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Resumo

Durante a última década, os métodos baseados en deep learning trouxeron un
salto significativo no rendemento dos sistemas de visión artificial. Unha das claves
neste éxito foi a creación de grandes conxuntos de datos perfectamente etiqueta-
dos para usar durante o adestramento. En certa forma, as redes de deep learning
resumen esta enorme cantidade datos en prácticos vectores multidimensionais. Por
este motivo, cando as diferenzas entre os datos de adestramento e os adquiridos
durante o funcionamento dos sistemas (debido a factores como o contexto de ad-
quisición) son especialmente notorias, as redes de deep learning son susceptibles de
sufrir degradación no rendemento.

Mentres que a solución inmediata a este tipo de problemas sería a de recorrer a
unha recolección adicional de imaxes, co seu correspondente proceso de etiquetado,
esta dista moito de ser óptima. A gran cantidade de posibles variacións que presenta
o mundo visual converten rápido este enfoque nunha tarefa sen fin. Máis aínda cando
existen aplicacións específicas nas que esta acción é difícil, ou incluso imposible, de
realizar debido a problemas de custos ou de privacidade.

Esta tese propón abordar todos estes problemas usando a perspectiva da adap-
tación. Así, a hipótese central consiste en asumir que é posible utilizar os datos non
etiquetados adquiridos durante o funcionamento para mellorar o rendemento que
obteríamos con sistemas de recoñecemento xerais. Para isto, e como proba de con-
cepto, o campo de estudo da tese restrinxiuse ao recoñecemento de caras. Esta é unha
aplicación paradigmática na cal o contexto de adquisición pode ser especialmente
relevante.

Este traballo comeza examinando as diferenzas intrínsecas entre algúns dos con-
textos específicos nos que se pode necesitar o recoñecemento de caras e como estas
afectan ao rendemento. Desta maneira, comparamos distintas bases de datos (xunto
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cos seus contextos) entre elas, usando algúns dos descritores de características máis
avanzados e así determinar a necesidade real de adaptación.

A partir desta punto, pasamos a presentar o método novo, que representa a prin-
cipal contribución da tese: o Dynamic Ensemble of SVM (De-SVM). Este método im-
plementa a capacidade de adaptación utilizando unha aprendizaxe incremental non
supervisada na que as súas propias predicións se usan como pseudo-etiquetas durante
as actualizacións (a estratexia de auto-adestramento). Os experimentos realizáronse
baixo condicións de vídeo-vixilancia, un exemplo paradigmático dun contexto moi
específico no que os procesos de etiquetado son particularmente complicados. As
ideas claves de De-SVM probáronse en diferentes sub-problemas de recoñecemento
de caras: a verificación de caras e recoñecemento de caras en conxunto pechado e en
conxunto aberto.

Os resultados acadados mostran un comportamento prometedor en termos de
adquisición de coñecemento sen supervisión así como robustez contra impostores.
Ademais, este rendemento é capaz de superar a outros métodos do estado da arte
que non posúen esta capacidade de adaptación.



Resumen

Durante la última década, los métodos basados en deep learning trajeron un salto
significativo en el rendimiento de los sistemas de visión artificial. Una de las claves en
este éxito fue la creación de grandes conjuntos de datos perfectamente etiquetados
para usar durante el entrenamiento. En cierta forma, las redes de deep learning
resumen esta enorme cantidad datos en prácticos vectores multidimensionales. Por
este motivo, cuando las diferencias entre los datos de entrenamiento y los adquiridos
durante el funcionamiento de los sistemas (debido a factores como el contexto de
adquisición) son especialmente notorias, las redes de deep learning son susceptibles
de sufrir degradación en el rendimiento.

Mientras que la solución a este tipo de problemas es recurrir a una recolección
adicional de imágenes, con su correspondiente proceso de etiquetado, esta dista mu-
cho de ser óptima. La gran cantidad de posibles variaciones que presenta el mundo
visual convierten rápido este enfoque en una tarea sin fin. Más aún cuando exis-
ten aplicaciones específicas en las que esta acción es difícil, o incluso imposible, de
realizar; debido a problemas de costes o de privacidad.

Esta tesis propone abordar todos estos problemas usando la perspectiva de la
adaptación. Así, la hipótesis central consiste en asumir que es posible utilizar los
datos no etiquetados adquiridos durante el funcionamiento para mejorar el rendi-
miento que se obtendría con sistemas de reconocimiento generales. Para esto, y como
prueba de concepto, el campo de estudio de la tesis se restringió al reconocimiento
de caras. Esta es una aplicación paradigmática en la cual el contexto de adquisición
puede ser especialmente relevante.

Este trabajo comienza examinando las diferencias entre algunos de los contex-
tos específicos en los que se puede necesitar el reconocimiento de caras y así como
sus efectos en términos de rendimiento. De esta manera, comparamos distintas ba-
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ses de datos (y sus contextos) entre ellas, usando algunos de los descriptores de
características más avanzados para así determinar la necesidad real de adaptación.

A partir de este punto, pasamos a presentar el nuevo método, que representa la
principal contribución de la tesis: el Dynamic Ensemble of SVM (De- SVM). Este
método implementa la capacidad de adaptación utilizando un aprendizaje incremen-
tal no supervisado en la que sus propias predicciones se usan cómo pseudo-etiquetas
durante las actualizaciones (la estrategia de auto-entrenamiento). Los experimen-
tos se realizaron bajo condiciones de vídeo-vigilancia, un ejemplo paradigmático de
contexto muy específico en el que los procesos de etiquetado son particularmente
complicados. Las ideas claves de De- SVM se probaron en varios sub-problemas
del reconocimiento de caras: la verificación de caras y reconocimiento de caras de
conjunto cerrado y conjunto abierto.

Los resultados muestran un comportamiento prometedor en términos de adqui-
sición de conocimiento así como de robustez contra impostores. Además, este rendi-
miento es capaz de superar a otros métodos del estado del arte que no poseen esta
capacidad de adaptación.



Abstract

In the last decade, deep learning has brought an unprecedented leap forward for
computer vision general classification problems. One of the keys to this success is the
availability of extensive and wealthy annotated datasets to use as training samples.
In some sense, a deep learning network summarises this enormous amount of data
into handy vector representations. For this reason, when the differences between
training datasets and the data acquired during operation (due to factors such as
the acquisition context) are highly marked, end-to-end deep learning methods are
susceptible to suffer performance degradation.

While the immediate solution to mitigate these problems is to resort to an ad-
ditional data collection and its correspondent annotation procedure, this solution
is far from optimal. The immeasurable possible variations of the visual world can
convert the collection and annotation of data into an endless task. Even more when
there are specific applications in which this additional action is difficult or simply not
possible to perform due to, among other reasons, cost-related problems or privacy
issues.

This Thesis proposes to tackle all these problems from the adaptation point of
view. Thus, the central hypothesis assumes that it is possible to use operational
data with almost no supervision to improve the performance we would achieve with
general-purpose recognition systems. To do so, and as a proof-of-concept, the field
of study of this Thesis is restricted to face recognition, a paradigmatic application
in which the context of acquisition can be especially relevant.

This work begins by examining the intrinsic differences between some of the
face recognition contexts and how they directly affect performance. To do it, we
compare different datasets, and their contexts, against each other using some of the
most advanced feature representations available to determine the actual need for

xv



xvi

adaptation.

From this point, we move to present the novel method, representing the cen-
tral contribution of the Thesis: the Dynamic Ensembles of SVM (De-SVM). This
method implements the adaptation capabilities by performing unsupervised incre-
mental learning using its own predictions as pseudo-labels for the update decision
(the self-training strategy). Experiments are performed under video surveillance
conditions, a paradigmatic example of a very specific context in which labelling
processes are particularly complicated. The core ideas of De-SVM are tested in
different face recognition sub-problems: face verification and, the more complex,
general closed- and open-set face recognition.

In terms of the achieved results, experiments have shown a promising behaviour
in terms of both unsupervised knowledge acquisition and robustness against impos-
tors, surpassing the performances achieved by state-of-the-art non-adaptive meth-
ods.



Preface

This preface outlines some of the key ideas and contributions presented in this
Thesis: Incremental Learning through Unsupervised Adaptation in Video Face Recog-
nition.

Objectives and Work Methodology

The main objective of this Thesis is to develop a method capable of performing
online incremental learning in contexts where image quality is relatively low and
label availability is extremely limited. In this regard, the problem of face based
biometric identification in video-surveillance represent a paradigmatic example of
these contexts. Consequently, as proof-of-concept, this will be the main scenario in
which we conduct the experiments.

We establish now the main goals (and sub-goals) of the Thesis:

1. Perform a preliminary exploration of the problematic we wanted to approach.

• Explore the intrinsic differences between some face recognition contexts
and their effects in performance

• Study the behaviour of the existent incremental learning approaches in
the absence of labelled data

2. Develop the online incremental learning method.

• Be able to work in contexts where image quality is specially limited.
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• Design an strategy of continuous adaptation based on incremental learn-
ing of the online incoming samples.

• Overcome the labels limitations to have a successful incremental learning.

3. Validate the method viability in the specific context of face recognition in
video-surveillance.

• Perform a comprehensive evaluation in verification conditions (1:1 iden-
tification).

• Perform a comprehensive evaluation in closed-set and open-set recogni-
tion conditions (1:N)

Structure of the Thesis

Following a similar structured as the previous objectives, the Thesis is organised
as follows:

• Chapter 1 introduces the central topics approached during the Thesis as well
as the main motivation behind them.

• Chapter 2 explores the intrinsic differences between different face recognition
contexts and their effects in performance.

• Chapter 3 tackles the simpler face verification problem in video-surveillance
problem by presenting the proposed incremental learning system designed to
work in very low-labelled conditions.

• Chapter 4 extends the previous system to deal with the more complex open-set
face recognition problem under the same context conditions as before.

• Chapter 5 extracts some final conclusions from the Thesis and discusses future
research lines in regards to adaptive and incremental learning systems.
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Main Contributions

The main original contributions derived from the Thesis are the following:

• About feature representations and adaptation needs on specific environments
(Chapter 2):

◦ A study of the impact on performance of dataset bias, when combining
different face datasets during training phase for face verification purposes.

◦ A novel insight into the face dataset bias by a study of their distribution
on feature spaces. The approach followed here uses geometrical perspec-
tive by looking into the datasets’ feature vectors distribution.

◦ A comparison of the behaviour of different feature descriptors, both hand-
crafted and learned, and their robustness against dataset bias. The results
shows that even deep feature representations are susceptible to dataset
bias.

• About video-to-video face verification in video surveillance (Chapter 3):

◦ The proposition of an ensemble-based adaptive biometric system called
Dynamic Ensemble of SVM (De-SVM). De-SVM retains the CNN dis-
crimination power while providing for additional modularity, scalability,
reversibility, generalisation and robustness of ensemble-based approaches.

◦ The use of the self-updating approach to use system’s predictions as
pseudo-labels to learn and operate simultaneously.

• About video-to-video face recognition in video surveillance (Chapter 4):

◦ An extension of the previous approach to unsupervised incremental face
recognition: Open-set Dynamic Ensemble of SVM (OSDe-SVM).

◦ A strategy to deal with both catastrophic forgetting issues and the effect
of mistaken pseudo-labels, taking advantage of ensembles full potential.

◦ An approach to instance-incremental learning in the open-set, which
could be extended to cope with the class-incremental problem.
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◦ A method for person re-identification based on face, which is not directly
based on a reservoir of face images and only requires for 5 labelled video
frames for initialisation.

Publications from the Thesis

Journal publications

• E. López-López, X. M. Pardo, C. V. Regueiro, R. Iglesias, and F. E. Casado.
Dataset bias exposed in face verification. IET Biometrics, 8(4):249–258, 2019

• E. Lopez-Lopez, C. V. Regueiro, X. M. Pardo, A. Franco, and A. Lumini.
Towards a self-sufficient face verification system. Expert Systems with Appli-
cations, 174:114734, 2021

• (In Revision) E. Lopez-Lopez, C. V. Regueiro, and X. M. Pardo. Incremental
learning from low-labelled stream data in open-set video face recognition, 2020

International conferences

• E. Lopez-Lopez, C. V. Regueiro, X. M. Pardo, A. Franco, and A. Lumini.
Incremental learning techniques within a self-updating approach for face ver-
ification in video-surveillance. In Pattern Recognition and Image Analysis,
pages 25–37. Springer International Publishing, 2019

• E. Lopez-Lopez, C. V. Regueiro, and X. M. Pardo. An adaptive video-to-video
face identification system based on self-training. In 2020 25th International
Conference on Pattern Recognition (ICPR), pages 2590–2596, 2021

Developed software

A summarised version of the source code created in this Thesis was made publicly
available:
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• OSDe-SVM: Open-Set Dynamic Ensembles of SVM: https://gitlab.citius.
usc.es/eric.lopez/osde-svm
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Chapter 1

Introduction

Motivations

Humans acquire information from the outer world through five different senses
— vision, hearing, touch, taste and smell — from which vision stands out as the
most important human senses. As a matter of fact, the amount of raw information
received by the eyes is estimated to be at least two orders of magnitude above the
joint information received by the other senses [24]. For this amount of information to
be manageable, outer world visual information needs to be compressed, classified and
structured. Consequently, the set of mechanisms shaping what we call vision are not
mere light receptors (eyes), but involve a specific part of the brain (the visual cortex).
If that was not enough complexity, the adult human vision is not a static ability that
does not evolve with time. Indeed, part of vision involves pretty stable processes
developed during child development or by just evolution hard-wiring. Nevertheless,
there is also an essential part of the vision which is modulated and adapted through
active use.

Computer vision is born with the complex task of replicating the human vision
system. Although we do not entirely understand its natural mechanisms, the enor-
mous potential in automation applications of an artificial vision system has broken
through. The research in computer vision involves a wide range of inter-disciplinary
experts (from engineers, psychologists, biologists, to even philosophers, among oth-
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ers). Since its birth as a summer project [96] in the ’60s, the advances have been
mostly gradual until the last decade. In 2012, the re-visitation of a specific type
of neural networks [67] (the Convolutional Neural Networks, CNN) in conjunction
with the increasingly powerful GPU’s and the availability of large-scale annotated
datasets [25] provoked an important leap forward in performance, in what can be
called deep learning revolution. Suddenly, some of the most challenging tasks of
computer vision (e.g. car drive assistance, image retrieval, face swap filters, etc.)
started to be accessible by using these techniques.

From the biological perspective, CNNs can be associated with the more static
part of the human visual system. However, currently, it fails to provide this capabil-
ity of adaptation through active use. When we try to fine-tune a pre-trained network
using a small amount of data for adaptation purposes, the network tends to forget
its original capabilities in problem denominated as catastrophic forgetting. This is-
sue is problematic both from a more theoretical perspective; adaptation should be a
core ability of any truly intelligent system; and a more practical one, which we are
about to analyse next.

The power of CNNs is closely related to the quality and completeness of the
large-scale annotated dataset used in training. In this regard, even the most com-
prehensive dataset cannot guarantee a good performance in every specific context.
While collecting (and annotating) additional data seems like an immediate solu-
tion, the truth is that there are contexts in which this endeavour is particularly
challenging (due to privacy issues, limitation in resources, cost-related problems,
etc.). Therefore to endow recognition systems with adaptation capabilities appears
as a practical and efficient way of dealing with these issues. In the literature, this
adaptation capability is implemented by different inter-related research lines: trans-
fer learning, lifelong learning, domain adaptation, continual learning or incremental
learning [38].

The challenges of this Thesis

This Thesis precisely aims to contribute to developing the unavoidable adapta-
tion part of computer vision. Due to the wide range of computer vision applications
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and as a proof-of-concept, we have restricted our study to the task of face recogni-
tion.

Face recognition is a task of computer vision that has consistently received sig-
nificant attention from the scientific community. Roughly, it consists of assigning
identities based on facial images. Nevertheless, in practice, face recognition research
includes many sub-problems (e.g. face verification or face identification) and the ad-
ditional tools involved in the identity assignation (e.g. face detection, face tracking
or feature representation). Besides, the fact that we distinguish between very similar
objects (faces) makes the effects of the context of acquisition particularly relevant.
Intuitively, the difference in a person’s appearance in video surveillance and an ID
mugshot can be more significant than distinguishing them from other people. For
these reasons, face recognition appears as an interesting scenario to benefit from
adaptation capable methods. With all of this in mind, we now enumerate the main
challenges of the Thesis:

The first challenge consist of conceptually defining how we plan to retain the
CNNs discrimination power while avoiding catastrophic forgetting. In this direction,
we opted to fix the convolutional layers of state-of-the-art deep networks without the
last fully connected layers. This way, we re-take the traditional distinction between
feature extraction and classification parts and implement the adaptation capabilities
by improving this last part.

The second challenge relates to the robustness degree of state-of-the-art face
recognition features to context variations. Therefore, the first step in this direction
will be to study the performance effects when we mix samples of two contexts during
the classifier training. From the face recognition perspective, we try to understand
the impact of using auxiliary data sources (often taken in a different context) when
we deploy a face verification system in a specific context where availability of labelled
data is scarce (i.e. mobile biometrics, video surveillance, etc.).

In this endeavour, we perform a comprehensive study of the dataset bias us-
ing some well-known face datasets, making an especial emphasis on context-related
biases. The results of this study can be seen in Chapter 2.

The third challenge consists of the actual design of a novel classification part
that implements adaptation. The proposed solution is an ensemble-based incremen-
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tal learning method built on top of the most advanced deep feature embeddings. The
deep network used for the feature extraction is not relevant, and it will be changing
during the Thesis development as the state-of-the-art advances. The method is a
Dynamic Ensemble of SVM (De-SVM) which will be adding new classifiers incre-
mentally to adapt to the target context and improve performance. Ensembles have
often been recalled as an efficient, robust and scalable solution for classification tasks
compared to the regular fully connected layers of CNN. Besides, by encapsulating
updates into individual classifiers, they also provide for update reversibility and bet-
ter explainability. This especially interesting if we want to operate in label-scarce
contexts, as we further explain in the following proposal.

The fourth challenge addresses the scarceness of labelled data of the contexts
we tackle. In this regard, the proposed De-SVM uses the self-training paradigm to
use the predictions of the method at the moment as pseudo-labels to add new clas-
sifiers to the ensemble. The training process becomes integrated with the system’s
operation without the need for the usual separation. Thus, after initialisation (using
just 5 video frames), the system will perform the incremental learning process in a
completely unsupervised way.

Decisions within the ensemble use the raw score output by the SVM classifiers
to then fused them using the median function. Finally, acceptance or rejection are
determined based on a threshold. The setting of this threshold has proven to be
particularly challenging and relates to the stability-plasticity dilemma.

Chapter 3 contains the details of De-SVM architecture and also a comprehensive
comparison to other incremental learning methods within the self-training approach.
The whole set of experiments mimic the video-to-video face verification (V2V-FV)
problem in a video-surveillance context, a paradigmatic example of the specific con-
text in which adaption may be required. De-SVM stand outs as the best performing
method with respect to both other incremental learning techniques as well as other
non-adaptable state-of-the-art face verification methods.

The fifth challenge relates to the more complex conditions of open-set recog-
nition. In this direction, we will need to extend De-SVM into the so-called Open-set
Dynamic Ensembles of SVM (OSDe-SVM) in a two-step process:

• The adaptation of the decision procedure to the open-set multi-class problem.
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In this setting, the decision needs to expect not only queries from the enrolled
identities but also queries from additional unknown identities. For this pur-
pose, we use the power of the Extreme Value Theory to discriminate between
known and unknown identities.

• The addition of two new modules that remove classifiers from the ensemble
to limit their size (limitation module) and correct possible mistaken updates
(self-healing module). This way allows us to exploit the full potential of an
ensemble-based approach.

Chapter 4 contains full details of OSDe-SVM as well as a comprehensive exper-
imentation in the same video-surveillance context as before.

Main Contributions

The main original contributions derived from the Thesis are the following:

• About feature representations and adaptation needs on specific environments
(Chapter 2):

◦ A study of the impact on performance of dataset bias, when combining
different face datasets during training phase for face verification purposes.

◦ A novel insight into the face dataset bias by a study of their distribution
on feature spaces. The approach followed here uses geometrical perspec-
tive by looking into the datasets’ feature vectors distribution.

◦ A comparison of the behaviour of different feature descriptors, both hand-
crafted and learned, and their robustness against dataset bias. The results
shows that even deep feature representations are susceptible to dataset
bias.

• About video-to-video face verification in video surveillance (Chapter 3):

◦ The proposition of an ensemble-based adaptive biometric system called
Dynamic Ensemble of SVM (De-SVM). De-SVM retains the CNN dis-
crimination power while providing for additional modularity, scalability,
reversibility, generalisation and robustness of ensemble-based approaches.
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◦ The use of the self-updating approach to use system’s predictions as
pseudo-labels to learn and operate simultaneously.

