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Resumo
Nos últimos anos, os estudos de asociación do xenoma completo (Genome-Wide

Association Studies, GWAS) están a gañar moita popularidade de cara a buscar unha

explicación xenética á presenza ou ausencia de certas enfermidades nos humanos. Hai

un consenso nestes estudos sobre a existencia de interaccións xenéticas que condi-

cionan a expresión de enfermidades complexas, un fenómeno coñecido como epista-

sia. Esta tese céntrase no estudo deste fenómeno empregando a computación de altas

prestacións (High-Performance Computing, HPC) e dende a súa perspectiva estadís-

tica: a desviación da expresión dun fenotipo como a suma dos efectos individuais de

múltiples variantes xenéticas. Con este obxectivo desenvolvemos unha primeira ferra-

menta, chamada MPI3SNP, que identifica interaccións de tres variantes a partir dun

conxunto de datos de entrada. MPI3SNP implementa unha busca exhaustiva empre-

gando un test de asociación baseado na Información Mutua, e explota os recursos de

clústeres de CPUs ou GPUs para acelerar a busca. Coa axuda desta ferramenta avalia-

mos o estado da arte da detección de epistasia a través dun estudo que compara o ren-

demento de vintesete ferramentas. A conclusión máis importante desta comparativa

é a incapacidade dos métodos non exhaustivos de atopar interacción ante a ausencia

de efectos marxinais (pequenos efectos de asociación das variantes individuais que

participan na epistasia). Por isto, esta tese continuou centrándose na optimización da

busca exhaustiva de epistasia. Por unha parte, mellorouse a eficiencia do test de aso-

ciación a través dunha implantación vectorial do mesmo. Por outro lado, creouse un

algoritmo distribuído que implementa unha busca exhaustiva capaz de atopar epista-

sia de calquera orden. Estes dous fitos lógranse en Fiuncho, unha ferramenta que inte-

gra toda a investigación realizada, obtendo un rendemento en clústeres de CPUs que

supera a todas as súas alternativas no estado da arte. Adicionalmente, desenvolveu-

se unha libraría para simular escenarios biolóxicos con epistasia chamada Toxo. Esta

libraría permite a simulación de epistasia seguindo modelos de interacción xenética

existentes para orde alto.
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Resumen
En los últimos años, los estudios de asociación del genoma completo (Genome-

Wide Association Studies, GWAS) están ganando mucha popularidad de cara a buscar

una explicación genética a la presencia o ausencia de ciertas enfermedades en los seres

humanos. Existe un consenso entre estos estudios acerca de que muchas enfermeda-

des complejas presentan interacciones entre los diferentes genes que intervienen en su

expresión, un fenómeno conocido como epistasia. Esta tesis se centra en el estudio de

este fenómeno empleando la computación de altas prestaciones (High-Performance

Computing, HPC) y desde su perspectiva estadística: la desviación de la expresión de

un fenotipo como suma de los efectos de múltiples variantes genéticas. Para ello se

ha desarrollado una primera herramienta, MPI3SNP, que identifica interacciones de

tres variantes a partir de un conjunto de datos de entrada. MPI3SNP implementa una

búsqueda exhaustiva empleando un test de asociación basado en la Información Mu-

tua, y explota los recursos de clústeres de CPUs o GPUs para acelerar la búsqueda.

Con la ayuda de esta herramienta, hemos evaluado el estado del arte de la detección

de epistasia a través de un estudio que compara el rendimiento de veintisiete herra-

mientas. La conclusión más importante de esta comparativa es la incapacidad de los

métodos no exhaustivos de localizar interacciones ante la ausencia de efectos margi-

nales (pequeños efectos de asociación de variantes individuales pertenecientes a una

relación epistática). Por ello, esta tesis continuó centrándose en la optimización de la

búsqueda exhaustiva. Por un lado, se mejoró la eficiencia del test de asociación a tra-

vés de una implementación vectorial del mismo. Por otra parte, se diseñó un algoritmo

distribuido que implementa una búsqueda exhaustiva capaz de encontrar relaciones

epistáticas de cualquier tamaño. Estos dos hitos se logran en Fiuncho, una herramien-

ta que integra toda la investigación realizada, obteniendo un rendimiento en clústeres

de CPUs que supera a todas sus alternativas del estado del arte. A mayores, también se

ha desarrollado una librería para simular escenarios biológicos con epistasia llamada

Toxo. Esta librería permite la simulación de epistasia siguiendo modelos de interacción

existentes para orden alto.
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Abstract
In recent years, Genome-Wide Association Studies (GWAS) have become more and

more popular with the intent of finding a genetic explanation for the presence or ab-

sence of particular diseases in human studies. There is consensus about the pres-

ence of genetic interactions during the expression of complex diseases, a phenomenon

called epistasis. This thesis focuses on the study of this phenomenon, employing High-

Performance Computing (HPC) for this purpose and from a statistical definition of the

problem: the deviation of the expression of a phenotype from the addition of the indi-

vidual contributions of genetic variants. For this purpose, we first developed MPI3SNP,

a program that identifies interactions of three variants from an input dataset. MPI3SNP

implements an exhaustive search of epistasis using an association test based on the

Mutual Information and exploits the resources of clusters of CPUs or GPUs to speed up

the search. Then, we evaluated the state-of-the-art methods with the help of MPI3SNP

in a study that compares the performance of twenty-seven tools. The most important

conclusion of this study is the inability of non-exhaustive approaches to locate epista-

sis in the absence of marginal effects (small association effects of individual variants

that partake in an epistasis interaction). For this reason, this thesis continued focus-

ing on the optimization of the exhaustive search. First, we improved the efficiency of

the association test through a vector implementation of this procedure. Then, we de-

veloped a distributed algorithm capable of locating epistasis interactions of any order.

These two milestones were achieved in Fiuncho, a program that incorporates all the

research carried out, obtaining the best performance in CPU clusters out of all the al-

ternatives of the state-of-the-art. In addition, we also developed a library to simulate

particular scenarios with epistasis called Toxo. This library allows for the simulation of

epistasis that follows existing interaction models for high-order interactions.
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Preface

With the proliferation of next-generation sequencing technologies, the cost of se-

quencing genomes has been reduced, and Genome-Wide Association Study (GWAS)

have become more popular. GWAS are observational studies that attempt to decipher

the relationship between a particular trait or phenotype and a group of genetic variants

from several individuals. Much of the early work in GWAS considered genetic variants

in isolation, and the results of those studies were unsatisfactory for the task at hand.

The studies commonly reported associations with variants of unknown significance

that increased disease risk at very low levels, and thus their usefulness in clinical appli-

cations was limited [1]. One hypothesis that explains this outcome is a phenomenon

called epistasis: the interaction of genes among themselves, or with the environment,

during the expression of a phenotype so that individual variants by themselves display

little to no association with said phenotype. Nevertheless, looking for epistatic interac-

tions instead of individually associated genetic markers is a much more complex task,

and it is still an actively researched field.

This thesis is focused on the study of the epistasis phenomenon through High-

Performance Computing (HPC) systems, and from its statistical definition: the devi-

ation of the phenotype expression from the addition of the individual contributions of

multiple genetic variants. We started by developing a program, MPI3SNP, that iden-

tifies epistatic interactions of three genetic variants from an input dataset containing

many unrelated ones. MPI3SNP implements an association test based on the Mutual

Information (MI) metric, and through the exploitation of the resources of a cluster of

CPUs or GPUs, it performs an exhaustive analysis in a reduced amount of time com-

pared to its alternatives. Using this program as a point of reference, we studied the

state-of-the-art of the epistasis detection problem by comparing 27 different meth-

ods through empirical experimentation, with a special emphasis on high-order epis-

XV
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tasis. The most notable conclusion from this comparison is the limitation of non-

exhaustive approaches to identify epistasis interactions when marginal effects are ab-

sent. Marginal effects refer to a small association effect that the individual genetic vari-

ants intervening in an epistasis interaction show in isolation. For this reason, this the-

sis continued improving the performance of the exhaustive search. On one hand, we

proposed two vector implementation of the MI-based association test for two different

vector widths of the x86_64 CPU architecture: 256 and 512 bits. These two implemen-

tations support all modern x86_64 microarchitectures. On the other hand, we devel-

oped a distributed algorithm for the detection of epistasis interactions of any given

order. This algorithm makes use of the resources available in a CPU cluster to speed

up the search. These two contributions are implemented in a program named Fiuncho

that outperforms any other exhaustive alternative available in the state-of-the-art.

