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Resumo
A introducción das tecnolox́ıas de sequenciación de nova xeración, ou “Next-

Generation Sequencing” (NGS), representou un notable cambio no campo da filo-

xenética. A cantidade de información molecular dispoñible está a crecer cada vez

máis rápido, propiciando o desenvolvemento de métodos e ferramentas de análise

máis eficientes, aśı coma o uso de técnicas de computación de altas prestacións

(HPC) para acelerar as análises. O campo está a cambiar velozmente da análise

filoxenética (i.e., estudo dun ou un conxunto reducido de xens) á filoxenómica (i,e.,

estudo de centos ou millares de xens de xenomas completos ou incompletos). Moi-

tos métodos filoxenéticos requiren o uso de modelos probabiĺısticos de evolución

molecular, e é coñecido que o uso dun modelo ou outro pode derivar en diferentes

estimacións filoxenéticas. Tanto modelos sub- como sobreparametrizados presen-

tan desvantaxes en termos de precisión. Polo tanto, existen ferramentas populares

que fan uso de marcos estad́ısticos para seleccionar o modelo que mellor se axus-

ta aos datos, buscando o mellor compromiso entre likelihood (verosimilitude) e

parametrización.

Esta tese doutoral presenta o deseño, implementación e evaluación de méto-

dos HPC para seleccionar o modelo de evolución máis adecuado, en conxunto co

desenvolvemento de novas funcións orientadas a facer máis sinxela a análise de

datos filoxenéticos. En particular, extendemos e paralizamos as dúas ferramentas

máis populares para a selección de modelos de ADN e protéınas, jModelTest e

ProtTest. Ademáis, esta tese presenta o deseño, implementación e evaluación de

algoritmos para a análise rápida e precisa de datos xenómicos. Creamos unha ferra-

menta incorporando todas estas técnicas, denominada PartitionTest, delegando a

computación principal na libreŕıa de análise filoxenética PLL. Finalmente, fixemos

un estudo de simulacións sobre a importancia do uso de técnicas de selección de

modelos en datos xenómicos, e o seu impacto na precisión ao recuperar os modelos

xi
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xeradores e, máis importante, a árbore de evolución verdadeira.



Resumen
La introducción de las tecnoloǵıas de secuenciación de nueva generación, o

“Next-Generation Sequencing” (NGS), ha representado un notable cambio en el

campo de la filogenética. La cantidad de información molecular disponible está cre-

ciendo cada vez más rápido, propiciando el desarrollo de métodos y herramientas

de análisis más eficientes, aśı como el uso de técnicas de computación de altas

prestaciones (HPC) para acelerar los análisis. El campo está cambiando rápida-

mente del análisis filogenético (i.e., estudio de uno o un conjunto reducido de

genes) al filogenómico (i,e., estudio de cientos o miles de genes de genomas com-

pletos o incompletos). Muchos métodos filogenéticos requieren utilizar modelos

probabiĺısticos de evolución molecular, y es sabido que el uso de un modelo u otro

puede derivar en diferentes estimaciones filogenéticas. Tanto modelos sub- como

sobreparametrizados presentan desventajas en términos de precisión. Por lo tanto,

existen herramientas populares que hacen uso de marcos estad́ısticos para selec-

cionar el modelo que mejor se ajuste a los datos, buscando el mejor compromiso

entre likelihood (verosimilitud) y parametrización.

Esta tesis doctoral presenta el diseño, implementación y evaluación de méto-

dos HPC para seleccionar el modelo de evolución más adecuado, conjuntamente

con el desarrollo de nuevas funciones orientadas a facilitar el análisis de datos fi-

logenéticos. En concreto, hemos extendido y paralizado las dos herramientas más

populares para selección de modelos de ADN y protéınas, jModelTest y ProtTest.

Además, esta tesis presenta el diseño, implementación y evaluación de algoritmos

para el análisis rápido y preciso de datos genómicos. Hemos creado una herra-

mienta incorporando todas estas técnicas, denominada PartitionTest, delegando

la computación principal en la libreŕıa de análisis filogenético PLL. Finalmente,

hemos hecho un estudio de simulaciones sobre la importancia del uso de técnicas de

selección de modelos en datos genómicos, y su impacto en la precisión al recuperar
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los modelos generadores y, más importante, el árbol de evolución verdadero.



Abstract

The irruption of Next-Generation Sequencing (NGS) technologies has changed

dramatically the landscape of phylogenetics. The available molecular data keeps

growing faster and faster, prompting the development of more efficient analytical

methods and tools, as well as the use of High Performance Computing (HPC)

techniques for speeding-up the analyses. The field is rapidly changing from phy-

logenetics (i.e., the study of a single or a few genes) to phylogenomics (i.e., the

study of hundreds or thousands of genes from incomplete or complete genomes).

Many phylogenetic methods require the use of probabilistic models of molecular

evolution, and it is well known that the use of different models may lead to dif-

ferent phylogenetic estimates. Both under- and overparameterized models present

disadvantages in terms of accuracy. Therefore, there are popular tools that employ

statistical frameworks for selecting the most suitable model of evolution for the

data, finding the best trade-off among likelihood and parameterization.

This PhD thesis presents the design, implementation and evaluation of HPC

methods for selecting the best-fit model of evolution, together with improved fea-

tures that facilitate the analysis of single-gene data. In particular, we extended

and parallelized the two most popular tools for selecting the best-fit model of

evolution for DNA and proteins, jModelTest and ProtTest. Furthermore, this the-

sis presents the design, implementation and evaluation of algorithms for fast and

accurate analysis of multi-gene data. We created a tool incorporating all these

techniques, called PartitionTest, delegating the core computations to the Phylo-

genetic Likelihood Library (PLL). Finally, we made a simulation study on the

importance of using model selection techniques on multi-gene data, and its impact

on the accuracy retrieving the true generating models and, most important, the

xv
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true phylogenies.
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Preface

Work Methodology

This thesis follows a classical approach in scientific and technological research:

analysis, design, implementation and evaluation. Thus, the thesis starts with the

analysis of the importance of selecting the best-fit models of evolution, the options

already available and the feasibility and impact analysis of providing High Perfor-

mance Computing capabilities to this task. We first tackled the model selection

for single-gene DNA and protein data, re-designing from scratch the two most

popular tools, adding HPC and fault tolerance capabilities, as well as new meth-

ods and algorithms. We then evaluated the accuracy and performance in several

representative architectures.

Next, we analysed the problem of model assignment for multigene data, a prob-

lem also known as partitioning. Among available options for Maximum-Likelihood

parameter estimation and phylogenetic searches, the use of the Phylogenetic Likeli-

hood Library (PLL) turned out to be the most flexible approach. We collaborated

in the development of PLL, adding flexibility for managing partitions of data (i.e.,

subsets of the data where different models can be used), from which we devised

and implemented heuristic algorithms in linear and polynomial time for select-

ing the best-fit partitioning scheme. Finally, we evaluated the partitioning and

phylogenetic accuracy of our algorithms using simulated and real-world data sets.

1
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Structure of the Thesis

In accordance with the current regulations of the University of A Coruña,

this PhD dissertation has been structured as a compilation thesis (i.e., merging

research articles). In particular, this thesis comprises three JCR-indexed journal

scientific articles, presented in chapters 3, 4 and 5, together with two additional

articles of great interest within the scope of the work. The thesis begins with

the Introduction chapter, intended to give the reader a general overview of model

selection in phylogenetics.

This chapter introduces the scope, main motivations and objectives of the

thesis.

The scientific articles included in the compilation, each one presented as a

separate chapter (Chapters 2-6) are the following:

Chapter 2: Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011).

ProtTest 3: fast selection of best-fit models of protein evolution. Bioinfor-

matics, 27(8), 1164-1165.

Impact factor: 4.981, 547 citations as of October 2015.

Chapter 3: Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2013).

High-performance computing selection of models of DNA substitution for

multicore clusters. International Journal of High Performance Computing

Applications, 1094342013495095.

Impact factor: 1.477, 4 citations as of October 2015.

Chapter 4: Santorum, J. M., Darriba, D., Taboada, G. L., & Posada, D.

(2014). jmodeltest.org: selection of nucleotide substitution models on the

cloud. Bioinformatics, btu032.

Impact factor: 4.981

Chapter 5: Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012).

jModelTest 2: more models, new heuristics and parallel computing. Nature

methods, 9(8), 772-772.

Impact factor: 32.072, 1,849 citations as of October 2015.
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Chapter 6: Darriba, D., & Posada, D. (2015). The impact of partitioning

on phylogenomic accuracy. bioRxiv, 023978.

In Chapter 7 we include a general discussion of the included research articles.

Chapter 8 describes the conclusions of the thesis. Finally, in Chapter 9 we describe

the future work.

Funding and Technical Means

Working material, human and financial support primarily by the Computer

Architecture Group of the University of A Coruña and the Phylogenomics

Group of the University of Vigo.

Access to bibliographical material through the libraries of the Universities of

A Coruña and Vigo.

Additional funding through the following research projects:

• Regional funding by the Galician Government (Xunta de Galicia) under

the Consolidation Program of Competitive Research Groups (Computer

Architecture Group, refs. GRC2013/055 and 2010/6), Galician Network

of High Performance Computing (ref. 2010/53), and Galician Network

of Bioinformatics (ref. 2010/90).

• European Research Council (Phylogenomics Group, ref. ERC-2007-Stg

203161-PHYGENOM).

• The Ministry of Science and Innovation of Spain under Project TIN2010-

16735 (Computer Architecture Group).

• Amazon Web Services (AWS) research grant “EC2 in phylogenomics”.

• The Spanish Ministry of Science and Education under project BFU2009-

08611 (Phylogenomics Group)

Access to clusters, supercomputers and cloud computing platforms:
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• Pluton cluster (Computer Architecture Group, University of A Coruña,

Spain). Initially, 16 nodes with 2 Intel Xeon quad-core Nehalem-EP

processors and up to 16 GB of memory, all nodes interconnected via

InfiniBand DDR and 2 of them via 10 Gigabit Ethernet. Additionally,

two nodes with one Intel Xeon quad-core Sandy Bridge-EP processor

and 32 GB of memory, interconnected via InfiniBand FDR, RoCE and

iWARP, and four nodes with one Intel Xeon hexa-core Westmere-EP

processor, 12 GB of memory and 2 GPUs NVIDIA Tesla “Fermi” 2050

per node, interconnected via InfiniBand QDR. Later, 16 nodes have

been added, each of them with 2 Intel Xeon octa-core Sandy Bridge-

EP processors, 64 GB of memory and 2 GPUs NVIDIA Tesla “Kepler”

K20m per node, interconnected via InfiniBand FDR.

• Diploid cluster (Phylogenomics Group, University of Vigo, Spain). (1)

One fat node with 4 Intel Xeon ten-core Westmere-EX processors and

512 GB of memory, (2) 30 nodes with 2 Intel Xeon E5-420 quad-core

Harpertown processors (a total of 8 cores) and 16 GB of memory, and

(3) 44 nodes with 2 Intel Xeon X5675 hexa-core Westmere-EP (a total

of 12 cores); 50 GB of memory and Hyperthreading disabled.

• Magny cluster (Heidelberg Institute for Theoretical Studies, Heidelberg,

Germany). (1) 2 Sandy Bridge nodes with 2 Intel Xeon E5-2630 hexa-

core Sandy Bridge processors (a total of 12 cores) and Hyperthreading

disabled;32 GB of memory, and (2) Magny-Cours node with 4 AMD

Opteron 6174 12-core processors (a total of 48 cores); 128 GB of mem-

ory.

• Finis Terrae supercomputer (Galicia Supercomputing Center, CESGA,

Spain): 144 nodes with 8 Intel Itanium-2 dual-core Montvale proces-

sors and 128 GB of memory, interconnected via InfiniBand DDR. Ad-

ditionally, we have used one Superdome system with 64 Intel Itanium-2

dual-core Montvale processors and 1 TB of memory.

• Amazon EC2 IaaS cloud platform (Amazon Web Services, AWS). Sev-

eral instance types have been used: (1) CC1, 2 Intel Xeon quad-core

Nehalem-EP processors, 23 GB of memory and 2 local storage disks per

instance; (2) CC2, 2 Intel Xeon octa-core Sandy Bridge-EP processors,
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60.5 GB of memory and 4 local storage disks per instance; (3) CG1,

2 Intel Xeon quad-core Nehalem-EP processors, 22 GB of memory, 2

GPUs NVIDIA Tesla “Fermi” 2050 and 2 local storage disks per in-

stance; (4) HI1, 2 Intel Xeon quad-core Westmere-EP processors, 60.5

GB of memory and 2 SSD-based local storage disks per instance; (5)

CR1, 2 Intel Xeon octa-core Sandy Bridge-EP processors, 244 GB of

memory and 2 SSD-based local storage disks per instance; and (6) HS1,

1 Intel Xeon octa-core Sandy Bridge-EP processor, 117 GB of memory

and 24 local storage disks per instance. All these instance types are

interconnected via 10 Gigabit Ethernet.

Pre-doctoral fellowship at the University of A Coruña, Spain.

A six-month research visit, as well as regular short-time visits, to the Phy-

logenomics Group at the University of Vigo, Spain.

A three-month research visit to the Heidelberg Institute for Theoretical Stud-

ies at Heidelberg, Germany, which has allowed to collaborate in the devel-

opment of the Phylogenetic Likelihood Library, adding flexibility for parti-

tioning management and making it suitable for PartitionTest. This research

visit was funded by the University of A Coruña.

Research associate contract at the Heidelberg Institute for Theoretical Stud-

ies, Germany.

Main Contributions

The main contributions of this Thesis are:

1. Design, implementation and evaluation of High Performance Computing al-

gorithms for the statistical selection of best-fit empirical amino acid replace-

ment models for protein data, incorporated into ProtTest 3.0.

2. Design, implementation and evaluation of High Performance Computing al-

gorithms for the statistical selection of mechanistic best-fit substitution mod-

els for DNA, incorporated into jModelTest 2.0. This work facilitates the use
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of HPC architectures for selecting the most suitable evolution model. It

incorporates also fault tolerance through a checkpointing system.

3. Design of new visualization techniques for model selection.

4. Extended methods for DNA model selection, supporting all 203 substitution

schemes of GTR submodels.

5. Extended analysis methods of the impact of DNA substitution models on

particular data sets, such as HTML reports and topological summary on the

different competing models.

6. Extension of the Phylogenetic Likelihood Library for supporting flexible data

partitions.

7. Design, implementation and evaluation of High Performance Computing al-

gorithms for correctly address heterogeneity through data partitioning, in-

corporated into PartitionTest.

8. Evaluation of the impact of partitioning schemes on phylogenetic inference.



Chapter 1

Introduction

This introductory chapter is intended to provide the reader with the appropri-

ate conceptual background in order to better understand the research carried out

in this thesis. The structure of this chapter is as follows: Section 1.1 introduces

the underlying theoretical background, Section 1.2 introduces the base software

for Chapters 2 to 5. Section 1.3 describes the scope and main motivations of the

thesis. Finally, a clear description of the main objectives is included in Section 1.4.

1.1. Phylogenetic Inference

Bioinformatics is an interdisciplinary field whose goal is the development of

methods and software tools for understanding biological data. It combines com-

puter science, statistics, mathematics, and engineering to study and process bio-

logical data. Bioinformatics is a huge field, that involves many different activities

such as genome annotation, molecular evolution, protein structure prediction, bi-

ological networks, systems biology, among others. In particular, this work focuses

on phylogenetic analysis.

Phylogenetics is the study of evolutionary relatedness among groups of organ-

isms of any taxonomic rank (usually species or populations) or among molecules

(genes, proteins), broadly referred to as “taxa”, descending from a common an-

cestor. This relationships are established upon similarities and differences in their

7



8 Chapter 1. Introduction

morphological or molecular characteristics. Morphological similarities are inferred

from data describing, for example, traits shared among species. On the other

hand, molecular sequences (e.g., DNA, RNA, or Amino Acid data) can be ob-

tained through sequencing technologies. Nowadays, Next-Generation Sequencing

(NGS) technologies are the most common source of molecular data [72, 58], due

to their much higher throughput compared to previous approaches [71], and the

continuous decreasing cost. NGS sequencing techniques present a triple trade-off

between speed (data output), price and accuracy.

A molecular sequence (from now on, a “sequence”) can be represented as a

string of characters from a finite alphabet. For example, this alphabet com-

prises 4 nucleotides (a.k.a., nitrogen bases or bases) for DNA {A,C,G,T}, or RNA,

{A,C,G,U}, and 20 amino acids for protein data (Table 1.1).

Table 1.1: Standard amino-acid abbreviations

1-Letter 3-Letter Amino-Acid 1-Letter 3-Letter Amino-Acid
A Ala Alanine R Arg Arginine
N Asn Asparagine D Asp Aspartic acid
C Cys Cysteine E Glu Glutamic acid
Q Gln Glutamine G Gly Glycine
H His Histidine I Ile Isoleucine
L Leu Leucine K Lys Lysine
M Met Methionine F Phe Phenylalanine
P Pro Proline S Ser Serine
T Thr Threonine W Trp Tryptophan
Y Tyr Tyrosine V Val Valine

It is possible to convert DNA data from coding regions into the amino acids

that conform the proteins [17]. In a gene, the coding region or coding sequence is

a portion of its DNA that codes for proteins.

1.1.1. Models of Evolution

In molecular evolution, a typical data set consists of an alignment of multiple

sequences (DNA from coding or non-coding regions, polypeptide chains, ...), or

MSA (Multiple Sequence Alignment) and the model, in the large sense, is the
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phylogenetic tree that relates the sequences (see Section 1.1.2) plus the mechanism

of molecular change. For clarity, we separate the two parts of the model, and call

the phylogenetic tree part “the tree” and the mechanism part “the model”, or

statistical model of substitution.

The model, in keeping with the previous definition, describes how likely it is

for a state to change into a different state within a certain evolutionary time t.

We describe here the mathematical background of substitution models. The

models used in this thesis contain two main sets of parameters: a vector π describ-

ing the equilibrium state frequencies, and a substitution rate matrix Q = {qi,j}
defining the probability that state i mutates into state j, for i 6= j, in an infinitely

small amount of time dt. The diagonals of the Q matrix are chosen so that the

rows sum to zero (Equation 1.1).

Qii = −
∑

{j|j 6=i}

Qij (1.1)

The number of substitutions can be estimated using a memory-less continuous-

time Markov model. We assume that sites evolve independently from each other.

For example, for DNA data the Markov chain has four possible states (A, C, G,

T) and the next state depends only on the current one.

The Q matrix is computed out the stationary frequencies and a matrix of

relative substitution rates, R. It defines the relative rate at which one state can

change into another. If the R matrix is symmetrical, the Q matrix will be also

symmetrical, and we call the model time-reversible. A symmetrical R matrix

contains 1
2
s(s−1) parameters, where s is the number of different states (e.g., 4 for

nucleotides, 20 for amino acids).

R =




− α β γ

α − δ ε

β δ − ζ

γ ε ζ −




The Q matrix is then computed by multiplying columns in R by the π vector.
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The diagonal in Q is set so that its rows (and columns) sum to 0, then it follows

that πQ = 0 .

Q =




−(πcα+ πgβ + πtγ) πcα πgβ πtγ

πaα −(πaα+ πgδ + πtε) πgδ πtε

πaβ πcδ −(πaβ + πcδ + πtζ) πtζ

πaγ πcε πgζ −(πaγ + πcε+ πgζ)




To compute the probability of a state changing into another given time t, we

need to calculate the transition-probability matrix as follows:

P (t) = eQt (1.2)

The Markov chain is reversible if and only if πiqi,j = πjqj,i for all i 6= j.

Furthermore, limt→∞ Pij(t) = πj, or, in other words, as time goes to infinity the

probability of finding base j at a position where originally was a base i goes to the

equilibrium probability πj, regardless of the original base. Furthermore, it follows

that πP (t) = π for all t.

The standard approach to calculate the transition probability matrix P (t) is

to compute numerically the eigenvalues and eigenvectors of the rate matrix Q.

The decomposition is Q = UΛU−1, where Λ is a diagonal matrix containing the

eigenvalues of Q and U is a square matrix whose ith column is the eigenvector

of Q. The transition probability matrix for time t is then computed as shown in

Equation 1.3:

P (t) = eQt = Q = UeΛtU−1 (1.3)

Empirical vs Mechanistic Models

A main difference among evolutionary models is how many free parameters

(i.e., degrees of freedom) are estimated every time for the data set under consider-

ation and how many of them are estimated once on a large database. Mechanistic
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models, typically used for DNA data, describe all substitution as a function of

a number of parameters which are estimated for every data set analysed, prefer-

ably using Maximum Likelihood (see Section 1.1.3). This has the advantage that

the model can be adjusted to the particularities of a specific data set (e.g. dif-

ferent composition biases in DNA). However, problems can arise when too many

parameters are used, particularly if they can compensate for each other. Then

it is often the case that the data set is too small to yield enough information to

estimate all parameters accurately. For example, a mechanistic time-reversible

model for protein data would need to estimate 190 substitution rate parameters

(all possible transitions between the 20 amino acids), 19 equilibrium frequencies

and also parameters for accounting rate heterogeneity. For this reason empirical

models are usually preferred for the analysis of protein alignments, because either

there is not enough data to estimate such amount of free parameters, or it is very

computational expensive.

Empirical protein models are defined by estimating many parameters (typically

all entries of the substitution rate matrix and the equilibrium frequencies) from

a large database. These parameters are then fixed and reused for the data set

at hand. This has the advantage that these parameters can be estimated more

accurately. Normally, empirical models are used when it is not possible to estimate

all entries of the substitution matrix from the current data set. On the downside,

the estimated parameters might be too generic and not fit a particular data set

well enough.

With the high throughput genome sequencing still producing very large amounts

of DNA and protein sequences, there is enough data available to create empirical

models with any number of parameters. However, because of the problems men-

tioned above, the two approaches are often combined, by estimating most of the

parameters once on large-scale data, while only a few are then adjusted to the

data set under consideration, as is usually the case of parameters for addressing

rate heterogeneity (e.g., different per-site rates). Rate heterogeneity in models of

evolution is explained in detail in Section 1.1.3.
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Models of Nucleotide Substitution

For DNA data (4 different states), it is relatively easy to estimate the model

free parameters, and therefore mechanistic models are used. The GTR (General

Time Reversible) model [52, 87] is the most general reversible model. A detailed

description of GTR and other nucleotide and amino acid evolution models can be

found in Chapters 1 and 2 of [96].

Q =




−µA µGA µCA µTA

µAG −µG µCG µTG

µAC µGC −µC µTC

µAT µGT µCT −µT




where µxixj is the transition rate from state xi to state xj, and µxi =
∑

i 6=j µxixj .

Usually transition rates are normalized such that µs(s−1) = 1, where s is the number

of different states. Since the four stationary frequencies must sum to 1, and the six

substitution rates are relative to each other, the GTR model has a total of eight free

parameters (five rates + three frequencies). Other nucleotide substitution models

can be derived from GTR by simply imposing restrictions on the base frequencies

and/or the substitution rates. These derived models are simpler (nested within

GTR) and have a lower number of free parameters. For instance, the Jukes-

Cantor model [42] is given by assuming equal frequencies and substitution rates

(πA = πC = πG = πT = 0.25 and µAC = µAG = µAT = µCG = µCT = µGT = 1.0).

Models of Amino Acid Replacement

As stated before, for amino acid data it might not be enough data for estimating

the 190 substitution rate parameters out of the 20 different states, but also if there

is it would be very computationally expensive. Therefore, empirical models are

used instead.

Stationary frequencies are usually not optimized by maximizing the likelihood

(see Section 1.1.3), but defined by the model or computing the empirical frequen-

cies that can be observed in the data. In the latter, they belong to the set of free
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parameters of the model.

It is rather normal, however, that empirical models of amino acid replacement

do not specify values for any of the rate heterogeneity parameters. They are thus

free parameters.

1.1.2. Phylogenetic Trees

The relations among taxa (e.g., organisms, species, populations, gene copies,

proteins, cells) are usually modelled using phylogenetic trees, even though from

a biological point of view some events cannot be modelled as a strict branching

process. For example, a phylogenetic tree cannot represent some evolutionary

events such Horizontal Gene Transfer (HGT) or hybridization.

A phylogenetic tree is a branching diagram or “tree”. The taxa joined together

in the tree are implied to have descended from a recent common ancestor. The

tips of the tree represent the descendent taxa, and the inner nodes represent the

common ancestors. The length of the branches represent the expected number

of substitutions per site. Figure 1.1 shows an example of a rooted tree. Taxa or

species A and B, since they split from the same node, are called “sister taxa” –

they are each other’s closest relatives among the species included in the tree. The

goal of many bioinformatic methods is to infer good phylogenies, or as close as

possible to the real tree of life. The shape of the tree is known as topology (i.e.,

the tree ignoring the branch lengths).

A phylogenetic tree can be either bifurcating or multifurcating. A bifurcating

topology has exactly two descendants arising from each interior node. A multi-

furcating tree can have nodes with more than two descendants or sister taxa, and

each of those nodes are called a “polytomy”. A polytomy can represent the literal

hypothesis that a common ancestral population split into multiple lineages through

cladogenesis (i.e., speciation). Such a node is referred to as a “hard polytomy”.

Nevertheless, the vast majority of times politomies do not imply that the same

ancestor produces simultaneously all daughter taxa, but rather they represent the

uncertainty around which pattern is the best hypothesis. This node is referred to

as a “soft polytomy”. However, dealing with polytomies is out of the scope of this
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Figure 1.1: Graphic representation of a rooted tree for 3 species.

thesis and we will focus in bifurcating trees.

Other characteristic of trees is that they might or not contain a root node

providing an evolutionary direction. According to this, we can differentiate rooted

and unrooted topologies. An unrooted tree representation for N taxa is a graph

with N tip or leaf nodes with degree 1, and N-2 inner nodes with degree 3. These

structures provide information about the relationships between the species, but

no direction is given. Given two inner nodes we cannot decide which one is older.

Since most popular substitution models consider the evolution as a time-reversible

process, it makes sense to work with such structures. Figure 1.2 shows an example

of a 4-taxa unrooted tree. Starting from such a topology, we can root the tree

at any of the branches. Usually an outgroup (a taxon clearly distant from every

other) is included in the analysis in order to determine where to place the root for

the group of interest, or ingroup.

Apart of the relationships between species (the topology), branch lengths play

an important role for understanding the speciation process. In broad words, branch

lengths express the amount of evolution. One might expect that the branch lengths

are directly related with time, but they do not necessarily present such a direct

relationship, since different lineages or even different sites in the DNA might evolve

at different rates. A long branch can represent a long time or a high mutation rate
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Figure 1.2: Graphic representation of an unrooted tree for 4 species (in the mid-
dle). A root can be placed on any of the 5 branches, producing 5 different rooted
topologies out of the same unrooted topology.

1.1.3. Computing the Likelihood of a Tree

In 1981, Felsenstein described a Maximum Likelihood (ML) framework for

modelling the process of nucleotide substitution combined with phylogenetic tree

estimation [24]. As a consequence of the ML search process, applying the PLF

(Phylogenetic Likelihood Function) to evaluate alternative trees dominates both

the running time and memory requirements of most phylogenetic inference pro-

grams.

The computation of the PLF relies on the following assumptions:

1. Sites in the MSA evolve independently from each other.
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2. Evolution in different parts of the tree is independent.

3. A comprehensive tree T , including a set of branch lengths bij.

4. A substitution model is available, and defines the transition probabilities

Pi→j(b), that is the probability that j will be the final state at the end of a

branch of length b, given that the initial state is i.

5. The substitution model is time-reversible, that is, πjPij(b) = πiPj→i(b)

These assumptions allow us to compute the likelihood of the tree as the product

of the site-likelihoods of each column i of the MSA with n columns, as shown in

Equation 1.4. Let T be a (rooted or unrooted) binary tree with n tips. Let θ be a

set of (optimized or given) substitution model parameters (see Section 1.1.1). Let

φ = {bxy} be a set of (optimized or given) branch length values for tree T , where

bxy is the branch length value connecting nodes x and y in tree T (bxy = byx, x 6= y

and |φ| = 2n− 3).

