPU con

Brook+. Workshop de Aplicaciones de Nuevas Arquitecturas de Consumo y

Altas Prestaciones (ANACAP). Digital publication, pages 1-10. November

2009.

ISBN: 978-84-692-7320-3

Jacobo Lobeiras, Margarita Amor, Manuel C. Arenaz, Basilio B. Fraguela.

Simulación de Aguas poco Profundas en una GPU mediante Brook+. XX

Jornadas de Paralelismo, pages 327-332. September 2009.

ISBN: 84-9749-346-8

Bibliography

[1] A. Davidson, Y. Zhang and J.D. Owens. An Auto-tuned Method for Solving

Large Tridiagonal Systems on the GPU. In Proceedings of the 25th IEEE

International Parallel and Distributed Processing Symposium (IPDPS), pages

956–965. IEEE Comp. Society, 2011. Cited in p. 156

[2] A. Greenbaum. Iterative Methods for Solving Linear Systems. Society for

Industrial and Applied Mathematics (SIAM), 1997. Cited in p. 58

[3] A. Kurganov and G. Petrova. A Second-Order Well-Balanced Positivity Pre-

serving Central-Upwind Scheme for the Saint-Venant System. Commun. Math.

Sci., 5(1):133–160, 2007. Cited in p. 91

[4] A. Nukada and S. Matsuoka. Auto-tuning 3-D FFT Library for CUDA GPUs.

In Proc. of the Conference on High Performance Computing Networking, Stor-

age and Analysis (SC ’09), pages 1–10, 2009. Cited in p. 155

[5] A.B. Watson. Image Compression Using the Discrete Cosine Transform. Math-

ematica Journal, 4:81–88, 1994. Cited in p. 16, 57

[6] A.D. Poularikas. The Transforms and Applications Handbook. Electrical En-

gineering Handbook. CRC Press, 2010. Cited in p. 16, 55

[7] AMD. AMD Stream Computing User Guide, 2009. v1.4.1. Cited in p. 17, 44,

63

[8] AMD. AMD Math Libraries, OpenCL Fast Fourier Transform (clAmdFft),

2012. Cited in p. 54

205

206 BIBLIOGRAPHY

[9] A.R. Brodtkorb, M.L. Sætra and M. Altinakar. Efficient Shallow Water Simu-

lations on GPUs: Implementation, Visualization, Verification and Validation.