Outside of the epistasis detection problem, this thesis also contributed to the field

of epistasis simulation. During the development of synthetic datasets in order to em-

pirically study the different epistasis detection methods, we found that existing simula-

tors were very limited when creating high-order epistasis interactions. For this reason,

we created Toxo, a MATLAB library that compliments existing simulators by providing

penetrance tables that allows them to simulate such epistasis interactions. Penetrance

tables are tables that describe an epistasis interaction though the definition of the pop-

ulation frequency of the trait based on the different genotypes of the individuals, for all

genetic variants intervening in the epistasis interaction.

Structure of the Thesis

The thesis is organized as follows:

Chapter 1 introduces the thesis, defining what GWAS are, what is epistasis and

the importance of its study. It also discusses the different approaches to the epis-

tasis detection problem. To conclude, the chapter explains the association test

used throughout the thesis that measures quantitatively the degree of associa-

tion between a set of genetic variants and the trait under study.

Chapter 2 discusses the design of a distributed algorithm dedicated to the ex-

haustive search of epistatic interactions of third order (comprised of three differ-
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ent genetic variants). It also discusses the performance of its implementation,

MPI3SNP, which exploits both CPU and GPU clusters.

Chapter 3 presents a survey study comparing the state-of-the-art methods for

high-order epistasis detection in terms of runtime, the ability to detect epistatic

interactions, and the presence of false positives in their output.

Chapter 4 studies the vector implementation of the association test introduced

in Chapter 1. It describes how the algorithm can be implemented for the x86_64

architecture through Advanced Vector Extensions (AVX) Intrinsics for two differ-

ent vector widths, and compares the performance achieved with that of the au-

tovectorization offered by modern compilers.

Chapter 5 proposes a distributed algorithm for the detection of any-order epis-

tasis interactions following an exhaustive search. The program, named Fiuncho,

is inspired in the first algorithm presented in Chapter 2, and includes the vector

implementations of the association test presented in Chapter 4. The chapter also

empirically evaluates the performance of the program, and compares it to other

epistasis detection software.

Chapter 6 introduces Toxo, a library that compliments existing epistasis simula-

tors. It calculates penetrance tables, tables that express the probability of having

a particular trait based on the genotype information of the individuals, for high-

order epistasis models. These tables can be provided to simulators to generate

datasets that contain the epistatic interactions described by the model used.

Chapter 7 summarizes the contributions made throughout the thesis, presents

the conclusions reached and discusses the lines of future work that remain open.

Appendix A documents the program configurations used during the survey pre-

sented in Chapter 2.

Lastly, Appendix B includes an extended summary of this thesis written in Span-

ish.
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Main contributions

The main contributions of this thesis are:

A parallel CPU/GPU solution for exhaustive third-order epistasis detection [2].

An extensive survey of high-order epistasis detection methods, with an exper-

imental evaluation that compares the different programs in terms of elapsed

time, epistasis detection power and presence of false-positives in the results [3].

A parallel CPU application for exhaustive any-order epistasis detection that ex-

ploits all levels of parallelism of a homogeneous x86_64 cluster [4, 5].

A new method for the calculation of high-order penetrance tables for bivariate

epistasis models [6, 7].

Developed Software

All software developed during this thesis is distributed as open source software via

GitHub:

MPI3SNP:

https://github.com/UDC-GAC/mpi3snp

Fiuncho:

https://github.com/UDC-GAC/fiuncho

Toxo:

https://github.com/UDC-GAC/toxo

https://github.com/UDC-GAC/mpi3snp
https://github.com/UDC-GAC/fiuncho
https://github.com/UDC-GAC/toxo
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Chapter 1

Introduction and Background

This chapter introduces some background concepts about Genome-Wide Associ-

ation Studies (GWAS), epistasis and its detection, and contextualizes the research car-

ried out in this thesis. It is structured into three sections: the first one, Section 1.1, de-

fines GWAS; the second one, Section 1.2, explains the concept of epistasis and briefly

summarizes the different approaches to its detection; and the last one, Section 1.3,

presents a particular association detection method used in the upcoming chapters.

1.1. What Are GWAS?

GWAS are observational studies that try to decipher the relationship between a par-

ticular trait or phenotype and a group of genetic variants from several individuals. The

association relationship is assessed through the differences in the allele frequencies of

the variants between individuals that show different phenotype outcomes. A GWAS is

a very lengthy process composed of many steps that begin with the design of the study

and ideally conclude with the application of the newly found knowledge to disease risk

prediction or a better understanding of the genetic architecture of the genome. Fig. 1.1

summarizes what steps are involved in a GWAS.

Since the publication of the first GWAS study more than a decade ago, many trait-

associated variants have been reported. The GWAS catalog [14], a curated list of human

GWAS studies, incorporates 325538 associations from 5527 different publications as

1
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Data Collection
Genotype data can be collected from:

A study population using microarrays/next-generation sequencing methods.
Study cohorts, biobanks or other repositories.

Quality Control
Wet-laboratory stage: genotype calling, DNA switches, etc.
Dry-laboratory stage: indentifying and removing genotyping errors,
eliminating SNPs that are missing for a fraction of individuals, filtering
variants that are not in Hardy-Weinberg equilibrium, etc.

Imputation
Genotype data is phased, and untyped genotypes are imputed with the help of
repositories such as 1000 Genomes [9] or the TopMed Imputation Server [10].
Phasing is a procedure that identifies haplotypes, or blocks of alleles that are
inherited together from a parent, from the genotype information.

Association Testing
Can be simple, i.e. testing each individual variant for association with the trait
under study, or more sophisticated, considering generic interactions, etc.

Meta-Analysis
A group of methods that combine data from multiple studies, i.e. smaller co-
horts, in order to quatitatively evaluate the consistency or inconsistency/hetero-
geneity of the results.

Replication
Reproducibility of the results is a key part of the scientific method. The repli-
cation of the findings gives credibility to a genotype-phenotype association ob-
served in a GWAS.

Post-GWAS Analysis
In silico analysis: fine-mapping, gene to function mapping, pathway analysis,
genetic correlation analysis. Further post-GWAS analysis include functional hy-
pothesis testing and result validation in a human trait/disease model.

Figure 1.1: Flowchart of a typical GWAS, briefly describing the steps involved [11, 12,
13].
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of December 2021. Despite the sheer number of results, these studies have not met

the initial expectations, mostly consisting of variants of unknown significance that

increase the disease risk at very low levels and are not very useful for clinic applica-

tions [15], and the significance of these findings was far from the heritability predicted

from traditional genetic epidemiology studies [1]. Heritability refers to the amount of

phenotype variation that can be explained due to genetic differences between individ-

uals.

One hypothesis for the “missing heritability” problem is the presence of gene–gene

and gene–environment interactions during the expression of a phenotype. These in-

teractions are commonly known as epistasis.

1.2. What Is Epistasis?

This thesis focuses on the phenomenon of epistasis, the statistical interaction of

genes among themselves, or with the environment, during the expression of a pheno-

type so that individual variants by themselves display little to no association with said

phenotype. Epistasis was first introduced more than 100 years ago by William Bateson,

and it is still an actively researched topic due to the computational challenge that it

represents.

Identifying an epistasis interaction requires locating the combination of variants,

or set of combinations, that best explains the phenotype under study. It is a combina-

torial problem that grows with the number of variants and the size of the interaction

(commonly referred to as the order) considered. For an epistasis search of k variants

in combination from a total of n, there are
(n

k

)
candidate solutions to the problem.

