
Systematic Analysis of the Cache
Behavior of Irregular Codes

Diego Andrade Canosa

Department of Electronics and Systems

University of A Coruña, Spain

Department of Electronics and Systems

University of A Coruña, Spain

PhD THESIS

Systematic Analysis of the Cache

Behavior of Irregular Codes

Diego Andrade Canosa

March of 2007

PhD Advisors:

Basilio B. Fraguela Rodríguez

and Ramón Doallo Biempica

Dr. Basilio B. Fraguela Rodríguez

Profesor Titular de Universidad

Dpto. de Electrónica y Sistemas

Universidad de A Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidad

Dpto. de Electrónica y Sistemas

Universidad de A Coruña

CERTIFICAN

Que la memoria titulada �Systematic Analysis of the Cache Behavior of Irregular

Codes� ha sido realizada por D. Diego Andrade Canosa bajo nuestra dirección en el

Departamento de Electrónica y Sistemas de la Universidad de A Coruña y concluye

la Tesis Doctoral que presenta para optar al grado de Doctor en Informática.

A Coruña, 20 de Diciembre del 2006

Fdo.: Basilio B. Fraguela Rodríguez

Codirector de la Tesis Doctoral

Fdo.: Ramón Doallo Biempica

Codirector de la Tesis Doctoral

Fdo.: Luís Castedo Ribas

Director del Dpto. de Electrónica y Sistemas

Resumen de la tesis

Introducción

Existe una enorme diferencia entre la velocidad del procesador y la de la me-

moria. Esta diferencia convierte a la memoria en un cuello de botella que limita el

rendimiento de los computadores. La jerarquía de memoria se utiliza para tratar

de atenuar en lo posible el efecto de este cuello de botella. Se compone de varios

niveles formados cada uno de ellos por memorias implementadas usando diferentes

tecnologías. Las memorias de los niveles superiores son muy rápidas, con velocidades

próximas a las del procesador, pero su tamaño es pequeño. A medida que descende-

mos en la jerarquía las memorias se van haciendo más lentas pero pueden albergar

una mayor cantidad de datos.

La memoria del nivel más bajo de la jerarquía del computador contiene toda

la información disponible. A medida que ascendemos en la jerarquía, cada nivel

contiene un subconjunto de la información contenida en el nivel inferior. El funcio-

namiento de las jerarquías de memoria es sencillo: cuando el procesador necesita un

dato solicita al nivel superior de la jerarquía el bloque de memoria en el que está

contenido. Si el bloque se encuentra en ese nivel la petición es satisfecha y se produce

un acierto, mientras que si el dato no está disponible en ese nivel se produce un fallo

y la petición es trasladada al nivel inferior. Esta petición se propaga hacia abajo en

la jerarquía hasta que el dato se encuentra en alguno de los niveles. En el peor de

los casos, la petición será satisfecha en el nivel más bajo de la jerarquía.

La jerarquía de memoria explota el principio de localidad que en mayor o menor

medida cumplen la mayoría de los procesos ejecutados en un computador. Existen

dos tipos de localidad:

Localidad espacial: si un dato ha sido accedido en un momento dado existe

v

vi

una alta probabilidad de que datos cercanos se accedan proximamente.

Localidad temporal: si un dato ha sido accedido en un momento dado existe

una alta probabilidad de que ese mismo dato vuelva a ser accedido próxima-

mente.

Las jerarquías de memoria están diseñadas de tal forma que los bloques de memoria

más recientemente accedidos van a estar albergados en los niveles superiores de

la jerarquía. Está claro pues que su uso favorece la mejora del rendimiento del

computador porque un alto porcentaje de los accesos a memoria serán resueltos en

los niveles superiores de la jerarquía.

Empezando por el nivel superior, la jerarquía de memoria de un computador

está compuesta típicamente por: los registros del computador, la memoría caché,

dividida a su vez en varios niveles diferentes, la memoria principal y �nalmente

el nivel de almacenamiento secundario. Una mejora en la localidad del código a

ejecutar mejoraría el rendimiento de la jerarquía de memoria y en consecuencia la

del computador.

Existen muchas técnicas que tratan de mejorar la localidad de los códigos a eje-

cutar en un computador mejorando así el rendimiento de la memoria. Los diferentes

niveles de caché son la parte de la jerarquía de memoria más usada por el procesador

después de los registros. Por lo tanto es importante tener técnicas que nos permi-

tan conocer de forma rápida y precisa el comportamiento de las cachés durante la

ejecución de un código en un determinado computador. Estas técnicas pueden ser

usadas por ejemplo para guiar procesos de optimización de cara a incrementar la

localidad en los accesos de los programas. Dada la gran disparidad entre la velocidad

de acceso a los datos en las caché en la memoria principal esto puede dar lugar a

grandes reducciones en el tiempo de ejecución.

Las principales técnicas que se usan para estudiar el rendimiento de la memoría

caché son:

Simulación dirigida por traza: Se usa una traza de las direcciones de memoria

accedidas durante la ejecución de un código determinado para medir mediante

un simulador el comportamiento de la caché durante su ejecución. Los prin-

cipales inconvenientes de esta técnica son que es necesario ejecutar el código

para obtener la traza y que la simulación a menudo lleva más tiempo que la

ejecución del código real. A cambio, obtenemos buenos niveles de exactitud en

la medición del rendimiento.

vii

Contadores hardware: Los contadores hardware existen en algunas arquitectu-

ras y miden una gran cantidad de eventos relacionados con el hardware, entre

ellos muchos eventos relacionados con el comportamiento de la caché. Podemos

usar estos contadores durante la ejecución del código para estudiar el compor-

tamiento de la caché. El principal inconveniente es que estos contadores están

presentes sólo en ciertas arquitecturas y que sigue siendo necesario ejecutar el

código para medir el comportamiento de la caché. Como en el caso anterior,

la precisión de las mediciones obtenidas es alta.

Modelado analítico: Podemos utilizar un modelo analítico de la caché para

obtener una predicción de su comportamiento. Como información de entrada

se puede usar una traza de las direcciones de memoria accedidas por el pro-

grama o el propio código fuente a ejecutar. El tiempo necesario para obtener

la predicción es menor que en las dos anteriores técnicas, pero en general suele

tener menor precisión en sus predicciones y la clase de códigos que podemos

modelar debe tener unas características determinadas.

El modelo analítico de las PME (Probabilistic Miss Equations) [31] usa como

información de entrada el código fuente a ejecutar para obtener una estimación rá-

pida y �able del comportamiento de la memoría caché de un computador. El modelo

PME está limitado a códigos en los que los patrones de acceso a las estructuras son

regulares. Se han propuesto algunos modelados analíticos para códigos irregulares

concretos basándose en las ideas del modelo PME [30], pero no existe una estrategia

automatizable que aborde el modelado del comportamiento de la caché para esta

clase de códigos. Nuestro propósito es crear una extensión al modelo PME que nos

permita abordar de forma automática el modelado de códigos en los que los accesos

a algunas estructuras de datos siguen patrones de acceso irregulares.

Metodología de Trabajo

Abordar el modelado de códigos irregulares utilizando como primera referencia

un código de complejidad excesiva habría sido un enfoque erróneo del problema.

La lógica impone realizar primero el modelado de un código sencillo e ir re�nando

sucesivamente el modelado sobre códigos de complejidad creciente.

Cuando se considera el primer código se propone una estrategia automatizable de

modelado que trate de cubrir toda la complejidad de la clase de códigos a modelar.

viii

Se deriva a mano el modelado para ese código utilizando la estrategia propuesta. Se

compara la predicción del modelo propuesto con los resultados obtenidos por una

simulación dirigida por traza considerando distintas con�guraciones de la caché y

distintos tamaños de las estructuras involucradas en el código. Lo más probable es

que la primera aproximación no funcione bien en todos los casos. En este caso se trata

de identi�car las posibles causas de la divergencia entre el simulador y el modelo

y se proponen modi�caciones que mejoren la predicción. Una vez se consiga que la

predicción del modelo sea �able para un amplio rango de con�guraciones caché y

tamaños de las estructuras involucradas, consideraremos que nuestro modelo realiza

bien el modelado de este código concreto.

Sin embargo, el objetivo de nuestro modelo es cubrir el modelado de cualquier

código irregular, por lo tanto se elige un código un poco más complejo y se deriva el

modelado a mano repitiendo el mismo proceso que en el caso anterior hasta que la

predicción sea �able. Es necesario comprobar que cualquier modi�cación del modelo

no afecta a la �abilidad en la predicción para códigos anteriores. Cuando se hayan

modelado con éxito un número razonable de códigos de complejidad creciente con-

sideraremos conseguido el objetivo de tener una estrategia general y automatizable

para el modelado de códigos irregulares.

Contribuciones

La existencia de una referencia con un patrón de acceso irregular se puede deber a

diversos motivos: referencias dependientes de una o varias sentencias condicionales,

estructuras indexadas a través de los valores contenidos en otras estructuras de

datos, la existencia de punteros en el código etc. . .

En este trabajo hemos considerado dos fuentes principales de irregularidad: la

existencia de estructuras de datos afectadas por condicionales y los accesos a través

de indirecciones donde una estructura es indexada utilizando los valores contenidos

en otra estructura diferente. Se han propuesto extensiones automatizables del modelo

PME para ambos casos.

En el caso de sentencias condicionales hemos propuesto una extensión [7, 8, 11,

9, 12] capaz de modelar referencias contenidas dentro de una o varias sentencias

condicionales anidadas cuya veri�cación se determina dinámicamente, esto es, en

tiempo de ejecución. Un ejemplo de sentencia de este tipo sería una en la que el

valor de verdad de la sentencia condicional dependiese a su vez de una expresión en

ix

la que apareciese involucrada una referencia a un array cuyo valor solo puede ser

conocido en tiempo de ejecución. Se impone la restricción de que la probabilidad

de que se veri�que la condición de la sentencia condicional tiene que ser uniforme,

es decir, tiene que ser siempre la misma cada vez que es evaluada, y su valor debe

ser suministrado como un parámetro al modelo. En el caso de tener varias setencias

condicionales, éstas deben de ser totalmente independientes entre si, es decir, el valor

de verdad de una de ellas no depende del valor de verdad de la otra.

En los códigos con indirecciones hemos utilizado como referencia los códigos que

realizan computaciones con matrices dispersas. Estas matrices son almacenadas uti-

lizando diferentes formatos comprimidos cuya manipulación da lugar a la aparición

de una gran cantidad de indirecciones en esta clase de códigos. Hemos propuesto

una extensión automatizable del modelo PME [10, 14] para cubrir códigos con indi-

recciones en los que cada posición de la estructura de datos tiene una probabilidad

uniforme de ser accedida a través de la indirección. En el caso de una matriz dis-

persa el que tenga una distribución uniforme supone que los valores no nulos de la

misma están uniformemente distribuídos a lo largo de la matriz. Al igual que el caso

de los condicionales esta probabilidad debe ser suministrada como un parámetro de

entrada al modelo.

Examinando los conjuntos de datos de entrada típicamente manipulados por có-

digos que realizan computación con matrices dispersas, descubrimos que la mayoría

de las matrices tienen sus valores no nulos concentrados únicamente sobre una ban-

da limitada de las mismas. En un primer momento propusimos una nueva extensión

que cubría el modelado de matrices banda asumiendo que los no nulos dentro de la

banda estaban distribuídos uniformemente [14]. Sin embargo, la mayoría de las ma-

trices banda no tienen los valores distribuidos de manera uniforme. Por ello hemos

propuesto una nueva extensión del modelo [13] que permite el análisis preciso del

comportamiento de la caché durante la manipulación de esta clase de conjuntos de

entrada.

Hemos propuesto extensiones automatizables y modulares para el modelado de

códigos irregulares tanto con sentencias condicionales como con indirecciones. La

automatización efectiva del proceso requiere la extracción de la información utilizada

por el modelo del código a ser analizado. En el caso de códigos irregulares esta

información a menudo se encuentra enmascarada en el propio código y no contenida

de forma explícita, por tanto necesitamos una herramienta de compilación que sea

capaz de manejar información simbólica y hacer un análisis avanzado del código. En

nuestro trabajo hemos utilizado el compilador XARK para automatizar el modelado

x

de códigos con indirecciones con una distribución uniforme [6, 13].

Conclusiones

La mayoría de los modelos analíticos de la caché existentes sólo cubren el mo-

delado de códigos que tienen patrones de acceso regulares. El modelado de códigos

irregulares o bien ha sido realizado ad-hoc para ciertos códigos o está basado en

heurísticas que no obtienen buenos niveles de precisión. En este trabajo hemos pro-

puesto extensiones que cubren las principales causas de aparición de irregularidad

en los accesos de un código. El manejo de información estadística sobre los conjuntos

de entrada por parte del modelo se ha mostrado como la clave para poder obtener

buenas estimaciones sobre el comportamiento de esta clase de códigos sin necesidad

de ejecutarlos.

Por una parte hemos propuesto una extensión automatizable y modular para

códigos con sentencias condicionales donde la probabilidad de que cada condición

sea cierta se mantiene uniforme en cada evaluación de la misma. La �abilidad de

esta extensión se ha veri�cado comparando las predicciones del modelo con los resul-

tados de simulación dirigida por traza aplicando el modelo a mano sobre códigos de

este tipo de creciente complejidad. La predicción mediante un modelo analítico del

rendimiento de la caché durante la ejecución de un código dado es una tarea en si

complicada. Considerar patrones de acceso irregulares aumenta considerablemente

el grado de di�cultad de realizar dicha predicción. A pesar de ellos los niveles de

�abilidad del modelo para códigos irregulares es alta. Además, a pesar de la mayor

complejidad computacional de las nuevas fórmulas con respecto a las derivadas para

códigos regulares, el tiempo de ejecución del modelo se mantiene extremadamente

bajo, en concreto éste está siempre por debajo de un segundo para cada ejecución.

Hemos realizado otra extensión modular y automatizable para códigos con indi-

recciones. Los códigos que hemos tomado como ejemplo para realizar el modelado

realizan computación con matrices dispersas. En una primera extensión hemos con-

siderado solamente matrices dispersas uniformes, es decir, en las que los valores no

nulos de la matriz se encuentran uniformemente esparcidos a lo largo de la misma.

El modelo propuesto para este caso es capaz de obtener una predicción �able del

rendimiento de la caché en un muy corto periodo de tiempo. En un siguiente pa-

so hemos estudiados colecciones como la la Harwell Boeing [28] y la NEP [18] que

contienen un gran número de matrices típicas utilizadas en computación dispersa.

xi

Hemos observado que un alto porcentaje de las matrices que contienen son banda,

es decir, la mayoría de los valores no nulos están esparcidos a lo largo de una banda

limitada de la matriz. Ello nos ha llevado a proponer una aproximación para abordar

el modelado de códigos que manipulan esta clase de matrices. En este sentido, he-

mos propuesto primero una pequeña modi�cación para modelar el comportamiento

de matrices banda uniforme y posteriormente otra extensión del modelo PME para

analizar códigos que manipulan matrices en la que los valores no nulos no están

uniformemente distribuidos dentro de la banda. La validación de estos modelos se

efectuó modelando códigos de creciente complejidad que utilizan matrices dispersas

tanto sintéticas como reales y comparando luego las predicciones del modelo con los

resultados de simulaciones dirigidas por traza. El tiempo necesario para la ejecución

del modelo se mantiene por debajo de un segundo incluso para casos en los que

la ejecución del código objeto del análisis se prolonga durante muchos minutos. La

�abilidad de la predicción obtenida continúa siendo muy alta.

Una vez realizadas estas extensiones del modelo PME nos propusimos hacer la

automatización efectiva de alguna de ellas. Para ello utilizamos una herramienta

avanzada de compilación, el compilador XARK, capaz de extraer de los códigos a

analizar la información que el modelo precisa. Una vez automatizado todo el proce-

so, abordamos el modelado automático de los códigos anteriores y de nuevos códigos

contenidos dentro de la librería SPARSKIT [43] especializada en el tratamiento de

matrices dispersas. Los resultados obtenidos muestran que las predicciones siguen

siendo las mismas que las obtenidas cuando habíamos aplicado manualmente las

ecuaciones sobre los códigos. Una de las preguntas latentes durante la aplicación

del modelado a mano era cuánto tiempo llevaría construir las ecuaciones del mode-

lo automáticamente utilizando como entrada la información de un compilador. El

tiempo necesario para extraer la información del código por parte del compilador

y utilizar ésta para generar una predicción del rendimiento usando el modelo sigue

siendo realmente bajo y en algunos casos se mantiene varios órdenes de magnitud

por debajo del tiempo de ejecución del código analizado.

Una de las aplicaciones de esta clase de modelos es servir de guía en un proceso

de optimización. En este sentido, realizamos un experimento que consistió en utilizar

el modelo PME como guía a la hora de decidir cuál era el ordenamiento óptimo de

los lazos en el producto entre una matriz dispersa y una matriz densa. Se hicieron

pruebas utilizando tanto matrices sintéticas como reales de diferentes tamaños, den-

sidades y considerando diversas arquitecturas reales con distintas con�guraciones de

la caché. La decisión adoptada guiándonos por el modelo siempre coincidió con la

xii

adoptada usando como referencia el tiempo de ejecución del código en la máquina

real. Incluso en caso de matrices no uniformes, aunque cuantitativamente la predic-

ción del modelo era a veces inexacta, la decisión tomada utilizando el modelo como

guía era siempre la correcta.

La ampliación del ámbito de aplicación del modelo PME al campo de los códigos

irregulares supone un gran paso adelante en la utilización efectiva de los modelos

analíticos como alternativa a las técnicas tradicionales de simulación dirigida por

traza y contadores hardware. Los códigos irregulares adolecen de falta de localidad

y por lo tanto pueden obtener un gran bene�cio de la aplicación de técnicas de

optimización que la mejoren. Además estas extensiones mantienen intactas todas

las características deseables en una técnica para el estudio del rendimiento de la

memoria: �abilidad en la predicción, rapidez en su ejecución y la posibilidad de

conocer los entresijos del funcionamiento del código en lugar de simplemente obtener

una única cifra indicativa del rendimiento.

Trabajo Futuro

En un futuro planeamos abordar el modelado del comportamiento de la caché en

arquitecturas multinúcleo ya que éstas empiezan a ser cada vez más frecuentes hoy

en día. La complejidad y novedad en el análisis de las jerarquías de memoria de estas

arquitecturas, reside en la existencia de varios procesadores que pueden compartir

uno o varios niveles de la caché. Trataremos de modelar esta situación usando el

modelo PME como base. La automatización efectiva del modelo puede mejorarse

tanto para códigos con indirecciones y una distribución banda de la matriz, como

para códigos con sentencias condicionales.

Debio a su exactitud, rapidez y amplio ámbito de aplicación, este modelo se

ha convertido en una poderosa herramienta para predecir el comportamiento de

la caché. Planeamos usar el modelo para guiar optimizaciones tanto sobre códigos

regulares como irregulares, además de las ilustradas en esta tesis. Optimizaciones

tales como, la selección óptima del tamaño de bloque en la aplicación de la técnica

de blocking o métodos que nos permitan guiar la prebúsqueda de datos usando las

predicciones del modelo. Sería interesante usar las capacidades del modelo en el

campo de los sistemas embebidos y comprobar como sus predicciones pueden ser

usadas en esta clase de sistemas para mejorar su rendimiento. Se ha desarrollado

poco trabajo en este área del modelado del comportamiento de la caché de esta clase

xiii

de sistemas. Intentaremos derivar estimaciones del mínimo y el máximo número de

fallos en código irregulares y usarlos en aplicaciones tales como el cálculo del WCET

(Worst Case Execution Time), un problema abierto en los sistemas embebidos.

Publicaciones

D. Andrade, B.B. Fraguela, and R. Doallo. E�cient and accurate analytical

modeling of the cache behavior of complete scienti�c codes. In IASTED Intl.

Conf. on Applied Simulation and Modelling 2003, pages 106�111, Marbella,

September 2003.

D. Andrade, B.B. Fraguela, and R. Doallo. Modelado de caches ante códigos

con condicionales dependientes de datos. In Actas de las XIV Jornadas de

Paralelismo, pages 281�286, Leganés, September 2003.

D. Andrade, B. B. Fraguela, and R. Doallo. Cache behavior modeling of codes

with data-dependent conditionals. In Springer-Verlag, editor, In Proceedings

of Workshop on Software and Compilers for Embedded Systems, volume 2826 of

Lecture Notes in Computer Science, pages 373�387, Vienna, Austria, Septem-

ber 2003.

D. Andrade, B.B. Fraguela, and R. Doallo. Modeling the cache behavior

of codes with arbitrary data-dependent conditional structures. In Springer-

Verlag, editor, In Proceedings of the Asia-Paci�c Computer Systems Architec-

ture Conference, volume 3189 of Lecture Notes in Computer Science, pages

44�57, Beijing, China, September 2004.

D. Andrade, B.B. Fraguela, and R. Doallo. Modelado analítico automático

del comportamiento de la caché para códigos con indirecciones. In Actas de

las XVI Jornadas de Paralelismo, pages 321�328, Granada, September 2005.

D. Andrade, M. Arenaz, B. B. Fraguela, J. Touriño, and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

In Proceedings of Workshop on Compilers for Parallel Computers, pages 179�

193, A Coruña, Spain, January 2006.

xv

xvi

D. Andrade, B. B. Fraguela, and R. Doallo. Analytical modeling of codes

with arbitrary data-dependent conditional structures. Journal of Systems

Architecture, 52(7):394�410, July 2006.

D. Andrade, B. B. Fraguela, and R. Doallo. Cache behavior modeling for codes

involving banded matrices. In Proc. of the 19th Intl Workshop on Languages

and Compilers for Parallel Computing, New Orleans, November 2006.

D. Andrade, B. B. Fraguela, and R. Doallo. Precise automatable analytical

modeling of the cache behavior of codes with indirections. ACM Transactions

on Architecture and Code Optimization, 2007. Accepted for publication.

D. Andrade, M. Arenaz, B. B. Fraguela, J. Touriño, and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

Concurrency and Computation: Practice and Experience, 2007. Accepted for

publication.

Abstract

The performance of memory hierarchies, in which caches play an essential role,

is critical in nowadays general-purpose and embedded computing systems because

of the growing memory bottleneck problem. Unfortunately, cache behavior is very

unstable and di�cult to predict. This is particularly true in the presence of irregu-

lar access patterns, which exhibit little locality. Such patterns are very common for

example in applications in which some references are guarded by conditional state-

ments or in which pointers or compressed sparse matrices give place to indirections.

Nevertheless, cache behavior in the presence of irregular access patterns has not

been widely studied. In this thesis we present separated extensions of a systematic

analytical modeling technique based on PMEs (Probabilistic Miss Equations) that

allows the automated analysis of the cache behavior for codes that include data-

dependent conditional structures and codes with irregular access patterns due to

indirections, respectively. The model generates very accurate predictions despite

the irregularities and has very low computing requirements, being the �rst model

that gathers these desirable characteristics that can analyze automatically this kind

of codes. These properties enable this model to help drive compiler optimizations.

The PME model extension for codes with indirections has been integrated in the

XARK compiler, a research compiler oriented to automatic kernel recognition in

scienti�c codes. We show how to exploit the powerful information-gathering ca-

pabilities provided by this compiler to allow automated modeling of loop-oriented

scienti�c codes.

To my big family.

Acknowledgements

This thesis is not the result only of my own e�ort; there are many people involved

in this work whose support and dedication I want to acknowledge. First, I want to

acknowledge my PhD supervisors Basilio and Ramón for the con�dence they placed

on me, and the support they gave me along all these years. I cannot forget my

colleagues in the Department of Electronics and Systems because they made easier

my experience in the lab during all these years, specially to Manuel Arenaz with

whom i worked in the integration of the XARK compiler with the PME model.

Finally, I want to acknowledge my parents because they have always been there.

I gratefully thank to the following institutions for funding this work: Department

of Electronics and Systems of A Coruña for the human and material support, Uni-

versity of A Coruña for �nancing my attendance at some conferences, and Xunta

de Galicia and Spanish Government for the projects 1FD97-0118-C02-02, TIC2001-

3694-C02-02, TIN2004-07797-C02-02 and PGIDIT03-TIC10502PR.

Diego Andrade

"Le diable se cache dans les détails", Swiss Proverb

Contents

Preface 1

1. An Introduction to Cache Modeling 7

1.1. Techniques to Study the Cache Behavior 9

1.1.1. Trace-driven Simulation . 9

1.1.2. Hardware Counters . 10

1.1.3. Analytical Models . 11

2. The PME Model 17

2.1. Introduction . 17

2.2. Scope of Application . 20

2.3. Miss Probability Estimation . 20

2.3.1. Access Pattern Identi�cation 23

2.3.2. Cache Impact Quanti�cation 25

2.3.3. Area Vectors Addition . 30

2.4. Building Probabilistic Miss Equations 31

3. Model Extension to Handle Codes with Conditional Statements 35

3.1. Scope of Application . 36

xxv

xxvi CONTENTS

3.2. Miss Probability Estimation in Irregular Codes 37

3.2.1. Access Pattern Identi�cation 37

3.2.2. Cache Impact Quanti�cation in Irregular Codes 41

3.3. Condition Dependent PME . 44

3.4. Validation . 49

4. Model Extension to Handle Codes with Indirections 57

4.1. Scope of Application . 58

4.2. Model Extension for Uniform Distributions 58

4.2.1. Miss Probability Estimation in Codes with Indirections 59

4.2.2. PMEs for Codes with Indirections 64

4.2.3. Model Extension for Uniform Banded Matrices 71

4.2.4. Validation . 72

4.3. Model Extension for Non-Uniform Banded Matrices 84

4.3.1. PME equations for Banded Matrices 87

4.3.2. Validation for Codes with Non-Uniform Banded Matrices . . . 92

5. Automated Implementation in a Compiler Framework 97

5.1. Motivating Example . 98

5.2. Chains of Recurrences . 98

5.3. Information Requirements of Extended PME Model 100

5.3.1. Constructing the Equations 102

5.3.2. Computing the Interference Regions 105

5.4. XARK Extension for the PME Model Automation 108

5.4.1. Construction of the Graph of References 112

CONTENTS xxvii

5.5. Experimental Results . 113

5.5.1. Driving compiler optimizations 113

References 121

List of Tables

1.1. Main characteristics of the existing analytical models of the cache

behavior . 14

2.1. Notation used in the model description 20

3.1. Parameter combinations used for the validation and average and max-

imum miss rate prediction error . 50

3.2. Validation data for the synthetic kernel in Fig. 3.3 for several cache

con�gurations, problem sizes and condition probabilities 51

3.3. Validation data for the CRS code in Fig. 3.4 for several cache con�g-

urations, problem sizes and condition probabilities 52

3.4. Validation data for the optimized matrix product code in Fig. 3.2 for

several cache con�gurations, problem sizes and condition probabilities 53

4.1. Average measured (MRSim) and predicted (MRMod) miss rates, aver-

age value ∆MR of the absolute di�erence between the predicted and

the measured miss rate in each experiment, and maximum value of

this di�erence max(∆MR). 74

4.2. Validation data and times for the Sparse Matrix - Vector Product

code for several cache con�gurations, matrix sizes and sparse matrix

density . 75

xxix

xxx LIST OF TABLES

4.3. Validation data and times for the Sparse Matrix - Dense Matrix Prod-

uct IKJ code for several cache con�gurations, matrix sizes and sparse

matrix density . 75

4.4. Validation data and times for the Matrix Transposition code, for sev-

eral cache con�gurations, matrix sizes and sparse matrix density . . . 76

4.5. Validation data and times for the Sparse Matrix - Vector Product code

for several cache con�gurations and di�erent Harwell-Boeing matrices

with uniform band distribution . 77

4.6. Validation data and times for the Sparse Matrix - Dense Matrix Prod-

uct IKJ code for several cache con�gurations and di�erent Harwell-

Boeing matrices with uniform band distribution 77

4.7. Average measured (MRSim) miss rate, average typical deviation (σSim)

of the measured miss rate, average predicted (MRMod) miss rate and

the average value ∆MR of the absolute di�erence between the pre-

dicted and the measured miss rate in each experiment. 93

5.1. Memory hierarchy parameters in the architectures used (sizes in bytes),

miss weights W in CPU cycles. 114

5.2. Average execution time in seconds for the sparse matrix-dense matrix

product as a function of the loop ordering. 115

List of Figures

2.1. Reuse in a simple loop . 18

2.2. Nested loops with structures accessed using a�ne functions. 19

2.3. Procedure for estimating miss probabilities from the code 21

2.4. Matrix Product . 24

2.5. Cross and sef interference area vectors for a footprint on a 2-way

associative cache with 8 sets . 26

2.6. Footprints of the most common regular access patterns 27

3.1. Loop nest with data-dependent conditional statements. 37

3.2. Optimized product of matrices . 39

3.3. Synthetic kernel code . 49

3.4. CRS Storage Algorithm . 49

3.5. Measured versus predicted (a) misses and (b) miss rates for several

cache con�gurations and di�erent probabilities of veri�cation of the

conditionals for the CRS code (see Figure 3.4) with M = 1500 and

N = 10000. The cache con�gurations are expressed as (Cs-Ls-K),

with sizes in bytes. 53

xxxi

xxxii LIST OF FIGURES

3.6. Measured versus predicted (a) misses and (b) miss rates for several

cache con�gurations and di�erent probabilities of veri�cation of the

conditionals for the optimized matrix product code (see Figure 3.2)

with M = 300, N = 300 and H = 300. The cache con�gurations are

expressed as (Cs-Ls-K), with sizes in bytes. 54

3.7. Measured versus predicted miss rates for di�erent probabilities of ver-

i�cation of the conditionals for the CRS storage code and the opti-

mized matrix product a 2-way cache of 512 KBytes with 64 bytes

per cache line. The matrix sizes were M = N = 10000 in the CRS

storage code and M = N = H = 1000 in the optimized product of

matrices. 54

3.8. Surfaces representing the ∆MR evolution for di�erent cache con�gu-

rations and matrices sizes in the CRS storage and optimized matrix

product codes. The cache con�guration is denoted using the notation

(Cs,Ls,k). 55

4.1. Nested loops with structures accessed using indirections. 58

4.2. Calculation of RegRi(n), the set of regions that can interfere with the

attempts of reuse of reference R generated during n iterations of the

loop at nesting level i. 59

4.3. Identi�cation of the access pattern followed by the references during

a reuse distance. 60

4.4. Sparse Matrix-Vector Product . 63

4.5. Sparse Matrix - Dense Matrix Product with IKJ order 72

4.6. Transposition of a sparse matrix. 73

4.7. ∆MR as a function of the sparse matrix density and the cache con-

�guration in di�erent codes. Cache con�gurations are expressed as

Cs,Ls,K, where Cs is the cache size in bytes, Ls is the line size in

bytes and K is the associativity . 80

LIST OF FIGURES xxxiii

4.8. Miss rate measured and predicted following di�erent strategies as a

function of the matrix density for the sparse matrix-dense matrix

product (IKJ), where M = N = H = 500 in a cache of 64Kbytes

with a line size of 64 bytes and associativity degree 4. 81

4.9. Miss rate measured and miss rate predicted for the AMUXMS code.

In the �rst graphic the associtivity degree is changed; the second

graphic modi�es line size; the third graphic considers di�erent caches

sizes. 82

4.10. Number of accesses, number of misses measured and predicted for

an sparse matrix-vector product using di�erent compressed storage

formats. The cache con�guration considers a cache size of 32 KBytes,

a line size of 64 bytes and an associativity degree of 4. 83

4.11. Percentage of the number of experiments in which the ∆MR is below

2.5%, between 2.5% and 5%, between 5% and 10%, or larger than 10%

when real matrices with a non-uniform distribution of the entries are

used. 84

4.12. Banded sparse matrix . 85

4.13. Examples of matrices in the Harwell-Boeing set, M and N stands for

the matrix dimension, nnz is the number of nonzeros and W is the

band size. 92

4.14. Comparison of the miss rates obtained by the simulation, the uniform

bands model and the non-uniform bands model during the execution

of the sparse matrix-dense matrix product with IJK ordering for sev-

eral real matrices. 95

5.1. Information requirements of the PME model for the code of Fig-

ure 4.5. The symbol nnz stands for the number of nonzeros of the

sparse matrix, and β is the average number of iterations of doK 101

5.2. The PME model algorithm . 103

xxxiv LIST OF FIGURES

5.3. Matrix mapping in memory and in cache for reference D(I, J) of Fig-

ure 4.5 during 2 iterations of loop doI 107

5.4. Extension of XARK for building the interface with the PME model . 110

5.5. Forest of ASTs and use-def chains of the o�set and length construct

and the array reference B(REG1, J) of the example code of Figure 4.5. 111

Preface

The performance of memory hierarchies, in which caches play an essential role, is

critical in nowadays computing systems because of the growing memory bottleneck

problem. Unfortunately, cache behavior is very unstable and di�cult to predict.