Computer and Fluids, 55:1–12, 2012. Cited in p. 82, 90

[10] B. Chapman, G. Jost and R. der Pas. Using OpenMP: Portable Shared Memory

Parallel Programming (Scientific and Engineering Computation). The MIT

Press, 2007. Cited in p. 14, 33

[11] B. Sander. Bolt: A C++ Templater Library for HSA. Presented in AMD

Fusion Developer Summit ’12, 2012. Cited in p. 18, 64

[12] B. Wang, M. Álvarez-Mesa, C. Ching and B. Juurlink. An Optimized Parallel

IDCT on Graphics Processing Units. In 18th International Conference on

Parallel Processing Workshops (EuroPar ’12), pages 155–164. Springer-Verlag,

2013. Cited in p. 57

[13] C. Boyd and M. Schmit. The Direct3D11 Compute Shader. Microsoft Win-

HEC, 2008. Cited in p. 44

[14] C.-T. Ho and S.L. Johnsson. Optimizing Tridiagonal Solvers for Alternat-

ing Direction Methods on Boolean Cube Multiprocessors. SIAM Journal on

Scientific and Statistical Computing, 11(3):563–592, 1990. Cited in p. 16, 58

[15] C.G. Kim and Y.S. Choi. A High Performance Parallel DCT with OpenCL on

Heterogeneous Computing Environment. Multimedia Tools and Applications,

64(2):475–489, 2013. Cited in p. 57

[16] C.L. Cox and J.A. Knisely. A Tridiagonal System Solver for Distributed Mem-

ory Parallel Processors with Vector Nodes. Journal of Parallel and Distributed

Computing, 13(3):325–331, 1991. Cited in p. 59

[17] C.M. Rader. Discrete Fourier Transforms when the Number of Data Samples

is Prime. Proceedings of the IEEE, 56(6):1107–1108, 1968. Cited in p. 51

[18] CUDA Data Parallel Primitives Library, 2013. v2.1. Cited in p. 59

[19] D. Egloff. High Performance Finite Difference PDE Solvers on GPUs. Quan-

tAlea GmbH, Technical Report, 2010. Cited in p. 59

BIBLIOGRAPHY 207

[20] D. Fraser. Array Permutation by Index-Digit Permutation. J. ACM,

23(2):298–309, 1976. Cited in p. 157

[21] D. Göddeke and R. Strzodka. Cyclic Reduction Tridiagonal Solvers on GPUs

Applied to Mixed Precision Multigrid. IEEE Transactions on Parallel and

Distributed Systems (TPDS), Special Issue on High Performance Computing

with Accelerators, 22(1):22–32, 2011. Cited in p. 59

[22] D. Ribbrock, M. Geveler, D. G oddeke and S. Turek. Performance and Ac-

curacy of Lattice-Boltzmann Kernels on Multi- and Manycore Architectures.

International Conference on Computational Science. Procedia Computer Sci-

ence, 1(1):239–247, 2010. Cited in p. 82

[23] D. van Dyk, M. Geveler, S. Mallach, D. Ribbrock, D. Göddeke and C.

Gutwenger. HONEI: A Collection of Libraries for Numerical Computations

Targeting Multiple Processor Architectures. Computer Physics Communica-

tions, 180(12):2534–2543, 2009. Cited in p. 82

[24] D. Vandevoorde and N.M. Josuttis. C++ Templates: The Complete Guide.

Addison-Wesley, 2002. Cited in p. 18, 64

[25] D.B. Kirk and W.W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann, 2nd edition, 2012. Cited in p. 39

[26] E. Chu and A. George . Inside the FFT Black Box: Serial and Parallel

Fast Fourier Transform Algorithms. Computational Mathematics Series. CRC

Press, 2000. Cited in p. 16, 54, 135

[27] E. Ömer, K. Cetin and J.A. Knisley. A Recursive Doubling Algorithm for

Solution of Tridiagonal Systems on Hypercube Multiprocessors. Journal of

Computational and Applied Mathematics, Special Issue on Parallel Algorithms

for Numerical Linear Algebra, 27(1-2):95–108, 1989. Cited in p. 58, 59

[28] E. Polizzi and A.H. Sameh. A Parallel Hybrid Banded System Solver: The

SPIKE Algorithm. Parallel Computing, 32(2):177–194, 2006. Cited in p. 59

[29] E.F. Toro. Shock-Capturing Methods for Free-Surface Shallow Flows. John

Wiley & Sons, 2001. Cited in p. 81

208 BIBLIOGRAPHY

[30] F. Argüello, M. Amor and E.L. Zapata. FFTs on Mesh Connected Computers.

Parallel Computing, 22(1):19–38, 1996. Cited in p. 19, 64, 156, 157, 159, 161

[31] F. Franchetti and M. Puschel. Generating High Performance Pruned FFT

Implementations. In ICASSP ’09: Proceedings of the 2009 IEEE International

Conference on Acoustics, Speech and Signal Processing, pages 549–552. IEEE

Computer Society, 2009. Cited in p. 75

[32] F. Franchetti and M. Püschel. Fast Fourier Transform. In Encyclopedia of

Parallel Computing. Springer, 2011. Cited in p. 51

[33] F. Franchetti, M. Püschel and Y. Voronenko. Discrete Fourier Transform on

Multicore. IEEE Signal Processing Magazine, 26(6):90–102, 2009. Cited in p.

51

[34] F. Randima and M.J. Kilgard. The Cg Tutorial: The Definitive Guide to

Programmable Real-Time Graphics. Addison-Wesley, 2003. Cited in p. 44

[35] F.C. Lin and K.K. Chung. A Cost-Optimal Parallel Tridiagonal Solver. Par-

allel Computing, 15(1-3):189–199, 1990. Cited in p. 58

[36] Freescale Semiconductor. Complex Fixed-Point Fast Fourier Transform Opti-

mization for AltiVec, 2013. Cited in p. 53

[37] G. Bruun. Z-Transform DFT Filters and FFT’s. IEEE Transactions on Acous-

tics, Speech and Signal Processing, 26(1):56–63, 1978. Cited in p. 51

[38] G. Spaletta and D.J Evans. The Parallel Recursive Decoupling Algorithm for

Solving Tridiagonal Linear Systems. Parallel Computing, 19(5):563–576, 1993.