Because of the dimension of the problem, epistasis detection authors use two dif-

ferent approaches: exhaustive and non-exhaustive methods.

1.2.1. Exhaustive methods

These are methods that examine every combination of variants available in the

data, and locate the most associated ones with the phenotype under study. Fig. 1.2
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Start

Read input
variants

All
combinations

explored?

Write saved
combinations to

an output file

Finish

Is it
significant?

Quantitize the association
between genotype information

and phenotype outcome

Select an unexplored
combination of variants

Save the combination

Yes

Yes

No

No

Figure 1.2: Flowchart of a typical exhaustive epistasis search.

shows a flowchart summarizing the process. As a consequence of that, all exhaustive

methods present a computational complexity of O(nk · A), with A being the computa-

tional complexity of each individual association test. The expression assumes that the

number of combinations without repetition,
(n

k

)
, is equivalent to nk , since the epistasis

order k is smaller than n −k.

This rigidity in the method itself has led to the development of proposals with more

innovation in the different architectures used to tackle the problem than in the algo-

rithmic approach to it. In the beginning, exhaustive methods did not target a com-

puter architecture in particular. They were written in languages such as Fortran, Java

or C, and could be used in any computer. This is the case of MDR [16], one of the

most recognized exhaustive epistasis detection methods in the literature. MDR was

written in Java, allows for epistasis interactions of any given order and supports mul-

tithreaded execution, although the performance achieved is not ideal in modern com-

puters. Since then, performance has become the centerpiece of the exhaustive meth-

ods.

Currently, implementations are more tailored to a particular computer architec-

ture in order to exploit all the resources offered to speed up the search. BitEpi, for
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instance, uses an alternative representation of the genotype information in memory,

introducing a tradeoff between the complexity of the association test and the use of

a more memory-intensive approach to the computation. It implements a 2, 3 and 4-

locus epistasis search that uses multithreading to speed up the search. Furthermore,

for the x86_64 CPU architecture, there are publications that discuss vector implemen-

tations of the epistasis search using Advanced Vector Extensions (AVX) [17].

Aside from CPUs, GPUs and FPGAs are two architectures that gained some interest

from researchers in the field. GPUs are a great fit due to the high degree of parallelism

that they offer and the embarrassingly parallel nature of the epistasis search. There are

a multitude of methods that fall under this category, with SNPInt-GPU [18] being one

of the latest examples. Furthermore, with the introduction of tensor cores in the most

recent GPU microarchitectures, there has been effort to exploit these new instructions

in the epistasis detection problem [19]. FPGAs have also been employed, with methods

that support exhaustive 2 and 3-locus epistasis detection [20, 21], and more recently,

epistasis interactions of any given order [22].

Lastly, some authors have embraced this diversity in architectures with methods

that support heterogeneous systems in order to complete the epistasis search. This

includes methods written in architecture-agnostic languages so that the same imple-

mentation can be compiled for different hardware [23], as well as methods that exploit

computing systems with different architectures simultaneously, and thus taking ad-

vantage of the benefits of each separate architecture, such as CPUs with iGPUs [17],

CPUs with GPUs [24] and GPUs with FPGAs [25].

However, to the best of our knowledge, only a preliminary study [26] with no real

and available implementation considers cluster architectures for third or higher epis-

tasis orders. MPI3SNP and Fiuncho, two programs developed during this thesis, ad-

dress this limitation by exploiting the different resources offered by a cluster through

the Message Passing Interface (MPI) library, in combination with other technologies.

1.2.2. Non-Exhaustive Methods

Non-exhaustive methods only test a fraction of the combinations of variants, fol-

lowing a particular strategy that reduces the search space. These methods reduce the
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computational complexity at the cost of possibly missing the target variant combina-

tion. However, due to the reduced computational cost, they can be applied to larger

problems and consider higher interaction orders.

Upton et al., in [27], categorizes non-exhaustive methods into two groups attend-

ing at the nature of the filtering procedure: data-driven and biological filtering. Data-

driven filtering refers to the methods that apply some sort of quantitative measure to

the genetic data in order reduce the number of tests performed, selecting a subgroup

of individual variants or low-order combinations of them. These methods have a vary-

ing degree of complexity, going from simple methods that apply a statistic (such as the

chi-squared test [28]) to the individual Single Nucleotide Polymorphisms (SNPs) in or-

der to select a few, to more complex methods that apply concepts and algorithms from

a multitude of fields: information theory [29, 30], machine learning [31, 32], regression

analysis [33, 29], etc. As a result, there are no similarities common to all programs,

and they display different computational complexities from one another. Chapter 3

presents a comprehensive review of methods that fall under the data-driven category,

going further into the differences between detection strategies.

Biological filtering, on the other hand, uses biological knowledge to reduce the

size of the epistasis search. Such approaches include the use of pathway databases,

protein-protein interaction databases or genome-annotation based on function to re-

duce the search space [34]. There have also been comprehensive approaches that

combine multiple sources of biological information to assist the search, such as Biofil-

ter [35] or INTERSNP [36].

Non-exhaustive methods also make use of High-Performance Computing (HPC)

architectures to speed up the search [37, 30], although these are less frequent than

exhaustive methods due to the less time-consuming nature of the non-exhaustive ap-

proach.

1.3. A Mutual-Information-Based Association Test

All epistasis detection methods need an association statistic to quantify the de-

gree of association between a particular combination of variants and the phenotype

in question. Not every metric is appropriate to find this correlation. Chi-squared tests,
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frequently used for pairwise interactions, are inaccurate when low genotype frequen-

cies are present, which become increasingly common in high-order interactions as not

every genotype combination includes a significant fraction of the population. Mutual

Information (MI), as stated by Leem et al. in [38], is adequate for this purpose, that is

why we will use an association test based on MI in this thesis. This test has been com-

pared against alternative association metrics in the review presented in Chapter 2 and

showed exceptional detection power along other methods.

The MI test can be divided into three different steps: the construction of the geno-

type and contingency tables of the variant combination in order to obtain the frequen-

cies of the different genotypes segmented by the phenotype, and the usage of the MI

statistic to quantify the association between the genotype frequencies and the pheno-

type.

The computational complexity of this association test is O(3k m), with k being the

number of variants in combination tested, and m the number of samples per variant.

1.3.1. Constructing the Genotype Table

Genotype tables represent, in binary format, the genotype information of all in-

dividuals under study for a particular variant or combination of variants. They are a

generalization of the binary representation introduced in BOOST [39] to simplify the

computation of contingency tables for epistasis interactions of second order. The ta-

bles contain as many columns as individuals in the data, segregated into cases and

controls, and as many rows as genotype values a variant or combination of variants

can show. Every individual has a value of 1 in the row corresponding to its genotype,

and a 0 in every other row. For a human population with biallelic markers, each indi-

vidual can have three different genotypes, and thus genotypes tables contain 3k rows

with k being the number of variants in combination represented.

Genotype tables not only are used to represent the information of a variant, but also

to segment the individuals into different groups by their phenotype and genotype val-

ues and to represent the information of multiple variants in combination. This makes

them extremely useful later when computing the frequencies of each genotype value.

The construction of a genotype table for a combination of multiple variants implies:
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00101101 10101001

10000000 01000010

01010010 00010100

Cases Controls

a1

a2

a3

Genotype table of
variant a:

00000000 00000001

00000100 00100000

00101001 10001000

10000000 00000000

00000000 00000010

00000000 01000000

01010000 00010100

00000010 00000000

00000000 00000000

Cases Controls

a1 ∩b1

a1 ∩b2

a1 ∩b3

a2 ∩b1

a2 ∩b2

a2 ∩b3

a3 ∩b1

a3 ∩b2

a3 ∩b3

Genotype table of vari-
ant a × variant b:

11010000 00010101

00000110 00100010

00101001 11001000

Cases Controls

b1

b2

b3

Genotype table of
variant b:

Figure 1.3: Example of two genotype tables of two different variants, a and b, for eight
cases and controls, and the combined genotype table of the two variants.

a) the combination of the different rows of the tables corresponding to the individ-

ual variants, and

b) the computation of the intersection of each combination of rows (or genotype

groups) via bitwise AND operations.