We need techniques that allow us to study accurately the cache behavior with a

low computational cost, so they can be used for example as a guide in iterative

optimization processes. Hardware counters and trace-driven simulators have been

traditionally used to study the cache behavior. These methods are very accurate

but they have a very high computational cost and they provide us a summarized

characterization of the cache performance but not any insights about the studied

behavior.

Analytical models try to predict the cache behavior using information from a

trace of the memory addresses accessed by the code or from the source code to

execute. Most analytical models only cover the modeling of codes with regular

access patterns. The PME (Probabilitic Miss Equations) model [31] is an analytical

model that can provide very accurate predictions of the cache behavior automatically

with a low computational cost using information extracted from the source code to

execute. Although the ideas of the PME model had been used to model some

irregular kernels [30], there was not a general automatic strategy to model this kind

of codes. This was a very important limitation for the application of this technique

because irregular codes are relatively common and they have very little locality. As a

result, a big performance increase can be obtained by applying di�erent optimization

techniques that improve the locality based on the predictions of a model. The main

interest of this work is to propose a modular, extensible and automatic strategy for

the modeling of codes with irregular access patterns.

The existence of references with an irregular access pattern can be due to di�erent

causes: references guarded by one or several conditional statements, arrays indexed

using the values contained in other arrays, pointers etc. . . In this work, we have

1

2 PREFACE

considered two main sources of irregularity: the existence of references guarded by

conditional statements and the accesses across indirections where an array is indexed

using the values contained in another array. Extensions to the PME model have been

proposed for both situations.

In the case of conditional statements we have proposed an extension [7, 8, 11, 9,

12] that can model references contained inside one or several conditional statements

whose veri�cation is determined dinamically, that is, at runtime. One example of

this situation is a conditional statement the ful�llment of whose condition depends

on an expression which involves an array reference whose value can only be deter-

mined at runtime. The probability of ful�llment must be uniform, that is, it must

be the same in each one of its evaluations and its value must be provided to the

model as a parameter. If there are several conditional statements they must be

independent, that is the probability of ful�llment of each condition does not depend

on the ful�llment of any other condition.

In the case of codes with indirections, we have used as a reference the codes that

perform computations with sparse matrices. These matrices are stored using di�er-

ent compressed storage methods whose manipulation gives place to a big number of

indirections. We have proposed an automatable extension of the PME model [10, 14]

to cover this kind of codes where each position of the data structure accessed across

the indirections has the same probability of being accessed. As in the case of the

codes with conditionals, this probability is an input parameter of the model. In the

case of an sparse matrix this implies that the non-zero values must be uniformly

distributed on the matrix.

When we explore the typical input data collections for codes that perform sparse

computations, we discover that most of these matrices have the majority of their

non-zeros concentrated in a limited band. In a �rst step we proposed an small

modi�cation of the PME model which considered that the values were uniformly

spread along the band [14]. But, most of the banded matrices have their values non-

uniformly spread along the band. So a new PME model extesion was proposed [13]

to cover this situation.

We have proposed automatable and modular extensions for the modeling of ir-

regular codes both due to indirections and conditional statements. The e�ective

automation of this proccess requires the extraction of the input data used by the

model from the analyzed code. In the case of irregular codes this information is often

masked in the code, so we need an advanced compilation tool capable of managing

PREFACE 3

symbolic information and performing an advanced analysis of the studied code. In

our work we have used the XARK compiler framework for the automation of the

modeling of codes with indirections and an uniform distribution of the values [6, 13].

The results of all the stages of this work have been validated by comparing the

model predictions with the result of trace-driven simulations. The results obtained

in all the cases re�ect that the model is very accurate and that its execution is

completed in a short time. The model execution always takes less than one second

and in some cases this time is several orders of magnitude shorter than the one

necessary for the execution of the analyzed code.

Objectives and Organization of this Thesis

The scope of application of the Probabilistic Miss Equation (PME) [31] model

was limited to codes with regular access pattern. This work extends its scope to

codes with irregular access patterns. In order to simplify the modeling, separated

extensions are proposed for codes with data-dependent conditional statements and

with indirections.

The extension for codes with conditional statements allows the PME model to

predict the cache behavior of references guarded by this kind of sentences. The

references can be a�ected by one or more conditionals with any kind of nesting

between them. The conditions must follow an uniform distribution, that is, they

must have an uniform probability of being true in each evaluation and if there are

several conditional statements they must be independent.

The extension for codes with indirections allows the PME model to consider

references in which an array, called the base array, is referenced using the values

obtained from another array, called the index array. More than one level of indirec-

tion can be modeled by this extension. The model has been developed considering

an uniform distribution of the values generated by the indirection, that is, all the

positions in the base array have the same probability of being accessed using the

indirection. A latter extension in this thesis allows the modeling of indirections with

uniform and non-uniform band distributions. This distribution is very common in

sparse matrices in Compressed Row Storage(CRS) format [19]. The codes that ma-

nipulate this kind of matrices are the main source of benchmarks used to test this

extension.

4 PREFACE

These extensions are fully automatable and modular. The extension for codes

with indirections is integrated with the XARK compiler to analyze this kind of codes

automatically. The XARK compiler extracts the information from the source code

of the program to analyze and passes it to the PME model implementation.

This thesis is organized as follows: Chapter 1 is a brief introduction to the

problem of the cache performance study. It contains information about the di�er-

ent techniques used for this purpose, their main advantages and disadvantages. It

includes a survey of most of the existing analytical models and their main charac-

teristics.

Chapter 2 contains a description of the original automatable PME model that

only covered codes with regular access patterns. The di�erent stages of the PME

model are described in detail: the miss probability estimation and the PME equation

construction. No validation is included in this chapter because it belongs to previous

works and its accuracy has been already demonstrated [31].

Chapter 3 describes the PME model extension that covers irregular codes due

to data-dependent conditional statements. In this chapter, the scope of application

of the extended PME model is established. The miss probability estimation step is

adapted to cover the new situation. There is a description of the new type of PME

that models the references that are guarded by conditional statements. Finally, the

accuracy of this extension is validated.

In Chapter 4 the PME model extension for irregular codes due to indirections is

covered. As in Chapter 3, there are several adaptations that must be done in the

scope of application and the miss probability estimation process. Besides, new types

of equations are added to the model to cover the new situations. This extension is

also validated using several typical kernels that exhibit this kind of access pattern.

Chapter 5 covers the automation of the PME model extension for codes with

irregular access patterns due to indirections. The information requirements of the

PME model are described, and the interface between the PME model and the XARK

compiler is described [15]. The role of the XARK compiler is to extract the informa-

tion from the source code and provide it to the PME model in the form established

by the interface between them. A brief introduction to the XARK compiler is also

contained in this chapter.

Finally, the extension of the PME model for irregular codes has given place

to several publications in the area of the study of the cache performance behavior

PREFACE 5

and prediction. The extension for codes with conditional statements is explained

in [7, 8, 11, 9, 12]. The extension for codes with indirections has been split in several

contributions: some of them covered the modeling for uniform and banded uniform

distributions [10, 14] while a di�erent contribution covered the modeling of non-

uniform banded distributions [13]. The automation of the PME model extension for

codes with indirections using the XARK compiler was covered in [6, 5].

Chapter 1

An Introduction to Cache Modeling

The gap between processor and memory speed is increasing year by year. Current

architectures use a hierarchy of levels of memory [34] in order to try to cushion this

gap. This hierarchy has fast small memories in the top levels and bigger but slower

memories in the lower levels. From top to bottom, a typical hierarchy would be

composed by the the processor registers, one or several levels of cache memory, the

main memory and the secondary storage.

Each level in the hierarchy is divided in blocks. When the processor needs a

memory item, the block that contains it is searched in the top level of the hierarchy.

If it is not found, the request proceeds to the next lower level. The request is

propagated this way down the levels in the hierarchy until the data is found. Once

the block is found, it is loaded in all the levels above the one where it was found.

When a block is found in a memory level, that access is considered a hit, otherwise

it is a miss. The miss rate of a level is the ratio of accesses that result in a miss.

Cache memory blocks are termed lines and they are organized in sets. All the

sets have the same number of lines. This number is called the degree of associativity

of the cache. When a memory block is loaded in the cache, it can be stored in

exactly only one set, but any of the lines in the set can hold the line. Depending on

the possible location of a memory block in the cache we distinguish three types of

cache organizations:

Direct mapped: Each set contains only one line, so each block can only be

stored in exactly one line in the cache. This line is usually calculated as

address mod num where address stands for the memory block address and

7

8 Chapter 1. An Introduction to Cache Modeling

num stands for the number of lines in the cache.

Fully associative: If the block can be stored in any cache line because the

cache has only one set that contains all its lines.

Set-associative: The cache is divided in sets of K cache lines each, where K

is the degree of associativity. Each memory block can only be mapped to a

speci�c set. The block can be loaded in any line inside that set. The set where

a given block is stored is selected using the function address mod Nc, where

address is the block address and Nc is the number of cache sets.

When a memory line is brought to the cache, it can be stored in any line of the

cache (fully associative cache), only in a given line (direct mapped) or in a given set

of lines (associative cache). If all the candidate lines to store a memory block contain

valid information then, one of them must be selected to be replaced and make room

for the new line. This selection is done according to a replacement policy. In our

work we will use the most common replacement policy, the Less Recently Used

(LRU) policy, in which the less recently referenced line is selected.

The three types of cache misses are:

Cold or compulsory misses: Since data is brought to the cache on demand,

the �rst access to a memory block results necessarily in a miss.

Capacity miss: If the cache cannot store all the blocks accessed during the pro-

gram execution, then, there are blocks that are replaced during the execution.

Latter references to such blocks result in capacity misses.

Interference misses: They happen in direct mapped and set-associative caches.

In these kinds of caches a block can be replaced during the execution because

many blocks are mapped to its cache line or set of lines even if there is enough

space in the cache to hold all the data.

Memory hierarchies store the most recently used memory blocks in the top levels

exploiting the locality typically found in the memory references of applications.

Locality appears when the same data is accessed multiple times in a short period of

time. There are two types of locality [45]:

Temporal locality : when a single memory item is accessed multiple times in

a short period of time.

1.1 Techniques to Study the Cache Behavior 9

Spatial locality : when two close memory items belonging to the same block

are accessed in a short period of time.

The memory performance can be improved by:

Reducing the miss penalty: the miss penalty is the time required to solve an

access that misses in a level of the hierarchy.

Reducing the hit time: the hit time is the time necessary to access a data item

when the corresponding block is found in a level of the memory hierarchy.

Reducing the miss rate: what can be achieved by improving the locality of the

code to execute.

The more the locality of the code is improved, the more data requests from the

processor will be solved in some of the top levels of the memory hierarchy. In the

last years a large number of techniques to study the cache behavior have appeared.

These techniques can be used in optimization processes [55, 2, 3] for improving the

locality of a given code or for choosing the optimal cache con�guration.

1.1. Techniques to Study the Cache Behavior

Three techniques are used nowadays to study the cache behavior: trace-driven

simulation, hardware counters and analytical modeling. Each technique is explained

in turn.

1.1.1. Trace-driven Simulation

One of the �rst techniques proposed to study the cache behavior is trace-driven

simulation [50, 57]. This technique consists in simulating the behavior of a given

cache con�guration for a sequence of memory accesses. This sequence of memory

references of a given program is called address trace. The address trace is processed

using a program that simulates the proposed cache con�guration and outputs a

description of the cache behavior for the considered accesses. Generally, accurate

estimations can be obtained using this technique, but it presents some problems :

10 Chapter 1. An Introduction to Cache Modeling

Trace collection is not a trivial task in complex scenarios where several di�erent

processes can be running concurrently, including the operating system and

where the code is dynamically linked or compiled. An usual way to perform

the trace collection is by means of an instrumented version of the code whose

behavior is to be analyzed.

A reduction of the trace size is often necessary because the address trace is

typically very large and it may need several gigabytes of storage space.

Trace processing is a time consuming task and it usually requires much more

time than the execution of the original code. Some approaches [38] try to

reduce the number of instructions simulated by selecting a representative set of

instructions while trying to avoid a loss of accuracy in the simulation. However,

this still requires more time than the execution of the code to analyze.

Consequently, trace-driven memory simulation can generate accurate estimations

at the expense of a high consumption of resources and it is thus inadequate to guide

compiler optimizations.

1.1.2. Hardware Counters

Another technique suitable for studying the cache behavior is the use of hardware

counters [4, 25, 58], which are available in most current architectures. Hardware

counters are registers that can take account of information about a wide range of

events during the execution of a given code. There are several registers which can

track information about a big number of events related to the cache behavior and

that can be used in its study. These registers can work in two di�erent modes :

In counting mode the registers are used for obtaining aggregate counts of

occurrences of speci�c events.

While in sampling mode the frequency of event occurrences in di�erent scopes

of the program can be tracked.

This information can provide a precise picture of what is happening in the cache

memories. This information is extracted using an interface that is di�erent in each

architecture although in the last years standard interfaces such as PAPI [20] have

been de�ned. However, hardware counters present a set of associated problems:

1.1 Techniques to Study the Cache Behavior 11

Hardware counters are present only in some architectures, and although they

are available in most modern architectures there is a wide variation between

the registers available in di�erent systems.

The computational cost of this technique is high because it is necessary to

execute the program to collect the information from the hardware counters.

The usage of hardware counters introduces an overhead in the execution due

to extra instructions and can cause cache pollution, thus changing the cache

behavior of the monitored program.

1.1.3. Analytical Models

Analytical models try to obtain accurate estimations of the cache behavior with

a lower computational cost than the two previous approaches. They try to construct

an analytical model that can predict the cache behavior during the execution of a

given code. There are analytical models that use as their input an address trace of

the memory addresses accessed during the execution of the code, while other models

use as input the source code to execute.

This technique provides a more detailed insight of the observed cache behavior.

Its main drawback is its limited scope of application and the limited degree of

accuracy of some models. Most analytical models only consider codes with regular

access patterns, although the analysis of the behavior of codes with irregular access

patterns is of great interest, as they exhibit less locality, and thus caches do not

perform well for them.

Previous Works in Analytical Modeling

As we said before, there are mixed techniques based in analytical models that

use information extracted from an address trace obtained in a previous execution

of the code, like the technique proposed by Agarwal et al. [1]. This model can

derive miss rates for di�erent proposed cache organizations and workloads from the

information provided in an address trace. The parameters used in this model are the

probability of access to data or code lines and the probability of accessing consecutive

positions. This work is mainly focused to a multiprogrammed system and pays a lot

of attention to the in�uence of the operative system. For this purpose, it considers

three di�erent categories of misses: the cold misses that happen when the cache is

12 Chapter 1. An Introduction to Cache Modeling

initially �lled, the non-stationary misses due to a change in the program data set

and the interference misses due to collisions in random positions in the data sets.

The model proposed by Quong in [41] uses also information extracted from a

trace of the memory addresses accessed by the program. It also considers that

each block has an uniform probability of being mapped to each cache set. This

model considers the misses as a whole set and it is based in the calculation of the

average region accessed between two consecutive accesses to the same line. However

it estimates the number of misses produced in the instruction cache and not the

data cache.

The work proposed by Buck and Singhal in [21] uses a trace for studying the

behavior of a fully associative cache. It is based in the Independent Reference Model

(IRM) proposed by King in [35], which assumes that the probability of accessing each

line is constant along time. This assumption simpli�es the model but it dramatically

reduces its scope of application, because in the real world programs work only with

a limited data set in each period of time.

In [26] Din and Zhong use information from very large address traces obtained

during the execution of a program using a given input data for predicting its behavior

in a future program run. The reuse distance between two consecutive accesses is

measured using an optimized tree representation. It is only suitable for programs

that have a consistent pattern that make it predictable along di�erent program

executions.

Another set of methods try to model the cache behavior using information from

the source code to execute. Some techniques can perform the modeling of a given

optimization technique applied on a speci�c code, like the one described by Simecek

and Tvrdik in [44], that is centered in the application of the dynamical loop rever-

sal optimization over the Cholesky factorization. This work considers any kind of

cache con�guration with Less Recently Used (LRU) block replacement policy. Its

main advantage with respect to other analytical models is that it makes a detailed

modeling of recursive calls not considered by other works in this �eld.

The work presented by Temam et al. in [47] is based in the ideas introduced

in [48]. Its application is restricted only to direct-mapped caches and codes with

regular access patterns. It considers cold, capacity and interference misses.

There are some proposals which try to cover the modeling of a wider scope

of codes. Chatterjee et al. propose in [42] a detailed model based in Presburger

1.1 Techniques to Study the Cache Behavior 13

formulas that handles regular codes with either perfectly or non-perfectly nested

loops giving accurate estimations. The main limitations of this model are its high

computational cost and that it only supports modest levels of associativity in the

cache con�guration. A di�erent approach was proposed by Harper et al. [33]. The

estimation provided is not so accurate and it supports the modeling of perfectly

or non-perfectly nested regular loop constructs for any kind of cache con�guration.

Cache miss equations (CMEs) are used by Ghosh et al. [32] for analyzing a set

of perfectly nested regular loops considering cache con�gurations with any level of

associativity; its support for non-perfectly nested loops is weak. The CMEs are

a set of Diophantine equations that are obtained once for each considered code

and the solutions are obtained for every di�erent situation analyzed changing some

of the variables by the corresponding values. CMEs are used also by Vera and

Xue [56, 54] for analyzing perfectly nested regular loops. It has a better support for a

signi�cant subset of non-perfectly nested loops and statically analyzable conditional

statements [53].

The Probabilistic Miss Equation (PME) model [31] is a probabilistic model of

the source code capable of analyzing the cache behavior of scienti�c codes with both

perfectly and non-perfectly nested loops. The model has a low computational cost

and the prediction obtained is quite accurate, but its scope is limited to codes with

regular access patterns.

As for the modeling of codes with irregular access patterns, the models found

in the bibliography are not systematic enough to be automated or do not provide

accurate predictions. The method proposed by Temam and Jalby in [49] studies

the autointerferences in the vector involved in a sparse matrix vector product in a

direct-mapped cache, but it does not consider the interference with the other data

structures in the code. The approach described by Ladner et al. in [37] is an ad-hoc

model whose scope of application is limited only to direct-mapped caches and it does

not consider the interaction between di�erent interleaved access patterns. These

limitations were overcome in the probabilistic model [30] but it was not systematic

enough to be automatable.

Some works have tried to approach the modeling of the cache behavior in codes

with irregular access patterns automatically. The indirect accesses model [22, 24, 23]

of Cascaval and Padua is integrated in a compiler framework, but it is a simple and

inaccurate heuristic that estimates the number of cache lines accessed rather than

the real number of misses. For example, it does not take into account the distribution

of the irregular accesses and it does not account for con�ict misses, since it assumes

14 Chapter 1. An Introduction to Cache Modeling

Table 1.1: Main characteristics of the existing analytical models of the cache behav-
ior

Analytical Model Input Associativity Scope Automatic Accuracy

Agarwal [1] Trace Any Both Yes Low
Quong [41] Trace Any Both Yes Low

Buck and Singhal [21] Trace Fully Both Yes High
Ding and Zhong [26] Trace Any Regular Yes High

SPLAT [46] Trace Any Both Yes Low

Temam et al. [47] Source Direct Regular No High
Simececk and Tvrdik [44] Source Any Ad hoc No High
Temam and Jalby [49] Source Direct Ad-hoc Yes High
Chatterjee et al. [42] Source Low Regular No High
Harper et a. [33] Source Any Regular No Low
Ghosh et al. [32] Source Any Regular Yes High
Vera and Xue [56] Source Any Regular Yes High
Ladner et al. [37] Source Direct Both No High

Cascaval and Padua [23] Source Any Both Yes Low
PME [31] Source Any Regular Yes High

Fraguela et al. [30] Source Any Ad-hoc No High

a fully-associative cache. Another approach is that of SPLAT [46], a tool that

analyzes codes in several phases: the reuse and volume phases, where compulsory

and capacity misses are computed respectively considering a fully associative cache;

and the interference phase, where con�ict misses are calculated considering a direct-

mapped cache. Irregular accesses due to conditional statements and loops with

a variable number of iterations are modeled using the information derived from a

previous pro�ling of the code.

Table 1.1 contains a summarized overview of the main characteristics of the an-

alytical models we have studied in this section. The �rst column speci�es whether

the model uses as input the trace of the memory addresses or the source code, the

second column if it can model the behavior of any cache [1], only direct mapped

caches or only caches with a low degree of associativity. The third column describes

the scope of application of the model. It classi�es a model in one of three categories

: those that can model the cache behavior of regular codes, irregular codes or both

types of codes. The fourth column indicates whether that model has been auto-

mated, and the �fth one contains the degree of accuracy of the obtained prediction.

The main drawback in trace-based methods [1, 41, 21, 26, 46] is their high com-

1.1 Techniques to Study the Cache Behavior 15

putational cost, because the real code must be executed to obtain the input trace.

The source-based methods are more a�ected by the problem of the limited scope of

application. They are mainly limited to regular codes [47, 44, 42, 33, 32]. Some of

them cover irregular computation [37, 23] but either they are not automated or the

accuracy of the provided prediction is low.

Chapter 2

The PME Model

2.1. Introduction

The PME (Probabilistic Miss Equations) model [31] estimates accurately the

number of misses in a cache during the execution of a given code with a low compu-

tational cost. Cache misses can be classi�ed into three groups. Compulsory or cold

misses take place the �rst time a given memory line is accessed, since data lines are

loaded in the cache on demand in this �rst access. Although a memory had been

accessed previously, it may not be found in the cache in an attempt to reuse it.

This can be due to the fact that the cache is not large enough to store all the data

accessed by the studied code (capacity miss) or due to other data items having been

mapped to the same cache set and evicting then that line from the cache (interfer-

ence miss). In our work, we consider both capacity and interference misses together

as interference misses because both kinds of misses happen when a line that had

been referenced previously has been ejected from the cache since its last access due

to interferences with other lines mapped to its cache set. An attempt to reuse a line

results in a miss with a probability that depends on the cache footprint of the data

accessed since the previous reference to the considered line.

Example 1. The code in Figure 2.1, which performs the addition of arrays B and

C storing the result in array A, will be used to drive the explanation of some basic

concepts of the model. The cache represented in this �gure can store 16 elements

with 4 sets of 1 line per set, and each line can store 4 elements. Considering this

code and this cache, if the �rst element of array A is stored in the �rst position of a

17

18 Chapter 2. The PME Model

DO I=1,10
 A(I)=B(I)+C(I)
ENDDO

A(1)

A(2)

A(3)

A(4)

A(5)

A(6)

A(7)

A(8)

A(9)

A(10)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9)

B(10)

C(1)

C(2)

C(3)

C(4)

C(5)

C(6)

C(7)

C(8)

C(9)

C(10)

it 1

it 2

it 3

it 4

it 5

it 6

it 7

it 8

it 9

it 10Cs=16;Ls=4;k=1

No reuse

Reuse

A(1) A(2) A(3) A(4) A(5) A(6) A(7) A(8) A(9) A(10)

Figure 2.1: Reuse in a simple loop

memory line, then the accesses to A(1), A(5) and A(9) could give place to cold misses,

while the accesses to the remaining elements of the array A are possible interference

misses �

The PME model estimates the number of misses generated by each static reference

found in a code by means of an equation, called Probabilistic Miss Equation, which

includes the number of di�erent lines it accesses (compulsory misses), the number of

line reuses it generates, and the interference probability for such accesses (interfer-

ence misses) during the execution of the program. Normally, each given line can be

reused with di�erent reuse distances, that is, di�erent portions of code are executed

in between di�erent attempts to reuse the line. In the case of references found in

loop nests, which is the scope of the PME model, each loop enclosing a reference

gives place to a di�erent reuse distance, which can be measured in terms of loop

iterations, that (possibly) characterizes some of the reuses not captured by inner

loops.

Example 2. The right side of Figure 2.1 contains the accesses to the three arrays

involved in the code of the left side of the �gure. The accesses belonging to each

iteration are depicted in a di�erent line. The equation that calculates the number

of misses of array A should re�ect that the accesses to A(1), A(5) and A(9) are

compulsory misses, while the accesses to the remaining elements of array A will be

possible interference misses. As the access to A is sequential, there is a possible reuse

of the line of this array accessed in the previous iteration in those accesses that are

not the �rst ones to a cache line. The reuse distance for these possible reuses is one

iteration of the loop. The data accessed since this previous access to the same line

are always one element from array B and C, respectively �

2.2 Scope of Application 19

DO I0 =1, N0
DO I1 =1, N1
...

DO IZ =1, NZ
...

A(fA1(IA1), ..., fAj(IAj)), ...) ...

END DO

...

END DO

END DO

Figure 2.2: Nested loops with structures accessed using a�ne functions.

Our model estimates the number of misses generated by a reference by exploring

the loops that enclose it from the innermost one to the outermost one. In each

loop the model builds a partial PME that adds information about the reuses whose

reuse distance is associated with that loop. Speci�cally, each partial PME estimates

the number of accesses generated by the reference that cannot exploit reuse in the

considered loop, the number of accesses whose reuse distance is associated with

this loop, and the associated miss probability for such reuses. The PME for each

loop and static reference is expressed recursively in terms of the PME for the same

reference in the immediately inner loop, so that it contains all the information for

the behavior of the reference within the loop. Thus, the PME associated with the

outermost loop in a nest takes into account all the reuses, and its evaluation yields

the number of misses generated by the reference during the execution of the loop

nest.

In Section 2.2 the scope of application of the PME model is established. Sec-

tion 2.3 contains a detailed description of how the miss probability of every access

is calculated. This task is performed in three steps : access pattern identi�ca-

tion, cache impact quanti�cation and area vectors addition, which are described in

Sections 2.3.1, 2.3.2 and 2.3.3 respectively. Finally, Section 2.4 describes the prob-

abilistic miss equation that calculates the number of misses of a given reference.

20 Chapter 2. The PME Model

Cs Cache size
Ls Line size
K Associativity of the cache
DA # of dimensions of array A

DAj size of the j-th dimension of array A

dAj cumulative size of the j-th dimension of array A, dAj =
∏j−1

k=1 DAk

αRj constant that multiplies the loop index
δRj constant added to a loop index
Ni # of iterations of loop at nesting level i, whose index is Ii

SRi stride of reference R with respect to the loop at nesting level i, SRi = αRj · dAj,
where j is the dimension of array A referenced by R indexed by Ii

LRi # of di�erent sets of lines (SOLs) accessed by reference R during
the execution of the loop at nesting level i

Table 2.1: Notation used in the model description

2.2. Scope of Application

Figure 2.2 depicts the scope of application of the PME model for regular access

patterns. A reference to an array follows a regular access pattern when its indexes

are linear functions of the loop indices, and neither indirections nor conditional

statements a�ect the reference. The �gure shows a set of normalized perfectly or

non-perfectly nested loops in which the number of iterations of every loop must be

the same in every execution of the loop. The reference indexes are a�ne functions

fi = αiIi + δi of the loops control variables Ii.

As for the hardware, our model considers set-associative caches of an arbitrary

size Cs, line size Ls and associativity K with LRU replacement policy, which is the

most common situation. Table 2.1 depicts these ones and other parameters we will

make reference to during the explanation of our model. For simplicity, in all our

terms and equations, sizes and strides are expressed in elements of the array whose

access is being analyzed rather than in bytes.

2.3. Miss Probability Estimation

As explained in Section 2.1, in the study of a reference the PME model computes

the number of accesses that can result in either a cold or an interference miss. The

reuse distance is the distance between an access to a given line and the previous

2.3 Miss Probability Estimation 21

DISTANCE IMPACT
QUANTIFICATION

AREA
VECTORS
ADDITION

ACCESS
PATTERN

IDENTIFICATION

MISS

PROBABILITY

AREA

VECTORSPATTERN

ACCESS

LOOPS INFO
SURROUNDING

INDEXES
REFERENCE

REUSE CACHE

Figure 2.3: Procedure for estimating miss probabilities from the code

access to that line. It is necessary to collect the set of memory regions that has been

accessed during a reuse distance. These memory regions, or, conversely, the access

patterns that reference them, generate a miss probability for the attempts to reuse

lines by the analyzed reference R. These probabilities are used by the PME model

to estimate the number of misses of the studied reference. In a K-way set associative

cache with LRU replacement policy, an attempt to reuse a line results in a miss if

K or more di�erent lines accessed since the last reference to the considered line are

mapped to its cache set. As a result, the miss probability in a non-�rst access is

equal to the probability that a cache set has received K or more lines during the

reuse distance, that is, the portion of code executed since the immediately previous

access to the line.

Example 3. The cache represented in Figure 2.1 is direct mapped, so it has an

associativity degree K = 1. As a result, the miss probability in an attempt to reuse

a given line is calculated as the average probability that 1 or more lines, accessed

during the reuse distance, are mapped to its cache set �

The PME model follows the three steps shown in Figure 2.3 to estimate the

interference probability associated with a reuse distance:

Access pattern identi�cation: the access patterns followed by the references

involved in the reuse distance and the parameters that characterize them are

inferred from the references indexing functions and the shape of the loops that

enclose them. The PME model represents each pattern as a function whose

output is the footprint of the access pattern on the cache. There is one function

per each typical access pattern (sequential access, access with constant stride,

etc.), and its arguments provide the quantitative characterization of the access

pattern.

Example 4. In the example of Figure 2.1, in the reuse distance for the possi-

ble interference misses of array A, 1 iteration, there is one access to one isolated

22 Chapter 2. The PME Model

element of arrays B an C respectively, both identi�ed as sequential accesses to

one element. �

Cache impact quanti�cation: each access pattern has an associated miss prob-

ability. The lines that belong to a cache set that have received K or more

lines from this pattern during the reuse distance can not be reused. So the

miss probability associated to an access pattern is the ratio of sets that receive

K or more lines. When the access to several arrays is considered together,

it is important to keep the information about the ratio of sets that received

1. . .K − 1 lines, because when the e�ects of these lines from di�erent arrays

are considered together they can contribute to increase the miss probability.

So, a vector of probabilities, called Area Vector, is associated to each access

pattern.

Example 5. In the example of Figure 2.1, the cache can store Cs = 16 ele-

ments distributed in 4 sets where every set stores K = 1 cache line of Ls = 4

elements. In the reuse distance one element of arrays B and C is accessed,

each one of these element will go to 1 of the 4 cache sets. The destination

set will be determined by the base position of the arrays. It is known that

for each array, B and C, 1 of the 4 cache sets will receive K = 1 lines while

the remaining 3 cache sets will not receives any element from the array. So,

a cache set receive 1 line with a probability 1/4 = 0.25, and that is the miss

probability associated to that reuse distance for the access to that array �

Area vectors addition: once the area vectors for the di�erent access patterns

have been estimated, they must be added in order to calculate a global area

vector that represents their summarized impact on the cache.

Once these three steps are completed, the �nal interference probability is esti-

mated as the ratio of sets that received K or more lines during the reuse distance,

which is conversely the probability a given set has received K or more lines. This

value can be extracted from the global area vector associated with the analyzed

reuse distance. We will now describe in more detail the three steps of the miss

probability estimation process.

2.3 Miss Probability Estimation 23

2.3.1. Access Pattern Identi�cation

In Section 2.1 we saw that reuse distances are measured in terms of the number

of iterations of a loop. In order to identify the access pattern that a given reference

R follows during a reuse distance consisting of n iterations of the loop at nesting

level h, the indexes of each dimension and the number of iterations of each loop

during this reuse distance are examined. The output of this analysis is a DA-tuple

RR(h, n), where DA is the number of dimensions of the array A referenced by R.

Each element of this tuple consists in its turn of a 2-tuple RRj = (Mj, Sj), where the

Mj is the number of di�erent points accessed along dimension j and Sj the constant

stride between two consecutive points.

The algorithm followed to calculate the 2-tuple associated to dimension j of

reference R during n iterations of the loop at nesting level h is described now.