Cited in p. 59

[39] G.R. Halliwell. Evaluation of Vertical Coordinate and Vertical Mixing Algo-

rithms in the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling,

7(3):285–322, 2004. Cited in p. 16, 58

[40] GSIC Center, Tokyo Institute of Technology. TSUBAME 2.5. http://www.

gsic.titech.ac.jp/en/tsubame, 2013. Cited in p. 44

BIBLIOGRAPHY 209

[41] H. Bantikyan. Implementation of Parallel Fast Hartley Transform (FHT)

Using CUDA. Journal of Computer Sciences and Applications, 2(1):6–8, 2014.

Cited in p. 56

[42] H.-S. Kim, S. Wu, L.-W. Chang and W.W. Hwu. A Scalable Tridiagonal Solver

for GPU. In International Conference on Parallel Processing, pages 444–453.

IEEE Comp. Society, 2011. Cited in p. 59

[43] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi and A. Moshovos. De-

mystifying GPU Microarchitecture through Microbenchmarking. In 2010

IEEE Int. Symp. on Performance Analysis of Systems Software (ISPASS),

pages 235–246, 2010. Cited in p. 155

[44] H.V. Sorensen, D.L. Jones, C.S. Burrus and M. Heideman. On Computing

the Discrete Hartley Transform. IEEE Transactions on Acoustics, Speech and

Signal Processing, 33(5):1231–1238, 1985. Cited in p. 56

[45] H.V. Sorensen, D.L. Jones, M. Heideman and C.S. Burrus. Real-Valued Fast

Fourier Transform Algorithms. IEEE Transactions on Acoustics, Speech and

Signal Processing, 35(6):849–863, 1987. Cited in p. 54

[46] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston and P.

Hanrahan. Brook for GPUs: Stream Computing on Graphics Hardware. ACM

Transactions on Graphics, 23(3):777–786, 2004. Cited in p. 17, 63, 68

[47] I.J. Good. The Interaction Algorithm and Practical Fourier Analysis. Journal

of the Royal Statistical Society, 20(2):361–372, 1958. Cited in p. 51

[48] Intel. Intel Math Kernel Library, Reference Manual, 2009. v10.2. Cited in p.

53, 59

[49] Intel. Intel Integrated Performance Primitives for Intel Architecture, Reference

Manual, 2012. Volume 1: Signal Processing. Cited in p. 53, 125, 188

[50] Intel. Intel Architecture Instruction Set Extensions Programming Reference,

2014. Cited in p. 145

[51] J. Douglas. Alternating Direction Methods for Three Space Variables. Nu-

merische Mathematik, 4(1):41–63, 1962. Cited in p. 16, 58

210 BIBLIOGRAPHY

[52] J. Duato, A.J. Pena, F. Silla, R. Mayo and E.S. Quintana-Ort́ı. rCUDA: Re-

ducing the Number of GPU-based Accelerators in High Performance Clusters.