• About video-to-video face recognition in video surveillance (Chapter 4):

◦ An extension of the previous approach to unsupervised incremental face
recognition: Open-set Dynamic Ensemble of SVM (OSDe-SVM).

◦ A strategy to deal with both catastrophic forgetting issues and the effect
of mistaken pseudo-labels, taking advantage of ensembles full potential.

◦ An approach to instance-incremental learning in the open-set, which
could be extended to cope with the class-incremental problem.

◦ A method for person re-identification based on face, which is not directly
based on a reservoir of face images and only requires for 5 labelled video
frames for initialisation.

Structure of the Thesis

Following a similar structured as the previous objectives, the Thesis is organised
as follows:

• Chapter 1 introduces the central topics approached during the Thesis as well
as the main motivation behind them.

• Chapter 2 explores the intrinsic differences between different face recognition
contexts and their effects in performance.

• Chapter 3 tackles the simpler face verification problem in video-surveillance
problem by presenting the proposed incremental learning system designed to
work in very low-labelled conditions.

• Chapter 4 extends the previous system to deal with the more complex open-set
face recognition problem under the same context conditions as before.

• Chapter 5 extracts some final conclusions from the Thesis and discusses future
research lines in regards to adaptive and incremental learning systems.



Chapter 2

The Relevance of Context in Face
Recognition

This chapter is heavily based on the contents of this article:

E. López-López, X. M. Pardo, C. V. Regueiro, R. Iglesias, and F. E. Casado.
Dataset bias exposed in face verification. IET Biometrics, 8(4):249–258, 2019

2.1. Introduction

The outstanding diversity of real-world scenarios makes generalisation one of the
trickiest aspects in the development of visual recognition systems [90]. Intuitively,
systems designed for a specific application context find it difficult to generalise to
more general ones. Notwithstanding, the same is true when transferring systems
intended for general context into more specific ones. The underneath explanation
for this behaviour relates to the different distributions between source and target
domains [131, 125, 141]; and its performance impact is unavoidable to consider.
For instance, there have been shown the existence of substantial disparities in gen-
der classification performance across different demographic cohorts due to biases in
training datasets [11].

One possible way to study the influence of this problem is through the intrin-
sic differences between existing datasets or, in other words, through dataset bias.

7
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A wide variety of datasets (either more general or more specific ones) have differ-
ent built-in contexts of acquisition. In the particular case of face verification, the
main task consists of discriminating between identity-carrying features µ (e.g. fa-
cial characteristics, ethnicity, gender, etc.), while discarding the identity-irrelevant
ones, ε (e.g. haircut, makeup, injuries, ageing, illumination, pose, etc.) [15]. The
development of more and more extensive face datasets have been of paramount im-
portance for the progress in the general field of face verification. They have paved
the way to the development of (data-intensive) deep learning methods, which have
achieved impressive performance [64, 25, 55, 15]. Nonetheless, face verification in
some data-scarce specific domains remains a challenging task.

Face verification is a useful utility in a wide variety of target domains (e.g. bio-
metrics in mobile devices, video surveillance, or mugshot verification) whose data dis-
tributions are different from those in the public domain face datasets but are also dif-
ferent among them. For instance, images generated by smartphone users (equipped
with a non-collaborative face verification system) depend on users’ behaviour, habits,
or transitory appearance changes. For its part, in a video-surveillance context,
the spectrum of camera poses and resolutions, scales or blurring effects creates a
very specific sample’s distribution compared to one of the high-quality and pose-
constrained mugshots.

Suppose we train a system to authenticate identity in these contexts using neg-
ative samples drawn from a general (i.e. with a diverse pose, illumination and cap-
turing conditions) face dataset. In that case, some identity-irrelevant features could
be misleadingly identified as relevant ones. In other words, some µ features would
be considered as part of ε features, and verification would be partially based on
context-specific features, thereby leading to poor performance.

To tackle these issues, datasets are usually augmented by different means (gen-
erating synthetic faces images [65, 53]; applying several transformations to enrich
the dataset with new simulated poses, resolutions, blurring effects, or lighting [97,
21, 108]), or combined through domain-adaptation approaches [124, 145, 82, 141].

Dataset bias has received surprisingly little attention from the scientific commu-
nity. Nevertheless, there are some previous works for the case of object recognition
[131, 129]. In the case of face datasets, detecting bias represents a more significant
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challenge than doing so in object datasets. While finding object datasets sharing
categories (e.g. car, tree, or building) is relatively easy, this is not the case for face
datasets, as they usually do not share identities (categories). Hence, performing a
cross-dataset analysis to explore how each dataset represents some common identi-
ties and how to exploit their differences is not possible, in contrast to what happens
with objects datasets [115, 59].

In summary, while many face verification methods assume that training and
testing sets are composed of independent and identically distributed samples, this
assumption does not hold in many real-world applications. In most cases, these sets
contain samples drawn from different populations (and distributions). Motivated by
these facts, the main goal of this chapter is to shed light on these differences and
their potential harms. In this regard, the main contributions are:

• A study of the impact on the performance of dataset bias, when combining
different face datasets during the training phase for face verification purposes
(Sections 2.2.1 and 2.5).

• A novel insight into the face dataset bias by studying their distribution on
feature spaces. The approach followed here uses geometrical perspective by
looking into the datasets’ feature vectors distribution (Sections 2.2.2 and 2.6).

• A comparison of the behaviour of different feature descriptors (Section 2.4),
both handcrafted and learned, and their robustness against dataset bias.

2.2. The Nature of Dataset Bias

The usual performance differences between the lab and real-world are clear proof
of the dataset bias existence. Of course, it could be said that biases are everywhere,
but are there any specific causes of bias? Is there any way to palliate its effects?

Pioneering the studies on dataset bias, [131] centres its attention on the object
recognition field. This study released moments before the deep learning revolution
[69]; therefore, restricted to handcrafted descriptors, namely the HOG descriptor.
Posterior works include learned features and continue to remark dataset bias as a
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Figure 2.1: t-SNE representation of features of a random subset of samples drawn from three
datasets with three feature descriptors: (Red) IJB-A; (Green) LFW; (Blue) FERET.

relevant problem for object recognition [129]. They both distinguish four different
kinds of bias according to their nature:

• Selection bias is related to how images are collected (keywords search, manual
selection, crowd-sourcing collection, etc.).

• Capture bias comes from how images are captured (type of device, the context
of the acquisition, etc.).

• Label bias relates to a poor semantic annotation of the dataset, where any
labelling mechanism could assign a different label to the same object (“screen”
vs “TV”; “grass” vs “lawn”). This bias is not applicable in face verification since
labels here are perfectly defined.

• Negative set bias relates to how the dataset samples the rest of the world (the
rest of faces in our specific case). If this set is imbalanced or not representative,
the model generated with it will have problems generalising.

In regards to the second question, domain adaptation methods are often pre-
sented as a way to tackle dataset bias issues [35, 132]. Notwithstanding, a domain
is a more general concept than a dataset. For example, in face verification, one
can define a domain as the one which only includes grey-scale images, the one with
comprehensive coverage of face poses, the one specially built for video surveillance
recognition, etc. Domain adaptation tools help to move or transfer knowledge be-
tween different domains. In the specific case of face recognition, face-frontalisation
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methods (methods that convert any face to its frontal view, allowing to eliminate
the pose bias) [48, 49, 2] represent a way of domain adaptation to work just with
frontal faces.

Conventionally, a domain could also be defined as the one representing the ac-
quisition procedure of a particular dataset. Thus, a domain adaptation technique
could help to ‘hop’ between datasets. Nevertheless, we cannot say that domain
adaptation techniques solve dataset problems. For example, suppose we have two
different datasets with two different biases. In that case, one could use a domain
adaptation technique to transfer knowledge from one of them to another (or even
to a common one). However, we could still end with a biased model. At the end
of the day, since the final aim should be to represent the visual world correctly, an
unbiased dataset would be still needed.

2.2.1. Effects of Cross-Dataset Training

In the development of a face verification system for a specific context, the ideal
scenario would be to build an ad-hoc representative dataset of the target domain.
Nevertheless, there often are barriers (financial cost, time or privacy-related issues)
that convert its construction as something unreachable in many scenarios.

Consider the previous specific scenario of face verification in mobile devices. Dur-
ing operation, the collection of positive (identity of interest) samples to build the
verification model is necessarily performed in the actual operational domain (hence-
forth Dataset A). Notwithstanding, when the construction of a complete dataset is
not an option, one common strategy is to rely on images from other auxiliary sources
(henceforth Dataset B) to use as a negative set during the model creation phase. In
this setting, the acquisition context of the positive and the negative sets will hardly
be the same. Therefore, the first objective will be to study how this configuration
affects generalisation on the target domain.

This set-up resembles the one used in [131] for the analysis of the negative set
bias in the frame of the object recognition field. This work explores the performance
impact of using samples drawn from different datasets to build the negative training
set.
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2.2.2. Datasets’ Feature Space

Conventionally, the image classification pipeline can be divided into feature ex-
traction and actual classification. This dissociation is quite common in the literature.
For example, in a face verification context, some works use pools of feature extrac-
tors to establish a benchmark [85, 127, 70]. In [16], the author exchange handcrafted
and learned features within the same system to push performance to the state-of-
the-art. Both parts are not innocuous in relation to dataset bias and can potentially
introduce or (desirably) eliminate underline bias in data.

In the previous section, the main focus was to observe dataset bias by its ef-
fects on actual classifier performance. Here, the aim is to perform a more direct
observation by staying with the feature extraction part. One initial approach to
observe biases in the feature vector data could be to look into their representation.
Nevertheless, the high dimensionality makes the actual shapes of the samples’ distri-
bution difficult to determine, as t-SNE [84] representation of Fig. 2.1 shows. As an
alternative, (dis)similarity among datasets can be estimated from distances among
feature vectors of different datasets. The hypothesis is that samples from a particu-
lar dataset should tend to have the same probability of finding nearby vectors from
other datasets with similar distributions as from their own dataset.

Besides, distances are something especially relevant in the case of face verifi-
cation. The distance between two feature vectors is common practice in identity
verification. Feature extractors (especially the deep learning-based ones) are de-
signed so that the same identities tend to be closer [121, 99, 85]. Distances between
feature vectors are also used in [127] for both verifications as other related tasks as
attribute detection (ethnic, male/female, age, etc.). A cosine dissimilarity metric is
also used in [70] over different kinds of descriptors to compare the performance of
a certain face descriptor. Consequently, anomalies in these distances provoked by
datasets will directly lead to problems in real-world performance.

This neighbour search can be seen from multiples points of view. First, it can
serve as an insight into the dataset samples distribution. Second, it also can be
seen as the Name that Dataset! experiment of [131] where the belonging dataset
is guessed using just its neighbours. Finally, another interpretation relates to the
dataset origin of hard negatives. In other words, the harder to classify samples.
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2.3. Datasets of Study

This study includes a total of six different face datasets (Fig. 2.2). Half of them
were built gathering images captured with mobile devices (two with and one without
users’ collaboration), and the other half contains images taken in a range of different
(general) contexts. Next, the specific characteristics of each one (see Tab. 2.1) are
described:

• FERET [103] is one of the first datasets that tried to become a standard for
face recognition, both for training and testing processes. It consists of a total
of 8 525 images of 1 109 people with a range of different (annotated) poses
taken in a highly controlled environment. This study is restricted to just the
dvd-1 data.

• Labelled Faces in the Wild1 (LFW) [55] contains more than 13 000 face
images of a total of 5 749 people collected from the web. Each face was an-
notated with the name of the person, and 1 680 of the identities have two or
more distinct photos in the dataset. It is one of the first datasets aimed at
coping with the unconstrained face recognition problem. Images were gath-
ered from the internet, and faces were detected using the Viola-Jones detector
[136], which introduced a bias in the range of possible poses.

• IARPA Janus Benchmark A∗ (IJB-A) dataset [64] contains a total of
5 712 images of 500 identities (≈11 images per subject). The most distinctive
characteristic of this dataset is the elimination of the bias in face detection due
to the fact that the complete dataset was manually annotated using crowd-
sourcing methods. It has been recently updated with the IARPA Janus
Benchmark B dataset [142] in which the number of images has been increased
to 21 728 (1 845 different identities), and the IARPA Janus Benchmark C,
which even added up more images from video frames.

• O2FN dataset [111] contains 2 000 face images taken from 50 different subjects
predominantly of Asian ethnic. Images are self-taken photos using a mobile
phone in a collaborative context. Subjects were asked to take approximately

1It was necessary to eliminate the overlapped identities between IJB-A and LFW datasets. The
procedure was to eliminate from LFW the 183 identities also present in IJB-A.
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FERET LFW O2FN

FSIJB-AMobBIO

Figure 2.2: Sample images from each dataset used for the experiments.

Table 2.1: Summary of dataset characteristics.

Dataset Context
Pose Controlled

Illumination Ethnicity
Variation Environment

FERET General Full High Indoors Caucasian
LFW General Limited Low Varied Varied
IJB-A General Full Low Varied Varied
O2FN Mobile Limited Intermediate Varied Asian
MobBIO Mobile Limited High Indoors Caucasian
FS Mobile Limited Low Varied Caucasian

20 indoor images and 20 outdoor images, with limited variations in facial
expression and out-plane rotations.

• MobBIO multimodal dataset [122] was specifically designed for biometrics.
It contains data of faces, voice and iris of 105 identities. In the case of facial
images, which is the part of our interest, there is a total of 1 640 photographs
(≈16 images per identity) taken with mobile devices in a controlled environ-
ment, with a limited pose and illumination variations.

• FaceSampler (FS) dataset has been created using the frontal camera of mo-
bile phones in a non-collaborative context. It consists of a total of 2 102 images
of a total of 15 different identities. The acquisition system was designed to
use inertial information in order to maximize the probability of the existence
of faces in the frame, although only the images with a detected face were
gathered. Image collection was running in the background while users were
using the mobile phone [12]. Up to our knowledge, this is the unique dataset
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that was built on the operational domain for the problem of non-collaborative
verification of users of mobile devices.

2.3.1. Dataset Pre-processing

For face detection purposes, the election was the tool provided by Dlib library
[61] (based on HOG features) due to its perfect integration with facial landmark
detector also implemented in the same library. Here, indeed, an important constraint
was introduced. For example, the main contribution of the IJB-A dataset is the
elimination of the frontal faces bias (in most cases due to Viola-Jones detection
[136]) by performing a manual annotation of the data.

However, this decision is justified by, mainly, two reasons. First, the vast major-
ity of face recognition methods (including those tested here) contemplate some face
detection method on their pipelines. Second, by setting a fixed face detector, it can
be assumed that any behaviour of the data will not be related to the face detector.
In this sense, we could consider it as part of the context of the study, which could
be called universe of possible faces detected by the face detector. Tab. 2.2 shows
the aftermath of the detection process.

2.4. Feature Representation

Feature extractors can be more or less sensitive to specific characteristics, so their
election is of paramount importance. For example, a hypothetical feature extractor
that is perfectly robust to face pose variations would not reflect the feature space
differences between a dataset with only frontal faces and a dataset richer in poses.
Of course, this does not mean that the first dataset is not biased towards a particular
pose, but the feature extractor can ignore this fact. Besides, this behaviour can be
desirable (in a general context) or not (in a specific application’s context, poses can
be biased, for instance, when looking at a smartphone screen).

This degree of robustness is almost impossible to achieve with general-purpose
hand-crafted features since they were not designed for this specific application do-
main. When using these features, only the classifier can achieve some degree of adap-
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tation throughout the training phase. On the contrary, deep features are trained,
so it will be possible to create a more adjustable feature set depending on the ap-
plication.

This study includes three feature representations with different abstraction and
generalisation abilities: LBP over landmarks, VGG-Face and ResNet. All of them
have been used in state-of-the-art of face verification.

2.4.1. LBP over Landmarks

Bayesian approaches are some of the few methods which, while using handcrafted
features to encode information of faces, still obtain state-of-the-art results ([16]
96.33% accuracy in LFW). So, we have included LBP features over facial landmarks
in our analysis.

To obtain a face description, first of all, a facial landmark detection [57] was per-
formed in order to locate a total of 68 points on face images. These landmarks serve
as key points for the similarity transformation that rectifies the image. After that,
patches centred around just 51 of the inner landmarks (Fig. 2.3 left) are extracted
at two different scales. The side lengths of the image at the two scales were 180
and 118 pixels. The patch size is 40 × 40 in both scales. Each patch was divided
into 4× 4 non-overlapped cells (Fig. 2.3 right). Finally, a uniform-LBP vector was
computed for each cell, and all of them were concatenated on the final feature vector
of 96 288 dimensions (see Tab. 2.3), following [93].

Table 2.2: Summary of samples of each dataset used after the face detection.

Dataset Identities Images

FERET 739 4 929
LFW 5566 10 966
IJB-A 500 19 427
O2FN 50 1 720
MobBIO 100 1 599
FS 15 2 102
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Table 2.3: Type and dimensionality of each feature detector.

Type Dimensions

LBP over landmarks Handcrafted 96 288
VGG-Face CNN Learned 4 096
ResNet CNN Learned 128

Figure 2.3: Extraction of LBP features. Left: locations of the 51 inner landmarks used for feature
extraction. Right: 4x4 cell centered on one of the landmarks.

2.4.2. VGG-Face

The VGG-Face CNN proposed in [99] for general face recognition has achieved
an extraordinary value of accuracy of 98.95% on the LFW dataset. This CNN was
trained using a large-scale dataset of 2.9 million images of 2 600 people. The first
layers of its architecture, discarding the last fully connected layer, were used to
extract 4 096 dimension features vectors (Tab. 2.3).

2.4.3. ResNet

Recently, deeper networks with shorter features vectors have improved their pre-
decessors’ performance. As a representative of these approaches, we took a modified
version of the ResNet-34 [52]. The modification consisted of removing a few layers
and the number of filters per layer by half. This model was trained on the same
dataset of the VGG-Face [99], and the face scrub dataset [91], apart from additional
images taken from the Internet, amounting to a total of about 3 million images of
7 485 different identities. Again, we opted to use the pre-trained models provided
by Dlib library [61] reported to achieve a 99.38% accuracy in the LFW. As for the
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Table 2.4: Configuration of Dataset A and Dataset B in the training phase and in the two different
tests (1 and 2).

Phase Positive Negative

Train A B
Test 1 A B
Test 2 A A

case of the VGG-Face, we discarded the last fully connected layer to obtain a 128
dimension feature vector (Tab. 2.3).

2.5. Effects of Cross-Dataset Training

With the scenario described in Section 2.2.1 in mind, this experiment aims at
determining the potential performance damage when distinguishing samples of the
same dataset when training uses outer negative samples.

In other words, could the trained classifier find inter-dataset differences more
relevant than intra-dataset ones? To address this question, two datasets are defined
as follows:

• Dataset A is a small dataset gathered in the target domain. It consists of a
set of identities’ faces with at least 10 images per identity, taken from one of
the datasets presented in Section 2.3. Considering that each dataset has a
different number of identities, it would be desirable to maximize uniformity
in this sense. At the same time, it would also be desirable to have several
identities as relevant as possible to perform statistics. Thus, although the
minimum of identities is 15 in FS, we have set a maximum of 50, the available
identities of O2FN (the second-lowest value). With this maximum, when we
use FS as Dataset A the results are averaged just over 15 identities. Besides,
images of each identity are split by half into train and test subsets.

• Dataset B is a large dataset used as a negative sample source. We have
generated it using one dataset of Section 2.3, different from the one used to
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create Dataset A. This way, each Dataset A identity has an associated Dataset
B generated with the rest of the identities of the dataset. After that, this set
is split into train and test subsets without shared identities and containing the
same number of identities.

For each identity in Dataset A, we have trained a Linear-SVM model using the
training subset of the specific identity in Dataset A, as positive samples, and the
training subset from Dataset B as negative samples.

We have tested this model in two different ways to compare the performance:

• Test 1. Testing against other identities in Dataset B (same configuration as
the training phase).

• Test 2. Testing against other identities in Dataset A.

For verification, SVM models depend on a threshold. Depending on this thresh-
old’s choice, the system’s efficiency system varies both the False Acceptance Rate
(FAR) and the True Acceptance Rate (TAR). Both measures are complementary.
So, it is common to combine them into a single one. In this work, we opted to
measure the True Acceptance Rate at 0.001 False Acceptance Rate (TAR @ 0.001
FAR), a standard practice in biometrics.

The experiment is performed independently for each one of the features described
in Section 2.4.

2.5.1. Experimental Results

We performed the experimentation with different combinations of Dataset A
and B, and features. Results are shown in Tabs. 2.5-2.7, where Datasets A are
represented in rows and Datasets B in columns. The small-size number present the
TAR @ 0.001 FAR performance for Test 1 and Test 2. The normal-size number
is the drop in performance between the two different testings. Finally, in the last
column and the last row, the average drops row-wise and column-wise, respectively.

The first thing we observe is that there is a general drop in performance between
Test 1 and Test 2. The system has a higher rate of false negatives acceptance at
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Table 2.5: LBP. Drop in performance (TAR @ FAR 0.001) of Test 1 respect to Test 2 for each combination of Dataset A and B.