When the index of the reference is an a�ne function αRj·Ii + δRj of some loop index

Ii, the set of points accessed in this dimension by R can be represented as the tuple

(Itersi(h, n), SRi), where Itersi(h, n) is the number of di�erent values that Ii takes

during n iterations of the loop in nesting level h. This value is calculated as

Itersi(h, n) =


1 if i < h

n if i = h

Ni if i > h

Let us remember that the loops are labeled from the outermost one, at nesting level

0, to the innermost one using increasing integer values. The value SRi is the stride

that reference R has with respect to loop i. This stride is a constant, since the index

we are considering is an a�ne function of Ii. SRi is calculated as αRj ·dAj, where j is

the dimension whose index depends on Ii; αRj is the scalar that multiplies the loop

variable in the a�ne function, and dAj is the cumulative size
1 of the j-th dimension

of the array A referenced by R.

Once the DA-tuple RR(h, n) that represents the region of array A accessed by

R during n iterations of the loop at nesting level h has been calculated, some sim-

pli�cations may be applied between pairs of 2-tuple RRj that describe the access

1Let A be an N -dimensional array of size DA1 ×DA2 × . . . DAN , we de�ne the cumulative size
for its j-th dimension as dAj =

∏j−1
i=1 DAi

24 Chapter 2. The PME Model

DO I = 1, M

DO K = 1, N

DO J = 1, H

C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDDO

ENDDO

ENDDO

Figure 2.4: Matrix Product

pattern in di�erent dimensions of the array:

((1, Sj), (Mk, Sk)) = (Mk, Sk)

((Mj, Sj), (Mk, Mj · Sj)) = (Mj ·Mk, Sj)

After these simpli�cations a single 2-tuple (Ms, Ss) that describes the region

accessed by the reference is typically obtained.

Rather than this description of the memory region accessed, the output of the

access pattern identi�cation step is a function that characterizes the access pattern

whose output is the area vector associated to it. Depending on the values of Ss in

a tuple RRj, two kinds of access pattern functions can be identi�ed:

1. If Ss = 1, it is an access to Ms consecutive elements. We denote the func-

tion that calculates the area vector associated to a region of Ms consecutive

elements as Regs(Ms).

2. Otherwise it is an access to a set of Ms regions of one element separated

by a constant stride Ss. Such access pattern is represented by the function

Regr(Ms, 1, Ss).

Finally, although the access pattern functions have been presented based on the

values of a single tuple RRj, it is not always possible to reduce RR(h, n) to a single

tuple. All the cases of this kind we have found in the codes we have analyzed

had the form RR(h, n) = ((M1, 1), (M2, S2)), which can be represented by function

Regr(M2, M1, S2). It represents an access to M2 separate groups of M1 consecutive

elements separated by a constant stride S2.

2.3 Miss Probability Estimation 25

Example 6. We will use the code in Figure 2.4 as a driving example to illustrate

the di�erent steps of the PME model. This code performs the product between

two matrices A and B and stores the result in matrix C. The calculation of the

miss probability associated to an access whose reuse distance is one iteration of

loop K must consider the e�ects of all the accesses that take place during that reuse

distance. In one iteration of this loop there are accesses to arrays A, B and C:

Reference C(I, J): The �rst dimension of reference C(I, J) is indexed by the

index of the outermost loop I at nesting level 0, so the tuple RR1 that describes

its access is (Iters0(1, 1), SR1), being Iters0(1, 1) = 1 and SR1 = 1. The second

dimension is indexed by the index of the innermost loop J at nesting level 2 so

RR2 = (Iters2(1, 1), SR2) being Iters2(1, 1) = N2 = H where N2 is the number

of iterations of the loop at nesting level 2, and SR2 = M . So, RR(1, 1), the

pair of tuples that de�ne the access to each dimension of the array C in 1

iteration of nesting level 1, is ((1, 0), (H, M)) which can be simpli�ed to the

tuple (H, M). This tuple will be identi�ed as a region Regr(H, 1, M), that is,

H groups of 1 element separated by a distance M .

Reference A(I, K): The �rst dimension in reference A(I, K) is indexed also by

the index of the outermost loop I, so the tuple that characterizes the access

in this dimension is also (1, 0). The second dimension is indexed by the index

of the current loop K, so Iters1(1, 1) = n = 1 and SR1 = H, resulting in the

tuple (1, H). These two tuples can also be simpli�ed to the tuple (1, H), which

can be identi�ed as a region Regs(1) the access to one element of this data

structure.

Reference B(K, J): This reference is indexed by the index of loop K in its �rst

dimension, so the associated tuple is (1, 1), while the second dimension is

indexed by the index of the inner loop J, so Iters2(1, 1) = H and SR2 = N ,

resulting in the tuple (H, N). Both tuples can be merged and the resulting

tuple is (H, N), which can be identi�ed as a region Regr(H, 1, N), the access

to H groups of 1 element separated by a distance N �

2.3.2. Cache Impact Quanti�cation

The functions identi�ed in the previous step are evaluated in order to yield

vectors of probabilities called area vectors that represent the impact on the cache of

the access they represent. The area vector V associated with a given set of accesses

26 Chapter 2. The PME Model

to
 e

ac
h

se
t

V =(0,14/15,1/15)selfV =(7/8,1/8,0)cross

Cache sets

L
in

es
 m

ap
pe

d

Figure 2.5: Cross and sef interference area vectors for a footprint on a 2-way asso-
ciative cache with 8 sets

on a cache with associativity K consists of K + 1 probabilities V0, V1, . . . , VK . The

PME model considers two kinds of area vectors:

Cross interference area vectors represent the impact on the cache of the

considered access pattern as viewed by lines not involved in the access. In

these vectors, Vi, K ≥ i > 0 is the ratio of sets that hold K − i lines of the

accessed region, and V0 is the ratio of sets that hold K or more lines. These

ratios are also conversely the probabilities. For example V0, is the probability

that a set in the cache has received K or more lines accessed by the pattern,

V1 is the probability a cache set has received K − 1 lines, and so on.

Self interference area vectors represent the impact of the footprint on

the probability of reuse for the lines it involves. In these vectors, V0 is the

probability that a line of the footprint is competing in its cache set with other

K or more lines of the footprint. For K ≥ i > 0, Vi is the probability a line of

the footprint shares its cache set with other K − i lines of the access.

Example 7. As an example let us consider a 2-way associative cache with eight

sets and a reference that has just accessed 15 lines sequentially. As a result, seven

of the eight sets contain two of the lines referenced, while the other set contains

just one line, as it is illustrated in Figure 2.5. The cross interference area vector

generated by this access is (7/8, 1/8, 0), as 7 out of the 8 sets have received two or

more lines from the access; only one set received a single line, and no sets received

zero lines. These ratios are conversely the probabilities a randomly chosen set has

two or more, one, or zero lines in it, respectively.

The self interference area vector for this access is (0, 14/15, 1/15). The �rst

component is zero, as none of the lines involved in the access has to compete for

2.3 Miss Probability Estimation 27

Figure 2.6: Footprints of the most common regular access patterns

its cache set with other two or more other lines from the footprint. The second

component is the ratio of lines of the footprint that share their cache set with exactly

one line (14 out of 15). Finally, according to the third component, only one of the

15 lines of the footprint does not share its set with any other line of the footprint.

These ratios are conversely the probabilities a randomly chosen line of the footprint

has to compete in its set with two or more, one, or no lines, respectively �

The equations and algorithms developed to estimate the cross and the self in-

terference area vectors associated to the sequential access and the access with a

constant stride access patterns are presented now.

Sequential access to n consecutive words Regs(n)

The sequential access to n consecutive words Regs(n) (see Figure 2.6) generates

a cross interference area vector AVs:

AVs(K−blc)(n) = 1− (l − blc)
AVs(K−blc−1)

(n) = l − blc
AVsi(n) = 0 0 ≤ i < K − blc − 1, K − blc < i ≤ K

(2.1)

where l = max{K, (n + Ls − 1)/(LsNK)} is the maximum of K and the average

number of lines placed in each set. In this expression, Ls stands for the line size and

NK for the number of cache sets. The number of cache sets NK can be calculated

as Cs/LsK. The term Ls− 1 added to n stands for the average extra words brought

to the cache in the �rst and last accessed lines.

Expression AVs(C(n)Csk) calculates the autointerference area vector of this ac-

cess, being Csk = Cs/K. The autointerference that a�ects to each line is equal to

the cross interference of an array of C(n)(Csk) elements, where C(n) is the number

of lines of the array competing by the same cache set. This array would add C(n)

lines to each set. The method to calculate C(n) is detailed in the next section.

28 Chapter 2. The PME Model

Number of lines of a vector competing for the same cache set

We need a function to compute the average number of di�erent lines that compete

with a given line for the same cache set. This value will be used in the calculation

of the self-interference probability. For a data structure of n consecutive words, this

function is de�ned as:

C(n) = bvc(v − bvc)(bvc+ 1)

v
+ (bvc − 1)

(
1− (v − bvc)(bvc+ 1)

v

)
=
bvc
v

(2v − bvc − 1)

(2.2)

where v = n/Csk is the average number of the data structure associated to a given

cache set. If v > 1, in the (v−bvc)×100 % of the cache sets, the number of lines of the

data structure competing with another one is bvc. In this area the (v−bvc)(bvc+1)
v

×100

% lines of the data structure are located. In the remaining cache, the number of lines

that competes is bvc − 1. Using this average value, the equation (2.2) is obtained.

Besides it can be checked that if v ≤ 1, that is, when the data structure covers a

number of lines minor or equal than the number of cache sets, this expression takes

the value 0, because there is no self-interference.

Access with a constant stride Regr(Nr, TrSr)

The estimation of the area vector associated to an access to several elements

of the data structure with a constant stride is performed through a mixed method

that involves the calculation of the starting and ending points of each region on the

cache, from which we obtain the arithmetic mean of the number of lines mapped to

each cache set. The corresponding area vector is obtained from these values.

Let us consider the access to Nr regions of size Tr with a constant stride Sr

between two consecutive regions Regr(Nr, Tr, Sr)(see Figure 2.6). In the �rst step

the positions Ci and Fi corresponding to the start and the end of each region in the

cache are calculated, considering that:

C0 = 0

Ci = (Ci−1 + SR) mod (Cs/K), 0 < i ≤ NR

Fi = (Ci + TR − 1) mod (Cs/K), 0 ≤ i ≤ NR

(2.3)

where Cs is the cache size and K is the degree of associativity. From now on

2.3 Miss Probability Estimation 29

Csk = Cs/K. In two vectors CV and FV of size Csk, initialized to zero, we add one

unit for each position associated with a Ci or an Fi, respectively. They are then

analyzed calculating the average number of lines of the access corresponding to each

set of Ls positions in these vectors, that is to say, to a line of a cache set. Three

values are used to do this. The �rst one is given by:

LG(0) = b(Tr − 1)/CskcNr +

Csk−1∑
i=Csk−(Tr−1) mod Csk

CV (i) (2.4)

that stands for the number of lines corresponding to di�erent regions that are guar-

anteed to be associated to the �rst set in the considered cache. These lines come

from all of the regions if Tr ≥ Csk, which is the �rst term in the addition; and/or

from those regions that start in preceding sets and whose end has not been reached.

For a set starting in position j this value is recalculated as:

LG(j) = LG(j − 1) + CV (j − 1)− FV (j − 1) (2.5)

On the other hand, we have LF(j), the average number of lines associated to regions

that end in the set starting in position j of the cache having chosen C0 = 0, but

that with shifts C0 = 1, . . . Ls − 1 might �nish in the next set. It is calculated as:

LF(j) =

j+Ls−1∑
i=j

FV (i)(i− j)/Ls (2.6)

The number of regions that start in a given cache set must be taken into account to

calculate the average number of lines associated to it. This requires using a weight

similar to the one used in (2.6) to take into account the possibility that with di�erent

starting positions for C0 the regions start in the next set. This value LC would be

calculated for each set starting in position j as:

LC(j) =

j+Ls−1∑
i=j

CV (i)(Ls − (i− j))/Ls (2.7)

We are now in a position to calculate the average number of lines associated to the

cache sets starting in positions j = 0, Ls, . . . , Csk − Ls as:

L(j) = LG(j) + LF((j + Csk − Ls) mod Csk) + LC(j) (2.8)

30 Chapter 2. The PME Model

Finally, the cross interference area vector associated to this access would be calcu-

lated from these values as:

AVr(Nr, Tr, Sr) =
1

NK

NK−1∑
i=0

AVs(L(iLs)Csk) (2.9)

because an average of L(iLs) lines will be mapped to the i-th cache set, and the

cross interference area vector associated to an interference with n di�erent lines is

AVs(nCsk).

The calculation of the self-interference area vector is performed as follows:

AVra(Nr, Tr, Sr) =

NK−1∑
i=0

AVs(max{0, L(iLs)− 1}Csk)L(iLs)

NK−1∑
i=0

L(iLs)

(2.10)

The same idea is applied but considering that each line in the i-th set competes

with other L(iLs)−1 lines. The self-interference area vector for each set is multiplied

by the number of lines that go to that set, obtaining the �nal vector averaged by

line.

2.3.3. Area Vectors Addition

The preceding step generates an area vector per data structure accessed during a

reuse distance. Each component of one of these area vectors V yields the probability

a given cache set will hold K or more (V0), or K − 1 (V1), etc. lines because of the

accesses to the corresponding data structure that can interfere with the reuses of

the reference whose behavior is being analyzed. In this �nal step of the process

these area vectors are added in order to get a global interference area vector that

represents the total impact on the cache of all the accesses that take place during

the considered reuse distance. The component 0 of this global area vector is the

miss probability we are trying to estimate. Given two area vectors VA and VB, their

addition, represented by the operator ∪, is calculated as

(VA ∪ VB)0 =
∑K

j=0

(
VAj

∑K−j
i=0 VBi

)
(VA ∪ VB)i =

∑K
j=i VAj

VB(K+i−j)
0 < i ≤ K

(2.11)

2.4 Building Probabilistic Miss Equations 31

This method is based on the addition as independent probabilities of the area

ratios, which means that it does not take into account the relative positions of

the program data structures in memory. This approach allows the PME model

to provide reasonable estimations in many situations in which the base addresses of

the data structures are not known at compile time (e.g. physically-addressed caches,

dynamically allocated data structures, . . .), something that, as far as we know, no

other model supports. When those base addresses are known at compile time, each

area vector is scaled before its addition by means of a coe�cient that represents

the amount of overlapping between the region it represents and the data structure

associated to the reference whose PME is being calculated in the cache. See [31] for

more details.

2.4. Building Probabilistic Miss Equations

A partial PME FRi is built for each static reference R in the code and loop at

nesting level i that encloses such reference. This PME estimates the number of

misses that R generates during a complete execution of this loop as a summatory of

the number of accesses that enjoy each possible reuse distance associated with this

loop multiplied by the miss probability that the memory regions accessed during

that reuse distance generate. Of course every access that is the �rst one to a line in

this loop, cannot result in reuses of lines already accessed in the current execution of

the loop, thus their miss probability cannot be associated to reuse distances within

the loop. The miss probabilities for those accesses correspond either to (a) reuse

distances that are associated with outer loops; or (b) reuse distances with respect

to accesses to the same data in previous loops in the same nesting level, when we

consider non-perfectly nested loops; or (c) when the loop is the outermost one (i = 0)

and there are no preceding loops that could give place to reuses, the miss probability

is simply one, since every �rst access to a line in this loop is indeed a �rst access

to the line, unable to exploit any reuse, which results in a compulsory miss. Since

PMEs are built beginning in the innermost loop and proceeding outwards, and their

evaluation depends on memory regions associated with reuses that are calculated

in outer or previous loops, the general expression of a PME is FRi(RegIn), where

RegIn stands for the memory regions accessed during the reuse distance for what

in this level of the nest happen to be �rst accesses. The exception are the PMEs

for outermost loops FR0, in which no reuse from previous accesses is possible. For

their evaluation we use as RegIn a memory region whose associated miss probability

32 Chapter 2. The PME Model

is one, so that the �rst-time accesses to a line in the nest are predicted as misses.

In general we can de�ne the input parameter RegIn of a PME FRi as the memory

region accessed since the immediately previous access to any of the lines that R

references in loop i in the moment the execution of the loop begins.

If the variable Ii associated with loop i does not index the array A or it indexes

it directly across an a�ne function, the access pattern of R is regular with respect

to loop i. Thus, the behavior of R in this nesting level is modeled by the regular

access PME explained in [31]:

FRi(RegIn) = LRi · FR(i+1)(RegIn) + (Ni − LRi) · FR(i+1)(RegRi(1)) , (2.12)

where Ni is the number of iterations of the loop at the nesting level i, and LRi is

the number of iterations in which there is no possible reuse for the lines referenced

by R from the point of view of this loop. RegRi(j) stands for the memory region

accessed during j iterations of the loop in the nesting level i that can interfere with

the accesses of R in the cache.

The equation calculates the total number of misses for reference R in nesting

level i as the sum of two values. The �rst one is the number of misses produced by

the LRi iterations in which the accesses of R cannot exploit reuse in this loop. The

miss probability for these iterations depends on reuse distances generated in outer or

preceding loops, thus the number of misses generated in these iterations is obtained

evaluating FR(i+1), the PME for the immediately inner loop, passing as parameter for

the calculation of the miss probability of its �rst accesses the value RegIn provided

by those external loops. The second value corresponds to the iterations in which

there can be reuse with respect to the accesses in the previous iteration in this loop.

The miss probability for the �rst accesses in the evaluation of the PME for the

immediately inner level depends in this case on the memory regions accessed during

one iteration of loop i.

When this equation is applied to the innermost loop containing reference R the

end of the recursivity is achieved substituting FR(i+1)(Reg) by AV0(Reg), that is,

the miss probability associated with region Reg. In the innermost loop these LRi

iterations correspond to lines: they mean that during one complete execution of the

Ni iterations of the innermost loop, R really accesses LRi di�erent lines, the other

accesses being thus reuses. When the loop analyzed is not the innermost one, the

iterations of the loop de�ne sets of lines (SOLs) accessed by R in the inner loops.

For example, if a bidimensional M × N FORTRAN array is accessed row by row

2.4 Building Probabilistic Miss Equations 33

(that is, the innermost loop of the access sweeps through the N columns of a given

row), in the analysis of the outer loop that controls the row index of the reference,

each iteration of this loop is associated to the access to the set of lines that hold

the elements of a row of the matrix. As FORTRAN stores the arrays by columns,

if M ≥ Ls, where Ls is the cache line size measured in elements, which is the most

usual situation, each set of lines will be made up of N di�erent lines. In this case, LRi

iterations of this outer loop give place to accesses to new sets of lines (SOLs); while

the other Ni − LRi iterations generate reuses of the SOLs accessed in the previous

iteration. In what follows we will talk in general about sets of lines (SOLs), in the

understanding that in the innermost loop each one of these sets consists of a single

line.

The number of iterations of loop i that cannot exploit either spatial or temporal

locality is given by

LRi = 1 +

⌊
Ni − 1

max{Ls/SRi, 1}

⌋
, (2.13)

where Ls is the line size measured in elements of the array referenced by R and SRi

is stride that reference R has with respect to loop i.

Example 8. In the driving example of Figure 2.4 the reference B(K, J) is contained

in the innermost loop J at nesting level 2. In this nesting level the loop index J

indexes the second dimension using the a�ne function 0+J. The number of di�erent

lines of B accessed, LR2, is calculated using the Equation 2.13, being N2 = H and

SR2 = dA2 = N , so LR2 = H assuming that Ls ≤ N . The resulting equation for

this nesting level is FR2(RegIn) = H · FR3(RegIn). As it is the innermost level

FR3(RegIn) = AV0(RegIn).

In the nesting level 1, the loop index K indexes the �rst dimension of B using the

a�ne function 0+K. SR1 = dA1 = 1 and N1 = N , so the number of di�erent SOLs

accessed is LR1 = 1 + b(N − 1)/Lsc. The �nal equation for this nesting level is

FR1(RegIn) = (1+b(N − 1)/Lsc)·FR2(RegIn)+(N−(1+b(N − 1)/Lsc))·FR2(RegR2(1))

In the outermost level the loop index does not index any dimension of the array

B. SR0 = 0 and N0 = M , so LR0 = 1 and the �nal equation that characterizes the

access in this nesting level is FR0(RegIn) = FR1(RegIn)+(M−1)·FR1(RegR0(1)) �

Chapter 3

Model Extension to Handle Codes

with Conditional Statements

The original PMEmodel described in the previous chapter can only analyze codes

with regular access patterns. This thesis covers the extension of the PME model

to model irregular access patterns. Di�erent extensions are proposed depending

on whether the irregularity is due to the presence of data-dependent conditional

statements or indirections. This chapter contains a description of the PME model

extension for codes with irregular access pattern due to data-dependent conditional

statements.

Data-dependent conditional statements are a signi�cant subset of the conditional

structures whose outcome depends on computations made at run-time, and where

the pattern of the condition is highly irregular. These statements are not statically

analyzable and their truth values can not be determined at compile time, that is,

it can not determined if the conditional statement will be true or false in each one

of their evaluations. Furthermore, their truth values can change between di�erent

executions of the program if the input data vary. In this PME model extension we

will consider codes with any kind and number of conditional sentences, even with

references and whole loop nests controlled by several nested conditionals, and nested

in any arbitrary way. Only two restrictions are set on the conditions. The �rst one

is that their veri�cation must follow an uniform distribution. The second one is that

the conditions must be independent, that is, the probability that a given condition

is ful�lled is not in�uenced by the fact that any other condition(s) are ful�lled or

not.

35

36 Chapter 3. Model Extension to Handle Codes with Conditional Statements

In regular codes there is a statically determinable sequence of accesses associ-

ated to a reference in a nesting level. These accesses generate a series of possible

reuses of lines accessed in previous iterations of the loop or previous loops. The

miss probability measures the probability that each reuse attempt results in a miss

using the probabilistic nature of the PME model. When one or more conditional

statements guard a reference in the code, there is a sequence of potential accesses

associated to this reference. In this case, each access takes place only when the con-

ditions of the conditional statements that guard the reference are ful�lled. So, there

are di�erent possible reuse distances and each one of them has its associated miss

probability. The probabilistic capabilities of the PME model are used for determin-

ing the probability of each reuse distance using the probability that each potential

access generated by the reference actually takes place.

Some extensions are required to consider irregular accesses due to conditionals.

One is the identi�cation of new access patterns that give place to footprints not con-

sidered by the original PME model, and for which new methods must be developed

in order to estimate their corresponding area vectors. Some steps of the miss prob-

ability estimation process need also some adaptations to cover these new situations.

A new kind of PMEs is also needed. In these PMEs reuses take place only with a

given probability, and their reuse distance varies depending on the behavior of the

conditional sentences found in the nest.

Section 3.1 describes the extended scope of application of the PME model. In

Section 3.2, the miss probability estimation process is adapted to cover also ref-

erences guarded by conditional statements. Section 3.3 describes a new type of

PME equation to characterize the cache behavior of codes guarded by conditionals.

Finally, Section 3.4 contains the results of the validation of this model extension.

3.1. Scope of Application

The scope of application of the extended model is shown in Fig. 3.1. We now

consider any number of arbitrarily nested conditional statements, with an arbitrary

number of atomic conditions that involve any number of data elements. The �gure

only shows one data element per condition for simplicity. The IF statements condi-

tion the execution of isolated references or complete loops or nests. The restrictions

in the PME model of constant number of loop iterations and a�ne indexing continue

to hold. Also, our current systematic strategy to model irregular access patterns

3.2 Miss Probability Estimation in Irregular Codes 37

DO I0=1, N0, L0
DO I1=1, N1, L1
...

IF cond(D(fD1(ID1), ..., fDdD(IDdD)))

...

DO IZ=1, NZ, LZ
A(fA1(IA1), ..., fAdA(IAdA))

...

IF cond(B(fB1(IB1), ..., fBdB(IBdB)))

C(fC1(IC1), ..., fCdC(ICdC))

...

END DO

...

END DO

END DO

Figure 3.1: Loop nest with data-dependent conditional statements.

requires the conditions in the code to follow an uniform distribution and to be in-

dependent. This latter restriction means that the probability that a given condition

is ful�lled does not depend on the veri�cation of other conditions in the code. The

di�erent conditions may be ful�lled with di�erent probabilities each.

3.2. Miss Probability Estimation in Irregular Codes

In Section 2.3, three di�erent steps were described to estimate the miss probabil-

ity associated to a given reuse distance: access pattern identi�cation, cache impact

quanti�cation and area vectors addition. Some changes must be done in the access

pattern identi�cation and cache impact quanti�cation steps to cover the existence

of conditional statements in the code. The area vectors addition step does not need

any adaptation.

3.2.1. Access Pattern Identi�cation

In Section 2.3.1 we established that in order to identify the access pattern that

a given reference R follows during a reuse distance consisting of n iterations of the

loop at nesting level h, the indexes of each dimension and the number of iterations of

38 Chapter 3. Model Extension to Handle Codes with Conditional Statements

each loop during this reuse distance are examined. The output of this analysis is a

DA-tuple RR(h, n), where DA is the number of dimensions of the array A referenced

by R. Each element of this tuple consisted in its turn of a 2-tuple RRj = (Mj, Sj),

where the Mj is the number of di�erent points accessed along dimension j and Sj the

constant stride between two consecutive points. This method allowed to describe

any regular access pattern on an array indexed using a�ne functions of the loop

indices. If the array is guarded by a conditional statement, we need an additional

output to this analysis that is the probability PR(h, n) that each element of the

array is accessed during n iterations of the loop of nesting level h.

This probability PR(h, n) depends not only on the access pattern of the reference

in this nesting level, but also in the inner ones. As a result, its calculation takes

into account all the loops from the h-th down to the one containing the reference.

If fact, this probability is calculated recursively in the following way:

If h is the innermost loop containing R, then PR(h, n) = ph being ph the prod-

uct of all the probabilities associated to the conditional sentences controlling

R in nesting level h.

If h is not the innermost loop containing R and the loop index is not used in the

references found in conditions that control R or does not index any dimension

of the array accessed in R, then PR(h, n) = phPR(h+1, Nh+1), being Nh+1 the

number of iterations of the loop h + 1.

Otherwise, PR(h, n) = phPR(h + 1, Nh+1)
n

.

The same rules used in 2.3.1 can be used to reduce the DA-tuple RR(h, n) to an

unique tuple (Ms, Ss) that describes the whole access. Using this formal description

of the memory region accessed, a function must be obtained that characterizes the

access pattern and whose output is the area vector associated to it. This process

must be also extended to cover the irregular access patterns produced by the presence

of conditional statements. In the case of references with regular access patterns,

PR(h, n) = 1, the translation remains the same as the one explained in Section 2.3.1.

But when the probability PR(h, n) < 1, as each point involved in the pattern has

only a certain probability of being actually accessed, the following rules are applied.

1. If Ss = 1, it is an access to M consecutive elements in which each element

is accessed with a probability PR(h, n). The function that calculates the area

vector for this access is Regsp(Ms, PR(h, n)).

3.2 Miss Probability Estimation in Irregular Codes 39

DO I = 1, M

DO K = 1, N

IF (A(I,K) .NEQ. 0)

DO J = 1, H

IF (B(K,J) .NEQ. 0) THEN

C(I,J) = C(I,J) + A(I,K) * B(K,J)

ENDIF

ENDDO

ENDIF

ENDDO

ENDDO

Figure 3.2: Optimized product of matrices

2. Otherwise the access a�ects Ms di�erent points separated by a constant stride

Ss, which each element is accessed with a probability PR(h, n). The area vector

associated to this access pattern is estimated by function Regrp(Ms, 1, Ss, PR(h, n)).

As we see, the existence of conditional accesses de�ne probabilistic counterparts

for Regs and Regr, that characterize those access patterns in which each element is

accessed with a certain probability. The most general function is Regrp, all the other

ones being specializations of this one. Similarly, Regs functions are specializations

for S = 1 of their Regr counterparts, and the area vector functions that depend on

a probability of access P yield the same output as their regular counterparts for

PR(h, n) = 1. Still, we �nd this distinction useful because regular access patterns

enable simpler and faster algorithms for the calculation of their associated area

vector than irregular access patterns, and the same happens with the Regs functions

with respect to their Regr counterparts with input stride one.

Sometimes RR(h, n) can not be reduced to a single tuple. All the cases of

this kind we have found in the codes we have analyzed had the form RR(h, n) =

((M1, 1), (M2, S2)), which can be represented by function Regrp(M2, M1, S2, PR(h, n)),

as they are an access to M2 separate groups of M1 consecutive elements each which

are separated by a constant stride S2, in which each individual element of the region

has a probability PR(h, n)

Example 9. The code in Figure 3.2 implements the product of two matrices, A and

B, which may have many zero entries. As an optimization, when the element of A

to be used in the current product is 0, then all its products with the corresponding

40 Chapter 3. Model Extension to Handle Codes with Conditional Statements

elements of B are not performed. Also, if the element of B to be used in the current

product is 0 then that operation is not performed either. This avoids two �oating

point operations and the load and storage of C(I,J). The innermost conditional

statement has an uniform probability p2 of being ful�lled while the outermost one

has a probability p1.

Just as in the modeling of the code of Figure 3.2, without loss of generality, we

assume a compiler that maps scalar variables to registers and which tries to reuse

the memory values recently read in processor registers. Under these conditions, the

code in Figure 3.2 contains three reference to memory: C(I, J),A(I, K) and B(K, J).

The �rst dimension of array C is indexed by the index of the outermost loop 0 using

the a�ne function 0+I, so Iters0(0, 1) = 1, SR1 = dA1 = 1 resulting in the tuple

(1, 1). The second dimension is indexed by the index of the innermost loop using

the a�ne function 0+J, Iters0(0, 1) = N2 = H, SR2 = dA2 = M resulting in the

tuple (H, M). These two tuples will be simpli�ed to the tuple (H, M). About the

calculation of the probability PR(0, 1) of accessing each element of array C in one

iteration of level 0, in that level, the reference is a�ected by the loop index I so

PR(0, 1) = 1 − (1 − p1PR(1, 1))N because N1 = N . In the inner level 1, the loop

index K does not a�ect to the reference C(I, J), so PR(1, 1) = PR(2, 1) as p1 = 1.

Level 2 is the innermost level containing that reference and PR(2, 1) = p2. So,

PR(0, 1) can be calculated as 1 − (1 − p1p2)
N This will be mapped as an access

Regrp(M, 1, H, PR(0, 1)) to M regions of 1 element separated by a distance H where

each element has a probability 1− (1− p1p2)
N of being accessed.

The �rst reference to array A, A(I, K), is located inside loop K. There is a second

reference in the innermost loop that will not produce a new memory access because

it is considered to be satis�ed from the processor registers. The �rst dimension of

this reference is indexed by the loop index of the outermost loop, so the tuple that

describes the access is (1, 1). The second dimension is indexed by the loop index of

the inner loop K so the tuple for this dimension is (N, M). These two tuples can be

merged in the tuple (N, M) that is mapped to an access Regr(N, 1, M), N groups

of 1 element separated by a distance M .

The reference B(K, J) is contained in the innermost loop. The tuples for the

�rst and second dimension are (N, 1) and (H, N) respectively. The probability

PR(0, 1) that each element this reference could access is actually accessed is p1.

They can not be simpli�ed to an unique tuple but it can be identi�ed as an access

Regrp(H, N, N, p1), access to H groups of N elements separated by a distance N .

This region can be identi�ed as the special case of Regsp(HN, p1) the access to HN

3.2 Miss Probability Estimation in Irregular Codes 41

consecutive elements with a given probability �

3.2.2. Cache Impact Quanti�cation in Irregular Codes

The two access patterns usually found in codes with regular access that were

described in Section 2.3.2 are the sequential access and the access to groups of con-

secutive elements of the same size that are separated by a constant stride. Their

irregular counterparts, when uniform probabilities of access are considered, are de-

scribed in a similar way, with the important di�erence that now each one of the

elements involved in the pattern is accessed with a given probability p that is the

same one for each element. The modeling of these new access patterns, which we

detail below, depends on the cache parameters. Let us remember that a cache is

de�ned by its total size Cs, its line size Ls, and its associativity K. For simplicity,

both Cs and Ls are measured in elements or words of the access we are considering.

Two derived parameters that help simplify some expressions are the number of sets

in the cache, NK = Cs/(KLs), and Csk = Cs/K, the cache size devoted to each level

of associativity.