In International Conference on High Performance Computing and Simulation

(HPCS), pages 224–231, 2010. Cited in p. 44

[53] J. Kurzak, S. Tomov and J. Dongarra. Autotuning GEMM Kernels for

the Fermi GPU. IEEE Transactions on Parallel and Distributed Systems,

23(11):2045–2057, 2012. Cited in p. 155

[54] J. Lamas-Rodŕıguez, F. Argüello, D.B. Heras and M. Bóo. Memory Hierarchy

Optimization for Large Tridiagonal System Solvers on GPU. In EEE 10th

International Symposium on Parallel and Distributed Processing with Appli-

cations (ISPA), pages 87–94, 2012. Cited in p. 59

[55] J. Lobeiras, M. Amor and R. Doallo. FFT Implementation on a Streaming

Architecture. In PDP ’11: Proc. of the 19th Euromicro Conference On Paral-

lel, Distributed and Network-based Processing, pages 381–388. IEEE Computer

Society, 2011. Cited in p. 17, 54, 63, 67, 125

[56] J. Lobeiras, M. Amor and R. Doallo. Performance Evaluation of GPU Memory

Hierarchy using the FFT. In Proc. of the 11th Int’l Conf. on Computational

and Mathematical Methods in Science and Engineering (CMMSE), volume 2,

pages 750–761, 2011. Cited in p. 17, 63, 109

[57] J. Lobeiras, M. Amor and R. Doallo. Influence of Memory Access Patterns

to small-scale FFT Performance. Journal of Supercomputing, 64(1):120–131,

2013. Cited in p. 17, 63, 100, 109, 169

[58] J. Lobeiras, M. Amor and R. Doallo. SPLG: A Tuned Signal Processing

Library for GPU Architectures. In International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD 2013), volume 1,

pages 184–191, 2013. Cited in p. 18, 64, 128, 173

[59] J. Lobeiras, M. Amor and R. Doallo. BPLG: A tuned Butterfly Processing

Library for GPU Architectures. International Journal of Parallel Programming

(IJPP), accepted for publication, 2014. Cited in p. 128

BIBLIOGRAPHY 211

[60] J. Lobeiras, M. Amor and R. Doallo. Operator Strings Algebraic Manipula-

tion. Technical report, Computer Architecture Group, University of A Coruña,

2014. Cited in p. 173

[61] J. Lobeiras, M. Viñas, M. Amor, B.B. Fraguela, M. Arenaz, J.A. Garćıa,

M.J. Castro. Parallelization of Shallow Water Simulations on Current Multi-

Threaded Systems. International Journal of High Performance Computing

Applications (IJHPCA), 27(4):493–512, 2013. Cited in p. 17, 63, 67

[62] J.M. Gallardo, S. Ortega, M. de la Asunción and J.M. Mantas. Two-

Dimensional Compact Third-Order Polynomial Reconstructions. Solving Non-

conservative Hyperbolic Systems Using GPUs. Journal of Scientific Comput-

ing, pages 1–23, 2011. Cited in p. 82, 90

[63] J.R. Ohm, G.J. Sullivan, H. Schwarz, T. Keng Tan and T. Wiegand. Com-

parison of the Coding Efficiency of Video Coding Standards - Including High

Efficiency Video Coding (HEVC). IEEE Trans. on Circuits Systems for Video

Technology, 22(12):1669–1684, 2012. Cited in p. 57

[64] J.S. Jacaba. Audio Compression Using Modified Discrete Consine Transform:

The MP3 Coding Standard. Technical report, University of Philippines. Re-

search paper, 2001. Cited in p. 57

[65] J.W. Choi, A. Singh and R.W. Vuduc. Model-Driven Autotuning of Sparse

Matrix-Vector Multiply on GPUs. In Proc. of the 15th ACM SIGPLAN sym-

posium on Principles and practice of parallel programming (PPoPP 2010),

volume 45, pages 115–126, 2010. Cited in p. 155

[66] J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

Cited in p. 51, 110, 164

[67] K. Gregory and A. Miller. C++ AMP: Accelerated Massive Parallelism with

Microsoft Visual C++. Microsoft Press, 2012. Cited in p. 44

[68] Keith Jones. The Regularized Fast Hartley Transform. Signals and Commu-

nication Technology. Springer, 2010. Cited in p. 56, 131, 135

212 BIBLIOGRAPHY

[69] Khronos OpenCL Working Group. The OpenCL Specification, 2011. Cited in

p. 44

[70] K.R. Rao and P.C. YIP. The Transform and Data Compression Handbook.

The Electrical Eng. and Signal Processing. CRC Press, 2001. Cited in p. 16,

50, 57, 131, 135

[71] L. Chen, L. Liu, S. Tang, L. Huang, Z. Jing, S. Xu, D. Zhang and B. Shou.

Unified Parallel C for GPU Clusters: Language Extensions and Compiler Im-

plementation. In V. S. K. Cooper, J. Mellor-Crummey, editor, Languages and

Compilers for Parallel Computing, volume 6548 of Lecture Notes in Computer

Science (LNCS), pages 151–165. Springer Berlin Heidelberg, 2011. Cited in p.