L = Pr(D|T, θ, φ) =
n∏

i=1

Pr(Di|T, θ, φ) (1.4)

Likelihood scores usually reach very low values, that are either impossible or

very computationally expensive to represent with current computer arithmetic. In

order to resolve these problems, it is common practice to compute and report log

likelihood values:

log(L) = log(Pr(D|T, θ, φ)) =
n∑

i=1

log(Pr(Di|T, θ, φ)) (1.5)

The PLF is computed in a postorder traversal (i.e., from tip nodes to the root).

However, as we stated before, the root of the tree is, in general, unknown. For

computing the likelihood on unrooted topologies, we place a virtual root into an

arbitrary branch. Because the substitution model is time-reversible, the placement

of the virtual root does not affect the likelihood of the tree. Figure 1.2 shows all

possible virtual root placements on a 4 taxa tree.
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For clarity, let us assume that we are working with a rooted tree and DNA

data, where we have an alphabet of size four. Thus, only four states are possible

and correspond to the nucleotides A, C, G, and T. For each site i, four entries

must be computed to store the conditional, or marginal likelihood for nucleotide

states ’a’, ’c’, ’g’, and ’t’ at node p. The conditional likelihood entry L
(p)
x (i) is the

probability of everything that is observed from node p on the tree towards the tips,

at site i, conditional on node p having state x [26]. We can define the conditional

likelihood vector (CLV) at node p and site i as:

~L(p)(i) =
(
L(p)
a (i), L(p)

c (i), L(p)
g (i), L

(p)
t (i)

)
(1.6)

L(p)
x (i) =

(
t∑

y=a

Px→y(bqp)L
(q)
x (i)

)(
t∑

x=a

Px→y(brp)L
(r)
x (i)

)
(1.7)

This equation computes the conditional likelihood vector (CLV) entry ~L
(p)
a for

observing the nucleotide ’a’ at site i of a parent node p, with two child nodes q

and r given the respective branch lengths bqp and brp , the corresponding transition

probability matrices P (bqp), P (brp), and the conditional likelihood vectors of the

children ~L(q), ~L(r) for site i. The children/parent relationship is given by the

position of the root (see Figure 1.3).
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Figure 1.3: Conditional likelihood vectore entries are computed based on the CLVs
of the children nodes, the model and the transition probability matrices P (bqp) and
P (brp).

The tips, which do not have any child nodes, must be initialized. Probability

Vectors at the tips are also called tip vectors. In general, the sequence at the tips

already have a known value for each site and therefore can be directly assigned a

probability. For instance, if site i is an ’a’, the tip vector can be directly initialized

as:
(
L

(p)
a (i), L

(p)
c (i), L

(p)
g (i), L

(p)
t (i)

)
:= (1.0, 0.0, 0.0, 0.0).

To efficiently calculate the likelihood of a given, fixed tree, we execute a post-

order tree traversal that starts at the root. Via the post-order tree traversal, the

probabilities at the inner nodes (conditional likelihood vectors, or ancestral prob-

ability vectors) are computed bottom-up from the tips toward the root. This pro-

cedure to calculate the likelihood is called the Felsenstein pruning algorithm [24].

At the root node, the likelihood of a specific site in the tree can be computed

using Equation 1.8.
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L(i) = Pr(Di | T, θ, φ) =
t∑

x=a

πxL
root
x (i) (1.8)

For the unrooted case, the likelihood is computed at a branch instead of a

node, and it is computed as shown in Equation 1.9, for site i and the virtual root

located between nodes p and q.

L(i) =
t∑

x=a

πxL
(p)
x (i)

t∑

y=a

Px→y(bpq)L
(q)
y (i) (1.9)

Addressing Rate Heterogeneity Among Sites

The model initially proposed by Felsenstein assumes a constant rate of substitu-

tion among sites. However, this assumption has long been recognized as unrealistic,

especially for genes that code for proteins or sequences that are otherwise func-

tional (e.g., [89]). Since the early days of molecular data analysis, it is know that

different sites or regions in DNA may evolve at different rates, or remain invari-

ant [28]. The most popular method nowadays to account for rate variation among

sites in nucleotide-substitution models consists in using a Γ distribution [41, 86].

In the Γ model, for each site the likelihood is integrated over a continuous Γ

distribution of rates. The gamma density is given by Equation 1.10

g(r;α, β) =
βαrαe−βr

Γ(α)
(1.10)

The mean of a Γ distribution is α/β. A constrain α = β is specified, so that

the mean rate is 1. Thus, the distribution has only one parameter α, which is

usually adjusted by numerical optimization. Figure 1.4 shows the effect of α on

the distribution of rates. If α < 1, the distribution implies that there is a large

amount of rate variation, that is, many sites evolve slowly but some sites may

have high rates. The larger α, the smaller rate variation, since most rates fall close

to the mean. We can adapt Equation 1.8 to compute the likelihood of the tree

integrating over the rate distribution.
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L(i) = Pr(Di | T, θ, φ, α) =

∫ ∞

0

g(r;α)
t∑

x=a

πxL
root
x (i, r)dr (1.11)

However, for computational reasons, a model with equally probable c discrete

rate categories is used instead [92]. The likelihood given each rate is computed us-

ing the corresponding P matrix, P r(b), where the branch length has been properly

scaled by the discrete rate (Equation 1.13).

L(p)
x (i) =

(
t∑

y=a

P r
x→y(bqp)L

(q)
x (i)

)(
t∑

x=a

P r
x→y(brp)L

(r)
x (i)

)
(1.12)

P r(b) = eQrb (1.13)

Equation 1.11 is transformed into Equation 1.14, where the likelihood is the

mean among all C discrete rate categories.

L(i) = Pr(Di | T, θ, φ, α, C) =
1

C

C∑

c=1

t∑

x=a

πxL
root
x (i, rc) (1.14)

The different models can also assume that a proportion of sites are invariant

while others evolve at the same single rate. The per-site likelihood is the sum of the

conditional per-site likelihoods assuming the site to be variant, LV , or invariant,

LI For site i and the virtual root located between nodes p and q, the likelihood

considering a proportion of invariant sites is computed as follows:

L(i) = LV (i)(1− p) + LI(i)(p) (1.15)

LV (i) =
t∑

x=a

πxL
(p)
x (i)

t∑

y=a

Px→y((1− p)bpq)L(q)
y (i) (1.16)

LI(i) =

{
πxi if site i is invariant

0 otherwise
(1.17)
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Figure 1.4: Probability density function of the Γ distribution

1.1.4. Selecting the Best-Fit Model of Evolution For Single-

Gene Alignments

As it is well established, the use of one model of evolution or another may

change the results of the phylogenetic analysis [18, 48, 82]. Especially, estimates

of branch length or nodal support can be severely affected [13, 93]. In general,

phylogenetic methods may be less accurate (recover an incorrect tree more of-

ten) or may be inconsistent (converge to an incorrect tree with increased amounts

of data) when the wrong model of evolution is assumed [12, 23, 38]. Because

the performance of a method is maximized when it s assumptions are satisfied,

some indication of the fit of the data to the phylogenetic model is necessary [37].

Indeed, model selection is not important just because of its consequences in phy-

logenetic analysis, but because the characterization of the evolutionary process

at the sequence level is itself a legitimate pursuit. Moreover, models of evolu-

tion are especially critical for estimating substitution parameters or for hypothesis

testing [4, 85, 94, 97].

For comparing the fitness of the models, we can use statistical frameworks,

such as the likelihood-ratio test (LRT) [31]. However, this method is only appro-

priate for nested models. Otherwise, there exist other approaches, such as the

Akaike information criterion (AIC) [6], the corrected Akaike information criterion
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(AICc) [39, 80], or the Bayesian information criterion (BIC) [73]. All these meth-

ods can also be used to test for absolute goodness of fit of the model to the data

set. Other methods for model selection directed towards phylogenetic analysis are

the parametric bootstrapping [31], and the decision theoretic framework [60].

Selecting the best-fit model of evolution requires the scoring of every candi-

date model. Typically, this requires the optimization and evaluation of each of

the competing models such that they can be compared to each other. We cannot

ensure that the optimal likelihood score is achieved for each of the models, and

also the optimization methods used for optimized each of the parameters (e.g.,

Newton-Raphson [27], Brent [76], L-BFGS-B [57]) might get stuck in local op-

tima. However, in general the more thorough the models are optimized, the more

accurate the selection is, marginally to the selection criteria.

Among the different statistical selection procedures, the use of sequential or

hierarchical LRTs often performed poorly compared to other methods [60, 65].

Likelihood Ratio Tests

In traditional statistical theory, a widely accepted statistic for testing the good-

ness of fit of models is the likelihood ratio test (LRT). LRT is based on the likeli-

hood ratio, denoted by Λ (Equation 1.18).

Λ(x) =
L(θ0|x)

L(θ1|x)
=
f(∪i xi|θ0)

f(∪i xi|θ1)
(1.18)

where L(θ1|x) is the maximum likelihood under the more parameter-rich, com-

plex model (alternative hypothesis) and L(θ0|x) is the maximum likelihood under

the less parameter-rich simple model (null hypothesis). The LRT provides the

decision rule as follows:

If Λ(x) > c, do not reject H0

If Λ(x) < c, reject H0

If Λ(x) = c, reject H0 with probability q
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The values c, q are usually chosen to obtain a specified significance level α,

through the relation q · P (Λ = c | H0) + P (Λ < c | H0) = α. To preserve the

nesting of the models, the likelihood scores need to be estimated upon the same

tree.

Likelihood ratio tests can be carried out sequentially by adding parameters

(forward selection) to a simple model (JC), or by removing parameters (backward

selection) from a complex model (GTR+I+Γ) in a specific order or hierarchy

(hLRT). Figure 1.5 illustrates an arbitrary hierarchy of LRTs for six different

models. Within each LRT, the null model is depicted above the alternative model.

When the LRT is not significant, the null model (above) is accepted (A), and it

becomes the null model of the next LRT. When the LRT is significant, the null

model is rejected (R) and the alternative model (below) becomes the null model

of the next LRT. There are six possible paths depending on the outcome of the

individual LRTs, and each path results in the selection of a different model. JC:

Jukes-Cantor model [42]; K80: Kimura 1980 model [49], also known as K2P; F81:

Felsenstein 81 model [25]; HKY85: Hasegawa-Kishino-Yano model [35]; SYM,

symmetrical model [99]; GTR: General Time Reversible model [87], also known as

REV. The performance of hierarchical LRTs for phylogenetic model selection has

been discussed by Posada and Buckley (2004) [65].

Alternatively, the order in which parameters are added or removed can be

selected automatically. One option to accomplish this is to add the parameter

that maximizes a significant gain in likelihood during forward selection, or to add

the parameter that minimizes a non-significant loss in likelihood during backward

selection [67] (dLRT; see Figure 1.6). In this case, the order of the tests is not

specified a priori, but it will depend on the particular data. Figure 1.6 shows an

example of a dynamical Likelihood Ratio Test with 6 candidate models. Starting

with the simplest (JC) or the most complex model (GTR+I+Γ), LRTs are per-

formed among the current model and the alternative model that maximizes the

difference in likelihood. Hypotheses tested are: f = base frequencies; s = sub-

stitution type; i = proportion of invariable sites; g = rate heterogeneity among

sites.
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Information Criteria

The Akaike information criterion (AIC, [6] is an asymptotically unbiased esti-

mator of the Kullback-Leibler information quantity [70]. We can think of the AIC

as the amount of information lost when we use a specific model to approximate

the real process of molecular evolution. Therefore, the model with the smallest

AIC is preferred. The AIC is computed as:

AIC = −2l + 2k (1.19)

where l is the maximum log-likelihood value of the data under this model

and k is the number of free parameters in the model, including branch lengths

estimates. When sample size (n) is large compared to the number of parameters

(say, n/k > 40) the use of a second order AIC, AICc, is recommended:

AICc = AIC +
(2k(k + 1))

(n− k − 1)
(1.20)

The AIC compares several candidate models simultaneously, it can be used

to compare both nested and non-nested models, and model-selection uncertainty

can be easily quantified using the AIC differences and Akaike weights (see Sec-

tion 1.1.4). Burnham (2004) [16] provide an excellent introduction to the AIC and

to model selection in general.

An alternative to the use of the AIC is the Bayesian Information Criterion

(BIC) [73]:

BIC = −2l + klog(n) (1.21)

Given equal priors for all competing models, choosing the model with the

smallest BIC is equivalent to selecting the model with the maximum posterior

probability. Alternatively, Bayes factors for models of molecular evolution can be

calculated using reversible jump MCMC [36]. We can easily use the BIC instead

of the AIC to calculate BIC differences or BIC weights (see below).
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Minin (2003)[60] developed a novel approach that selects models on the basis of

their phylogenetic performance, measured as the expected error on branch lengths

estimates weighted by their BIC. Under this decision theoretic framework (DT)

the best model is the one which minimizes the risk function:

Ci ≈
n∑

j=1

||B̂i − B̂j||
e

−BICj
2

∑R
j=1(e

−BICi
2 )

(1.22)

||B̂i − B̂j||2 =
2t−3∑

l=1

(B̂il − B̂jl)
2 (1.23)

Indeed, simulations suggested that models selected with this criterion result in

slightly more accurate branch length estimates than those obtained under models

selected with hierarchical LRTs [60, 3].

Model Uncertainty

The AIC, BIC, and DT methods assign a score to each model in the candidate

set, therefore providing an objective function to rank them. Using the differences in

scores, we can calculate a measure of model support called AIC or BIC weights [15].

For the DT scores, this calculation is not as straightforward, and right now a very

gross approach is used instead, where the DT weights are the rescaled reciprocal

DT scores.

For example, for the ith model, the AIC (BIC) difference is:

∆i = AICi −min(AIC) (1.24)

where min(AIC) is the smallest AIC value among all candidate models. The

AIC differences are easy to interpret and allow a quick comparison and ranking of

candidate models. Very conveniently, we can use these differences to obtain the

relative AIC (BIC) weight (wi) of each model:
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ωi =
e

−∆i
2

∑R
r=1(e

−∆r
2 )

(1.25)

which can be interpreted, from a Bayesian perspective, as the probability that

a model is the best approximation to the truth given the data. The weights for

every model add to 1, so we can establish an approximate 95% confidence set of

models for the best models by summing the weights from largest to smallest from

largest to smallest until the sum is 0.95 [14, 15]. This interval can also be set up

stochastically (see above “Model selection and averaging”).

Alfaro and Huelsenbeck studied model uncertainty in Bayesian phylogenetic

analysis [7]. The BIC posterior probability appears to be more tightly distributed

around the generating model, with a smaller credible interval, higher support for

the best model, and higher correspondence between the best supported model and

the generating model. In their paper, models in the BIC posterior distribution also

more closely match the generating model in number of parameters. In contrast,

the distribution of AIC-weighted models is more diffuse with lower support for any

particular model, more models in the 95% credible interval, and a higher average

partition distance. Notably, in a different study the distribution of AIC-weighted

models seems to be biased slightly towards models of greater complexity, whereas

the BIC posterior distribution of models is unbiased, or slightly biased towards

less complex models [21].

1.1.5. Selecting the Best-Fit Model of Evolution For Multi-

gene Alignments: Partitioning

For single-gene model selection we evaluate the score of a set of models applied

to a particular data set. For partitioned data, a model of evolution consists in

the manner the data is divided into partitions (partitioning scheme), and model

assigned to each of the partitions. Some parameters might be linked across par-

titions (e.g., branch lengths). A model of evolution for multigene alignments has

as many degrees of freedom as the sum of the free parameters of the per-partition

models plus those parameters shared by the different per-partition models. The
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goal of selecting the best-fit model for multigene or partitioned data sets is, as in

the single-gene case, to find the best trade-off between model parameterization and

likelihood score, according to the same criteria described in Section 1.1.4. There-

fore, the model selection involves two tasks: (i) how the data should be divided

(how many partitions and how they are distributed), and (ii) which substitution

model is applied to each partition.

We define “data block” as a user-defined set of sites in the alignment. A data

block can be, for example a particular gene, or the set of 3rd codon positions in an

alignment. A “partition” (or “subset”) will be a set of one or more particular data

blocks. A partition can be made of, for example, a single gene, multiple genes, or

consist of the set of all first and second codon positions in an alignment. Finally,

a set of non-overlapping partitions that cover the whole alignment will be called a

“partitioning scheme”. Not only is important to decide which models are assigned

to each of the partitions, but also how many partitions the data is divided in. The

partitioning problems consists of, given a predefined set of data blocks, finding the

optimal partitioning scheme for a given alignment.

For phylogenomic studies, such as the 10K vertebrate genome project [40]

(http:// www.genome10k.org/) and the 1,000 insect transcriptome evolution project [61]

(http://www.1kite.org/), partitioning is part of the routine analyses. However, the

number of different possible choices between considering one unique partition for

the entire data and one partition per data block present an exponential growth

according to the number of initial data blocks, and finding the best-fit partitioning

scheme among them is NP-Hard.

Let X be the data, D = d1, .., dN a collection of N non-overlapped data blocks

(or subsets of X), and S the powerset of D. A partitioning scheme is a subcollection

S∗ of S such that each element in X is contained in exactly one subset in S∗ (i.e.,

each element in X is covered by exactly one subset in S∗). Mathematically, a

partitioning scheme is an exact cover of X [44]. Sk is a family of P (S) containing

all k-subsets P (S)k, such that

⋃

s ∈ S(s) = D ∧ (s1 ∩ s2 = {φ},∀s1, s2 ∈ S) (the

disjoint union of its elements is D). The cardinality of Sk is |Sk| =
{
N

k

}
.
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The number of different partitioning schemes for N data blocks is given by the

N th Bell number, which is the sum from 1 to N of the Stirling Numbers of the

Second Kind:

B(N) =
N∑

k=1

{
N

k

}
(1.26a)

{
N

k

}
=

1

k!

k∑

j=0

(−1)k−j
(
k

j

)
jN (1.26b)

The number of partitioning schemes grows very quickly. For example, for

20 data blocks there are 5.8 × 1012 different partitioning schemes. For 100 data

blocks there are 4.75×10115 different possible ways to arrange the data blocks into

partitions that cover the entire data without overlapping. This number is around

1030 times greater than the estimated number of atoms in the observable universe.

Finding the best-fit partitioning scheme and assigned models is a very com-

putational and memory intensive task. It is also NP-Hard and therefore finding

the absolute optima is not feasible even for a not so large number of single parti-

tions or data blocks. The number of possible combinations grows asymptotically

to ((0.792n)/ln(n+ 1))n [9].

For k groups in each scheme, it is necessary to perform the selection for those

groups with N − k + 1 data blocks. The number of combinations of k elements

without repetition in a set of N elements is given by
(
N
k

)
, and therefore the total

number of required partition evaluations will be
∑N

i=0

(
i
k

)
, that equals (2N) − 1

(Newton binomial theorem), giving a computational complexity of O(2N). Fig-

ure 1.7 shows an example of all possible partitioning schemes for N = 4.

B(n) = O
(

(
0.792n

ln(n+ 1)
)n
)

(1.27)

|S(n)| =
n∑

i=0

(
i

k

)
(1.28)
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S(4,4)

1 2 3 4

S(4,3)

5 5 3 4

6 2 6 4

7 2 3 7

1 8 8 4

1 9 3 9

1 2 10 10

S(4,2)

5 5 10 10

6 9 6 9

7 8 8 7

11 11 11 4

12 12 3 12

13 2 13 13

1 14 14 14

S(4,1)

15 15 15 15

Figure 1.7: Partitioning schemes for N = 4. Numbers and colors represent the
different partitions. In this example, there are 2N −1 = 15 partitions and B(N) =
15 partitioning schemes.

Given these 2N−1 partitions, we can think the best-fit partition search problem

as the set cover problem [88] where each partition is given a weight (i.e., the BIC

score). Our target is to find the k non-overlapped subsets covering the whole

alignment that minimizes the score. The set cover problem is NP-Hard [51], so it

is the best-fit partition selection as well.

The set of disjoint partitioning schemes that contains every different possible

partition is given by those combinations obtained from the subset S1 ∪ S2. Par-

titions included in every other partitioning scheme will appear in one single par-

titioning scheme from the subset described before. In the example in Figure 1.7,

the sets S1 and S2 contain all possible partitions, and for each s ∈ S3∪S4, there is

exactly 1 element x ∈ S1 ∪S2 such that x ∈ s. This subset has cardinality 2N − 1,

and as long as every element but S1 includes exactly 2 partitions, the total number

of partitions is, as stated before, 2 × 2N−1 − 1 = (2N) − 1. This extremely high

number of combinations makes impossible to analyse every possible partitioning

scheme in a reasonable time.
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Going a step further, we can also link parameters across partitions, slightly

reducing the total number of parameters, but also increasing the complexity and

thus making the best-fit scheme selection much harder.

At the genomic scale the heterogeneity of the substitution process becomes even

more apparent that at the single-gene scale, as different genes or genomic regions

can have very different functions and evolve under very different constraints [8].

Multilocus substitution models that consider distinct models for different parti-

tions of the data assumed to evolve in an homogeneous fashion have been proposed

under the likelihood [69, 95] and Bayesian [63, 79] frameworks. In this case, differ-

ent loci (or loci by codon position) are typically considered as distinct partitions

by default, without further justification, like for example the set of 1st, 2nd or

3rd codon positions in protein-coding sequence alignments [75] or distinct protein

domains [100]. However, a number of empirical studies have demonstrated that

different partitioning schemes can affect multilocus phylogenetic inference, includ-

ing tree topology, branch lengths and nodal support [10, 43, 55, 68, 90], with

maximal differences occurring when whole datasets are treated as single partitions

(i.e., unpartitioned). Using computer simulations, Brown and Lemmon (2007)

showed that both over and particularly under-partitioning can lead to inaccurate

phylogenetic estimates [11].

The most popular tool for automatic statistical selection of partitioning schemes

for multilocus data sets is PartitionFinder [53], released in 2012. PartitionFinder

is written in Python, and makes an intensive use of external software such as

PhyML [33] or RAxML [77] for the phylogenetic inferences and model optimiza-

tion. It uses combinatorial optimization heuristics, like hierarchical clustering and

greedy algorithms building up on previous ideas raised by Li et al. [56].

1.2. Software for Model Selection

1.2.1. ProtTest 2.x

As briefly introduced in Section 1.1.1, in most cases the 20 × 20 replacement

matrices for amino acid replacement models are not estimated de novo for each
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data set. Instead, replacement rates previously estimated from large empirical

databases are adopted. Among these, some of the more popular are the Day-

hoff [22], JTT [32], mtREV [5], WAG [91], mtArt [1] or LG [54] matrices. Impor-

tantly, many phylogenetic calculations like the estimation of tree topologies, branch

lengths, nodal support, divergence times or replacement rates benefit from the use

of explicit models of evolution. Because the use of different models can change the

outcome of the analysis [81], different model selection tools for protein alignments

have been implemented in the past, like ProtTest [2], Model-Generator [46] or

TOPALi [59].

ProtTest is one of the most popular tools for selecting models of protein evo-

lution, with more than 2,000 citations. ProtTest is written in Java and uses the

program PhyML [34, 33] for the ML estimates of phylogenetic trees and model

parameters. The candidate set of models contain 14 different rate matrices that

result in 112 different models when we consider rate variation among sites (+I:

invariable sites; +G: Γ-distributed rates) and the observed amino acid frequencies

(+F). ProtTest uses the selection criteria described in Section 1.1.4 to find which

of the candidate models best fits the data at hand. In addition, it can perform

multi-model inference and estimate parameter importances [65]. The time required

to complete the likelihood calculations, that take most of the runtime of the pro-

gram, can be variable depending on the size and complexity of the alignments and

models. For large alignments, this task cannot be completed in a reasonable time

using a single core. While ModelGenerator/MultiPhyl [47] and TOPALi imple-

ment grid computing to speed-up the analyses, they consider fewer models and do

not implement model averaging. Also grid implementations usually include a very

large overhead compared to HPC-oriented architectures.

1.2.2. ModelTest and jModelTest 1.x

The most popular bioinformatic tool to select appropriate models of DNA

substitution for a given DNA sequence alignment is ModelTest [66], with more

than 17,000 citations. It was superseded in 2008 by jModelTest [64]. jModelTest

calculates the likelihood score for each model and uses the already described model

selection techniques to choose the best-fit model (dLRT, hLRT, AIC, AICc and
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BIC). It is written in Java, and makes use of PhyML for phylogenetic calculations.

jModelTest supports 88 submodels of the general time-reversible model. On

top of 11 different substitution schemes and stationary frequencies (Table 1.2),

each of these models can assume rate variation among sites (+I: invariable sites;

+G: Γ-distributed rates).

Table 1.2: Substitution models available in jModelTest.

Model
Free Base

Substitution Rates
Substitution

Parameters Frequencies Code
JC k Equal AC = AG = AT = CG = CT = GT 000000
F81 k + 3 Unequal AC = AG = AT = CG = CT = GT 000000
K80 k + 1 Equal AC = AT = CG = GT, AG = CT 010010
HKY k + 4 Unequal AC = AT = CG = GT, AG = CT 010010
TrNef k + 2 Equal AC = AT = CG = GT, AG, CT 010020
TrN k + 5 Unequal AC = AT = CG = GT, AG, CT 010020
TPM1 k + 2 Equal AC = GT, AT = CG, AG = CT 012210
TPM1uf k + 5 Unequal AC = GT, AT = CG, AG = CT 012210
TPM2 k + 2 Equal AC = AT, CG = GT, AG = CT 010212
TPM2uf k + 5 Unequal AC = AT, CG = GT, AG = CT 010212
TPM3 k + 2 Equal AC = CG, AT = GT, AG = CT 012012
TPM3uf k + 5 Unequal AC = CG, AT = GT, AG = CT 012012
TIM1ef k + 3 Equal AC = GT, AT = CG, AG, CT 012230
TIM1 k + 6 Unequal AC = GT, AT = CG, AG, CT 012230
TIM2ef k + 3 Equal AC = AT, CG = GT, AG, CT 010232
TIM2 k + 6 Unequal AC = AT, CG = GT, AG, CT 010232
TIM3ef k + 3 Equal AC = CG, AT = GT, AG, CT 012032
TIM3 k + 6 Unequal AC = CG, AT = GT, AG, CT 012032
TVMef k + 4 Equal AC, AT, CG, GT, AG = CT 012314
TVM k + 7 Unequal AC, AT, CG, GT, AG = CT 012314
SYM k + 5 Equal AC, AG, AT, CG, CT, GT 012345
GTR k + 8 Unequal AC, AG, AT, CG, CT, GT 012345
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1.3. Scope and Motivation

As mentioned before, the use of different models of substitution can change

the results of the phylogenetic analysis. Tools for automated selecting the best-fit

model of evolution under a Maximum-Likelihood framework exist from the late

90s and they are continuously improving [2, 45, 66].

However, the irruption of Next-Generation Sequencing technologies (NGS) has

caused a data avalanche in recent years. The growing rate at which molecular

data is being available for researchers encourages the need of developing faster

analysis methods. Moreover, it is common in most research groups in the field to

have access to local or remote HPC architectures. Thus, HPC and fault tolerance

techniques are of great importance.

On top of that, also due to the data explosion, the study of genomic data has

become more popular in the last years. Different regions of the genome can evolve

in a very different way, and therefore the old approach of analysing the whole data

with a single model became obsolete. Selecting the best-fit partitioning scheme

(i.e., the best scoring one) is a very computational expensive and memory intensive

task, and finding the absolute optima is not feasible for a not so large number of

single partitions or genes.

1.4. Main Objectives of the Thesis

The main goal of this thesis is the improvement and evaluation of the existing

techniques for selecting the best-fit model of nucleotide substitution and amino

acid replacement for single and multigene sequence alignments.