Sequential access with uniform probability Regsp(n, p)

We denote as AVsp(n, p) the cross interference area vector associated to an access

Regsp(n, p) to n consecutive elements in which each one of them has a probability p

of being referenced. The K + 1 elements of this vector are calculated as

AVspi
(n, p) = P (X = K − i) m < i ≤ K

AVspm
(n, p) = P (X ≥ K −m)

AVspi
(n, p) = 0 0 ≤ i < m

where X ∈ B(n/Csk, 1 − (1 − p)L
s), being B(n, p) the binomial distribution1 and

m = max{0, K − dn/Cske}. The equation is based on the fact that, on average,

there are n/Csk lines of the footprint associated to each cache set. Since this is a

consecutive memory region, the maximum number of lines a cache set can receive is

dn/Cske, so the area vector elements AVspi
(n, p) for 0 ≤ i < m must be zero. Also,

because of the uniform distribution of the accesses, we know that the number of

cache lines per set belongs to a binomial B(n/Csk, 1− (1− p)Ls). The probability of

1we de�ne the binomial distribution on a non integer number of elements n as P (X = x), X ∈
B(n, p) = (P (X = x), X ∈ B(bnc, p))(1− (n− bnc)) + (P (X = x), X ∈ B(dne, p))(n− bnc)

42 Chapter 3. Model Extension to Handle Codes with Conditional Statements

access per line of this binomial is easy to calculate, as since each individual element

in a cache line has a probability p of begin accessed, and a line holds Ls elements,

then the probability that at least one of the elements of the line receives a reference

is 1− (1−p)Ls . Since position i, i > 0, in the area vector represents the ratio of sets

that receive K − i lines in the access, its value will be the probability the variable

associated to this binomial takes the value K − i. The lowest element in the area

vector with non-zero probability, m, is the probability the number of lines accessed

is K −m or more.

As this is the counterpart of the sequential access described in Section 2.3.2, the

autointerference area vector is calculated analogously as AVsp(C(n)Csk) being C(n)

the average number of lines of the studied vector each line competes with in its

associated set, which calculation is described in Section 2.3.2.

Access to groups of elements separated by a constant stride with uniform

probability Regrp(Nr, Tr, Lr, p)

We denote as AVrp(Nr, Tr, Lr, p) the cross interference area vector associated

to an access Regrp(Nr, Tr, Lr, p) to Nr regions of Tr consecutive elements each and

separated by a constant stride of Lr elements, in which each individual element has

a probability p of being referenced. This area vector is calculated in two phases:

In a �rst phase, the region potentially a�ected by the references is consid-

ered. This region allows to measure the impact of the access on the cache by

calculating the number of lines that are mapped to each cache set.

Since accesses really happen with a given probability p, a second phase is

needed where the di�erent combinations of accesses are weighted with the

probability that they happen.

Calculation of the code footprint We �rst de�ne the helper function pos(i) = i

mod Csk, which calculates which position in the cache corresponds to an arbitrary

memory position i.

In a �rst step, the �rst position Ci of every region i that compounds the pattern

mapped on a cache of size Csk, is calculated as

C1 = 0

Ci = pos(Ci−1 + Lr), 1 < i ≤ Nr

3.2 Miss Probability Estimation in Irregular Codes 43

In the following, CV (i) will stand for the number of regions that begin in the

position i of the cache. Now we calculate for every cache set, 1 ≤ j ≤ NK , the

number of di�erent lines mapped to the considered cache set j in which exactly i

of their elements may be referenced by this access pattern. This is the set of values

N(j, i), where 1 ≤ i ≤ Ls.

The value of N(j, i) for i < min(Tr, Ls) is calculated as

N(j, i) = CV (pos(jLs − Tr + i)) + CV (pos(jLs + Ls − i))

since only the regions that begin exactly Tr− i positions before the beginning of the

considered set or in the i-th position of the set can contribute with a line where only

i of its elements may be referenced by the access pattern.

The calculation of the remaining N(j, i) depends on whether Tr < Ls. If this is

the case, then
N(j, Tr) =

∑Ls−Tr
t=0 CV (pos(jLs + t))

N(j, i) = 0, Tr < i ≤ Ls

since the regions beginning in the �rst Ls − Tr + 1 positions of the set will have

one line in which Tr of its elements may be accessed, and given that Tr < Ls, it is

impossible that there are regions with lines where more than Tr elements may be

accessed.

Finally, if Tr ≥ Ls, all the N(j, i) but N(j, Ls) have been calculated. The value

for the latter is calculated as

N(j, Ls) =
Tr∑

t=Ls

CV (pos(jLs − Tr + t))

because any region that begins either in the �rst position of the set or in the Tr−Ls−1

immediately preceding positions will have one line mapped to the considered set j

in which all of its elements may be a�ected by the access pattern.

Weighting the accesses probabilities In the previous phase we have estimated

the footprint of this access pattern without taking into account the probability that

each element in the footprint is really referenced. Let us remember that the footprint

is represented by the values N(j, i), which are the number of lines mapped to set j

that contain i words a�ected by the access pattern. Since the access to each element

happens only with probability p, this is an upper bound of the real number of lines

44 Chapter 3. Model Extension to Handle Codes with Conditional Statements

that are accessed. This way, the purpose of this phase is to estimate how many lines

are really accessed taking into account that the probability of access to each element

in the region is p.

Our strategy to estimate the total area vector for this access pattern is to calcu-

late the area vector for each set j independently and to average them. The area vec-

tor for each single set j, Sj, represents the distribution of probability that the access

generated references to l di�erent lines mapped to this set for 0 ≤ l < K in the posi-

tions Sj(K−l) of the vector, or to K or more di�erent lines, in the position Sj0. This

distribution of probability is calculated from Ls binomial variables, Xji, 1 ≤ i ≤ Ls,

where Xji is the number of lines that are really accessed out of the N(j, i) ones that

are mapped to set j and which contain exactly i positions that can be referenced by

the access pattern analyzed. This way, Xji ∈ B(N(j, i), 1− (1− p)i), where B(n, p)

stands for the binomial distribution. The probability of the binomial is given by the

fact that if in a given line only i positions may be subject to access, and the access

to each position only happens with probability p, then the probability the line has

really been accessed is 1 − (1 − p)i. As a result, if we de�ne Xj =
∑Ls

i=1 Xji, then

the area vector for the set j can be estimated as Sj(K−l) = P (Xj = l), 0 ≤ l < K

and Sj0 = P (Xj ≥ K).

The autointerference is calculated in the same way but the number of lines

mapped to each cache set j that contains i words is max(N(j, i) − 1, 0) instead

of simply N(j, i).

3.3. Condition Dependent PME

In order to consider the probabilities that the di�erent conditional statements

that may control a given reference R in its nest hold, we extend the PME that

estimates the behavior of a reference R in a loop i with a new argument ~p. This

vector contains in its position j the probability pj that the (possible) conditionals

that guard the execution of the reference R in nesting level j are veri�ed. If a given

loop contains no conditional structures, then pj = 1, which means the execution

in this level is unconditional. When there are several nested IF statements in the

same nesting level, pj is the product of the probabilities of holding their respective

conditions.

We have found that FRi(RegIn, ~p) may take two di�erent forms when considering

codes with data-dependent conditional statements. If the reference is not controlled

3.3 Condition Dependent PME 45

by any conditional sentence or if the variable that indexes loop i does not index any of

the references found in the condition(s) of the conditional(s) sentence(s) that control

the execution of R, then the PME takes the form described in the Equation(2.12)

of Section 2.4. This kind of PME disregards its input ~p, which is not used in the

computations. But if this is not the case, that is, if the variable of the loop is used in

the indexing of a data array involved in a conditional that controls the execution of

the reference R that is being studied, then a new kind of PME must be used. From

now on we will distinguish both kinds of PME by calling the former one Condition

Independent PME and these new one Condition Dependent PME.

Just as we did in Section 2.4, we will now describe the construction of Condition

Dependent PME for references that carry no reuse with other references. We will

do it in two steps. First, we will develop the general form of a Condition Dependent

PME. This PME is based on the probability that the reference that is being analyzed

actually accesses each one of the SOLs of the set that the reference can potentially

access during one iteration of the loop i we are considering. In a second step, an

algorithm to derive this probability will be presented.

General form of a condition dependent PME

A PME must be built for each loop i enclosing a reference R. The PME is

basically a summatory where each term is the product of the number of accesses

that have a given reuse distance, multiplied by the PME for the lower level when the

input footprint corresponds to that reuse distance. When reference R is controlled

by data-dependent conditionals, this is, when one or more IF statements that depend

on the input data control the reference, there is not an unique reuse distance for

each line. Depending on the pattern of veri�cation of the conditions that control

the execution of the reference, the accesses of R may try to reuse SOLs (sets of lines)

with very di�erent distances. These reuse distances will have di�erent probabilities

of happening, depending on the distribution of probability of the veri�cation of the

conditionals that control the execution of the reference. This way, the PMEs for this

kind of references will use probabilities not only to represent the miss probability for

a given reuse distance, as those in Section 2.4 did, but also to estimate how many

accesses take place with each possible reuse distance. Notice that PMEs measure

the reuse distance in terms of iterations of the loop they are associated to, and the

unit of reuse in a cache is the line. As a result, the base probability to weight the

di�erent reuse distances must be the probability that the reference that is being

46 Chapter 3. Model Extension to Handle Codes with Conditional Statements

analyzed accesses one of the SOLs it may potentially access during each iteration of

the loop i that is being considered. In general, when the conditionals do not follow

an uniform distribution, a set of di�erent probabilities for di�erent iterations and/or

SOLs must be used. As the scope of this analysis is restricted to conditionals that

follow an uniform distribution, in this work this probability is a single parameter,

PlRi(~p), that has the same value for every iteration of the loop i and for every SOL

that R may access. This way, the condition dependent PME for loop i and reference

R has the form

FRi(RegIn, ~p) = piLRi

GRi∑
j=1

WMRRi(RegIn, j, ~p) , (3.1)

where LRi is the number of iterations in which new di�erent SOLs would be accessed

by reference R due to the stride in loop i if it were not subject to conditional execu-

tion. Its calculation is detailed in Section 2.4. pi is the probability the conditional

sentences that control the execution of R in this loop level are true. The product of

these two terms gives the average number of iterations in which R accesses di�erent

SOLs due to its stride for this loop. This number of iterations must be multiplied

by the PME for the immediately lower level evaluated with the appropriate reuse

distance area vector, which is what the term WMRRi stands for, a weighted num-

ber of misses for a reference in level i. As stated before, because of the control by

data-dependent conditionals, a range of di�erent reuse distances with di�erent prob-

abilities may take place. This range has an average upper bound GRi, the number

of iterations that can potentially reuse the SOLs accessed in the LRi iterations that

give place to accesses to new SOLs. The product of both terms must be equal to

the number of iterations of the loop, thus GRi = Ni/LRi.

Let us now develop the value of WMRRi(RegIn, j, ~p), the weighted number of

misses generated by reference R in loop i when RegIn is the region accessed since

the last access to any of the SOLs a�ected by the reference of R before loop i begins

its execution, and the SOL is used in the j-th possible iteration in which the SOL

could be accessed. This function is computed as

WMRRi(RegIn, j, ~p) =PlRi(~p)
j−1

FR(i+1)(RegIn ∪ RegRi(j − 1), ~p)+

j−1∑
k=1

PlRi(~p)PlRi(~p)
k−1

FR(i+1)(RegRi(k), ~p) ,
(3.2)

where PlRi(~p), the probability that R accesses during one iteration of loop i one of

3.3 Condition Dependent PME 47

the SOLs that belong to its potential access pattern, is used to weight the proba-

bilities that the di�erent reuse distances take place. In this equation p stands for

1− p, this is, the converse probability of p. Let us remember that RegRi(n) stands

for the regions accessed during n iterations of the loop i that may interfere with

the accesses of R. The �rst term in (3.2) considers the case that the SOL has not

been accessed during any of the previous j − 1 iterations. In this case, the RegIn

region that could generate interference with the new access to the SOL when the

execution of the loop begins, must be added to the regions accessed during these

j − 1 previous iterations of the loop in order to estimate the complete interference

region. The references to di�erent data structures often overlap. It is necessary to

merge them in only one region in order to avoid having overlapped memory regions

considered several times as a source of interference. This addition is performed us-

ing the regions union represented by the symbol ∪· The second term weights the

probability that the last access took place in each of the j− 1 previous iterations of

the considered loop.

The probability PlRi(~p) that reference R accesses one of the SOLs that belong

to the region that it can potentially access during one iteration of loop i is a basic

parameter to derive FRi(RegIn, ~p), as we have just seen. This probability depends

not only on the access pattern of the reference in this nesting level, but also in the

inner ones, so its calculation takes into account all the loops from the i-th down to

the one containing the reference. If fact, this probability is calculated recursively in

the following way:

If i is the innermost loop containing R, then

PlRi(~p) =

{
1 if the accesses of R are consecutive with respect to loop i

pi otherwise

where a consecutive access with respect to a given loop implies that the accesses

that take place in consecutive iterations of the loop do reference consecutive

memory positions. The condition for this to happen even when the accesses

of R depend on an IF statement is that the index for the �rst dimension of R

only makes (sequential) progress within the same IF statement that controls

R.

48 Chapter 3. Model Extension to Handle Codes with Conditional Statements

If i is not the innermost loop containing R, then

PlRi(~p) =


piPlR(i+1)(~p) if the index of loop i + 1 is not used in the

references found in conditions that control R

piPlR(i+1)(~p)
GRi+1 otherwise

where we must remember that p = 1 − p and that pi is the product of all the

probabilities associated to the conditional sentences controlling R in nesting level i.

Example 10. As an example, we describe now how the equations that model the

cache behavior of the reference B(K, J) in the code of Figure 3.2 are derived. The

innermost loop containing this reference, is also the innermost level. The variable

that controls this loop, J, is not used in the indexing of referenced found in conditions

that control the execution of this reference, thus Equation (2.12) is applied. As this

is the innermost loop containing the reference, in the evaluation of this equation,

FR3(RegIn, ~p) = AV0(RegIn). Since SR2 = N and LR2 = H, the equation for this

nesting level is

FR2(RegIn, ~p) = HAV0(RegIn)

The next level is level one. In this level, the loop index indexes references in

the two conditional statements that control our reference, so Equation (3.1) applies

again. In this case, SR1 = 1, LR1 = 1+ b(N −1)/Lsc and GR1 ' Ls, so the equation

is

FR1(RegIn, ~p) = p1 (1 + b(N − 1)/Lsc)
Ls∑

j=1

WMRR1(RegIn, j, ~p) .

When WMRR1 is calculated PR1(~p) = p1

In the outermost level, the variable of the loop indexes a reference in one of the

conditions, so we have to apply again Equation (3.1). For this loop and reference,

SR0 = 0, LR0 = 1 and GR0 = M , so the equation is

FR0(RegIn, ~p) = p0

M∑
j=1

WMRR0(RegIn, j, ~p) .

In this loop, WMRR0 is a function of PR0(~p) = 1− (1− p1)
Ls �

3.4 Validation 49

DO I = 1,M

X = A(I)

DO J = 1,N

Y = B(J)

IF (B(J) .GT. K) THEN

C(J) = X + Y

ENDIF

ENDDO

ENDDO

Figure 3.3: Synthetic kernel code

posB = 1

DO I = 1, N

offB(I) = posB

DO J = 1, M

IF (A(I,J) .NEQ. 0) THEN

B(posB) = A(I,J)

jB(posB) = J

posB = posB + 1

ENDIF

ENDDO

ENDDO

Figure 3.4: CRS Storage Algorithm

3.4. Validation

Our validation of the model is based on the comparison of its cache miss predic-

tions with the result of trace-driven simulations. We have used three simple kernels

shown in Figures 3.3, 3.4 and 3.2. The code in Figure 3.3 is synthetic kernel with a

conditional sentence that control the access to a data structure C. Then, Figure 3.4

implements the storage of a matrix in CRS format (Compressed Row Storage),

which is widely used to store sparse matrices in a compressed form. The code has

two nested loops and a conditional sentence that controls three of the references.

Finally, Figure 3.2 is an optimized product of matrices that contains references in-

side several nested conditional sentences. These conditionals try to avoid unuseful

computations when one of their inputs is a zero.

In order to validate our model its predictions were compared with the results

of trace drive simulations using di�erent cache con�gurations, problem sizes and

probabilities for the ful�llment of the conditionals for the three example codes. The

combinations used to validate the model for each code are shown in Table 3.1. Rows

M , N and H correspond to the problem size, this is, the number of iterations of

each loop, expressed as the value of its upper limit. Then come the probabilities

pi that the conditional sentences found in the codes are true. The synthetic and

the CRS codes have a single conditional and no H loop, thus rows H and p2 are

empty for them. Then, the cache con�gurations used in the validation are shown

in the format (Cs − Ls −K), this is, (cache size-line size-associativity). The cache

and line sizes are expressed in bytes. Then, Table 3.1 shows the total number of

50 Chapter 3. Model Extension to Handle Codes with Conditional Statements

Table 3.1: Parameter combinations used for the validation and average and maxi-
mum miss rate prediction error

Kernel
Parameter Synthetic CRS Matrix Product

M 950,1750,2000, 1000,1200,1400, 350,550,
4500,6000 1600,1800 400,600

N 1200,2500,3000, 1250,1350,2450, 250,350
4000,9500 2650,3000 450,650

H - - 600,700,750,800

p1 0.1,0.2,0.3,0.4,0.5 0.1,0.2,0.3,0.4,0.5 0.1,0.2,0.3,0.4
p2 - - 0.1,0.2,0.3,0.4

32K-32-1 32K-32-1 32K-32-1
Cache 32K-32-2 32K-32-2 32K-32-2

Con�gurations 64K-32-1 64K-32-1 -
(Cs − Ls −K) 64K-32-2 64K-32-2 64K-32-2

128K-64-2 128K-64-2 128K-64-2

Combinations 625 625 4096

Avg ∆MR 0.22% 1.43% 2.23%
Max ∆MR 3.81% 8.05% 11.32%

parameter combinations tried for each code taking into account the previous rows.

For each one of these combinations a total of 25 di�erent simulations were made

using di�erent base addresses for the data structures. This improves the validation

of the model by taking into account many di�erent relative positions for the mapping

on the cache of the di�erent data structures. The last two rows in the table show

the average and the maximum value for each code of the metric ∆MR that we use

to measure the accuracy of the model. This metric is the average of the absolute

value of the di�erence between the predicted and the measured miss rate (MR)

expressed as a percentage in each one of the 25 simulations performed for each

parameter combination. As expected, the average and maximum errors grow with

the complexity of the code. Still, we consider that a maximum absolute error of

only about 11% is very satisfactory. Also, the large di�erence between the average

and the maximum ∆MR shows that (relatively) large errors are very infrequent and,

in general, the predictions estimate well the cache behavior.

Tables 3.2, 3.3 and 3.4 show the validation results for some randomly chosen

combinations of the problem size, the conditional probabilities and the cache con-

�gurations for the three codes proposed in Figs. 3.3, 3.4 and 3.2, respectively. The

3.4 Validation 51

Table 3.2: Validation data for the synthetic kernel in Fig. 3.3 for several cache
con�gurations, problem sizes and condition probabilities

M N p Cs Ls K ∆MR Tsim Texe Tmod

50000 47500 0.4 128K 64 2 0.015 182.211 68.022 0.005
50000 47500 0.2 64K 256 4 0.004 138.187 50.003 0.005
22000 14500 0.4 256K 128 4 0.001 28.244 7.033 0.003
22000 14500 0.4 64K 64 1 0.067 65.002 7.129 0.004
18000 22000 0.2 256K 128 2 0.574 23.021 7.586 0.004
18000 22000 0.1 128K 64 2 0.076 22.112 6.012 0.004
18000 22000 0.3 32K 256 4 0.141 95.223 8.010 0.004
14500 19500 0.7 128K 64 8 0.000 32.224 7.697 0.005
14500 19500 0.2 128K 32 2 0.252 20.269 5.331 0.005
14500 19500 0.3 64K 32 1 0.124 20.901 6.465 0.004
1750 1750 0.4 64K 4 64 0.000 1.123 1.000 0.003
1750 1750 0.7 64K 8 32 0.000 0.988 0.322 0.003

columns in the three tables have the same meaning as the respective rows in Ta-

ble 3.1. Many of the combinations chosen in these tables do not belong to the set

of experiments described by Table 3.1, so that the behavior of the model can be

analyzed for a wider scope of parameters. The last three columns in each table

correspond, respectively, to the simulation time, execution time and modeling times

expressed in seconds and measured in a Athlon 2400 processor-based system (2,086

GHz). As we see, modeling times are much shorter than trace-driven simulation

times despite the fact that we use a very fast and simple simulator. In fact, many

times they are even faster than the native execution times. Furthermore, sometimes

modeling times are several orders of magnitude shorter than trace-driven simulation

and even execution times. The modeling time does not include the time required to

build the equations for the example codes as the equations are developed by hand.

The time necessary to execute the model is always less than 1 second.

Figures 3.5 and 3.6 show the evolution of both the number of misses and the miss

rate measured and predicted for di�erent cache con�gurations and probabilities of

the conditionals for the CRS and the matrix product codes, respectively. The �gures

show, as the previous tables, that the model is successful in predicting the behavior

of the cache. A new interesting conclusion we can draw from these �gures is that our

extended model is indeed required to predict correctly the behavior of the memory

hierarchy when irregular access patterns are involved. We can see that a simpli�ed

52 Chapter 3. Model Extension to Handle Codes with Conditional Statements

Table 3.3: Validation data for the CRS code in Fig. 3.4 for several cache con�gura-
tions, problem sizes and condition probabilities

M N p Cs Ls K ∆MR Tsim Texe Tmod

6200 10150 0.4 256K 64 4 0.01 16.308 4.022 1.225
4200 17150 0.1 32K 32 2 0.04 14.797 6.401 0.246
16220 7200 0.2 128K 32 2 0.03 27.477 5.011 3.646
6200 14250 0.3 512K 64 4 0.00 21.089 5.891 1.221
9200 14250 0.1 32K 32 8 0.04 37.768 11.001 1.196
1100 15550 0.5 32K 32 8 0.02 2.724 1.668 0.021
2900 17250 0.3 256K 128 4 0.17 10.363 4.573 0.572
8900 9250 0.1 256K 64 4 0.64 17.119 11.228 2.516
4200 12150 0.1 32K 32 2 0.04 9.364 3.880 0.246
5000 15000 0.3 256K 64 4 0.11 17.852 10.330 0.804
7200 12250 0.1 32K 32 8 0.04 18.224 9.646 0.721

model that did not support irregular access patterns and which chose to make all

probabilities either 0 or 1 (the two extremes cases) would yield predictions very

di�erent from the real values obtained for intermediate probabilities like 0.1, shown

in the �gures. This justi�es the interest of our research.

Figure 3.7 compares the miss rate measured and the miss rate predicted for the

CRS storage and matrix product codes when the probability of veri�cation of the

condition takes di�erent values between 0.1 and 0.9. The accuracy of the prediction

is good in all the situations, while the miss rate of the code is highly dependent

on the probability of the conditions in the code. The miss rate is higher when the

probability of veri�cation is lower because accesses are much more irregular. This

way, it is important to feed the model with the right values of the probabilities of

the conditional statements because the miss rate can be mispredicted otherwise.

Finally, Figure 3.8 contains the evolution of ∆MR for the CRS storage and the

optimized matrix product respectively for di�erent cache con�gurations and matrix

sizes. The prediction is more accurate in the CRS storage code, but it is still good

for the product of matrices.

3.4 Validation 53

Table 3.4: Validation data for the optimized matrix product code in Fig. 3.2 for
several cache con�gurations, problem sizes and condition probabilities

M N H p1 p2 Cs Ls K ∆MR Tsim Texe Tmod

750 750 1000 0.2 0.1 128K 64 8 0.79 24.444 11.233 0.203
750 750 1000 0.8 0.3 128K 128 16 1.31 86.845 72.069 0.987
900 850 900 0.9 0.1 512K 64 8 0.59 85.358 65.266 0.990
900 950 1500 0.1 0.4 256K 64 4 6.62 31.768 16.201 0.511
900 950 1500 0.8 0.3 128K 32 2 2.04 171.755 85.023 0.149
1000 850 900 0.7 0.5 32K 64 2 3.13 110.328 108.211 0.139
200 250 150 0.8 0.2 128K 32 2 0.48 0.764 0.550 1.034
200 250 150 0.1 0.3 256K 64 4 5.91 0.134 0.112 0.301
200 250 150 0.3 0.1 32K 32 8 1.45 0.406 0.323 0.030
100 350 90 0.8 0.5 32K 32 8 0.14 0.500 0.201 0.031
100 350 90 0.4 0.4 64K 64 4 0.40 0.218 0.122 0.586
100 350 90 0.2 0.3 32K 64 2 0.05 0.104 0.101 0.309

0

0.5

1

1.5

2

2.5x 10
7

Cache configuration

N
um

be
r

of
 m

is
se

s

 32K−32−1
 128K−64−1

128K−128−4
256K−128−2

 256K−64−4

p=0 measured
p=0 predicted
p=0.1 measured
p=0.1 predicted
p=1 measured
p=1 predicted

(a) Number of misses

0

20

40

60

80

100

Cache configuration

M
is

s
ra

te

 32K−32−1
 128K−64−1

128K−128−4
256K−128−2

 256K−64−4

p=0 measured
p=0 predicted
p=0.1 measured
p=0.1 predicted
p=1 measured
p=1 predicted

(b) Miss rate

Figure 3.5: Measured versus predicted (a) misses and (b) miss rates for several cache
con�gurations and di�erent probabilities of veri�cation of the conditionals for the
CRS code (see Figure 3.4) with M = 1500 and N = 10000. The cache con�gurations
are expressed as (Cs-Ls-K), with sizes in bytes.

54 Chapter 3. Model Extension to Handle Codes with Conditional Statements

0

0.5

1

1.5

2

2.5

3x 10
7

Cache configuration

N
um

be
r

of
 m

is
se

s

 32K−32−1
 128K−64−1

128K−128−4
256K−128−2

 256K−64−4

p=0 measured

p=0 predicted

p=0.1 measured

p=0.1 predicted

p=1 measured

p=1 predicted

(a) Number of misses

0

20

40

60

80

100

Cache configuration

M
is

s
ra

te

 32K−32−1
 128K−64−1

128K−128−4
256K−128−2

 256K−64−4

p=0 measured

p=0 predicted

p=0.1 measured

p=0.1 predicted

p=1 measured

p=1 predicted

(b) Miss rate

Figure 3.6: Measured versus predicted (a) misses and (b) miss rates for several
cache con�gurations and di�erent probabilities of veri�cation of the conditionals for
the optimized matrix product code (see Figure 3.2) with M = 300, N = 300 and
H = 300. The cache con�gurations are expressed as (Cs-Ls-K), with sizes in bytes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

Probability

M
is

s
ra

te

Miss rate measured
Miss rate predicted

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

Probability

M
is

s
ra

te

Miss rate measured
Miss rate predicted

(b)

Figure 3.7: Measured versus predicted miss rates for di�erent probabilities of ver-
i�cation of the conditionals for the CRS storage code and the optimized matrix
product a 2-way cache of 512 KBytes with 64 bytes per cache line. The matrix sizes
were M = N = 10000 in the CRS storage code and M = N = H = 1000 in the
optimized product of matrices.

3.4 Validation 55

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

32K,32,2
64K,32,1

128K,32,2
256K,32,1

512K,64,2
1M,64,4

2M,64,4
0%

1%

2%

Cache Configuration

CRS storage

Matrix Size

∆
M

is
s

R
at

e

(a)

100 200 300 400 500 600 700 800 900 1000

32K,32,2
64K,32,1

128K,32,2
256K,32,1

512K,64,2
1M,64,4

2M,64,4
0%

1%

2%

3%

4%

5%

6%

7%

Matrix Size

MxM

Cache Configuration

∆
M

is
s

R
at

e

(b)

Figure 3.8: Surfaces representing the ∆MR evolution for di�erent cache con�gura-
tions and matrices sizes in the CRS storage and optimized matrix product codes.
The cache con�guration is denoted using the notation (Cs,Ls,k).

Chapter 4

Model Extension to Handle Codes

with Indirections

In the previous chapter we proposed an extension to the PME model to consider

codes with irregular access patterns due to conditional statements. They constitute

an important subset of the codes with irregular access patterns.

Another important source of irregularity is the existence of indirections, that

is, references where the indexing of an array, called the base array, is done across

the values contained in another array known as the index array. This array can be

also accessed using an indirection, so, more than one level of indirection is possible.

For example, the management of compressed matrix storage methods used in sparse

computation gives place to a big numer of indirections.

Our model considers indirections in which all the elements of the array accessed

by means of the indirection have the same probability of being accessed, i.e., where

the irregular access is uniformly distributed on the referenced array. In sparse com-

putation this implies that the nonzeros should be uniformly distributed along the

sparse matrix. This restriction eases the treatment of the problem in this �rst at-

tempt to model automatically the cache behavior of codes with indirections, while

allowing to represent the most important problems that irregular access patterns

pose for their modeling. The model is also extended to cover an important class of

non-uniform irregular access patterns. Namely, we consider the indirections gener-

ated by the compressed storage of realistic banded matrices, a very common distri-

bution in sparse matrices [27].

57

58 Chapter 4. Model Extension to Handle Codes with Indirections

DO I0 =1, N0
DO I1 =1, N1
...

DO IZ =1, NZ
...

A(fA1(IA1), ..., fAj(B(fB1(IB1))), ...)

...

END DO

...

END DO

END DO

Figure 4.1: Nested loops with structures accessed using indirections.

Section 4.1 contains a description of the extended scope of application of the

PME. Separated extensions are proposed for the modeling of codes with indirections

when the data involved follows an uniform distribution and when banded matrices

are managed. Section 4.2 is devoted to the model extension for uniform distributions

while Section 4.3 covers the treatment of banded matrices.

4.1. Scope of Application

Figure 4.1 depicts the scope of application of our extended model. It shows

a set of normalized perfectly or non-perfectly nested loops in which the number

of iterations of every loop must be the same in every execution of the loop. The

reference indexes are a�ne functions fi either of the loops control variables Ii or of

values read from arrays. We call index or indirection array the one whose values are

used to index another array, which we call the base array of the indirection. Index

arrays can be themselves indexed by other arrays, which gives place to several levels

of indirection.

4.2. Model Extension for Uniform Distributions

In the �rst extension proposed in this chapter, the probability that a component

of the base array of an indirection is accessed is uniform. This means they all have

the same probability of being accessed. Some adaptations must be done to the model

4.2 Model Extension for Uniform Distributions 59

function RegRi(n) {

RegSet = ∅

foreach array A involved in the code {

RA = ∅

foreach reference R′ to array A in loop i or loops nested inside it {

RA = merge(region_accessed(R, i, n), QR,RA)

}

regA.region_func = access_pattern(RA)

regA.is_self_interference = (A == array(R))

RegSet = RegSet ∪ regA

}

return RegSet

}

Figure 4.2: Calculation of RegRi(n), the set of regions that can interfere with the
attempts of reuse of reference R generated during n iterations of the loop at nesting
level i.

to cover this new situation. The miss probability estimation process is adapted in

Section 4.2.1 to cover the access pattern recognition of codes with indirections. New

equations are proposed in Section 4.2.2 for codes with indirections with an uniform

distribution. In Section 4.2.3 a small modi�cation to model codes involving banded

matrices with a uniform distribution of the values inside the band, is proposed.

Section 4.2.4 shows the main validation results achieved with this model extension.

4.2.1. Miss Probability Estimation in Codes with Indirec-

tions

As we established in Section 2.3, the miss probability estimation is a process that

can be divided in three steps : the access pattern identi�cation, the cache impact

quanti�cation and the area vectors union. In the previous chapter, some adaptations

were proposed to the two �rst steps to cover the modeling of irregular codes due

to conditional statements. In the access pattern identi�cation we introduced some

changes to identify correctly the irregular access pattern due to conditional state-

ments. We also introduced in the cache impact quanti�cation step two new types

of irregular regions that allowed us to measure the cache impact of irregular access

patterns. Finally, the area vectors union did not su�er any change. Figure 4.2 shows

the pseudocode for the calculation of the interference region of reference R during

the execution of n iterations of nesting level i: the access pattern of the references

to each array A found within the loop is identi�ed in turn and added to the set of

60 Chapter 4. Model Extension to Handle Codes with Indirections

function region_accessed(R, h, n) {

A = array(R)

foreach dimension j of A {

i = loop_that_indexes_dimension(R, j)

if not indexed_by_indirection(R, j) {

RRj(h, n) = (iters_regular(i, h, n), SRi, 1)

} else {

RRj(h, n) = (iters_irregular(i, h, n), SRi,

prob(R, i, h, n))

}

}

return simplify(RR(h, n))

}

(a) Calculation of RR(h, n), the tuple-based
representation of the region accessed by ref-
erence R during n iterations of the loop at
nesting level h.

function access_pattern(R) {

if R == (M, S, P) {

if P == 1.0

if S == 1

return Regs(M)

else

return Regr(M, 1, S)

else

if S == 1

return Regsp(M, P)

else

return Regrp(M, 1, S, P)

} else {

if R == ((M1, 1, P1), (M2, S2, P2))

return Regrp(M2, M1, S2, P1 · P2)

else

return error(UNKOWN)

}

}

(b) Identi�cation of the access pattern
associated to the memory region de-
scribed by the tuple(s) R.