44

[72] L.-W. Chang, J.A. Stratton, H.-S. Kim and W.W. Hwu. A Scalable, Numeri-

cally Stable, High-performance Tridiagonal Solver Using GPUs. In Proceedings

of the International Conference on High Performance Computing, Network-

ing, Storage and Analysis (SC’12), pages 27:1–27:11. IEEE Computer Society

Press, 2012. Cited in p. 59, 60

[73] L.H. Thomas. Elliptic Problems in Linear Differential Equations over a Net-

work. Technical report, Columbia University, 1949. Cited in p. 58

[74] L.H. Thomas. Using a Computer to Solve Problems in Physics. In Applications

of Digital Computers. Ginn and Company, 1963. Cited in p. 51

[75] L.I. Bluestein. A Linear Filtering Approach to the Computation of Dis-

crete Fourier Transform. IEEE Transactions on Audio and Electroacoustics,

18(4):451–455, 1970. Cited in p. 51

[76] M. Bueno and F. Dopico. Stability and Sensitivity of Tridiagonal LU Factor-

ization without Pivoting. Bit Numerical Mathematics, 44(4):651–673, 2004.

Cited in p. 58

[77] M. de la Asunción, J.M. Mantas and M.J. Castro. Simulation of One-Layer

Shallow Water Systems on Multicore and CUDA Architectures. Journal of

Supercomputing, pages 1–9, 2010. Cited in p. 100

BIBLIOGRAPHY 213

[78] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3.

Proc. of the IEEE, 93(2):216–231, 2005. Cited in p. 54, 145

[79] M. Geveler, D. Ribbrock, D. G oddeke, S. Turek. Lattice-Boltzmann Sim-

ulation of the Shallow-Water Equations with Fluid-Structure Interaction on

Multi- and Manycore Processors. Lecture Notes in Computer Science: Facing

the Multicore Challenge, 6310:92–104, 2010. Cited in p. 82

[80] M. Guptda and A.K. Garg. Analysis of Image Compression Algorithm us-

ing DCT. International Journal of Engineering Research and Applications

(IJERA), 2(1):512–521, 2012. Cited in p. 57

[81] M. Harris. Optimizing Parallel Reduction in CUDA. NVIDIA, 2012. v5.0.

Cited in p. 94

[82] M. Lastra, J.M. Mantas, C. Ureña, M.J. Castro and J.A Garćıa-Rodŕıguez.

Simulation of Shallow Water Systems using Graphics Processing Units. Math-

ematics and Computers in Simulation, 80(3):598–618, 2009. Cited in p. 82

[83] M. Mathew, V. Bhat, S.M. Thomas and Y. Changhoon. Modified MP3 En-

coder using Complex Modified Cosine Transform. In International Conference

on Multimedia and Expo (ICME ’03), volume 1, pages 709–712. IEEE Com-

puter Society, 2003. Cited in p. 57

[84] M. Panella and L. Basset. An Efficient GPU Implementation of Modified

Discrete Cosine Transform Using CUDA. Int. Journal of Computer Science

and Information Security, 10(5):23–30, 2012. Cited in p. 57, 145

[85] M. Püschel, J.M.F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J.

Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R.W. Johnson and N.

Rizzolo. SPIRAL: Code Generation for DSP Transforms. Proc. of the IEEE,

on “Program Generation, Optimization, and Platform Adaptation”, 93(2):232–

275, 2005. Cited in p. 54

[86] M. Viñas, J. Lobeiras, B.B. Fraguela, M. Arenaz, M. Amor and R. Doallo.

Simulation of Pollutant Transport in Shallow Water on a CUDA Architecture.

In Proc. of Workshop on Exploitation of Hardware Accelerators (WEHA 2011)

214 BIBLIOGRAPHY

As part of the 2011 International Conf. on High Performance Computing and

Simulation, HPCS2011, pages 664–670, 2011. Cited in p. 17, 63, 67, 82, 94

[87] M. Viñas, J. Lobeiras, B.B. Fraguela, M. Arenaz, M. Amor, J.A. Garćıa, M.J.