For single-gene sequence alignments, this thesis has three targets: (i) design of

new search algorithms for increasing the search space, (ii) optimize the algorithms

for multicore desktop computers and HPC architectures, and (iii) the evaluation of

the different selection criteria in terms of accuracy finding the true model param-

eters. This includes the design, development and evaluation of HPC algorithms

for model selection and results analysis, incorporated into tools that are nowadays
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reference for model selection: jModelTest and ProtTest. Evaluating the perfor-

mance of different selection criteria involves testing the accuracy recovering the

model parameters out of a set of simulated data, where the true generating model

is known.

For multigene sequence alignments the goal is divided in two targets: (i) im-

plementation and evaluation of HPC search algorithms for the best-fit partitioning

scheme, and (ii) study the importance of model selection in order to infer better

quality phylogenies rather than using trivial approaches. Testing the importance

of model selection is based in simulated alignments covering a wide range of input

parameter values (e.g, number of genes, alignment size, nucleotide diversity).
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ABSTRACT

Summary: We have implemented a High Performance Computing

(HPC) version of ProtTest (Abascal et al., 2007) that can be executed

in parallel in multi-core desktops and clusters. This version, called

ProtTest 3, includes new features and extended capabilities.

Availability: ProtTest 3 source code and binaries are freely available

under GNU license for download from http://darwin.uvigo.es/

software/prottest3, linked to a Mercurial repository at Bitbucket

(https://bitbucket.org/).

Contact: dposada@uvigo.es

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Recent advances in modern sequencing technologies have resulted

in an increasing capability for gathering large data sets. Long se-

quence alignments with hundred or thousands of sequences are not

rare these days, but their analysis imply access to large computing

infrastructures and/or the use of simpler and faster methods. In this

regard, High Performance Computing (HPC) becomes essential for

the feasibility of more sophisticated –and often more accurate– anal-

yses. Indeed, during the last years HPC facilities have become part

of the general services provided by many universities and research

centers. Besides, multicore desktops are now standard.

The program ProtTest (Abascal et al., 2007) is one of the most

popular tools for selecting models of amino acid replacement, a

routinary step in phylogenetic analysis. ProtTest is written in Java

and uses the program PhyML (Guindon and Gascuel, 2003) for

the maximum likelihood (ML) estimation of model parameters and

phylogenetic trees and the PAL library (Drummond and Strimmer,

2001) to handle alignments and trees. Statistical model selection can

be a very intensive task when the alignments are large and include

divergent sequences, highlighting the need for new bionformatic

tools capable of exploiting the available computational resources.

Here we describe a new version of ProtTest, ProtTest3, that has

been completely redesigned to take advantage of HPC environ-

ments and desktop multicore processors, significantly reducing the

execution time for model selection in large protein alignments.

2 PROTTEST 3

The general structure and the Java code of ProtTest has been com-

pletely redesigned from a computer engineering point of view.

∗to whom correspondence should be addressed

We implemented several parallel strategies as distinct execution

modes in order to make an efficient use of the different computer

architectures that a user might encounter:

(1) a Java thread-based concurrence for shared memory architec-

tures (e.g., a multi-core desktop computer or a multi-core cluster

node). This version also includes a new and richer Graphical User

Interface (GUI) to facilitate its use.

(2) an MPJ (Shafi et al., 2009) parallelism for distributed memory

architectures (e.g., HPC clusters).

(3) a hybrid implementation MPJ - OpenMP (Dagum and Menon,

1998) to obtain maximum scalability in architectures with both

shared and distributed memory (e.g., multicore HPC clusters).

Moreover, ProtTest 3 includes a number of new and more com-

prehensive features that significantly extend the capabilities of the

previous version: (1) more flexible support for different input align-

ment formats through the use of the ALTER library (Glez-Peña

et al., 2010): ALN, FASTA, GDE, MSF, NEXUS, PHYLIP and PIR;

(2) up to 120 candidate models of protein evolution; (3) four strate-

gies for the calculation of likelihood scores: fixed BIONJ, BIONJ,

ML or user-defined; (4) four information criteria: AIC, BIC, AICc

and DT (see Sullivan and Joyce 2005); (5) reconstruction of model-

averaged phylogenetic trees (Posada and Buckley, 2004); (6) fault

tolerance with checkpointing; and (7) automatic logging of the user

activity.

3 PERFORMANCE EVALUATION

In order to benchmark the performance of ProtTest 3, we computed

the running times for the estimation of the likelihood scores of all

120 candidate models from several real and simulated protein align-

ments (Table 1). When these data were executed in a system with

shared memory, e.g., a multicore desktop, the scalability was almost

linear as far as there was enough memory to satisfy the require-

ments. For example, in a shared memory execution in a 24-core

node the speedup was almost linear with up to 8 cores, also scal-

ing well with data sets with medium complexity, like HIVML or

COXML (Fig. 1). In a system with distributed memory like an clus-

ter, the application scaled well up to 56 processors (Fig. 2). With

more processors a theoretical scalability limit exists due to the het-

ereogeneous nature of the optimization times, from a few seconds

for the simplest models to up to several hours for the models that

include rate variation among sites (+G). This problem was solved

with the hybrid memory approach. In this case, the scalability went

beyond the previous limit, reaching up to 150 in the most complex

cases with 8-core nodes (Figure 3).
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Data set Protein Size Base tree Seq.

Abbreviation NxL exec. time

RIB Ribosomal 21x113 Fixed BIONJ 5.5m

protein

RIBML ” ” ML tree 28m

COX Cytochrome C 28x113 Fixed BIONJ 9.5m

oxidase II

COXML ” ” ML tree 55m

HIV HIV polimerase 36x1,034 Fixed BIONJ 44m

HIVML ” ” ML tree 160m

10K Simulated aln 50x10K Fixed BIONJ 9.2h

20K ” 50x20K ” 24.5h

100K ” 50x100K ” 80h

Table 1. Real and simulated alignments used to benchmark ProtTest 3 per-

formance. In column Size, N indicates the number of sequences and L the

length of the alignment. Base tree is the tree used for model likelihood opti-

mization and Seq. exec. time is the time required to calculate the likelihood

scores using the sequential version (i.e., a single thread).

Figure 1. Speed-ups obtained with the shared memory version of ProtTest 3

according to the numbers of threads used in a 24-core shared memory node

(4 hexa-core Intel Xeon E7450 processors) with 12GB memory.

Figure 2. Speed-ups obtained with the distributed memory version of

ProtTest 3 according to the numbers of cores used in a 32-node cluster with

2 quad-core Intel Harpertown processors and 8GB memory per node. Up to

4 processes where executed per node because of the memory requirements

of the largest datasets (10K, 20K, 100K).

4 CONCLUSIONS

ProtTest 3 can be executed in parallel in HPC environments as:

(1) a GUI-based desktop version that uses multi-core processors;

(2) a cluster-based version that distributes the computational load

among nodes; and (3) as a hybrid multi-core cluster version that

achieves speed through the distribution of tasks among nodes while

taking advantage of multi-core processors within nodes. The new

version has been completely redesigned and includes new capabil-

ities like checkpointing, additional amino acid replacement matri-

ces, new model selection criteria and the possibility of computing

model-averaged phylogenetic trees. The use of ProtTest 3 results

Figure 3. Speed-ups obtained with the hybrid memory version of ProtTest

3 according to the numbers of cores used in a 32-node cluster with 2 quad-

core Intel Harpertown processors and 8GB memory per node. Up to 4 MPJ

Express processes per node and at least 2 OpenMP threads for each ML

optimization were executed.

in significant performance gains, with observed speedups of up to

150 on a high performance cluster. For very large alignments this

can be equivalent to a reduction of the running time from more than

three days to around half an hour. In this way, statistical model se-

lection for large protein alignments becomes feasible, not only for

cluster users, but also for the owners of standard multi-core desk-

top computers. Moreover, the flexible design of ProtTest-HPC will

allow developers to extend future functionalities, whereas third-

party projects will be able to easily adapt its capabilities to their

requirements.
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Abstract

Summary:

This appendix deals with some technical issues that were not specified in
the application note for ProtTest 3: how the hybrid version of ProtTest 3
works and how the workload balancing is performed.

Availability:

ProtTest 3 source code and binaries are freely available under GNU li-
cense for download from http://darwin.uvigo.es/software/prottest3,
linked to a Mercurial repository at Bitbucket (https://bitbucket.org/).

1 Hybrid Computation

The scalability of ProtTest 3 using either shared or distributed memory is limited
by the replacement models with the highest computational load, usually the
“+I+G” models, which could take up to 90% of the overall runtime. In these
cases, the runtime was determined by the longest optimization, resulting in poor
speedups. Moreover, the higher the number of cores, the higher the workload
imbalance due to runtime differences. In fact, ProtTest 3 usually could take
advantage of up to 50 cores, approximately. This important limitation prompted
us to develop a hybrid (shared/distributed memory) approach, in which we
reduced the overhead of the model optimizations using a thread-based executor
within the distributed memory implementation.

We parallelized the basic task –ML optimization– to get rid of the limitation
of using a single core per model. Thus, we modified PhyML (Guindon and
Gascuel, 2003) to produce a thread-based version, using OpenMP (Dagum and
Menon, 1998). In this way, the models with the highest computational load
could run in parallel, significantly reducing the total runtime. However, this
strategy is only possible when memory is shared, like in a cluster node, being
limited by the number of available cores per system. Our solution (see Fig. 1)
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was to implement a message-passing based distribution of the tasks across a
distributed memory machine, using MPJ Express (Shafi et al., 2009). This way,
it is possible to take advantage of multi-core clusters through the execution of
a thread-based model optimization process together with the message-passing
implementation of ProtTest-HPC. This two-level parallelism resulted in a much
more efficient exploitation of the available computational resources.

Figure 1: ProtTest 3 hybrid strategy, where two threads are run per external
ML optimizer (PhyML) process.

2 Scheduling and Load Balancing

2.1 High Level Scheduling

The load balancing of the model selection task is not trivial, due to the uncertain
and highly variable execution times of the model optimizations. Even the use
of a dynamic task queue could not be the optimal solution in many cases.

ProtTest 3 attempts to balance the workload in two steps. At first, the work-
load of each single model optimization is estimated. Since the distribution is
performed at a task level (i.e, the 120 models to optimize are distributed among
processors), the accuracy of this estimate is essential in order to achieve the op-
timal performance. ProtTest 3 includes an extensible hierarchy of heuristics to
perform this task. For example, the default heuristic uses the model parameters
to estimate its relative weight compared to every other model.

The next step is to distribute the set of models among the computational
resources, once they are sorted by their computational workload (the relative
workload estimation is a good metric for this task). The best strategy is to
use a dynamic scheduling of the set of tasks. ProtTest 3 implements this using
a Java thread pool in shared memory architectures, and a similar approach
in distributed memory. In this case, a distributor thread works as the model
distributor and dynamic scheduler. The process starts sending a single model
for optimization to each process, and every time a process returns the optimized
model to the scheduler, it sends the next model from the sorted queue.
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2.2 Hybrid Scheduling

In the hybrid-memory version of ProtTest, the number of shared memory threads
is also taken into account to make the distribution among nodes. At execution
time, the number of available processors cores per ProtTest 3 process is given.
This implies a dependency between the logical distribution of tasks and the
physical mapping of the processes (i.e., thread affinity). However, it results into
the best parallel efficiency of ProtTest 3.

The scheduler calculates the number of threads that each model optimization
should use to get the best overall performance, taking the number and complex-
ity of candidate models and the number of threads per process as parameters.

Figure 2 shows the parallel performance of our OpenMP parallel version of
PhyML. PhyML gets an almost linear speedup using up to 4 threads, slightly
depending on the input data for a higher number of threads. With this infor-
mation, ProtTest 3 can aims for the best combination between process-level and
thread-level parallelism to attain the best possible performance.
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Figure 2: PhyML parallel performance on an HP Superdome system

3 Fault Tolerance

ProtTest 3 can require long execution times and involve a significant number
of computing resources. For this reason we also implemented fault tolerance
support. Every intermediate running status of the application is held in a seri-
alizable Java object, subject to its storage (checkpoint) in a snapshot file by the
centralized checkpoint manager (CPManager) once it has been notified (through
a custom Observer pattern) that a task has been completed and the ProtTest
3 status has been validated (Fig. 3). CPManager is also in charge of restoring

3



ProtTest 3 up to the last consistent saved status after a failed execution. This
checkpointing system works at a high level, so the application status is verified
every time a model optimization is complete.

The overhead of the fault tolerance support is almost negligible compared
to the global run times (< 0.1%), so it is enabled by default. Furthermore, it
is fully transparent to the user. Every time the application starts, CPManager
automatically looks up for consistent snapshot files in the snapshot directory
and relaunches any previously failed execution.

Figure 3: ProtTest 3 fault tolerance subsystem.
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Article

High-performance computing
selection of models of DNA
substitution for multicore clusters

Diego Darriba1,2, Guillermo L Taboada1,
Ramón Doallo1 and David Posada2

Abstract
This paper presents the high-performance computing (HPC) support of jModelTest2, the most popular bioinformatic tool
for the statistical selection of models of DNA substitution. As this can demand vast computational resources, especially in
terms of processing power, jModelTest2 implements three parallel algorithms for model selection: (1) a multithreaded
implementation for shared memory architectures; (2) a message-passing implementation for distributed memory archi-
tectures, such as clusters; and (3) a hybrid shared/distributed memory implementation for clusters of multicore nodes,
combining the workload distribution across cluster nodes with a multithreaded model optimization within each node. The
main limitation of the shared and distributed versions is the workload imbalance that generally appears when using more
than 32 cores, a direct consequence of the heterogeneity in the computational cost of the evaluated models. The hybrid
shared/distributed memory version overcomes this issue reducing the workload imbalance through a thread-based
decomposition of the most costly model optimization tasks. The performance evaluation of this HPC application on a
40-core shared memory system and on a 528-core cluster has shown high scalability, with speedups of the multithreaded
version of up to 32, and up to 257 for the hybrid shared/distributed memory implementation. This can represent a reduc-
tion in the execution time of some analyses from 4 days down to barely 20 minutes. The implementation of the three
parallel execution strategies of jModelTest2 presented in this paper are available under a GPL license at http://code.goog
le.com/jmodeltest2.

Keywords
High-performance computing (HPC), multicore cluster, Message-Passing in Java (MPJ), phylogeny, nucleotide substitution,
performance evaluation

1. Introduction

In recent years, DNA sequence data has been accumulated

in databases (e.g. GenBank) at an exponential rate. These

DNA sequences can be used for example to study the his-

tory of the different species that inhabit our planet, for

example estimating phylogenetic trees from multiple sequ-

ence alignments. All phylogenetic methods make assump-

tions, whether explicit or implicit, about the process of

DNA substitution (Felsenstein, 1988). It is well known that

the use of one or another probabilistic model of nucleotide

substitution can change the outcome of the analysis (Buck-

ley, 2002; Buckley and Cunningham, 2002; Lemmon and

Moriarty, 2004), and model selection has become a routine

step for the estimation of molecular phylogenies.

The most popular bioinformatic tool to select appropri-

ate models of DNA substitution for a given DNA sequence

alignment is jModelTest (Posada, 2008). This program

calculates the likelihood score for each model and uses dif-

ferent model selection techniques to choose the ‘‘best’’ one

according to the likelihood and number of parameters. The

model selection strategies implemented in jModelTest are

the Akaike information criterion (AIC) (Akaike, 1974),

Bayesian information criterion (BIC) (Schwarz, 1978) and

dynamic likelihood ratio tests (dLRTs) (Posada and Cran-

dall, 2001).
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jModelTest supports 88 submodels of the general time-

reversible model (Table 1). In top of different substitution

schemes and ACGT frequencies, each of these models can

assume that some sites do not change between sequences

(i.e. are invariant; ‘‘þI’’ parameter), or they do it at differ-

ent rates (approximated with a discrete gamma distribution

‘‘þG’’). The estimation of the a shape parameter of the

gamma distribution can be complicated, and models that

include this parameter (‘‘þG’’ models) carry an extra com-

putational burden.

We define the basic execution task as the optimization

of a single model. jModelTest makes an extensive use of

third-party bioinformatics libraries and software, aggregat-

ing multiple tasks in a pipeline and providing a high-level

view of the analysis. Figure 1 shows the workflow of jMo-

delTest, where the most time-consuming part of the process

is the calculation of the likelihood scores (carried out by the

PhyML program (Guindon and Gascuel, 2003)). Because

this calculation represents more than 99% of the execution

time in most cases, our parallel adaptation is focused in this

part of the model selection process. The parallel strategies

here exposed are implemented in a new version of jMo-

delTest, available at http://code.google.com/jmodeltest2.

A preliminary version of the parallelization of jModelTest,

including only the shared and distributed memory versions,

has been presented by Darriba et al. (2011a). This paper

extends the previous work by implementing a hybrid

shared/distributed memory version which overcomes the

limitations of the previous work, namely the poor scalabil-

ity and the workload imbalance, achieving 8 times higher

performance (from speedups around 30 to speedups around

230).

2. Parallel algorithm for model selection

Most of the execution time of the model selection analysis

is spent optimizing each substitution model from the candi-

date model set, maximizing the likelihood function (the

Table 1. Substitution models available in jModelTest. Any of these can include a proportion of invariable sites (þI), rate variation
among sites (þG), or both (þIþ G).

Model Free parameters Base frequencies Substitution rates Substitution code

JC k Equal AC ¼ AG ¼ AT ¼ CG ¼ CT ¼ GT 000000
F81 k þ 3 Unequal AC ¼ AG ¼ AT ¼ CG ¼ CT ¼ GT 000000
K80 k þ 1 Equal AC ¼ AT ¼ CG ¼ GT, AG ¼ CT 010010
HKY k þ 4 Unequal AC ¼ AT ¼ CG ¼ GT, AG ¼ CT 010010
TrNef k þ 2 Equal AC ¼ AT ¼ CG ¼ GT, AG, CT 010020
TrN k þ 5 Unequal AC ¼ AT ¼ CG ¼ GT, AG, CT 010020
TPM1 k þ 2 Equal AC ¼ GT, AT ¼ CG, AG ¼ CT 012210
TPM1uf k þ 5 Unequal AC ¼ GT, AT ¼ CG, AG ¼ CT 012210
TPM2 k þ 2 Equal AC ¼ AT, CG ¼ GT, AG ¼ CT 010212
TPM2uf k þ 5 Unequal AC ¼ AT, CG ¼ GT, AG ¼ CT 010212
TPM3 k þ 2 Equal AC ¼ CG, AT ¼ GT, AG ¼ CT 012012
TPM3uf k þ 5 Unequal AC ¼ CG, AT ¼ GT, AG ¼ CT 012012
TIM1ef k þ 3 Equal AC ¼ GT, AT ¼ CG, AG, CT 012230
TIM1 k þ 6 Unequal AC ¼ GT, AT ¼ CG, AG, CT 012230
TIM2ef k þ 3 Equal AC ¼ AT, CG ¼ GT, AG, CT 010232
TIM2 k þ 6 Unequal AC ¼ AT, CG ¼ GT, AG, CT 010232
TIM3ef k þ 3 Equal AC ¼ CG, AT ¼ GT, AG, CT 012032
TIM3 k þ 6 Unequal AC ¼ CG, AT ¼ GT, AG, CT 012032
TVMef k þ 4 Equal AC, AT, CG, GT, AG ¼ CT 012314
TVM k þ 7 Unequal AC, AT, CG, GT, AG ¼ CT 012314
SYM k þ 5 Equal AC, AG, AT, CG, CT, GT 012345
GTR k þ 8 Unequal AC, AG, AT, CG, CT, GT 012345

Figure 1. jModelTest algorithm workflow.
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likelihood is the probability of the data, a multiple sequence

alignment, given the model), which depends on the size and

complexity of the data. For large-scale alignments this can-

not be completed in a reasonable time with just a single core.

Thus, we implemented a high-performance computing

(HPC) version of jModelTest that supports its parallel exe-

cution on shared memory systems such as current multicore

desktop processors and HPC clusters, distributing the

workload among nodes and also taking advantage of multi-

core processors within nodes.

Maximum likelihood model optimization was proved

NP-complete (Chor and Tuller, 2006). Thus, it is really dif-

ficult to estimate the runtime of each single task. However,

we can estimate the relative workload depending on the

model parameters. Figure 2 shows the high variance between

task runtimes regarding invariant sites (þI) and discrete rate

categories (þG) parameters. This variance slightly depends

on the input data characteristics (e.g.number of taxa,

sequences length or divergence between sequences). A rep-

resentative real dataset (91 taxa and 33,148 base pairs). In

order to homogeneously distribute the workload, it is better

to run the most complex (i.e.þIþG andþGmodels) tasks at

first (reverse complexity estimate). The lightest tasks would

take up the remaining computational resources as long as the

candidate models are optimized.

This paper presents three parallel algorithms for model

selection using asynchronous communication and dynamic

load-balancing: (1) a threaded shared-memory approach

using Java built-in thread pool; (2) a distributed memory

approach using a Message-Passing in Java (MPJ) (Shafi

et al., 2009); and (3) a hybrid shared-distributed memory

approach using message-passing for inter-node synchroni-

zation, a custom thread pool for intra-node synchronization,

and OpenMP (Dagum and Menon, 1998) for parallelizing

the basic task. The first two approaches are based on

the parallel execution of model optimization tasks, present-

ing a coarser-grained parallelism than the last one, where

the model optimization is executed in parallel as well

(multilevel parallelism, with message-passing combined

with shared memory thread pools and OpenMP base

executions).

2.1. Design overview

The original implementation was partially redesigned to

grant model extensibility, traceability and encapsulation,

taking advantage of the code included in the ProtTest3

API (Darriba et al., 2011b), a similar program for protein

sequences already adapted for HPC environments.

Figure 3 shows the high-level design of the HPC version

of jModelTest. There is not coupling between the front-end

and the back-end layers, delegating communications through

a façade design pattern. Some features were organized into a

class hierarchy, decoupling the related classes from the con-

troller (i.e. ModelTestService), therefore making the model

easier to extend through several interfaces:

1. The execution modes use the RunPhyml hierarchy.

A common interface hides the model optimization

behavior, and internally is able to run several PhyML

instances in a shared memory architecture using a

thread pool (RunPhymlThreaded), synchronize sev-

eral processes in a distributed memory architecture

(RunPhymlMPJ) or synchronize multiple thread

pools in different nodes (RunPhymlHybrid).

2. The model selection task can be performed applying

different information criteria that in general terms

behaves in the same way. For this reason a common

specification (InformationCriterion) hides each sin-

gle criterion. As before, this decouples these classes

from the controller, and also brings extensibility to

the architecture.

3. The view classes do not directly depend on the inner

model. The use cases are implemented in the main

application service. Using an observer design pat-

tern the execution information is displayed in real

time. This works this way not only for the graphical

user interface (GUI), but also for the command

Figure 2. Computational load and execution times of the 88 model optimizations. There are 22 models of each rate variation para-
meter. The pie graph represents the proportion of the execution times of the models including invariant sites (þI), rate variation among
sites (þG) or both (þIþG).

114 The International Journal of High Performance Computing Applications 28(1)

 at Kahramanmara Sutcu Imam on May 5, 2014hpc.sagepub.comDownloaded from 



console executions, both threaded and distributed.

In the distributed approach, only the root model is

in charge of the I/O operations, unless they mean

read/write data from/into scratch.

2.2. Shared memory implementation

The shared memory implementation of jModelTest relies

on a thread pool to handle the execution of tasks on shared

memory architectures. This approach is fully portable as it

relies on thread pools from the Java Concurrence API, pres-

ent in Java 1.5 and higher. Figure 4 and Algorithm 1 present

the shared memory parallel operation. The task queue con-

tains the whole set of tasks which will be processed by the

thread pool in a particular order (reverse complexity esti-

mate) (Figure 5(a)).

This multithreaded shared memory approach is espe-

cially suitable for the parallel execution of jModelTest2

on multicore desktop computers, benefiting also from the

availability of a GUI. However, it is limited by the number

of available cores in the system, and especially from the

memory consumption, directly proportional to the number

of cores being used.

2.3. Distributed memory implementation

In order to handle the computation of tasks on distributed

memory architectures (e.g. clusters), this implementation

manages processes, which rely on message-passing for

communication, and uses a dedicated distributor thread to

allocate the workload according to a dynamic distribution

strategy (Figure 5(b)).

The process synchronization is explicitly achieved

through message-passing blocking communication. The

models are sequentially distributed and gathered among

the processes through non-blocking communications.

Only the root process is in charge of I/O, centralizing the

displaying of runtime information and results. This central

management has a negligible impact on the whole perfor-

mance as long as there is no output during the model opti-

mization task, which is by far the most time-consuming

part of the model selection process. Every process works

with its own copy of the input alignment from scratch,

avoiding this way read or write conflicts. Figure 6 and

Algorithm 2 show the operation in a distributed memory

environment.

This approach saves the previous bottleneck with mem-

ory requirements. However, because each single task is

executed sequentially, the workload imbalance in the

model optimization tasks (see Figure 2) represents a new

bottleneck. In fact, in most cases half of the candidate mod-

els requires more than 80% of the total execution time. The

more computational resources are used, the more probably

is that the total execution time depends on the optimization

of a single model, the one which takes longer to optimize.

This way, looking at Figure 2 it can be seen that the max-

imum runtime of a single model optimization is 248 min-

utes. The total runtime of the dataset is 135 hours. Thus,

dividing the total runtime by the maximum single task run-

time we can estimate that the highest speedup achievable is

32.83, no matter how many processes are used. Although

this is a particular example, empirical tests show that the

workload imbalance usually leads to a maximum speedup

below 40 for these task-level parallel strategies.

Figure 3. High level design of jModelTest2.
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Speedupmax ¼
Runtime

Runtimemax

2.4. Parallel model optimization implementation

A detailed knowledge of the performance of the PhyML

parallel implementation is key for an optimal assignment

of resources (processor cores) for each model optimization

task. As the þG and þIþG models used to take four times

longer to optimize than the rest of the models, a proportion

of four-to-one in relative speedups would balance the work-

load for each task. However, since the parallel efficiency of

the PhyML parallel implementation is not optimal a trade-

off between the expected speedup and the available compu-

tational resources has to be considered.

PhyML uses the Maximum Likelihood algorithm (ML)

(Felsenstein, 1981) for finding the model parameters that

maximize the likelihood function. The likelihood evalua-

tion algorithm is the most time-consuming part of the

ML process, because it is executed for each new model

state proposal (i.e. after changing the parameters configura-

tion, the tree topology or the branch lengths). This likeli-

hood evaluation algorithm is highly parallelizable, since

it is a site-independent operation performed all along the

column patterns in the alignment. We have slightly chan-

ged the source code fixing unnecessary carried dependen-

cies in order to parallelize this loop using OpenMP.

Further than the source code analysis, the results of the par-

allel PhyML have been thoroughly validated. The sources

of this parallel patch are available from the authors.

Figure 8 shows the performance of this OpenMP-based

parallel PhyML version, where the scalability is notably

higher for models with rate variation among sites (þG).

In these models, the likelihood evaluation for each site is
Figure 4. Activity diagram for the shared memory parallel
operation algorithm.

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
Estimate workload per model;
Sort models in reverse complexity estimate;
begin Initialize parallel environment

Initialize thread pool;
Synchronize thread pool;

end

end

begin Tasks Computation // model optimization

build(task queue);
foreach model optimization task do

Wait for an idle thread;
Assign the next task to the thread;
Optimize model;

end

end

Algorithm 1. jModelTest algorithm for shared memory parallel model optimization.
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repeated for each different rate category (typically four

categories are used).

The parallel section here represents around 75% of

runtime for single category models and 98% of the total

execution time for models with rate variation among sites.

Amdahl’s law states an expected speedup of 2.91 and 7.02,

respectively, using 8 threads, and 3.36 and 12.31, respec-

tively, using 16 threads. However, there is a high parallel

overhead as long as the consumed execution time is caused

by a large number of sequential repetitions of the call to this

function and not so by the computational load of this loop

itself.