Figure 4.3: Identi�cation of the access pattern followed by the references during a
reuse distance.

regions accessed. The memory regions associated to the same array R accesses are

marked because its cache impact quanti�cation step is di�erent.

In this extension for codes with indirections the last two steps of this process

remain the same. The irregular access patterns followed by the references due to

the existence of indirections are the same as those ones identi�ed in codes with

conditional statements. However, the access pattern identi�cation step needs some

modi�cations to identify correctly the irregular access patterns due to indirections.

Access Pattern Identi�cation

Figure 4.3 shows the two steps involved in the identi�cation of the access pattern

that references follow during a reuse distance consisting of n iterations of the loop

at nesting level h. Function region_accessed analyzes the indexes of the studied

reference R to obtain a numerical representation of its access pattern during the

considered period of the execution of the code. In function access_pattern, this

representation is mapped to a given access pattern.

4.2 Model Extension for Uniform Distributions 61

In function region_accessed, for each reference R the indexes of each dimension

and the number of iterations of each loop during this reuse distance are examined.

The output of this analysis is a DA-tuple RR(h, n), as in the case of regular codes

described in Section 2.3.1, where DA is the number of dimensions of the array A

referenced by R. In regular codes each element of this tuple consisted in its turn of a

2-tupleRRj(h, n) = (Mj, Sj) where the Mj is the number of di�erent points accessed

along dimension j and Sj the constant stride between two consecutive points. In

codes with indirections this tuple has a third component Pj that stands for the

probability each one of these points is actually accessed by R. If the access is not

indexed using an indirection Pj = 1. Function access_pattern uses the information

contained in this tuple to determine the access pattern followed by that reference.

The algorithm followed to calculate the 3-tuple associated to dimension j of

reference R during n iterations of the loop at nesting level h is described now. When

the indexing of dimension j is not done across an indirection then the method used

to calculate this tuple is the one described in Section 2.3.1 for the regular case with

P = 1. But when the indexing of dimension j depends on an indirection, that

is, when the index has a form αRj·B(f(Ii))+δRj, we assume that the accesses are

spread uniformly on the dimension j of the array. Since our indirection is multiplied

by some constant αRj (usually one), there are bDAj/αRjc di�erent points in the

dimension that can be actually accessed (e.g. reference A(2*B(I)) can only access

the even elements of array A), where DAj is the number of elements in dimension

j. Each point has an uniform probability 1/bDAj/αRjc of being the one accessed

because of each given value read from the index array. As a result, if Itersi(h, n)

(see Section 2.3.1) di�erent values have been read from the index array B during n

iterations of the loop at nesting level h, where i is the nesting level of the loop whose

index controls the accesses to the index array B, the average probability each that

each one of the points that R can access in the j-th dimension of its base array has

been accessed at least once is 1− (1− 1/bDAj/αRjc)Itersi(h,n), thus

RRj(h, n) =

(⌊
DAj

αRj

⌋
, SRi, 1−

(
1− 1

bDAj/αRjc

)Itersi(h,n)
)

(4.1)

OnceRR(h, n) has been calculated for the reference that reads the indexing array

B, it is straightforward that the number of di�erent points the reference accesses is∏DB

k=1 MkPk, i.e, the product of the number of di�erent points it may access in each

dimension multiplied by the probability each one of such accesses actually takes

62 Chapter 4. Model Extension to Handle Codes with Indirections

place.

As in Section 2.3.1, there are possible simpli�cations in between pairs of 3-tuples

RRj(h, n) that describe the access pattern in di�erent dimensions of the array:

((1, Sj, Pj), (Mk, Sk, Pk)) = (Mk, Sk, Pj · Pk)

((Mj, Sj, Pj), (Mk, Mj · Sj, Pk)) = (Mj ·Mk, Sj, Pj · Pk)

After these simpli�cations a single 3-tuple (Ms, Ss, Ps) that describes the region

accessed by the reference is typically obtained.

The notation described above su�ces for the representation of memory regions in

codes in which there is a single reference per data structure. In codes in which several

references access the same data structure, the regions they access will often overlap

or be adjacent, so we have developed simple algorithms to merge the descriptors

for overlapping or adjacent regions. This way, lines that are accessed by di�erent

references are not taken into account several times as source of interferences. In

order to perform this merging, one more parameter is used to describe the region

a�ected by a given reference R: the position QR with respect to the beginning of the

array of the �rst element it contains. The merging algorithm is applied in function

merge in Figure 4.2 and it is described in [31].

As Section 2.3 explains, rather than this description of the memory region ac-

cessed, the output of the access pattern identi�cation step is a function that charac-

terizes the access pattern whose output is the area vector associated to it. Depending

on the values of Ss and Ps in a tupleRRj(h, n), four kinds of access pattern functions

can be identi�ed (see Figure 4.3(b)):

1. When Ps = 1, it is a regular access pattern so the process described in Sec-

tion 2.3.1 is followed, based on Ms and Ss.

2. When Ps < 1 the access pattern is irregular, as each point involved in the

pattern has only a certain probability of being actually accessed:

a) If Ss = 1, it is an access to Ms consecutive elements in which each element

is accessed with a probability Ps. The function that calculates the area

vector for this access is Regsp(Ms, Ps).

b) Otherwise the access a�ects Ms di�erent points separated by a constant

stride Ss, which each element is accessed with a probability Ps. The

4.2 Model Extension for Uniform Distributions 63

DO I=1,M

REG=0

DO J=R(I), R(I+1) - 1

REG = REG + A(J) * X(C(J))

ENDDO

D(I)=REG

ENDDO

Figure 4.4: Sparse Matrix-Vector Product

area vector associated to this access pattern is estimated by function

Regrp(Ms, 1, Ss, Ps).

Sometimes it is not possible to reduce RR(h, n) to a single tuple. All the

cases of this kind we have found in the codes we have analyzed had the form

RR(h, n) = ((M1, 1, P1), (M2, S2, P2)), which can be represented by the function

Regrp(M2, M1, S2, P1·P2), as they are an access to M2 separate groups of M1 consecu-

tive elements each that are separated by a constant stride S2, having each individual

element of the region a probability P1 · P2 of being accessed.

Example 11. Let us consider the code of Figure 4.4, which is part of the Sparskit

toolkit [43]. This code performs the product of an sparse matrix stored in CRS

format and a vector. The CRS format stores sparse matrices by rows in a compressed

way using three vectors. One vector stores the nonzeros of the sparse matrix ordered

by rows, another vector stores the column indexes of the corresponding nonzeros,

and �nally another vector stores the position in the other two vectors in which the

data of the nonzeros of each row begins. In our codes we always call these vector A, C

and R respectively. The codes which manipulate compressed sparse matrices contain

many indirections. We will illustrate the extended access pattern identi�cation step

for codes that contain indirections identifying the memory regions accessed during

one iteration of the outermost loop (loop I) of this code.

In each iteration of loop I a whole execution of the loop J takes place. The

average number of iterations of this loop is N1. Since it sweeps along the elements

of a row of the sparse matrix, its value is N1 = Nnz/M , where Nnz is the number of

nonzeros in the sparse matrix and M its number of rows, let's remember we assume

an uniform distribution of the nonzeros. The number of nonzeros can be assumed

from the size declared for the arrays A and C, or be part of a directive to the compiler

or be extracted from a pro�ling of the input data. Reference A(J) is indexed by the

64 Chapter 4. Model Extension to Handle Codes with Indirections

variable that controls this loop, so it sweeps along N1 di�erent elements with stride

1 with probability one. Thus, its RR1(0, 1) = (N1, 1, 1), whose area vector can be

estimated by Regs(N1)

Reference C(J) follows exactly the same access pattern, thus it also accesses a

region (N1, 1, 1) whose associated area vector is estimated by Regs(N1).

Reference X(C(J)) is indexed by the variable of the loop indirectly, through a

read from vector C. This way, applying Equation (4.1), its RR1(0, 1) is estimated

as (DX1, 1, 1 − (1 − 1/DX1)
N1). The simplest function that can estimate the area

vector for this access pattern is Regsp(DX1, 1 − (1 − 1/DX1)
N1), where DX1 is the

�rst dimension of array X.

Also, during one iteration of loop I, reference D(I) accesses a single element of

vector D, thus its RR1(0, 1) = (1, 1, 1), whose area vector is given by Regs(1) �

4.2.2. PMEs for Codes with Indirections

The PME model for regular codes has an unique equation that can characterize

the cache behavior of any reference with a regular access pattern. In the previous

chapter, an additional equation was proposed to cover the modeling of references

guarded by one or more conditional statements. These two equations allow to model

codes with irregular access patterns due to data-dependent conditional statements.

In the extension of the PME model to cover codes with indirections, the con-

struction of FRi depends on whether the control variable for loop i, Ii, is used in

the indexes of index arrays found in the reference or not.

If Ii does not appear in R, or if it only appears in the indexes that do not depend

on indirections, i.e., indexes of the form αIi + δ, the access pattern of R is regular

with respect to loop i, so the PME for this loop is built using the Equation 2.12 in

Section 2.4.

When the control variable for loop i, Ii, indexes an index array in an indirection,

the access pattern on the base array of our reference R is irregular with respect to

loop i. The reason is that the position accessed by R no longer depends directly on

Ii, but on the value read from the array that Ii indexes either directly or through

more levels of indirection.

The distribution of the values read from the index arrays on the dimension of

4.2 Model Extension for Uniform Distributions 65

the base array they index determines the accesses, the reuses, and thus the PME

that models the reference-cache interaction. In our modeling we assume that this

distribution is uniform, that is, all the elements of the base array have the same

probability of being accessed in each iteration of the considered loop.

We have found that two classes of irregular access patterns arise depending on

whether the values of the considered index array are ordered or not. Monotonic

irregular access PMEs model the situation when the accesses generated by the indi-

rection are ordered, i.e., when the values read from the index array are monotonically

increasing or decreasing. When this condition does not hold or we simply do not

have information about the indexing values, non-monotonic irregular access PMEs

are going to be applied. We now explain the two kinds of PMEs in turn.

Monotonic Irregular Access PME

When they are ordered, the sequence of accesses produced by the indirection

can be characterized as a monotonically increasing or decreasing function. In this

case, the reuses in the considered loop i can only take place with respect to the

line referenced in the immediately previous iteration. This way, the PME for reg-

ular access patterns explained in Section 2.4 (Equation (2.12)) can be used in this

situation, the di�erence being that LRi, the number of iterations of this loop that

cannot exploit reuse, or conversely, the number of di�erent sets of lines (SOLs) that

R accesses during the execution of the loop, cannot be estimated as in the regular

access pattern case. In a monotonic irregular access pattern,

LRi = DRi(1− (1− LRi1/DRi)
Ni) (4.2)

where DRi is the number of di�erent SOLs that R can potentially access during

the execution of the loop i and LRi1 is the number of SOLs accessed during one

iteration of loop i. The rational for Equation (4.2) is that if in each iteration of the

loop i, on average LRi1 di�erent SOLs are accessed out of the DRi ones that R could

access, then each one of them has the same uniform probability pRi = LRi1/DRi of

being accessed in each iteration of the loop. Thus, the probability that a SOL has

been accessed at least once during the Ni iterations of the loop is 1 − (1 − pRi)
Ni .

Multiplying this probability by the number of SOLs yields the average number LRi

of di�erent SOLs that are actually referenced. So this is the number of iteration of

the loop in which no reuse is possible. Because the values in the index array are

monotonically increasing (or decreasing), the other Ni − LRi iterations of the loop

66 Chapter 4. Model Extension to Handle Codes with Indirections

attempt to reuse the SOL accessed in the immediately previous iteration, with a

reuse distance of one iteration of the loop, as PME (2.12) re�ects.

The number LRi1 of di�erent SOLs accessed during one iteration of loop i is

trivially one in the innermost loop z that contains R. For any other loop i, LRi1 is

LRk, with k = min{v/i < v ≤ z ∧ DimInd(v) = DimInd(i)}, i.e., it is the LR for

the outermost loop k nested inside loop i such that its index variable Ik indexes

(indirectly) the same dimension of the base array A referenced by our reference R as

the variable Ii of the considered loop i. If no such loop exists, then, again, LRi1 = 1.

Another way to express it is that the number of di�erent SOLs accessed in one

iteration of loop i is the number of SOLs accessed during the complete execution of

the outermost loop nested inside loop i that indexes, indirectly, the same dimension

of the a�ected base array as Ii. This de�nition allows to handle correctly those

cases in which, for example, the indirection for a given dimension in R depends on

several loop index variables, e. g.: in A(B(I,J)) both I and J index indirectly the

only dimension of vector A. Another example for this situation is often found in the

codes in which indirections are generated by sparse matrices because of the formats

used to store them.

Example 12. If we analyze the sparse matrix-vector product code in Figure 4.4, we

see that vector X is accessed indirectly through C(J) in the innermost loop, whose

index variable is precisely J. In that loop, trivially, LR11 = 1 for reference X(C(J)).

If we analyze the outer loop on I, we can see that this variable indexes R(I), which

de�nes the values for J. As as result the indexes of both loops index indirectly the

only dimension of vector X, and thus, for the outermost loop 0, LR01 = LR1. �

We complete our modeling for this access pattern with the expression of DRi :

DRi =

⌈
DAjdAj

max{SRi, Ls}

⌉
(4.3)

where SRi = αRj ·dAj and dAj are de�ned as in the preceding section, and DAj is the

size or number of elements along the j-th dimension of the array A referenced by R.

Let us remember that j is the dimension that is indexed, in this case indirectly, by

Ii. This also means that in this case the constant αRj is multiplying the indirection

indexed by Ii rather than the variable Ii itself.

Example 13. From the shape of the loops displayed in Figure 4.4 a compiler can

speculate that R stores the indices for the beginning of the data of each row of

4.2 Model Extension for Uniform Distributions 67

the sparse matrix in A and C, which hold the nonzeros and their corresponding

columns, respectively. Another possibility to extract this information would be to

include a directive to the compiler in the code reporting which is the role of each

array in the storage of the sparse matrix. With this knowledge we can also infer

that the sparse matrix has M rows and we can speculate that the values in C are

ordered for each row. If this were the case we could conclude that the values read

in Figure 4.4 by C(J) are monotonically increasing during each whole execution of

the loop J, at nesting level 1. As a result, the access pattern of X(C(J)) in this

loop can be modeled by a monotonic irregular access PME. This PME has the form

of Equation (2.12), with its LRi calculated according to Equation (4.2). The latter

expression is a function of, DR1, the number of di�erent SOLs that R can potentially

access during the execution of the loop J, and LR11 , the number of SOLs accessed

during each iteration of this loop.

Equation (4.3) allows to calculate DR1 knowing that (a) the indirection takes

place in the �rst dimension of the base array X (j = 1), (b) the cumulative size for

the �rst dimension of any array is always one (dX1 = 1), (c) the stride SR1 of our

reference with respect to its indirection is one (SR1 = αR1 · dX1 = 1 · 1), and (d) the

size of the �rst (and only) dimension of X is a value DX1 our compiler extracts from

the de�nition of the vector in the code. With these data we evaluate Equation (4.3)

as DR1 = dDX1/Lse. This means that during each iteration of the loop J, X(C(J))

could potentially access any of the dDX1/Lse lines that constitute X.

Both in our general explanation about the calculation of LRi1 and in our pre-

ceding example, we explained that trivially, in the innermost loop that contains a

reference R with an indirection, LRi1 = 1, which is the case for X(C(J)) in loop J.

With these two pieces of data we can evaluate Equation (4.2):

LR1 = dDX1/Lse

(
1−

(
1− 1

dDX1/Lse

)N1
)

. (4.4)

This expression assumes that each one of the dDX1/Lse lines of X has the same

uniform probability of being accessed during each one of the N1 iterations of loop J.

As a result, after the N1 iterations, each line has a probability 1−(1−1/dDX1/Lse)N1

of having been accessed at least once. Thus multiplying this probability by the

number of lines we get the number of di�erent lines that were actually accessed on

average. As for the average number of iterations of this loop N1, since it sweeps

along the elements of a row of the sparse matrix, its value is Ni = Nnz/M , where

68 Chapter 4. Model Extension to Handle Codes with Indirections

Nnz is the number of nonzeros in the sparse matrix and M its number of rows. The

number of nonzeros can be assumed from the size declared for the arrays A and C,

or be part of a directive to the compiler or be extracted from a pro�ling of the input

data.

Once we have calculated the number LR1 of di�erent SOLs we access in each

execution of the loop (with each SOL consisting of a single line in this case), we

can replace it in Equation (2.12). This equation will consider the LR1 �rst accesses

to a di�erent line with a miss probability that depends on reuses that take place

with respect to accesses outside the loop, while the remaining N1 − LR1 accesses

necessarily try to reuse the line accessed in the immediately preceding iteration. As

a result, the miss probability for them is associated to the regions accessed during

one iteration if this loop �

Non-Monotonic Irregular Access PME

When the indexing values are not monotonic, or we have no information about

their ordering, the last access of a reference to a given line, or in general, set of

lines (SOL), in the considered nesting level i may have happened an indeterminate

number of iterations ago. The number of loop iterations between two accesses of

the reference to the same SOL is not a �xed value, since every SOL can be accessed

with a given probability in each iteration of the loop. Thus, a probabilistic approach

must be followed to estimate the number of misses taking into account that each

potential reuse distance happens now with a di�erent probability.

In the presence of uniform probabilities, each one of the DRi di�erent SOLs that

R can potentially access during each execution of the loop has the same probability

pRi = LRi1/DRi of being accessed in a given iteration, no matter the accesses are

monotonic or not. Also, every SOL has this probability of access in each one of the

Ni iterations of the loop. As a result, the number of misses generated by a non-

monotonic irregular access pattern during the execution of loop i can be estimated

by means in a summatory in which each term estimates the number of misses that

the accesses of R can generate in the j-th iteration of the loop:

FRi(RegIn) =

Ni∑
j=1

WMRi(RegIn, j), (4.5)

where WMRi(RegIn, j) yields the weighted number of misses generated in the j-th

4.2 Model Extension for Uniform Distributions 69

potential access of R to the SOLs it de�nes in loop i. In this expression, RegIn

stands for the region accessed since the last reference to the SOLs that R accesses

in this loop when the execution of this loop begins, as usual. This number of misses

is calculated as

WMRi(RegIn, j) =(1− pRi)
j−1 · FR(i+1)(RegIn ∪ RegRi(j − 1))+

j−1∑
h=1

pRi · (1− pRi)
h−1 · FR(i+1)(RegRi(h)) ,

(4.6)

where pRi = LRi1/DRi, as explained in the previous section, yields the probability

that a given SOL of the base array that R can potentially access during the execution

of loop i is indeed accessed during one iteration of that loop.

The �rst term in (4.6) considers the case that the SOL has not been accessed

in any of the previous j − 1 iterations, which is (1 − pRi)
j−1 given that pRi is the

probability of access in each iteration. In this case, the RegIn region that could

generate interference with the new access to the line when the execution of the loop

begins must be added to the RegRi(j−1) regions accessed during these j−1 previous

iterations of the loop in order to account for the complete interference region. This

addition is represented by means of the ∪ operator. The second term weights the

probability that the last access took place in each one of the j−1 previous iterations

of loop i. The probability that the last access to a given SOL was exactly h iterations

before the current iteration is pRi · (1− pRi)
h−1, that is, the probability there was an

access to the SOL h iterations ago, but there were no accesses to it during the last

h − 1 iterations. In this case, the regions that can generate interferences with the

attempt to reuse the SOL in the current iteration are those accesses during those h

intermediate iterations, RegRi(h).

Example 14. When the reference X(C(J)) in our example code of Figure 4.4 is

analyzed in the context of the outer loop I at nesting level 0, the values read from

the indirection are no longer guaranteed to be ordered throughout the execution

of the loop. That is, the values read from C during a single iteration of the loop

I correspond to the column indexes of the elements of a single row, which we can

assume that have been stored in a given order; but when the whole loop I is taken

into account, the values read from C are not ordered among di�erent iterations

of loop I. As a result, the non-monotonic irregular access PME of Equation (4.5)

characterizes the access to X in this loop. In that equation, the number of iterations

of the loop is N0 = M in our case, and WMR0(RegIn, j) is calculated following

70 Chapter 4. Model Extension to Handle Codes with Indirections

Equation (4.6). In order to evaluate the latter equation we must calculate pR0, that

is, the individual probability each SOL of X is accessed in each iteration of loop

I. As we have explained, this value is derived as pR0 = LR01/DR0, where LR01 is

the number of di�erent SOLs our reference accesses on average in each iteration

of the loop, and DR0 is the number of di�erent SOLs it could actually access. In

example 12 we explained and calculated that for this reference LR01 = LR1, and the

value of LR1 was estimated in Equation (4.4) in example 13. Regarding DR0, it is

calculated according to Equation (4.3). As we explained in example 12, while the

variable I that controls the loop we are analyzing does not appear in the expression

of our reference X(C(J)), this variable indexes R(I), which de�nes the values for

J. This way, I indexes indirectly the indirection we are analyzing in the �rst (and

only) dimension of array X and Equation (4.3) can be evaluated using the same

parameters used in example 13, which results in DR0 = DR1 = dDX1/Lse. That is,
any of the dDX1/Lse lines of X can be accessed during the execution of loop I, where

we remind the reader that DX1 is the length of vector X and Ls is the number of

elements of vector X a cache line can hold

This example helps us also illustrate the meaning and usage of the RegIn input

for the PMEs. The PME FR0 for reference R =X(C(J)) we have just built is

based on Equation (4.5). In its development in Equation (4.6) we can see how, as

always, this PME is expressed in terms of the PME for the same reference in the

inmediately inner loop. In our case this PME is FR1, built in example 13, which

models the behavior of the accesses to X during the product by a row of the sparse

matrix. The evaluations of FR(i+1) in FRi receive as RegIn the set of regions accessed

during the reuse distance associated to that evaluation. In our example, attending

to Equation (4.6), FR0 evaluates FR1 through WMR0(RegIn, j) with two kinds of

reuse distances. The input for the �rst appearance of FR1 in this expression depends

on the RegIn for FR0 itself, because it is not associated to reuses within the loop.

Rather, it corresponds to the �rst accesses to lines of X during the execution of the

loop, which will result in cold misses. The model predicts this correctly because (a)

RegIn for outer loops with no preceding accesses is a region with an associated miss

probability 1 and (b) as we can see the model propagates this region down to the

PME FR1 for the innermost loop for the evaluation of the misses generated in the

very �rst accesses to these lines.

The remaining evaluations of FR1 in Equation (4.6) correspond to reuses within

loop 0 with a reuse distance of exactly h iterations of this loop each. Such evalua-

tions are multiplied by the probability this situation actually takes place to predict

4.2 Model Extension for Uniform Distributions 71

correctly the number of misses they generate. Their RegIn is RegR0(h), i.e., the

interference region generated during those h iterations in which a line of X has not

been accessed. In our example this corresponds to the acesses that take place dur-

ing the product of h rows of our sparse matrix by the vector. The RegIn of FR1

determines the miss probability for the �rst accesses to the lines of X during an

isolated iteration of the innermost loop. Assigning this value to RegIn ensures such

probability depends in fact on the cache footprint of the accesses performed since

the inmediately preceding access to those lines, which took place exactly h iterations

of the loop on I ago.

The calculation of regions of interference and the quatitative evaluation of PMEs

are considered in Section 4.2.1. �

4.2.3. Model Extension for Uniform Banded Matrices

Until now we have considered the case in which all the elements of the base array

have the same probability of being accessed, but our model can be extended to cover

situations in which the distribution is not uniform. For example, a very common

source of indirections are accesses generated by sparse matrices that are stored in

some compressed format like CRS [19]. One of the most usual situations by far is

that such matrices are banded1, so it is valuable to extend our model to consider

irregular accesses that are are uniformly distributed in a limited band or area of the

base array. In Section 4.3 we will describe a di�erent model extension for banded

matrices where the values are not uniformly distributed inside the band. In this

case, the formulas described in the Sections 2.4 and 4.2.2 can be used making two

small changes to adapt them to this new situation:

when PMEs for the indirect accesses generated by the column indices of a

banded matrix are built, the term DAj in Equation (4.3) must be replaced by

the size of the band of the studied matrix, since the accesses are not uniformly

distributed on the whole j-th dimension of the base array, but only of the

region associated with the band B of the matrix.

since the nonzeros are only distributed along B rows in each column and B

columns in each row, when the probability of reuse of a group of SOLs with

respect to the preceding iterations is considered in Equation (4.5), the upper

1
A is banded with bandwidth B = 2p + 1 if all the nonzeros are contained within the �rst p

super and �rst p subdiagonals. (Aij = 0, |i− j| > p)

72 Chapter 4. Model Extension to Handle Codes with Indirections

DO I= 1,M

DO K= R(I), R(I+1) - 1

REG0=A(K)

REG1=C(K)

DO J= 1,H

D(I,J)=D(I,J)+REG0*B(REG1,J)

ENDDO

ENDDO

ENDDO

Figure 4.5: Sparse Matrix - Dense Matrix Product with IKJ order

bound of the summatory is not Ni, the size of the sparse matrix along the

considered dimension that gives place to the attempts of reuse, but B, since

only along B rows/columns can be the same SOL of the base array be reused.

Example 15. The model derived for matrices with an uniform distribution for our

example code in Figure 4.4 is applicable to banded matrices except in two points.

First, in the calculation of DR0 and DR1 for reference X(C(J)) we must substitute

the value of DX1 with the band size. Also, in the expression FR0 that characterizes

the behavior of this reference in the outer loop at nesting level 0 (the one indexed

by I), which has the shape of eq. (4.5), the upper bound of the summatory must

no longer be M, the total number of rows of the sparse matrix, but its band size

B, since only along the processing of B di�erent rows of the input matrix can we

exploit reuse of a given line of the base array X of this reference. The size of the

band would have to be provided by a directive to the compiler or be extracted by

an analysis of the input data. �

4.2.4. Validation

Our validation relies on eleven kernels of di�erent complexities that contain in-

directions derived from the manipulation of sparse matrices stored in compressed

formats such as the CRS [19] format. The �rst code is the Sparse Matrix - Vec-

tor Product (SPMXV) shown in Figure 4.4. The next three codes are the Sparse

Matrix-Dense Matrix Product (SPMXDM) with the three di�erent loop orderings

this operation allows: IJK, JIK and IKJ, where the �rst index is the one for the

outer loop and the last index the one for the innermost loop in the nest. In the three

4.2 Model Extension for Uniform Distributions 73

1 DO I=2,N+1

RT(I)=0

END DO

2 DO I=1, R(M+1)-1

J=C(I)+2

RT(J)=RT(J)+1

END DO

RT(1)=1

RT(2)=1

3 DO I=3, N+1

RT(I)=RT(I)+RT(I-1)

END DO
↪→

4 DO I=1, M

DO K=R(I), R(I+1)-1

J=C(K)

P=RT(J)

CT(P)=I

AT(P)=A(K)

RT(J)=P+1

END DO

END DO

Figure 4.6: Transposition of a sparse matrix.

orderings I indexes the rows of the sparse matrix, K its columns, and J the columns

of the dense matrix. As an example, the IKJ loop ordering is shown in Figure 4.5.

Finally, Figure 4.6 shows a sparse matrix transposition (TRANSPOSE) where both

the original and the transposed matrix are stored using the CRS method. This code

is particularly complex, as it contains four loop nests, there are accessed with several

levels of indirection in loop 4, and it involves more data structures than the other

examples (six). Besides, some structures appear in several loop nests, so there may

be reuses between the access to a line in one loop nest and another access in another

loop nest.

The remaining �ve kernels have been extracted from the set of routines matvec.f

of the well-known SPARSKIT [43] library. This set of routines contains di�erent

routines that perform the product between an sparse matrix and a vector, where the

sparse matrix to multiply has been stored using di�erent compressed storage formats.

The routines analyzed are: AMUXMS, ATMUX, ATMUXR, AMUXD, AMUXE and

AMUXJ. In AMUXMS the sparse matrix is stored in the MSR (Modi�ed Sparse Row

Storage) method; ATMUX and ATMUXR use again the CRS format but the input

matrix is transposed; AMUXD uses a matrix stored in the DIA (Diagonal Storage

Format) format; in AMUXE the matrix is stored in the ELL (Ellpack Itpack) format,

and �nally in AMUXJ it is stored using the JAD (Jagged-Diagonal Storage) format.

All these storage formats are described in [43].

74 Chapter 4. Model Extension to Handle Codes with Indirections

Code MRSim MRMod ∆MR max(∆MR)

SPMXV 9.64% 9.45% 0.92% 8.23%
SPMXDMIKJ 48.95% 47.92% 1.41% 11.48%
SPMXDMIJK 22.20% 21.42% 0.79% 3.56%
SPMXDMJIK 11.68% 11.28% 0.70% 6.65%
TRANSPOSE 18.98% 19.22% 1.60% 11.72%
AMUXMS 6.20% 5.91% 0.77% 8.78%
ATMUX 5.27% 4.82% 0.63% 11.20%
ATMUXR 5.24% 4.77% 0.61% 10.10%
AMUXD 4.62% 4.81% 0.78% 7.76%
AMUXE 5.69% 5.84% 0.37% 7.05%
AMUXJ 5.84% 6.47% 1.10% 9.97%

Table 4.1: Average measured (MRSim) and predicted (MRMod) miss rates, average

value ∆MR of the absolute di�erence between the predicted and the measured miss
rate in each experiment, and maximum value of this di�erence max(∆MR).

Validation with Synthetic Matrices

The integration of our model in the XARK compiler [15], which will be discussed

in Chapter 5, has allowed us to apply it automatically to the validation kernels.

The miss rate predicted by the model was compared with the results of trace-driven

simulations using synthetic matrices with an uniform distribution of their nonzero

elements. Over 10000 tests were performed for each code changing the sizes and

starting addresses of the di�erent arrays, the cache con�guration and the density of

the sparse matrix. Table 4.1 gives an idea of the accuracy of the model. Columns

MRSim and MRMod contain the average values of the miss rate simulated and the

miss rate predicted in the set of experiments, respectively. Then, column ∆MR

contains the average value of the absolute value ∆MR of the di�erence between

the predicted and the measured miss rates for each experiment. We use absolute

values, so that negative errors are not compensated with positive errors. Column

max(∆MR) contains the largest value of ∆MR observed in the set of experiments.

Tables 4.2, 4.3 and 4.4 show some random representative validation results for

the Sparse Matrix - Vector Product, the Sparse Matrix - Dense Matrix Product

with IKJ loop ordering and the Sparse Matrix Transposition codes, respectively,

displaying a wide range of possible validation parameters and the result obtained.