Fig. 1.3 shows an example of two genotype tables for two variants a and b for sixteen

individuals (eight cases and controls), and the table resulting from the combination of

these two variants.

1.3.2. Obtaining the Contingency Table

A contingency table is a type of table that holds the frequency distribution of a

number of variables, that is, the genotype and phenotype distributions for this domain

of application. These frequencies can be directly obtained by counting the number of

individuals in each of the phenotype and genotype groups created by the genotype ta-

ble. This implies counting the number of bits set, an operation commonly known as a

population count. Fig 1.4 shows the contingency tables of the example genotype tables

included in Fig. 1.3.
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4 4

1 2

3 2

Cases Controls

a1

a2

a3

Contingency table of
variant a:

0 1

1 1

3 2

1 0

0 1

0 1

2 2

1 0

0 0

Cases Controls

a1 ∩b1

a1 ∩b2

a1 ∩b3

a2 ∩b1

a2 ∩b2

a2 ∩b3

a3 ∩b1

a3 ∩b2

a3 ∩b3

Contingency table of vari-
ant a × variant b:

3 3

2 2

3 3

Cases Controls

b1

b2

b3

Contingency table of
variant b:

Figure 1.4: Contingency table examples using the same variants as in Fig. 1.3.

1.3.3. The Mutual Information Metric

Once the contingency table is calculated, the only step left to assess the association

between the genotype distribution and the phenotype affliction is computing the MI

of the table. Considering two random variables X and Y representing the genotype

and phenotype variability, respectively, the MI can be obtained as:

M I (X ;Y ) = H(X )+H(Y )−H(X ,Y ) (1.1)

where H(X ) and H(Y ) are the marginal entropies of the two variables, and H(X ,Y )

is the joint entropy. Marginal entropies of one and two variables are obtained as:

H(X ) =− ∑
x∈X

p(x) log p(x) (1.2)

H(X ,Y ) =−∑
x,y

p(x, y) log p(x, y) (1.3)

with p(x) representing the probability of the random variable X taking the value

x, p(y) the probability of the random variable Y taking the value y , and p(x, y) the
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joint probability of both events. These probabilities can be obtained directly from the

contingency table as the division between the number of occurrences and the number

of total observations.



Chapter 2

Third-Order Epistasis Search on CPU

and GPU Clusters

This chapter discusses the design of a distributed algorithm dedicated to the ex-

haustive search of third-order epistasis interactions, implemented in MPI3SNP [2], that

supports both CPU and GPU clusters. The chapter is organized as follows. Section 2.1

describes the parallel implementation proposed and how the work is scheduled among

the architecture to obtain a good load balance. Section 2.2 shows an experimental eval-

uation of MPI3SNP’s parallel efficiency. Finally, Section 2.3 draws some conclusions

and offers some lines of future work.

2.1. MPI3SNP

Exhaustively searching third-order combinations, using the association test pre-

sented in Section 1.3, has a computational complexity of O(n3m), with n being the

number of input SNPs and m the number of individuals considered. With the hope of

mitigating the inherent cubic time complexity of the problem, and thus to be able to

deal with relatively large datasets, in a previous work, González-Domínguez et al. pro-

posed GPU3SNP [40], a tool that is able to exploit several GPUs within the same node

to exhaustively search third order epistatic interactions. Although the results show that

GPU3SNP achieves high performance and significantly reduces the execution times,

11
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the analysis of large GWAS datasets would still require a significant amount of time. For

instance, the analysis of a dataset consisting of 50000 SNPs and 1000 individuals needs

nearly 22 hours on a computing node with 4 NVIDIA GTX Titan GPUs. Thus, for large

datasets, HPC cluster architectures should be used instead. MPI3SNP is designed to

exploit cluster architectures. It is a hybrid two-level parallelization approach support-

ing nodes with both multicore CPUs and GPUs. On the inter-node level, MPI is used

to communicate different nodes for both implementations. On the intra-node level,

Pthreads and CUDA are used for the CPU and GPU implementations, respectively.

2.1.1. Distribution Strategy

In the exhaustive epistasis search, the task that consumes the runtime of the pro-

gram almost entirely is measuring the degree of association of all variant combina-

tions. Each association test involves the same computations, and thus the combi-

nations themselves implicitly divide the problem into smaller tasks of similar weight.

However, many of the 3-SNP combinations share sub-combinations with one another,

and as such, many repeating computations concerning the construction of the geno-

type tables (see Section 1.3.1) can be avoided attending to how the combinations are

scheduled on the different computing units (in this scenario, they can be CPU cores or

GPU cards). For instance, the analysis of the combinations with variants {1,2,3}, {1,2,4},

{1,2,5}, etc. requires the construction of the same genotype table corresponding to the

pair {1,2}. One solution to this problem is to assign all these combinations to the same

unit, which enables the reuse of the genotype table of the SNPs {1,2} for all third-order

combinations that contain them.

Following this strategy, pairs are assigned using a Round-Robin (RR) distribution

among all computing units. Each unit computes, for every pair assigned, all non-

repeating combinations of three SNPs that begin with that pair, maximizing the reuse

of operations. Although the number of possible combinations varies from pair to pair,

the cyclic distribution guarantees a good balance. Fig. 2.1 gives an example of this ap-

proach, showing the distribution of all the triplets resulting from 9 SNPs among 3 com-

puting units. This example uses a very small number of SNPs and some differences in

the number of combinations assigned per unit can be noted. However, with a more

realistic input size, the differences are unnoticeable in relation with the total number
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{1,2} {1,3} {1,4} {1,5} {1,6} {1,7} {1,8}

{2,3} {2,4} {2,5} {2,6} {2,7} {2,8} {3,4}

{3,5} {3,6} {3,7} {3,8} {4,5} {4,6} {4,7}

{4,8} {5,6} {5,7} {5,8} {6,7} {6,8} {7,8}

33 44 55 66 77
88 99

44 55 66 77 88
99

55 66 77 88 99 66 77 88 99 77 88 99 88 99 99

44 55 66 77 88
99

55 66 77 88 99 66 77 88 99 77 88 99 88 99 99 55 66 77 88 99

66 77 88 99 77 88 99 88 99 99 66 77 88 99 77 88 99 88 99

99 77 88 99 88 99 99 88 99 99 99

27 comb. 33 comb. 24 comb.

Figure 2.1: Example of the distribution strategy, arranging combinations of three SNPs
among three computing units. Each prefix of two SNPs (represented as rectangles with
dashed lines) is assigned to a unit (shown with different colors) following a RR distribu-
tion, and that unit tests for association every combination of three SNPs starting with
the prefix (represented as small colored squares).

of assigned combinations, both in an intra-node and inter-node level, as it will be seen

in the posterior experimental evaluation (Section 3.2).

This strategy adheres to the Single Program Multiple Data (SPMD) paradigm in

which all computing units execute the same function, while each unit analyzes a differ-

ent set of variant combinations. It does not require communication among comput-

ing units during the computation step. This is achieved by replicating the input data

among all computing units (avoiding the need of communications among processes

when constructing the contingency tables) and gathering all results intro a single unit

at the end of the computation. The consequent memory overhead due to replication

is affordable on current multicore clusters. For instance, storing the genotype data

of the biggest dataset employed in the experimental evaluation (6300 SNPs and 3200

samples) only requires 58 MB of memory.

Since there are no communications between the start and end of the program, the

distribution strategy can be completely abstracted from the topology of the hardware.