Looking at these results, it is important to select the best

ratio of resources allocated to þG and þIþG models

regarding non-gamma models. For example, a four-to-one

ratio is expected to balance the workload of the tasks for

four- and eight-core nodes. In addition, using a number

of threads that is a divisor of the number of available cores

per node will maximize the number ofþG andþIþGmod-

els that can be optimized in parallel. For example, an effi-

cient allocation rule for a cluster of 12-core nodes would be

the use of 4 or 6 threads for each gamma model (þG and

þIþG) and a single thread for the rest (uniform rates

and þI).

2.5. Hybrid shared/distributed memory
implementation

The performance limitations of the previous implementa-

tions can be solved using the previous parallel implementa-

tion of the basic task for avoiding workload imbalance, and

relying on a distributed memory approach to cope with

memory limitations, thus implementing a three-level hybrid

shared/distributed memory implementation (Figure 5(c)).

Figure 9 and Algorithm 3 show its operation in a hybrid

shared/distributed memory environment, such as a cluster

of multicore nodes. A single jModelTest process is exe-

cuted for each node, containing a custom thread pool

implementation that manages the tasks that are executed

within the node, and the number of cores allocated for each

task (i.e.the number of OpenMP threads used for the model

optimization task). This distribution, known as ‘‘thread

scheduling’’, allows different amounts of computational

resources to be assigned depending on the estimated

Figure 5. Parallel execution strategies in (a) shared memory, (b) distributed memory and (c) hybrid shared/distributed memory.
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Figure 6. Activity diagram for the distributed memory parallel operation algorithm.

118 The International Journal of High Performance Computing Applications 28(1)

 at Kahramanmara Sutcu Imam on May 5, 2014hpc.sagepub.comDownloaded from 



workload of each task. Therefore, the parallel efficiency is

maximized in the simplest models by using a reduced num-

ber of cores (one or two), while the heaviest tasks are split,

thus balancing the global workload.

Parallel synchronization between nodes is performed

using MPJ, as in the previous distributed memory version.

Each MPJ process uses a custom implementation of the

thread pool, where both tasks and cores per task are man-

aged. Thus, the model optimization tasks can be heteroge-

neously distributed among the total number of cores

within the node. The workload is decomposed relying

on our custom parallel PhyML version implemented with

OpenMP.

3. Performance evaluation

The performance of the three parallel algorithms for

model selection of jModelTest2 has been evaluated on two

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
if Master process then

Estimate workload per model;
Sort models in reverse complexity estimate;
build(task queue);

else
Wait for task;

end

end

begin Tasks Computation // model optimization

if Master process then
while There are active workers do

Wait for task request;
if Worker had a previous model then

Receive results from previous model;
Update execution progress;

end
if Task queue is not empty then

Send the next task to the requester worker;
else

Send termination message to the worker;
end

end

else
Send task request;
while There are tasks to execute do

Receive task;
Execute task;
Send task request;
Send previous task results;

end
Finalize;

end

end

Algorithm 2. jModelTest algorithm for distributed memory parallel model optimization.

Figure 7. Maximum reachable speedup using task-level
parallelization.
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representative HPC systems, a 40-core shared memory sys-

tem and a cluster of multicore nodes (44 nodes with 12

cores per node, hence 528 cores). The distributed memory

and the hybrid shared/distributed memory algorithm have

been evaluated in this latter system.

3.1. Data set configuration

The data sets used in the performance evaluation consist of

4 simulated multiple sequence alignments, covering a wide

range of number of sequences, from 12 to 91, and a wide

range of sites for each sequence, from 3000 to 33,148 (see

Table 2). The largest alignment, ALIGN1 (91 sequences of

33,148 sites), has the largest sequential runtime (5.65 days)

whereas the sequential execution time of the smallest one,

ALIGN4 (12 sequences of 5831 sites), is around 5 hours.

The calculation of the model likelihood scores requires

an initial phylogenetic tree (‘‘base’’ tree), generated using

likelihood estimation (ML) (Felsenstein, 1981). This algo-

rithm provides much more accurate results in the model

selection process in exchange of significantly higher run-

times than other algorithms such as BIONJ (Gascuel,

Figure 9. Activity diagram for the hybrid shared/distributed memory parallel operation algorithm.
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1997). ML estimation is NP-complete, while BIONJ has a

computational complexity of Oðn3Þ, where n is the number

of sequences.

The distribution of the tasks is limited by the maximum

number of substitution models to be computed, 88 in this

case, so it is not possible to take advantage from the use

of more than 88 processes. Moreover, the variability of the

runtimes across models has a significant impact on perfor-

mance as workload imbalance reduces the speedup and the

parallel efficiency obtained. Thus, Figure 2 presents the

overhead of the model likelihood calculation of ALIGN1

for each model type. In this case, when a small number

of models per processor is distributed the differences in

execution times can delay significantly the completion of

the parallel execution.

Furthermore, even the execution times of the optimiza-

tion of the models with the same parameters (e.g. ‘‘þI’’ and

‘‘þIþG’’ models) present significant variance. This char-

acteristic, together with the fact that their execution time

cannot be estimated a priori, contribute to the presence of

a performance bottleneck as the number of cores increases

(i.e. the fewer models per processor, the less probability the

work is balanced). In order to reduce this overhead a

Data: Execution parameters, input data, resource information
Result: Best-fit model
begin Application initialization // tasks initialization

build(model set);
if Master process then

Estimate workload per model;
Set the required threads per task;
Sort models in reverse complexity estimate;
build(task queue);

else
begin Initialize parallel environment

Initialize custom thread pool;
end
Wait for tasks;

end

end

begin Tasks Computation // model optimization

if Master process then
while There are active workers do

Receive task request and number of idle threads on the requester pool;
if Task queue is not empty then

Select the most complex task that requires at most the available threads;
Send the next task to the requester worker;

else
Send termination message to the worker;

end

end

else
while There are tasks to execute do

while There are idle threads do
Send task request and number of idle threads;
Receive task;
Execute task in parallel asynchronously;

end
Wait for idle threads;

end
Finalize;

end
Gather selection results at the Master process;

end

Algorithm 3. jModelTest algorithm for hybrid shared/distributed memory model optimization.

Table 2. Data sets used in the performance evaluation.

Name
Number of
sequences Length

Base
Tree

Sequential
runtime
(hh:mm:ss)

ALIGN1 91 33,148 ML 135:42:01
ALIGN2 40 4,203 ML 15:23:56
ALIGN3 40 3,200 ML 14:33:48
ALIGN4 12 5,831 ML 4:51:13
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heuristic, which consists of starting the optimization with the

most complexmodels, has been proposed. This approach has

reported more balanced executions as the main source of

imbalance, starting the computation of a complex model at

the end of the optimization process, is avoided.

However, the scalability using the shared and distributed

memory implementations is limited by the replacement

models with the largest execution time, which can account

for more than 80% of the overall runtime. In these cases,

the runtime is determined by the longest optimization, even

if the execution is prioritized efficiently using the proposed

heuristic for selecting the models to be optimized first.

3.2. Testbed configuration

The shared memory testbed is a system with 4 Westmere-

EX (Westmere-based EXpandable/multiprocessor) Intel

Xeon E7-4850@2.0 GHz 10-core processors (hence, 40

cores) and 512 GB memory. The OS is Linux Ubuntu

11.10 64 bits, the C compiler is gcc 4.6 and the JVM is

OpenJDK 1.6.0_23 64-bit Server VM.

The second testbed is a cluster of multicore nodes, used

for the evaluation of the distributed and hybrid shared/dis-

tributed memory implementation. This cluster is also a

Westmere-based system, Westmere-EP (Efficient Perfor-

mance), which consists of 44 nodes, each of them with 2

Intel Xeon X5675@3.06 GHz hexa-core processors (hence

12 cores per node, 528 cores in the cluster) and 24 GB of

RAM (1104 GB of RAM in the cluster). The interconnec-

tion networks are InfiniBand (DDR 4X: 16 Gbps of maxi-

mum theoretical bandwidth), with OFED driver 1.5.3, and

Gigabit Ethernet (1 Gbps). The OS is Linux CentOS 5.3,

the C compiler is gcc 4.6, the JVM is Oracle 1.6.0_23, and

the Java message-passing library is FastMPJ 1.0b.

The performance metrics considered in this performance

evaluation are the execution time and its associated speedup,

defined as SpeedupðnÞ ¼ Tseq=Tn, where Tseq is the runtime

of the sequential execution of jModelTest2, and Tn the

time measured when using n cores. Another metric consid-

ered is the parallel efficiency, defined as EfficiencyðnÞ ¼
SpeedupðnÞ=n, which is 100% in the case of a linear

speedup (speedup of n when using n cores) and is close to

0% in case of highly inefficient parallel executions.

3.3. Evaluation of the shared memory algorithm

Figure 10 and Table 3 present, respectively, the speedups

and execution times obtained using the shared memory

implementation in the 40-core Westmere-EX shared mem-

ory system. In this scenario the speedup is close to the ideal

case (i.e. obtaining speedups around n with n cores), espe-

cially using up to 24 threads. The use of a higher number of

threads (32 and 40) results in workload imbalance due to

the reduced number of models optimized per thread, which

makes it more difficult to balance the workload even with

this dynamic distribution.

The processors of this testbed have simultaneous multi-

threading (SMT) or hyperthreading, whose activation allows

to run 80 threads simultaneously on 40 physical cores (two

threads per physical core). However, the use of more than

40 threads in this evaluation has not reported any benefit

as the workload imbalance limits the scalability. In fact, the

speedups obtained from running 64 and 80 threads (not

shown for clarity purposes) are slightly lower than running

40 threads due to the higher overhead of executing twice the

number of model optimization tasks, which burdens memory

access performance and OS thread scheduling. This result

would seem questionable as Intel has reported that hyper-

threading can provide up to 30% higher performance and

indeed we reported such a performance benefit in our previ-

ous work on an 8-core system (Darriba et al., 2011a). Nev-

ertheless, there is no contradiction as hyperthreading

increases jModelTest2 shared memory scalability when an

increment in the number of threads improves the workload

balance, such as running on an 8-core system, whereas it

does not yield any benefit when using 40 or more cores.

3.4. Evaluation of the distributed memory algorithm

The distributed memory implementation of jModelTest2

has been evaluated on the Westmere-EP cluster, showing
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Figure 10. Scalability of the shared memory version (40-core
Westmere-EX testbed).

Table 3. Execution times (hh:mm:ss) in a shared memory system
(40-core Westmere-EX testbed).

Threads ALIGN1 ALIGN2 ALIGN3 ALIGN4

1 135:42:01 15:23:56 14:33:48 04:51:13
2 66:11:01 07:39:52 07:45:53 02:37:45
4 34:14:08 03:56:18 03:43:59 01:17:28
8 17:39:16 02:16:03 01:52:30 00:38:01
12 12:10:04 01:20:03 01:17:56 00:27:40
16 09:31:29 01:02:39 01:02:13 00:24:02
24 06:19:31 00:42:45 00:47:34 00:11:57
32 05:36:53 00:38:21 00:41:11 00:10:33
40 04:49:08 00:37:08 00:38:27 00:09:02

122 The International Journal of High Performance Computing Applications 28(1)

 at Kahramanmara Sutcu Imam on May 5, 2014hpc.sagepub.comDownloaded from 



the measured execution times and the associated speedups

in Figure 11 and Table 4, respectively. In this testbed the

sequential execution time is around 15–25% faster than

on the Westmere-EX system, an expected result according

to their respective computational power, measured in terms

of the SPEC CPU floating point CFP2006 benchmark (the

optimization of models is intensive in floating point opera-

tions). Thus, a single core from the Westmere-EX system

obtains a result of 49.6 in the CFP2006 whereas a single

core from the Westmere-EP system achieves a result of

60.3, a 22% higher.

This implementation distributes the workload among the

available message-passing processes, using up to 88 pro-

cesses, the maximum number of models to be optimized

and running each process in a single core. In this testbed the

particular allocation of processes among the cluster nodes

has a negligible impact on performance (< 0:1% runtime

overhead) due to the computationally intensive nature of

the application with respect to the communications

required (ML optimization accounts for nearly all of the

execution time). In this performance evaluation the pro-

cesses have been distributed among the cluster nodes using

a fill-up allocation rule, minimizing the number of nodes by

using the 12 cores available per node (e.g. the execution

using 88 processes has distributed 12 processes per node

across 7 nodes, and 4 processes in the eighth node).

The workload imbalance presented in the evaluated data

sets (22 out of 88 tasks optimizing the most complex mod-

els accounts for approximately 50% of the total runtime and

44 out of 88 tasks require more than 80% of the total run-

time, as shown in Figure 2) imposes an upper bound in the

scalability, limiting the measured speedups to around 30, as

for the shared memory implementation. Thus, distributing a

small number of models per process severely limits the load

balancing benefits, as it is not possible to take advantage of

the spare computational power available once a process

finishes its task processing and the task queue is empty.

In fact, little performance benefits are obtained when using

more than 32 processes, the speedups using 32 processes

are around 25 (78% parallel efficiency), whereas the speed-

ups using 88 processes are around 30 (34%), the use of 56

additional processes (a 175% resources increase, from 32

up to 88 cores) hardly improves speedups (20% higher,

from 25 to 30). When using more than 32 cores most of the

processes only compute a single model and finish working

earlier than the longest running model, which is the one that

determines the overall runtime (and, hence, the speedup) in

these scenarios.

3.5. Evaluation of the hybrid shared/distributed
algorithm

The limitations of the shared and distributed memory

implementations of jModelTest2 have motivated the devel-

opment of a more scalable implementation based on the

decomposition of the model optimization among multiple

threads (see Section 2.4). This decomposition depends on

the allocated resources, the number of available cores per

node and the computational cost of each model optimiza-

tion. Thus, the longest running model computations, such

as the gamma models (þG and þIþG), are split among

multiple threads whereas the lightest ones are executed

by one or two threads. The final objective is to achieve the

workload balance among all of the involved processes.

Thus, this new implementation is able to take advantage

of hybrid shared/distributed memory architectures, such

as clusters of multicore nodes, without compromising sig-

nificantly its efficiency.

This new implementation of jModelTest2 has been eval-

uated on the Westmere-EP cluster, where each node has 12

physical cores and can run up to 24 simultaneous threads

thanks to hyperthreading. The measured execution times

and the associated speedups are shown in Figure 12 and

Table 5, respectively. The experimental results have been

obtained using 12 threads per node for executions from

192 up to 480 threads, thus 16, 24, 33 and 40 nodes have

been used for executions on 192, 288, 396 and 480 threads,

respectively. The performance results using 40 threads (4

nodes) and 88 threads (8 nodes) are also shown for com-

parative purposes against the results of the shared and dis-

tributed memory versions, evaluated using up to 40 and 88

cores, respectively. Here the resources allocated for each

type of model (i.e. uniform, þI, þG or þIþG) are selected
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Figure 11. Scalability of the distributed memory version
(Westmere-EP testbed).

Table 4. Execution times (hh:mm:ss) of the distributed memory
implementation (Westmere-EP testbed).

Threads ALIGN1 ALIGN2 ALIGN3 ALIGN4

1 100:11:08 12:53:56 12:36:04 04:01:50
12 09:25:32 01:05:50 01:03:29 00:21:34
16 08:51:50 00:49:56 00:49:47 00:16:58
22 06:11:03 00:45:38 00:46:15 00:15:39
32 04:03:22 00:27:44 00:32:50 00:09:38
44 04:11:06 00:32:05 00:34:47 00:09:03
64 04:19:04 00:25:41 00:24:31 00:08:47
88 03:30:02 00:26:36 00:25:31 00:07:49
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depending on the number of total resources. For example,

an execution with 4 nodes and 12 threads per node would

use 4 threads for each gamma model (þG and þIþG) and

a single thread for the rest.

This benchmarking has also taken into account the eva-

luation of the impact of hyperthreading in the performance

of this new implementation. Thus, the executions with 576,

696 and 792 threads have used 32 nodes Â 18 threads per

node, 29 nodes Â 24 threads per node and 44 nodes Â 18

threads per node, respectively. The main conclusion

derived from the analysis of these performance results is

that jModelTest2 takes advantage of hyperthreading, both

running the maximum number of simultaneous threads per

node (24) or sharing half of the physical cores (18 threads

running on 12 physical cores).

The analysis of the results shows that this implementa-

tion achieves significantly higher scalability, speedups

around 230, in the range 203–257, which is the result of

multiplying the scalability of the distributed memory pro-

cessing (speedups around 30) by the scalability obtained

by the parallel execution of the optimization of the models

(speedups up to 8). In fact, this multilevel parallel imple-

mentation increases 8 times jModelTest2 performance,

that is to say, its performance benefits are equivalent to

the scalability obtained from the parallelization of the

model optimization.

4. Conclusions

A popular tool for the statistical selection of models of DNA

substitution is jModelTest, a sequential Java application that

requires vast computational resources, especially CPU

hours, which has motivated the development of its parallel

implementation (jModelTest2, distributed under a GPL

license at http://code.google.com/jmodeltest2). This paper

presents its three parallel execution strategies: (1) a shared

memory multithread GUI-based desktop version; (2) a dis-

tributed memory cluster-based version with workload distri-

bution through message-passing; and (3) a multilevel hybrid

shared/distributed memory version that distributes the com-

putation of the likelihood estimation task across cluster

nodes while taking advantage, through a thread-based paral-

lelization, of the multiple cores available within each node.

The performance evaluation of these three strategies has

shown that the hybrid shared/distributed memory imple-

mentation of jModelTest2 presents significantly higher

performance and scalability than the shared and distributed

memory versions, overcoming their limitations that force

their execution using only up to 32–40 cores. Thus, the new

implementation can take advantage efficiently of the use of

up to several hundreds of cores. The observed parallel effi-

ciencies are around 38–49%, with speedups in the range

203–257 on 528 physical cores. This performance has been

obtained thanks to the workload balance provided by the

thread-based decomposition of the most costly model opti-

mization tasks.

The shared memory implementation of jModelTest2

provides scalable performance although generally up to

40 threads. Nowadays this limitation is becoming more and

more important as the number of available cores per system

continues increasing, especially with the advent of many-

core processors which definitely demand further workload

decomposition in jModelTest2.

The distributed memory implementation shows similar

performance results as the shared memory version despite

supporting distributed memory architectures with hundreds

of cores. In fact, using more than 32 cores results in highly

inefficient scalability gains due to the significant workload

imbalance present in jModelTest2. However, this solution

avoid memory limitations with large input data.

The hybrid shared/distributed memory implementation

provides a three-level parallelism avoiding memory limita-

tion as the previous strategy while using a heterogeneous

computational resource distribution in order to achieve a bet-

ter load balancing. Although there is a high overhead in the

parallel execution of each task, this strategy homogenizes

the task execution times, thus balancing the workload.
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ABSTRACT

Summary: The selection of models of nucleotide substitution is one of

the major steps of modern phylogenetic analysis. Different tools exist

to accomplish this task, among which jModelTest 2 (jMT2) is one of

the most popular. Still, to deal with large DNA alignments with hun-

dreds or thousands of loci, users of jMT2 need to have access to High

Performance Computing clusters, including installation and configur-

ation capabilities, conditions not always met. Here we present jmodel-

test.org, a novel web server for the transparent execution of jMT2

across different platforms and for a wide range of users. Its main

benefit is straightforward execution, avoiding any configuration/execu-

tion issues, and reducing significantly in most cases the time required

to complete the analysis.

Availability and implementation: jmodeltest.org is accessible using

modern browsers, such as Firefox, Chrome, Opera, Safari and IE from

http://jmodeltest.org. User registration is not mandatory, but users

wanting to have additional functionalities, like access to previous ana-

lyses, have the possibility of opening a user account.

Contact: info@jmodeltest.org

Received on November 18, 2013; revised on January 8, 2014;

accepted on January 14, 2014

1 INTRODUCTION

The statistical selection of best-fit models of nucleotide substitu-

tion is relevant for the phylogenetic analysis of DNA sequence

alignments (Sullivan and Joyce, 2005). With the advent of next-

generation sequencing (NGS) technologies, many researches are

moving from phylogenetics to phylogenomics, in which large
sequence alignments typically include hundreds or thousands

of loci. Phylogenetic resources, therefore, need to be adapted

to a high-performance computing paradigm so as to allow de-

manding analyses. To keep up with the increasing availability of
genome-wide data, jModelTest 2 (jMT2) (Darriba et al., 2012)

was recently developed to profit from technical optimizations

and parallel computing. jMT2 uses PhyML (Guindon and

Gascuel, 2003) to obtain maximum likelihood estimates of

model parameters, and implements different statistical criteria
for model selection including hierarchical and dynamical likeli-

hood ratio tests, Akaike’s and Bayesian information criteria

(AIC and BIC) and a performance-based decision theory

method (Posada and Buckley, 2004). jMT2 can take advantage
of high-performance computing (HPC) environments, such as

supercomputers and clusters. However, execution in HPC envir-

onments is not trivial: (i) installing, configuring and optimizing
parallel software are generally cumbersome for non-HPC ex-

perts, (ii) access to HPC resources generally implies long waiting
times or at least significant variability in the response time

and (iii) it is difficult to estimate in advance the computational
resources needed.

To overcome these limitations, we introduce jmodeltest.org, a
web service for executing jMT2 transparently on HPC infrastruc-

tures. jmodeltest.org can distribute jMT2 jobs across multiple
public or private clouds, such as Amazon Web Services (AWS)

EC2, adopting optimal HPC configurations. jmodeltest.org con-
siders the available resources at each site to minimize execution
times and scales the resources up and down depending on the

workload. Such an ‘easy’ access to HPC resources will allow
users to focus more on their research rather than on secondary

tasks like resource provision, installation, configuration, execu-
tion and optimization of parallel environments.

2 IMPLEMENTATION

jmodeltest.org has been implemented as a web interface for

jMT2, plus a task manager. The web interface captures input
data and parameters, whereas the task manager divides

jMT2 jobs in different subtasks, one per substitution model.
jmodeltest.org looks for infrastructures, which are ready to exe-

cute these subtasks immediately. Currently, jmodeltest.org jobs
will run in private clouds at the University of Vigo and

University of A Coruña, and occasionally at the Galicia
Supercomputing Center (CESGA) and Amazon WS EC2

public clouds. When the server workload exceeds the available
capacity of the private clouds, resources are requested from the

public clouds. The technologies behind jmodeltest.org are
Tomcat for the web interface, MySQL for handling subtasks,

DRMAA for executing tasks on remote servers and
StarCluster (http://star.mit.edu/cluster/) for managing Amazon

WS EC2 resources.
Because the tasks are split, jmodeltest.org is able to start large

analyses without having yet assigned computational resources

for the whole job. Subtasks are sent to the different computa-
tional resources through Distributed Resource Management

Application API (DRMAA), a high-level Open Grid Forum
API specification for the submission and control of jobs to a

Distributed Resource Management (DRM) system, such as a
Cluster or a Grid computing infrastructure. As the job manager

is not aware of the resources required to run a particular task, it*To whom correspondence should be addressed.
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will start submitting 1h jobs with 1 GB of memory. This way,
cloud schedulers will allocate resources faster. In case these initial
requests are not enough, subsequent submissions will double
either the time and/or the amount of memory. To save resources,

jmodeltest.org implements a check-pointing mechanism using
Distributed Multi-Threaded Check-Pointing (DMTCP).
Furthermore, users will be able use their own computational

resources when running jmodeltest.org. The only requirement is
that these machines have a resource manager (i.e. SGE, Torque,
SLURM) with proper user permissions. After this, the user just

needs to register this resource in jmodeltest.org. Only the user
who registered the resource will be able to execute jmodeltest.org
jobs on it. Communications with the added resource are secured

through a public RSA key 1024 bits. Finally, we are working on
a new feature that will allow users to request exclusive access to
prepaid AWS EC2 resources for accelerating the jobs.

3 FUNCIONALITY

jmodeltest.org was designed to be completely transparent to the
user, who does not need to install, configure or update anything,
nor specifying the resources needed in a shared resources infra-

structure, like the number of cores or user permissions. jmodel-
test.org is accessible through any web browser. Users can login
anonymously or register. If the login is anonymous, analyses are

executed within a web session, until the browser is closed or there
is a long inactivity period, losing any resulting jobs. When access
occurs through a user account, job settings and results are kept in

the server, and registered users can recover these at any time.
This can be particularly interesting when analysing large
datasets, avoiding accidental interruptions. The user account
can be accessed multiple times and from multiple devices.

Moreover, jmodeltest.org helps users to monitor their jobs, dis-
playing information about their current state (‘initializing’,
‘running’, ‘done’) and resources consumed (CPU time). Once

the job is completed, the user can output, view, download or
delete the results. By default, jmodeltest.org limits the CPU
time granted per user to (currently) 500 CPU hours. The web

service includes documentation, example files, support tickets
and a FAQ section.

4 PERFORMANCE

For benchmarking, we submitted five representative datasets to
jmodeltest.org. We recorded the time to complete the likelihood
calculations, by far the most intensive task, for 88 models using

default settings, for (i) the serial version of jMT2 running in a
single core, (ii) the parallel version of jMT2 running on 2, 4, 8
and 16 cores on a shared resource and (iii) jmodeltest.org running
on backend private clouds and public cloud providers (CESGA

and AWS), without waiting for resources and virtually running

all tasks in parallel. Figure 1 presents the resulting execution

times, taking into account both queuing time and runtime. The

queuing time increased with the number of cores requested, redu-

cing significantly the benefits of using the parallel version on a

shared resource. Here jmodeltest.org performed best, as it has

multiple resources and can virtually run all the tasks in parallel.
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From jModelTest.org main page, you can log in with a user account (created

under the Register label) or use the anonymous log in. In such a case, the privacy

of the data is maintained until log out, removing all data and results at that time

(Figure 4.1).

Figure 4.1: jModelTest.org login screen

For submitting a new job, the first task is to select the Multiple Sequence

Alignment (Figure 4.2). Name the job 1 and load an input alignment file 2 (with

ALN, FASTA, GDE, MSF, NEXUS, PHYLIP and PIR formats). Three sample

alignment files are provided for testing purposes 3.

Figure 4.2: jModelTest.org MSA input
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Next, fill in the execution options (Figure 4.3). The information about each

parameter is self contained. After job submission, the user will be notified about

it, as well as important status changes (task finishes or unexpectedly stops).

Figure 4.3: jModelTest.org execution options
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Finally, the user can check out the status of the submitted jobs 2 at the ”view

all jobs” submenu 1 (Figure 4.4). The job status is shown with an icon and also a

color code:

Figure 4.4: jModelTest.org running status
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Supplementary Table 1 | New features in jModelTest 2. jModelTest 2 implements a number of new features that facilitate model selection among more models and for large data sets.  

New feature Description 
1. Exhaustive 

GTR 
submodels 

All the 203 different partitions of the GTR rate matrix1 can be included in the candidate set of models. When combined with rate variation (+I,+G, +I+G) and equal/unequal  base frequencies the total number of possible models is 203 × 8 = 1624.  
2. Hill-climbing 

hierarchical 
clustering 

Calculating the likelihood score for a large number of models can be extremely time-consuming. This hill-climbing algorithm implements a hierarchical clustering to search for the best-fit models within the full set of 1624 models, but optimizing at most 288 models while maintaining model selection accuracy.  
3. Heuristic 

filtering 
Heuristic reduction of the candidate models set based on a similarity filtering threshold among the GTR rates and the estimates of among-site rate variation.  

4. Absolute 
model fit 

Information criterion distances can be calculated for the best-fit model against the unconstrained multinomial model (based on site pattern frequencies)2. This is computed by default when the alignment does not contain missing data/ambiguities, but can also be approximated otherwise.  
5. High 

Performance 
Computing 

Model selection can be executed in parallel in multicore desktop machines and in HPC clusters achieving large speedups.  
6. Topological 

summaries 
Tree topologies supported by the different candidate models are summarized in the html log, including confidence intervals constructed from cumulative models weights, plus Robinson-Foulds3 and Euclidean distances to the best-fit model tree.  