In the three tables, the �rst two columns, M and N , show the number of rows

4.2 Model Extension for Uniform Distributions 75

M N α Cs Ls K MRSim MRMod ∆MR Tmod

1000 1000 4.00 8K 32 1 30.11 30.00 0.11 0.015
1500 1100 12.12 32K 32 2 18.17 18.34 0.17 0.021
1600 1500 8.33 32K 64 4 8.44 8.60 0.15 0.010
1300 1400 13.74 64K 128 1 5.21 5.31 0.10 0.012
1700 1500 9.80 64K 64 2 8.67 8.82 0.15 0.032
1100 1000 22.73 128K 128 2 4.21 4.42 0.21 0.021
750 750 7.00 512K 128 8 4.23 5.13 0.90 0.014
5500 5500 0.28 1024K 64 8 8.77 8.86 0.09 0.035
3000 3000 1.19 2048K 128 4 4.26 5.64 1.38 0.033
1000 1200 16.67 128K 128 1 10.82 4.87 5.96 0.025

Table 4.2: Validation data and times for the Sparse Matrix - Vector Product code
for several cache con�gurations, matrix sizes and sparse matrix density

M N α H Cs Ls K MRSim MRMod ∆MR Tmod

900 900 22.22 500 32K 64 1 89.27 88.27 1.00 0.019
500 500 3.20 600 64K 64 4 81.97 81.61 0.36 0.011
700 700 31.43 500 64K 64 8 29.66 23.30 6.36 0.015
1100 1100 14.55 500 128K 64 8 30.76 29.88 0.88 0.027
1000 1000 15.00 750 128K 64 4 31.18 29.59 1.58 0.038
700 700 27.14 500 256K 64 2 21.25 20.71 0.54 0.019
1000 1000 24.00 500 512K 64 2 23.18 22.45 0.73 0.023
700 700 2.86 500 1024K 32 2 32.89 32.56 0.33 0.027
1000 1000 1.58 1000 2048K 64 4 38.10 36.13 1.97 0.052
600 600 30.00 500 32K 32 8 76.68 65.20 11.48 0.032

Table 4.3: Validation data and times for the Sparse Matrix - Dense Matrix Product
IKJ code for several cache con�gurations, matrix sizes and sparse matrix density

76 Chapter 4. Model Extension to Handle Codes with Indirections

M N α Cs Ls K MRSim MRMod ∆MR Tmod

600 600 35.00 16K 32 2 32.49 32.91 0.43 0.029
700 700 34.29 32K 32 1 28.02 26.14 1.89 0.025
3000 2000 2.50 64K 32 2 27.00 29.86 2.86 0.031
5000 2000 3.00 64K 128 1 26.53 27.47 0.93 0.027
1000 1000 15.00 128K 128 1 17.77 19.21 1.44 0.035
800 800 57.50 256K 64 4 5.35 5.17 0.18 0.034
500 500 46.80 512K 128 8 2.18 3.00 0.82 0.037
2900 2900 0.47 1024K 64 1 7.91 10.29 2.38 0.043
500 500 15.75 2048K 64 4 3.08 4.36 1.28 0.042
5000 1000 9.00 128K 64 4 11.50 23.22 11.72 0.023

Table 4.4: Validation data and times for the Matrix Transposition code, for several
cache con�gurations, matrix sizes and sparse matrix density

and columns of the sparse matrix involved in the code, respectively. Then, column

α is the density or percentage of positions in the sparse matrix with nonzeros. In

table 4.3, column H shows the number of columns of the dense matrix involved in

the product. The cache con�guration is given in the three tables by Cs, the cache

size in bytes, Ls, the line size in bytes, and K, the degree of associativity of the

cache. Larger cache lines and associativities tend to be associated to larger caches

in general in the tables, as this is the most common situation. For each combination

of the input problem parameters and cache con�gurations the tables display the miss

rate MRSim measured by the simulations, the miss rate MRMod predicted by our

model, and ∆MR, the absolute value of the di�erence between them. These three

values are expressed as percentages between 0 and 100. The last entry in every table

contains the data for the experiment that generated the largest ∆MR.

Finally, the last column in the three tables, Tmod, re�ects the corresponding

modeling times in seconds in a 2,08 GHz AMD K7 processor-based system, respec-

tively. Modeling times, which were always below one second, are several orders of

magnitude shorter than trace-driven simulation for the sparse matrix-dense matrix

products, and noticeably shorter in the case of the other codes.

Validation with real banded matrices

In order to validate our model for uniform banded matrices we used the Sparse

Matrix - Vector Product code shown in Figure 4.4, the Sparse Matrix - Dense Matrix

4.2 Model Extension for Uniform Distributions 77

Matrix
Name Size B α Cs Ls K MRSim MRPred ∆MR Tmod

jpwh991 991 155 0.61 64K 64 4 9.37 8.84 0.53 0.014
jpwh991 991 155 0.61 32K 32 2 18.77 17.72 1.05 0.013
jpwh991 991 155 0.61 32K 64 1 10.29 9.84 0.45 0.012
bcsstk05 153 20 10.35 32K 64 1 9.57 9.11 0.46 0.009
bcsstk05 153 20 10.35 256K 16 4 35.04 34.13 0.91 0.009
bcsstk05 153 20 10.35 256K 32 2 17.54 17.07 0.48 0.009
bcsstm10 1086 71 1.87 32K 64 1 9.12 9.29 0.17 0.013
bcsstm10 1086 71 1.87 256K 16 4 34.66 33.91 0.74 0.017
bcsstm10 1086 71 1.87 1024K 64 4 8.67 8.48 0.19 0.015
jpwh991 991 155 0.61 8K 16 1 43.79 40.45 3.33 0.013

Table 4.5: Validation data and times for the Sparse Matrix - Vector Product code
for several cache con�gurations and di�erent Harwell-Boeing matrices with uniform
band distribution

Matrix
Name Size B α H Cs Ls K MRSim MRPred ∆MR Tmod

jpwh991 991 155 0.61 200 32K 64 1 93.08 93.06 0.02 0.011
jpwh991 991 155 0.61 153 16K 32 2 88.61 88.27 0.33 0.010
jpwh991 991 155 0.61 1086 32K 32 4 97.30 98.52 1.21 0.017
jpwh991 991 155 0.61 350 64K 64 4 91.26 92.10 0.83 0.011
bcsstk05 153 20 10.35 153 32K 32 4 16.49 16.84 0.35 0.009
bcsstk05 153 20 10.35 153 16K 32 2 45.34 43.30 2.04 0.009
bcsstm10 1086 71 1.87 153 16K 64 4 74.22 74.32 0.10 0.010
bcsstm10 1086 71 1.87 153 32K 128 1 63.73 62.59 1.13 0.011
bcsstm10 1086 71 1.87 153 512K 64 4 0.70 0.65 0.05 0.014
bcsstm10 1086 71 1.87 200 1024K 64 8 0.68 0.55 0.13 0.058
bcsstk05 153 20 10.35 350 32K 64 1 72.96 61.30 11.67 0.011

Table 4.6: Validation data and times for the Sparse Matrix - Dense Matrix Product
IKJ code for several cache con�gurations and di�erent Harwell-Boeing matrices with
uniform band distribution

78 Chapter 4. Model Extension to Handle Codes with Indirections

Product in Figure 4.5, and the Sparse Matrix Transposition in Figure 4.6 and we

applied them to real matrices from the Harwell-Boeing collection [28] rather than to

synthetic matrices. The results of some randomly chosen validation experiments are

shown in Tables 4.5 and 4.6 for the �rst two codes considered, respectively. In both

tables the �rst columns contain the name of the matrix used in every test, followed

by the characteristics of the matrix such as, the number of rows and columns size

(we used square matrices), the band size B and, in the case of sparse matrix -

dense matrix product code, the number of columns H of the dense matrix. α is

the percentage of positions in the sparse matrix with nonzeros. The used cache

con�guration Cs, Ls and K, follows. Again, for each experiment we show both the

measured MRSim and the predicted MRMod miss rates and the absolute value of the

di�erence between them, ∆MR. Many di�erent experiments were performed using

di�erent cache con�gurations; the results shown in these tables are only a small

representative subset of these tests. The last entry in every table contains again the

data for the experiment that generated the largest ∆MR.

For the sparse matrix - vector product code we performed 510 di�erent tests

changing the used matrix, the cache con�guration, and the base address of the data

structures involved in the code, obtaining an average value for the ∆MR of 0.66%

and a maximum value of 3.33%, the average value of the relative error ∆R
MR was

3.96%. The metric ∆R
MR stands for the relative error of our prediction: it is the

absolute value of the di�erence between the miss rate measured by the simulation

and the miss rate predicted by the model (∆MR) divided by the miss rate measured

by the simulation and expressed as a percentage, that is ∆R
MR = ∆MR/MRSim×100.

For the sparse matrix - dense matrix product code we performed 5100 di�erent

tests, changing the same parameters as for the sparse matrix - vector product code

as well as the number H of columns of the dense matrix involved in the code. We

obtained an average value for ∆MR of 2.55% and a maximum value of 11.67%. The

average value of the relative error ∆R
MR was 6.60%.

Finally, we performed the same set of 510 tests for sparse matrix transposition

as for sparse matrix-vector product. In this case the average ∆MR was 1.78%, and

its maximum was 7.30%, being the average value of the relative error ∆R
MR 11.35%.

Again, these validation results obtained using a wide range of parameter com-

binations, and which are very similar to the ones obtained for the model with a

completely uniform distribution displayed in Table 4.1, make us think that our

model is a good estimator of the behavior of a code with irregular access patterns

4.2 Model Extension for Uniform Distributions 79

under the assumed conditions.

Finally, as in the previous tests, the last column in Tables 4.5 and 4.6, Tmod, rep-

resents the time consumed by our model. The model is several orders of magnitude

faster than the simulation.

Discussion

The model worked well for the sparse matrix - vector product of Figure 4.4. The

results were somewhat worse for the sparse matrix - dense matrix product code in

Figure 4.5 for both kinds of matrices, although the model was still very accurate in

general. Predicting the reuse for the reference B(C(K),J) that generates irregular

accesses in this code is possibly more complex than for the references subject to

irregular access patterns in the other codes. The reason is that in this case each

value of the indirection controls a whole set of tightly coupled accesses of B(C(K),J)

to di�erent lines with a regular stride for J=1, . . . , H, while in the other codes each

individual indirection only controls the access to one line. It is good to see that in

such a complex situation, the predictions of the model are still good. The behavior

of the model for the sparse matrix-dense matrix products in which the inner loop

is K is similar to the one observed for the sparse matrix - vector product as we see

in Table 4.1. Finally, the transposition of a sparse matrix in Figure 4.6 turned out

to be the most di�cult code to predict, as it is not a perfectly nested loop like the

previous examples, and it displays several levels of indirection in its fourth loop.

Still, the predictions of the model were very reasonable.

The tendencies of the accuracy of the model with respect to the parameters of

the caches and the density of the sparse matrix are displayed in Figure 4.7, in which

we have used cache con�gurations that are similar or equal to real level 1 and level 2

caches of current computers. Cache con�gurations are expressed as Cs,Ls,K, where

Cs is the cache size in bytes, Ls is the line size in bytes and K is the associativity.

The most important conclusion is that in general, higher densities lead to more

accurate predictions. That is an expected result, since the lower density, the more

irregular the accesses. Also, notice that this higher irregularity leads to higher miss

rates (as an example, see experiment in Figure 4.8), which dilute the larger values

of ∆MR.

As for the time required to compute its predictions, the model takes more time

when the size of the problem (size of the involved data structures) is bigger, as ex-

80 Chapter 4. Model Extension to Handle Codes with Indirections

0

Cache ConfigurationMatrix Densidity

8k,32,116k,32,2
32k,32,1

64k,32,2128k,64,4
256k,64,4

512k,128,8
1M,64,4

2M,128,8

4%
8%

12%
16%

20%

 M
R

%

1%

2%

(a) Sparse matrix-vector product, with M =
N = 750

8k,32,116k,32,232k,32,1
64k,32,2

128k,64,4
256k,64,4

512k,128,8
1M,64,4

2M,128,8

4%
8%

12%
16%

20%

0

2%

4%

Cache ConfigurationMatrix Densidity

 M
R%

(b) Sparse matrix-dense matrix product (IKJ),
with M = N = H = 750

0

 M
R

%

1%

3%

5%

4%
8%

12%
16%

20%
Matrix Densidity 2M,128,8

1M,64,4

512k,128,8

256k,64,4

128k,64,4

64k,32,2

32k,32,1

16k,32,2

8k,32,1

Cache Configuration

(c) Sparse matrix transposition, with M = N =
750

Figure 4.7: ∆MR as a function of the sparse matrix density and the cache con�gu-
ration in di�erent codes. Cache con�gurations are expressed as Cs,Ls,K, where Cs

is the cache size in bytes, Ls is the line size in bytes and K is the associativity

4.2 Model Extension for Uniform Distributions 81

10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

Matrix Density

M
R

Simulation
PME model estimation
Upper bound PME model
Lower bound PME model

Figure 4.8: Miss rate measured and predicted following di�erent strategies as a
function of the matrix density for the sparse matrix-dense matrix product (IKJ),
where M = N = H = 500 in a cache of 64Kbytes with a line size of 64 bytes and
associativity degree 4.

pected, and when the cache associativity is higher. The reason for the latter behavior

is that the complexity algorithm for calculating the area vector for some patterns

depends directly on this argument. Still, modeling times are always below one sec-

ond. In general, we can say that our model provides quite accurate estimations with

a very low computing cost.

The sparse matrix-dense matrix product with IJK loop ordering is used in Fig-

ure 4.8 to compare the miss rate obtained by a trace-driven simulation, the miss

rate predicted by the PME model, an upper bound of the prediction obtained by

a simpli�ed version of our model that considers all the irregular accesses as misses,

and a lower bound obtained by ignoring the irregular accesses that appear in the

code. The sizes of the data structures involved in the code and the cache con�gura-

tion were kept constant while the density of the sparse matrix took values between

1% and 100%. The �gure re�ects that the PME model estimates the miss rate ac-

curately, while simpli�ed versions provide very poor estimations. This justi�es the

interest of our model.

A more detailed study of how changes in any of the cache con�guration param-

eters can a�ect the cache performance can be performed for any code. For this

purpose we considered the AMUXMS code which performs the product between

an sparse matrix and a vector, the base cache con�guration has a total size of 512

KBytes a line size of 32 bytes and an degree of associativity of 4. We tracked the evo-

lution of the miss rate measured and the miss rate predicted by the model changing

separetely each one of these parameters. The results of these experiments, re�ected

in Figure 4.9, were obtained using an square sparse matrix of 500x500 and 50000

82 Chapter 4. Model Extension to Handle Codes with Indirections

1 2 4 8
0%

5%

Associativity

M
is

s
ra

te

32 64 128 256
0%

10%

20%

Ls (Bytes)

M
is

s
ra

te

8 16 32 64 128 256 512
0%

10%

20%

Size (KBytes)

M
is

s
ra

te

Measured

Predicted

Figure 4.9: Miss rate measured and miss rate predicted for the AMUXMS code. In
the �rst graphic the associtivity degree is changed; the second graphic modi�es line
size; the third graphic considers di�erent caches sizes.

non-zero values uniformly distributed along the matrix. In the �rst experiment the

degree of associativity takes values 1, 2, 4 and 8 respectively. The direct-mapped

cache has a bigger miss rate than those caches with larger degrees of associativity.

This improvement decreases as the associativity grows. Even, in some cases for large

associativities like 8, there is a slight performance reduction. The second experi-

ment considers line sizes of 32, 64, 128 and 256 bytes respectively. A bigger line size

produces a signi�cant miss rate decrease. But when the line size is big enough this

improvement is attenuated because although bigger lines reduce the number of cold

misses, very big lines can increase the interference between di�erent data structures

stored in the cache. The third experiment changes the total cache size which takes

values of 8, 16, 32, 64, 128, 256 and 512 KBytes respectively. Always, the bigger

the cache size, the smaller the miss rate because there is more room for storing the

data structures managed by the program, but this e�ect is diminished in very big

caches. The reason is that there is less and less room for improvement as the cache

size approaches the problem size. In all these experiments the model predictions

were very accurate.

We also, compared the cache behavior when the di�erent analyzed codes to per-

form an sparse matrix-vector product were ran. We consider an sparse matrix of

1000x1000 with 100000 non-zero values uniformly spread along the matrix. The com-

4.2 Model Extension for Uniform Distributions 83

SPMXV AMUXMS ATMUX AMUXD AMUXE AMUXJ
0

1

2

3

4

5

6x 10
6

Code

A
bs

ol
ut

e
nu

m
be

r

Accesses

Misses measured

Misses predicted

Figure 4.10: Number of accesses, number of misses measured and predicted for an
sparse matrix-vector product using di�erent compressed storage formats. The cache
con�guration considers a cache size of 32 KBytes, a line size of 64 bytes and an
associativity degree of 4.

pared codes are the SPMXV, AMUXMS, ATMUX, AMUXD,AMUXE and AMUXJ

(ATMUXR is omitted because its characteristics are very similar to ATMUX as it

was seen in Table 4.1). These codes perform an sparse matrix-vector product when

the matrix is stored using di�erent compressed storage methods. The graph in Fig-

ure 4.10 represents the number of accesses, the number of misses measured and the

number of misses predicted by the model for each code. The prediction of the model

are always very accurate. It can be seen how some codes like the AMUXD and

AMUXE perform much worse than the other ones because they are designed for

banded matrices with very few diagonals, so their performance (in terms of cache

misses) when applied to an uniform matrix is really poor. The other codes obtain a

very similar performance.

Finaly, we have also inquired into what happens when the model is applied to

matrices with a non-uniform distribution of the entries. In order to quantify this

behavior, we run experiments on 320 randomly chosen matrices from the Harwell-

Boeing [28] and NEP [18] collections, using 10 di�erent cache con�gurations for

each one with sizes ranging from 16 KBytes to 2 MBytes, thus yielding a total

of 3200 experiments per analyzed kernel. Figure 4.11 summarizes the results of

these experiments classifying our experiments in four buckets according to the ∆MR

84 Chapter 4. Model Extension to Handle Codes with Indirections

SPMXV SPMXDMIKJ SPMXDMJIK SPMXDMIJK TRANSPOSE
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

∆MR<2.5%

2.5%<∆MR<5%

5%<∆MR<10%

∆MR>10%

Figure 4.11: Percentage of the number of experiments in which the ∆MR is below
2.5%, between 2.5% and 5%, between 5% and 10%, or larger than 10% when real
matrices with a non-uniform distribution of the entries are used.

achieved: below 2.5%, between 2.5% and 5%, between 5% and 10%, and larger than

10%. We see that SPMXV, SPMXDM with JIK loop ordering and TRANSPOSE

yield reasonable estimations in the vast majority of the cases, while SPMXDM with

the IKJ and IJK orderings is less reliable. When irregular accesses are not uniformly

distributed, they tend to be grouped in clusters, which increases the locality. So in

these cases, our model can still help understand the behavior of the cache, although

the miss rate it predicts must be considered an upper bound rather than an accurate

estimation.

4.3. Model Extension for Non-Uniform Banded Ma-

trices

Most real data involved in irregular computations due to the existence of in-

directions does not follow an uniform distribution. The banded distribution is an

example of non-uniform distribution present in many matrices. This distribution

is very common in sparse computations, the main source of the codes used in the

validation of our model. As we saw in the validation in Section 4.2.4 the model

PME extension for codes involving uniform banded matrices is not suitable for the

modeling of matrices with a non-uniform distribution of the values inside the band.

The modeling of this kind of non-uniform distributions is very complex. The

equations for references with regular access patterns are relatively simple because

all the accesses that can result in a cold miss have an unique interference probability,

4.3 Model Extension for Non-Uniform Banded Matrices 85

Figure 4.12: Banded sparse matrix

and a di�erent unique interference probability is applied for the accesses that can

result in an interference miss, as all the reuses have the same constant reuse distance.

In an irregular pattern, every access has a set of di�erent possible reuse distances

with an associated interference probability that is weighted with the probability that

each considered reuse attempt happens. If the distribution of the accesses is uniform,

the same set of interference regions can be used for all the accessed lines and they

all have the same probability of reuse associated to each reuse distance. When this

is not the case, that is, when di�erent lines have di�erent probabilities of being

accessed, a di�erent set of interference regions must be calculated for each accessed

line and di�erent lines will have di�erent probabilities of reuse for the same reuse

distance.

We will illustrate these ideas with the code in Figure 4.4, which performs the

product between a sparse matrix stored in CRS format [19] and a vector, and which

is part of SPARSKIT [43]. Let us remember that the CRS format stores sparse

matrices by rows in a compressed way using three vectors. One vector stores the

nonzeros of the sparse matrix ordered by rows, another vector stores the column

indexes of the corresponding nonzeros, and �nally another vector stores the position

in the other two vectors in which the data of the nonzeros of each row begins.

In our codes we always call these vector A, C and R respectively. The innermost

loop of the code in Figure 4.4 performs the product between vector X and row I of

the sparse matrix. In this code reference X(C(J)) performs an irregular access on

vector X only in the positions in which the matrix row contains nonzeros. Let us

suppose that the sparse matrix that is being multiplied is a banded matrix like the

one shown in Figure 4.12, in which the W = 5 diagonals that constitute its band

86 Chapter 4. Model Extension to Handle Codes with Indirections

have been labeled and black and white elements represent non-zero and zero values

elements, respectively. During the processing of each row of the sparse matrix,

a maximum of W di�erent elements of X will be accessed. Each one of these W

elements has a di�erent probability of being accessed that depends on the density

of the corresponding diagonal in the banded matrix. The set of elements eligible for

access is displaced one position in the processing of each new row. Also, each element

of X will be accessed a maximum of W times during the execution of the code, as a

maximum of W rows may have nonzeros in the corresponding column. Interestingly,

the probability of access is not uniform along those W rows. For example, every

�rst potential access during the processing of this matrix in this code will take place

for sure, while every second potential access to an element of X will happen with a

probability of 30%. This is because all the positions in the �fth diagonal (d5) keep

nonzeros, while in the fourth diagonal (d4) of the band 3 out of its 9 positions keep

nonzeros, which is a density of nonzeros of 30%

The number of elements of the vector accessed in the processing of a row can be

averaged using the densities of the diagonals of the band matrix. Every Ls elements

of the vector are stored in a di�erent line, the probability of accessing that line

can be calculated as a function of the corresponding densities in the diagonals of

the sparse matrix. In every iteration of the outermost loop, a di�erent row of the

sparse matrix is selected. It is possible to reuse lines of the vector between di�erent

iterations of the outermost loop. In the processing of a given row of the sparse matrix

some values of the vector mapped inside the band are accessed, in the processing of

the next row the situation is repeated but the area covered by the band is shifted

one position to the right, this has to be taken in account for the calculation of the

possible reuse between the processing of di�erent rows.

The situation depicted in our example is clearly more common than the extension

performed in Section 4.2.3, in which we only considered irregular access patterns

which had an uniform probability of access for each element of the dereferenced

data structure, and in which such probability did not change during the execution

of the code. It is very usual that the diagonals of banded matrices have di�erent

densities, with the distribution of the nonzeros within each diagonal being relatively

uniform. As a result, we have extended our model to cope with this important

class of matrices, which enables to model automatically and accurately the cache

behavior of codes with irregular access patterns in the presence of a large number of

real sparse matrices, as the evaluation proves. We will characterize the distribution

of nonzeros in these matrices by a vector ~d of W probabilities where di contains the

4.3 Model Extension for Non-Uniform Banded Matrices 87

density of the i − th diagonal, that is, the probability a position belonging to the

i − th diagonal of the band contains a nonzero. This extension can be automated

using a compiler framework that satis�es its information requirements. The vector ~d

of diagonal densities is the only additional information we need in this work. These

values are obtained from an analysis of the input data that can be provided by the

user, or obtained by means of runtime pro�ling.

Section 4.3.1 contains the new equations added to cover this situation, while

Section 4.3.2 contains a description of the validation of this extension.

4.3.1. PME equations for Banded Matrices

The PMEs are a function of input memory regions calculated in outer or preced-

ing loops that are associated to the reuses of the sets of lines (SOLs) accessed by R

in loop i whose immediately preceding access took place before the loop began its

execution. The uniformity of the accesses in all our previous extensions for covering

irregular computation allowed to use a single region Reg for this purpose, that is, all

the SOLs had the same reuse distance whenever a loop began. This happened be-

cause all the considered lines had uniform probabilities of access, and thus they also

enjoyed equal average reuse distances and miss probabilities. The lack of uniformity

of the accesses makes it necessary to consider a separate region of interference for

each SOL. Thus we extend the PMEs to receive as input a vector ~Reg of memory

regions. The element Regl of this vector is the memory region accessed during the

reuse distance for what in this level of the nest happen to be �rst access to the

l-th SOL that R can access. Another way to express it is that Regl is the set of

memory regions that could generate interferences with an attempt to reuse the l-th

SOL right when the loop begins its execution. This way, ~Reg has as many elements

as SOLs de�nes R during the execution of the considered loop.

The shape of PME FRi depends on the access pattern followed by R in loop i.

This section contains a description of the formulas we have developed for references

with irregular access patterns generated by indirections due to the compressed stor-

age of banded matrices in which the distribution of non-zeros within the band is not

uniform. A di�erent formula will be applied depending on whether the values read

from the index array are known to be monotonic or not. They are monotonic when,

given two iterations of the current loop i and j and being f(i) and f(j) the values

generated by the index array in these iterations, for all i ≤ j then f(i) ≤ f(j) or

for all i ≤ j then f(i) ≥ f(j). When the index values are known to be monotonic

88 Chapter 4. Model Extension to Handle Codes with Indirections

a more accurate estimation can be obtained because we known that if our reference

R reuses a SOL of the base array in a given iteration, this SOL is necessarily the

one accessed in the previous iteration of the loop.

PME for irregular monotonic access with non-uniform band distribution

If we assume that the nonzeros within each row have been stored ordered by

their column index in our sparse matrix in CRS format, reference X(C(J)) generates a

monotonic irregular access on the base array X during the execution of the innermost

loop in Figure 4.4. Let us remember that the index array C stores the column indexes

of the nonzeros of the row of the sparse matrix that is being multiplied by X in this

loop.

The general equation that estimates the number of misses generated by a ref-

erence R in nesting level i that exhibits an irregular monotonic access with a non-

uniform band distribution is

FRi(~Reg) =

(
LRi−1∑

l=0

pi(lGRi)FR(i+1)(Regl)

)
+(

W∑
l=1

dl −
LRi−1∑

l=0

pi(lGRi)

)
FR(i+1)(IntRegRi(1))

(4.7)

The interference region from the outer level is di�erent for each set of lines (SOL)

accessed and it is represented as a vector ~Reg of LRi di�erent components, where

LRi is the total number of di�erent SOLs of the base array A that R can access in this

nesting level. LRi is calculated as dW/GRie being W the band size and GRi is the

average number of positions in the band that give place to accesses of R to a same

SOL of the base array A. This value is calculated as dLs/SRie, being SRi = αRj · dAj

where j is the dimension whose index depends on the loop variable Ii through the

indirection; Ls is the cache line size; αRj is the scalar that multiplies the index array

in the a�ne function, and dAj is the cumulative size
2 of the j-th dimension of the

array A referenced by R.

Example 16. If we consider reference X(C(J)) in Figure 4.4, while processing the

matrix in Figure 4.12, with a cache line size Ls = 2, in the innermost level dA1 = 1

2Let A be an N -dimensional array of size DA1 ×DA2 × . . . DAN , we de�ne the cumulative size
for its j-th dimension as dAj =

∏j−1
i=1 DAi

4.3 Model Extension for Non-Uniform Banded Matrices 89

and αR1 = 1. Each GRi = 2 consecutive positions in the band give place to accesses

to the same SOL of X. Consequently, since W = 5, the number of di�erent SOLs of

X accessed would be LRi = d5/2e = 3. �

The vector of probabilities ~pi has W positions. Position s of this vector keeps the

probability that at least one of the diagonals s to s+GRi− 1 has a nonzero, that is,

it is the probability they generate at least one access to the SOL of the base array

that would be accessed if there were nonzeros in these diagonals. Each component

of this vector is computed as :

pis = 1−
min(W,s+GRi−1)∏

l=s

(1− dl) (4.8)

Let us remember that ~d is a vector of W probabilities, ds being the density of the

s− th diagonal in the band as it is re�ected in Figure 4.12.

In Equation 4.7 each SOL l of the base array that R can access in nesting level

i has a probability pi(lGRi) of being accessed, where lGRi is the �rst band that can

generate accesses to the l− th SOL. The miss probability in the �rst access to each

SOL l depends on the interference region from the outer level associated to that

SOL Regl. The remaining accesses are non-�rst accesses during the execution of

the loop, and because the access is monotonic, their reuse distance is necessarily on

iteration of the loop. As a result, the interference region will be IntRegRi(1), the

interference region of reference R in 1 iteration of nesting level i. The number of

potential reuses of SOLs by R in the loop is calculated as
∑W

l=1 dl −
∑LRi−1

l=0 pi(lGRi),

where the �rst term estimates the number of di�erent accesses generated by R during

the processing of a row or a column of a band while the second term is the average

number of di�erent SOLs that R accesses during this processing.

Example 17. Examples 13 and 14 contained the derivation of the PME equations

that describe the cache behavior of the reference X(C(J)) in the code of Figure 4.4 in

loops I and J respectively, assuming that the values generated by the index array C

follow an uniform distribution. This code performs the product between a matrix,

stored in CRS format, and a vector X. In example 13 it was established that the

values generated by the index array during each complete execution of the innermost

loop are monotonically increasing. If we consider that the CRS matrix used as input

data is a banded matrix, then the Equation(4.7) must be applied. As loop J is the

90 Chapter 4. Model Extension to Handle Codes with Indirections

innermost level for this reference, the resulting equation is,

FR1(~Reg) =

(
LR1−1∑

l=0

p1(lGR1)AV0(Regl)

)
+(

W∑
l=1

dl −
LR1−1∑

l=0

p1(lGR1)

)
AV0(IntRegR1(1))

(4.9)

where LR1 is calculated as dW/GR1e, being GR1 = dLs/SR1e. The stride is SR1 =

dX1 = 1 as the array X is indexed using the a�ne function 1×C(I)+0. The probabil-
ities p1l are calculated using the Equation(4.8) �

PME for irregular non-monotonic access with non-uniform band distri-

bution

A data structure stored in a compressed format, such as CRS [19], is typically

accessed using an o�set and length construction [39]. In this situation, very common

in sparse matrix computations, the knowledge that the values accessed across the

indirection follow a banded distribution can be used to increase the accuracy of the

prediction using a speci�c equation. For example, in the code of Figure 4.4 the

reference X(C(J)) accesses the structure C using an o�set and length construction.

The values generated by the index array C in the innermost loop are monotonic but

the values read across di�erent iterations of the outermost loop are non-monotonic

because a di�erent row is processed in each iteration of this loop. When this situation

is detected and we are in the presence of a banded matrix, the behavior of the

reference in the outer loop can be estimated as

FRi(RegIn) = NiFR(i+1)(~Reg(RegIn)) (4.10)

In this equation the Ni iterations in the current nesting level are considered to repeat

the same behavior. Although the W − 1 �rst and last iterations have a di�erent

behavior than the others as for example their band is not W positions wide, we have

checked experimentally that the lost of accuracy incurred when not considering this

is not signi�cant. This is expected, as usually the band size W is much smaller than

Ni, which is the number of rows or columns of the sparse matrix.

An average interference region for each one of the LRi SOLs accessed in the inner

level must be calculated. This average interference region takes account of all the

4.3 Model Extension for Non-Uniform Banded Matrices 91

possible reuses that can take place with respect to a previous iteration of the current

loop depending on the di�erent possible combinations of accesses to the studied base

array. The interference region associated with each possible reuse distance must be

added to the average region weighted with the probability an attempt of reuse with

this reuse distance happens. The expression that estimates the interference region

associated to the l − th SOL that R can access in this loop is,

Regl(RegIn) =
W∏

z=lGRi+1

(1− piz)(RegIn ∪ IntRegRi(W − lGRi − 1)+

W∑
s=lGRi+1

pis

(
s−1∏

z=lGRi+1

(1− piz)

)
IntRegRi(s− lGRi)

(4.11)

In the previous section we saw that lGRi is the �rst diagonal that could generate an

access to the l-th SOL in a given iteration and pi(lGRi) the probability of accessing

that SOL during the processing of a row or column of the matrix. As the band is

shifted one position to the right every row, in general, the probability that the same

SOL of the base array is accessed by R m iterations before the current iteration is

pi(lGRi+m). As a result,
∏W

z=lGRi+1(1− piz) calculates the probability that the l − th

SOL has not been accessed in any previous iteration of this loop. In this case the

interference region is equal to the union of the input region from the outer level and

the region associated to the accesses that take place in the W − lGRi − 1 previous

iterations. The addition of a region to the average region weighted by its corre-

sponding probability is performed adding the region weighted by the corresponding

probability to the average region. Regarding the reuses within loop i, the probability

that the last access to a SOL took place exactly m iterations ago is calculated multi-

plying the probability of being accessed in that iteration pi(lGRi+m) by the product of

the probabilities of not being accessed in any of the iterations between that iteration

and the current iteration
∏lGRi+m−1

z=lGRi+1 (1− piz). The interference region associated to

this attempt of reuse will be the region covered by the accesses that take place in

those m iterations of the current loop. In this equation LRi = LRj, GRi = GRj

and the vector ~pi = ~pj, being j the innermost nesting level of the o�set and length

construction.