Castro and R. Doallo. A Multi-GPU Shallow-Water Simulation with Transport

of Contaminants. Concurrency and Computation: Practice and Experience,

25(8):1153–1169, 2013. Cited in p. 17, 63, 67

[88] M. Viñas, Z. Bozkus and B.B. Fraguela. Exploiting Heterogeneous Paral-

lelism with the Heterogeneous Programming Library. Journal of Parallel and

Distributed Computing, 73(12):1627–1638, 2013. Cited in p. 44

[89] M.C. Pease. An Adaptation of the Fast Fourier Transform for Parallel Process-

ing. Journal of the Association for Computing Machinery (ACM), 15(2):252–

264, 1968. Cited in p. 51, 52, 110

[90] M.J. Castro, E.D. Fernández-Nieto, A.M. Ferreiro, J.A. Garćıa-Rodŕıguez and

C. Parés. High Order Extensions of Roe Schemes for Two Dimensional Non-

conservative Hyperbolic Systems. Journal of Scientific Computing, 39(1):67–

114, 2009. Cited in p. 86, 90

[91] M.J. Castro, J.A. Garćıa-Rodŕıguez, J.M. González-Vida and C. Parés. A

Parallel 2D Finite Volume Scheme for Solving Systems of Balance Laws with

Nonconservative Products: Application to Shallow Flows. Computer Methods

in Applied Mechanics and Engineering, 195(19-22):2788–2815, 2006. Cited in

p. 82, 86

[92] M.J. Castro, J.A. Garćıa-Rodŕıguez, J.M. González-Vida and C. Parés. Solv-

ing Shallow-Water Systems in 2D Domains using Finite Volume Methods and

Multimedia SSE Instructions. J. Comput. Appl. Math., 221(1):16–32, 2008.

Cited in p. 82

[93] M.J. Castro, T. Chacón, E.D. Fernández-Nieto, J.M. González-Vida, C. Parés.

Well-Balanced Finite Volume Schemes for 2D non-Homogeneous Hyperbolic

Systems. Application to the dam break of Aznalcóllar. Computer Methods in

Applied Mechanics and Engineering, 197:3932–3950, 2008. Cited in p. 86, 87,

90, 91

BIBLIOGRAPHY 215

[94] M.L. Sætra and A.R. Brodtkorb. Shallow Water Simulations on Multiple

GPUs. In Applied Parallel and Scientific Computing, volume 7134 of Lecture

Notes in Computer Science, pages 56–66. Springer, 2012. Cited in p. 82

[95] N. Ahmed, T. Natarajan and K.R. Rao. Discrete Cosine Transform. IEEE

Transactions on Computers, C-23(1):90–93, 1974. Cited in p. 16, 57

[96] N. Bell. Thrust: A Productivity-Oriented Library for CUDA. In GPU Com-

puting Gems, Jade Edition. Morgan Kaufmann, 2011. Cited in p. 18, 64

[97] N. Sakharnykh. Efficient Tridiagonal Solvers for ADI Methods and Fluid

Simulation. In GPU Technology Conference 2010 (GTC 2010 presentation),

2010. Cited in p. 59

[98] NVIDIA. CUDA Compute Unified Device Architecture, 2011. Cited in p. 44

[99] NVIDIA. CUDA C Best Practices Guide (SDK Document.), 2012. v5.0. Cited

in p. 100, 128, 133

[100] NVIDIA. CUDA CUFFT Library, 2012. v5.0. Cited in p. 19, 54

[101] NVIDIA. CUSPARSE Library, 2012. v5.0. Cited in p. 19, 59

[102] Oak Ridge National Laboratory. Titan. http://www.olcf.ornl.gov/titan,

2013. Cited in p. 43

[103] OpenACC. The OpenACC Application Programming Interface, 2013. v2.0.

Cited in p. 44

[104] P. Wiemann, S. Wenger and M. Magnor. CUDA Expression Templates. In

WSCG Communication Papers Proceedings 2011, pages 185–192, 2011. Cited

in p. 19, 65, 156

[105] P. Ye, X. Shi and X. Li. CUDA Based Implementation of DCT/IDCT on

GPU. Technical report, University of Delaware, 2008. Cited in p. 57

[106] P. Pacheco. Parallel Programming with MPI. Morgan Kaufmann Publishers

Inc., 1996. Cited in p. 14, 33

216 BIBLIOGRAPHY

[107] Q. Hou, K. Zhou and B. Guo. BSGP: Bulk-Synchronous GPU Programming.