Dataset B
MobBIO FS O2FN FERET LFW IJB-A

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Av. drop

D
at

as
et

A

MobBIO
1.0000 0.9600 1.0000 0.9625 1.0000 0.9325 1.0000 0.9750 1.0000 0.9900

-0.0360
-0.0400 -0.0375 -0.0675 -0.0250 -0.0100

FS
0.9583 0.1697 0.9266 0.3242 0.9349 0.1371 0.9905 0.1163 0.9210 0.2814

-0.7405
-0.7886 -0.6023 -0.7978 -0.8742 -0.6397

O2FN
1.0000 0.6891 0.9821 0.6812 0.9857 0.5748 1.0000 0.2774 0.9967 0.7233

-0.4037
-0.3109 -0.3009 -0.4109 -0.7226 -0.2734

FERET
0.9800 0.0495 0.9274 0.1491 0.9769 0.1555 1.0000 0.0276 0.8964 0.2972

-0.8204
-0.9305 -0.7783 -0.8215 -0.9724 -0.5992

LFW
0.9875 0.2162 0.9999 0.1584 1.0000 0.0603 1.0000 0.0496 0.8996 0.6820

-0.7441
-0.7714 -0.8415 -0.9397 -0.9504 -0.2176

IJB-A
0.7959 0.2589 0.9026 0.2796 0.9294 0.1980 0.9256 0.1815 0.8362 0.3751

-0.6193
-0.5370 -0.6230 -0.7315 -0.7441 -0.4611

Av. Drop -0.5167 -0.3480 -0.6111 -0.6266 -0.6677 -0.3713
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Table 2.6: VGG-Face. Drop in performance (TAR @ FAR 0.001) of Test 1 respect to Test 2 for each combination of Dataset A and B.

Dataset B
MobBIO FS O2FN FERET LFW IJB-A

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Av. drop

D
at

as
et

A

MobBIO
0.9975 0.8582 1.0000 0.7657 1.0000 0.9775 1.0000 1.0000 1.0000 0.9975

-0.0797
-0.1393 -0.2343 -0.0225 0.0000 -0.0025

FS
0.9368 0.6179 0.9368 0.3220 0.9679 0.5666 0.9741 0.6950 0.9406 0.7104

-0.3771
-0.3598 -0.6148 -0.4014 -0.2791 -0.2302

O2FN
1.0000 0.6626 0.9820 0.2312 0.9861 0.8776 0.9807 0.9142 0.9870 0.8634

-0.2773
-0.3374 -0.7508 -0.1085 -0.0664 -0.1236

FERET
1.0000 0.6102 0.9810 0.3653 0.9754 0.3457 0.9852 0.7952 0.9387 0.8407

-0.3847
-0.3898 -0.6157 -0.6297 -0.1900 -0.0981

LFW
0.9973 0.7647 0.9898 0.3608 0.9942 0.3467 0.9685 0.7933 0.9008 0.8496

-0.3471
-0.2326 -0.6290 -0.6475 -0.1752 -0.0512

IJB-A
0.9821 0.4921 0.9051 0.2200 0.9848 0.2248 0.8964 0.5885 0.8550 0.7258

-0.4744
-0.4899 -0.6851 -0.7600 -0.3079 -0.1292

Av. Drop -0.3619 -0.5640 -0.5773 -0.2031 -0.1329 -0.1011
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Table 2.7: ResNet. Drop in performance (TAR @ FAR 0.001) of Test 1 respect to Test 2 for each combination of Dataset A and B.

Dataset B
MobBIO FS O2FN FERET LFW IJB-A

Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Test 1 Test 2 Av. drop

D
at

as
et

A

MobBIO
1.0000 0.9975 1.0000 0.9850 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

-0.0035
-0.0025 -0.0150 0.0000 0.0000 0.0000

FS
0.9454 0.9496 0.9978 0.7014 0.9821 0.9401 0.9853 0.9524 0.9799 0.9388

-0.0817
0.0042 -0.2964 -0.0420 -0.0329 -0.0412

O2FN
1.0000 0.7090 1.0000 0.7004 0.9959 0.9896 0.9987 0.9855 0.9978 0.9783

-0.1259
-0.2910 -0.2996 -0.0063 -0.0132 -0.0195

FERET
0.9967 0.7047 0.9860 0.6423 0.9853 0.6804 0.9589 0.9268 0.9621 0.9135

-0.2042
-0.2919 -0.3437 -0.3049 -0.0321 -0.0486

LFW
0.9978 0.8703 0.9978 0.8390 1.0000 0.7400 0.9954 0.9531 0.9784 0.9620

-0.1210
-0.1275 -0.1587 -0.2600 -0.0423 -0.0165

IJB-A
0.9696 0.6639 0.9812 0.5945 0.9919 0.5153 0.9380 0.8232 0.8257 0.8815

-0.2456
-0.3057 -0.3867 -0.4766 -0.1148 0.0558

Av. Drop -0.2024 -0.2382 -0.2706 -0.0410 -0.0044 -0.0251
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the same false-positive rate when testing and training are done on the same dataset.
This behaviour reveals that instead of just learning the identity information, the
dataset’s bias is interfering. This effect corroborates the important influence that
dataset bias can have on performance.

Making now a feature-wise comparison, we note that the drop in performance
is much more significant with the LBP features, reaching values up to +80% drop.
Although a decline in performance is also present with deep features, it is much
smaller, especially with the ResNet features.

The drop in performance also depends on the FAR point where the TAR is mea-
sured (Fig. 2.4). The influence of the dataset bias in performance correlates with the
level of difficulty of the task. So, the higher the level of FAR requirements, the more
notorious the effect is. Besides, it is also remarkable that the best results correspond
to the case of using MobBIO as Dataset A, a dataset with highly controlled condi-
tions acquisition. It seems that its limited amount of intra-class variations makes
the verification task easy, even using LBP features.

Comparing the behaviour of the datasets as Dataset B, we can remark that
datasets oriented for the unconstrained problem of face verification are the ones
that behave the best in this role (LFW and IJB-A). On the contrary, the most
constrained ones (MobBIO, FS and O2FN) lead to the lowest performances (highest
drop). This behaviour is perfectly expected and agrees that for a negative training
set, the more general, the better.

In addition, and more specifically, it is remarkable the entanglement between
LFW and IJB-A datasets. Using one in the role of Dataset A, the other one is
the best choice as Dataset B. This entanglement highlights the similar acquisition
conditions of both datasets and their interchangeability when using them as Dataset
A or B.

A similar but weaker entanglement appears between FERET and IJB-A, possibly
due to their wide range of face’s poses (we must remember that the pose effect is
a bit limited using a quasi-frontal face detector). Faces from the first are taken in
a highly controlled environment, whereas the second one is the complete opposite.
Despite this fact, when using FERET as Dataset A, the lowest drop, in 2 out of 3
cases, is observed with IJB-A in the role of Dataset B. This behaviour strengthens
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the previous statement of the necessity of having impostor data taken in the same
conditions as the genuine one.

To sum up, when dealing with specific contexts in which labelled data is scarce,
the use of auxiliary datasets as negative samples source will affect real-world per-
formance (where every image has the target domain conditions). In some way, with
this setup, we are confusing classifiers. Thus, instead of targeting useful patterns to
verify the target identity, we learn to distinguish between datasets.

2.6. Datasets’ Feature Space

As aforementioned in Section 2.2.2, this second experiment aims to study the
feature space to have some insights about the dataset’s sample distribution. For
this purpose, we have relied on a Nearest Neighbour search using two different
metrics. The premise is that, given a feature vector of a face of a particular identity,
the probability of the dataset to which its nearest neighbour belongs (eliminating
other images of that same identity) should tend to be uniform for equivalent datasets
(non-biased between them).

2.6.1. Building the subsets

To explore the distribution of dataset samples over the feature space, we split
for each one of ND datasets in two sets (Fig. 2.5): the probe sets and the gallery
set. The idea is to search for the nearest neighbours of the elements of the probe
sets among the elements of the gallery set. The creation of these sets consisted of:

• Probe sets. A total of Np different random subsets of np faces sampled
without replacement from each dataset. Np will depend on the number of
samples of the dataset. The greater the number of samples in a dataset, the
higher number of its probe sets.

• Gallery set. The union of the random subsets of ng elements sampled without
replacement from each dataset, generates the gallery set set, with ND · ng

unique elements.
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Figure 2.4: Average TAR drop between Test 1 and Test 2 respect to the FAR point in which
we perform the measure, using FS just as Dataset A.

It is important to note that there will not be any common elements, neither
identities, between any generated partitions.

2.6.2. Metrics in the Feature Space

Given a set of feature vectors X = {x1, ...,xn}, we denote by x∗ ∈ X the nearest
neighbour of x if:

min d(x,xi) = d(x,x∗) i = 1, ..., n (2.1)

The function d(p,q) represents a general metric. For our study, we have used
the euclidean distance (L2−norm):

dL2(p,q) =

√√√√ m∑
i=1

(pi − qi)2 (2.2)

and the Manhattan distance (L1−norm):
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...
DATASET 1 DATASET 2

DATASET 3 DATASET D

Figure 2.5: Scheme of the subsets generated for each dataset (Dataset 1, Dataset 2, ..., Dataset
Di, ..., Dataset ND). Blue triangles represent probe sets and green ellipses represent the part of
the dataset used to generate the gallery set. In this case, Np = 5 probe sets were generated for the
first dataset, and Np = 2 probe sets for the rest.

dL1(p,q) =
m∑
i=1

|pi − qi| (2.3)

Where p and q are two feature vectors in a m-dimensional descriptor space.

2.6.3. Nearest Neighbour Search

For each probe set, we have taken each of their elements and drawn without
replacement (to avoid taking the same outlier) their nearest neighbours from the
gallery set. Using the dataset membership of the nearest neighbours, we will generate
a histogram for each probe set and average them over the Np different probe sets of
each dataset.

As aforementioned, the premise is that the probability (P ) of a sample in the
probe set finding an element of the gallery set gsj belonging to the Di dataset, as
its nearest neighbour, should tend to be the same for all i ∈ {1, . . . , ND}:

P (x∗ = gsj ∈ Di) =
1

ND

(2.4)

Any distribution different from the uniform may indicate that the datasets do
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not sample the same distribution, so at least one of them could have some data bias.

In our experiments, we have worked with a total of ND = 6 datasets of different
sizes. We have used Np = 2 for O2FN and MobBIO, and Np = 5 for the rest.

As we draw nearest neighbours without replacement, the prior probability change
as we remove elements from the gallery set in each nearest neighbour search. In order
to mitigate this effect, sizes of np = 180 and ng = 1200 were fixed. This way, the
number of elements of the probe set will keep low (180) with respect to the number
of elements in the gallery set (7,200). This makes the effect of drawing nearest
neighbours without replacement from the gallery set negligible.

Considering the prior probability (following Eq. 2.4 with ND = 6⇒ P ≈ 16, 7%)
in the worst-case scenario where the nearest neighbours always belong to the same
dataset, the prior probability of that dataset would decrease down to ≈ 15.2%.

2.6.4. Experimental Results

The distributions obtained for each case are shown in Tab. 2.8. Each row of the
table contains the distribution (in %) among all the datasets (upper row) of the
nearest neighbours to the elements in the probe set (leftmost column). Results are
very similar for both L1 and L2 metrics.

Next, we analyse the obtained distributions from the two different points view.
Finally, we will relate these results to the t-SNE data representation in Section.
2.6.4.

Looking from the Dataset Side

The most evident fact that we can extract from the data is a significant tendency
to find the nearest neighbour in the same dataset (Tab. 2.8). Such effect reveals that
the initial premise of a uniform distribution, Eq. (2.4), was false. In the case of LBP
features, this nearest neighbour search is good enough (up to +90% accuracy) to
guess the dataset membership (as done in the Name that dataset! challenge, [131]).
It is also remarkable that the highest percentage of nearest neighbours is almost
always achieved inside the same dataset, whatever the type of feature.
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Table 2.8: Distribution of nearest neighbors over each dataset in % using different features.
L
B

P
(H

an
dc

ra
ft

ed
) L2-norm L1-norm

Probe\Gallery MobBIO FS O2FN FERET LFW IJB-A MobBIO FS O2FN FERET LFW IJB-A

MobBIO 92.78 0.00 5.00 0.83 0.28 1.11 94.44 0.00 2.22 2.50 0.00 0.83
FS 1.78 66.22 19.78 10.44 0.11 1.67 1.44 67.56 17.00 12.22 0.00 1.78

O2FN 1.11 1.11 95.83 1.67 0.00 0.28 0.00 2.22 93.89 3.89 0.00 0.00
FERET 0.00 0.67 1.22 97.33 0.00 0.78 0.00 0.22 0.44 99.00 0.00 0.33
LFW 0.78 0.44 0.33 0.00 86.33 12.11 1.44 0.56 0.44 0.22 84.89 12.44
IJB-A 4.44 1.00 2.56 7.22 41.56 43.22 4.44 2.56 2.67 13.33 35.89 41.11

V
G

G
-F

ac
e

(L
ea

rn
ed

) L2-norm L1-norm
Probe\Gallery MobBIO FS O2FN FERET LFW IJB-A MobBIO FS O2FN FERET LFW IJB-A

MobBIO 55.83 10.83 2.50 11.94 8.89 10.00 60.28 8.61 2.22 9.17 11.39 8.33
FS 10.78 45.11 13.89 16.78 4.00 9.44 10.11 46.67 14.78 15.44 3.89 9.11

O2FN 0.56 0.00 82.50 13.89 0.56 2.50 0.56 0.28 82.78 14.17 1.39 0.83
FERET 1.11 1.78 15.56 62.78 6.67 12.11 1.33 1.78 14.56 63.11 7.56 11.67
LFW 3.11 3.78 5.33 22.89 34.56 30.33 3.56 3.22 5.22 24.89 33.22 29.89
IJB-A 1.22 4.44 4.44 20.33 15.78 53.78 1.56 4.78 4.00 20.89 20.33 48.44

R
es

N
et

(L
ea

rn
ed

)

L2-norm L1-norm
Probe\Gallery MobBIO FS O2FN FERET LFW IJB-A MobBIO FS O2FN FERET LFW IJB-A

MobBIO 39.17 38.06 1.11 11.67 4.72 5.28 36.11 35.83 1.11 12.50 5.56 8.89
FS 21.89 50.22 1.56 11.89 4.44 10.00 21.56 50.78 1.44 12.22 4.22 9.78

O2FN 1.67 0.00 88.89 7.78 1.11 0.56 1.11 0.00 88.33 8.89 1.11 0.56
FERET 3.78 8.67 16.00 42.22 8.78 20.56 4.67 8.56 15.78 41.56 11.33 18.11
LFW 4.56 5.67 3.33 19.11 31.11 36.22 4.56 6.78 3.00 19.33 31.11 35.22
IJB-A 5.67 5.11 1.67 13.00 22.67 51.89 5.22 6.22 1.78 12.67 23.33 50.78



2.6 Datasets’ Feature Space 29

Before going any further with the discussion, we can divide datasets into two
groups: the ones designed for the unconstrained face recognition problem (LFW
and IJB-A) and the ones designed for more specific applications, namely MobBIO,
FS and O2FN datasets for mobile applications, and FERET dataset for controlled
environments.

There is a certain entanglement between the two unconstrained datasets for
every kind of feature and metric. Probe sets taken from LFW and IJB-A datasets
seem to have the highest proportion of nearest neighbours within one of these two
datasets (+60%). This fact suggests that both datasets were drawn from similar
distributions. Despite IJB-A being a more advanced dataset, its main contribution
is to eliminate the frontal face constraint. Our face detector (see Section 2.3.1)
continues to have a tendency of detecting frontal faces. So, the differences in the
distribution between LFW and IJB-A seem to dilute. Such entanglement is present
for the rest of the datasets.

On the other hand, O2FN is the dataset with the highest mean rate of samples’
nearest neighbours in the same dataset; probably, its specific ethnicity is crucial to
that outcome. Meanwhile, MobBIO and FERET experienced the most significant
changes in the distribution of their nearest neighbours, according to features. For
its part, FS dataset is one of the most stable in this respect.

Looking from the Feature Side

We can see that the same dataset pairing behaviour is quite strong in the LBP
features. We see a +80% pairing in for 4 of the 6 datasets, meaning that the feature
vector is not retaining the target information.

This pairing behaviour seems weaker with deep features. As we can expect,
the training process performed to generate the CNN helps the system discard more
information not related to the identity.

The main difference in behaviour between the two deep descriptors is that ResNet
features break the rule of always having the highest frequency for self-pairing. This
behaviour could indicate a certain correlation of the effect we are describing with
the performance of the CNN.
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Tab. 2.8 shows additional cues about the source of the bias. The first cue is
provided by the results obtained for O2FN. As aforementioned, the elements of this
dataset are unique to get a +80% paring across the three features. Thus, it does
not suffer a solid drop like the other datasets despite being reduced by using learned
features. The second cue is given by the results obtained for FERET and MobBIO.
In the case of LBP features, these datasets suffer a comparable paring with respect
to O2FN. Nevertheless, the drop caused by learned features reduced the paring to
a 40-60%, much lower than the case of O2FN.

The main characteristic differentiating the O2FN dataset from the others is the
prevalent Asian ethnicity of their identities, a bias related to µ. On the other
hand, the common characteristic of FERET and MobBIO is the similar controlled-
environment condition in which both datasets were generated, a bias related to ε.

Consequently, we can state that deep features help deal with bias in data re-
lated to ε, better than LBP features. But, on the other side, in terms of µ related
bias, the effect is more similar between deep and LBP features because this kind of
information is retained in both types of feature vectors. We have to recall Section
2.4 to find a theoretical explanation for this fact. The training process creates deep
features to retain the identity information (µ) and discard the non-identity one (ε).
This is something much more challenging to achieve with hand-crafted features. So,
this behaviour is an illustrative example of how different feature extractors can hide
a bias present in the data.

t-SNE representation of the gallery sets

The high dimension of feature vectors makes the task of directly visualizing data
impossible. Therefore, it is necessary to imagine data in a reduced space. One of the
most sophisticated options is the t-SNE representation [84], which tries to preserve
the local structure of the high-dimensional data as well as some of the more global
structure.

We can represent our gallery sets using this representation to look for any cue
of their distribution (Fig. 2.6). The first thing that can be observed based on the
representation is that each dataset distributes differently over the feature space. This
fact is especially evident for LBP features since its clusters are the most separable
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Figure 2.6: A t-SNE representation of the 6 gallery sets taken from each dataset of study for three
feature descriptors. (Red) FS; (Green) IJB-A; (Blue) LFW; (Purple) O2FN; (Olive) MobBIO;
(Black) FERET.

and compact.

Finally, it can also be observed how images from the same identity cluster to-
gether when using deep features. For the FS dataset where the gallery set has a
limited number of identities, we can even easily individually count each of them.

2.7. Conclusions

In this chapter, we have performed a study over the differences between datasets
oriented for face verification. The analysis consisted of studying the performance
impact and the distribution of the dataset elements. The problem of dataset bias
is especially relevant in the development of face verification methods for specific
contexts. This study shows the limitations of using public general context datasets
as an auxiliary negative sample source.

Dataset bias effects are present across different datasets and feature descrip-
tors. Although the newer deep feature representations help to palliate these harms,
dataset bias has a non-negligible impact on verification performance.

A straightforward solution to dataset bias in specific contexts is to build a com-
plete dataset for each application. However, this approach presents evident problems
of scalability and accessibility. Another interesting alternative to tackle these issues
can be through adaptation. Target domain samples become abundant during real-
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world operation. An adaptive system could use this data to improve its performance.
This solution comes with new challenges, which we will approach in the following
chapters.



Chapter 3

An Adaptive Face Verification in
Video-surveillance

This chapter is heavily based on the contents of these articles:

E. Lopez-Lopez, C. V. Regueiro, X. M. Pardo, A. Franco, and A. Lumini. In-
cremental learning techniques within a self-updating approach for face verification
in video-surveillance. In Pattern Recognition and Image Analysis, pages 25–37.
Springer International Publishing, 2019

E. Lopez-Lopez, C. V. Regueiro, X. M. Pardo, A. Franco, and A. Lumini. To-
wards a self-sufficient face verification system. Expert Systems with Applications,
174:114734, 2021

3.1. Introduction

One of the main motivations behind the previous chapter is to study the main
handicaps when transitioning face verification systems from a general context to a
more specific one. In this regard, video surveillance is a paradigmatic example of
these specific contexts. Indeed, faces in this context present many specific built-in
characteristics (e.g. camera parameters, poses, illumination, target distance, etc.).
Besides, these characteristics can be dependent on the deployment place and vary
with time. These aspects make the gathering extensive amount of labelled context-
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specific data particularly difficult [51] and require for a more scalable a efficient
alternative [87, 128, 106].