Example 18. In example 14 the access done in the code in Figure 4.4 by the ref-

erence X(C(J)) in the outermost loop was determined to be non-monotonical. When

92 Chapter 4. Model Extension to Handle Codes with Indirections

ppp
ppp p
pppp p
pppp p pp
ppppp pp
pppp p p
pppppp p
p pp pp p p
pppppp p
p pp p pp p
pppp pp p
pppppp
pppp p pp
ppppp pp
p pp p pp
pppppp p
p pp pp p p
pppppp p
pp pp pp p
pppp pp p
pppppp
pppp p pp
pp pppp p
p pp pp p
pppppp p
pp pp pp p
ppppp pp
ppp pp p
pppp pp p
pppppp
pppppp p
ppp p pp p
pp ppp pp
pppp pp
ppp pp pp
ppppp pp
ppp pp p
pppppp p
pppp pp p
pppppp p
p pp p pp p
ppp ppp p
pppppp
pppp p pp
ppppp pp
pppp p p
pppppp p
p pp pp p p
pppppp p
p pp p pp p
pppp pp p
pppppp
pppp p pp
ppppp pp
p pp p pp
pppppp p
p pp pp p p
pppppp p
pp pp pp p
pppp pp p
pppppp
pppp p pp
pp pppp p
p pp pp p
pppppp p
pp pp pp p
ppppp pp
ppp pp p
pppp pp p
pppppp
pppppp p
ppp p pp p
pp ppp pp
pppp pp
ppp pp pp
ppppp pp
ppp pp p
pppppp p
pppp pp p
pppppp p
p pp p pp p
ppp ppp p
pppppp
pppp p pp
ppppp pp
pppp p p
pppppp p
p pp pp p p
pppppp p
p pp p pp p
pppp pp p
pppppp
pppp p pp
ppppp pp
p pp p pp
pppppp p
p pp pp p p
pppppp p
pp pp pp p
pppp pp p
pppppp
pppp p pp
pp pppp p
p pp pp p
pppppp p
pp pp pp p
ppppp pp
ppp pp p
pppp pp p
pppppp
pppppp p
ppp p pp p
pp ppp pp
pppp pp
ppp pp pp
ppppp pp
ppp pp p
pppppp p
pppp pp p
pppppp p
p pp p pp p
ppp ppp p
pppppp
pppp p pp
ppppp pp
pppp p p
pppppp p
p pp pp p p
pppppp p
p pp p pp p
pppp pp p
pppppp
pppp p pp
ppppp pp
p pp p pp
pppppp p
p pp pp p p
pppppp p
pp pp pp p
pppp pp p
pppppp
pppp p pp
pp pppp p
p pp pp p
pppppp p
pp pp pp p
ppppp pp
ppp pp p
pppp pp p
pppppp
pppppp p
ppp p pp p
pp ppp pp
pppp pp
ppp pp pp
ppppp pp
ppp pp p
pppppp p
pppp pp p
pppppp p
p pp p pp p
ppp ppp p
pppppp
pppp p pp
ppppp pp
pppp p p
pppppp p
p pp pp p p
pppppp p
p pp p pp p
pppp pp p
pppppp
pppp p pp
ppppp pp
p pp p pp
pppppp p
p pp pp p p
pppppp p
pp pp pp p
pppp pp p
pppppp
pppp p pp
pp pppp p
p pp pp p
pppppp p
pp pp pp p
ppppp pp
ppp pp p
pppp pp p
pppppp
pppppp p
ppp p pp p
pp ppp pp
pppp pp
ppp pp pp
ppppp pp
ppp pp p
pppppp
ppppp
ppp

(a) AF23560 M=N=23560
nnz=484256 W=609

p p
p
p
p
ppp p

ppp pp p p
ppp pp p p
ppp pp p
ppp pp p
ppp pp p
p ppp p p
p ppp p
ppp pp

p pp pp p
p pp pp p
p pp pp p
pp pp pp
ppp pp p
ppp pp p
ppp pp p
pp p pp
ppp pp p p
ppp pp p p
ppp pp p p
ppp p pp
ppp pp p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p p
ppp pp p
ppp pp p
ppp pp p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p p
ppp pp p
ppp pp
ppp pp p
p ppp p p
p ppp p p
p ppp
ppp pp

p pp pp p
p pp pp p
ppp pp
pp pp
ppp pp p
ppp pp p
ppp pp
pp pp p
ppp pp p p
ppp pp p
ppp pp
ppp pp p
p ppp p p
p ppp p p
p ppp p
p ppp pp
p pp pp p
p pp pp p
ppp pp p
pp p pp
ppp pp p
ppp pp p
ppp pp p p
pp p p pp
ppp pp p p
ppp pp p
ppp pp p
p ppp p p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p p
ppp pp p p
ppp pp p
ppp pp p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p
ppp pp p p
ppp pp p
ppp pp p
p ppp p
ppp pp p
p ppp p
p pp pp p
p pp pp
ppp pp
ppp pp p
ppp pp p
ppp pp
pp pp
ppp pp p
ppp pp p p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
p ppp p
ppp pp p
p ppp p
p pp pp p
p pp pp p
p ppp pp
ppp pp p
ppp pp p
ppp pp p
pp p pp
ppp pp p
ppp pp p p
ppp pp p p
ppp p pp
ppp pp p
ppp pp p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p p
ppp pp p
ppp pp p
ppp pp p
p ppp p p
p ppp p p
p ppp p
p pp pp p
p pp pp p
p pp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p
ppp pp p p
ppp pp p p
ppp pp
ppp pp p
ppp pp p
p ppp p p
p ppp p
ppp pp

p pp pp p
p pp pp p
p pp pp
pp pp
ppp pp p
ppp pp p
ppp pp
pp p
pp p pp
ppp pp
ppp p
ppppp

(b) lnsp3937 M=N=3937
nnz=25407 W=168

sss
sss
sssss s s

sss s s sss s s
sssss

sssss
sssss s s sss ss

s ss
s ss ss

s s s
s sss
s sss

s sssss
s sss
s sssss
s sssss
s sss

s sss s ss
s ssss

sssss ss
sss sssssss

s s sssss
sssss
ssss

s ssss ss
s sss ss

s sss s s
s ssssss
s sss s s

s sss
ss ssss
s sss ss s s
s s s s s

s s s sss
s s s sss
s s sssss s s

s sssss
ssss
sss ss

s s s
s s ssss

s sss
sss ss

s s s
s s ss s

s s sss
s ss

s s ss
s sss

s sss s
sssss

s ssss
sss

s s s s s

(c) CURTIS54 M=N=54
nnz=291 W=43

Figure 4.13: Examples of matrices in the Harwell-Boeing set, M and N stands for
the matrix dimension, nnz is the number of nonzeros and W is the band size.

the CRS matrix is banded the Fomula 4.3.1 must be applied, as a result,

FR0(RegIn) = MFR1(~Reg(RegIn)) (4.12)

As the innermost nesting level of the o�set and length is level 1, LR0 = LR1,GR0 =

GR1 and ~p0 = ~p1, so they take the same values calculated in Example 17. The LR0

values of the vector ~Reg(RegIn) are calculated using Equation 4.11.

4.3.2. Validation for Codes with Non-Uniform Banded Ma-

trices

The validation was done applying by hand the PME model to: the sparse-matrix

vector product, in Figure 4.4, the sparse-matrix dense-matrix product with IKJ

(see Figure 4.5), IJK and JIK order, and the sparse-matrix transposition, shown in

Figure 4.6.

The model was validated again comparing its predictions with the results of

trace-driven simulations. For every code, 10 di�erent cache con�gurations were

tried with caches of sizes from 16 KBytes to 2 MBytes, line sizes from 16 to 64 bytes

and associativity degrees 1, 2, 4 and 8. The input data set were the 177 matrices

from the Harwell-Boeing [28] and the NEP [18] sets that we found to be banded or

mostly banded (a few nonzeros could be outside the band). These matrices represent

52% of the total number of matrices contained in these collections.

4.3 Model Extension for Non-Uniform Banded Matrices 93

Code MRSim σSim
Uniform Bands Model Non-Uniform Bands Model

MRMod ∆MR MRMod ∆MR

SPMXV 14.00% 0.08% 15.57% 1.80% 14.45% 0.70%
SPMXDMIKJ 27.66% 2.02% 45.62% 26.81% 28.85% 4.19%
SPMXDMIJK 8.62% 0.29% 27.48% 17.23% 10.91% 3.10%
SPMXDMJIK 7.87% 0.43% 10.63% 3.23% 8.36% 0.78%
TRANSPOSE 10.31% 0.33% 11.38% 3.55% 9.52% 3.23%

Table 4.7: Average measured (MRSim) miss rate, average typical deviation (σSim) of

the measured miss rate, average predicted (MRMod) miss rate and the average value
∆MR of the absolute di�erence between the predicted and the measured miss rate
in each experiment.

The matrices used are a heterogeneous set of input data. Some matrices have

all their entries uniformly spread along a band, like the AF23560 matrix in Fig-

ure 4.13(a). The LNSP3937 matrix shown in Figure 4.13(b), has all its values spread

along a band of the matrix but not uniformly. Finally, there are some matrices like

CURTIS54, shown in Figure 4.13(c), where not all the values are spread along a

band but a signi�cant percentage of them are limited to this area.

Table 4.7 summarizes data giving an idea of the accuracy of the model. The

results were obtained for the benchmarks performing 1770 tests considering 10 dif-

ferent cache con�gurations of each one of the 177 matrices of the Harwell-Boeing

and the NEP sets. For each matrix and cache con�guration 10 di�erent simulations

were performed changing the base address of the data structures involved in each

code. In the case of the three orderings of the sparse-matrix dense-matrix product

the number of columns of the dense matrix is always a half of its number of rows.

The cache con�gurations have cache sizes (Cs) from 16 KBytes to 2 MBytes, line

sizes (Ls) from 16 to 64 bytes and associativity degrees (K) 1, 2, 4 and 8. Column

MRSim contains the average value of the miss rate simulated in the set of experi-

ments. Column σSim is the average typical deviation of the miss rate obtained in

the 10 simulations performed changing the base address of the data structures. The

table compares the precision of the predictions achieved using the simple model for

banded matrices assuming an uniform distribution of nonzeros introduced in Sec-

tion 4.2 and the improved model presented in this paper. The table shows for each

model, MRMod the average value of the miss rated predicted, and ∆MR the average

value of the absolute value ∆MR of the di�erence between the predicted and the

measured miss rates for each experiment. We use absolute values, so that negative

94 Chapter 4. Model Extension to Handle Codes with Indirections

errors are not compensated with positive errors. These results show that the im-

proved model is much mode accurate in the presence of real heterogeneous input

banded matrices than the original model. The small values of σSim point out that

the base addresses of the data structures play a minor role in the cache behavior.

Figure 4.14 contains a comparison of the miss rate obtained in the simulation,

the miss rate obtained by the uniform bands model and the miss rate obtained

by the non-uniform bands model during the execution of the sparse matrix-dense

matrix product with IJK ordering using some matrices from the Harwell-Boeing

and the NEP collections. The number of columns of the dense matrix used in the

multiplication was always one half of the number of rows of the sparse matrix.

Figure 4.14(a) shows the results obtained using a typical level 1 cache con�guration,

while a typical level 2 cache con�guration is used in Figure 4.14(b). The cache

con�guration parameters are: Cs the total cache size, Ls the line size and K the

degree of associativity. The non-uniform bands model almost always estimates more

accurately the miss rate. The di�erence is bigger in the level 2 cache con�guration.

The reason for the poor estimations obtained using the uniform bands model is that

in matrices with wide bands but in which most of the values are concentrated in

a few diagonals, there is a lot of reuse that is not captured by the uniform bands

model, as it assumes that the entries are uniformly spread along all the diagonals in

the band. The predictions for matrices such as sherman5, gre343 and ash292 are less

accurate because they do not �t exactly in the form described in 4.12, as in some of

their diagonals the density of the nonzeros is not uniform, that is, some diagonals

exhibit di�erent densities along their length. The predictions for the level 1 cache

con�gurations using the uniforms band model are sometimes relatively accurate.

The reason is that although this model often mispredicts the reuse distance for the

accesses with an irregular access pattern, the associated miss probability is so high

in this cache for some matrices even for short reuse distances that this error does

not a�ect the accuracy of the prediction as much as in the case of a bigger cache

like the typical level 2 cache con�guration.

4.3 Model Extension for Non-Uniform Banded Matrices 95

(a) Simulation and modeling for a typical level 1 cache con�guration

(b) Simulation and modeling for a typical level 2 cache con�guration

Figure 4.14: Comparison of the miss rates obtained by the simulation, the uniform
bands model and the non-uniform bands model during the execution of the sparse
matrix-dense matrix product with IJK ordering for several real matrices.

Chapter 5

Automated Implementation in a

Compiler Framework

The original PME model was only automatable for codes with regular access

patterns. In the previous chapters, automatable extensions of the PME model were

proposed to cover irregular codes due to both data-dependent conditional statements

(described in Chapter 3) and indirections (described in Chapter 4).

A fully automatic tool was built using the ideas of the original PME model ca-

pable of predicting the cache behavior in regular codes [31]. This chapter describes

the full automation of the PME model extension for irregular codes due to indirec-

tions and a uniform distribution of the values. The information retrieval is harder

to perform in irregular codes than in regular codes. For this purpose, we use the

XARK compiler [15], an extensible framework for automatic kernel recognition that

can be used as a powerful and e�cient information-gathering tool [16, 17]. In order

to characterize the access patterns followed by the references in the codes, a subset

of the well-known chains-of-recurrences formalism was implemented in the compiler.

Section 5.1 presents a motivating example that will be used throughout this

chapter. Section 5.2 introduces chains of recurrences for the characterization of

the access patterns. Section 5.3 describes the algorithm to build the PME model

automatically from the point of view of the information to be retrieved by the XARK

compiler. Section 5.4 provides and overview of the internals of the XARK compiler

and presents an extension of XARK that retrieves the information required by the

model. Finally, Section 5.5 shows an example of how the automated PME model

can be used to guide an optimization process succesfully.

97

98 Chapter 5. Automated Implementation in a Compiler Framework

5.1. Motivating Example

The development of the PME model extensions for irregular codes has been

driven by a set of well-known codes that contain regular and irregular access pat-

terns. A manual analysis of such codes revealed that the automation of the model

from scratch is a di�cult task, specially in the scope of irregular applications, as

advanced symbolic analysis is needed to retrieve the necessary information.

For illustrative purposes, consider the code of Figure 4.5 for the computation of

the product of a MxN sparse matrix in CRS format [19] and a NxH dense matrix.

The outermost loop doI presents array references with regular access patterns. The

expressions used for their indexing can be rewritten as a�ne functions of the en-

closing loop indices. For instance, the subscript of R(I + 1) takes increasing values

in the interval [2,M + 1]. Current commercial and research compilers can gather this

information. However, irregular access patterns due to indirections require advanced

symbolic analysis techniques. For example, reference B(REG1, J) follows an irregular

access pattern because the values of REG1 are determined by C(K), whose values are

not known at compile-time. Note that K introduces a higher level of indirection be-

cause it takes values in the interval [R(I),R(I + 1)− 1] in each doI iteration. Further

analysis of the headers of doI and doK reveals that the code traverses the whole array

of row indices of the sparse CRS matrix. The recognition of this programming con-

struct, usually referred in the literature as o�set and length [39], leads to conclude

that K takes a strictly monotonically increasing set of values during the execution

of doI and, thus, di�erent elements of array C are referenced at run-time. The accu-

racy of the model would increase if the compiler could retrieve this information. The

XARK compiler represents access patterns by means of the chains-of-recurrences for-

malism, which will be introduced in Section 5.2. From these chains of recurrences

the PME model will build the equations that characterize the cache behavior for

such access patterns. The corresponding algorithm will be described at high level

in Section 5.3. The details about the recognition of programming constructs such

as o�set and length will be presented in Section 5.4.

5.2. Chains of Recurrences

Chains of recurrences (CR) is a formalism to represent closed-form functions [59]

that is used in di�erent computer algebra systems, optimizing compilers and stand-

5.2 Chains of Recurrences 99

alone libraries. Chains of recurrences have been successfully used to expedite func-

tion evaluation at a number of points in a regular interval. Given a constant φ0, a

function g de�ned over the natural numbers and zero, Nnz ∪ {0}, and the operator

+, a Basic Recurrence (BR) f , represented by the tuple f = {φ0, +, g}, is de�ned
as a function over Nnz ∪ {0} by

{φ0, +, g}(i) = φ0 +
i−1∑
j=0

g(j) with i ∈ Nnz ∪ {0} (5.1)

Example 19. For example, the loop index of doI in Figure 4.5 takes integer values

in the regular interval [1,M]. The BR f = {1, +, 1} provides a closed-form function

to compute the value of I at each doI iteration and thus to determine the a�ne

memory access pattern I of array reference R(I) �

The algebraic properties of BR's provide rules for combining several BR's into a

single BR by means of arithmetic operations Let f = {φ0,�, g} and g = {µ0,⊗, g1}
be BR's and c be a constant. Then,

{φ0, +, g} ± c = {φ0 ± c, +, g} (5.2)

{φ0, +, g} ∗ c = {φ0 ∗ c, +, c ∗ g} (5.3)

{φ0, +, g}+ {µ0, +, g1} = {φ0 + µ0, +, g + g1} (5.4)

{φ0, +, g} ∗ {µ0, +, g1} = {φ0µ0, ∗, fg1 + gg + gg1} (5.5)

Example 20. Consider the access pattern of array reference R(I + 1). The BR of

the subscript expression I + 1 is computed by applying equality (5.2) to the constant

1 and the BR {1, +, 1} that represents the loop index I. Thus, the subscript I + 1

is represented by the BR {2, +, 1} �

Multidimensional Chains of Recurrences (MCR) [36] provide a formalism to de-

scribe memory access patterns of multidimensional arrays. In the following, an

intuitive description of MCRs based on their interpretation is presented.

Example 21. Consider the bi-dimensional array reference D(I, J) of Figure 4.5. In

the scope of doI, a row-major traversal of matrix D is performed, M and H being

the number of rows and columns, respectively. As both rows and columns are

accessed sequentially one after another, the BR {1, +, 1} captures the access pattern

100 Chapter 5. Automated Implementation in a Compiler Framework

de�ned by the subscript expressions I and J. However, from the point of view of

the cache behavior, the description of the access pattern of the multidimensional

array mapped onto a linear memory model is required. Assuming column-major

storage which is the case in Fortran, the MCR J{I{1, +, 1}, +, M}, composed of two

nested BRs, provides such information as follows. First, the inner BR I{1, +, 1} is

evaluated according to equation (5.1) in order to locate the beginning of row number

I. Next, the outermost BR J{I, +, M} is evaluated to access the row elements stored

in memory locations with stride M. Within MCRs, the subscript on the left of each

BR indicates the source code variable used to evaluate the BR �

In this work only BRs and MCRs with a constant g function are used as they

enable the representation of the access patterns handled by the PME model. Note

that CRs provide a powerful representation that will capture more complex cases

that are expected to appear in full-scale real applications, like triangular access

patterns. Besides, chains of recurrences is a well-known and widely used formalism

that has an extensive research associated to it which can be used in future extensions

of our work.

Figure 5.1 summarizes the information requirements of the PME model for the

code of Figure 4.5. For each loop, a graph of dependence relations (represented as

use-def chains) between array references and loop indices is depicted. Use-def chains

starting from array references are labeled with the array dimension where the target

reference appears. BRs that capture loop index values and access patterns for each

dimension of each array reference are shown. When enough information is available,

multidimensional arrays are also annotated with MCRs and linearized MCRs. The

superscript on the right of the BRs represents an average of the number of times

that the BR is evaluated. The notation ? within BRs re�ects that the corresponding

information cannot be determined to be a constant expression at compile-time.

5.3. Information Requirements of Extended PME

Model

This section describes a high-level algorithm of the PME model as well as the

information requirements of its implementation in a compiler. Section 5.3.1 focuses

on the construction of the equations of the model and Section 5.3.2 on the computa-

tion of the interference regions, that is, the memory regions accessed by each given

5.3 Information Requirements of Extended PME Model 101

Figure 5.1: Information requirements of the PME model for the code of Figure 4.5.
The symbol nnz stands for the number of nonzeros of the sparse matrix, and β is
the average number of iterations of doK

102 Chapter 5. Automated Implementation in a Compiler Framework

reference during a period of the execution of the code.

5.3.1. Constructing the Equations

The pseudo-code of Figure 5.2 gives an overview of the PME model. As shown

in the top-level procedure analyze_code, the references that appear in each loop

nest of the source code are studied one by one. Each reference R is analyzed in

several scopes. At each nesting level, the procedure number_of_misses computes

an equation that calculates the number of misses produced by that reference in that

nesting level. This equation is expressed in terms of the equation of the immediately

inner loop and use the function RegRi(n) de�ned in Figure 4.2 for calculating the

interference region. A reference may exhibit di�erent access patterns with respect to

di�erent loops. These access patterns are modeled by the following equations: the

regular access PME for regular patterns, the monotonic irregular access PME for

irregular patterns that access a monotonic sequence of memory positions, and the

non-monotonic irregular access PME for irregular patterns that cannot be predicted

at compile-time. Procedure number_of_misses selects the appropriate equation

by analyzing the BRs associated with each dimension of R as follows:

The regular access PME is applied if the BR matches {φ0, +, g} with constant

function g.

The monotonic irregular access PME is applied if (1) a BR characterizing one

of the dimensions has a non-constant g, and (2) there is a path of use-def

chains between R and the loop index of the current loop that contains at least

another di�erent array reference. The �rst step of this path must be a use-

def chain with a target array reference whose values can be determined to be

monotonic.

Otherwise, the non-monotonic irregular access PME is selected.

Example 22. As an example, consider the array reference B(REG1, J) in Figure 4.5.

In the analysis of the innermost loop doJ, the BRs that describe every dimension

of the reference are explored. As shown in Figure 5.1, the BR {REG1}, simpli�ed

representation of {REG1, +, 0}, that describes the access pattern in the �rst dimen-

sion, is an invariant BR. In addition, as the BR {1, +, 1} associated with the second

dimension has a constant function g = 1, the subscript is known to be an a�ne

5.3 Information Requirements of Extended PME Model 103

procedure analyze_code() {

1 foreach loop_nest of the code {

2 foreach reference in the loop_nest {

3 misses+ = number_of_misses(reference, outermost_loop(loop_nest), Rfull)

4 }

5 }

}

procedure number_of_misses(reference, loop, region) {

1 if is_regular(reference, loop) {

2 return regular_access_PME(reference, loop, region)

3 } else {

4 if is_monotonic(reference, loop) {

5 return irregular_monotonic_access_PME(reference, loop, region)

6 } else {

7 return irregular_nonmonotonic_access_PME(reference, loop, region)

8 }

9 }

}

procedure irregular_monotonic_access_PME(reference, loop, region) {

1 if is_innermost_loop_containing(loop, reference) {

2 return LRi ∗ cache_impact_quantification(region) + (Ni − LRi) ∗ cache_impact_quantification(RegRloop(1))

3 } else {

4 misses=0.0

5 foreach inner_loop in inner_loops_containing(loop, reference){

6 misses+ = LRi ∗ number_of_misses(reference, inner_loop, region)

7 +(Ni − LRi) ∗ number_of_misses(reference, inner_loop, RegRloop(1))

8 }

9 return misses

10 }

}

Figure 5.2: The PME model algorithm

104 Chapter 5. Automated Implementation in a Compiler Framework

function of J. Thus, a regular access PME models the behavior of the reference in

this loop.

A di�erent situation arises in the scope of doK at nesting level one. The BR

for the �rst dimension has unknown φ0 and g, which is represented as {?, +, ?} in

Figure 5.1. Besides, the graph of dependence relations depicted in Figure 5.1 shows

that there is a path from the �rst dimension of B(REG1, J) to loop index K that

contains another array reference C(K) whose values are stored in the scalar REG1 (see

lines 2, 4 and 6 of Figure 4.5). Thus, the subscript REG1 is known to be irregular.

The accuracy of the prediction can be raised by taking advantage of the knowledge

that C is the column array of a sparse CRS matrix since, assuming that the column

indices are ordered within each matrix row, the sequence of values of C(K) is known

to be monotonic. As a result, the monotonic irregular access PME is applied. Note

that such information is not available in the scope of the outermost loop because C(K)

is not monotonic across di�erent iterations of doI. In this case, the non-monotonic

irregular access PME is used �

Two parameters are required to build a PME at nesting level i: Ni, the number

of iterations of the loop, and SRi, the stride between the elements that reference

R accesses in two consecutive loop iterations. In the case of regular accesses and

monotonic irregular accesses LRi, the number of loop iterations for which R cannot

exploit any reuse, must be calculated too. In our algorithm, Ni is the upper bound

of the BR that characterizes the values of the loop index. As for SRi, if there is not

any dependence path between the reference and the loop index, SRi = 0. Otherwise,

it is calculated as the product of the constant g of the BR associated with the loop

index by the distance between two consecutive elements of the array referenced by

R in the dimension indexed by the loop index. This latter value is calculated using

the dimensions of the indexed array and the mapping of the array into the linear

memory model (i.e., row-major or column-major). Finally, LRi is calculated using

Equation 2.13 when the access is regular or using Equation 4.2 when the access is

irregular monotonic.

Example 23. In regular codes, Ni is sometimes available at compile time, and

thus the upper bound of the BR of the loop index can be computed (see the BR

{1, +, 1}H of doJ in Figure 5.1). However, this is not a very common situation in

irregular codes. Consider the loop index K of the o�set and length construct of

Figure 4.5. In the scope of doI, K is used in A(K) and C(K) to access the whole

sparse CRS matrix. Thus, Ni is the number of nonzeros nnz, as shown in the

5.3 Information Requirements of Extended PME Model 105

BR {1, +, 1}nnz of Figure 5.1. In contrast, in the scope of doK, Ni is given by the

symbolic expression R(I + 1) − R(I). In general, this expression takes a di�erent

value in each iteration of the outer loop doI. However, from a statistical point of

view, Ni = β = nnz
M

can be a good approximation for CRS sparse matrices with

a uniform distribution of the entries, M being the number of rows of the sparse

matrix. Thus, as doK traverses the elements of a row of the CRS matrix, the values

taken by K could be represented by {R(I), +, 1}R(I)+β. This situation also a�ects

the calculation of the stride for the array reference C(K) in the scope of doI. Loop

index I indexes C(K) through its dependence with the loop index K. As a result, the

stride of C(K) with respect to loop doI will be the number of iterations of doK (i.e.,

β), because both loops de�ne an o�set and length construct �

5.3.2. Computing the Interference Regions

In Section 2.3, three steps were described to estimate the miss probability asso-

ciated to a given reuse distance: access pattern identi�cation, cache impact quan-

ti�cation and area vectors addition. The cache impact quanti�cation step uses the

results generated by the access pattern identi�cation step, which in its turn retrieves

information directly from the source code. As explained in Section 4.2.1, the access

pattern identi�cation step for codes with indirections generates as intermediate rep-

resentation of the access pattern of each reference R a DA-tuple RR(h, n), where

DA is the number of dimensions of the array A referenced by R. Each element of

this tuple consists in its turn of a 3-tuple RRj(h, n) = (Mj, Sj, Pj), where the Mj

is the number of di�erent points accessed along dimension j, Sj the constant stride

between two consecutive points and Pj the probability each one of these points is

actually accessed by R.

The information supplied by the BRs, the MCRs and the use-def-chains repre-

sented in Figure 5.1 is used to generate this DA-tuple RR(h, n). The �rst step to

build RRj(h, n) is to determine whether the indexing of dimension j is done across

an indirection. This is the case if the use-def-chain path between the j-th dimension

of this reference and the loop index on which it depends includes another array refer-

ence. If the indexing of the studied dimension is not done across an indirection, then

the access is regular and the algorithm followed to calculate the j-th component of

RR(h, n) is the one described in Section 2.3. In this case the index of the reference

is an a�ne function αRj·Ii + δRj of some loop index Ii. The identity of Ii can be

found out exploring the use-def-chain paths. The set of points accessed in this di-

106 Chapter 5. Automated Implementation in a Compiler Framework

mension by R can be represented as the tuple (Itersi(h, n), SRi, 1.0), where for the

calculation of Itersi(h, n) (see Sections 2.3.1, 4.2.1) the only additional information

we need to extract from the code is Ni, the number of iterations of nesting level i.

As for SRi, it is the stride that reference R has with respect to loop i. As in this

case the index of dimension j is an a�ne function of Ii, then SRi = αRj · dAj, where

dAj is the accumulative size of the j-th dimension of the array A referenced by R

and αRj is the scalar that multiplies the loop variable in the a�ne function. dAj can

be calculated in this case using the sizes of the di�erent dimensions of the array A

while αRj can be extracted from the expression that indexes to the j-th dimension

of the reference R.

When the indexing of dimension j depends on an indirection, that is, the index

has a form αRj·B(f(Ii))+δRj, we assume that the accesses are spread uniformly

on the indexed dimension of the array. The identity of the index array B can be

obtained using the use-def-chain path, and the information about the value of αRj

can be retrieved in the same way as in the regular case. The values of Mj,Sj and Pj

can be calculated using the equations described in Section 4.2.1. Once the DA-tuple

RR(h, n) has been generated and simpli�ed, the rules described in that section are

used to identify the kind of region associated to the accesses of that reference.

The information supplied by the BRs and MCRs can help us perform the access

pattern identi�cation step easier. Most of the accesses to data structures of one or

two dimensions generate a small set of possible BRs and MCRs that can be easily

identi�ed and translated to their corresponding regions. For this purpose, we have

developed the following rules.

Let {φ0, +, g}Γ be the BR of a unidimensional array reference. If g = 1, a

region Rs(Γ) is computed. Otherwise a region Rr(
Γ
g
, 1, g) is associated with

the array reference.

In the case of multi-dimensional arrays, the analysis focuses on the MCR

that represents the access pattern once the array has been mapped onto the

linear memory model. For the sake of the explanation, consider the MCR

{{φ1, +, g1}Γ1 , +, g2}Γ2 of a bi-dimensional array reference, where φ1, g1 and

Γ1 are associated with the �rst array dimension, and g2 and Γ2 with the second

dimension. In this case, a region Rr(
Γ2

g2
, Γ1

g1
, g2) is computed. Sometimes a

simpli�ed representation of the access pattern described by the MCR can be

obtained by linearizing the MCR. The resulting BR is processed as described

for unidimensional arrays.

5.3 Information Requirements of Extended PME Model 107

Figure 5.3: Matrix mapping in memory and in cache for reference D(I, J) of Fig-
ure 4.5 during 2 iterations of loop doI

Whenever all the accesses a�ect consecutive memory positions the mapping and the

traversal of the array are equal, the MCR can be simpli�ed to the BR {1, +, 1}limit1∗limit2 .

Once the memory region accessed by a given reference is identi�ed, the impact

quanti�cation step estimates numerically the cache impact of the access to this

region in the cache.

Example 24. In the example code of Figure 4.5, during the analysis of the reference

D(I, J) in the scope of the loop doJ, the BR for the �rst dimension {I} indicates

that the index is a loop invariant, while that of the second dimension {1, +, 1}H
shows that the subscript J takes consecutive values in the regular interval [1, H]. As

shown in Figure 5.1, the MCR J{I{I}, +, M}M∗H of D(I, J) can be linearized as the BR

{?, +, M}M∗H , the unknown φ0 indicating that doJ is analyzed in the scope of an

undetermined doI iteration. Applying the rule of unidimensional array references,

the memory region Rr(H, 1, M) of a row of array D is computed. When the access

pattern for D(I, J) is analyzed in the next outer loop doK, at nesting level 1, the

BRs and MCRs for both dimensions are the same ones as in the innermost loop doJ

because none of the dimensions depends on loop index K. Thus, the same region

Rr(H, 1, M) is computed. A di�erent situation arises in the scope of the outermost

loop, where there is a di�erent BR {1, +, 1}M for the �rst dimension. As the M rows

of the matrix are accessed, the linearized MCR {1, +, 1}M∗H contains a φ0 = 1 that

re�ects the access to the whole array D resulting in a region Rs(M ×H). Figure 5.3

shows how an access to the array D during two iterations of the outermost loop is

mapped into the memory and the cache. �

108 Chapter 5. Automated Implementation in a Compiler Framework

5.4. XARK Extension for the PMEModel Automa-

tion

The automation of the PME model is addressed using the XARK compiler [17,

15], an extensible framework for the automatic recognition of programming con-

structs that are frequently used by software developers (from now on, computational

kernels). It was originally developed to detect parallel loops in irregular codes, where

array references with subscripted subscripts reduce the e�ectiveness of most depen-

dence analyzers. Using the information provided by the kernel recognition engine,

XARK was extended to provide a powerful information-gathering tool that supports

the implementation of parallelizing code transformations [16]. XARK operates on

top of a high-level intermediate representation resembling the original source code

that consists of the forest of abstract syntax trees (ASTs) that represent the state-

ments of the Gated Single Assignment (GSA) form of the code. GSA is an extension

of the well-known Static Single Assignment (SSA) form where reaching de�nition

information is represented syntactically. Unlike SSA, GSA captures the �ow of val-

ues in a program for both scalar and array variables. In addition, the intermediate

representation contains predicates that capture the conditions of if-endif constructs.