7. Alignment 
sample size 

The alignment sample size used for the AICc and BIC frameworks can be calculated according to alignment length (L) as before, but also as the number of variable sites, L × the number of sequences (N), Shannon entropy and Normalized Shannon entropy multiplied by N × L.  
8. User-friendly 

HTML log 
The results of the model selection can be displayed in html format including maximum likelihood trees derived from each model and linked to http://www.phylowidget.org4 for graphical depiction. 
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Supplementary Table 2 | Model selection accuracy. Model selection accuracy was defined as the number of times the best-fit model selected by jModelTest 2 was the generating model. In case these models differed, we kept track of which components of the generating model were identified correctly (base frequencies, partition, rate variation among sites). In this table we show the model selection accuracy (%) across 10,000 data sets. Num Params refers to the mean number of parameters of the best-fit models. Full Model refers to the number of times the exact generating model was selected as the best-fit model. Partition refers to the number of times the structure of the R-matrix was correctly identified. Rate 
Variation refers to the number of times the rate variation parameter combinations (+I, +G, +I+G) were correctly identified.   

Criterion Num 
Params 

Full 
Model 

Partition Rate 
Variation 

AIC 5.62 62.36 70.64 93.11 
BIC 4.99 89.34 89.87 99.29 
DT 4.99 89.30 89.94 99.27   
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Supplementary Table 3 | Mean square errors for model averaged 
estimates. To obtain the MSEs, and because the generating model and the best-fit model can differ, we did not consider every case for every parameter. For the base frequencies, transition/transversion ratio and R-matrix we considered all cases (see Supplementary Note 3). For the proportion of invariable sites in +I models (p-invI) we considered only cases where the generating model was M (p-
inv=0) or M+I (p-inv = simulated). For the proportion of invariable sites in +I+G models (p-invIG) we considered only cases where the generating model was M+I+G (p-inv = simulated). For the alpha shape of the gamma rate variation among sites in M+G models (alphaG) we considered only cases where the generating model was M+G (alpha = simulated). For the alpha shape of the gamma rate variation among sites in M+I+G models (alphaIG) we considered only cases where the generating model was M+I+G (p-inv = simulated).                    
 
 

Parameter MSE (AIC) MSE (BIC)
fA 0.01 0.01 
fC 0.01 0.01 
fG 0.01 0.01 
fT 0.01 0.01 
titv 0.88 0.75 
Ra 3.93 2.46 
Rb 13.46 12.03 
Rc 6.12 10.95 
Rd 4.92 3.26 
Re 6.16 5.38 
p-invI 0.83 0.83 
p-invIG 0.02 0.02 
alphaG 0.09 0.09 
alphaIG 0.14 0.14 
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Supplementary Note 1 | Hill-climbing hierarchical clustering algorithm. Models of DNA substitution are defined by a rate matrix R, which describes the rate at which nucleotides of one type change into another type (e.g., rij  for i ≠ j), is the rate at which base i goes to base j. Because the models are most of the time assumed time reversible for tractability, this rate matrix is in practice always symmetrical. Therefore, we can define the rate matrix just in terms of the upper triangular matrix as a vector of 6 rates (rAC, rAG, rAT, rCG, rCT, rGT). Note that we assume all rates are relative to rGT, which is set to 1.0. We can reduce the number of free parameters further forcing several of these rates to be the same. For example, we could assume the same rate for the two types of transitions (rAG = 
rCT). An easy way to label these partitions (i.e., the set of constraints) is indicating with 6 digits which rates are forced to be identical. For example, the JC5 model has the partition 000000, where all the 6 rates among the 4 nucleotides are identical, while the GTR or SYM6 models have the partition 012345, where all 6 rates are different. How many partitions are in between? The number of ways in which we can subdivide n elements into (non-empty) groups is given by the Bell numbers, B(n), which in turn is the sum from k = 1 to k = n of the number of ways to partition a set of n elements into k (non-empty) groups, which is given by the Stirling numbers of the second kind, S(n,k):  
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 Accordingly, the R-matrix can be partitioned in B(3) = 203 different ways. For each R-matrix we can build 8 different models depending on the rate variation parameters (i.e., +I, +G and +I+G models) and whether we considered equal/unequal frequencies. Therefore, the total number of possible time reversible models is 203 × 8 = 1624. Indeed, the exhaustive computation of so many models is only feasible for small alignments or when computer power is not a problem.  To alleviate this situation, we have implemented a simple, greedy hill climbing heuristic to search for the best-fit model in large candidate sets of models (up to 1624) without evaluating all of them (i.e., avoiding an exhaustive search). The algorithm is as follows:  1. Start with n = 6 and k = 6. There is only a single partition (012345) that fits this condition.  2. Select the best-fit model, Mcurrent_best, according to the chosen information-theoretic criterion (AIC, AICc or BIC). 3. Set k = k – 1. 4. Define a new set of models by exploring all possible merges of two groups into a single group. 5. Select the best-fit model, Mbest_merge, from this set. 
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6. If Mcurrent_best has a better AIC/AICc/BIC score than Mbest_merge, stop, otherwise continue 7. Set Mcurrent_best = Mbest_merge  8. Update the number of elements (n = n – 1).  9. Repeat from step 3 until the algorithm finds a local maxima or k = 1.  Note that in fact we are travelling in diagonal through the Stirling numbers of the second kind pyramid (Fig. S1), evaluating models only at those stages where k = (n-1) for n = 1…6.   

 
 

Figure S1 | Stirling numbers of the second kind. The rows sum to the nth Bell number (e.g., 203 for n = 6). The squared numbers represent the stages of our hierarchical clustering algorithm. As long as our algorithm moves forward, the number of elements and groups are reduced by one until there is a single group.  
 
 In this heuristic the number of model partitions evaluated goes from a minimum of  1 to a maximum of 36 (i.e., up to 36 x 8 = 288 different models). Because, as any heuristic, this algorithm can get stuck in local optima, we have evaluated its performance analyzing 2,000 simulated alignments (as in Supplementary Note 
3 but considering all possible 203 R-matrices). In this case, our heuristic finds the same model as the exhaustive search 95% of the time. Note that a very similar heuristic to find model partitions across multigene data sets has just been developed7.  
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Supplementary Note 2 | Heuristic filtering. For very large alignments, even the computation of the likelihood of the 88 standard models implemented in the previous version of jModelTest can take a long time. We have developed a second heuristic to find the best-fit model without evaluating all candidate models. The basic idea is that model selection can be somewhat predicted from the most complex model. Our strategy attempts to significantly reduce the number of candidate models evaluated paying attention to the GTR+I+G rate matrix and the base frequencies estimates. For example, if the maximum likelihood estimates of the transition and transversion rates are very different and the likelihood score is low enough (so we expect noticeable likelihood differences among models), one could obviate the evaluation of a simple model like JC.  We perform the filtering process in three main steps: (1) look at the rate matrix, where different enough rates will imply that models with equal rates will be excluded; (2) look at the base frequencies, where different enough frequencies will imply that models with equal base frequencies will be excluded; and (3) look at the among-site rate variation, where small p-inv or alpha estimates will imply that only site-homogeneous models will be considered.         To decide what can be considered different enough we defined a filtering 
threshold (δ). A higher δ means a larger model set and a smaller probability if getting trapped in local optima (i.e., the model selected is not the best one according to the selection criterion). On the other hand, a lower δmeans more possibilities of selecting the optimal model but less computational load. Although accurate among-site rate variation filtering should be presumably implemented from the GTR+I or GTR+G models, we prefer to use a single model (GTR+I+G) for every dataset. Because these two rate variation parameters (alpha and pinv)  try to model the same thing, a proportion of invariable sites could be theoretically ‘converted’ into gamma rate variation in the +I+G model. Therefore, we use the two thresholds just described for excluding models at this step. Once the filtering is completed, we will obtain a set of excluded models that it is not necessary  to optimize. The whole heuristic is as follows:  1. Optimize the GTR+I+G model, obtaining maximum likelihood estimates of the R-matrix (to facilitate notation rAC, rAG, rAT, rCG, rCT and rGT will be referred here as r1, r2, r3, r4, r5 and r6, respectively), base frequencies (π1, 

π2, π3 and π4), the proportion of invariant sites (pinv = ρ) and the alpha shape of the gamma distribution (alpha = α) estimates. 2. Set up a filtering threshold δ ∈ ℜ > 0 3. If the standard deviation of the rates ri is high enough (σ > 1.0) standardize them to a z-score: zi =(ri −ri )/σ ri
 4. Calculate the pairwise differences between every pair of rates 

Dij = zi − z j
 5. If Dij > δ, all models with equal i and j rates will be ignored during the selection process. One special case is for the transition rates (r2 and 

r5) , where the rates are known to be higher than the transversion rates. Therefore in this case we use a more stringent threshold, D25 > 2δ. 
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6. Check whether  min π1 ,π2 ,π3 ,π4( )max π1 ,π2 ,π3 ,π 4( ) <  1−δ( ) 7. In this case, all models with equal frequencies are ignored. 8. Define a gamma shape threshold αmin ∈ ℜ (αm should be big enough, e.g., αm = 50). 9. If α < αmin filter out all +G and +I+G models from the candidate set  10. Let ρmin ∈ ℜ and αmax ∈ ℜ, where ρmin is the minimum ρ and αmax the maximum α. Then +I models will be excluded if ρ < ρmin and α > αmax. Note that αmax is not expected to be as big as αmin, but the higher it is, the less probably is to exclude the best-fit model.  In addition, our empirical analysis also showed that the effectiveness of this heuristic depends on the ‘complexity’ of the input data, which is reflected in the likelihood score. For simpler data sets the likelihood is smaller, and the number of parameters become more decisive, favoring the selection of simpler models. However, in this case the reduction of the candidate models set is also less important since the execution times will also be smaller. Fig. S2 shows the heuristic accuracy as a function of the likelihood score across 4,000 alignments sampled from the 10,000 simulated.  

 
Figure S2 | Likelihood score and heuristic performance. The figure shows the percentage of best-fit models identified during the exhaustive search wrongly filtered out (1 - heuristic accuracy) from the candidate model set in function of the likelihood of the GTR+I+G model for a fixed filtering threshold.  Since it is difficult for the user to estimate a priori the likelihood of the models, we aimed to find some kind of general “threshold tuning” that depends on the likelihood score of the GTR+I+G model and guarantees a similar trade-off between the accuracy of the heuristic and the computational savings to that depicted in Fig. 1 independently of the particular data set. Using logarithmic interpolation we arrived to the following function:  

f (x)= t −5ln(x −1)+6ln(151)−1ln(1)ln(151)− ln(1)   where t is the user-defined filtering threshold and x is the -lnL of the GTR+I+G model for the specific data set divided by 1000. 
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Supplementary Note 3 | Simulations from prior distributions. We simulated 10,000 nucleotide sequence alignments with 40 sequences and 2500 bp each. In order to consider a variety of simulation scenarios we first sampled model parameters and random trees from different statistical distributions using R8.  Then, we used Seq-Gen9 to simulate the DNA sequences accordingly and analyzed them with jModelTest 2. We considered 4 model families: without rate variation (M), with a proportion of invariable sites (M+I), with gamma rate variation among sites (+G), and with both a proportion of invariable sites and gamma rate variation among sites (+I+G). The simulation pipeline was repeated 2,500 times for each model family in turn:  1. Select at random one of the 22 possible models implemented in jModelTest 2 for the given family according to a Uniform distribution U(0,21).  2. Assign parameter values according to the model predefined structure: 2.1. The base frequencies (ACGT) are set to 0.25 or sampled from a Dirichlet distribution D(1.0,1.0,1.0,1.0). 2.2. The transition/Transversion rate comes from a Gamma distribution G(2,1) truncated between 2 and 10 2.3. The R-matrix parameters are sampled from a Dirichlet distribution D(6,16,2,8,20,4) scaled with the last rate. 2.4. The gamma shape for rate variation among sites comes from an Exponential distribution E(2) truncated between 0.5 and 5. 2.5. The proportion of invariable sites is sampled from a Beta distribution B(1,3) truncated between 0.2 and 0.8.  3. Generate a random non-ultrametric rooted tree: 3.1. We used the function rtree from the ape R package10 (this works splitting randomly the edges) with branches according to a Exponential distribution E(1,10).  3.2. Total tree length was scaled so the tree length was uniformly distributed in the U[2, 12] interval.  4. Simulate a sequence alignment using the parameter values sampled and the simulated tree using SeqGen9.  5. Analyze this dataset using jModelTest 2: select the best-fit model under the AIC, BIC and DT criteria and obtain model-averaged parameter estimates.   
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Supplementary Note 4 | Speed-up benchmark on real and simulated 
datasets. We analyzed several real data sets in order to benchmark the speed-ups obtained with jModelTest 2:  

Dataset Organism Genes NumSeq Length  Reference 
A HIV-1 polimerase 8 3009 http://www.hiv.lanl.gov/ 
B HIV-1 whole genome 138 10693 http://www.hiv.lanl.gov/ 
C Yeast 106 genes 8 127060 Rokas et al. (2003) 
D simulated -- 40 500 Guindon and Gascuel (2003) 
E simulated -- 100 500 Guindon and Gascuel (2003)  Datasets A and B are trimmed alignments initially downloaded from http://www.hiv.lanl.gov/.  Dataset C was provided by Antonis Rokas11. Datasets D and E are two alignments already used for benchmarking Phyml_ENREF_1112, and can be downloaded from http://www.atgc-montpellier.fr/phyml/datasets.php.   The threaded version of jModelTest 2 was executed on CESGA’s SVG nodes with 2 AMD Opteron Processors 6174@2.2GHz (2x12 cores, hence 24 cores) and 32GB memory. The MPI-based version of jModelTest 2 was executed on 8 Xeon nodes with 2 Intel Xeon E5420@2.50GHz per node (2x4 cores, hence 8 cores per node) and 16GB memory. These nodes are interconnected via 10 Gigabit Ethernet. The hybrid multithread/MPI-based implementation was executed in a public cloud infrastructure, in 32 Amazon EC2 cluster compute instances (23 GB memory, 33.5 EC2 Compute Units and Linux OS), with two Intel Xeon X5570 quad-core Nehalem processors each instance, hence 8 cores per virtual machine. These systems are interconnected via 10 Gigabit Ethernet, which is the differential characteristic of this resource. In fact, this EC2 instance type has been specifically designed for HPC applications and other demanding latency-bound applications. According to Amazon one EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.  In the shared memory architecture with 24 cores, the scalability of the multithreaded implementation was almost linear with up to 8 threads, but also scaled well with 24 threads (Fig. S3a). In a cluster –distributed memory– the MPI-based application scaled well up to 32 processes, especially for the largest data sets (Fig. S3b). Here, the fact that some models can be optimized much more faster than others –especially when they do not include rate variation among sites–, posed a theoretical limit to the scalability. This problem was circumvented when we implemented a hybrid multithread/MPI-based approach –shared and distributed memory–, executed on Amazon EC2 cloud, which resulted in speedups of 182-211 with 256 processes even for the most complex cases (Fig. S3c). For relatively large alignments here (e.g., 138 sequences and 10,693 sites) this could be equivalent to a reduction of the running time from near 8 days to around 1 hour.   
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Figure S3. Scalability of jModelTest 2 with real and simulated data. The x-axis represents the number of parallel processes used in executions, and the y-axis represents the speedup regarding the sequential execution. n is the number of taxa and l is the alignment length.  In addition, we ran additional simulated datasets with up to 100 taxa and 10,000 sites on a different testbed. With shared memory (Fig. S4a), jModelTest 2 showed an almost linear speedup up to 8 threads (1 per core). When enabling hyperthreading (12 or 16 threads on 8 physical cores) the scaling-up was less pronounced. With distributed memory (Fig. S4b), the scalability was even better, reaching some saturation with 64 processes, mainly due to the serialized execution of each model optimization and the workload imbalance between models. As the 22 +G models represent around 80% of the total execution time, it is expected a theoretical limit 40X speedup in most cases. The hybrid memory version brings a more fine grain parallelism, and therefore overcomes the previous scalability limit (Fig. S4c). Those tests with higher computational load reached up to 130X speedup, while the lightest ones showed reduced efficiency due to the low computational load per process, making the parallel overhead (i.e., the cost of communications and synchronization) larger in relative terms. In this experiment, shared memory speedups were obtained in an 8-core node with Hyper-Threading technology (i.e., running up to 16 threads on 8 physical cores). The distributed memory version was executed on  8 Xeon nodes with 2 Intel Xeon E5420@2.50GHz per node (2 ﾗ 4 cores, hence 8 cores per node) and 16GB memory. These nodes are interconnected via 10 Gigabit Ethernet. The Hybrid memory version was executed on 32 nodes with the same features.    

Nature Methods: doi:10.1038/nmeth.2109



 
 

12

 

 
Figure S4. Scalability of jModelTest with simulated data. The speedups reported are for (a) Shared memory (red numbers in the x-axis indicate hyperthreading), (b) Distributed memory and (c) Hybrid memory version. n is number of taxa and l is the alignment length.     
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Abstract

Several strategies have been proposed to assign substitution models in phylogenomic datasets, or

partitioning. The accuracy of these methods, and most importantly, their impact on phylogenetic

estimation has not been thoroughly assessed using computer simulations. We simulated multiple

partitioning scenarios to benchmark two a priori partitioning schemes (one model for the whole

alignment, one model for each data block), and two statistical approaches (hierarchical clustering and

greedy) implemented in PartitionFinder and in our new program, PartitionTest. Most methods were

able to identify optimal partitioning schemes closely related to the true one. Greedy algorithms identified

the true partitioning scheme more frequently than the clustering algorithms, but selected slightly less

accurate partitioning schemes and tended to underestimate the number of partitions. PartitionTest

was several times faster than PartitionFinder, with equal or better accuracy. Importantly, maximum

likelihood phylogenetic inference was very robust to the partitioning scheme. Best-fit partitioning schemes

resulted in optimal phylogenetic performance, without appreciable differences compared to the use

of the true partitioning scheme. However, accurate trees were also obtained by a “simple” strategy

consisting of assigning independent GTR+G models to each data block. On the contrary, leaving the

data unpartitioned always diminished the quality of the trees inferred, to a greater or lesser extent

depending on the simulated scenario. The analysis of empirical data confirmed these trends, although

suggesting a stronger influence of the partitioning scheme. Overall, our results suggests that statistical

partitioning, but also the a priori assignment of independent GTR+G models, maximize phylogenomic

performance.

Key words: partitioning scheme, PartitionTest, PartitionFinder, multilocus, phylogenetics.

Introduction

Statistical inference of phylogenetic trees

from sequence alignments requires the use of

probabilistic models of molecular evolution

(Felsenstein, 2004). It is well established that the

choice of a particular model of molecular evolution

can change the results of the phylogenetic

analysis, and not surprisingly, one of the most

active areas of research in phylogenetics in

recent years has been the development of more
c© The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved.

For permissions, please email: journals.permissions@oup.com
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realistic models of nucleotide, codon and amino

acid substitution/replacement, together with the

implementation of statistical methods for the

selection of best-fit models for the data at hand

(Joyce and Sullivan, 2005; Posada, 2012).

A key aspect in the development of these models

has been the consideration of the heterogeneity

of the substitution process among sites. Several

mixture models have been proposed that assign

each site within a locus a probability of evolving

under a given rate (Yang, 1994), substitution

pattern (Lartillot and Philippe, 2004; Pagel and

Meade, 2004), or both (Wu et al., 2013). In

particular, a discrete gamma distribution to

consider rate variation among sites (Yang, 1996)

is used nowadays in practically any phylogenetic

analysis. A different approach to account for

the heterogeneity of the substitution process

consists of defining a priori groups of sites (so

called partitions) that evolve under the same

substitution model, like for example the set of

1st, 2nd or 3rd codon positions in protein-coding

sequence alignments (Shapiro et al., 2006) or

distinct protein domains (Zoller et al., 2015).

At the genomic scale the heterogeneity of the

substitution process becomes even more apparent

that at the single-gene scale, as different genes or

genomic regions can have very different functions

and evolve under very different constraints

(Arbiza et al., 2011). Multilocus substitution

models that consider distinct models for different

partitions of the data assumed to evolve in

an homogeneous fashion have been proposed

under the likelihood (Ren et al., 2009; Yang,

1996) and Bayesian (Nylander et al., 2004;

Suchard et al., 2003) frameworks. In this case,

different loci (or loci by codon position) are

typically considered as distinct partitions by

default, without further justification. However, a

number of empirical studies have demonstrated

that different partitioning schemes can affect

multilocus phylogenetic inference, including tree

topology, branch lengths and nodal support

(Brandley et al., 2005; Kainer and Lanfear, 2015;

Leavitt et al., 2013; Powell et al., 2013; Ward

et al., 2010), with maximal differences occurring

when whole datasets are treated as single

partitions (i.e., unpartitioned). Using computer

simulations, Brown and Lemmon (2007) showed

that both over and particularly under-partitioning

can lead to inaccurate phylogenetic estimates.

If the partitioning scheme can affect

phylogenetic analysis, we should try to identify

the best-fit partitioning scheme for the data

at hand. In principle, predefined partitioning

schemes might not be included within the

optimal ones, and some statistical model selection

procedure needs to be implemented to justify the

choice of a particular partitioning scheme, just

as it happens when finding the best-fit model of

evolution for a single locus (Posada and Crandall,

2001). Unfortunately, the number of partitioning

schemes for a multilocus data set can be huge,

ranging from considering that a single model fits

2
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the whole alignment to assigning a different model

to each site/region/gene, and until very recently

in practice model selection in phylogenomics

was restricted to the comparison of a fixed

number of alternative partitions in relatively

modest data sets, often using Bayes factors

(Bao et al., 2007; Brandley et al., 2005; Brown

and Lemmon, 2007; Castoe and Parkinson,

2006; Fan et al., 2011; McGuire et al., 2007;

Nylander et al., 2004; Pupko et al., 2002);but

see Li et al. (2008). Opportunely, the release

of PartitionFinder (Lanfear et al., 2012, 2014)

made a big difference in this regard, facilitating

the automatic statistical selection of partitioning

schemes for relatively large multilocus data sets.

For this task, PartitionFinder uses combinatorial

optimization heuristics like clustering and greedy

algorithms, building up on previous ideas raised

by Li et al. (2008). Also, Wu et al. (2013) recently

described a sophisticated Bayesian approach for

the identification of optimal partitioning scheme,

but its heavy computational requirements seem to

have prevented its general use. While automated

statistical model choice procedures have been

shown to result in partitioning schemes with a

better fit in real data, often resulting in distinct

tree topologies when compared to unpartitioned

schemes (Kainer and Lanfear, 2015; Wu et al.,

2013), the accuracy of these inferences has not

been thoroughly assessed. In order to fill this

gap we present here a computer simulation

study designed to evaluate (i) the precision

of the best-fit multilocus partitioning schemes

identified by PartitionFinder and by a new tool

for multilocus model selection developed by

us, called PartitionTest, and (ii) the accuracy

of the phylogenetic trees derived from best-

fit and a priori partitioning schemes. In this

article we evaluate the accuracy of PartitionTest

and PartitionFinder under different conditions

representing biologically realistic scenarios,

including rate variation among loci and lineages,

non-homogenous data blocks, and large data

sets. In addition, we also analyze some of the

real datasets previously used in the evaluation

of PartitionFinder. Our results suggest that

best-fit partitioning schemes can lead to accurate

trees, but also that the a priori assignment

of independent GTR+G models to each locus

performs equally well.

Results

Simulation 1: multi-gene phylogenetics

The greedy strategy implemented in PartitionTest

(PT-G) recovered most often the true partitioning

scheme (PPR=0.305), followed by the greedy

strategy implemented in PartitionFinder (PF-

G) (PPR=0.255) and the hierarchical clustering

implemented in PartitionTest (PT-C) (PPR=

0.200) (table 1). The hierarchical clustering

implemented in PartitionFinder (PF-C) did

much worse (PPR=0.013). PT-C, PT-G, PF-G

recovered accurate partitioning schemes, with RI

(Rand, 1971) values above 0.93. PF-C performed

3
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clearly worse (RI=0.852), also evident from its

low ARI (Hubert and Arabie, 1985) values.

In general, the hierarchical clustering algorithms

overestimated the number of partitions while

the greedy algorithms underestimated it. The

hierarchical clustering algorithms were several

times faster than the greedy algorithms. Overall,

PartitionTest was on average 2.6 and 1.5

times faster finding the optimal partition than

PartitionFinder, for the greedy and hierarchical

clustering algorithms, respectively.

Most strategies performed also well recovering

the exact true topology (PTR, average perfect

topology recovery = 0.820−0.890), in particular

when using FT-C. The largest differences were

observed when a single partition was assumed

to underlie the data (K=1), which resulted in

an PTR of 0.787. The average RF distances to

the true topologies were very small (RF =0.007−

0.013) except when K=1, which performed worse

(RF =0.018) (table 1). The average number of

distinct topologies per replicate across methods

was 1.31. Regarding the branch lengths, PT-C,

PT-G, PF-G performed as well as using the true

partitioning scheme (K=T), while PF-G, K=N,

and especially K=1, did worse.

Simulation 2: mosaic data blocks

In this case, where sites inside the simulated

data blocks evolved under two different models,

there is not a true partitioning scheme so

only the accuracy of the trees inferred from

the selected partitioning scheme was evaluated.

The different strategies did well recovering the

exact true topology (PTR≥0.827), although K=1

did slightly worse (PTR=0.787) (table 2). The

average RF distances were larger than in the

previous simulation but still reasonably small

(RF =0.012−0.014), with K=1 doing slightly

worse again (RF=0.018). The average number of

distinct topologies per replicate across methods

was 1.02. Branch lengths estimate were quite

accurate (BS=0.014−0.020), with the greedy

algorithms performing best. In this simulation

PartitionTest was on average 2.1 and 2.0

times faster finding the optimal partition than

PartitionFinder, for the greedy and hierarchical

clustering algorithms, respectively.

Simulation 3: large-scale phylogenomic study

For large data sets (500,000-1,500,00 bp) the

greedy algorithms can take very long, and only the

hierarchical clustering algorithms were evaluated.

In fact, even in this case PartitionFinder was

not able to evaluate 20 out of the 200 replicates

due to execution errors, while only 1 replicate

failed for PartitionTest. All the comparisons in

table 3 refer to the 180 replicates in common. The

clustering algorithm implemented in PartitionTest

(PPR=0.056; RI=0.989) was more accurate

than its analog in PartitionFinder (PPR=0.011;

RI=0.846) finding the true partitioning scheme,

4
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Table 1. Partitioning and phylogenetic accuracy for Simulation 1 (multi-gene phylogenetics).

K=1 K=T K=N PT-C PT-G PF-C PF-G

Partitioning

accuracy

PPR N/A N/A N/A 0.2 0.305 0.013 0.255

RI N/A N/A N/A 0.97 0.931 0.852 0.951

ARI N/A N/A N/A 0.775 0.696 0.031 0.771

Kdiff N/A N/A N/A 2.011 -1.71 13.682 -1.773

Kmse N/A N/A N/A 29.294 5.855 297.321 5.761

Phylogenetic

accuracy

PTR 0.787 0.89 0.89 0.892 0.842 0.885 0.82

RF 0.018 0.007 0.007 0.007 0.012 0.007 0.013

BS 0.019 0.006 0.01 0.007 0.006 0.011 0.006

Average

Run Time
N/A N/A N/A 01:20:25 05:25:50 01:59:00 14:31:20

NOTE.— Different partitioning strategies were evaluated: a single partition (K=1), the “true” partitioning scheme (K=T), each data block as

a GTR+G partition (K=N), PartitionTest using the Hierarchical Clustering (PT-C) and Greedy (PT-G) algorithms, and PartitionFinder using

the Hierarchical Clustering (PF-C) and Greedy (PF-G) algorithms (all of them assuming independent branch lengths). The Greedy algorithms

were used only for simulation replicates with up to 20 partitions (¿1,000 replicates). The accuracy of the selected partitions was evaluated by the

number of times the exact true partitioning scheme was identified (PPR = Perfect Partitioning Recovery), the Rand index (RI) and the adjusted

Rand index (ARI). The accuracy of the RAxML trees inferred from the selected partitions was evaluated with the average Robinson-Foulds

distance (RF) (scaled per branch), a measurement of the number of times the exact true topology was estimated (PTR = Perfect Topology

Recovery), and the average Branch Score difference (BS) (scaled per branch). The average time required to identify the optimal partitioning

scheme (Average Run time) was measured in hours, minutes and seconds.