In more practical means, the standard face verification system is divided [104]:
enrolment (where samples of the target identity, genuine, are registred) and test/ver-
ification (where the system checks if the identity of an input sample is genuine or not,
impostor). The quality of the acquired samples during each of these phases are af-
fected by these context-specific conditions, affecting the actual performance [44, 43].
For instance, some video-surveillance scenarios allow to perform the enrolment phase
separately (collaboration is often required) where high-quality photographs or videos
are acquired [56, 3, 139, 27, 17]. In these conditions, state-of-the-art systems seem to
perform astonishingly well (≈ 90-99% Rank-1 Identification Rates [149, 4]), some-
thing that makes this specific problem almost solved. Other cases do not allow
this kind of enrolment (e.g. criminal watch-list, lost children, disoriented older peo-
ple, etc.). Thus, the only option is to use data from the video stream as enrol-
ment source [56, 68, 36] lowering system’s performance [104, 83, 130, 73, 9]. To
alleviate these negative effects, new classical learning strategies are being incor-
porated into the realm of Deep Learning [58]. Thus, topics as transfer learning
[138, 23, 124, 22, 101, 138] reinforcement learning [112, 88] or incremental learning
[51, 116, 128, 106], with different supervision degree, are gaining momentum.

Incremental learning consists of performing learning gradually as new data be-
comes available, without resorting to full retraining of the models. Thus, it is a
scalable and efficient approach [87, 128, 106] to tackle very-specific, data-scarce and
dynamic contexts where target domain data becomes gradually abundant during
the test/ verification stage [36, 30, 77]. Recently, the attention of incremental and
online learning has been continuously increasing [51, 116]. Despite being possible
to perform under different supervision levels, the real value of adaptation arises
considering it an unsupervised process [104, 66]. In this direction, the literature
proposes semi-supervised incremental learning approaches [68, 36, 135]. However,
despite their reduced label requirements, they often require a human operator in the
loop to assist with the most challenging samples (by given additional labels).

In this direction [104, 94], self-training [146] is an interesting strategy to reduce
labels requirements drastically. This approach follows an incremental learning per-
spective where the classifier drives the updates using its predictions as pseudo-labels.
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Besides, self-training has also been recently used for domain adaptation purposes
[153, 60], person Re-ID [150] or object detection [113].

This chapter aims to tackle the problem of progressively computing an efficient
classifier for a video-to-video face verification (V2V-FV) setting where labels’ avail-
ability is minimal. For this purpose, we propose the Dynamic Ensemble of SVM,
a method that creates and automatically improves/updates an ensemble of very
specific SVM classifiers. This kind of ensembles has proven to achieve remarkable
results [86] on static supervised conditions. Here, we provide a novel decision mech-
anism to incrementally generate the ensemble in a semi-supervised way (i.e. starting
from a few labelled data and then autonomously updating) and using only online
target domain data. In this regard, the main contributions of the work are:

• The use of the self-updating approach in combination with the current most
powerful feature representations as face re-identification system in the context
of V2V-FV.

• An extensive comparison between different incremental learning strategies us-
ing the self-updating framework.

• The proposition of an ensemble-based adaptive biometric system called Dy-
namic Ensemble of SVM (De-SVM).

3.2. Related work

Face verification in video-surveillance can be performed under different
settings [56]. First, in Still-to-Video face verification (S2V-FV), systems are queried
to find an identity over video footage based on a (usually good quality) still image
[39, 14]. Second, in a Video-to-Still (V2S-FV), the role of stills and videos is inverted
[149, 4, 139]. And finally, in Video-to-Video (V2V-FV), only the verification is
performed using just video sequences [68, 36]. As aforementioned in the previous
section results achieved on recent databases like COX [56] with high-quality stills
(either V2S or S2V conditions) convert the problem into an almost solved one [4,
149]. However, V2V continues to be an open challenge, especially when the labels
are scarce.
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Incremental Learning. The main goal of incremental (a.k.a template updating
in the biometric scene) learning is to learn from data as real-world dynamic sources
provide them, usually at a low pace, including noisy samples and, in general, ex-
hibiting non-stationarity. As data distributions change with time, computational
systems have to deal with the stability-plasticity dilemma, trying to avoid that new
knowledge erases old one (catastrophic forgetting), while detecting and updating to
concept drifts [116].

From a verification perspective, incremental learning has focused on two com-
plementary tasks with different challenges [39, 14]. On the one hand, modifying
or adapting a complete model to deal with dynamic environments that can impair
performance [30, 68]; and, on the other hand, gradually improving the quality of
models created with a small amount of data [146]. In this regard, most works in
incremental learning perform adaptation in batches. In other words, they need to
accumulate a batch of data before executing the adaptation. Only a few approaches
were really designed to tackle the more challenging problem of incremental learning
from streaming data (as is the case of video surveillance) [134, 1]. One of its criti-
cal difficulties is the infeasibility of complete manual labelling of streaming data in
real-world applications. A more realistic approach should only assume that a few
instances in data streams are labelled [133].

Self-training or self-updating is the approach used to update identity models
in an unsupervised way. Firstly proposed in the scope of natural language process-
ing [146], this approach assumes the classifier itself can do the genuine/impostor
labelling, avoiding any supervision [36, 29, 94]. Outside the biometric scope, self-
training ideas help to minimise human annotation effort in network traffic classi-
fication [32] or to incorporate unlabelled data from auxiliary information sources,
like the internet, to improve object detectors [107]. The complicated part of the
approach consists of finding balance in the update decision. For example, a too high-
confidence threshold could avoid accepting impostor identities, but at the expense of
only accepting too redundant information that does not improve performance. On
the contrary, a too low-confidence threshold could help to increase diversity in the
accepted samples, but at the cost of increasing the risk of accepting more impostors
into the model.

Temporal Coherence in videos leads to the assumption that consecutive frames
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will almost always contain very similar information [6]. The literature often high-
lights the exploitation of temporal coherence as one of the keys for unsupervised
learning [36, 102, 140]. From this assumption, Siamese network architectures have
been proposed to train DNNs in an unsupervised way [140, 89, 110]. In video surveil-
lance scenarios, the temporal coherence assumption is perfectly applicable once an
identity is verified in a video frame. In the actual implementations, systems often
use visual tracking methods to keep the target identified. Thus, visual tracking pro-
vides an auxiliary source of supervision and facilitates access to more challenging
samples into the model. However, this does not apply to the transition between
different sequences, i.e. when a cut takes place.

3.3. Adaptive Biometrics for Face Verification in
Video-Surveillance

The objective of this section is two-folded. First, it describes the self-updating
general framework in which the classification methods will be wrapped [152]. Second,
it describes De-SVM, the novel classification technique specifically designed to work
within this framework.

3.3.1. Self-updating Pipeline

From a general perspective, the self-updating approach states the following hy-
pothesis: the use of pseudo-labels given by the model (Mt) at the moment (t) to
update helps to improve performance. The considered scenario assumes that ini-
tially (t = 0) a few video frames of the genuine identity (short sequence given by a
visual tracker) are selected to create the template. The quality of this template can
be an important constraint to the performance of the system, as [81] and Sec. 3.5.5
show. Besides, the availability of a group of samples to use as a negative set taken
in the operational domain (as it was studied in Chapter 2) is also assumed.

As it is outlined in Algorithm 1 and Figure 3.1, over time (t = 1, 2, ..., T ),
the system is queried with new video sequences (St) to verify the identity of the
individuals (both genuine and impostor) appearing in them (Cohort Model, CM
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Figure 3.1: The designed pipeline for the implementation of the self-updating strategy with its
ideal behaviour. Whenever the target identity (the blue jersey one) appears, the model is updated.
Otherwise, the model is maintained.

[68]). Following an query acceptance adaptation criterion [104], if Mt accepts the
query sequence, the incoming sequence to update Mt into Mt+1. In the opposite
case, Mt+1 will remain exactly the same as Mt.

Decision Functions

Given the previously stated pipeline, several decision functions need to be defined
during the implementation. These rules control when an identity is verified or not,
and, if so, how updates are performed.

• Frame Decision Function (FDF) assigns a score to each frame of the query
video sequence. It can be the outcome provided by a single classifier (e.g. SVM
score, distance in a nearest-neighbour algorithm, or a softmax in a DNN), or
the fused output in the case of an ensemble of classifiers.

• Sequence Decision Function (SDF) assigns a unique score to the query video
sequence based on the FDR individual scores in each frame. Identities will
be verified by fixing a certain confidence level to this score, the so-called op-
erational threshold. This confidence level will be the one in charge of finding
balance in the stability-plasticity dilemma.



3.3 Adaptive Biometrics for Face Verification in Video-Surveillance 39

Algorithm 1 The implementation of the self-updating strategy.
Input Query Sequences = {S0, S1, ..., ST }, negativeSet, type_of_model, TH (opera-

tional threshold).
Output Self-updated model, MT

M0 = createModel ( S0, negativeSet, type_of_model )
for t = 1,2,...,T do score = evaluateSequence ( St, Mt−1, SDF, FDF )

if score > TH then
St assumed to be a genuine sequence
Mt = updateModel ( St, Mt−1, UF )

else
St assumed to be an impostor sequence
Mt =Mt−1

end if
end for

• Update Function (UF) defines how new information is used to enhance the
current model incrementally.

Algorithm 1 and Fig. 3.1 illustrates the role of each decision function in the self-
update pipeline. The actual implementation choices for each of the explored models
(in the following Sec. 3.3.3) are shown in Tab. 3.1.

3.3.2. The Proposed Dynamic Ensemble of SVM (De-SVM)

The classification power of ensembles of very specific classifiers was first proven
by [86]. There, an ensemble of exemplar Support Vector Machines (SVM) classi-
fiers, each of them (exemplar-SVM) trained with just one positive sample and a
large number of negative samples, is used in the frame of object detection. The idea
behind this strategy is to have an ensemble of very specific classifiers whose com-
bined decision overcomes over-fitting. In the particular case of face verification in
video surveillance, [3] uses a similar approach to recognise a target identity among
distractors in the case of S2V face recognition. Each exemplar is built during en-
rolment from a single target sample and multiple distractors’ samples to represent
the diversity of the same identity appearance due to various perturbation factors.
Ensembles of (exemplar) SVMs leverage the intuition according to which a pool of
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Table 3.1: Summary of the decision rules with each method.

Method Decision rules Method used

De-SVM
Frame Decision Function Ensemble fusion rule (Median)
Sequence Decision Function Median
Update Function Add a new classifier with the hardest samples

SVM
Frame Decision Function Raw score
Sequence Decision Function Median
Update Function Retrain the classifier with the additional information

I-SVM
Frame Decision Function Raw score
Sequence Decision Function Median
Update Function Partial fit using the query sequence

OS-ELM
Frame Decision Function SoftMax
Sequence Decision Function Median
Update Function Partial fit using the query sequence

simple classifiers, one for each training sample, can outperform a single and complex
one [5]. Besides, another advantage of ensemble-based methods is the extra point
of flexibility. One could potentially control how each ensemble member performs,
allowing classifiers substitutions or removals whenever needed to keep the ensemble
size bounded. The following Chapter 4 particularly explores this possibility.

The proposed De-SVM use these previous ideas as a basis. Besides, it combines
them with the self-updating method to create an identity-specific ensemble in an
incremental and primarily unsupervised way. Instead of using Exemplar-SVM, the
number of positive samples is generalised to n. Still, this number will continue
to be relatively low (n = 5 in our experiments) to maintain the Exemplar-SVM
philosophy. The generalisation need was shown in a previous work [81] where the
quality of the initial template is proven to be crucial to deploy the self-updating
strategy. The transformation to an incremental classifier consists of adding new
classifiers to the ensemble whenever the genuine identity is verified. In our case,
the number of possible updates keeps relatively bounded, keeping out of the scope
a procedure to limit the number of ensemble classifiers. Nevertheless, for an actual
application, one should restrict it following either substitution or removing strategies
[66] (Chapter 4).
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Figure 3.2: The pipeline of De-SVM within the self-updating general strategy. The model (Mt) is
updated based on its decision over the query sequences (St+1) to generate a new model (Mt+1).
Three different functions are involved in the decision of updating (FDF and SDF) and the way of
updating (UF).

Figure 3.2 depicts the pipeline of De-SVM. Following the self-updating paradigm,
the ensemble at the moment is the one that decides whether to update or not.
First, the median is used as FDF to give a score to each frame (which in practice
corresponds to a majority voting). Afterwards, the median of the sequence’s frames
FDF scores is computed again as SDF. Finally, if the identity is verified (based on
the operational threshold), the ensemble adds a new classifier following the UF.

The n = 5 samples used to create the new member of the ensemble will be pooled
from the query sequence’s frames. To enhance diversity within the ensemble, the
hardest frames (the ones with the worst score obtained using the current model,
using the FDR) are selected as positive samples to train (against a large number of
negative samples) the next classifier of the ensemble.
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3.3.3. Other Explored Classification Methods

The self-update approach has a ‘wrapper algorithm’ [152] nature which in prac-
tice converts a supervised classification method into an unsupervised and incre-
mental one. Therefore, one could use different classification methods within this
same approach. Here, we explore three additional supervised classification methods
(either incremental or batch-based):

Linear Soft-Margin Support Vector Machine (SVM)

The Linear Soft-Margin Support Vector Machine (SVM) is a batch-based binary
classification method [20] widely used in many applications. Given a set ofN labelled
training feature vectors xi of two classes, the method finds the optimal hyperplane
which separates each of classes. Recently, this classification technique has lost a bit
of its prominence in favour of CNN’s. Nevertheless, it continues to be used on top of
CNN-based features. In the specific context of face recognition, there are numerous
examples of SVM-based methods in the recent literature [22, 144, 28].

Incremental SVM (I-SVM)

This is an incremental implementation of the previous method. Here, training
data is provided sequentially instead of the batch mode in which all examples are
available at once. Thus, new training data is incorporated when it is available,
without re-training from scratch. In [63], a simple and computationally efficient
algorithm, based on the classical Stochastic Gradient Descent, was developed to
update the hyper-plane parameters incrementally.

Online Sequential Extreme Learning Machine (OS-ELM)

The Online Sequential Extreme Learning Machine (OS-ELM) is an incremental
implementation of the regular Extreme Learning Machine (ELM) problem. The
ELM builds a Single Layer Feed-forward Network (SLFN) with Ñ hidden nodes to
approximate a set of N labelled training feature vectors such that:
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fÑ(xj) =
Ñ∑
i=1

βiG(ai, bi,xj) = yj, j = 1, .., N (3.1)

where ai and bi are the parameters of the hidden nodes activation function G

(additive or RBF); and βi the weight that connects the i-th hidden node with the
output. It is showed that (3.1) is satisfied for any randomly assigned values of the
node parameters (ai and bi) by analytically computing the weight βi, as long as
N ≥ Ñ .

In the specific case of OS-ELM, the approach is specifically adapted to com-
pute and update the weight values sequentially as more data is becoming available
(‘chunk-by-chunk’ or one-by-one) [75]. In this case, a sigmoid function is used as an
activation function, and the number of hidden nodes is empirically fixed at Ñ = 80.

3.4. Methodology

3.4.1. Datasets

COX Face database

COX Face database [56] (COX) was specifically designed for the context of video
surveillance. This dataset gathers video frames of 1 000 identities with 3 video
sequences each captured by 3 different viewpoints (cam1, cam2 and cam3). The
subjects were asked to walk over an S-path, and their images were captured under
variable lighting, pose, scale conditions, and a considerable amount of blur. Each
camera recorded a part of the path without temporal overlapping between them. The
number of sequences of each identity is quite limited (3 sequences per subject). To

Table 3.2: YouTube Faces distribution of the amount of videos per person after the face detection
phase.

#videos 1 2 3 4 5 6

#people 588 472 305 167 51 8
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Figure 3.3: Samples of both datasets, COX (left) and YTF (right).

cam1

SS1 SS2 SS3 SS4 SS5

cam2

SS6 SS7 SS8 SS9 SS10

Figure 3.4: Example of division of cam1 and cam2 in the COX Face database to generate the query
sub-sequences (SS stands for sub-sequence).

mitigate this limitation, we have split each video sequence into several sub-sequences
without alteration of the temporal order (Fig. 3.4).

YouTube Faces

YouTube Faces Dataset [143] (YTF) contains a total of 3 425 videos downloaded
from the YouTube platform of 1 595 different identities. Each identity appears in
between 1 and 6 different videos captured under completely different conditions.
Table 3.2 contains the distribution of video frames per identity after face detection.
As with the previous dataset, to augment the number of video sequences to query
the system, each video sequence has been split into several sub-sequences while
maintaining temporal coherence.



3.4 Methodology 45

3.4.2. Face detection and feature extractor

A face detection technique is applied over every frame to discard the background
part of images and for alignment purposes. We selected the tool provided in the
Dlib library [61] for this task. After that, we will extract a feature vector of each
face using a pre-trained ResNet-34 network [52] with just 29 convolution layers
(RN29). The classifier layers have been removed from the network, as provided by
Dlib [61], giving a feature vector of 128 dimensions. The network has been trained
using a combination of the SCRUB dataset [92] and the VGG-Face dataset [99].
This implementation achieves an accuracy of 99.38% in the LFW dataset (which is
comparable to the face verification state-of-the-art) and has shown quite desirable
properties in terms of robustness to non-identity related variations (Chapter 2 and
[83]).

3.4.3. Testing Protocol

Using the protocol proposed by the COX database as an inspiration, each dataset
was divided into three different subsets (See Tab. 3.3):

1. The train subset is composed of the face images used as a negative set and
as a validation set in the learning process. This negative set will be a random
subset of 1 000 samples from the whole train set in the actual implementation.

• In the case of the COX Face database, this subset comprises the face
images of 300 identities taken from each available camera.

• In the case of YouTube Faces database, this subset contains data from
the identities that have less than 4 video-sequence per identity, giving a
total of 1 365 identities.

2. The gallery subset is composed by the video-frame sequences used to create
the initial template as well as the ones used to query the system (from both
genuine and impostor identities).

• In the case of COX Face database, this set contains the 700 identities
taken from cam1 and cam2. Each video was divided into 5 sub-sequences
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Table 3.3: How the datasets’ identities are divided in order to generate each subset defined in
Sec. 3.4.3.

Genuine Impostor

C
O
X

still cam1 cam2 cam3 still cam1 cam2 cam3

Train 0 0 0 0 300 300 300 300
Gallery 0 700 700 0 0 0 0 0
Probe 0 0 0 700 0 0 0 700

Y
T
F

≥ 4 videos < 4 videos ≥ 4 videos < 4 videos
Train 0 0 0 1365
Gallery 226 0 0 0
Probe 226 0 226 0

to augment the number of possible queries, giving a total of 10 sub-
sequences.

• In the case of YouTube Faces, this subset contains data from the identities
that have equal or more than 4 video sequences per identity, giving a total
of 226 identities. It includes all but one video of each identity, which will
create the following probe subset. The videos will be divided into a total
of 10 sub-sequences without mixing different videos.

3. The probe subset contains the video-frames sequences we draw to test the
system in each step of the learning phase. The testing is performed after each
query of the learning phase. This way, we can measure the evolution of the
updating system.

• In the case of COX Face database, this set contains video sequences
captured by cam3 belonging to the 700 identities in the gallery subset. In
this case, each video sequence was divided into 10 sub-sequences to have
more sequences to test.

• In the case of YouTube Faces, this subset contains data from the identities
that have equal or more than 4 video sequences per identity, giving a total
of 226 identities. It includes the remaining video after the creation of the
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previous gallery subset. As for the other dataset, each sequence will be
divided into 10 sub-sequences too.

It is important to remark that there are no common identities between the train
subset and the other two subsets. Identities belonging to the train subset conform
the Universal Model (UM) [68, 33]. On the other hand, gallery and probe subsets
contain different sequences of shared identities. In the experiments, each of these
identities will have associated its own Cohort Model (CM) [68, 33]. In practical
terms, each identity CM will be conformed by itself and its 10 ‘most similar’ (using
SVM as metric [83]) impostors or hard-negatives. Consequently, this kind of testing
is quite more demanding than regular random impostor testing.

3.4.4. The Operational Threshold

In each verification query, a short sequence of video frames is processed according
to the SDF (see Sec. 3.3.1). The SDF gives a score to the video sequence and decides
based on a threshold, the so-called operational threshold. Its determination is crucial
and especially tricky in an incremental learning context.

The strictness/gentleness on the operational threshold modulates the self-labelling
process’s confidence degree. Potentially, aspects as data quality, face characteristics,
or the acquisition environment may affect its optimal determination (identity and
time dependence). Nevertheless, we have opted to ignore these dependencies (both
identity and time) when defining the determination procedure. It seems reasonable
as a first step considering the enormous limitations in labelled data of the appli-
cation’s context. Similar assumptions are commonly made in other works [109].
Section 3.5.1 performs a further study of the implications of this assumption.