The distribution assigns combinations to the computing units directly, which are CPU

threads in a CPU execution or GPU cards during a GPU execution.
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2.1.2. CPU Clusters

The CPU implementation combines MPI multiprocessing with multithreading to

efficiently exploit the computational capabilities of CPU clusters. Each computing unit

corresponds to each CPU core partaking in the computation. Every MPI process reads

the input SNPs and stores each one in a genotype table, keeping the individual variant

information replicated in each process. After that, each MPI process spawns a number

of threads that execute the MI association test over a different set of variant combi-

nations. The input data is provided to the different threads through shared memory,

making an efficient use of the memory inside each node. Once the combinatory explo-

ration of all threads from a process conclude, the results are agregated into a single list

of combinations, then sorted by their MI value and truncated to the number of desired

outputs. Analogously, when all processes conclude, their results are gathered into the

process with id 0, sorted by their MI, truncated and written into an output file.

2.1.3. GPU Clusters

On GPU clusters, a computing unit in the distribution correspond to a GPU device.

Each MPI process controls a single GPU, transferring its fraction of the workload to the

GPU and calling the appropriate compute kernels (written in CUDA C++) to process its

corresponding triplets.

In order to minimize the thread divergence in the GPUs, the workflow is divided

into two kernels. The first one calculates the genotype tables of the assigned SNP pairs,

and stores these partial results into the device memory. The second kernel uses these

partial results to calculate the MI for all the triplets that can be generated with those

pairs. Since GPU memory is limited, to be able to store all the partial results, the work-

load is transferred from the MPI process to the GPU in blocks, following an iterative

procedure until its fraction of the computation is completed. MI results are kept in the

GPU memory until the end, and then gathered into a single MPI process.

As explained during the introduction in Chapter 1, MPI3SNP uses the genotype

table representation to accelerate the contingency table construction step. In the CPU

version, all the data is consecutively stored by SNP to exploit cache locality. However,

due to differences in the memory hierarchy, a data transposition is applied in the GPU



2.2 Experimental Evaluation 15

Table 2.1: Hardware characteristics of the Finisterrae-II cluster.

CPU NODE K80 NODE K2 NODE

OS RHEL 7.5 RHEL 7.5 RHEL 7.5
CPUS 2x Intel E5-2680 v3 (24C) 2x Intel E5-2680 v3 (24C) 2x Intel E5-2650 v3 (20C)

MEMORY 128 GB 128 GB 128 GB
GPU CARDS - 2x NVIDIA K80 NVIDIA K2

NETWORK Infiniband FDR@56Gbps Infiniband FDR@56Gbps Infiniband FDR@56Gbps

version in order to increase the coalescence and thus the performance of the device

memory accesses. More details about the data transposition and its benefits, as well

as the CUDA kernels and the iterative SNP block transfer can be found in the original

work of [40].

2.2. Experimental Evaluation

The experimental evaluation consists of two parts: a parallel balance evaluation,

which measures the differences in assigned workload among computing units, and

a speedup and efficiency evaluation in which the runtimes of the application, both

for CPU and GPU executions, are compared. The epistasis detection power and false

positive rate are extensively evaluated in the following Chapter 3, showing very good

results compared to other state-of-the-art methods.

The evaluation was performed on the Finisterrae-II cluster, described in Table 2.1.

As per the software environment, GCC 5.3, NVCC 8.0 and OpenMPI 1.10 were used.

The datasets used in all executions consist of 6300, 5000, 4000 and 3200 SNPs, with

3200 samples (1600 cases and 1600 controls) per SNP. These datasets were obtained

from [40] by trimming the number of samples and SNPs.

2.2.1. Parallel Distribution Balance

Fig. 2.2 evaluates the workload balancing strategy using a fixed problem size of 3200

SNPs (and thus a fixed number of combinations to distribute) and a growing number

of computing units from 12 to 768. The measure used is the relative differences (in

percentage) of assigned combinations from the mean number of combinations per
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Figure 2.2: Maximum difference of assigned combinations to any computing unit from
the average number of combinations assigned per unit, relative to the latter.

unit (which represents the most balanced distribution attainable), calculated as:

100
maxdi −

(n
3

)
/p(n

3

)
/p

(2.1)

with di being the number of combinations assigned to the unit i , n the number of

variants and p the number of computing units used. The figure shows that, for every

scenario tested, the difference is under 2 %. For scenarios with a larger variant count,

as is the case during the following experimental evaluation, the differences in assigned

workload are expected to be even smaller.

2.2.2. CPU Speedup and Efficiency

The CPU evaluation distinguishes between intra-node and inter-node scenarios.

For the intra-node evaluation, two different configurations are considered: a single-

thread execution and a 24-thread execution. For the inter-node evaluation, the perfor-

mance of a single-node execution is compared with the performance of 4, 8, 16 and 32

nodes.
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Table 2.2: Sequential CPU runtimes of MPI3SNP, for datasets consisting of 6300, 5000,
4000 and 3200 SNPs, with 3200 per SNP.

SNPS ELAPSED TIME (S)

3200 29323
4000 57274
5000 111887
6300 224132

Intra-node evaluation

Fig. 2.3 shows the speedups obtained from a multithread execution using the 24

cores available in a single node for different input sizes, compared to the sequential

runtimes using a single core shown in Table 2.2. The figure distinguishes between

observed and frequency-adjusted speedups. The observed speedup is calculated as

T1/TN , with T1 being the elapsed time using a single CPU core and TN the elapsed

time using N CPU cores. This metric is far from the ideal efficiency, and this is due

to the frequency scaling present in modern processors. Intel CPUs, in particular, ad-

just their maximum core frequencies attending to the number of active cores, among

other factors [41]. Therefore, to get a better grasp of the efficiency of the parallel im-

plementation, an adjusted speedup compensating for the discrepancy in average CPU

frequency is included in the figure, calculated as T1/TN ·F1/FN , where F1 is the aver-

age single-core frequency and FN is the average multicore frequency when N cores are

used. The results for a single-node (24 cores) execution show very good efficiencies

when the speedup is adjusted for the frequency differences between single-core and

multicore executions.

Inter-node evaluation

Fig. 2.4 compares the speedups achieved as the number of nodes increases for the

same dataset sizes. The inter-node evaluation does not present the previous frequency

differences, as every node is using all cores during the execution. In this scenario, the

speedup is calculated as T1/TN , with T1 being the elapsed time using a single node

(24 cores) and TN the elapsed time using N nodes (with 24×N cores). The speedups

obtained in all scenarios show a parallel efficiency close to one.
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Figure 2.3: Speedups of MPI3SNP for multithread executions using 24 threads com-
pared to the single-thread results from Table 2.2, representing both the observed and
frequency-adjusted speedups.
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Figure 2.4: Speedups of MPI3SNP using 4, 8, 16 and 32 nodes with 24 threads per node,
compared to a single-node execution.

To give some perspective, remark that the sequential runtime for the dataset with

6300 SNPs and 3200 individuals is roughly 62 hours. The same epistasis search is re-
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Figure 2.5: Speedups using a variable number of GPUs, compared to the single-GPU
executions from Table 2.3.

duced to under 6 minutes by exploiting 32 CPU nodes of the cluster.

2.2.3. GPU Speedup and Efficiency

Fig. 2.5 compares the speedup obtained from using multiple GPUs compared to

the runtimes of a single GPU execution for different dataset sizes, shown in Table 2.3.

This study uses the NVIDIA K2 and NVIDIA K80 GPUs (Table 2.1), available in four and

two nodes of the Finisterrae-II cluster. It is worth mentioning that these are dual GPU

cards, making a total of eight GPU cards from each type. Single GPU results show that

the NVIDIA K80 GPU is considerably faster than the K2. The speedups obtained with

the two different GPUs can be assumed as linear for 2 and 4 GPUs, and shows slightly

degraded efficiencies for 8.
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Table 2.3: Runtime of MPI3SNP on a single GPU, for datasets consisting of 6300, 5000,
4000 and 3200 SNPs, with 3200 per SNP.