Table 2. Phylogenetic accuracy for Simulation 2 (mosaic data blocks).

K=1 K=N PT-C PT-G PF-C PF-G

Phylogenetic

accuracy

PTR 0.787 0.827 0.829 0.856 0.828 0.841
RF 0.018 0.014 0.014 0.012 0.014 0.012

BS 0.019 0.020 0.019 0.016 0.020 0.014

Average

Run Time
N/A N/A 01:03:15 03:10:47 02:13:16 06:15:50

NOTE.—For further explanations please refer to table 1.

and 6.2 times faster on average (table 3). Both

algorithms overestimated the true number of

partitions, specially in the case of PF-C. The K=T

and K=N a priori strategies always recovered the

true topology, while K=1 failed in a few occasions.

The average number of distinct topologies per

replicate across methods was 1.05. Using the

true partitioning scheme (K=T) resulted in

very accurate branch lengths. The phylogenetic

accuracy of PartitionTest and PartitionFinder

was also very high, with the former providing

slightly better branch length estimates and the

latter finding the true topology in one additional

replicate. Overall, PartitionTest was ∼7 times

faster than PartitionFinder.

Simulation 4: rate variation

In the presence of rate variation among lineages

and partitions the true partitioning scheme was

never found (PPR=0), although the RI scores

were still high (RI=0.932−0.953) (table 4).

PartitionTest was slightly more accurate than

PartitionFinder (∼0.95 vs ∼0.93), and the

accuracy of the best-fit partitioning schemes

did not change when assuming independent vs.

proportional branch lengths. The ARI values

for PartitionFinder were low or very low. Both

PartitionTest and PartitionFinder overestimated

the true number of partitions, specially in the

latter case. The different strategies showed very

5
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Table 3. Partitioning and phylogenetic accuracy for Simulation 3 (phylogenomics).

K=1 K=T K=N PT-C PF-C

Partitioning

accuracy

PPR N/A N/A N/A 0.056 0.011

RI N/A N/A N/A 0.989 0.846

ARI N/A N/A N/A 0.864 0.003

Kdiff N/A N/A N/A 60.112 374.855

Kmse N/A N/A N/A 9667.229 337010.9

Phylogenetic

accuracy

PTR 0.979 1.000 1.000 0.989 0.994

RF 0.004 0.000 0.000 0.003 0.003

BS 0.097 0.003 0.021 0.044 0.054

Average

Run Time
N/A N/A N/A 06:55:27 42:49:51

NOTE.—For further explanations please refer to table 1.

similar phylogenetic accuracy, with K=1 doing

slightly worse. The true topology was found

in most occasions (PTR=0.895−0.907 for most

strategies except for K=1, with PTR=0.839),

with small RF distances (0.005 for all strategies

except PT-C-p and K=1, with RF=0.009) and

similar BS (∼0.428 for all strategies except PT-C-

p and K=1, with BS=0.483). The average number

of distinct topologies per replicate across methods

was 1.25. Note that the branch length estimates

were much worse than in previous scenarios in

which the simulated branch lengths were the

same across partitions. As expected, assuming

proportional branch lengths resulted in faster run

times. Overall, PartitionTest was ∼4 times faster

than PartitionFinder.

Simulation 5: the effect of the likelihood
optimization threshold

Changing the ML optimization threshold did not

have a noticeable impact on the final inferences

but dramatically influenced the running times.

Higher epsilon thresholds (i.e., less thorough

optimization) did not seem to influence much the

resulting optimal partitioning schemes (figure 1a-

c) or the resulting trees (with identical inferred

topologies and very similar branch length

estimates). However, the partitioning search

algorithm was up to 4 times faster on average in

this case. (figure 1d).

Analysis of real data

The optimal partitioning schemes identified in the

real datasets were often different depending on

the exact implementation (program and method)

used, and in most cases without particularly

obvious trends. With some exceptions, the

assumption of proportional branch lengths across

partitions resulted in more partitions in the

optimal partitioning scheme (table S1). The

number of model parameters in the optimal

partitioning schemes was very variable. The

greedy algorithms resulted in more or less

partitions in the optimal partitioning scheme

than the clustering algorithms depending on

the data set. To make a legit comparison

of the optimal BIC (Schwarz, 1978) scores

6
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Table 4. Partitioning and phylogenetic accuracy for Simulation 4 (rate variation).

K=1 K=T K=N PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p PF-G-p

Partitioning

accuracy

PPR N/A N/A N/A 0 0 0 0 0 0 0 0

RI N/A N/A N/A 0.952 0.91 0.953 0.906 0.932 0.908 0.935 0.9

ARI N/A N/A N/A 0.539 0.529 0.441 0.506 0.007 0.527 0.005 0.455

Kdiff N/A N/A N/A 7.239 -15.564 9.677 -12.141 17.331 -17.638 18.826 -11.308

Kmse N/A N/A N/A 73.269 307.855 120.923 201.002 378.886 386.877 428.989 179.385

Phylogenetic

accuracy

PTR 0.839 0.907 0.904 0.895 0.866 0.903 0.888 0.904 0.865 0.904 0.888

RF 0.009 0.005 0.005 0.005 0.007 0.009 0.005 0.005 0.007 0.005 0.005

BS 0.483 0.429 0.428 0.428 0.43 0.483 0.431 0.428 0.431 0.428 0.43

Average

Run Time
N/A N/A N/A 00:19:49 07:16:42 00:15:15 01:22:34 01:26:07 10:38:39 01:01:55 06:07:45

NOTE.—PT-C-p and PF-C-p assume that branch lengths are proportional across partitions. For further explanations please refer to table 1.

found by the different algorithms we recomputed

all the BIC scores in RAxML (Stamatakis,

2006) assuming proportional branch lengths

(BIC∗). No significant or consistent differences

were observed. Regarding running times, the

hierarchical clustering algorithms were clearly

faster than the greedy algorithms, while assuming

proportional branch lengths further reduced the

computation time. On average, PartitionTest was

2.5 times faster than PartitionFinder. The optimal

partitioning schemes found by the different

algorithms were often quite distinct (table S2),

being most similar in general when the same

algorithm but a different program was used (e.g.,

PartitionTest greedy vs. PartitionFinder greedy).

The assumption of proportional/independent

branch lengths across partitions often resulted

in quite different partitioning schemes, with a

slightly bigger influence than the program or

algorithm used (table S3).

The ML trees estimated under the best-

fit partitioning schemes found by the different

methods were more or less distinct depending

on the specific data set, with RF values

ranging from 0 to 0.37. For data sets like

Endicott or Li, the topological differences were

highest, in particular regarding the assumption of

proportional/independent branch lengths across

partitions, which had the most noticeable effect

across all data sets. For data sets like Fong all

trees estimates were very similar, independently

of the partitioning selection strategy. The branch

scores were very low in practically every case,

suggesting in principle that branch length

estimates were not affected by the partitioning

strategy, although we should note that in some

cases the tree length was very small –like for

Endicott– preventing large BS scores.

In addition, we also compared the ML trees

found under the optimal partitioning schemes or

under a priori partitioning scheme with a single

partition (K=1), against the ML trees inferred

using the K=N strategy (each partition assumed

to evolve under an independent GTR+G model)

(table 5). Again, the different strategies often

resulted in different trees, except for the Fong data

7
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FIG. 1. Partitioning sensitivity and running times as a function of the optimization threshold epsilon. (a) Rand Index. (b)
Adjusted Rand Index. (c) Relative BIC scores (normalized to epsilon = 40) (d) Relative execution times (normalized to
epsilon = 0.1).

set, where all but one of the strategies resulted in

the same topology.

Discussion

Identifying optimal partitioning schemes

Identifying the optimal partitioning scheme is not

an easy task, but the different selection strategies

studied here seem to perform quite well. In our

simulations the exact true partitioning scheme

was recovered up to 30% of the time when the

number of data blocks was relatively small, and up

to 5% of the time when this number was larger,

which is still a remarkable result given the vast

number of potential solutions. In the presence

of rate variation among lineages and partitions

the problem becomes much harder and the true

8
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Table 5. Comparison of the RAxML trees inferred under the optimal partitioning schemes found by different strategies in
the 6 empirical data sets in the study.

RF scores Endicott Fong Hackett Kaffenberger Li Wainwright

K=1 0.29 [tree A] 0.00 [tree A] 0.08 [tree A] 0.13 [tree A] 0.17 [tree A] 0.09 [tree A]

PT-C 0.29 [tree C] 0.00 [tree A] 0.08 [tree A] 0.19 [tree B] 0.03 [tree C] 0.09 [tree A]

PT-G 0.29 [tree A] 0.07 [tree B] 0.08 [tree C] 0.07 [tree D] 0.03 [tree E] 0.05 [tree D]

PT-C-p 0.36 [tree B] 0.00 [tree A] 0.11 [tree B] 0.19 [tree B] 0.24 [tree B] 0.12 [tree B]

PT-G-p 0.05 [tree D] 0.00 [tree A] 0.11 [tree B] 0.05 [tree C] 0.00 [tree D] 0.01 [tree C]

PF-C 0.29 [tree C] 0.00 [tree A] 0.08 [tree A] 0.19 [tree B] 0.17 [tree A] 0.09 [tree A]

PF-G 0.29 [tree A] 0.00 [tree A] 0.04 [tree F] 0.07 [tree D] 0.07 [tree G] 0.07 [tree G]

PF-C-p 0.12 [tree E] 0.00 [tree A] 0.02 [tree D] 0.19 [tree B] 0.01 [tree F] 0.03 [tree E]

PF-G-p 0.05 [tree F] 0.00 [tree A] 0.02 [tree E] 0.13 [tree A] 0.01 [tree F] 0.00 [tree F]

Num. different

topologies
6/9 2/9 6/9 4/9 7/9 7/9

NOTE.—Cells contain the normalized RF scores against the RAxML trees assuming and independent GTR+G model per data bock (K=N).

Letters in brackets indicate the different topologies found.

partitioning scheme was never found. Still, most

methods were able to identify most of the time and

in most conditions optimal partitioning schemes

closely related to the true partitioning scheme,

as judged by the generally high Rand Index (RI)

scores. Now, we should consider that the RI

works a little bit different than what we might

intuitively think. This index considers pairs of

data blocks that belong to the same partition

in both partitioning schemes, but also those

belong to different partitions in the two schemes

being compared. In contrast, our perception

might be that a similarity measure between

two partitioning schemes should count only

those data blocks belong to the same partition

in both schemes. Thus, some implementations

like the clustering algorithm of PartitionFinder,

that significantly overestimates the number of

partitions, can still display high RI scores because

many pairs of data blocks will belong to different

partitions in both partitioning schemes. However,

in this case the Adjusted RI scores were very

low, highlighting the problem. Also, note that the

RI does not consider the particular substitution

models assigned to each partition. Hence, as long

as two data blocks are grouped together, they are

assumed to belong to the same partition, even

if the best-fit models assigned to their partitions

are different. The performance of the greedy

and clustering algorithms was slightly different.

Greedy algorithms tended to underestimate the

number of partitions while the hierarchical

clustering algorithms usually overestimated it.

On average, greedy algorithms identified the

true partitioning scheme more frequently than

the clustering ones, but selected slightly less

accurate partitioning schemes. Nevertheless, the

computational complexity of the hierarchical

clustering algorithms is much lower than that of

the greedy algorithms (linear versus quadratic),

so they were several times faster. Even though

one might think of the schemes evaluated by the

clustering algorithms as strict subsets of those

evaluated by the greedy algorithm, this is not

9
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necessary the case. In a particular iteration where

the initial partitioning scheme is the same for both

algorithm it is true that hierarchical clustering

inspects a subset of the candidate partitioning

schemes in the greedy algorithm. However, the

selected partitioning in that iteration scheme

might not be the same for both algorithms, and

hence from there they can take different paths

that might result in different probabilities of

getting stuck in local maxima. Therefore, the

greedy algorithms do not necessarily reach always

a better partitioning scheme than the clustering

algorithms.

Effect of partitioning on phylogenetic
accuracy

In the simulations the different partitioning

methods resulted in the inference of the same

ML tree topology, with the only exception of

the single partition strategy, which led to a

different topology in some cases. Phylogenetic

accuracy was quite high overall, even under

rate variation among lineages and/or among

partitions, or when there was obligate model

misspecification (i.e., with mosaic data blocks).

Although the greedy and hierarchical clustering

strategies did not return the true partitioning

scheme in most occasions, they still resulted in

practically the same trees as those obtained under

the true partitioning scheme. Only when a single

partition was assumed a priori (i.e., the data

was left unpartitioned), phylogenetic accuracy

dropped down to some extent, up to 10% when

the number of data blocks was not very large.

This is in concordance with a previous simulation

study that suggested that underpartitioning could

negatively affect phylogenetic estimates under

a Bayesian framework (Brown and Lemmon,

2007). However, while in the Bayesian case overly

complex partitioning schemes also had some effect

on posterior probabilities, in our simulations the

ML trees did not seem to be much sensitive

to overparameterization, an observation already

made with real data by Li et al. (2008). In general,

it is well known that ML phylogenetic estimation

can be very robust to model misspecification

when the phylogenetic problem is not too complex

(e.g., Sullivan and Joyce, 2005) and this might

at least partially explain why in the simulations

ML phylogenetic estimation seems quite robust

also to the partitioning scheme chosen and

subsequent model assignment, despite for example

having introduced branch length variation in the

simulated trees or used mosaic data blocks.

Remarkably, the a priori assigning of

independent GTR+G model to each data block

led to very similar trees than the greedy and

hierarchical clustering strategies, which advocates

this as a very convenient strategy for the analysis

of phylogenomic datasets. An alternative a priori

K=N option not evaluated here might have been

the independent assignment of best-fit models,

for example identified with jModelTest (Darriba

et al., 2012), to each data block. While this is an

10
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obvious strategy, it was not explored here mainly

because it cannot be currently implemented

in RAxML, difficulting then a fair comparison

among approaches. In any case, this strategy

would require much more computation than the

assignment of independent GTR+G models to

each data block, which already results in optimal

performance –practically the same as when using

the true partitioning scheme.

Phylogenetic accuracy was almost perfect when

the number of data blocks was very large, even

for the single partition case. This is the expected

behaviour because in our simulations all the data

blocks were evolved under the same tree, so

there was no phylogenetic incongruence among

the different partitions. In real life phenomena

like incomplete lineage sorting, gene duplication

and loss and horizontal gene transfer can lead to

a different scenario in which different partitions

evolve under different gene trees, embedded within

a single species tree (e.g., Martins et al. 2014).

Thus, further studies could focus on evaluating the

impact of partitioning on the inference of species

trees.

Empirical data analysis

The analysis of real data can be very helpful to

show the relative fit of the different partitioning

schemes and/or the congruence of the different

phylogenetic estimates derived from them, beyond

the simplicity of simulated data. On the other

hand, in this case neither true partitioning scheme

nor the true phylogeny is known, and accuracy

cannot be directly measured. However, in our

analyses of the six empirical data sets we saw more

topological variation than in the simulations. In

this case the partitioning selection strategy had

a stronger effect than in the simulations, and the

final tree estimates varied more depending on the

method chosen. Nevertheless, this was not true for

every dataset, and in all cases there was at least

one selection strategy that resulted in the same

tree as the unpartitioned scenario. These results

are in agreement with previous empirical studies

in which different partitioning schemes sometimes

resulted in different trees, but also where the main

differences were also observed when the data was

left unpartitioned (Brandley et al., 2005; Kainer

and Lanfear, 2015; Leavitt et al., 2013; Powell

et al., 2013; Ward et al., 2010). For example,

Kainer and Lanfear analyzed 34 data sets with

different partitioning strategies that half or more

of the time resulted in different trees, albeit the

differences among them were not significant, with

average RF distances smaller than 10%, except for

the unpartitioned case, which implied significant

differences. The same was true for branch lengths

and bootstrap values, were only the use of a single

partition made a difference in some cases..

11
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Alternative partitioning approaches

The definition of homogeneous data blocks can

be a problem under certain circumstances, like

in the case of non-coding regions, or when

there is significant heterogeneity at a local scale.

However, in our (simple) simulation of non-

homogeneous data blocks, phylogenetic accuracy

was still reasonably high. Wu et al. (2013)

described an elegant Bayesian framework in which

the partitioning scheme is treated as a random

variable using a Dirichlet process prior (DPP).

This method is able to simultaneously identify

the number of partitions, their best-fitting models,

and assign sites to each one of them. While

this approach is certainly much more flexible

than previous strategies, explicitly considers the

uncertainty associated with partitioning and

improves model fit, it has not been demonstrated

yet to lead to more accurate trees. Unfortunately,

its heavy computational requirements, and the

restriction of only sites being the units if the

assignment seem to have limited for now its

widespread application to real data. Indeed, it

might be very interesting to see a DPP method

-in fact a special case of the one just described-

that works with user-defined data blocks. Very

recently, Frandsen et al. (2015) introduced a

promising algorithm for phylogenetic partitioning

that uses rates of evolution instead of substitution

patterns, also avoiding the need for an arbitrary

delimitation of data blocks. While this method can

increase model fit, again its advantage over data

block methods like those studied here has not been

demonstrated in terms of phylogenetic accuracy.

PartitionTest vs. PartitionFinder

In the majority of the conditions explored in

the simulations PartitionTest was slightly more

accurate than PartitionFinder both regarding

the identification of optimal partitioning schemes

and tree estimation. Although these differences

were small, they were consistent. Importantly,

PartitionTest is much faster than PartitionFinder,

between 1.5 and 7 times faster, in particular with

large data sets. PartitionFinder is implemented

in Python and delegates the phylogenetic

calculations on external third party software, like

PhyML (Guindon and Gascuel, 2003) or RAxML.

On the other hand, PartitionTest is implemented

in C++ and keeps a finer control over the

phylogenetic calculations through the use use of

the PLL (Flouri et al., 2015).

Conclusions

Several strategies for the selection of best-

fit partitioning schemes have been recently

introduced for the phylogenetic analysis of

multilocus data sets. Here we evaluated different

partitioning approaches using comprehensive

computer simulations and real data. We conclude

that hierarchical clustering algorithms should

be preferred over existing greedy algorithms

for the selection of best-fit partitioning scheme,

12



[11:19 5/8/2015 MOLBEV-partitiontest-draft-final.tex] Page: 13 1–23

Impact of partitioning · doi:10.1093/molbev/mstxyz MBE

because under the conditions explored, they were

much faster with practically the same accuracy.

However, our simulations also suggest that ML

phylogenetic inference is quite robust to the

partitioning scheme, at least as far as single

models are assigned to the final partitions using a

statistical procedure. In this case, any reasonable

partitioning scheme seems to perform reasonably

well, including the a priori assignment of GTR+G

model to each data block. To be on the safe side,

leaving the data unpartitioned should be avoided.

Materials and methods

Partitions and partitioning schemes

Let us consider set of aligned nucleotide or

amino acid sequences of any length (the “data”).

Following Lanfear et al. (2012), we define “data

block” as a set of alignment sites that are assumed

to evolve in a similar way, normally user-defined.

Typical examples of data blocks in phylogenetics

are amplified gene fragments, gene families,

assembled loci from NGS reads, introns/exons, or

sets of codon positions. A “partition” (“subset”

in Lanfear et al. (2012) will be a set of one or

more particular data blocks. A partition can be

made of, for example, a single gene fragment,

family or locus, multiple gene fragments, families

or loci, or consist of the set of all 1st and 2nd

codon positions in an alignment. Finally, a set of

non-overlapping partitions that cover the whole

alignment will be called a “partitioning scheme”.

The partitioning problem consists of, given a

predefined set of data blocks, finding the optimal

partitioning scheme for a given alignment. In our

case, we want to optimize the partitions with

regard to the assignment of substitution models.

Note that a “model” here will be a particular

model of nucleotide substitution or amino acid

replacement together with parameter values. That

is, K80 (ti/tv=2) would be a different model

than K80+G or JC, but also than K80 (ti/tv=8).

For example, if we have a multilocus alignment

with, say 100 concatenated genes, our aim is

to find out whether we should use 100 different

substitution models, just one (all genes evolving

under exactly the same model), or something in

between, in which case we would need to assign

2-99 models to the 100 genes. Note that there

are two related questions here, which are: (i) how

many different models should we use (i.e., the

number of partitions), and (ii) which partitions

evolve under which model (i.e., the partitioning

scheme). In general, given n initial data blocks, the

number of possible partitioning schemes, B(n), is

given by the Bell numbers, which are the sum from

1 to n of the Stirling numbers of the second kind,

S(n,k), where k is the number of partitions:

Bn =
n∑

k=1

S(n,k) (1a)

S(n,k)=
k∑

j=1

(−1)k−j jn−1

(j−1)!(k−j)!

=
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
jn

(1b)

The number of partitioning schemes grows very

quickly. For example, for 4 data blocks there

13
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are 15 different partitioning schemes, but for 20

there are already 5.8×1012. Clearly, finding the

optimal partitioning scheme and assigned models

is a very intensive task, and rapidly becomes

computationally unfeasible.

Selecting optimal partitioning schemes

In order to select optimal partitioning schemes

at the phylogenomic level, we have implemented

de novo (in the program PartitionTest, see

below) a set of heuristic algorithms that are

very similar to those already available in the

software PartitionFinder. The main steps in these

algorithms are:

1. Estimate an initial tree.

2. Define a set of candidate partitioning

schemes.

3. Select the best-fit substitution/replacement

model for each partition.

4. Compute the score of each partitioning

scheme and select the best one accordingly.

5. Return to step 2 until there is no

score improvement or until the current

partitioning scheme includes a single

partition.

Step 1. Initial tree estimate . The starting tree

topology can be user-defined or estimated using

a particular phylogenetic method.

Step 2. Define a set of candidate partitioning

schemes . The initial partitioning scheme is the

set of data blocks defined by the user. For

each iteration, new partitioning schemes are

proposed as potentially better candidates, given

the currently best partitioning scheme, and using

a greedy or a hierarchical clustering algorithm.

The greedy algorithm defines
(

(k
2)

)
candidate

partitioning schemes of size (k−1) by merging all

possible pairs of partitions, where k is the number

of partitions in the current best partitioning

scheme. This algorithm is identical to the greedy

algorithm implemented in PartitionFinder. Its

computational complexity is O(n2), so if the

number of initial partitions (n) is large the

required computational time will be considerable.

The hierarchical clustering algorithm defines r

candidate partitioning schemes of size (k−1) by

merging the r closest pairs of partitions, given

a matrix of pairwise distances between partitions

(D(mi,mj), see below). The parameter r is defined

by the user. A strict hierarchical clustering (i.e.,

r=1) will evaluate a maximum of n candidate

partitioning schemes. Although r can be defined

in the range (0,∞), only a maximum of n(n−

1)/2 new candidate partitioning schemes can

be proposed, so if r≥n(n−1)/2, this algorithm

will behave exactly as the greedy algorithm.

The pairwise distances between partitions i and

j are calculated using the maximum likelihood

estiamtes (MLEs) of the best-fit substitution

14
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model parameters for each partition:

D(mi,mj)=ωrd(RiRj)+ωf ||Fi−Fj||+ωa|αi−αj|

(2)

where R={rac,rag,rat,rcg,rct,rgt} are the

substitution rates, F ={fa,fc,fg,ft} are the

base frequencies, and α is the alpha shape for the

gamma rate variation among sites (+G). Because

the substitution rates are usually estimated

relative to each other, we first scale them such

that their euclidean distance is minimized:

d(Ri,Rj)=
6∑

n=1

(λRi,n−Rj,n)
2

(3)

Deriving this function we obtain:

δd(Ri,Rj)

δλ
=λ

6∑

n=1

(R2
i,n)−

6∑

n=1

(Ri,nRj,n) (4)

whose minimum is located at:

λ=

∑6
n=1(Ri,nRj,n)
∑6

n=1(R2
i,n)

(5)

We include different weights (ωr, ωf , ωa and

ωp) for each part of the distance formula,

that the user can specify. By default these

values are set to those that maximized accuracy

(finding the true partitioning scheme) in pilot

simulations. Note that the hierarchical clustering

algorithm implemented PartitionFinder specifies

a slightly different formulae than PartitionTest

for the distance calculation. The computational

complexity of the hierarchical clustering algorithm

is O(rn), so the required computational time

should be affordable even for very large data sets

(e.g., with >1,000 initial partitions).

Step 3. Select a substitution model for each

partition . For each partition, likelihood

scores are calculated given a tree and a

model of substitution/replacement. Best-fit

substitution/replacement models with associated

parameter values are then identified using the

Akaike Information Criterion (AIC, Akaike,

1973), corrected AIC (AICc, Sugiura, 1978),

Bayesian Information Criterion (BIC, Schwarz,

1978) or Decision Theory (DT, Minin et al., 2003).

Alternatively, a fixed substitution/replacement

model can be assigned for every partition, with

unlinked parameter values that are independently

optimized. For the likelihood calculations the

tree topology can be fixed (i.e., the starting

tree topology is used for every calculation) or

reoptimized using maximum likelihood for each

partition. Branch lengths across partitions can

be assumed to be independent for each partition

(unlinked) or proportional among partitions

(linked). In the independent model the branch

lengths are reoptimized for every new partition.

In the proportional model a set of global branch

lengths is estimated at the beginning for the

whole data set, with a scaling parameter being

optimized for every new partition.

Step 4. Compute the score of each partitioning

scheme . The score of a partitioning scheme will

be calculated in two different ways depending on

the occurrence of linked/unlinked branch lengths.

If branch lengths are unlinked across partitions,

model parameters and branch lengths are

optimized independently for each partition.
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Therefore, the BIC score of a partitioning scheme

is simply the sum of the individual scores of its

partitions:

BIC=
N∑

i=0

(piln(si)−2lnLKi) (6)

where pi is the number of parameters, si is the

sample size, and LKi is the likelihood score of

partition i.

However, if branch lengths are linked

proportionally across partitions, the score of

the partitioning scheme with linked parameters is

computed as follows:

BIC=

[
p∗+

N∑

i=0

(pi)

]
ln(s)−2

N∑

i=0

(lnLKi) (7)

where pi is the number of parameters of partition

i, p∗ is the number of parameters globally

optimized for the partitioning scheme, and s is

the sample size of the entire partitioning scheme.

PartitionTest software

We have implemented the algorithms described

above in the program PartitionTest, available

from https://github.com/ddarriba/partitiontest

The greedy search algorithm in PartitionTest is

essentially the same as the one implemented in

PartitionFinder, but the hierarchical clustering

algorithm uses slightly different distances.

PartitionTest makes an intensive use of

the Phylogenetic Likelihood Library (PLL)

for carrying out all likelihood computations,

including tree estimation. The PLL speeds

up the calculations considerably. During ML

estimation of model parameters and trees with

PLL, a parameter ε regulates how thorough

are the mathematical optimizations. Basically,

epsilon is a numerical threshold under which

the improvement in likelihood is considered

not worthy and the optimization stops. When

epsilon is small the optimization is more

thorough and takes more time. PartitionTest tests

implements several computational strategies to

avoid repeated calculations, including checkpoint

and restarting capabilities, allowing its use in

systems with per-job time restriction, like many

High Performance Computing (HPC) clusters. In

order to choose the best substitution/replacement

model for each partition, PartitionTest considers

22 models of DNA substitution (the +G models

in jModelTest2) and 36 empirical models of amino

acid replacement (the same as RAxML excluding

LG4M and LG4X). All of them assume rate

heterogeneity among sites using a discrete gamma

distribution with four categories. If desired,

PartitionTest is also able to estimate ML trees

from the optimal partitioning scheme.