Thus, the train subset (which contains the identities of the UM) will be used as a
validation set. Within this set, we will replicate the previous divisions (train, gallery
and probe) to build and characterise (compute the ROC curve) sample models using
what would be the initial template. As a convention, we have selected the threshold
associated with 5% FAR point of the initial model as operational threshold. How-
ever, we test different operational thresholds (along with other templates sizes) on
Sec. 3.5.5.
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3.4.5. Metrics

The metrics used to evaluate are the measurement of TAR at a given 1% FAR
(TAR@FAR1). In addition, we also provide the Transaction Level performance
(TAR and FAR at the operational threshold).

Performance is assessed on the probe subset. After each query, the system is
presented with 10 genuine sub-sequences and 1 impostor sub-sequence per impostor
identity (10 in total). As it has been stated in Sec. 3.4.3, both querying and testing
is performed using the CM of genuine identity. Finally, results are averaged over
the total number of identities used as genuine in each verification process.

Finally, as mentioned in Sec. 3.4.3, the negative set used for training consists
of a random subset of 1000 samples drawn from the train subset. This randomness
adds uncertainty to the results and needs to be addressed. In order to deal whit it,
experiments will be repeated 8 times and averaged.

3.5. Experiments and Results

This section presents the experimental part of the chapter. First, Sec. 3.5.1
explores the supervised adaptation performance of the four different classification
techniques. From that, Sec. 3.5.2 explores their ability to build a robust model
with a minimum amount of labelling in an environment where both genuine and
impostor can potentially query the system. After that, Sec. 3.5.3 tests models’
robustness to repeated impostor attacks. On Sec. 3.5.5, some additional insights
of De-SVM are provided to understand its behaviour and parameters fully. The
complete results achieved in the experiments are recalled in Tab. 3.4 to be analysed
in a final discussion (Sec. 3.5.4).

3.5.1. Supervised Adaptation

Despite aiming to perform incremental learning in low-labelled contexts, one
of the first steps to study each method’s performance is to observe its behaviour
under supervised incremental learning conditions. The performance obtained in
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Figure 3.5: COX: Supervised updating performance comparison.
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Figure 3.6: YouTube Faces: Supervised updating performance comparison.

this experiment represents an upper-bounds since they use entirely supervised labels
(perfect self-labelling). Then, the n = 5 available labelled frames are used as the
initial template. This template is used to create the model M0 and, after that,
the system is queried (and the model consequently updated) with 10 different short
video sequences (verification queries) from the genuine identity.

Performance is measured on the probe set, using the samples of the CM of each
identity. Measurements were done after the creation of the initial model (t = 0) and
after each query (t = 1, 2, ..., 10). Results showcased in this experiment are directly
comparable with the following ones on Sec. 3.5.2, when the updates are done in the
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absence of labels.

Results (Figs. 3.5 and 3.6) show that every method can achieve a remarkable
performance, especially when testing on the COX Face database. In this sense, I-
SVM is the method that experiences the hardest time during the experiment. Above
all, results show the ability of every method to perform supervised incremental
learning. Differences in performance are more obvious at the operational threshold,
as illustrated in Figs. 3.5b and 3.6b. De-SVM achieves the most modest performance
in terms of TAR with respect to the other methods. Nevertheless, it is important to
remark that higher performances are obtained at the cost of higher (and increasing)
values of FAR. Both OS-ELM and De-SVM present a decreasing FAR, which ends
up below 5%. These curves suggest a more desirable behaviour when updates will be
performed in an unsupervised manner. A high FAR value means that the probability
of accepting impostors during the training could also be high, and so the high risk
of corrupting the model.

Finally, these last figures give an important clue about the relevance of the
operational threshold and its crucial influence on the self-updating mechanism. This
influence is comprehensively studied in the following section (Sec. 3.5.1).

Time independence of the operational threshold

The operational threshold is assumed to be neither time nor identity dependent
(Sec. 3.4.4) and is fixated to initially have 5% FAR. Despite not being totally accu-
rate, this assumption is forced by the label’s scarceness of the operation’s context.
In fact, the previous Figs. 3.5b and 3.6b have already suggested that this assump-
tion could be a bit inaccurate. Delving into this analysis, Fig. 3.7 shows how, using
a constant operational threshold, FAR increases after each update for a supervised
batch SVM (described in Section 3.3.3). This section aims to explore further the
actual implications of the independence assumption (specifically regarding time).

The experiment conducted consists of representing the temporal evolution of
the associated threshold of five different points of the ROC curve (Fig. 3.8) under
supervised conditions (same experiment as in before) . According to the previous
assumption, the ideal behaviour would correspond to steady curves. Moreover, such
behaviour would mean that the FAR point initially chosen would be maintained
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Figure 3.7: Evolution of the ROC curve and the ROC point associated to the operational threshold
after each query for the supervised case using the SVM classification model.

during the model updates.

Results show different behaviours depending on the classification method used.
Overall it is observed the explicit break of the threshold’s time independence assump-
tion. De-SVM is the method that presents the most steady behaviour among all the
classification techniques during this experiment. For instance, for SVM, thresholds
corresponding to 1% FAR (at the beginning) and 25% FAR (at the end) are the
same. OS-ELM shows the opposite behaviour. The initial threshold associated with
a FAR 5% decreases over time.

This behaviour can be explained in terms of the sample balance (positive/nega-
tive) during the classifiers’ creation. In the early stages, this balance is compromised.
The limited number of positive samples contrasts with a large number of negative
ones. The balance is recovered when the model adds more genuine queries. Sub-
sequently, the operational threshold selected (at 5% FAR) using the initial model
(unbalanced problem) leads to a decision boundary shifted towards the positive
sample(s). This boundary does not correspond to the same ROC point of the final
model (more balanced problem).

In contrast, De-SVM uses an ensemble of ‘unbalanced’ SVM. However, each
classifier is ‘unbalanced’ to the same degree, making the decision boundary much
more stable during the queries. Besides, De-SVM presents a subtle decrease over
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Figure 3.8: COX: Threshold evolution of a same FAR point of the ROC curve (Data for 1%, 5%,
10%, 25% and 50%).

time, indicating that the decision is becoming more strict. OS-ELM even show a
more substantial decrease in the initial phases.

These experiments showed that, despite being inaccurate, the time and identity
independence assumption is acceptable. Thus, one can start to foreshadow a better
performance of both De-SVM and OS-ELM in the following experiments.

3.5.2. Unsupervised Adaptation

The procedure in this experiment follows the philosophy of the supervised case
(see Sec. 3.5.1). However, instead of having access to labels, the SDF must dis-
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Figure 3.9: FACE COX: Self-supervised experiment using an operational threshold of 5% initial
FAR.
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Figure 3.10: YouTube Faces: Self-supervised experiment using an operational threshold of 5%
initial FAR.
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tinguish between genuine and impostor queries. Consequently, the first step was to
generateM0 from the initial template (5 frames). After that, the model was queried
with 10 genuine sequences, Gs, and 10 different impostor sequences, Isk (where s
stands for the sub-sequence number and k for the identity of the impostor). All
of them belonging to the gallery subset (identities of the CM). After each genuine
query (odd query, t = 1, 3, ..., 19), an impostor query (even query, t = 2, 4, 20) was
presented. The query order follows this pattern:

G1 → I11 → G2 → I12 → ... → Gs → I1k → ... → G10 → I110

Performance measurements are done on the probe set, using samples of each
identity’s CM. As aforementioned, the CM consists of both the genuine identity and
its 10 most similar impostors (see Sec. 3.4.3). Performance metrics (see Sec. 3.4.5)
measurements are done after each query to the system.

Results (Figs. 3.9 and 3.10) for both COX and YTF, respectively, show the ability
to improve the performance of the self-updating approach for every classification
method apart from SVM. De-SVM is the one to achieve the best performance scoring
at TAR@FAR1 of 86.03±0.48% on COX and 75.5±1.2% on YTF (Sec. 3.4.5 contains
a detailed explanation about the uncertainty origin).

A comprehensive analysis of Figs. 3.9b and 3.10b allows to identify two different
behaviours. On the one hand, De-SVM and OS-ELM can improve TAR while de-
creasing/maintaining FAR. Conversely, both SVM and I-SVM are unable to improve
TAR without an unacceptable increase of FAR. To explain this behaviour, we need
to recall a specific detail.

In Figs. 3.9b and 3.10b, initial and subsequent TAR measurements of I-SVM and
SVM are quite high. This means that the model can incorporate much more genuine
information (see Fig. 3.11). At the end of the experiment, we have a model that has
acquired almost the same genuine information as the supervised case. Moreover,
as counter-intuitive as it may seem, FAR seems to increase whenever a genuine
sequence is presented, while FAR seems to decrease after an impostor query. This
is especially noticeable when testing on COX. However, this behaviour is coherent
with the one explored in the 3.5.1. In that experiment, we show the importance of
balance stability when using a constant threshold. Therefore, adding this amount of
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genuine information (high TAR) leans the classification problem to a more balanced
one, making the initial threshold obsolete (FAR increases after genuine queries).

Finally, an essential detail to remark is the decreasing FAR observed for De-
SVM and OS-ELM. This behaviour continues in the supervised scenario (Sec. 3.5.1).
While De-SVM presents a soft, monotonous decrease; OS-ELM presents a sharp
decline at the beginning with a slight tendency change at the end.

Relation of Genuine/Impostor Trains

Paying attention to the relation of genuine and impostor update rate (over the
total possible updates), we can extract some key conclusions (Fig. 3.11). Firstly,
I-SVM and SVM are quite more sensible to model corruption due to false acceptance
updates. This is coherent with the behaviour observed using transaction-level per-
formance. This corruption negatively affects, in particular, SVM. The behaviour is
even more relevant if we remember that SVM is one of the best-performing methods
in the supervised experiments. A possible explanation for this behaviour is further
studied on 3.5.1.

Secondly, we can infer from the genuine/impostor updates that the most benefits
are obtained from acquiring enough genuine information, even if it is at the cost of
including some impostors. This justifies the assumption of setting the operational
threshold to a 5% FAR.

3.5.3. Post-robustness impostor testing

In static classification scenarios, regular FAR measures robustness against im-
postors. However, systems studied here are non-static, making FAR non-static as
well. Even more considering that the system’s predictions are used as pseudo-labels
during the updates, making false acceptances susceptible to feedback. This experi-
ment intends to test each classification technique in the extreme scenario where the
system is repeatedly queried with only impostor queries.

The idea is to start from the previous experiment. The initial template of 5
frames is maintained as well as the CM with the genuine identity and the 10 most
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Figure 3.11: Genuine and impostor updates performed by each classification technique in each
database.

similar impostors. So, after the 20th query, we will present a total of 90 impostor
queries (every identity from the CM of the genuine target) with additional sub-
sequences of the gallery subset. The fact that the CM is maintained (with the 10
most similar impostors) particularly augment the difficulty of the robustness testing.
The pattern followed was:

Sec. 3.5.3

Sec. 3.5.2
{
G1 → I11 → ... → G10 → I110 →{
I1

2 → ... → I210 → ... → I1
10 → ... → I1010

The procedure to measure performance is the same as the previous experiment
(using the probe set with identities of the CM), using the metrics described in
Sec. 3.4.5. Measurements are performed after each of the queries. Results ob-
tained can be seen in Figs. 3.12 and 3.13. Overall, the first thing we observe is
that every method suffers a performance loss in this testing. Nevertheless, looking
at Fig. 3.12a, we realise De-SVM’s outstanding resistance compared to the other
methods. TAR@FAR1 moves from 86.03± 0.48% and 75.5± 1.2% (COX and YTF,
respectively) in query 20 to just below 64.4 ± 1.6% and 64.8 ± 1.1% in query 110.
The following best performing technique is OS-ELM that goes from 75.0±1.1% and
66.4± 1.9% to a final performance of 19.3± 2.7% and 32.2± 5.2% TAR@FAR1.
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(a) TAR@FAR1 performance.
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Figure 3.12: FACE COX: Self-supervised performance comparison fixing the operational threshold
at 5% initial FAR, testing robustness.
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Figure 3.13: YouTube Faces: Self-supervised performance comparison fixing the operational thresh-
old at 5% initial FAR, testing robustness.
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Transaction level performance (using the operational threshold) shows interesting
behaviours again. Intuitively, one could think that a repeated impostor querying
would make FAR out of control. Indeed, this behaviour is observed in 3 of the
4 classification techniques that have been tested (mainly in SVM and I-SVM and
softer in OS-ELM). This is something that makes sense, given the fact that the only
possible mistake is to accept an impostor query as genuine.

However, De-SVM presents just the opposite behaviour. Most damage comes
from a decreasing TAR instead of an increasing FAR. To understand this effect,
we need to go deeper into ensembles’ nature. Ensembles decisions are based on
majorities. The majority of accepting genuine identity is built during the initial
stages (query 0 to 20). Based on Fig. 3.11, this decision is supported by 9 out of 10
classifiers. It would be necessary to overcome this majority of 9 classifiers to confuse
an impostor with a genuine persistently. This is something quite difficult given the
fact that FAR is always below 5%.

In other words, impostor classifiers may agree on rejecting genuine identities
(TAR decrease), but they cannot agree on accepting another identity as genuine
(FAR stability). This is a desirable behaviour for fields like biometric identification,
in which the main concern is to avoid impostors entering the system.

3.5.4. Summary and Discussion

As aforementioned (Sec. 3.1 and Sec. 3.2), the limited amount of previous litera-
ture framed in the particular conditions of our problem makes it difficult to establish
a direct comparison with other previously used techniques. In this regard, [86] uses
ensembles of very-specific SVM classifiers like De-SVM. Nevertheless, the fact that
we are focusing on face related problems (in which their proposed calibration phase
is problematic) prevent us from using their work as a fair and acceptable baseline.
Thus, we opted to establish a benchmark with static methods trained with the
available labelled data (n = 5 frames).

The use of deep feature embedding in combination with traditional classifiers is
quite common in the literature and has proven to achieve comparable performance
to end-to-end deep learning methods [22]. Thus, the baseline is established us-
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Table 3.4: Summary of TAR@FAR1% performances values obtained (values in %). Uncertainty is
not represented in previous graphs for the sake of clarity. SU stands for self-updating.

COX
Model Initial Superv. Adapt. Unsuperv. Adapt. Robustness

RN29 + SVM 37.19± 0.63 - - -
RN50-AF + SVM 51.6 ± 1.0 - - -
RN29 + SVM + SU 37.19± 0.63 88.89± 0.74 24.5 ± 1.0 10.04± 0.48

RN29 + I-SVM + SU 17.7 ± 3.6 79.8 ± 1.2 61.3 ± 1.5 5.51± 0.49

RN29 + OS-ELM + SU 10.27± 0.51 92.35± 0.45 75.0 ± 1.1 19.3 ± 2.7

RN29 + De-SVM (Ours) 37.17± 0.58 89.47± 0.24 85.45± 0.25 64.4 ± 1.6

YouTube Faces
Model Initial Superv. Adapt. Unsuperv. Adapt. Robustness

RN29 + SVM 55.9 ± 1.3 - - -
RN50-AF + SVM 81.33± 0.58 - - -
RN29 + SVM + SU 55.9 ± 1.3 88.68± 0.42 34.7 ± 1.5 9.0 ± 1.1

RN29 + I-SVM + SU 42.0 ± 2.2 73.9 ± 2.2 65.5 ± 2.5 2.26± 0.67

RN29 + OS-ELM + SU 13.8 ± 1.8 76.8 ± 2.0 66.4 ± 1.9 32.2 ± 5.2

RN29 + De-SVM (Ours) 56.91± 0.59 76.26± 0.75 75.5 ± 1.2 64.8 ± 1.1

ing the ResNet-29 (RN29+SVM) feature representation described in Sec. 3.4.2 and
ResNet50-AF (RN50-AF+SVM) feature representation [26] (which tops the state-
of-the-art on LFW verification benchmark).

Tab. 3.4 shows the complete set of results of this chapter. The first two rows
contain the baselines we have just mentioned. The rest of the rows contain the four
classification techniques compared in this chapter. The table shows, in each column,
their initial performance, final performance after supervised adaptation (Sec. 3.5.1),
final performance after unsupervised adaptation (Sec. 3.5.2) and performance after
the robustness test (Sec. 3.5.3).

Overall, it is evident that self-updating is an interesting approach to perform
unsupervised adaptation. It can improve initial performance in 3 of the 4 tested
methods (including De-SVM). This improvement is enough to overcome the state-
of-the-art performance with the available data when using the COX database. This
result is remarkable given the short number of gallery samples (5 low-quality video
frames). Nevertheless, in the case of YTF, AF+RN50 [26] stills beats the methods
that include self-updating. A possible explanation for this is two-folded. First,
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unlike RN29, this feature representation is designed with the YTF test in mind [26]
acquiring state-of-the-art performance in this dataset too. Secondly, YTF is not
a database designed for the specific problem of video surveillance. Consequently,
most of the specific built-in characteristics (e.g. variable scale and light conditions,
blurriness, etc.) are less present in video-frames (Fig. 3.3). This fact makes easier
the transition between stills and videos.

Comparing to supervised adaptation (Sec. 3.5.1), every model experiences a pre-
dictable drop in performance when updating phase is done under unsupervised con-
ditions. In this regard, De-SVM is the method that experiences the smallest of all.
Thus, De-SVM can achieve comparable performance using less than a tenth of la-
bels. On the other hand, SVM is the method that experiences the highest drop in
this comparison.

Finally, in terms of robustness, De-SVM presents impressive characteristics in
comparison to other classification methods. Moreover, its behaviour is even more re-
markable, given that the only labelling used is the one to create the initial template.
Besides, the fact that the primary performance damage is caused by lowering TAR
and not increasing FAR represents a promising quality for any biometric application.

3.5.5. Further testing on De-SVM

Using other central tendency measures in the FDF and SDF

This experiment shows the effect of using different central tendency measures in
the FDF and SDF. Results on Tab. 3.5 show that the differences in performance are
not significant. Thus, the choice of the median was merely conventional. Concep-
tually, the median is equivalent to perform a majority vote after obtaining a binary

Table 3.5: COX: Comparison on the function used in the FDF and SDF.

TAR@FAR1 TAR FAR
Function Initial Final Initial Final Initial Final

Median 37.17±0.58 85.45±0.25 59.01±0.37 88.14±0.24 5.01±0.13 1.714±0.052
Mean 36.56±0.56 84.27±0.48 59.00±0.26 87.39±0.32 5.01±0.12 1.681±0.040
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classifier response (using the operational threshold).

Effects on performance of different operational thresholds and template
sizes

In this section, we explore the effects of having different operational thresh-
olds and templates sizes on De-SVM. To do that, we repeat the previous exper-
iment on the COX database varying these parameters. Results can be seen on
Tabs. 3.6 and 3.7.

Analysing the operational threshold dependence (Tab. 3.6), we observe TAR@FAR1
increases as the operational threshold becomes less strict. However, the selected 5%
FAR is an inflexion point from which the gain begins to be more subtle. Looking at
TAR and FAR performance, we observe that the increase of final TAR is done at
FAR expenses. In this regard, we can assume then the 5% operational threshold as
an acceptable compromise.

Turning now to the template size effect (Tab. 3.7), we observe that most of
the performance improvement appears initially. Again, considering the final perfor-
mance, there is an inflexion point at the selected size of 5 frames. Since we want to
address data scarceness, we want to extract the maximum power from the minimum
amount of labelled information. Therefore, based on this behaviour and the one
observed in [81], the election of a 5 frames template seems quite reasonable.

Table 3.6: COX: Study on FAR point of operational threshold De-SVM (template size = 5 frames).

Operational TAR@FAR1 TAR FAR
threshold Initial Final Initial Final Initial Final

1% 37.17±0.58 74.08±0.67 30.92±0.32 57.1±1.1 0.568±0.061 0.118±0.031
3% 37.17±0.58 82.61±0.68 48.41±0.21 79.08±0.52 2.407± 0.048 0.650±0.024
5% 37.17±0.58 85.45±0.25 59.01±0.37 88.14±0.24 5.01±0.13 1.714±0.052
7% 37.17±0.58 86.03±0.48 62.39±0.31 89.80±0.25 6.23±0.16 2.53±0.11
10% 37.17±0.58 86.69±0.40 68.90±0.22 93.01±0.43 9.34±0.10 4.90±0.10
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Table 3.7: COX: Study on template size De-SVM at operational threshold 5%.

Template TAR@FAR1 TAR FAR
size Initial Final Initial Final Initial Final

1 20.30±0.64 52.42±0.41 32.00±0.28 53.68±0.38 3.36±0.10 1.178±0.053
3 30.19±0.76 77.91±0.52 45.47±0.50 78.09±0.30 3.213±0.080 1.036±0.076
5 37.17±0.58 85.45±0.25 59.01±0.37 88.14±0.24 5.01±0.13 1.714±0.052
7 40.74±0.49 86.69±0.65 60.90±0.41 87.32±0.49 3.938±0.096 1.138±0.073
10 45.21±0.77 88.87±0.24 65.60±0.23 89.02±0.21 4.098±0.095 1.024±0.043

3.6. Conclusions

This chapter has tackled the problem of V2V-FV in a context with no col-
laborative manual enrolment. In combination with state-of-the-art CNN features,
self-updating has proven to be an interesting approach as pseudo-labelling for incre-
mental learning purposes during the operational phase. In this regard, De-SVM uses
all of these ideas to incorporate new relevant unsupervised data while maintaining
a relatively low FAR.