ACM Transactions on Graphics, 27(3):1–12, 2008. Cited in p. 44

[108] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald and R. Menon.

Parallel Programming in OpenMP. Morgan Kaufmann, 2001. Cited in p. 105

[109] S. B. R. Dolbeau and F. Bodin. HMPP: A Hybrid Multi-core Parallel Pro-

gramming Environment. In Proceedings of the Workshop on General Purpose

Processing on Graphics Processing Units (GPGPU 2007), pages 1–5, 2007.

Cited in p. 44

[110] R.C. Singleton. A Method for Computing the Fast Fourier Transform with

Auxiliary Memory and Limited High-Speed Storage. IEEE Transactions on

Audio and Electroacoustics, 15:91–98, 1967. Cited in p. 72

[111] R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge

University Press, 2002. Cited in p. 81

[112] R.V.L. Hartley. A More Symmetrical Fourier Analysis Applied to Transmis-

sion Problems. Proc. of the Institute of Radio Engineers (IRE), 30(3):144–150,

1942. Cited in p. 16, 55

[113] R.W. Hockney. A Fast Direct Solution of Poisson’s Equation Using Fourier

Analysis. Journal of the ACM (JACM), 12(1):95–113, 1965. Cited in p. 58

[114] R.W. Hockney and C.R. Jesshope. Parallel Computers Two: Architecture,

Programming and Algorithms. IOP Publishing Ltd., 1988. Cited in p. 58

[115] S. Bondeli. Divide and Conquer: A Parallel Algorithm for the Solution of a

Tridiagonal Linear System of Equations. Parallel Computing, 17(4-5):419–434,

1991. Cited in p. 59

[116] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with

Memory-Level and Thread-Level Parallelism Awareness. In Proc. of the 36th

Int. Symposium on Computer Architecture (ISCA ’09), volume 37, pages 152–

163, 2009. Cited in p. 155

[117] S. Oraintara, Ying-Jui Chen and T.Q. Nguyen. Integer Fast Fourier Transform.

IEEE Transactions on Signal Processing, 50(3):607–618, 2002. Cited in p. 53

BIBLIOGRAPHY 217

[118] S. Winograd. On Computing the Discrete Fourier Transform. Mathematics of

Computation, 32(141):175–199, 1978. Cited in p. 51

[119] S.C. Chapra and R. Canale. Numerical Methods for Engineers. McGraw-Hill,

Inc., 5 edition, 2006. Cited in p. 16

[120] S.M. Müller and D. Scheerer. A Method to Parallelize Tridiagonal Solvers.

Parallel Computing, 17(2-3):181–188, 1991. Cited in p. 59

[121] S.S. Baghsorkhi, M. Delahaye, S.J. Patel, W.D. Gropp and W.W. Hwu. An

Adaptive Performance Modeling Tool for GPU Architectures. In Proceedings

of the 15 th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP 2010)., pages 105–114, 2010. Cited in p. 155

[122] Swiss National Supercomputing Centre (CSCS). Piz Daint. http://www.

cscs.ch/computers/piz_daint, 2013. Cited in p. 44

[123] T. Han and T. Abdelrahman. hiCUDA: A High-level Directive-based Lan-

guage for GPU Programming. In GPGPU-2: Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing Units, pages 52–61,

2009. Cited in p. 44

[124] T. Morales de Luna, M.J. Castro, C. Parés and E.F Nieto. On a Shallow

Water Model for the Simulation of Turbidity Currents. Communications in

Computational Physics, 6:848–882, 2009. Cited in p. 82

[125] T. Runar, K.-A. Lie and J. R. Natvig. Solving the Euler Equations on Graph-