SNPS NVIDIA K2 (S) NVIDIA K80 (S)

3200 748 241
4000 1459 469
5000 2866 919
6300 5519 1775

The thousands of cores available in a GPU make it adequate to accelerate appli-

cations that are highly parallelizable. This is the case for epistasis detection. For in-

stance, using the largest dataset size (6300 SNPs and 3200 samples), eight GPUs reduce

the runtime from approximately 92 and 30 minutes for the K2 and K80 respectively, to

12 and 4 minutes.

2.3. Concluding Remarks

The principal limiting factor of epistatic searches is the exponential growth of the

number of combinations with the number of SNPs involved on the interaction. Instead

of reducing the scope of the search by means of a previous filtering stage, or limiting

the usability to small datasets, our approach relies on cluster architectures to overcome

this exponential growth and achieve a manageable run-time. The current implemen-

tation obtains next to linear speedups thanks to the use of a static distribution of the

workload that allows the reuse of computations, avoids communications and synchro-

nizations, and provides an almost perfect load balance.

Take as an example the largest dataset tested, composed by 3200 samples of 6300

SNPs each. When using 32 nodes of 24 CPU cores each, the obtained speedup is 31.73

compared to a single-node execution. The GPU implementation shows similar parallel

efficiencies, as the total runtime is reduced 7.29 times when using 8 NVIDIA K80 GPUs

against one.

In spite of the highly scalable parallel application, the exponential computational

complexity of the exhaustive search could make its extension to higher interaction or-

ders unfeasible for analyzing many SNPs. For this reason, the next chapter compares

the available methods in the literature to gauge which one is the best alternative to
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extend the epistasis search to any-order interactions.





Chapter 3

Review of High-Order Epistasis

Detection Methods

In this chapter, we compare the epistasis detection methods published between

2009 and 2019, with a special interest in high-order epistasis detection. The chapter is

structured as follows. Section 3.1 provides a brief description of the methods included

in the study. Section 3.2 evaluates all methods in terms of runtime, detection power

and Family-Wise Error Rate (FWER). Section 3.3 discusses the results and summarizes

the findings. At last, Section 3.4 completes the chapter with the conclusions.

3.1. Methods

Prior to this survey, there have been several review studies that compared different

strategies for epistasis detection from various perspectives. Some are focused entirely

on their methodology, comparing the different approaches, their advantages and limi-

tations [42, 43, 44, 27, 45, 46, 47]. Other studies go further by also including an empiri-

cal comparison from simulation studies, although the number of methods included in

these studies is more limited [48, 49, 50, 51, 52]. There are also previous publications

regarding the selection of epistatic detection methods and how to integrate them in

the different stages of a genetic study [53, 54, 55]. Nevertheless, there is no previous

comparison study with an emphasis on the interaction order.

23
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Table 3.1: List of the different methods evaluated, together with the strategy followed,
the implementation language used and the year of publication.

METHOD STRATEGY LANGUAGE YEAR REF.

AntMiner Swarm intelligence MATLAB 2012 [56]
ATHENA Genetic Algorithm C++ 2010 [31]
BADTrees Depth-first C++ 2012 [57]
BEAM3 Random-search based C++ 2012 [58]
BHIT Random-search based C++ 2015 [59]
CINOEDV Swarm intelligence R 2016 [60]
DCHE Filtering Java 2014 [37]
EACO Swarm intelligence MATLAB 2018 [61]
EDCF Filtering C/C++ 2012 [62]
epiACO Swarm intelligence MATLAB 2017 [63]
EpiMiner Filtering MATLAB 2014 [29]
FDHE-IW Depth-first MATLAB 2018 [64]
GALE Genetic Algorithm Python 2010 [65]
HiSeeker Filtering C++ 2017 [66]
IACO Swarm intelligence MATLAB 2016 [67]
LAMPLINK Filtering C++ 2016 [68]
LRMW Depth-first C++ 2014 [69]
MACOED Swarm intelligence C++/MATLAB 2015 [32]
MDR Exhaustive Java 2001 [70]
MECPM Filtering C 2009 [71]
Mendel Filtering C/C++ 2009 [72]
MPI3SNP Exhaustive C++ 2019 [2]
NHSA-DHSC Swarm intelligence MATLAB 2017 [73]
SingleMI Filtering C++ & CUDA 2017 [30]
SNPHarvester Random-search based Java 2009 [74]
SNPRuler Depth-first Java 2010 [75]
StepPlr Depth-first R 2008 [33]

This review includes the methods that, first, support epistasis detection for qual-

itative phenotypes and for more than two variants; second, offer an implementation

freely available to the scientific community and finally, their execution can be com-

pleted within a week. Table 3.1 lists all methods included. We decided to also consider

MDR and StepPLR, despite being published more than ten years ago, due to their rele-

vance in the field.

The selected methods have been grouped into six categories, attending at how the

search space is explored: exhaustive methods, filtering methods, depth-first methods,

swarm intelligent methods, genetic algorithms and random-search-based methods.

Here, we provide a brief description of them in order to highlight the similarities and

https://sourceforge.net/projects/antminer/
https://ritchielab.org/software/athena-downloads
https://github.com/guyrt/WFUBMC
http://personal.psu.edu/yzz2/software/
http://digbio.missouri.edu/BHIT/
https://github.com/cran/CINOEDV
http://www.cse.unt.edu/~xuanguo/project_dche.html
https://sourceforge.net/projects/eaco1/
http://www.cs.ucr.edu/~minzhux/EDCF.zip
https://sourceforge.net/projects/epiaco1/
https://sourceforge.net/projects/epiminer/
https://www.mdpi.com/2073-4425/9/9/435#supplementary
http://gbml.org/2010/06/10/python-lcs-implementations-gale-gassist-for-snp-environment/
http://mlda.swu.edu.cn/data.php
https://sourceforge.net/projects/iaco1/
https://github.com/a-terada/lamplink/
https://msu.edu/~qlu/Software.html
http://www.csbio.sjtu.edu.cn/bioinf/MACOED/
https://multifactordimensionalityreduction.org/
https://www.cbil.ece.vt.edu/ResearchOngoingSNP.htm
http://software.genetics.ucla.edu/download?package=1
https://github.com/UDC-GAC/mpi3snp
https://www.nature.com/articles/s41598-017-11064-9#Sec28
https://github.com/sleeepyjack/singlemi/
http://bioinformatics.ust.hk/SNPHarvester.html
http://bioinformatics.ust.hk/
https://cran.r-project.org/web/packages/stepPlr/index.html
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differences between methods, and to have a better understanding of the results that

each program yields. We refer to the authors’ original works for a more complete and

in-depth explanation.

3.1.1. Exhaustive Methods

As commented in Chapter 1, exhaustive methods apply the brute force technique to

the association search problem, exploring all possible combinations of genetic mark-

ers up to a defined size or order. The computational cost of exploring all possible com-

binations is exponential with the number of genetic markers considered and the com-

bination size. Therefore, these methods cannot be applied to large datasets with high

epistatic factors.

MDR [70] and MPI3SNP [2] fall under this category. MDR partitions the individuals

in the dataset into different k-fold cross-validation groups. Combinations are eval-

uated through a prediction model which labels the different allele combinations as

high-risk (if the number of cases exceeds the number of controls for that particular

combination) or as low-risk (if it does not). For each combination, k different mod-

els are created (one per cross-validation partition) and its prediction accuracy is av-

eraged across partitions. At the end of MDR, the combination corresponding to its

best-averaged prediction accuracy is reported. MPI3SNP, as explained in the previous

chapter, enumerates all third-order combinations and sorts them using MI, returning

the top-ranked ones. However, in this chapter we use a modified version of the pro-

gram to also support fourth-order combinations.