Benchmarking of partitioning algorithms

We devised a set of experiments with simulated

and real DNA sequence data to compare different

partitioning strategies. The main questions asked

were (i) how accurate (close to truth) are the

optimal partitions identified by the different

algorithm, and (ii) what is the impact of the
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different partitioning strategies on phylogenetic

accuracy. The different partitioning strategies

evaluated were three a priori partitioning

schemes plus different algorithms implemented in

PartitionTest and PartitionFinder:

1. A single partition, or unpartitioned (K=1)

2. One partition for each data block (K=N)

3. The simulated partitioning scheme (K=T)

4. PartitionTest hierarchical clustering

with independent branch lengths across

partitions (PT-C)

5. PartitionTest greedy with independent

branch lengths across partitions (PT-G)

6. PartitionTest hierarchical clustering

with proportional branch lengths across

partitions (PT-C-p)

7. PartitionTest greedy with proportional

branch lengths across partitions (PT-G-p)

8. PartitionFinder greedy with independent

branch lengths across partitions (PF-G)

9. PartitionFinder hierarchical clustering

with independent branch lengths across

partitions (PF-C)

10. PartitionFinder hierarchical clustering

with proportional branch lengths across

partitions (PF-C-p)

11. PartitionFinder greedy with proportional

branch lengths across partitions (PF-G-p)

Strategies 6-7 and 10-11 were only evaluated in

Simulation 4 (see below). All the analyses were

carried out in a computer with 2 hexa-core Intel

Xeon X5675 @ 3.07GHz processors (12 cores) and

50GB of memory, with Hyper-threading disabled.

We used a single core per run to facilitate running

time comparisons.

Computer simulations

The first four experiments consisted of a series of

computer simulations aiming to recreate different

biological scenarios, while the last one was

designed to assess the sensitivity of the results

to the level of parameter optimization (table 6).

In our simulations, parameter values were not

fixed along a grid but sampled from predefined

statistical distributions, allowing us to explore a

large parameter space and to carry out ad hoc

analyses of the results.

• Simulation 1: with a limited number of data

blocks, typical of a multi-gene phylogenetic

study.

• Simulation 2: with pairs of data blocks merged

at random before the analysis. Our intention

was to represent an scenario where sites inside

data blocks did not evolve in an homogeneous

fashion, as assumed by definition. Instead, in

this simulation data blocks are mosaics of two

distinct evolutionary processes.

• Simulation 3: with a large number of data

blocks, typical of a large-scale phylogenomic

study.
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• Simulation 4: with rate variation among

partitions and lineages. In this case the branch

lengths for each partition were scaled using

two random multipliers. A global multiplier

∼U(0.25, 4) was applied to all branches, while

a local multiplier ∼U(0.8, 1.2) was chosen for

each branch. For the analysis of the simulated

data, we used both the independendent and

proportional branch length models.

Simulation 5: here we tested the impact of the

optimization threshold epsilon on the resulting

partitioning schemes and topologies, in order to

find a good compromise between computational

time and accuracy.

For each replicate the simulation proceeded as

follows:

1. N data blocks were generated according to

U[10,50] with variable lengths chosen from

U[500,1500].

2. Data blocks were randomly assigned to K

partitions, where K ∼U[1,N].

3. Each partition was assigned a random model

of nucleotide substitution.

(a) A model family (M) is chosen from

the 22 nucleotide substitution model

families ∼U(0,21).

(b) A model of rate variation was chosen

among 4 possibilities ∼U(0,3): no rate

variation (M), including a proportion

of invariable sites (M+I), including

gamma rate variation among sites

(+G), and including both a proportion

of invariable sites and gamma rate

variation among sites (+I+G).

4. Specific model parameter values were chosen

from prior distributions.

(a) Nucleotide frequencies: equal or

∼Dirichlet(1.0,1.0,1.0,1.0).

(b) Transition/transversion rate:

∼Gamma(2,1) truncated between

2 and 10

(c) R-matrix parameters

∼Dirichlet(6,16,2,8,20,4) scaled with

the last rate (taking free parameters

as necessary).

(d) Proportion of invariable sites

∼Beta(1,3) truncated between 0.2

and 0.8.

(e) Gamma shape for rate variation among

sites ∼Exponential(2) truncated

between 0.5 and 5.

5. A random non-ultrametric rooted tree

topology with number of taxa ∼U(6,40)

and branch lengths ∼Exponential(1,10) was

simulated with the function rtree from the

ape package (Paradis et al., 2004) in R. The

total tree length is scaled so tree length

∼U[2, 12].

6. Each partition was evolved under this tree

according to the chosen substitution model

18



[11:19 5/8/2015 MOLBEV-partitiontest-draft-final.tex] Page: 19 1–23

Impact of partitioning · doi:10.1093/molbev/mstxyz MBE

Table 6. Simulation summary. Parameter values were chosen to reflect a range of plausible biological scenarios.

Sim1 Sim2 Sim3 Sim4 Sim5
N, number of genes U(10,50) U(5,25) 1000 U(10,50) U(5,50)

K, number of partitions U(1,N) NA U(1,N) U(1,N) U(1,N)

Gene length U(500,1500) U(1000,3000) U(500,1500) U(500,1500) U(500,1500)

Number of taxa U(6,40) U(6,40) U(6,40) U(6,40) U(8,140)

Topology Fixed Fixed Fixed Branch Length Fixed

multiplier

Number of replicates 4,000 4,000 200 1,000 100

Tree length U(0.5,15) U(0.5,12) U(0.5,12) U(0.5,12) U(0.5,12)

parameters using INDELible (Fletcher and

Yang, 2009), resulting in a multiple sequence

alignment.

7. Optimal partitions were identified from this

alignment according to the partitioning

strategies listed above, using the default

settings in each software. See Lanfear et al.

(2012) for details.

8. A ML tree was estimated from this

alignment according to the optimal

partitioning schemes identified under

each strategy, using RAxML.

Analysis of real data

We also reanalyzed some of the real

datasets previously used in the evaluation of

PartitionFinder (table 7). As in the simulations,

optimal partitioning schemes were selected under

the different partitioning strategies evaluated,

and used to infer ML trees with RAxML.

Evaluation of partitioning and phylogenetic
accuracy

Partitioning accuracy In order to compare the

selected partitioning schemes obtained under the

different partitioning strategies with the true

partitions (simulation), or among themselves

(real data), we computed different statistics.

We counted how many times the exact true

partitioning scheme was identified (PPR = Perfect

Partitioning Recovery). We also calculated the

Rand Index (Rand, 1971) (RI), a measure of

the similarity between two clusterings that is

constructed as follows. Given a set of n data blocks

S={o1,...,on} and two partitioning schemes of

S named X and Y with r and s partitions,

respectively, X={X1,...,Xr} and Y ={Y1,...,Ys},

define the following:

• a, the number of pairs of data blocks in S that

are in the same partition in X and in the same

partition in Y .

• b, the number of pairs of data blocks in S that

are in different partition in X and in different

partition in Y .

• c, the number of pairs of data blocks in S that

are in the same partition in X and in different

partition in Y .

• d, the number of pairs of data blocks in S that

are in different partition in X and in the same

partition in Y .

Intuitively, a+b can be considered as the

number of agreements between X and Y and c+d
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Table 7. Description of the empirical datasets evaluated in this study.

Short name Clade
Number

of taxa

Sequence

length

Number of

data blocks

Average number of

sites per data block
Reference

Endicott Humans 179 13857 42 329.92 Endicott and Ho (2008)

(Homo sapiens)

Fong Vertebrates 16 25919 168 154.28 Fong et al. (2012)

(Vertebrata)

Hackett Birds 171 52383 168 277.16 Hackett et al. (2008)

(Aves)

Kaffenberger Frogs 54 6145 27 277.59 Kaffenberger et al. (2012)

(Gephyromantis)

Li Ray-finned fishes 56 7995 30 266.5 Li et al. (2008)

(Actubioterygii)

Wainwright Ray-finned fishes 188 8439 30 281.3 Wainwright et al. (2012)

(Acanthomorpha)

as the number of disagreements between X and Y .

With these counts in place, the RI is computed as

follows:

R=
a+b

a+b+c+d
=
a+b(

n
2

) (8)

The RI is a value between 0 and 1, with 0

indicating that the two partitioning schemes are

completely different and 1 that they are identical.

In addition, we calculated the adjusted Rand

index (Hubert and Arabie, 1985) (ARI), which

measures the probability that a given RI was

achieved by chance. The ARI can yield negative

values if the observed RI is smaller than the

expected RI. In this case the overlap between two

partitioning schemes X and Y can be summarized

in a contingency table where each entry nij

denotes the number of data blocks in common

between partition Xi and Yj, like this:

X/Y Y1 Y2 ... Ys Sums

X1 n11 n12 ... n1s a1

X2 n21 n22 ... n2s a2

...
...

...
. . .

...
...

Xr nr1 nr2 ... nrs ar

Sums b1 b2 ... bs

Then the ARI is calculated as:

ARI=
RI−expRI

maxRI−expRI

(9a)

maxRI =
1

2

( r∑

i=1

(
ai
2

)
+

s∑

j=1

(
bj
2

)
)

(9b)

expRI =

r∑
i=1

(
ai

2

) s∑
j=1

(
bj
2

)

(
n
2

) (9c)

where ai and bj are values from the contingency

table.

We also computed two statistics that reflect if

the number of partitions is under or overestimated

(Kdiff = average number of true partitions –

number of partitions in the optimal partitioning

scheme), and the mean square error of this

deviation (Kmse).

Phylogenetic accuracy .
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In order to compare the inferred ML trees

obtained under the different partitioning

strategies with the true, generating trees (in

the case of computer simulations), or among

themselves (in the case of real data), we

calculated: (i) how many times the exact true tree

topology was identified (PTR = Perfect Topology

Recovery), (ii) the Robinson-Foulds metric (RF)

(Robinson and Foulds, 1981), that only considers

the topology, and (iii) the branch score difference

(BS) (Kuhner and Felsenstein, 1994), which

takes also into account the branch lengths. In

order to compare measurements from trees with

different sizes, we scaled both the RF and BS so

they were expressed per branch. We consider as

outliers those simulation replicates that resulted

in any BS difference (per-branch) higher than

three. Even if the tree topologies were completely

different, such a large BS distance could only be

caused by a extremely long average branch length

in one of the trees, suggesting an optimization

error. This threshold resulted in only less than

1% of the replicates being treated as outliers.

Supplementary Material

Supplementary tables S1–S3 are available

at Molecular Biology and Evolution online

(http://www.mbe.oxfordjournals.org/).
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Table S1. Optimal partitioning schemes for the empirical datasets.

Endicott PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p PF-G-p

Npar 364 364 427 400 364 364 400 409
K 1 1 8 5 1 1 5 6

BIC* 71409 71409 69439 69328 71409 71409 70193 69316

Run Time 00:02:22 00:26:30 00:01:09 00:16:53 00:04:17 00:55:42 00:03:41 00:46:44

Fong

Npar 497 128 182 164 128 110 218 137

K 52 11 17 15 11 9 21 12

BIC* 285842 283542 284787 283508 293635 284146 285117 283358

Run Time 00:03:04 02:02:24 00:03:16 01:25:42 00:07:03 06:18:12 00:03:51 03:18:30

Hackett

Npar 348 366 1311 627 348 366 753 555

K 1 3 108 32 1 3 46 24

BIC* 1862900 1844431 1841869 1836829 1862900 1844255 1843320 1837617

Run Time 04:11:04 72:52:40 00:41:17 13:17:33 04:23:35 81:28:25 01:35:34 52:32:22

Kaffenberger

Npar 132 141 186 204 114 132 168 186

K 3 4 9 11 1 3 7 9

BIC* 130682 129538 129635 128791 128950 130169 131406 128955

Run Time 00:01:48 00:12:34 00:01:20 00:05:35 00:05:06 00:32:28 00:03:05 00:21:43

Li

Npar 190 145 280 208 163 127 217 199

K 9 4 19 11 6 2 12 10

BIC* 257289 256878 256095 255849 260116 257749 256437 255787

Run Time 00:02:10 00:20:28 00:02:03 00:07:46 00:05:59 00:50:18 00:03:40 00:31:54

Wainwright

Npar 382 400 553 481 382 391 571 490

K 1 3 20 12 1 2 22 13

BIC* 486930 480516 477486 477661 486930 480892 477932 477702

Run Time 00:09:14 01:23:36 00:09:05 00:29:15 00:25:19 03:25:53 00:13:49 01:59:03

NOTE.—For each dataset the table includes the total number of parameters in the optimal partitioning schemes (Npar), the number of partitions

in the optimal partitioning schemes (K), the BIC scores of the optimal partitioning schemes assuming proportional branch lengths and recomputed

in RaxML (BIC*), and the time to select an optimal partitioning schemes (Run Time) in hours, minutes and seconds (hh:mm:ss).

1
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Table S2. Rand-Index between the optimal partitioning schemes found under different strategies in the real datasets studied.

Endicot

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-Cp
PT-G 1.00(0)
PT-C-p 0.27(6) 0.27(6)
PT-G-p 0.21(5) 0.21(5) 0.78(-1)

PF-C 1.00(0) 1.00(0) 0.27(-6) 0.21(-5)
PF-G 1.00(0) 1.00(0) 0.27(-6) 0.21(-5) 1.00(0)
PF-Cp 0.29(4) 0.29(4) 0.88(-2) 0.79(-1) 0.29(4) 0.29(4)
PF-G-p 0.23(5) 0.23(5) 0.77(-1) 0.97(0) 0.23(5) 0.23(5) 0.77(1)

Fong

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p
PT-G 0.79(-8)
PT-C-p 0.8(4) 0.83(4)
PT-G-p 0.78(-6) 0.93(2) 0.8(-2)

PF-C 0.67(6) 0.73(14) 0.71(10) 0.73(12)
PF-G 0.78(-11) 0.90(-3) 0.83(-7) 0.87(-5) 0.73(-17)
PF-C-p 0.72(1) 0.85(9) 0.78(5) 0.84(7) 0.74(-5) 0.84(12)
PF-G-p 0.77(-7) 0.91(1) 0.82(-3) 0.90(-1) 0.74(-13) 0.91(4) 0.87(-8)

Hackett

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p
PT-G 0.36(3)
PT-C-p 0.06(55) 0.68(52)
PT-G-p 0.06(27) 0.69(24) 0.91(-28)

PF-C 1.00(0) 0.36(-3) 0.06(-55) 0.06(-27)
PF-G 0.37(2) 0.57(-1) 0.62(-53) 0.62(-25) 0.37(2)
PF-C-p 0.05(44) 0.63(41) 0.90(-11) 0.91(17) 0.05(44) 0.65(42)
PF-G-p 0.05(23) 0.62(20) 0.90(-32) 0.90(-4) 0.05(23) 0.67(21) 0.92(-21)

Kaffenberger

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-Cp
PT-G 0.47(1)
PT-C-p 0.35(9) 0.86(8)
PT-G-p 0.38(7) 0.90(6) 0.96(-2)

PF-C 0.79(-1) 0.45(-2) 0.34(-10) 0.37(-8)
PF-G 0.64(0) 0.80(-1) 0.67(-9) 0.71(-7) 0.57(1)
PF-C-p 0.44(4) 0.72(3) 0.71(-5) 0.73(-3) 0.37(5) 0.77(4)
PF-G-p 0.49(5) 0.70(4) 0.71(-4) 0.72(-2) 0.36(6) 0.73(5) 0.73(1)

Li

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p
PT-G 0.71(-11)
PT-C-p 0.82(5) 0.75(16)
PT-G-p 0.74(-4) 0.75(7) 0.90(-9)

PF-C 0.21(-14) 0.28(-3) 0.04(-19) 0.09(-10)
PF-G 0.67(-13) 0.74(-2) 0.50(-18) 0.55(-9) 0.54(1)
PF-C-p 0.76(-3) 0.72(8) 0.86(-8) 0.83(1) 0.11(11) 0.57(10)
PF-G-p 0.76(-5) 0.75(6) 0.90(-10) 0.86(-1) 0.08(9) 0.54(8) 0.85(-2)

Wainwright

PT-C PT-G PT-C-p PT-G-p PF-C PF-G PF-C-p
PT-G 0.50(2)
PT-C-p 0.04(18) 0.54(16)
PT-G-p 0.06(11) 0.56(9) 0.94(-7)

PF-C 1.00(0) 0.50(-2) 0.04(-18) 0.06(-11)
PF-G 0.54(1) 0.96(-1) 0.50(-17) 0.52(-10) 0.54(1)
PF-C-p 0.03(21) 0.52(19) 0.94(3) 0.94(10) 0.03(21) 0.49(20)
PF-G-p 0.06(12) 0.55(10) 0.94(-6) 0.94(1) 0.06(12) 0.52(11) 0.93(-9)

NOTE.—In brackets, the difference in the number of partitions (row - column).

2
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Table S3. Average Rand-Index across data sets between PartitionTest and PartitionFinder, between hierarchical clustering
and Greedy algorithms, and proportional versus independent branch lengths.

Dataset

PartitionTest

vs.

PartitionFinder

Clustering

vs.

Greedy

Proportional

vs.

Independent

Endicott 0.4693 0.5707 0.2515
Fong 0.8030 0.7941 0.8090

Hackett 0.4523 0.4935 0.3504

Kaffenberger 0.5858 0.6160 0.5716

Li 0.4514 0.6193 0.5346

Wainwright 0.4260 0.5074 0.2856

Average 0.5313 0.6002 0.4671

3





Chapter 7

Discussion

This section presents an overview of the whole research carried out in the

Thesis. Basically, we describe how the main objectives of the thesis have been

accomplished by the different journal articles that make up this work, together

with an overall discussion of the main research results that have been achieved.

For single-gene model selection, we devised and implemented in ProtTest and

jModelTest three parallelization approaches (Chapters 2 and 3): (i) a shared mem-

ory implementation for multicore desktop computers, (ii) distributed memory im-

plementation for HPC architectures, and (iii) a hybrid memory strategy for mul-

ticore cluster architectures. ProtTest and jModelTest are tools implemented in

Java, which provides several totally portable options for developing parallel algo-

rithms. Java provides several programming options for HPC [83]. As Java has

built-in multithreading support, the use of threads is quite extended due to its

portability and high performance, although it is a rather low-level option. Nev-

ertheless, Java provides concurrency utilities, such as thread pools, tasks, block-

ing queues, and low-level high-performance primitives (e.g., CyclicBarrier), for

a higher level programming. However, this option is limited to shared memory

machines, which provide less computational power than distributed memory ar-

chitectures. On the other hand, message-passing is the preferred programming

model for distributed memory architectures (e.g., clusters) due to its portability,

scalability and usually good performance, although it generally requires signifi-

cant development efforts. Among currently available Java Message-Passing Java

113
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(MPJ) libraries, F-MPJ [84] and MPJ Express [74] deserve to be mentioned for

their nested parallelism (MPJ+threads) support for exploiting performance on

clusters of multi-core processors.

The shared memory approach uses a thread pool to handle the execution of

tasks on shared memory architectures. Java thread pools are included in the SDK.

The task queue contains the set of candidate models to optimize which will be

processed by the thread pool (Figure 7.1). The implementation can take advantage

of simultaneous multithreading (SMT) obtaining up to 30% of additional speed-up.

Figure 7.1: ProtTest 3 shared memory strategy.

For distributed memory architectures (e.g., clusters), we used message-passing

communication. The implemented parallel approach is compatible with F-MPJ [84]

and MPJ Express [74] libraries. A dynamic master-worker approach, analogous to

the thread pool strategy, turned out to be the most efficient and scalable. However,

due to the limited number of models and the workload imbalance (e.g., Γ models

require a longer time to optimize), the number of models with Γ rate heterogeneity

is a limiting factor.

A heterogeneous hybrid parallel approach with dynamic scheduling overcomes

the limitations in the scalability and the workload imbalance. Models are weighted

according to the estimated computational load according to their parameters. We

assume equal computational costs of each parameter, except the shape of the

Γ distribution (α). The core model parameter and likelihood computations are

carried out using a custom parallel PhyML implementation with OpenMP [19].

The hybrid approach overcomes the speed-up limitations of the task-level parallel
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approaches, achieving speed-ups of up to 260 in our benchmarks.

We implemented also an online service, jmodeltest.org, oriented towards High

Performance Computing clusters for the transparent execution of jModelTest 2

(Chapter 4). Its main benefit is straightforward execution across different plat-

forms, avoiding any configuration/execution issues. Unlike CIPRES, the advantage

of jmodeltest.org is that users can aggregate their own private computational re-

sources. The web interface facilitates the execution for users that are not familiar

with command console interfaces.

For the final release of jModelTest2 (Chapter 5), we implemented a set of new

features. Among those, we should highlight the capability of searching among

the entire set of 203 substitution schemes nested within GTR (i.e., all possible

combinations of rate matrix symmetries). When combined with rate variation

(proportion of invariant sites and discrete Γ rate categories) and equal/unequal

base frequencies the total number of possible models is 203 × 8 = 1624. Other

interesting additions in this paper are the topological support and the reliability

of the selection criteria. The topological support summarizes which topologies

are supported by which model, including confidence intervals constructed from

cumulative models weights. Measuring the stability of the inferences according to

the model parameters gives the user an idea about the reliability of the results.

Among the different selection criteria (Section 1.1.4), BIC turned out to be the

most accurate for retrieving the true generating model in a simulation study of

10,000 samples.

For multigene model selection (Chapter 6), loop level parallelism via a fine-

grain parallelization of the PLF is provided by the Phylogenetic Likelihood Li-

brary (PLL) [29]. PLL exploits state-of-the-art vector instructions (SSE3, AVX,

AVX-2 intrinsics) to accelerate computations. PartitionTest is one of the first tools

incorporating this library, although it has already been successfully deployed to

substantially accelerate DPPDIV [20], a Bayesian program for divergence time(s)

estimates, and IQ-Tree [62], a novel but very promising tool for phylogenetic in-

ference. We estimate a priori the balance of task-level and loop-level distribution

of cores/processes such that the parallel efficiency is maximized.

The analysis of multigene model selection approaches were directed towards
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evaluating the accuracy of the heuristic algorithms for finding the “true” parti-

tioning schemes (partitioning accuracy), and for the phylogenetic reconstructions

(phylogenetic accuracy). PartitionTest is between 1.5 and 2.6 times faster than

the current state-of-the-art (PartitionFinder) for alignments with a reduced set of

partitions (< 100), and 7 times faster for 1,000 partitions. Moreover, PartitionTest

is more accurate finding the true partitioning scheme.

Greedy algorithm performs better in terms of partitioning accuracy than hi-

erarchical clustering algorithm. However, we observed the opposite results in the

phylogenetic accuracy. In general, hierarchical clustering tends to select parti-

tioning schemes with a higher number of parameters than the “true” partitioning

scheme, while greedy algorithm tends to select underparameterized models. Re-

markably, we obtained similar phylogenetic inferences with the a priori assigning

of independent GTR+Γ model to each data block. Using one GTR+Γ model per

data block (K = N) lead to similar tree inferences than the search algorithms, and

even compared to the true partitioning scheme. On the other hand, using one single

partition (K = 1) performed always noticeably worse than every other approach.

Our results, together with results obtained by Kainer and Lanfear (2015) [43] in

their analyses on real data sets, suggest that K = N is a very convenient strategy

for the ML analysis of not very complex phylogenomic datasets.



Chapter 8

Conclusions

This PhD thesis, “Selection of Models of Genomic Evolution in HPC Environ-

ments”, has been conducted with two main purposes: On the one hand, develop

and implement HPC algorithms for the selection of the most suitable models of

evolution, nucleotide substitution and amino acid replacement, for single and also

multigene data. On the other hand, we discussed the impact of different partition-

ing scheme in the phylogenetic inferences.

1. ProtTest 3 and jModelTest 2 are efficient and accurate HPC tools for single-

gene model selection in phylogenetics.

2. Both tools provide a flexible best-fit model selection framework, allowing for

a wide range of tuning that is not present in other tools. For example, the

topology can be (i) fixed by using a distance method like BIONJ [30], or the

ML topology inferred from the null model (JC for nucleotide data), or (ii)

ML estimated.

3. A hybrid shared/distributed memory parallelization approach presents sig-

nificantly higher performance and scalability than the shared and distributed

memory versions. The tools can also take advantage of simultaneous multi-

threading (SMT).

4. They provide fault tolerance capabilities through a checkpointing system,

which is essential for running on large scale data sets.
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5. jModelTest.org is a web service that allows for executing instances of jMod-

elTest in multiple HPC architectures (public or private) transparent to the

user. It takes advantage of the scalability of the public cloud while maximizes

the available slots in clusters.

6. jModelTest 2 incorporates a fast selection algorithm among the entire set

of GTR submodels (203 substitution schemes), and extended user-readable

analysis features for DNA sequence alignments, such as HTML reports and

topological support summary.

7. BIC shows better performance for retrieving the true generating model than

AIC or AICc.

8. PLL is a suitable library for model parameter optimization and topological

searches.

9. PartitionTest is an efficient and accurate tool for multigene model selection

in phylogenetics, providing fast approximations to the best-fit partitioning

scheme.

10. For not very complex multigene data sets, phylogenetic inference is not very

sensitive to overparameterization. Hierarchical clustering approaches can

perform better than greedy algorithms, even though achieving a lower score.

Nevertheless, using a single GTR+Γ model for each data block provides a

phylogenetic accuracy similar to the best-fit partitioning scheme.



Chapter 9

Future Work

In terms of future research work, the current avalanche of genetic data due

to NGS technologies is generating a large number of challenges in the field of

phylogenetics and phylogenomics, and therefore in bioinformatics. Current analy-

ses, apart from presenting a growth in terms of per-species data, comprise also a

larger number of species, or taxa, and it has been convincingly demonstrated that

the evolutionary rate of a given position is not always constant throughout time.

Within-site rate variations are called heterotachy (for “different speed” in Greek).

Yet, heterotachy was found among homologous sequences of distantly related or-

ganisms, often with different functions. In such cases, the functional constraints

are likely different, which would explain the different distribution of variable sites.

Therefore, for analyses with a large number of taxa or distant species, addressing

heterotachy (assuming different substitution models for different lineages) in the

selection of the evolutionary models might improve the phylogenetic inferences.

Regarding partitioning in phylogenomic analyses, there are still many unknown

issues. In real life, phenomena like incomplete lineage sorting, gene duplication and

loss and horizontal gene transfer can lead to a different scenario in which different

partitions evolve under different gene trees, embedded within a single species tree.

Thus, further studies could focus on evaluating the impact of partitioning on the

inference of species trees.

We are already working in a low-level replacement for PLL, intended to effi-
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ciently support arbitrary data types (e.g., DNA, proteins, codons), and rate het-

erogeneity models (discrete Γ rates, proportion of invariant sites, mixture models

and heterotachy). The new implementation facilitates improving the efficiency of

the current phylogenetic analysis software, and also extending their features. We

are also working in a new model selection tool, as a replacement for jModelTest,

ProtTest and PartitionTest incorporating the new low-level PLL.

For obtaining “good” load balance for partitioned datasets, when optimiz-

ing ML or proposing new model parameters (Bayesian Inference) for partitioned

datasets, it is important to propose and evaluate these new values (e.g., α-shape)

simultaneously for all partitions to improve parallel efficiency [78]. In addition, a

well-balanced number of sites must be assigned to each process, and the number of

distinct partitions per process [98] needs to be minimized. Kobert et al. (2014) [50]

showed that this load-balancing problem is NP-hard and designed a polynomial

time approximation algorithm that is guaranteed to yield a near-optimal distri-

bution of sites and partitions to processes. The algorithm balances the number

of sites among processes and at the same time minimizes the number of parti-

tions assigned to each process. Note that, in this setting, a single partition can be

split among several processes. The implementation of this new method in PLL is

underway.



Caṕıtulo 10

A Summary in Spanish

Este resumen se compone de una introducción, que explica la motivación y

contexto de la Tesis, seguida de una sección sobre su organización en partes y

caṕıtulos. A continuación, sigue una enumeración de los medios que han sido ne-

cesarios para llevarla a cabo, para finalizar con las conclusiones, trabajo futuro y

las principales contribuciones recogidas en ella.