De-SVM behaviour becomes even more promising because the full power of
ensemble-based approaches is not fully exploited yet. Indeed, one of the main bene-
fits of these type of methods is that they allow isolating each of the updates, making
them reversible. Moreover, as the updating process consists of adding new classi-
fiers (learn), by providing a way of removing classifiers, the ability to forget could be
easily implemented. These ideas will be explored in the following Chapter 4 when
extending De-SVM from verification to general recognition.



Chapter 4

Adaptive Face Recognition in
Video-surveillance

This chapter is heavily based on the contents of these articles:

E. Lopez-Lopez, C. V. Regueiro, and X. M. Pardo. An adaptive video-to-video
face identification system based on self-training. In 2020 25th International Confer-
ence on Pattern Recognition (ICPR), pages 2590–2596, 2021

E. Lopez-Lopez, C. V. Regueiro, and X. M. Pardo. Incremental learning from
low-labelled stream data in open-set video face recognition, 2020

4.1. Introduction

In the previous chapter, De-SVM has proven to be an interesting approach to
implement unsupervised incremental learning for face verification in video surveil-
lance contexts. Here, the aim is to extend the proposed system to work to the more
general task of face recognition. Contrary to what one could expect in the first
place, this extension is far more tricky than having n-verification systems in parallel
[47].

As aforementioned, incremental learning is the ability of a classifier to evolve by
continuously integrating information from new instances and/or new classes without

63
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resorting to complete retraining [58]. In the context of multi-class classification (as is
the case of face recognition), most efforts have been focused on extending the class-
set of a classifier considering only labels from the new classes while avoiding the
problem of catastrophic forgetting [128, 106]. This is particularly important when
the computational power prevents full retraining or privacy issues impede the new
access to previous samples. In contrast, less progress has been made in continual
learning of a set of non-stationary classes, mainly when applied to tasks involving
unsupervised streaming data.

Video-to-video face recognition (V2V-FR) in video surveillance is a paradigmatic
example of the application of incremental learning due to the specific context condi-
tions mentioned in Chapter 3 (e.g. high pose variations, resolution or illumination).
This variability in the conditions often excess the diversity available in datasets used
to train deep networks (generally focused on web extracted images) [46, 126] and
requires new alternatives.

When extending a face verification system to a recognition scenario, another
relevant aspect is the consideration of closed-set (only enrolled identities query the
system during operation) or open-set (non-enrolled identities can query the system)
classification [119]. The decision of distinguishing between enrolled and non-enrolled
identities (known and unknown, respectively) has proven to be quite challenging
[119, 47, 10]. Still, for real-world applications of V2V-FR, the open-set consideration
should be a must. Take, for example, a practical case of an airport video-surveillance
aimed to track some individuals of interest (IoI) who have not been collaboratively
enrolled in the system, e.g. those exhibiting suspicious behaviours, among a larger
number of non-target identities, that should be identified as unknown identities.

This chapter proposes the Open-Set Dynamic Ensembles of SVM (OSDe-SVM),
an extension of the De-SVM (see Chapter 3) to the more complex Open-set V2V-FR
problem. The architecture of OSDe-SVM (Fig. 4.1) follows the same philosophy of
De-SVM: from deep feature embeddings, the system acts as an incremental learning
module, fed with stream data, which simultaneously predict and update classifiers
using the self-training strategy [146]. Like De-SVM, the approach is based on dy-
namic ensembles of very specific SVM classifiers that combine their responses using
Extreme Value Theory to work in the open-set. Additionally, exploiting the modu-
lar nature of ensembles, adaptations consist of either adding or removing classifiers.
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Figure 4.1: Open-Set Dynamic Ensembles of SVM (OSDe-SVM) is able to incorporate new knowl-
edge and correcting wrong updates by adding and removing classifiers in an unsupervised way.
The system is designed to work under open-set recognition conditions.

The main contributions of this chapter are:

• An approach to unsupervised incremental face recognition designed to operate
online with stream data. During its operation, predictions also play the role
of pseudo-labels.

• A strategy to deal with both catastrophic forgetting issues and the effect of
mistaken pseudo-labels.

• An approach to instance-incremental learning in the open-set, which could be
extended to cope with the class-incremental problem.

• A method for person re-identification based on face, which is not directly based
on a reservoir of face images.

4.2. Related Work

Open-set Recognition. In open set recognition, training is performed on a
dataset with samples of some known classes, while samples of both known and un-
known classes are presented for testing. Therefore, classifiers should appropriately



66 Chapter 4. Adaptive Face Recognition in Video-surveillance

deal with all of them [38]. Within this approach, closer to real-world applications,
decision boundaries not only separate instances of different known classes, but they
separate the known from the unknown as well [34, 119, 8, 95]. A recent survey [38]
distinguishes between discriminative and generative approaches to open set recogni-
tion. Discriminative classifiers are trained to discriminate between the known classes
and then, given the most likely class label, to decide whether a test sample was in
fact drawn from the distribution of known class samples or not [47]. Meanwhile,
generative methods try to provide explicit probability estimation over unknown cat-
egories, most of them based on deep networks [37, 100]. Plenty of methods in both
sets of approaches leverage Extreme Value Theory (EVT) to tackle the unknown
[18, 38]. EVT is a branch of statistics aimed to assess the probability of observing
an event more extreme than any previously observed and has been widely used for
outlier detection [123], attribute fusion [120] and in open-set recognition [114].

In face recognition, the most realistic scenario corresponds to an open-set set-
ting (e.g. criminal watch-lists, restricted areas access control, smart-homes, etc.)
[47]. In this domain, apart from EVT based methods, solutions based on siamese
networks have been proposed to address the open-set as they are metric learning
methods, and their similarity scores can be thresholded to perform recognition [117].
Although they do not fit the data stream context, they could be used as a baseline
for comparison purposes [121].

Incremental Learning for Multi-class Classification. The main goal of
incremental (a.k.a lifelong, continuous or continual) learning is to learn from data
as real-world dynamic sources provide them, usually at a low pace, including noisy
samples and, in general, exhibiting non-stationary properties. As data distributions
change with time, computational systems have to deal with the stability-plasticity
dilemma, trying to avoid new knowledge to erase old one (catastrophic forgetting),
while detecting and adapting to concept drifts [105, 116].

From a multi-class classification perspective, deep continual learning methods
have been focused on learning new tasks/classes, more than on enhancing the per-
formance of classifiers (fixed number of classes) as new instances arrive [87, 98].
Among common strategies are the exploitation of, at least, partial rehearsal (loop-
ing over old data) [58, 50, 1], dynamic changes in architectures (retraining after
pruning/increasing the number of neurons, filters or layers), and regularisation (up-
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dating weights in order not to forget previous knowledge) [62]. Among the last are
usually also included a wide range of knowledge distillation methods, in which a
teacher network transfer knowledge to a student network [74, 13, 147]. However,
the drawback of distillation is that it generally needs to retain big past memories
[7, 128]. Notwithstanding the progress made in supervised incremental learning in
recent years, there is still a substantial gap between the performance of batch offline
learners on stationary data and the performance of the incremental learners that
deal with non-stationary data [50, 58].

Most of the semi-supervised methods leverage unlabelled examples by making
some assumptions, using label propagation or generating pseudo-labels during the
learning process [72]. Some approaches are based on keeping a set of dynamic
clusters to summarise class distributions and model their evolution over time [133].
Others use a few labelled data to initialise a set of models, which are afterwards
sequentially updated based on pseudo labelled data [68, 104, 94]. In the specific case
of video recognition, weak labels can be provided by the temporal tracking [36, 102],
but also co-training or predictions of the own classifiers can provide pseudo-labels
(self-training).

In this regard, ensemble methods have been acknowledged as powerful tools
to overcome catastrophic forgetting [105, 19, 58], when dealing with data streams
[66, 68, 80]. Moreover, ensemble algorithms can be integrated with drift detection
algorithms and incorporate dynamic updates, such as selective removal or addition
of classifiers [41]. In the semi-supervised scenario, it must be considered that any
kind of weak labelling or pseudo labelling is prone to error. So, dynamic updates can
also be useful to healing from the effect of mislabelling. Unlike other incremental
learning approaches (either classic [63, 75] or DL-based [51]), ensembles provide
simple way to isolate updates and, consequently, make changes reversible. And not
only that, since decisions are based on majorities, ensembles are robust to outliers.

Ensembles of deep networks have been proposed to encourage networks to co-
operate and take advantage of their prediction diversity in the context of few-shot
classification [31]. Besides, to deal with tasks where training data are inadequate,
the training of a collection of incrementally fine-tuned CNN models and their com-
bination using an ensemble was presented [151]. In [45], the authors propose an
ensemble learning framework based on multiple CNN classifiers. The CNN acts as
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a feature extractor for the posterior use of different ensemble frameworks to classify
its content. Recently, already in the context of incremental learning, an approach
based on ensembles, which is close to ours, was proposed for tackling the problem
of mechanical fault diagnosis [137].

4.3. Open-Set Dynamic Ensembles of SVM (OSDe-
SVM)

This chapter presents the pipeline ofOpen-Set Dynamic Ensemble of SVM (OSDe-
SVM) for the problem of V2V-FR in the open-set (Fig. 4.1). Like De-SVM, this
method takes advantage of transfer learning from large labelled datasets to get dis-
criminant feature embeddings that feed an instance-incremental learning module.

In the case of OSDe-SVM, for the encoder part, the choice was to use deep em-
beddings taken after the last pair of convolutional and batch normalisation layers
of the ResNet100-ArcFace (RN100-AF) network trained on MS1MV2 dataset [26].
This is one of the top-performing CNN in the face recognition state-of-the-art. Ar-
cFace is a loss-function specifically designed to enhance the discriminative power of
face recognition models, being the deepest networks, as ResNet-100, the ones that
take the most advantage of it [26]. The encoding transforms a 112x112 face crops
into a 512-D feature embedding.

The general structure of OSDe-SVM is depicted in Fig. 4.2 follows a very sim-
ilar structure compared to the verification case (Sec. 3.3.2), but specially adapted
and fine-tuned for the present case. Each individual of interest (IoI), k, has an as-
sociated ensemble, ek, composed by a set of SVM classifiers, hki . This ensemble is
updated whenever the system is queried. The updates are driven by the responses of
the Ensemble’s Decision Functions (Sec. 4.3.1), following the self-training paradigm
(Sec. 4.3.2). Besides, OSDe-SVM can remove classifiers when the maximum number
of classifiers is reached (Limitation Module, Sec. 4.3.3) or when a possible mistake
is detected (Self-healing, Sec. 4.3.4).
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Figure 4.2: Pipeline of OSDe-SVM.

4.3.1. Ensemble’s Decision Functions

OSDe-SVM ensembles make their decisions in a two-step process. First, the
Sequence Scoring Function assigns a particular score to the query sequence. And
second, the Recognition Decision Function uses these scores to assign an identity
label (either as one of the IoI or as an unknown).

Sequence Scoring Function (SSF)

When making decisions, it is convenient that each ensemble gives a unique score
to each incoming sequence. Nevertheless, both (sequences and ensembles) are com-
posed elements. Being nF the number of sequence’s frames and Mk the number
of classifiers of ensemble k, we would have a total of nF ×Mk different responses.
All of these responses are combined into a unique score by the use of the Sequence
Scoring Function (SSF). This process consists of two levels:

• At frame level, the equivalent of the FDF in De-SVM (Sec. 3.3.1), the responses
of the ensemble’s classifiers are combined to give a unique score to each frame.
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The function used here is the median of the individual ensemble’s SVM scores.
In practice, this corresponds to a majority voting.

• At sequence level, the equivalent of the SDF in De-SVM (Sec. 3.3.1), the
temporal coherence assumption allows to assign a unique identity to the whole
input sequence, combining the frame’s scores into a unique one. The function
used here is the median.

Recognition Decision Function (RDF) based on Extreme Value Theory

Once every ensemble delivers its prediction score about an input query, the next
step is to combine all the predictions to decide the underlying identity. The identity
assignment based on the best score is the usual procedure in a closed-set scenario
[26, 76, 79]. That is because input sequences always belong to a known IoI. In an
open-set scenario, assigning identities becomes trickier because non-match responses,
(corresponding to unknown identities) need to be also expected. To tackle these
scenarios, OSDe-SVM was endowed with a Recognition Decision Function (RDF)
based on the Extreme Value Theory (EVT), which also allows to deal with the
non-calibrated outputs provided by SVM’s.

When applying EVT, we follow an approach similar to [118]. As any input se-
quence belongs to a unique identity, the ensembles associated with other identities
should deliver non-match outputs. According to the Fisher-Tippet-Gnedenko The-
orem of EVT [18], the distribution of these non-match scores is modelled by some
particular functions.

In this case, for left bounded positive samples, the distribution of minima, G(z),
is given by the Reversed Weibull distribution. We can perform a simple transfor-
mation to the ensemble’s scores (given by the SSF) to satisfy these conditions and
be able to fit a Weibull distribution to the tail of the distribution, as is depicted
in Alg. 2. Then, to discriminate between unknown and known identities, the best
ensemble response (the best score) can be checked whether it comes from this non-
match distribution (Fig. 4.3) or not.

More importantly, Alg. 2 also provides a way of distinguishing the known from
the unknown by thresholding the Weibull distribution (TW ), instead of the actual



4.3 Open-Set Dynamic Ensembles of SVM (OSDe-SVM) 71

0.0 0.5 1.0 1.5 2.0
score

0

2

4

6

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

0.0 0.5 1.0 1.5 2.0
score

0

2

4

6

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

0.0 0.5 1.0 1.5 2.0
score

0

2

4

6

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

0.0 0.5 1.0 1.5 2.0
score

0

2

4

6

8

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

0.0 0.5 1.0 1.5 2.0
score

0

1

2

3

4

5

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

0.0 0.5 1.0 1.5 2.0
score

0

2

4

6

8

F
re

cu
en

cy

Weibull Fit

Threshold

Min Distribution

Candidate

Figure 4.3: Examples of Extreme Values distributions and application of RDF. A Weibull function
is fitted to the min distribution to see whether the candidate belongs or not to this distribution.
First row illustrates examples of known identities and second row does the same with the unknwon
ones.

scores. Since the fitted function is different depending on the input sequence, we
are implicitly personalising the threshold to each input sequence, as is depicted in
Fig. 4.3.

4.3.2. Update Module: Incremental learning based on Self-
Updating

This module is OSDe-SVM equivalent of the De-SVMUpdate Function (Sec. 3.3.1).
As OSDe-SVM is conceived to operate in the context of a shortage of labelled data.
Only the first classifier of each ensemble is trained with a very short labelled se-
quence extracted from the input. The first five frames have proven to be the bare
minimum for both OSDe-SVM and De-SVM [81]. From that point on, incremental
learning is exclusively based on pseudo-labels (Fig. 4.1).

After an ensemble is initialised, the method decides whether a new classifier
must be added up to enhance future performance, each time a sample of the same
identity is identified. OSDe-SVM follows a self-updating strategy based on pseudo-
labels provided by EDF to input sequences. Whenever an identity, k, is identified
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Algorithm 2 Recognition Decision Function (RDF) based on EVT.
1: S is the input sequence, TW is the threshold in the Weibull function
2: E =

{
e0, e1, . . . , eN−1

}
set of ensembles associated to known identities

3: R = {∅} set of scores given by each ensemble to a candidate
4: for ei in E do
5: R← SSF (ei, S)

6: end for
7: c = min(R); m = median(R \ c)
8: V = {‖x−m‖ | x ∈ (R \ c) ∧ (x < m)}
9: Fit V to a Weibull function, W
10: if W (‖c−m‖) < TW then
11: ID = arg(c)

12: else
13: ID =unknown
14: end if

in an input sequence, a new SVM is created using as (pseudo-labelled) positive
samples, P k

j , the 5 hardest frames of the sequence, namely those which got the
lowest scores returned by the SSF (see Fig. 4.2). This way, diversity within each
ensemble is encouraged.

4.3.3. Limitation Module

In a self-updating context where each ensemble is initialised with only one clas-
sifier trained with a few labelled frames, further updates can only occur when close
samples of the same identity query the system. If they are almost identical, there
is nothing to be learnt. However, if they are very different, there is a danger of not
being identified. So, the model can only learn from samples in the borderline, i.e.
samples that can still be recognised by the ensemble of the corresponding identity
and include some level of novelty in their features. However, ensembles’ size should
not grow indefinitely whenever the EDF recognised their target identities in input
sequences. As ensembles’ performance relies on diversity, we have chosen a solution
inspired in [71, 42] to decide which classifiers need to be removed once the maximum
size is reached.
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Within each ensemble, classifiers are compared against each other to obtain a
measurement of their relative relevance, the diversity score D(·). Given an ensemble,
ek, composed by Mk SVM classifiers,

{
hk0, h

k
1, ..., h

k
Mk−1

}
, D(hki ), is computed from

the binary response of each of the classifiers of the ensemble over a certain set of
video frame features {x0, x1, ..., xQ−1}:

D(hki ) =
N−1∑

j=0;j 6=i

d
(
hki , h

k
j

)
(4.1)

d
(
hki , h

k
j

)
= − 1

Q

Q−1∑
q=0

sgn
(
hki (xq)

)
· sgn(hkj (xq)), (4.2)

where hki (xq) is the response of the SVM classifier hki to the frame feature xq, and
sgn(·) is the sign function.

Whenever an ensemble ek reaches the maximum size, the classifier hk∗ with the
lowest diversity will be removed.

4.3.4. Self-healing: Correcting Wrong Updates

Since the whole adaptation process performs without supervision, wrong up-
dates, provoked by errors in pseudo-labelling, should be expected. This behaviour
may affect re-identification performance, mainly in the long term. The self-healing
procedure is designed to mitigate this problem.

Self-healing relies on the fact that the ensembles build its decisions based in
majorities. Therefore, if an ensemble reaches a relatively high accuracy in the first
classifications, it should be difficult for wrong classifiers to take over very soon. This
fact opens the possibility of detecting wrong updates before it becomes irreversible.
We expect that, with a limited amount of wrong updates, ensembles are still able
to recognise their target identity. Consequently, the future detection of the tar-
get identity can build a stronger majority capable of detecting the previous wrong
update.

To implement these ideas, along with each SVM classifier, hki , we store the posi-
tive samples used to create it, P k

i , which, in practice, can be considered a sequence.
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Figure 4.4: Pipeline of OSDe-SVM when self-healing is performed.

Therefore, we can pass every set (for all k and i) again through the EDF for a
re-evaluation. If the system assigns the same identity as before, the classifier is
maintained. Otherwise, the classifier is removed (Figs. 4.4). The self-healing mod-
ule triggers after a certain period which is adjustable (see Fig. 4.1).

4.4. Methodology

4.4.1. Database Selection

As it has been explored in Chapter 2, image quality (especially in terms of
resolution) has a profound impact on the performance of face identification methods
[44, 43, 54]. Video surveillance datasets are also affected by this fact. While some
of them, as in the case of CMU FiA [40], allow deep learning methods trained with
general face datasets to achieve a pretty good performance, others, as the COX Face
dataset [56], possess highly marked characteristics that reduce performance. In this
section, these two datasets are presented to illustrate this problem.
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COX Face Database

The details of COX Face database [56] were already comprehensively described
in the last Chapter (Section 3.4.1). Here, the face detection module used here is the
one described in [148] due to its integration with the feature encoder module. Its
primary purpose will be to fine-tune the background removal of the face tracker and
for proper alignment.

Like the verification case (Chapter 3), it was necessary to perform some ad-
justments to adapt the data provided by the COX database to how we operate.
Similarly, the first adaptation consists of dividing each of the available sequences
into 3 sub-sequences. However, despite following the same philosophy, the organi-
sation in the different sets would be slightly different to simulate to the recognition
conditions properly:

• The initially labelled sequences are labelled video-frames of target identi-
ties used to create the first classifier of each ensemble (the sets positive samples,
P k
i ). They consist of the first 5 frames from cam1 from the 1 000 individuals.

• The operational sequences simulate input sequences which would be re-
ceived in the operational phase. They consist of the three sub-sequences of
cam1 and cam2, and the first two sub-sequence of cam3 of the same 1 000
individuals of the initially labelled sequences.

• The testing sequences are used to assess performance. They correspond to
the last sub-sequence of cam3 of the 1 000 individuals.