3.1.2. Filtering Methods

Filtering methods discard many SNPs or combinations of SNPs to reduce the com-

putational burden. The most direct approach is to filter the individual SNPs of the

dataset before attempting to combine them, drastically decreasing the number of com-

binations. EpiMiner [29] and Mendel [72] follow this approach. EpiMiner ranks indi-

vidual SNPs by their co-information index and retains the top ranked ones. The num-

ber of retained SNPs can be fixed or selected on a case-by-case basis through a Support

Vector Machine (SVM). The retained SNPs advance to a second stage where all possible
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combinations among them are evaluated using permutation-based co-information,

and combinations whose p-values surpass a certain threshold are reported as inter-

actions. Computing the co-information index requires calculating the index for all the

combinations which contain a certain SNP up to a certain order, which still supposes a

costly step, therefore EpiMiner allows us to approximate its value through Monte Carlo

sampling. Mendel uses a lasso penalized logistic regression model to quantify the as-

sociation between the SNPs, used as predictor variables, and the phenotype, used as

the regression class. The interaction search process begins by pre-screening the SNPs

in the dataset in a first stage using a simplified regression model and an absolute score

criterion. Then, the number of SNPs selected is further reduced by tuning the constant

λ, which increases the lasso penalty and, in turn, leaves many predictors out of the lo-

gistic regression model. Finally, when the number of retained SNPs is very small, the

penalty is removed and the model coefficients are re-estimated. Using this final model,

p-values of individual and combinations of SNPs are assessed following a leave-one-

out procedure and thus the associated combinations are identified.

Alternatively, other methods perform the filtering step on low-order combinations.

HiSeeker [66] and MECPM [71] enumerate all possible 2-SNP combinations and se-

lect a group of candidates for further analysis. HiSeeker filters these combinations

by applying Pearson’s χ2 test with eight degrees of freedom, assessing the association

between each combination and the phenotype. Combinations that meet a relaxed

Bonferroni-corrected p-value threshold proceed to a second stage for a higher-order

analysis. HiSeeker offers the possibility of performing an exhaustive search during

the second stage to find high-order interactions, or using an Ant Colony Optimiza-

tion (ACO) algorithm if the number of combinations to be tested is still unreasonably

high. ACO algorithms will be covered in detail in Section 3.1.4. In the end, the non-

relaxed Bonferroni-corrected p-value threshold is used to filter false positives. MECPM

creates a maximum entropy classification model and uses the Bayesian Information

Criterion (BIC) to quantify the association between genotypes and the phenotype un-

der study. For this purpose, MECPM first creates a pool of promising SNP combina-

tions and iteratively adds combinations to the model until the BIC cost is minimum.

The pool is constructed following two approaches: a complete approach where all

single SNPs and combinations of two SNPs serve as seeds, and successive SNPs are

appended to each seed measuring the change in BIC cost with each addition; and a

greedy approach where the initial selected seeds are reduced to the top-ranking sin-
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gle and combinations of two SNPs using the relative entropy, and successive SNPs are

appended maximizing this metric. MECPM reports the SNP combinations included in

the model.

DCHE [37], EDCF [62] and SingleMI [30] use clustering techniques to filter combi-

nations of SNPs. Both DCHE and EDCF recursively apply a clustering algorithm over

the population frequencies of all allele combinations, starting from 2-SNP combina-

tions up to a selected order. These clusters are then tested using Pearson’s χ2 test to

measure its association with the phenotype. DCHE implements a clustering algorithm

named Dynamic Clustering which reduces the 3k frequencies associated with a com-

bination of k SNPs in a biallelic population to a number between 3 and 6, merging the

two least significant allele combinations in each step. DCHE retains a different fixed

number of top-ranking combinations depending on the combination order being ex-

plored and applies a p-value threshold at the end of the algorithm to filter out irrel-

evant combinations. EDCF, instead, creates three groups from all allele combination

frequencies: G0, or combinations which occur more frequently in cases than in con-

trols; G1, or combinations which occur more frequently in controls than in cases; and

G2 with the combinations left. Clusters are then evaluated using a permutation test

and the corresponding SNP combination is discarded if their p-value does not meet a

certain threshold. Again, a fixed number of top-ranking SNP combinations (using the

aforementioned χ2 test) are retained from each combination size and its Bonferroni-

corrected p-value is finally used as the threshold to decide the result of the method.

SingleMI uses a clustering algorithm in a very different manner from the previous two.

Individual SNPs are clustered following a k-means clustering method, where the dis-

tance between SNPs and the centroid of each cluster is measured using MI. Markers

that are strongly interacting pair-wise tend to be placed in different clusters. Therefore,

after creating the K clusters, a user-defined number of SNPs from different clusters are

analyzed exhaustively using the same MI metric.

LAMPLINK [68] follows a completely different filtering approach from previous

methods. Individual SNP genotypes are first categorized into two classes following a

dominant or recessive exclusive model: risk and non-risk classes. Then, a modified

version of the pattern mining algorithm called Linear time Closed itemset Miner [76] is

used to prune the SNPs combinations that, taking into account their frequency, cannot

show a significant association with the phenotype. Finally, the non-pruned combina-
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tions are evaluated using a Fisher’s exact test or a chi-squared test and the obtained

p-value is corrected according to the number of testable combinations.

3.1.3. Depth-First Methods

This group is made of methods that explore the combination space using a depth-

first search method, incorporating SNPs on each iteration while maximizing some

measurement until convergence is detected. This search is repeated successively until

a certain number of combinations is reached or no more significant combinations can

be found. FDHE-IW [64], LRMW [69], BADTrees [57], StepPLR [33] and SNPRuler [75]

follow this procedure.

FDHE-IW implements a search algorithm which constructs SNP combinations in-

crementally, starting with the empty set and repeatedly adding the SNP that maximizes

the Symmetrical Uncertainty of the set until a maximum set size is reached. A G-test is

applied after achieving a number of combinations to obtain a p-value associated with

the combinations. LRMW uses decision trees to represent candidate interactions and

employs its associated Area Under the ROC Curve (AUC) to measure significance. The

method starts with an empty tree and progressively generates more complex ones until

an AUC value of 1 is reached. Then, a 10-fold cross-validation is carried out to select

the most complex model which still improves the AUC compared to the previous one.

Decision trees are also used in BADTrees to represent interaction among SNPs and a

method called bagging is introduced to increase the signal-to-noise ratio of the inter-

acting SNPs. Bagging consists in bootstrapping a number of datasets from the original

one, constructing a tree in each of the sets and finding similarities among them. In

BADTrees, the most frequent SNPs among the trees are reported as associated with the

phenotype.

StepPLR uses a penalized logistic regression model to quantify the association be-

tween the selected SNPs and the phenotype. It is an iterative algorithm where, based

on a cost-complexity statistic which integrates either the Akaike Information Criterion

or the BIC, SNPs or combination of SNPs are added or removed from the model in a

series of forward selection and backward deletion steps. The model with the minimum

cost is selected and the SNPs or combinations of SNPs included in the model are re-

ported. Lastly, SNPRuler uses a rule-based classification model which introduces the
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concept of rule utility and its derived upper bound to identify whether a rule can be

further improved to increase its classification accuracy or not. SNPRuler begins by

building a search tree to guide the search of interactions, where nodes represent SNPs

and edges represent interactions between SNPs. The tree is built avoiding unneces-

sary expansions of child nodes, i.e. those whose utility’s upper bound is lower than a

certain threshold or its parent’s utility. After the search tree is built, SNPRuler finds a

number of top-ranked interactions (paths from the root to the leaf nodes) sorted by its

utility measurement, calculates their p-value using the χ2 statistic and writes the list to

an output file.

3.1.4. Swarm Intelligent Methods

Swarm intelligence is a group of methods that falls under the category of meta-

heuristics. Metaheuristics are high level heuristic methods for exploring the search

space, applicable to domains where the computational power of the information sys-

tems is insufficient, or the domain information is limited [77]. Swarm intelligence, as

many of the metaheuristics, are nature-inspired methods that rely on the problem-

solving ability that emerges from the interactions of simple information-processing

units, or agents [78]. These are multiagent, decentralized and self-organized systems

where the individual agents that integrate the system follow a rule-set that determines

their behavior.