ics Processing Units. In Proceedings of the 6th International Conference on

Computational Science, volume 3994 of Lecture Notes in Computer Science,

pages 220–227, 2006. Cited in p. 82

[126] R. Taylor and X. Li. A Micro-benchmark Suite for AMD GPUs. In 2010 39th

International Conference on Parallel Processing Workshops (ICPPW), pages

387–396, 2010. Cited in p. 155

[127] T.G. Stockham. High-Speed Convolution and Correlation. In Proceedings of

the Spring Joint Computer Conference, pages 229–233, 1966. Cited in p. 51,

52, 164

218 BIBLIOGRAPHY

[128] Top500. Top 500 Supercomputer Sites. http://www.top500.org, 2013. Cited

in p. 43

[129] T.R. Hagen, M.O. Henriksen, J.M. Hjelmervik and K.-A. Lie. How to Solve

Systems of Conservation Laws Numerically Using the Graphics Processor as

a High-Performance Computational Engine. In G. Hasle, K.-A. Lie, and

E. Quak, editors, Geometric Modelling, Numerical Simulation, and Optimiza-

tion, pages 211–264. Springer Berlin Heidelberg, 2007. Cited in p. 82

[130] V. Chauhan, P.K. Nathaney, M. Pandey and K.M. Rai. A Novel Approach

to Video Compression Technique using Variable Block Sizes in Motion Esti-

mation Process. International Journal of Electronics and Computer Science

Engineering (IJECSE), 1(3):1321–1327, 2012. Cited in p. 16, 57

[131] V. Volkov. Better Performance at Lower Occupancy. In GPU Technology

Conference 2010 (GTC 2010 presentation), 2010. Cited in p. 113, 166

[132] V. Volkov. Use Registers and Multiple Outputs per Thread on GPU. In

International Workshop on Parallel Matrix Algorithms and Applications 2010

(PMAA ’10 presentation), 2010. Cited in p. 113, 166

[133] V. Volkov and B. Kazian. Fitting FFT onto the G80 Architecture. Technical

report, University of California, Berkeley, 2009. Cited in p. 54

[134] W. Gander and G.H. Golub. Cyclic Reduction - History and Applications. In

Workshop on Scientific Computing, volume 6, pages 73–88, 1997. Cited in p.

58

[135] X. Wang and Z.G. Mou. A Divide-and-Conquer Method of Solving Tridiagonal

Systems on Hypercube Massively Parallel Computers. IEEE Symposium on

Parallel and Distributed Processing, pages 810–817, 1991. Cited in p. 59, 60,

139, 177

[136] Y. Dotsenko, S.S. Baghsorkhi, B. Lloyd and N.K. Govindaraju. Auto-Tuning

of Fast Fourier Transform on Graphics Processors. In Principles and Practice

of Parallel Programming (PPoPP ’11), pages 257–266, 2011. Cited in p. 155

BIBLIOGRAPHY 219

[137] Y. Li, Y. Zhang, Y. Liu, G. Long and H. Jia. MPFFT: An Auto-Tuning FFT

Library for OpenCL GPUs. Journal of Computer Science and Technology,

28(1):90–105, 2013. Cited in p. 155

[138] Y. Wang and M. Vilermo. Modified Discrete Cosine Transform: Its Implica-

tions for Audio Coding and Error Concealment. Journal of Audio Engineering

Society, 51(1):52–61, 2003. Cited in p. 16, 57

[139] Y. Wang, M. Baboulin, J. Dongarra, J. Falcou, Y. Fraigneau and O.P. Le

Mâıtre. A Parallel Solver for Incompressible Fluid Flows. In International

Conf. on Computational Science (ICCS 2013), volume 18 of Procedia Com-

puter Science, pages 439–448. Elsevier, 2013. Cited in p. 16, 58

[140] Y. Yang, P. Xiang, M. Mantor, N. Rubin and H. Zhou. Shared Memory

Multiplexing: A Novel Way to Improve GPGPU Throughput. In Proc. of the

21st Int’l. Conf. on Parallel Architectures and Compilation Techniques, PACT

’12, pages 283–292. ACM, 2012. Cited in p. 139, 176

[141] Y. Zhang and J.D. Owens. A Quantitative Performance Analysis Model for

GPU Architectures. In Proc. of the 17th IEEE Int. Symposium on High-

Performance Computer Architecture (HPCA 17), pages 382–393, 2011. Cited

in p. 155

[142] Y. Zhang, J. Cohen and J.D. Owens. Fast Tridiagonal Solvers on the GPU. In

Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming (PPoPP 2010), pages 127–136, 2010. Cited in p.

59, 151, 192