These properties enable to implement the recognition engine e�ciently, and widen

the collection of computational kernels that can be recognized by compiler. In an

AST, a tree represents an operation so that the root node is the operator (e.g.,

assignment, scalar fetch, array reference, plus, product) and its children are the

operands. The intermediate representation is completed with use-def chains that

exhibit the dependences between the statements of the code.

XARK performs a demand-driven analysis that proceeds as follows. A post-

order traversal is carried out on each AST. At each node, a transfer function that

gathers information about each operator in the program is applied once the analysis

of the children subtrees has �nished. When an occurrence of a variable de�ned

in a di�erent AST is found, the post-order traversal is stopped until the analysis

of the latter AST is completed. This demand-driven behavior assures that all the

information needed at a given node has been computed before the transfer function

is actually executed.

Transfer functions are organized in layers devoted to speci�c tasks. The bottom

layer addresses the recognition of the kernels computed in the source code (e.g.,

generalized induction variables, irregular reductions, array recurrences), which in-

cludes the characterization of the regular and irregular access patterns of the array

5.4 XARK Extension for the PME Model Automation 109

references that appear in the source code. Upper layers implement extensions of the

XARK compiler that bene�t from the information recognized in the source code.

Information interchange between layers is carried out by means of three containers

that are available in all the transfer functions: pgm holds information at the program

unit level; stm at the statement level; and node in the scope of a node of the AST

of a statement. The pseudo-code of the extension that builds the interface between

XARK and the PME model is shown in Figure 5.4. Due to space limitations, the

details about the computation of the BRs and the MCRs has been omitted from the

transfer functions. The containers are represented as data structures whose �elds

correspond to pieces of information retrieved from the source code.

In order to illustrate the operation of XARK, consider the forest of ASTs and

the use-def chains (dashed arrows) depicted in Figure 5.5. The details about the

GSA form have been omitted for the sake of clarity. The picture shows the last

step of the post-order traversal of the AST that represents the loop header DO

K=R(I),R(I+1)-1. Hatched nodes highlight expressions and statements whose anal-

ysis has already been completed. When transfer function Tdo is applied, the kernel

recognition layer characterizes R(I) and R(I+1)-1 as loop-variant expressions whose

value is not known at compile-time. This is denoted by the annotation subscripted

in the corresponding nodes of the AST. Expressions corresponding to invariant and

linear access patterns are annotated as invariant and linear, respectively. To

each node it is also attached the BR that captures the interval in which the ex-

pression takes values, which is computed by applying the rules de�ned in the CR

algebra [59] (see the example in Section 5.2). Next, the extension of Tdo presented in

Figure 5.4 is executed. First, the loop header DO K=R(I),R(I+1)-1 is recognized as

an o�set and length construct because R(I) and R(I+1)-1 are subscripted accesses

to consecutive elements of a unique array R, and each expression is the source of a

use-def chain whose target is the outermost loop doI. Under these conditions, Tdo

rewrites the BR {R(I), +, 1}R(I+1)−1 as {1, +, 1}nnz to indicate that the loop index

K traverses the whole sparse matrix during the execution of doI (see lines 2 to 6

of procedure Tdo in Figure 5.4). The demand-driven analysis of the forest of ASTs

continues, and the access pattern of array reference C(K) is characterized as a linear

pattern given by the BR {1, +, 1}nnz.

110 Chapter 5. Automated Implementation in a Compiler Framework

struct {... struct {... struct {...

graph_of_array_refs; set_of_array_refs; set_of_array_refs;

} pgm; } stm; } node;

procedure Ta(s1,...,sn) { // Extensions of transfer function of array references

1 insert a(s1, ..., sn) in pgm.graph_of_array_refs

2 foreach si with subscripted access pattern {

3 foreach reference ∈ nodesi
.set_of_array_refs {

4 insert a use-def chain from a(s1, ..., sn) to reference in pgm.graph_of_array_refs

5 }

6 }

7 insert a(s1, ..., sn) in node.set_of_array_refs

}

procedure Tx { // Extensions of transfer function of identifiers

1 if x is not invariant {

2 foreach reference ∈ set_of_array_refs of the definition statement of x {

3 insert reference in node.set_of_array_refs

4 }

5 }

}

procedure Tdo { // Extensions of transfer function of loop headers

1 stm.set_of_array_refs = nodeinit.set_of_array_refs ∪ nodelimit.set_of_array_refs ∪ nodestep.set_of_array_refs

2 if stm is an offset and length construct {

3 if stm at nesting level 1 {

4 rewrite symbolic BR {R(I), +, 1}R(I+1)−1 as {1, +, 1}nnz

5 }

6 }

}

procedure Tstm { // Extensions of transfer function of assignment statements

1 stm.set_of_array_refs = noderhs.set_of_array_refs

}

Figure 5.4: Extension of XARK for building the interface with the PME model

5.4 XARK Extension for the PME Model Automation 111

Figure 5.5: Forest of ASTs and use-def chains of the o�set and length construct and
the array reference B(REG1, J) of the example code of Figure 4.5.

112 Chapter 5. Automated Implementation in a Compiler Framework

5.4.1. Construction of the Graph of References

Apart from the characterization of the access patterns of array references, the

interface between XARK and the PME model exhibits the dependence relationships

between array references and loop indices. As shown in Section 5.3, such information

is used to build the equations that capture the cache behavior of the source code. The

graph of dependences is built as follows. Each time the transfer function of array

references Ta(s1,...,sn) is executed, the corresponding array reference is inserted in

pgm.graph_of_array_refs (see line 1 of procedure Ta(s1,...,sn) in Figure 5.4). Thus,

when Tdo is applied in Figure 5.5, pgm.graph_of_array_refs is {R(I), R(I + 1)}.
As a result, a list of all array references in the source code has been built.

In order to construct the graph, it is necessary to identify indirections as well as

the array references that appear in subscript expressions. This task is accomplished

by taking advantage of the access pattern characterization provided by the kernel

recognition layer.

The code is analyzed trying to recognize syntactical variation of a set of sparse

computational kernels that are frequently used in full-scale applications, for instance,

operations with sparse vectors and matrices. This recognition is performed by taking

into account the semantics of the program. The compiler must detect occurrences in

the code of di�erent kernel types as: induction variables, scalar reduction operations,

linked list-traversal and masked and array operations. These detections techniques

su�er two main problems: source quality and di�cult to analyze complex control

constructs. The XARK compiler uses an extension of the classi�cation scheme of the

technique proposed by Gerlek, Stoltz and Wolfe [40] capable of recognizing complex

induction variables even in loops that have a complicated control �ow. Induction

variables can be substituted by closed form expressions. This extension can deal

with both scalar values and arrays.

The demand-driven nature of XARK assures that the access pattern of each sub-

script sl (1 ≤ l ≤ n) has been characterized before the transfer function is applied.

Thus, Ta(s1,...,sn) recognizes array references that are not indirections by checking that

there is not any subscripted access pattern, and inserts the reference in the container

available for each node of the ASTs, in particular, in node.set_of_array_refs (line

7 of Ta(s1,...,sn) in Figure 5.4). If an indirection is recognized, the demand-driven

analysis carried out by XARK assures that nodesj
.set_of_array_refs contains

the array references that appear in the subscript expression of the j−th array di-

mension. Next, Ta(s1,...,sn) inserts in pgm.graph_of_array_refs a set of use-def

5.5 Experimental Results 113

chains whose source is a(s1, ..., sn) and whose targets are the array references in-

cluded in nodesj
.set_of_array_refs (lines 2-6 of Ta(s1,...,sn) in Figure 5.4). Note

that the sets of array references are transferred through scalar de�nition statements

and loop headers. On the one hand, Tx transfers information from the container of

the AST where x is de�ned (see lines 2-4 of Tx in Figure 5.4) to the local container

node associated with the node where x is referenced. On the other hand, Tstm and

Tdo annotate the statements of the code with the list of array references that appear

as operands of the right-hand side operators (see noderhs, nodeinit, nodelimit and

nodestep in Figure 5.4). As the ASTs are analyzed only once during the demand-

driven analysis, the annotation of statements enables the retrieval of the set of array

references for di�erent occurrences of a scalar variable.

For illustrative purposes, consider the construction of the graph depicted in Fig-

ure 5.1 for the scope doK. In particular, focus on the subscript REG1 of the �rst

dimension of B(REG1, J). When the AST of REG1 = C(K) is analyzed, Ta(s1,...,sn)

inserts C(K) in noderhs.set_of_array_refs and later Tstm annotates the state-

ment by copying C(K) into stm.set_of_array_refs. Next, the occurrence REG1

in B(REG1, J) is processed by Tx, which obtains C(K) from the AST container of the

statement where REG1 is de�ned. As a result, the array reference C(K) is available at

Tx, which copies C(K) in the local container nodeREG1.set_of_array_refs to ex-

pose such information to Ta(s1,...,sn). Finally, Ta(s1,...,sn) updates the global container

pgm.graph_of_array_refs with a use-def chain from B(REG1, J) to C(K).

5.5. Experimental Results

The accuracy of the automated PME model for codes with indirections inte-

grated in the XARK compiler was widely proved with the experiments described in

Section 4.2.4 (see Table 4.1). The ability to apply automatically the PME model to

a wide range of codes, and its high degree of accuracy make it a powerful tool to

guide compiler optimizations.

5.5.1. Driving compiler optimizations

Analytical models can be used to provide insights about the cache memory be-

havior of codes and can guide optimizations in a compiler or interactive tool based

on their predictions. Namely, decisions can be taken based on a cost function that

114 Chapter 5. Automated Implementation in a Compiler Framework

Architecture
L1 Parameters L2 Parameters L3 Parameters

(Cs1 , Ls1 , K1, W1) (Cs2 , Ls2 , K2, W2) (Cs3 , Ls3 , K3, W3)

Itanium 2 (16K,64,4,8) (256K,128,8,24) (6MB,128,24,120)
PowerPC 7447A (32K,32,8,9) (512K,64,8,150) -

Table 5.1: Memory hierarchy parameters in the architectures used (sizes in bytes),
miss weights W in CPU cycles.

considers the relative costs of the misses in each memory level as well as the CPU

cycles. Memory stall time can be estimated by applying the model to the di�erent

levels of the memory hierarchy of the computer simultaneously and multiplying the

number of misses estimated for each level by its miss penalty. The cycles spent

in the CPU can be estimated using CPU models such as Delphi [24], which can

apply heuristics to account for the properties of current high ILP superscalars. Sev-

eral papers in the bibliography illustrate the success of this approach for di�erent

optimizations such as padding [52] or tiling [51, 29] in codes with regular access

patterns.

As a simple experiment aimed to prove that our model can be used to optimize

codes with irregular access patterns due to indirections, we used its predictions to

decide which was the best loop ordering for the sparse matrix-dense matrix product

using two very di�erent architectures and memory hierarchies: Itanium 2 at 1.5GHz

and a PowerPC 7447A at 1.5GHz. Table 5.1 shows the con�guration of their memory

hierarchies using the well-known notation Cs, Ls and K, using bytes to measure sizes.

A new parameter W , the cost in CPU cycles of a miss in the considered memory

hierarchy level, is also taken into account. Notice that the �rst level cache of the

Itanium 2 does not store �oating point data; so it is only used for the study of the

behavior of the references to arrays of integers. Also, the PowerPC does not have a

third level cache.

Our model predicted the same behavior in both architectures for every sparse

matrix: the JIK ordering would be the one that would give place to the best perfor-

mance, while IKJ would be the ordering that would generate more misses in all the

levels of the memory hierarchy, thus yielding the worst performance. This matches

the global results displayed in Table 4.1. The predictions were �rst validated execut-

ing the three versions of the sparse matrix-dense matrix product code for synthetic

sparse matrices with an uniform distribution of the entries of sizes N ×N that were

multiplied by a N ×N dense matrix with N = i× 500 for i = 1, 2, 3, 4, 5 and 6, and

a percentage of nonzeros in the sparse matrix from 1% to 19% in steps of 2%. The

5.5 Experimental Results 115

Architecture
Synthetic uniform matrices Real non-uniform matrices

Loop ordering Loop ordering
IKJ JIK IJK IKJ JIK IJK

Itanium 2 172.264 41.016 142.389 4.814 2.078 2.115
PowerPC 7447A 338.538 29.256 54.272 12.585 1.990 3.688

Table 5.2: Average execution time in seconds for the sparse matrix-dense matrix
product as a function of the loop ordering.

codes were compiled using g77 3.4.3 with level of optimization -O3. The execution

times re�ected systematically the predictions of the model: the JIK version always

outperformed the IJK version, being the IKJ code the slowest one. We also run a

test multiplying each one of the 320 real matrices used in the preceding section by

a dense matrix with 1500 columns using the three loop orderings in both machines.

In the Itanium 2, the JIK ordering was the best one for 307 of the matrices, IJK

for ten, and IKJ for just three of them; while in the PowerPC the JIK ordering was

the fastest one in all but one of the cases, in which IJK outperformed it. Our model

always chose the JIK order (see Table 4.1) in both architectures. The tests were

also performed using all the banded matrices from the Harwell-Boeing and the NEP

collections, in multiplications with dense matrices with 1500 columns. These tests

agreed with the predictions of the model: the JIK version was the fastest one in

95.9% and 99.7% of the experiments in both architectures. Table 5.2 displays the

average execution time for the three loop orderings in the two sets of experiments

for both architectures in order to give an idea of the accuracy of the predictions of

the model, as well as the impact of this optimization in the execution time.

Conclusions and Future Work

Conclusions

Most of the existing analytical models of the cache behavior only cover the

modeling of codes with regular access patterns. The modeling of irregular codes

has been only been achieved successfully for some speci�c kernels. The attempts

to obtain an automatic approach to model the cache behavior in the presence of

irregular access patterns are mainly based in heuristics and they do not obtain good

degrees of accuracy. In this work, we have proposed some extensions of the PME

model that cover some of the main sources of irregularity in the accesses of a code.

The management of statistical information about the input data is the key idea to

model this kind of codes without resorting to execute them.

We have proposed an automatable and modular extension for codes with condi-

tional statements in which the probability that the condition is true is uniform in

each one of their evaluations. The accuracy of this extension has been veri�ed by

comparing the model predictions with the results of trace-driven simulations. The

model has been applied by hand to several codes of increasing complexity. Predict-

ing the cache behavior using an analytical model is itself a very complex task even if

the access patterns it presents are regular. The presence of irregular access patterns

increases the di�culty associated to this task. Despite this complexity, the degree

of accuracy of the predictions of our model is still high. Also, although the modeling

of these codes is more demanding computationally than that of regular codes, the

execution time of the model is very short, always less than one second.

We have also extended the model for codes with indirections. The main source

of codes considered in this extension are those that perform sparse computations.

First, we considered sparse matrices in which the non zero values of the matrix are

uniformly spread along the structure. The extension proposed for this situation

117

118 Chapter 5. Automated Implementation in a Compiler Framework

obtained a good degree of accuracy in its predictions. Nevertheless, an exploration

of well-known collections of sparse matrices like the Harwell Boeing and NEP col-

lections, revealed that a high percentage of these matrices are banded, that is, most

of their non zero values are spread along a limited band of the matrix. This fact

led us to propose an approach that covers the modeling of this kind of matrices.

First, a small modi�cation for uniform banded matrices was proposed. Later, an

additional extension was proposed for banded matrices with a non-uniform distri-

bution of the values along the band. The accuracy of the model was veri�ed using

codes of increasing complexity that perform sparse computations by comparing the

predictions of the model with the results of trace-driven simulations. The predic-

tions of the model were very accurate despite the short time required to evaluate

it. Namely, it provides its predictions always in less than one second, even for the

cases in which the execution of the analyzed code takes several minutes.

The next step was to implement the e�ective automation of one of these exten-

sions. Speci�cally, the one for codes with indirections and an uniform distribution

of the values was chosen. For this purpose we used an advanced compilation frame-

work, the XARK compiler. This compiler can extract the information needed by the

model from the source code of the analyzed program. The automation of the whole

process allowed us to model both the codes used in the manual validation of this

extension and new codes from the SPARSKIT library. The results show that the

predictions are the same as those obtained when the model was applied by hand.

Up to this point, the time required to apply the model did not include the time

needed to derive the formulas, as these ones were derived by hand. Once this task

can be performed automatically, the time necessary to execute the whole modeling

process is still short, and in many cases several orders of magnitude shorter than

the time necessary to execute the analyzed code.

One of the main applications of this kind of models is to help guide optimization

processes. Thus, we performed an experiment in which we used the PME model to

select the optimal nesting order for the sparse matrix-dense matrix product. Several

tests were performed considering di�erent architectures with di�erent cache con�g-

urations and changing the densities and matrices sizes. The selection of the PME

model always matched the best order according to the timing of the execution of the

analyzed codes in the corresponding architectures. These tests were performed using

both synthetic and real matrices. This experiment shows that although the quan-

titative estimation performed by the model for real matrices (with a non-uniform

distribution) is not very accurate, it predictions can be used successfully to guide

5.5 Experimental Results 119

an optimization process.

The extension of the scope of application of the PME model to irregular codes is

a big step forward in the e�ective utilization of analytical modeling as a method to

predict the cache behavior instead of traditional techniques like trace-driven simula-

tion and hardware counters. This research is of great interest, since irregular codes

usually lack locality and thus their performance can be improved by increasing their

locality guided by models like the one we have developed. These extensions keep all

the desirable characteristics in a technique to study the cache behavior: accuracy,

short execution time and the ability to provide insights into the reasons for the

observed cache behavior

Future Work

In the future we plan to model the cache behavior of multicore architectures

since they are becoming more and more common nowadays. The complexity and

novelty in the analysis of the memory hierarchy of these architectures lies in the

existence of several processors that can share one or several cache levels. We will try

to model this situation using the PME model as a basis. In this work it has only be

implemented an e�ective automations of the PME model extension for codes with

indirections and an uniform distribution. The e�ective automation of the model can

be improved both for codes with indirections for banded matrices, and for codes

with conditional statements.

Due to its accuracy, speed and wide scope of application, this model has become

a powerful tool to predict the cache behavior. We are planning to use the model

to guide optimizations on both regular or irregular codes, besides those already

illustrated in this thesis. The model will guide optimizations such as optimal tile

size selection in the tiling technique or methods to guide the data prefetching using

the model predictions. It would also be interesting to use the capabilities of the

model in the �eld of the embedded systems and to improve their performance taking

advantage of its predictions. Little work has been developed in the �eld of the

memory behavior modeling of this kind of systems. We plan to derive estimations

of the minimum and maximum number of misses in both regular and irregular

codes and use them in applications such as the calculation of the WCET (Wors

Case Execution Time), an open problem in embedded systems.

Bibliography

[1] A. Agarwal. Analysis of Cache Performance for Operating Systems and Multi-

programming. PhD thesis, Department of Electrical Engineering, University of

Stanford, 1987. pages 11, 14

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools. 1986. pages 9

[3] R. Allen and K. Kennedy. Optimizing Compilers for Modern Architectures.

2002. pages 9

[4] G. Ammons, T. Ball, and J. R. Larus. Exploiting Hardware Performance Coun-

ters with Flow and Context Sensitive Pro�ling. In SIGPLAN Conf. on Pro-

gramming Language Design and Implementation, pages 85�96, 1997. pages 10

[5] D. Andrade, , M. Arenaz, B. B. Fraguela, T. J., and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

Concurrency and Computation: Practice and Experience, 2007. (Submitted on

December 2006). pages 5

[6] D. Andrade, M. Arenaz, B. B. Fraguela, J. Touriño, and R. Doallo. Automated

and accurate cache behavior analysis for codes with irregular access patterns.

In In Proceedings of Workshop on Compilers for Parallel Computers, pages

179�193, A Coruña, Spain, January 2006. pages x, 3, 5

[7] D. Andrade, B. Fraguela, and R. Doallo. E�cient and accurate analytical

modeling of the cache behavior of complete scienti�c codes. In IASTED Intl.

Conf. on Applied Simulation and Modelling 2003, pages 106�111, Marbella,

September 2003. pages viii, 2, 5

121

122 BIBLIOGRAPHY

[8] D. Andrade, B. Fraguela, and R. Doallo. Modelado de caches ante códigos

con condicionales dependientes de datos. In Actas de las XIV Jornadas de

Paralelismo, pages 281�286, Leganés, Septiembre 2003. pages viii, 2, 5

[9] D. Andrade, B. Fraguela, and R. Doallo. Modeling the cache behavior of codes

with arbitrary data-dependent conditional structures. In Springer-Verlag, edi-

tor, In Proceedings of the Asia-Paci�c Computer Systems Architecture Confer-

ence, volume 3189 of Lecture Notes in Computer Science, pages 44�57, Beijing,

China, September 2004. pages viii, 2, 5

[10] D. Andrade, B. Fraguela, and R. Doallo. Modelado analítico automático del

comportamiento de la caché para códigos con indirecciones. In Actas de las XVI

Jornadas de Paralelismo, pages 321�328, Granada, Septiembre 2005. pages ix,

2, 5

[11] D. Andrade, B. B. Fraguela, and R. Doallo. Cache behavior modeling of codes

with data-dependent conditionals. In Springer-Verlag, editor, In Proceedings of

Workshop on Software and Compilers for Embedded Systems, volume 2826 of

Lecture Notes in Computer Science, pages 373�387, Vienna, Austria, September

2003. pages viii, 2, 5

[12] D. Andrade, B. B. Fraguela, and R. Doallo. Analytical modeling of codes with

arbitrary data-dependent conditional structures. Journal of Systems Architec-

ture, 52:394�410, July 2006. pages viii, 2, 5

[13] D. Andrade, B. B. Fraguela, and R. Doallo. Cache behavior modelling for codes

involving banded matrices. In Proc. of the 19th Intl Workshop on Languages

and Compilers for Parallel Computing, New Orleans, November 2006. pages

ix, x, 2, 3, 5

[14] D. Andrade, B. B. Fraguela, and R. Doallo. Precise automatable analytical

modeling of the cache behavior of codes with indirections. ACM Transactions

on Architecture and Code Optimization, 2007. Accepted for publication. pages

ix, ix, 2, 5

[15] M. Arenaz, J. Touriño, and R. Doallo. XARK: An eXtensible framework for

Automatic Recognition of computational Kernels. ACM Trans. Prog. Lang.

Syst. (Submitted on December 2006). pages 4, 74, 97, 108

BIBLIOGRAPHY 123

[16] M. Arenaz, J. Touriño, and R. Doallo. Compiler support for parallel code

generation through kernel recognition. In 18th Int. Parallel and Distributed

Processing Symposium, Santa Fe, April 2004. pages 97, 108

[17] M. Arenaz, J. Touriño, and R. Doallo. A gsa-based compiler infrastructure to

extract parallelism from complex loops. In 17th ACM Int. Conf. on Supercom-

puting, pages 193�204, San Francisco, June 2004. pages 97, 108

[18] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for

non-Hermitian eigenvalue problems, release 1.0, September 1996. pages x, 83,

92

[19] R. Barret, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. van der Vorst. Templates for the solution of linear

systems: Building blocks for iterative methods. SIAM Press, 1994. pages 3, 71,

72, 85, 90, 98

[20] A. Bayona, K. London, S. Moore, P. Mucci, M. Nieto, L. Salayandia, P. Teller,

and D. Terpstra. Papi deployment, evaluation, and extensions. Proc. of the

User Group Conference, 2003, pages 349�353. pages 10

[21] D. Buck and M. Singhal. An Analytic Study of Caching in Computer Systems.

J. of Parallel and Distributed Computing, 32(2):205�214, Feb. 1996. pages 12,

14

[22] C. Cascaval and D. Padua. Estimating cache misses and locality using stack dis-

tances. In In ICS '03: Proceedings of the 17th annual international conference

on Supercomputing, pages 150�159, New York, 2003. pages 13

[23] C. Cascaval, L. D. Rose, D. A. Padua, and D. A. Reed. Compile-time based

performance prediction. In Languages and Compilers for Parallel Computing,

pages 365�379, 1999. pages 13, 14, 15

[24] G. Cascaval. Compile-time Performance Prediction of Scienti�c Programs. PhD

thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign,

2000. pages 13, 114

[25] J. Dean, J. Hicks, C. Waldspurger, W. Weihl, and G. Chrysos. Pro�leme:

Hardware support for instruction-level pro�ling on out-of-order processors-. In

Proceedings of the 30th Annual IEEE/ACM International Symposium Microar-

chitecture, pages 292�302, December 1997. pages 10

124 BIBLIOGRAPHY

[26] C. Ding and Y. Zhong. Predicting whole-program locality through reuse dis-

tance analysis. In Proc. ACM Conference on Programming Languages Design

and Implementation, 2003. pages 12, 14

[27] I. Du�, A. Erisman, and J. Reid. Direct Methods for Sparse Matrices. Oxford

Science Publications, 1986. pages 57

[28] I. S. Du�, R. G. Grimes, and J. G. Lewis. Users' guide for the Harwell-Boeing

sparse matrix collection (Release I). Technical Report CERFACS TR-PA-92-96,

October 1992. pages x, 78, 83, 92

[29] B. B. Fraguela, M. G. Carmueja, and D. Andrade. Optimal tile size selection

guided by analytical models. In Procs. of Parallel Computing, volume 33, pages

565�572, Malaga, Spain, September 2005. Publication Series of the John von

Neumann Institute for Computing (NIC). pages 114

[30] B. B. Fraguela, R. Doallo, and E. L. Zapata. Modeling Set Associative Caches

Behavior for Irregular Computations. ACM Performance Evaluation Review

(Proc. SIGMETRICS/PERFORMANCE'98), 26(1):192�201, June 1998. pages

vii, 1, 13, 14

[31] B. B. Fraguela, R. Doallo, and E. L. Zapata. Probabilistic Miss Equations:

Evaluating Memory Hierarchy Performance. IEEE Transactions on Computers,

52(3):321�336, March 2003. pages vii, 1, 3, 4, 13, 14, 17, 31, 32, 62, 97

[32] S. Ghosh, M. Martonosi, and S. Malik. Cache Miss Equations: A Compiler

Framework for Analyzing and Tuning Memory Behavior. ACM Transactions

on Programming Languages and Systems, 21(4):702�745, July 1999. pages 13,

14, 15

[33] J. S. Harper, D. J. Kerbyson, and G. R. Nudd. Analytical Modeling of Set-

Associative Cache Behavior. IEEE Transactions on Computers, 48(10):1009�

1024, October 1999. pages 13, 14, 15

[34] J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative

Approach. Morgan Kaufmann Publishers, 4 edition, 2006. pages 7

[35] W. King. Analysis of paging algorithms. In Proceedings of IFIP Congress,

pages 485�490, August 1972. pages 12

BIBLIOGRAPHY 125

[36] V. Kislenkov, V. Mitrofanov, and E. Zima. A gsa-based compiler infrastructure

to extract parallelism from complex loops. In Proc. Int. Symposium on Symbolic

and Algebraic Computation, pages 199�206, Rostock, Germany, 1998. pages 99

[37] R. E. Ladner, J. D. Fix, and A. LaMarca. Cache performance analysis of

traversals and random accesses. In Proc. of the 10th annual ACM-SIAM Sym-

posium on Discrete Algorithms (SODA99), pages 613�622, Philadelphia, PA,

USA, 1999. Society for Industrial and Applied Mathematics. pages 13, 14, 15

[38] M. Laurenzano, B. Simon, A. Snavely, and M. Gunn. Low cost trace-driven

memory simulation using simpoint. ACM SIGARCH Computer Architecture

News, 33(5):81�86, December 2005. pages 10

[39] Y. Lin and D. Padua. On the automatic parallelization of sparse and irregular

fortran programs. In Languages, Compilers, and Run-Time Systems for Scalable

Computers, pages 41�56, Pittsburgh, 1998. pages 90, 98

[40] E. S. Michael P. Gerlek and M. Wolfe. Beyond induction variables: Detecting

and classifying sequences using a demand-driven ssa. ACM Transactions on

Programming Languages and Systems, TOPLAS, 1(17):85�122, 1995. pages

112

[41] R. W. Quong. Expected I-Cache Miss Rates via the Gap Model. In Proceedings

of the 21st Annual International Symposium on Computer Architecture, pages

372�383, Chicago, IL, USA, Apr. 1994. IEEE Computer Society Press. pages

12, 14

[42] P. J. H. S. Chatterjee, E. Parker and A. R. Lebeck. Exact analysis of the cache

behavior of nested loops. In Programming Language Design and Implementa-

tion, pages 286�297, 2001. pages 12, 14, 15

[43] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computations. Technical

Report 90-20, NASA Ames Research Center, Mo�ett Field, CA, 1990. pages

xi, 63, 73, 85

[44] I. Simecek and P. Tvrdik. Analytical model for analysis of cache behavior

during cholesky. International Conference on Parallel Processing Workshops,

2004 (ICPP 2004). pages 12, 14, 15

[45] A. Smith. Cache memories. ACM Computing Surveys, 14(3):473�53, September

1982. pages 8

126 BIBLIOGRAPHY

[46] J. Sánchez and A. Gónzalez. Analyzing data locality in numeric applications.

IEEE Micro, 20(4):58�66, August 2000. pages 14

[47] O. Temam, C. Fricker, and W. Jalby. Impact of cache interferences on usual nu-

merical dense loop nests. In Proceedings of the IEEE, special issue on Computer

Performance Evaluation, 1993. pages 12, 14, 15

[48] O. Temam, C. Fricker, and W. Jalby. Cache Interference Phenomena. In Proc.

Sigmetrics Conference on Measurement and Modeling of Computer Systems,

pages 261�271. ACM Press, May 1994. pages 12

[49] O. Temam and W. Jalby. Characterizing the behavior of sparse algorithms on

caches. In Supercomputing, pages 578�587, 1992. pages 13, 14

[50] R. Uhlig and T. N. Mudge. Trace-driven memory simulation: A survey. ACM

Computing Surveys, 29(2):128�170, 1997. pages 9

[51] X. Vera, J. Abella, A. Gonzalez, and J. Llosa. Optimizing program locality

through CMEs and GAs. In Proc. 12th Intl. Conf. on Parallel Architectures

and Compilation Techniques (PACT'03), pages 68�78, New Orleans, Louisiana,

October 2003. pages 114

[52] X. Vera, J. Llosa, and A. Gonzalez. Near-optimal padding for removing con�ict

misses. In Proc. Languages and Compilers for Parallel Computers (LCPC02),

volume 2481 of Lecture Notes in Computer Science, pages 329�343, College

Park, Maryland, July 2005. LNCS - Springer Verlag. pages 114

[53] X. Vera and J. Xue. E�cient Compile-Time Analysis of Cache Behaviour for

Programs with IF Statements. In 5th Int. Conf. on Algorithms and Architec-

tures for Parallel Processing, pages 396�407, October 2002. pages 13

[54] X. Vera and J. Xue. Let's Study Whole-Program Behaviour Analytically. In

Proc. of the 8th Int. Symposium on High-Performance Computer Architecture

(HPCA8), pages 175�186, February 2002. pages 13

[55] M. Wolfe. High performance compilers for parallel computing. Addison-Wesley,

Redwood City, 1996. pages 9

[56] J. Xue and X. Vera. E�cient and accurate analytical modeling of whole-

program data cache behavior. IEEE Trans. Comput., 53(5):547�566, 2004.

pages 13, 14

BIBLIOGRAPHY 127

[57] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K. John, and J. E. Smith.

The future of simulation: A �eld of dreams? IEEE Computer, pages 22�29,

November 2006. pages 9

[58] M. Zagha, B. Larson, and S. Turner. Performance analysis using the mips

r10000 performance counters. In Proceedings of the Supercomputing Conference,

pages 17�22, November 1996. pages 10

[59] E. Zima. Simpli�cation and optimization of transformations of chains of re-

currences. In Proc. Int. Symposium on Symbolic and Algebraic Computation,

pages 42�50, Montreal, Canada, 1995. pages 98, 109