Hereafter, each sequence will be noted by Sk
t , where t refers to temporal order

and k refers to the identity. Following this notation, t = 0 corresponds to the
5-frame sequences of the initially labelled sequences used in the initialisation, t =
1, 2, . . . , 8 correspond to the streaming of sequences (operational sequences), and
t = 9 corresponds to a sequence for performance assessment (testing sequences).
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Figure 4.5: Performance versus image resolution, scales 1, 1/2, 1/4, 1/8 and 1/16 (that is, 112x112,
56x56, 28x28, 14x14, and 7x7 pixel image sizes).

CMU Face in Action (FiA) database

The CMU FiA database contains 20-second videos of more than 200 different
individuals simulating a passport checking scenario in both indoor and outdoor
environments [40]. Six synchronised cameras acquired data from 3 different angles,
2 focal lengths per angle, in 3 different sessions (3-months span between each pair
of sessions). FiA video-frames present a considerable high quality, specifically in
terms of resolution, since they were captured in a relatively controlled scenario.
This dataset has been used to assess other adaptive methods, like the one in [68].
In our experiments, we have used the videos provided by the smaller focal length of
the frontal camera, both indoor and outdoor, and only considered the 70 identities
present in all sessions.

Since this dataset is only used to illustrate the current state-of-the-art perfor-
mance in datasets where adaptation was required in the past [68], the experiment’s
results are briefly stated here. Following the same protocol as the one described for
COX Face Database for the case of 35 IoI in a universe of 70 identities, OSDe-SVM
can achieve +92% in F1-score without adaptation (Fig. 4.5). This performance
widely surpasses the one presented in [68]. This behaviour can be attributed to the
higher frame quality, which better matches the general context. To emulate more
realistic conditions, video frames are down-sampled before entering the feature en-
coder. In Fig. 4.5 performance results for 5 different down-scaling ratios are shown.
Without having the possibility of averaging performance under different universes,
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we decided to randomly draw 20 different sets of 35 IoI for average and deviation
computations. We measure OSDe-SVM performance before (corresponding to the
raw performance of the network) and after adaptation. Results in Fig. 4.5 show
the performance degradation as the resolution decrease, which OSDe-SVM allevi-
ates with its unsupervised adaptation. Considering that a 1/16 downscale gives face
crops of size 7x7 (for an original size of 112x112); such low resolutions are not too
realistic and make identification almost impossible.

4.4.2. Experimental Set-up

The experimental setup tries to simulate the stream data scenario of V2V-FR.
First, initial models (one-classifier ensembles) of the IoIs are created. This classi-
fier is created using samples from the initially labelled sequences (Sk

0 ): 5 frames of
the actual identity as a positive set and 100 frames from other IoI as negative set
(randomly drawn for each classifier). The size of the negative set is maintained for
future classifier additions to have the same balance in each of the ensemble’s clas-
sifiers. After this initialisation process, unlabelled sequences repeatedly query the
system. Since we are working in an open-set scenario, these input sequences can
belong to one of the IoI or not.

Experiments are organised in adaptation steps, after which performance is mea-
sured. An adaptation step corresponds to either the initialisation, a complete itera-
tion over the k available identities with the same t, or a process of self-healing (See
Fig 4.6). Additionally, we fully iterate over t = {1, 2, ..., 8} a total of 3 times (laps),
always preserving the temporal order. This way, we can increase the number of
possible updates and study the system’s behaviour with redundant data of both IoI
and unknowns. Self-healing was performed at adaptation steps multiples of 5, and
the maximum number of classifiers per ensemble, M , was fixed to 10. This gives us
a total of 31 adaptation steps per experiment. Alg. 3 outlines the whole procedure.

Both the size of the identity universe and the number of IoIs vary with the
experiment. For universe sizes smaller than 1000, the experiment is repeated for
different splits of identities (following Alg. 4) to compute an average performance.
A partial overlapping between splits was considered to get a more comprehensive
sampling. For the case of 1000 identities, we repeat the experiment 5 times to
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INI UP UP UPUP SHUPUPUPSHUPUP ...

...

Figure 4.6: Adaptation steps performed during the experiments. INI stands for initialisation, UP
for update and SH for self-healing. The last step corresponds to the beginning of the second lap.

Algorithm 3 Experimental procedure and testing protocol.
1: Sk

t is the sequence t of the identity k, L is the number of laps
2: f number of different sub-sequences per identity
3: N = number of IoI, NU = number identities in the universe
4: for each split do
5: for k = 0 to N − 1 do
6: Initialise ensemble k using Sk

0

7: end for
8: Perform testing using the set of Sk={0,1,...,N−1}

f

9: for lap = 0 to L− 1 do
10: for t = 1 to f − 1 do
11: for k = 0 to NU − 1 do
12: Perform adaptation using Sk

t .
13: end for
14: Perform testing using the set of Sk={0,1,...,N−1}

f

15: end for
16: end for
17: end for

address the variations provoked by the random set of negatives. For example, for
the case of a universe with 100 identities, we would have a total of 19 different splits.
As for metrics, we measure precision, recall and F1-measure, using a TW fixed to
0.01.

4.5. Experiments and Results

The experimental part of this chapter begins with a study of the dependence of
performance against the size of the universe while maintaining the ratio with respect
to the number of IoI constant (Sec. 4.5.1). After that, the temporal evolution is
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Algorithm 4 Algorithm to create the splits
1: NU is the number of identities in each experiment universe
2: ND is the number of identities in the dataset
3: i = 0
4: while i+NU < ND do
5: splits ← Samples with ID ∈

[
i
2 ,

i
2 +NU

]
6: i+ = NU

7: end while

further explained in a more comprehensive analysis (Sec. 4.5.2). Then, OSDe-SVM
is compared against other state-of-the-art recognition methods (Sec. 4.5.3). Finally,
the effect of openness is assessed (Sec. 4.5.4).

4.5.1. Performance vs. Universe Size

This experiment shows the performance behaviour of OSDe-SVM under different
universe sizes (NU) while keeping openness in a ≈18% (see Sec. 4.5.4 for further de-
tails), which corresponds to the case of having 1 IoI out of 2 identities in the universe.
Results are shown in Fig. 4.7 and Tab. 4.1. We measure initial (non-adaptation) and
final (after adaptation) performance of OSDe-SVM, using the previously described
experimental set-up (Sec. 4.4.2). It is important to remark that non-adaptation
means that ensembles do not incorporate new SVMs apart from the initial one.
Thus, performance is quite similar to the one provided by the original network [26].

From the experimental results, the benefits provided by the adaptive nature of
the OSDe-SVM are patent. F1-scores increase in all cases (2-20% improvement),
mainly due to the impact on recall (9-30% improvement). OSDe-SVM helps to
enhance and enrich the existent face models, being able to recognise what previously
were unrecognisable. This improvement is even more remarkable, accounting for the
challenging experimental conditions. First, only 5 low-quality frames are provided
with true labels to create the initial models. After that, no additional labelling is
provided. Second, we use the same identities (both known and unknown) to perform
the queries in each adaptation step. Therefore, confusions between identities could
reinforce the impostor and eventually provoke a complete identity theft.



80 Chapter 4. Adaptive Face Recognition in Video-surveillance

101 102 103

Number of identities

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

Initial

Adaptation

101 102 103

Number of identities

0.0

0.2

0.4

0.6

0.8

1.0

R
ec

al
l

Initial

Adaptation

101 102 103

Number of identities

0.0

0.2

0.4

0.6

0.8

1.0

F
1-

M
ea

su
re

Initial

Adaptation

Figure 4.7: Performance under different universe sizes (20, 40, 60, 100, 200, 400, 600, and 1000)
and same ratio between number of IoI and universe size (1:2).
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Table 4.1: Performance over different universe sizes, while preserving the ratio with the number of
IoI. Values are expressed as µ(σ), where µ stands for mean and σ for standard deviation.

Precision Recall F1
N NU Initial Final Initial Final Initial Final

10 20 75 (12) 71 (12) 79 (17) 88 (11) 76 (14) 78.5 (9.7)
20 40 86.9 (8.2) 85.1 (6.3) 74 (15) 91.1 (6.7) 79 (11) 87.8 (5.4)
30 60 88.5 (6.4) 89.7 (5.5) 72 (10) 94.3 (3.7) 78.8 (7.8) 91.8 (3.7)
50 100 91.2 (4.7) 91.9 (3.8) 70 (13) 94.2 (4.1) 78.8 (9.0) 93.0 (3.2)
100 200 92.6 (3.0) 92.6 (2.1) 68 (10) 95.1 (1.9) 77.8 (7.8) 93.79 (0.97)
200 400 92.0 (1.8) 93.5 (1.6) 66.5 (8.5) 95.7 (1.0) 76.8 (5.6) 94.6 (1.1)
300 600 90.3 (1.3) 91.9 (1.3) 63.8 (4.8) 95.6 (1.0) 74.6 (2.9) 93.8 (1.1)
500 1000 84.6 (1.4) 89.33 (0.76) 63.3 (1.7) 95.33 (0.59) 72.4 (1.1) 92.23 (0.64)

Although overall, the behaviour observed is stable, the greatest improvement in
performance corresponds to larger universes. This behaviour can be explained by
how we use the EVT. The quality of the Weibull fit in RDF (Section 4.3.1) increases
as the number of samples to fit do so. For instance, since just half of the data is
used in this process (those greater than the median, L8 in Alg. 2), when the IoI is
10 the Weibull fit is done with only 5 points.

4.5.2. Temporal Evolution

This experiment was aimed at performing a detailed study of the temporal evo-
lution of the OSDe-SVM performance for one of the previous cases (50 IoI in a
universe of 100). Results are shown in Fig. 4.8.

The first thing we can extract from the experiments (Fig. 4.8a) is that the per-
formance’s improvement is higher in the first steps. This is something which could
be expected as adding individual classifiers has a higher impact when the size of the
ensemble is lower. Besides, this behaviour shows the system’s robustness against
repeated unknown queries.

These figures also allow observing in a more detailed manner the remarkable
recall improvement provided by OSDe-SVM. Precision is also improved but to a
lesser extent. Besides, Fig. 4.8b shows the evolution of the average ensemble size
for each of the splits (Alg. 4). We can see the effect of self-healing (every 5 steps)
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Figure 4.8: Evolution of OSDe-SVM for the case of 50 IoI over an universe of 100 identities.

and the limitation module. First, drops in size correspond to the triggering of the
self-healing process. Second, the size of each ensemble, Mk, is effectively restricted
by the limitation module to 10 SVM classifiers.

4.5.3. Comparison against state-of-the-art face recognition
models.

Here, we compare the performance of OSDeSVM against two other well-known
methods for face recognition (Tab. 4.2). In these two methods, the focus was on
obtaining the most widely separated classes in feature space to make the classifi-
cation as easy as possible. On the one hand, FaceNet [121] feature embedding is
designed to distinguish faces by computing the euclidean distance between two fea-
tures (99.6% accuracy on LFW). On the other hand, ArcFace [26] embeddings are
designed to distinguish features by using cosine similarity. All of this makes them

Table 4.2: Comparison against state-of-the-art face recognition models: FaceNet [121] and RN100-
AF (ArcFace) [26], (for the case of 50 IoI in an universe of 100).

Method Precision Recall F1-measure

FaceNet +Euclidean+TH 38.7 (7.4) 71.3 (9.4) 49.0 (8.7)
RN100-AF +Cosine+TH 77.3 (9.9) 86 (11) 80.7 (6.5)
RN100-AF +OSDe-SVM, Initial 91.2 (4.7) 70 (13) 77.8 (7.8)
RN100-AF +OSDe-SVM, After Adapt. 91.9 (3.8) 94.2 (4.1) 93.0 (3.2)
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suitable for application in any face related task (either verification, identification or
general recognition) or, as in our case, to use as a basis for the development of an
adaptive method.

Both euclidean distance and cosine similarity are used to compare two single
features. Since here we work with the features of all the frames in each query
sequence, the centre of this cluster of features is computed as proposed in the original
paper [26], to obtain a unique feature per sequence. Besides, the thresholds were
tuned offline to get the best F1 scores, which are used as baselines. This would be
impossible to do in-stream learning conditions.

Results on Tab. 4.2 allow us to gain insights into the issues addressed in this
paper. First, the performance of FaceNet shows the difficult endeavour of transi-
tioning to real-world problems (low-quality, open-set considerations, etc.). Second,
our initialisation of OSDe-SVM with RN100-AF embeddings preserves most of the
discrimination power of the original decision function (cosine similarity). Finally,
the enhanced performance provided by OSDe-SVM is put into perspective against
other state-of-art static face recognition models. This improvement translates into
a 15% higher F1-score.

4.5.4. Performance vs. Openness

The goal of this experiment is to study how the behaviour of OSDe-SVM changes
with the openness ratio (4.4), that is the ratio of known to unknown identities [119].
This measure goes from 0% openness (closed-set recognition) to, theoretically, 100%:

openness = 1−

√
2 · Ntraining

Ntarget +Ntesting
, (4.3)

where Ntraining is the number of identities used on training (in our case, N), Ntarget

is the number of identities to recognise (in our case, N as well) and Ntesting are the
number of identities used on testing (in our case, NU). Thus, Eq. 4.3 simplifies to:

openness = 1−
√

2 · N

N +NU

. (4.4)
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Figure 4.9: Performance openness dependence with fixed IoI (50), and universe ∈ {50, 100, 200,
400, 600, 1000}.

To have a wide range of openness values, we selected a relatively low number
of IoI (50) to then vary the size of the universe from 50 identities (0% openness,
i.e. closed-set) to 1000 identities (≈70%). Fig. 4.9 shows the experimental results,
where performance is represented in terms of precision, recall and F1-scores.

The performance graphs show a clear decay of F1 performance as openness in-
creases because of the loss of precision. It must be noted that openness affects
both the unsupervised adaptation and the testing process. An increase in openness
provokes a decay in precision, making more mistakes during the self-adaptation.
Accordingly, the drop in precision leads to a decay in recall after the adaptation
process. Against all odds, the system proves its robustness until almost 60% of
openness.

4.6. Conclusions

In this chapter, the adaptation ideas of De-SVM are fully deployed into the cre-
ation of OSDe-SVM. This way, this instance-incremental learning approach is able
to tackle the V2V-FR problem in both closed and open-set face conditions. As De-
SVM, the method is able to operate en real-world non-stationary environments with
almost no label requirements. Once initialised (using 5 labelled frames per IoI), the
proposed method creates and updates an ensemble of SVM classifiers using samples
directly taken from the input sequence, which effectively deals with catastrophic for-
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getting. These updates are performed following the self-training paradigm in which
OSDe-SVM predictions are used as pseudo-labels to incorporate new knowledge
without additional supervision. Open-set decisions are rooted in EVT, providing
for a way of distinguishing between known and unknown identities. Finally, OSDe-
SVM also exploits the fact that updates are encapsulated into individual SVM to
achieve fully update reversibility.

Experiments are mainly performed on the COX Face Database, one of the most
challenging video surveillance database available. Guided by real-world necessities,
the experimental set-up simulates open set recognition conditions. Results showed
up to a 15% F1-measure (achieving up to a ≈ 94% F1-measure, depending on the
amount of IoI to recognise) increase with respect to the closest static state-of-the-
art (ResNet100+AF) face recognition model. Furthermore, the proposed system’s
performance is tested under different openness, proving to be reliable up to +60%
openness (50 IoI in a universe of 1000 identities), where unknown identities appear
as many times as IoI.





Chapter 5

Conclusions and future work

This chapter summarises the the main contributions of the Thesis and provides
for some insights on future research directions.

Conclusions

In the development of face recognition systems designed to operate in the real
world, one of the most influential aspects is the actual context of operation. Recently,
there has been a tremendous effort to collect a large amount of labelled data to meet
the demands of the most advanced neural networks. However, the task of collecting
(and labelling) data in every possible specific context is an endless endeavour. The
consequences of this lack of coverage appear when transitioning face recognition
systems from general contexts to more specific ones. In this regard, one of the
central themes of this Thesis was to prove that, despite the recent advances, there
is still a non-negligible performance tax to pay during this transition (with both
hand-crafted and deep learning representations), in a phenomenon often referred to
as dataset bias.

As a more efficient and scalable solution to these challenges, this Thesis has been
inspired by one of the core parts of biological intelligence: adaptation. This idea
has crystallised into the creation of De-SVM adaptive face verification system and
OSDe-SVM, its extension to the more general open-set face recognition problem.

87
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Up to our knowledge, the proposed method represents one of the few methods that
can operate with such label limitations (just 5 anotated frames) and in an online
manner.

Its architecture uses state-of-the-art deep feature embeddings as a basis (without
any requirements in terms of the network type) to then combine the use of ensembles
of very-specific SVM classifiers with the self-training paradigm to perform unsuper-
vised incremental learning and so implement these adaptation capabilities. This
way, we retain the deep learning discrimination power, while ensembles provide for
additional beneficial properties like modularity, scalability, reversibility, generalisa-
tion and robustness.

Following the self-training paradigm then, during the system’s operation, pre-
dictions of the incoming samples also play the role of pseudo-labels to improve the
models’ discrimination power. This way, the proposed method can perform a self-
sufficient online adaptation in specific contexts without requiring a huge amount
of data (either labelled or unlabelled) or the storage of the collected samples. The
absence of these two requirements is especially interesting for biometry-related ap-
plications since they avoid any privacy-related concern.

For experimental purposes, the video-surveillance context was chosen as a paradig-
matic example of a specific context in which face recognition is often required. Thus,
we have simulated an environment where we aim to recognise some individuals using
only a few (5 or less) video-frames (video-to-video). As the performance obtained
with this limited data is relatively low, the proposed system needs to unsupervisedly
use additional information from the stream to enhance the recognition power.

As aforementioned, De-SVM was the system proposed for the case of face veri-
fication. Experiments are conducted using both COX Face Database and YouTube
Faces (YTF), showing in both cases an important unsupervised improvement of the
initial performance (from 37% to 85% TAR@FAR1% on COX and from 57% to
75% on YTF) in comparison to other incremental learning methods wrapped under
the same self-training strategy. Besides, the ensemble architecture of De-SVM has
shown remarkable robustness to repeated impostor queries. This robustness also al-
lows setting a less cautious operational threshold to incorporate diverse information
without fearing false inclusions as much as with other methods.
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For the case of open-set face recognition, the ideas of De-SVM are extended
for the creation of OSDe-SVM. Here, the Extreme Value Theory is used to assist
in the decision of distinguishing between known and unknown identities. Besides,
since we encapsulate each update into individual classifiers, we provide a method
for achieving update reversibility (to correct possible errors and effectively limit the
size of the ensembles). In this case, the experiments are restricted to the COX
Face Database, obtaining up to a 15% F1-measure improvement (achieving up to
a ≈ 94% F1-measure, depending on the number of individuals) and improving the
results obtained by other non-adaptive state-of-the-art face recognition networks.

Besides, OSDe-SVM also showed a remarkable performance in terms of openness
robustness, proven to be reliable in a scenario where theIndividuals of Interest (IoI)
represent just a 5% of total identities querying the system (60% openness, 50 IoI
in a universe of 1000 identities). In any case, the performance decays slowly with
the openness increase and maintains its performance when the proportion of IoI and
unknowns is maintained to 1:1 (from 50 to 500 IoI).

Future work

As the performance improvements of fully supervised end-to-end deep learning
approaches begin to moderate, the research community turns its attention to other
pivotal topics of machine learning, as self-supervised learning or continual learning.
This is the frame in which this Thesis makes its contributions. However, as with
any incipient topic, there is still plenty of opportunities for additional contributions.
Here we state some of the future research lines opened from this work.

First, one of the most relevant handicaps found during the research development
was the scarcity of proper datasets mimicking a video surveillance scenario. In this
regard, COX Face Database was one of the best in its class. Notwithstanding, de-
spite containing a relatively high number of identities, the available video sequences
are limited to just 3 per individual (all of them acquired in the same day). This fact
limits the presence of visual changes over time and the possibility to perform adap-
tations on a greater time scale, indispensable conditions to lifelong learning. For all
of these reasons, an important future contribution could be the development of a
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testing dataset with the same visual quality (and challenges) as COX Face database
samples and increasing both the number of sequences available per identity and the
time scale of the data acquisition.

Second, using the self-training approach in combination with ensembles and deep
feature embeddings has proven to be an interesting and successful approach to im-
plement unsupervised incremental learning. Nevertheless, even maintaining these
core ideas, there is still further research to perform. For instance, one of the more
challenging parts of working with ensembles in unsupervised conditions is the defini-
tion of intelligent rules to eliminate the ensemble’s classifiers or weigh its decisions.
Intuitively, either wrong update classifiers or too redundant classifiers can be harm-
ful to the ensemble. The last chapter proposes two modules, self-healing and the
limiting module, to respectively tackle these two issues. Presented as a first proposi-
tion, we believe that this problem can require extensive research to find an optimal
solution. In this same frame, another interesting line to follow could be to find a
way of taking profit of negative responses of the ensemble to enhance its decisions
instead of just being discarded. And, finally, another interesting follow up of the
self-training research line would be to extend its capabilities to the class-incremental
problem.