10.1. Introducción

La irrupción de las tecnoloǵıas de secuenciación de nueva generación (NGS,

por sus siglas en inglés –Next Generation Sequencing) en el campo de la bioloǵıa

molecular computacional ha cambiado drásticamente el escenario de la filogenética.

La generación de datos moleculares continúa creciendo más y más rápido, y esto

facilita la exploración de nuevas áreas de investigación, nuevos métodos, y genera

la necesidad de mejorar el rendimiento de los ya existentes, tanto en precisión como

en eficiencia. El análisis de datos está cambiando rápidamente desde la filogenética

(i.e., estudio de un único gen, o un conjunto reducido de genes) a la filogenómica

(i.e., estudio de un gran conjunto de genes, o many-gene analysis).

Muchos métodos actuales requieren el uso de modelos de evolución, y está de-

mostrado que el uso de un modelo u otro puede llevar a diferentes resultados en el

proceso de inferencia filogenética. Desde los comienzos del análisis de datos mole-

121
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culares, se conoce que diferentes sitios (posiciones concretas en las cadenas de ADN

o protéınas), o regiones del ADN pueden evolucionar a diferentes ritmos, o perma-

necer invariantes. Por tanto, desde modelos muy simples (e.g., Jukes-Cantor 1969)

hasta los más complejos (e.g., mixture models), hay un gran número de posibili-

dades. Tanto la sub- como la sobreparametrización en el modelo escogido presenta

desventajas en términos de precisión. Por este motivo, se han creado herramientas

que utilizan entornos estad́ısticos para seleccionar el modelo de evolución que más

se ajuste a los datos, buscando un balance correcto entre el likelihood (verosimili-

tud) y la parametrización.

Un método para abordar el problema de la heterogeneidad en los datos es el

particionado, donde se asume que diferentes grupos de sitios evolucionan bajo la

influencia de diferentes modelos de evolución. Una práctica común es concatenar

alineamientos de diferentes fuentes (e.g., diferentes genes) para el mismo conjunto

de taxa (i.e., especies u organismos). Estos datos, generalmente de gran longitud,

se pueden organizar posteriormente en particiones. Por ejemplo, cada gen, o cada

posición de codón para cada gen, puede constituir un bloque de datos (o parti-

ción) separados. En un análisis de datos particionados en un entorno de Maximum

Likelihood (ML – máxima verosimilitud), el modelo evolutivo se evalúa bajo un

conjunto de parámetros, que son optimizados para cada partición. En este caso,

no sólo es importante decidir qué modelos se asignan a cada partición, sino tam-

bién en cuántas particiones dividimos los datos. Para estudios filogenómicos, como

por ejemplo 10K vertebrate genome project (http:// www.genome10k.org/) y el

1,000 insect transcriptome evolution project (http://www.1kite.org/), que anali-

zan la historia evolutiva de 10,000 vertebrados y 1,000 insectos respectivamente,

el particionado es una práctica rutinaria en los análisis. Sin embargo, el número

de posibilidades que existen entre considerar una única partición para todo el con-

junto de datos, a una partición para cada uno de los bloques de datos propuestos,

presenta un crecimiento exponencial con respecto al número de bloques inicial, y

encontrar el esquema de particionado más adecuado es un problema NP-Dif́ıcil.

Por ejemplo, para 100 bloques existen 4,75×10115 formas diferentes de distribuirlos

en particiones de forma que abarquen todo el conjunto de datos sin solapamiento.

Este número es alrededor de 1030 veces mayor que el número estimado de átomos

en el universo observable.



10.2 Organización de la Tesis 123

Esta Tesis presenta un estudio de métodos de computación de altas presta-

ciones (HPC – High Performance Computing) para la selección de modelos tanto

para un único gen, como para alineamientos genómicos, aśı como su impacto en

los posteriores análisis en un marco ML, en términos de precisión o eficiencia filo-

genética.

Hemos desarrollado versiones HPC de jModelTest y Protest, aśı como un gestor

online multi-plataforma de jModelTest para entornos HPC. Actualmente, ambas

herramientas son una referencia en la comunidad bioinformática para selección de

modelos de evolución de datos sin particionar, para dominios de ADN y protéınas

respectivamente.

Para análisis multigen, hemos desarrollado PartitionTest, que incluye un con-

junto de heuŕısticas que pueden ser calculadas en tiempo lineal o polinomial, para

encontrar el modelo que mejor se ajusta a los datos. PartitionTest hace un uso

intensivo de la libreŕıa PLL (Phylogenetic Likelihood Library), en conjunto con

técnicas HPC de más alto nivel (e.g., paralelismo a nivel de tarea) para las opera-

ciones en un entorno ML.

Finalmente, hemos diseñado un estudio basado en simulaciones, donde los datos

reales son conocidos, para evaluar el impacto de las diferentes técnicas de selección

de modelos en la precisión al recuperar el verdadero modelo utilizado para generar

los datos, y, más importante, las filogenias.

10.2. Organización de la Tesis

De acuerdo con la regulación actual de la Universidade da Coruña, la Tesis

doctoral se ha estructurado como una Tesis por compendio de publicaciones de

investigación. Concretamente se compone de 3 art́ıculos publicados en revistas

indexadas en el Journal Citation Reports (JCR), y que se han agrupado en dos

partes diferenciadas.

La Tesis comienza con un caṕıtulo de introducción, orientado a proporcionar

al lector una visión general de los aspectos importantes dentro del área de estudio,

aśı como de toda la investigación llevada a cabo en los art́ıculos. En primer lugar,
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este caṕıtulo introduce el alcance y las motivaciones de la Tesis, con el objeti-

vo de delimitar su contexto y proporciona una clara descripción de los objetivos

principales a conseguir.

A continuación, se presentan los art́ıculos de investigación que conforman la

tesis, cada uno en un caṕıtulo separado (Caṕıtulos 2- 6):

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3:

fast selection of best-fit models of protein evolution. Bioinformatics, 27(8),

1164-1165.

Factor de impacto: 4.981, 547 citas

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2013). High-

performance computing selection of models of DNA substitution for mul-

ticore clusters. International Journal of High Performance Computing Ap-

plications, 1094342013495095.

Factor de impacto: 1.477, 4 citas

Santorum, J. M., Darriba, D., Taboada, G. L., & Posada, D. (2014). jmo-

deltest.org: selection of nucleotide substitution models on the cloud. Bioin-

formatics, btu032.

Factor de impacto: 4.981

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest

2: more models, new heuristics and parallel computing. Nature methods, 9(8),

772-772.

Factor de impacto: 32.072, 1,849 citas

Darriba, D., & Posada, D. (2015). The impact of partitioning on phyloge-

nomic accuracy. bioRxiv, 023978.

En el Caṕıtulo 7 se incluye una discusión general de los art́ıculos de investiga-

ción anteriores enlazando los contenidos y dotando de coherencia al conjunto. El

Caṕıtulo 8 describe las conclusiones de la tesis. Finalmente, en el Caṕıtulo 9 se

describe el trabajo futuro.
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10.3. Medios

Material de trabajo y financiación principalmente soportados por el Grupo

de Arquitectura de Computadores de la Universidade de A Coruña, y el

Grupo de Filogenómica de la Universidade de Vigo.

Acceso a material bibliográfico a través de las bibliotecas de las Universidades

de A Coruña y Vigo.

Financiación adicional a través de los siguientes proyectos de investigación:

• Financiamiento regional por la Xunta de Galicia bajo el Programa de

Consolidación y Estructuración de Unidades de Investigación Compe-

titivas, Modalidad de Redes de Investigación (Grupo Arquitectura de

Computadores, refs. GRC2013/055 y 2010/6), Red Gallega de Compu-

tación de Altas Prestaciones (ref. 2010/53), y Red Gallega de Bioin-

formática (Grupo Filogenómica, ref. 2010/90).

• European Research Council (Grupo Filogenómica, ref. ERC-2007-Stg

203161-PHYGENOM).

• Ministerio de Ciencia e Innovación bajo los proyectos BFU2009-08611

(Grupo de Filogenómica) y TIN2010-16735 (Grupo de Arquitectura de

Computadores).

• Amazon Web Services (AWS) research grant “EC2 in phylogenomics”.

• Ministerio de Educación y Ciencia (Grupo de Filogenómica, ref. BFU2009-

08611)

Acceso a clusters, supercomputadores y plataformas de computación en la

nube:

• Cluster Pluton (Grupo Arquitectura de Computadores, Universidade de

A Coruña) Inicialmente, 16 nodos con 2 procesadores Intel Xeon quad-

core Nehalem-EP y 16 GB de memoria, todos los nodos conectados v́ıa

InfiniBand DDR y 2 de ellos v́ıa 10 Gigabit Ethernet. Adicionalmente,

2 nodos con un procesador Intel Xeon quad-core Sandy Bridge-EP y 32

GB de memoria, interconectados v́ıa InfiniBand FDR, RoCE e iWARP,
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y 4 nodos con un procesador Intel Xeon hexa-core Westmere-EP, 12 GB

de memoria y 2 GPUs NVIDIA Tesla “Fermi” 2050 por nodo, interco-

nectados v́ıa InfiniBand QDR. Además, se han añadido 16 nodos, cada

uno de ellos con 2 procesadores Intel Xeon octa-core Sandy Bridge-EP,

64 GB de memoria y 2 GPUs NVIDIA Tesla “Kepler” K20m, interco-

nectados por InfiniBand FDR.

• Cluster Diploid (Grupo de Filogenómica, Universidade de Vigo). (1) Un

fat node con 4 procesadores Intel Xeon Westmere-EX de 10 núcleos y 512

GB de memoria (80 núcleos en total), (2) 30 nodos con 2 procesadores

Intel Xeon E5-420 quad-core Harpertown (8 núcleos en totoal) y 16

GB de memoria, y (3) 44 nodos con 2 procesadores Intel Xeon X5675

hexa-core Westmere-EP (12 núcleos en total); 50 GB de memoria y

Hyperthreading deshabilitado.

• Supercomputador Finis Terrae (Centro de Supercomputación de Gali-

cia, CESGA): 144 nodos con 8 procesadores Intel Itanium-2 dual-core

Montvale y 128 GB de memoria, interconectados v́ıa InfiniBand DDR.

Adicionalmente, hemos usado un sistema Superdome con 64 procesado-

res Intel Itanium-2 dual-core Montvale y 1 TB de memoria.

• Plataforma de cloud computing Amazon EC2 IaaS (Amazon Web Ser-

vices, AWS). Se han empleado diferentes tipos de instancias: (1) CC1, 2

procesadores Intel Xeon quad-core Nehalem-EP (8 núcleos en total), 23

GB de memoria y 2 discos de almacenamiento local por instancia; (2)

CC2, 2 procesadores Intel Xeon octa-core Sandy Bridge-EP processors,

60.5 GB de memoria y 4 discos de almacenamiento local por instancia;

(3) CG1, 2 procesadores Intel Xeon quad-core Nehalem-EP (8 núcleos

en total), 22 GB de memoria, 2 GPUs NVIDIA Tesla “Fermi” 2050 y

2 discos de almacenamiento local por instancia; (4) HI1, 2 procesado-

res Intel Xeon quad-core Westmere-EP (8 núcleos en total), 60.5 GB

de memoria y 2 discos de almacenamiento local SSD por instancia; (5)

CR1, 2 procesadores Intel Xeon octa-core Sandy Bridge-EP (16 cores

en total), 244 GB de memoria y 2 discos de almacenamiento local SSD

por instancia; Todos estos tipos de instancias están conectadas v́ıa 10

Gigabit Ethernet.
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Beca predoctoral por la Universidade da Coruña

Estanca de investigación de 6 meses de duración en el Grupo de Filogenómica

de la Universidade de Vigo.

Estancia de investigación de 3 meses de duración en el Heidelberg Institute

for Theoretical Studies (HITS) en Heidelberg, Alemania, que ha permitido

la colaboración en el desarrollo de la libreŕıa de análisis filogenético (PLL),

añadiendo flexibilidad para trabajar con diferentes particiones y adecuándola

para el desarrollo de PartitionTest. La estancia fue financiada por la Univer-

sidade da Coruña.

Contrato de investigador asociado en el Heidelberg Institute for Theoretical

Studies (HITS) en Heidelberg, Alemania.

10.4. Discusión

Para la selección de modelos de un único gen, hemos diseñado e implementa-

do tres esquemas de paralelización (Caṕıtulos 2 y 3): (i) una implementación en

memoria compartida para computadoras de escritorio multinúcleo, (ii) una imple-

mentación en memoria distribuida para arquitecturas HPC, y (iii) una implemen-

tación h́ıbrida para arquitecturas cluster multinúcleo. ProtTest and jModelTest

son herramientas implementadas en Java, que proporciona diversa opciones to-

talmente portables para el desarrollo de algoritmos paralelos. Java proporciona

diferentes opciones para la Computación de Altas Prestaciones [83]. Gracias al

soporte multihilo nativo, su portabilidad y su alto rendimiento, el uso de hilos

en Java está bastante extendido, a pesar de que es una opción de programación

de bajo nivel. Sin embargo, para programación de más alto nivel Java proporcio-

na proporciona herramientas de concurrencia como thread pools, tareas, listas de

bloqueo y primitivas de alto rendimiento (e.g., CyclicBarrier). No obstante, esta

opción se limita al uso de memoria compartida, lo que proporciona menor potencia

computacional que las arquitecturas de memoria distribuida. Por otro lado, el paso

de mensajes es el modelo de programación más adecuado para las arquitecturas

de memoria distribuida (e.g., clusters) gracias a su portabilidad, escalabilidad, y
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habitualmente buen rendimiento, aunque en general requiere un mayor esfuerzo en

el desarrollo. Entre las libreaŕıas de paso de mensajes disponibles en Java (MPJ),

merecen ser mencionadas F-MPJ [84] y MPJ Express [74] por su soporte de pa-

ralelismo anidado (MPJ+threads) para explotar mejor el rendimiento en clusters

multinúcleo.

La implementación de memoria compartida tanto para ProtTest como para

jModeltest utilizan un thread pool para manejar la ejecución de las diferentes ta-

reas. Los thread pools están integrados en el SDK. La implementación también

puede aprovecharse de las tecnoloǵıas de multithreading simultáneo (SMT), obte-

niendo hasta un 30 % de aceleración adicional.

Para las arquitecturas de memoria distribuida (e.g., cluster), hemos utilizado

comunicaciones por paso de mensajes. La estrategia paralela implementada es

compatible con las libreŕıas F-MPJ y MPJ Express. Una implementación maestro-

esclavo, análogo a la estrategia basada en thread pool, ha resultado ser la más

eficiente y escalable. Sin embargo, debido al limitado número de modelos y a la

carga desbalanceada (e.g., los modelos con una distribución Γ requieren un tiempo

de procesamiento mucho mayor), el número de modelos con categoŕıas discretas

son un factor limitante.

Una implementación paralela h́ıbrida con planificación dinámica permite solu-

cionar las limitaciones en la escalabilidad y el desbalanceo de la carga de trabajo.

Los modelos se ponderan de acuerdo a la carga computacional estimada según los

parámetros que contengan. Asumimos un coste homogéneo para cada uno de los

parámetros, excepto para aquellos con distribución Γ. Los cálculos necesarios para

la optimizacion de los parámetros, y computación de la verosimilitud se efectúan

utilizando una implementación paralela propia de PhyML, haciendo uso de direc-

tivas OpenMP [19]. La versión h́ıbrida soluciona las limitaciones de speed-up que

encontrábamos en las versiones con paralalelización a nivel de tarea, alcalnzando

aceleraciones de hasta 260 en nuestros benchmarks.

Hemos implementado un servicio online, jmodeltest.org, orientado hacia la compu-

tación en clusters HPC para ejecutar jModelTest 2 de forma transparente (Caṕıtu-

lo 4). El mayor beneficio radica en su ejecución sencilla a través de diferentes pla-

taformas, evitando cualquier problema relacionado con la configuración/ejecución.
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A diferencia de CIPRES, la ventaja de jmodeltest.org es que los usuarios pueden

agregar sus propios recursos computacionales. La interfaz web facilita la ejecu-

ción para los usuarios que no están familiarizados con las interfaces de consola de

comandos.

Para el lanzamiento de la versión final de jModelTest 2 (Caṕıtulo 5), hemos

implementado una serie de nuevas caracteŕısticas. Entre éstas, debemos destacar la

capacidad de búsqueda entre el conjunto completo de 203 esquemas de sustitución

anidados con GTR (i.e., todas las posibles combinaciones de simetŕıas en la matriz

de tasas de sustitución). Cuando combinamos estos esquemas de sustitución con los

diferentes parámetros (proporción de sitios invariantes, distribución Γ y frecuencias

estacionarias iguales/estimadas), el número de modelos candidatos es 203 × 8 =

1624. Otras incorporaciones interesantes en este Caṕıtulo son el soporte topológico

y la fiabilidad de los diferentes criterios de selección. El soporte topológico resume

qué topoloǵıas son apoyadas por qué modelos, incluyendo intervalos de confianza

construidos a partir de los pesos de los modelos según el criterio de selección

elegido. Por otro lado, medir la estabilidad de las inferencias según los parámetros

de los modelos nos proporciona una idea acerca de la fiabilidad de los resultados.

Entre los diferentes criterios de selección, BIC ha resultado ser el más preciso

para recuperar el modelo verdadero en un estudio sobre 10.000 conjuntos de datos

simulados.

Para la selección de modelos en alineamientos multi-gen (Caṕıtulo 6), el para-

lelismo a nivel de bucle gracias a una paralelización de grano fino de la función

de likelihood (PLF), viene proporcionado por la libreŕıa de análisis filogenético

PLL [29].

PLL explota el estado del arte en instrucciones vectoriales (SSE3, AVX, AVX-2)

para acelerar las computaciones. PartitionTest es una de las primeras herramientas

en incorporar esta libreŕıa, aunque ya ha sido integrada con éxito para acelerar

sustancialmente DPPDIV [20], un programa para estimar los tiempos de diver-

gencia en árboles filogenéticos, y en IQ-TREE, una nueva pero muy prometedora

herramienta de inferencia filogenética. En PartitionTest, estimamos a priori la

distribución de los procesadores/núcleos de computación entre las estrategias de

paralelismo a nivel de bucle y a nivel de tarea, con el objetivo de maximizar la

eficiencia paralela.
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El análisis de las estrategias de selección de modelos multi-gen se ha dirigido a

la evaluación de la precisión de las diferentes heuŕısticas para encontrar el esquema

de particionado verdadero, aśı como la reconstrucción filogenética. PartitionTest

es entre 1,5 y 2,6 veces más rápido que el estado del arte actual (PartitionFinder)

para alineamientos con un conjunto reducido de particiones (< 100), y 7 veces para

conjuntos más grandes (1.000 particiones). Además, PartitionTest es más preciso

encontrando el esquema de particionado verdadero.

El algorithm Greedy obtiene mejores resultados que el clustering jerárquico en

la búsqueda del esquema de particionado correcto. El cambio, hemos observado lo

contrario cuando lo que buscamos es una correcta inferencia filogenética. En gene-

ral, el clustering jerárquico tiende a seleccionar esquemas de particionado con un

mayor número de parámetros que el esquema de particionado verdadero, mientras

que el algoritmo Greedy tiende a la subparametrización. Destacablemente, hemos

obtenido inferencias similares con la asignación a priori de modelos GTR+Γ pa-

ra cada uno de los bloques de datos. Empleando un modelo GTR+Γ para cada

bloque de datos (K = N) se traduce en inferencias filogenéticas similares a las de

los algoritmos de búsqueda, e incluso en comparación con el esquema de particio-

nado verdadero. Utilizando una partición única (K = 1), los resultados han sido

notablemente peores que cualquier otra opción. Nuestros resultados, en conjunto

con los obtenidos por Kainer y Lanfear (2015) [43] en sus análisis en sets de datos

reales, sugieren que K = N es una buena opción para el análisis ML de conjuntos

de datos filogenéticos de complejidad reducida.

10.5. Conclusiones

Esta tesis doctoral, Selección de Modelos de Evolución Genómica en Entornos

HPC, se ha llevado a cabo con 2 objetivos: En primer lugar, desarrollar e imple-

mentar algoritmos para computación de altas prestaciones para la selección de los

modelos de evolución más adecuados, tanto de sustitución de nucleótidos como

de reemplazo de aminoácidos, para datos de un único o varios genes. En segundo

lugar, hemos discutido el impacto de los diferentes esquemas de particionado en

las inferencias filogenéticas.
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1. ProtTest 3 y jModelTest 2 son herramientas HPC eficientes y precisas para

la selección de modelos de un único gen en filogenética.

2. Ambas herramientas proporcionan un marco flexible para seleccionar el mo-

delo que mejor se ajusta a los datos, permitiendo un amplio rango de ajuste

que no está presente en otras herramientas. Por ejemplo, la topoloǵıa pue-

de ser (i) fijada empleando métodos basados en matriz de distancias, como

BIONJ [30], o utilizando la topoloǵıa con la máxima verosimilitud inferida

desde el modelo nulo (JC para datos de ADN), o (ii) recalculada para cada

modelo.

3. Una implmentación h́ıbrida en memoria compartida/distribuida presenta sig-

nificativamente mejor rendimiento y escalabilidad que las implementacio-

nes en memoria compartida o distribuida. Las herramientas pueden también

aprovecharse de las tecnoloǵıas de multihilo simultáneo (simultaneous mul-

tithreading, o SMT).

4. Proporcionan tolerancia a fallos a través de un sistema de checkpointing, lo

cual es esencial para la ejecución sobre datos de gran escala.

5. jModelTest.org es un servicio web que permite la ejecución de instancias de

jModelTest en múltiples arquitecturas HPC (públicas o privadas) de forma

transparente al usuario.

6. jModelTest 2 incorpora un algoritmo de selección rápido para el conjun-

to completo de submodelos de GTR (203 esquemas de particionado),uuu y

herramientas de análisis inteligibles por el usuario para alineamientos de se-

quencias de ADN, como reportes HTML y un resumen del soporte topológico.

7. BIC presenta un mejor rendimiento que AIC o AICc para recuperar el modelo

verdadero que ha generado los datos.

8. PLL es una libreŕıa adecuada para la optimización de parámetros y la búsque-

da de topoloǵıas.

9. PartitionTest es una herramienta eficiente y precisa para la selección de mo-

delos multigénicos en filogenética, proporcionando una aproximación rápida

al mejor esquema de particionado.



132 Caṕıtulo 10. A Summary in Spanish

10. Para conjuntos de datos multigénicos de baja complejidad, la inferencia filo-

genética es poco sensible a la sobreparametrización. Los algoritmos de cluste-

ring jerárquico pueden obtener mejores resultados que los algoritmos greedy,

a pesar de obtener generalmente esquemas de particionado con un peor valor

del criterio de selección. Sin embargo, utilizar un modelo GTR+Γ para cada

bloque de datos proporciona unos resultados similares a los de los esquemas

de particionado seleccionados por los diferentes algoritmos.

10.6. Trabajo Futuro

En términos de trabajo futuro de investigación, la avalancha actual de datos

genéticos gracias a las tecnoloǵıas de sequenciación de nueva generación (NGS)

está generando un gran número de retos en los campos de la filogenética y la fi-

logenómica, y por lo tanto en la bioinformática. Los análisis actuales, además de

presentar un importante crecimiento en términos de datos por especia, comprenden

también un mayor número de especies, o taxa, y se ha demostrado convincente-

mente que el ritmo de evolución de las diferentes posiciones en el ADN no son

siempre constantes a lo largo del tiempo. La variación en la velocidad de evolu-

ción dentro de un mismo sitio se conoce como heterotaquia (del griego “diferente

velocidad”). La heterotaquia se ha podido ver entre sequencias homólogas de or-

ganismos relacionados de una forma distante, a menudo con diferentes funciones.

En esos casos, las restricciones funcionales son probablemente diferentes, lo que

explicaŕıa las diferentes distribuciones de los sitios variantes. Por lo tanto, para

análisis con un número elevado de taxa o especies distantes, teniendo en cuenta la

heterotaquia (asumiendo diferentes modelos de sustitución para diferentes linajes)

en la selección de modelos de evolución podŕıa mejorar las inferencias filogenéticas.

En lo referente al particionado en el análisis filogenómico, todav́ıa quedan mu-

chas cuestiones por resolver. En la vida real, fenómenos como la ordenación in-

completa de linajes, duplicación y pérdida de genes y la transferencia genética

lateral pueden derivar en un escenario diferente en el cual diferentes particiones

evolucionan bajo diferentes árboles (i.e., el árbol de especies y el árbol de un gen

particular pueden diferir). Por tanto, estudios posteriores podŕıan focalizarse en
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evaluar el impacto del particionado en la obtención de árboles de especies cuando

se asumen diferentes topoloǵıas para cada una de las particiones.

Estamos trabajando en una nueva libreŕıa de bajo nivel, que reemplazará a

PLL, con la intención de soportar eficientemente tipos de datos (e.g., ADN, pro-

téınas, codones) y modelos de heterogeneidad arbitrarios (tasas de sustitución

siguiendo una distribución Γ discretizada, porporción de sitios invariantes, mix-

ture models y heterotaquia). La nueva implementación facilita la construcción de

herramientas de análisis filogenético más eficientes, aśı como la extensión de sus

capacidades. Estamos también trabajando en una nueva herramienta de selección

de modelos que sustituirá a jModelTest, ProtTest y PartitionTest incorporando la

nueva libreŕıa PLL de bajo nivel.

Para obtener un buen balanceo de carga en los sets de datos particionados,

cuando se optimizan los parámetros de los modelos v́ıa máxima verosimilitud (ML,

por sus iniciales en inglés) o se proponen nuevos valores para los parámetros (infe-

rencia Bayesiana), es importante proponer y evaluar estos nuevos valores de forma

simultánea para todas las particiones con el objetivo de mejorar la eficiencia [78].

Adicionalmente, se debe asignar las particiones a los diferentes procesadores de

modo que se minimice el número de particiones que son compartidas entre va-

rios procesadores, a la vez que se homogeneiza el número de sitios asignados a

cada procesador [98]. Kobert et al. (2014) [50] mostraron que este problema de

balanceo de carga es NP-Dificil, y han diseñado un algoritmo de aproximación en

tiempo polinomial que garantiza una distribución cuasi-óptima de los sitios y las

particiones a los procesadores. El algoritmo balancea la cantidad de sitios, y al

mismo tiempo minimiza el número de particiones que son asignados a cada proce-

sador. En esta configuración, una partición puede dividirse entre varios procesos.

La implementación de este nuevo método en PLL está en proceso.

10.7. Principales Contribuciones

Las principales contribuciones de esta tesis son:

1. Diseño, implementación y evaluación de algoritmos de Computación de Al-
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tas Prestaciones para la selección estad́ıstica del modelo de reemplazo de

aminoácidos más adecuado para alineamientos de protéınas, incorporados en

ProtTest 3.0.

2. Diseño, implementación y evaluación de algoritmos de Computación de Al-

tas Prestaciones para la selección estad́ıstica de modelos de sustitución me-

cańısticos para alineamientos de ADN, incorporados en jModelTest 2.0. Este

trabajo facilita el uso de arquitecturas HPC para seleccionar el modelo más

adecuado. Proporciona también tolerancia a fallos a través de un sistema de

checkpointing.

3. Diseño de nuevas técnicas de visualización para selección de modelos.

4. Métodos extendidos para la selección de modelos de ADN, soportando todos

los 203 posibles esquemas de sustitución derivados de GTR (modelo reversi-

ble generalizado).

5. Métodos de análisis extendidos del impacto de los modelos de sustitución en

conjuntos de datos particulares, tales como reportes HTML y un resumen

topológico sobre los diferentes modelos candidatos.

6. Extensión de la libreŕıa de análisis filogenético PLL para dar añadir flexibi-

lidad en el manejo de datos particionados.

7. Diseño, implementación y evaluación de algoritmos de Computación de Altas

Prestaciones para evaluar correctamente la heterogeneidad proporcionada

por el particionado de datos, incorporados en PartitionTest.

8. Evaluación del impacto de los diferentes esquemas de particionado en la

inferencia filogenética.
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