And third, despite being the core of our experimental procedure, we do not need
to forget that face recognition in video surveillance is just considered a proof-of-
concept task. We believe that this Thesis’s solutions could be easily translated to
other video-related contexts as object detection from mobile robots, person Re-ID
or other detection applications. In this regard, applications that allow extracting
multi-modal data could be especially interesting since they could assist with the
pseudo-labelling of the self-training (in a more co-training fashion).
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Appendix A

Resumen extendido en galego

Motivación

Os humanos adquiren información do mundo exterior a través de cinco sentidos
– vista, oído, gusto, tacto e olfacto – dos cales a vista sobresae como un dos máis
importantes. Proba disto son as estimacións que sitúan a cantidade de información
recibida polos ollos nunhas dúas ordes de magnitude superiores ao resto de sentidos
xuntos. Para que esta cantidade de información sexa abarcable, necesitamos com-
primila, clasificala e estruturala. Polo que, o conxunto de mecanismos que forman o
que chamamos visión non se limitan a meros receptores luminosos (os ollos), senón
que involucran toda unha rexión do cerebro chamada o córtex visual. Por se esta
non fora unha complexidade suficiente, a visión humana adulta non é unha habilida-
de completamente estática co paso do tempo. É certo que parte da visión involucra
procesos relativamente estables fixados durante o desenvolvemento dos nenos ou po-
la evolución natural. Non obstante, existe tamén outra parte esencial da visión que
é modulada e adaptada co seu uso activo.

Nesta tesitura, a visión artificial nace coa tarefa de replicar todo este complexo
sistema humano. Aínda sen entender completamente os mecanismos naturais desta
habilidade, o enorme potencial en termos de automatización abriuse paso. A inves-
tigación da visión artificial involucra un gran rango de expertos interdisciplinarios
(dende enxeñeiros, psicólogos, biólogos, ata incluso filósofos, entre outros). Dende
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o seu nacemento como un proxecto de verán [96] nos 60, os avances foron relativa-
mente graduais ata a última década. No 2012, o uso dun tipo específico de redes
neuronais [67] (as redes neuronais de convolución ou CNN) en conxunción coas cada
vez máis potentes GPUs e a dispoñibilidade de conxuntos de datos etiquetados cada
vez de maior escala [25] provocaron un salto no rendemento moi notorio. De repen-
te e grazas a estas novas técnicas, algunhas das tarefas máis complicadas da visión
artificial (e.g. asistencia á condución, recuperación de imaxes, filtros de cambio de
cara, etc.) comezaban a ser accesibles incluso a nivel comercial.

Retomando a perspectiva biolóxica, as CNNs poden asociarse con esa parte máis
estática do sistema visual humano. Porén, na actualidade, aínda non proporcionan
a capacidade de adaptarse co uso activo. Ao intentar adaptar unha rede neuronal
pre-adestrada usando unha pequena mostra de datos, esta tende a esquecer as súas
capacidades iniciais nun problema denominado esquecemento catastrófico (catastrop-
hical forgetting). Este comportamento é problemático tanto dende unha perspectiva
máis teórica, a capacidade de adaptación debería ser algo irrenunciable nun sistema
verdadeiramente intelixente; como dende unha perspectiva máis práctica, que imos
analizar a continuación.

O poder das CNN está intimamente relacionado coa calidade e canto de comple-
to é o conxunto de datos etiquetados utilizados durante o seu adestramento. Neste
sentido, incluso o máis exhaustivo dos conxuntos de datos non pode garantir un bo
rendemento en cada un dos contextos específicos posibles. Mentres que unha solu-
ción inmediata a este problema sería a recolección (e etiquetado) de datos adicionais
nese contexto específico, a verdade é que existen casos nos que esta acción é parti-
cularmente difícil (debido a temas de privacidade, limitación de recursos, problemas
de custos, etc.). Polo tanto, a dotación dos sistemas con capacidades de adaptación
emerxe como unha solución práctica e eficiente para abordar este problema. Na
literatura, esta capacidade de adaptación adóitase a implementar seguindo varias
liñas de investigación inter-relacionadas: transfer learning, lifelong learning, domain
adaptation, continual learning or incremental learning [38].
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Os retos desta tese

Esta tese apunta cas súas contribucións precisamente na liña de desenvolver unha
forma de implementar a capacidade de adaptación na visión artificial. Debido á gran
variedade de aplicacións posibles e como proba de concepto, o campo de estudo desta
tese restrinxiuse a tarefa do recoñecemento facial.

O recoñecemento facial é unha tarefa da visión artificial que recibiu unha atención
significativa por parte da comunidade científica de forma persistente. A grandes tra-
zos, consiste na asignación de identidades usando imaxes de facianas. Na práctica,
o certo é que o recoñecemento facial inclúe varios sub-problemas (e.g. a verificación
de caras ou a identificación de caras) así como as ferramentas auxiliares involucra-
das na tarefa (e.g. detección de caras, seguimento de caras ou representación de
características). Nesta liña, é importante tamén remarcar que o recoñecemento de
caras, dado que trata de distinguir entre obxectos (caras) moi similares entre si, é un
campo no que o contexto de adquisición particularmente relevante. Intuitivamente,
as diferenzas na aparencia dunha persoa nunha foto de carné respecto á que pode
presentar nun contexto de vídeo-vixilancia, poden ser incluso máis notorias que as
que as distinguen doutras persoas. Estamos, polo tanto, ante un escenario no que a
capacidade de adaptación pode ser especialmente beneficiosa.

Neste marco entón, pasamos a enumerar os principais retos aos que trata de dar
resposta esta tese:

O primeiro reto consiste en definir conceptualmente como imos reter o poder
de discriminación das CNN evitando o esquecemento catastrófico ao mesmo tempo.
Nesta dirección, optamos por fixar as capas convolucionais (sen a última capa) de
redes neuronais do estado da arte. Desta maneira, retomamos a separación clásica
entre as partes de extracción de características e clasificación; para así implementar
a adaptación mellorando esta última.

O segundo reto fai referencia ao grado de robustez existente a variacións de
contexto nos métodos do estado da arte. Polo tanto, o primeiro paso será estudar
os efectos no rendemento de mesturar mostras de dous contextos distintos para o
adestramento dun clasificador. Dende o punto de vista do recoñecemento facial,
intentamos entender o impacto de usar conxuntos de datos auxiliares (normalmente
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tomados en contextos diferentes) ao despregar un sistema de verificación de caras
nun contexto específico no que a dispoñibilidade de datos etiquetados e escasa (i.e.
biometría en móbiles, vídeo-vixilancia, etc.).

Nesta liña, realizamos un estudo exhaustivo do nesgo do conxunto de datos usan-
do algunhas das bases de datos de caras máis coñecidas e facendo un énfase especial
nos nesgos derivados do contexto de adquisición.

O terceiro reto comprende o propio de deseño do clasificador para implementar
a adaptación. A proposta consiste nun sistema de aprendizaxe incremental baseado
en comités de clasificadores que se construirá sobre os extractores de características
das redes neuronais máis avanzadas. A elección da rede específica que se usará
non é relevante, e irá variando ao longo da tese segundo o estado da arte avance.
O método é un comité dinámico de SVM (Dynamic Ensemble of SVM, De-SVM )
que irá engadindo paulatinamente novos clasificadores para adaptarse a contextos
específicos e mellorar o rendemento. A literatura científica sempre se referiu aos
comités como unha solución eficiente, robusta e escalable para os problemas de
clasificación en comparación coas capas completamente conectadas (fully conected
layers) das CNN. Ademais, ao permitir illar cada actualización en clasificadores
individuais, os comités tamén proporcionan reversibilidade da ditas actualizacións
asía como unha mellor explicabilidade. Isto é especialmente interesante para operar
en contextos nos que existe escaseza de etiquetas, como veremos a continuación.

O cuarto dos retos, entón, relaciónase coa ausencia de supervisión ao que
diriximos as nosas propostas. Para isto, o método proposto, o De-SVM, usa o
chamado enfoque de auto-adestramento ou self-training no que as predicións do
comité en cada momento se usarán como pseudo-etiquetas para engadir ou non novos
clasificadores. Desta maneira, o proceso de adestramento intégrase coa operación
do sistema sen necesitar que se produza en fases separadas. Gracias este enfoque,
despois da inicialización (usando soamente 5 mostras etiquetadas), o sistema será
capaz de realizar toda a aprendizaxe incremental de forma non supervisada.

As decisións dentro do comité usan a saída directa de cada SVM para logo
fusionalas nunha única saída coa utilización da función mediana. Finalmente, as
identidades serán asignadas ou non en base a un limiar. A fixación deste limiar é
un dos aspectos máis desafiantes de todos e fai referencia ao problema do dilema
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entre estabilidade e plasticidade.

Toda a parte experimental está centrada no caso específico da verificación de
caras vídeo a vídeo nun contexto de vídeo-vixilancia. Este é un claro exemplo de
contexto específico no que as necesidades de adaptación poden ser determinantes.A
nosa proposta, De-SVM, destaca como o método cun mellor rendemento respecto
outras técnicas de aprendizaxe incremental e outros métodos non adaptativos.

O quinto reto fai referencia as condicións máis complexas do recoñecemento de
cara en conxuntos abertos. Neste sentido, necesitaremos estender o De-SVM inicial
para que sexa capaz de funcionar nestas condicións nun proceso que estará dividido
en dúas partes:

• A adaptación do mecanismo de decisión para o problema de clasificación multi-
clase de conxunto aberto. Nesta configuración, os sistemas deben estar pre-
parados para recibir tanto mostras de identidades enroladas como mostras
adicionais de identidades non coñecidas. Utilizaremos o poder da Teoría dos
Valores Extremos (Extreme Value Theory) para discriminar entre mostras co-
ñecidas como descoñecidas.

• A creación de dous módulos adicionais deseñados para eliminar clasificadores
do comité, xa sexa por manter o seu tamaño acoutado (módulo de limitación)
como para tentar corrixir posibles actualizacións erróneas (módulo de self-
healing). Desta maneira, aproveitaremos ao máximo o potencial dos enfoques
baseados comités.

Contribucións principais

As contribucións principais derivadas desta tese son as seguintes:

• Sobre a extracción de características e as necesidades de adaptación en con-
tornas específicas:

◦ Un estudo do impacto do sesgo do conxunto de datos no rendemento
da verificación de caras, ao combinar distintas bases de datos de caras
durante a fase de adestramento.
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◦ Un novo enfoque á observación do nesgo do conxunto de datos facendo
unha análise da propia distribución das mostras no espazo de caracterís-
ticas utilizando un perspectiva xeométrica.

◦ Unha comparación do comportamento de distintos descritores de carac-
terísticas, tanto deseñados manualmente como xerados mediante apren-
dizaxe, en termos de robustez ante o nesgo do conxunto de datos. Os
resultados mostran que incluso os baseados en deep learning son suscep-
tibles ao nesgo do conxunto de datos.

• Sobre a verificación de caras en contextos de vídeo-vixilancia:

◦ A proposta dun sistema biométrico baseado en comités de clasificadores
chamado Dynamic Ensemble of SVM (De-SVM). Este é capaz de reter o
poder discriminatorio das CNN mentres que ao mesmo tempo proporcio-
na os numerosos beneficios dos comités relacionados coa modularidade,
reversibiliade, xeralización e robustez.

◦ O uso do enfoque de auto-adestramento (self-training) para usar as pro-
pias predicións do clasificador como pseudo-etiquetas para aprender e
operar simultaneamente.

• Sobre o recoñecemento de caras en contextos de vídeo-vixilancia:

◦ A extensión dos enfoques previstos ao problema do recoñecemento de
caras mediante aprendizaxe incremental non supervisado.

◦ Unha estratexia para combater con tanto o esquecemento catastrófico co-
mo o efecto das pseudo-etiquetas incorrectas, aproveitando desta forma
o potencial pleno dos comités.

◦ Un enfoque á aprendizaxe incremental utilizando mostras individuais que
podería ser estendido ao caso de ter un conxunto de clases variable de
forma sinxela.

◦ Un método para o recoñecemento de caras que non está directamente ba-
seado na recolección e almacenamento de imaxes de caras, e que soamente
require 5 fotogramas de vídeo etiquetados para a inicialización.
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Conclusións

No desenvolvemento de sistemas deseñados para operar no mundo real, un dos
aspectos máis importantes a considerar é o contexto obxectivo. Recentemente, a
comunidade científica realizou un enorme esforzo para colleitar grandes conxuntos
de datos etiquetados para así poder satisfacer as necesidades das redes neuronais
máis avanzadas. Non obstante, debido a gran variabilidade presente no mundo
visual o certo é que posuír conxuntos o suficientemente completos de cada contexto
específico posible é case algo interminable. As consecuencias desta falta de cobertura
aparecen cando trasladamos os sistemas de recoñecemento facial de contextos xerais
a outros máis específicos. Nesta liña, un dos temas principais desta tese consistiu
en demostrar que, a pesar dos avances producidos recentemente, aínda hai unha
non importante peaxe a pagar en termos de rendemento durante esta transición nun
fenómeno que se adoita a denominar nesgo do conxunto de datos. Esta peaxe foi
observable tanto con descritores deseñados manualmente como os baseados en deep
learning.

Como unha proposta máis eficiente e escalable a estes retos, esta tese inspírase
dunha das partes centrais da intelixencia biolóxica: a adaptación. Esta idea crista-
lizou na creación de De-SVM, como un sistema de verificación de caras adaptativo,
así como OSDe-SVM, a súa extensión ao problema máis xeral do recoñecemento
de caras en conxuntos abertos. Ata onde sabemos, esta proposta é un dous pou-
cos métodos que poden operar con tales limitacións na dispoñibilidade de etiquetas
(soamente 5 fotogramas etiquetados) e de forma online.

A súa arquitectura usa representacións de características baseadas en deep lear-
ning do estado da arte (sen ningún requirimento especial en canto ao tipo de re-
de neuronal) para logo combinalas co uso conxunto de comités de clasificadores
SVM moi específicos e do enfoque de auto-adestramento (self-training) para reali-
zad a aprendizaxe incremental non supervisada e así implmentar a capacidade de
adaptación. Desta maneira, retemos o pode discriminatorio das CNN, mentres que
aproveitamos os beneficios dos comités en termos de modularidade, escalabilidade,
reversibilidade, xeneralización e robustez.

Seguindo entón o marcado polo estratexia de auto-adestramento, as predicións
do comité nun determinado momento úsanse como pseudo-etiquetas para realizar
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(ou non) actualizacións que melloren o rendemento. Así, a nosa proposta pode rea-
lizar unha adaptación online en contextos específicos sen requirir un gran cantidade
de mostras para crear os modelos (xa sexa etiquetados ou non). Tampouco será
necesario que as mostras colleitadas sexan almacenadas en memoria. A ausencia
destes dous requirimentos é de especial interese para aplicacións relacionadas coa
biometría debido a que eliminan calquera problema relacionado coa privacidade.

Durante o experimentos, eliximos o campo da vídeo-vixilancia como un exemplo
paradigmático de contexto específico no que o recoñecemento facial pode ser de gran
utilidade. Polo tanto, simulamos unha contorna no que nos propoñíamos recoñecer
varios individuos usando soamente uns poucos fotogramas anotados. Como o rende-
mento inicial obtido con este conxunto de datos tan limitado é relativamente baixo,
o sistema deberá ser capaz de adquirir nova información de forma non supervisada
para incrementar o poder de recoñecemento.

Como se mencionou anteriormente, De-SVM foi o sistema proposto para o caso
de verificación de caras. Os experimentos for realizados usando tanto a COX Face
Database como a YouTube Faces (YTF), mostrando en ambos caso un importante
incremento do rendemento inicial (dende un 37% a un 85% TAR@FAR1% en COX e
dende un 57% a un 75% en YTF) en comparación con outras técnicas de aprendizaxe
incremental baixo o mesmo enfoque de auto-adestramento. Ademais, a arquitectura
baseada en comités de De-SVM mostrou unha gran robustez respecto ao repetido
intento de identificación de secuencias de impostores. Esta robustez permite ade-
mais o fixado dun limiar de verificación un pouco máis ambicioso debido a que a
inclusión de impostores no modelo dunha determinada identidade non afecta tanto
ao rendemento como con outras técnicas.

Para o caso do recoñecemento facial en conxuntos abertos, as ideas de De-SVM
son estendidas para a creación de OS-DeSVM ). Neste caso, a Teoría dos Valores
Extremos (Extreme Value Theory) úsase para ser capaces de distinguir entre iden-
tidades coñecidas e descoñecidas. Ademais, grazas a encapsular cada actualización
nun clasificador individual, proporcionamos un método para reverter as actualización
(xa sexa debido a actualización erróneas como para limitar o tamaño dos comités).
Neste caso, os experimentos restrínxense á COX Face Database, onde obtemos ata
un 15% de mellora no F1-measure (acadando ata un 94% de F1-measure, depen-
dendo do número de individuos) e mellorando o rendemento que obterían outros
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métodos de recoñecemento facial non adaptativos do estado da arte.

Finalmente, OSDe-SVM tamén mostra un rendemento bastante salientable res-
pecto ao grado de apertura (openness) do conxunto de individuos. Demostramos
que o seu rendemento continua a ser fiable cando os individuos de interese repre-
sentan tan só un 5% do total de identidades que poden cuestionar ao sistema (60%
openness, 50 individuos de interese nun total de 1000 identidades). En termos xe-
rais, o rendemento decae paulatinamente ao aumentar a openness pero mantén o seu
rendemento cando a proporción de individuos de interese (coñecidos) e os demais
(descoñecidos) é 1:1.

Traballo futuro

A medida que as melloras no rendemento proporcionadas polos métodos total-
mente baseados deep learning supervisado comezan a saturar, a comunidade cientí-
fica está comezando a pivotar cara outros temas da aprendizaxe automática, como a
aprendizaxe auto-supervisada (self-supervised learning) ou a aprendizaxe continua
(continual learning). Esta é a tesitura na que esta tese fai as súas contribucións.
Non obstante, como calquera liña de investigación incipiente, existen aínda unha
gran cantidade de oportunidades para contribución adicionais. Nesta sección, reco-
llemos algunhas das máis importantes.

En primeiro lugar, debemos destacar que un dos hándicaps máis relevantes que
atopamos durante o desenvolvemento da tese foi a escaseza de de bases de datos que
simulen un contexto real de vídeo-vixilancia. Neste sentido, o COX Face Database
é un dos mellores da súa clase. Aínda así, a pesares de conter unha gran cantidade
de individuos distintos, as secuencias dispoñibles por individuo estaban limitadas a
3 (todas elas gravadas durante o mesmo día). Este feito limita bastante a presencia
de grande cambios temporais na aparencia das caras en cuestións e imposibilita
realizar probas de adaptación nunha escala de tempo maior, algo indispensable para
a aprendizaxe ao longo da vida (lifelong learning). Por todos estes motivos, a
creación dun conxunto de datos realmente completo representaría unha importante
contribución para o avance deste tipo de enfoques incrementais.

En segundo lugar, o enfoque de auto-adestramento (self-training) en combina-



116 Appendix A. Resumen extendido en galego

ción co uso de comités e descritores baseados en deep learning demostraron ser unha
solución tanto interesante como efectiva para implementar a aprendizaxe incremen-
tal non supervisada. Porén, aínda mantendo estas ideas centrais, existe aínda moita
investigación que realizar. Por exemplo, unha das partes máis complexas de traba-
llar con comités de clasificadores en condicións de pouca supervisión é a definición
de regras intelixentes que eliminen clasificadores ou que ponderen as súas decisións.
Intuitivamente, tanto as actualizacións incorrectas como as actualizacións redundan-
tes poden ser daniñas para o comité. Con OSDe-SVM propoñemos dous módulos
(o de self-healing e o de limitación) para abordar, respectivamente, cada problema.
Presentados ambos como unha primeira aproximación ao problema, cremos que este
tema requiriría unha investigación máis exhaustiva para poder atopar unha solu-
ción óptima. Nesta mesmo marco, unha liña de investigación interesante sería a
de aproveitar as respostas negativas do comité para mellorar as decisión dalgunha
maneira en troques de simplemente descartalas. Finalmente, outra alternativa in-
teresante sería a de estender o enfoque de auto-adestramento ao caso no que sexa
posible incorporar novas clases (identidades) ao conxunto de individuos de interese
a recoñecer.

E en terceiro lugar, a pesar de ser o núcleo do noso procedemento experimental,
non debemos esquecer que o recoñecemento de caras en vídeo-vixilancia é utilizado
soamente como unha tarefa de proba de concepto. Cremos que as propostas desta
tese poderían ser facilmente trasladadas a outros contextos como por exemplo o
recoñecemento de obxectos en robots, o recoñecemento de persoas ou calquera outra
aplicación na que se requira detectar algo. Neste sentido, as aplicacións que permitan
a extracción de datos multi-modais poderían ser especialmente relevantes debido a
que axudarían ao proceso de auto-etiquetado, seguindo un enfoque máis de co-
adestramento (co-training).
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