ACO is the most explored metaheuristic in epistasis detection. It relies on artificial

ants (independent decision-making agents) to iteratively explore the SNP combination

space. Pheromones are an implicit communication mechanism that ants use to guide

the search. Whenever an ant explores a combination, it deposits a certain number of

pheromones proportional to the association strength between the phenotype and the

specific combination. Pheromones also evaporate over time, progressively reducing

its effect. A probability function is used to decide which combination an ant should

explore next based on the pheromone levels present on the combinations. The proba-

bility function also considers selecting a random combination under specified odds to

avoid being trapped in local optima. After a fixed number of iterations are completed,

the algorithm ends, and the result is a list of the most promising combinations visited

by the ants. MACOED [32], IACO [67], epiACO [63] and HiSeeker [66] implement this
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method faithfully, only exchanging the association measure and how the results are

treated. MACOED uses the Pareto Optimal Set to select a group of candidate combina-

tions from all explored and then applies a Pearson’s χ2 test to quantify its association.

IACO and epiACO use the ratio between the MI and the Bayesian Network, and the ratio

between the MI and the K2 score, respectively, to measure association. Both methods

then proceed to calculate an inflection point on the association value to separate sig-

nificant from irrelevant combinations. HiSeeker, as explained in Section 3.1.2, runs

the ACO algorithm on a filtered group of SNPs. It uses Pearson’s χ2 test to evaluate

the association, and the top-ranked combinations reported by the ACO algorithm are

evaluated using the χ2 test again to provide a Bonferroni-corrected p-value metric.

AntMiner [56] and EACO [61] innovate over the generic ACO algorithm by incor-

porating a heuristic into the probability function. AntMiner includes the addition of

the Symmetrical Uncertainty and Spatially Uniform ReliefF onto the probability func-

tion, and segregates the ants into sub-colonies each exploring combinations of differ-

ent sizes. It uses Pearson’s χ2 test as the association measurement. All explored com-

binations that surpass a certain χ2 threshold are kept in what they call a Candidate Set,

which is post-processed at the end to reduce false positives. EACO, on the other hand,

uses the Multiple Threshold Spatially Uniform ReliefF as the heuristic of choice, and

uses the ratio between MI and Gini index to assess association. Similarly to IACO and

epiACO, significant combinations are identified by calculating an inflection point on

the association metric.

CINOEDV [60] and NHSA-DHSC [73] use different swarm intelligence methods

from the extensively seen ACO. CINOEDV implements the particle swarm optimiza-

tion algorithm, where agents consist of particles with a defined position and veloc-

ity. The position represents the selected SNP combination, and from each position,

its fitness or degree of association with the phenotype can be obtained using three

different metrics: Co-Information, Normalized Co-Information and Contribution Co-

Information. The velocity of each particle determines the next position to be explored.

It depends on the current velocity, the best position found by the current particle and

the best global position found by all particles. The algorithm initializes all particles’

positions and velocities randomly and iterates for a fixed number of steps, storing the

best position found on each iteration. It returns the list of positions sorted by the se-

lected metric. The NHSA-DHSC method consists of two stages, a searching step that
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implements the Niche Harmony Search Algorithm combining a harmony search al-

gorithm with a niching technique, and a second stage where all found candidates are

evaluated. Harmony search is a music-inspired swarm intelligent algorithm that mim-

ics the improvisation process used by skilled musicians, where harmonies represent-

ing SNP combinations are iteratively explored following an improvisation process and

the best harmonies are kept in a harmony memory [79]. The improvisation of new

harmonies consists in choosing between pitch-adjusting previous harmonies and ran-

domly exploring new ones. When the algorithm is stuck in a local optimum the niching

algorithm is triggered, and the centroid and radius of the optimum point are included

in a taboo table to be avoided by all future solutions, forcing the search algorithm to

explore new areas in the solution space. NHSA-DHSC uses three different association

metrics, kept in separate harmony memories, which are the K2-score, the Gini index

and the joint entropy. After the NHSA algorithm ends, the three memories are joined

into a common candidate pool and a G-test is performed on the resulting combina-

tions to check for association with the phenotype.

3.1.5. Genetic Algorithms

Genetic Algorithms (GAs) are another group of metaheuristic methods which

mimic the biological evolution process. GAs begin with a population of random so-

lutions to a problem, encoded as chromosome-like data structures. The algorithm

explores the solution space by evolving the current population into successive gen-

erations following a reproductive function. Reproduction consists of evaluation, se-

lection, recombination and mutation steps. Solutions are evaluated using a fitness

function, and reproductive opportunities are given proportionally to each individual

according to its fitness. Selected individuals create offspring in a recombination oper-

ation, in which the two encoded solutions create two new offspring by selecting a (ran-

dom) recombination point and swapping the subsequent fragments. Finally, a muta-

tion step modifies some bits of the offspring following a specific probability function.

The method evolves the population until a certain fitness of the solutions is achieved

or the number of generations reaches the limit [80]. GALE [65] and ATHENA [31] use

GAs to detect epistatic interactions.

GALE creates a rule-based classification system using a GA to generate a rule set.
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The solutions of the population are ordered rule sets from which a rule-based classi-

fier can be built. The fitness of a solution is measured as the average accuracy of its

classifier in a k-fold cross-validation partition. GALE introduces the concept of spatial

awareness to GAs by representing the population of solutions in a 2D grid and modify-

ing the reproductive selection to take into account the proximity between solutions in

the grid [81]. The final rule set obtained at the end of the GA is the solution provided

by GALE.

ATHENA introduces Grammatical Evolution Neural Networks to the epistasis de-

tection problem. Grammatical Evolution is a GA dedicated to the construction of com-

puter programs, adapting the representation of solutions and the reproductive meth-

ods for this purpose. Solutions are variable length binary strings made of groups of

8 bits named codons, each encoding an integer. Codons are translated into rules fol-

lowing a predefined grammar specified in Backus-Naur form, and the translation of a

complete solution is a program which can be evaluated using a fitness function [82].

ATHENA uses the coefficient of determination, R2, as the fitness function to eval-

uate the different solutions considered. These solutions are made up of the SNPs

used as input variables to the neural network, the network architecture itself and the

weights associated to each of the connections. Using the BNF grammar, the different

components of the solutions can be translated into a fully functional neural network.

ATHENA also replaces the single-point crossover method from GAs with the Tree-Based

Crossover method, which swaps a complete branch of the neural network to create

offspring in order to avoid the uncertainty of recombining the network in its binary

representation. ATHENA applies a 5-fold cross-validation to construct five different

classification models and selects the model whose SNPs appear more consistently as

the best model.

3.1.6. Random-Search-Based Methods

Lastly, a group of methods based on the random search algorithm can be identi-

fied. Random search stochastically samples the solution space for a number of itera-

tions, evaluates each solution using a fitness function and saves the result with the best

fitness value out of all the explored. SNPHarvester [74], BEAM3 [58] and BHIT [59] are

epistasis detection methods that belong to this group.
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SNPHarvester implements an algorithm named PathSeeker to explore multiple

combinations by the means of different local search iterations at random points of the

combination space. PathSeeker follows a swapping technique, testing for all SNPs if

any replacement in the combination can improve the χ2 association value until no

more replacements can be made. Once a predefined number of candidates has been

found, a post-processing step is carried out to filter out spurious interactions by fit-

ting a L2 penalized logistic regression and reporting those interactions selected by the

regression model.

BEAM3 uses a joint probability model between the SNP collection X , the interact-

ing SNPs X1 and a disease graph G ; and the phenotype Y to determine the association

present in the data. G is an undirected graph where nodes represent non-overlapping

groups of SNPs from X1 and edges represent interactions between groups. BEAM3 ex-

plores the search space using Markov chain Monte Carlo sampling to update the se-

lected SNPs in X1 and its graph representation in G repeatedly. The sampling process

adds or removes SNPs in or out of X1 and updates the nodes and edges of G accordingly.

After a number of iterations are completed, the algorithm ends and the best model is

returned.

BHIT also resorts to a probability model to assess the association between geno-

types and a phenotype, but this tool divides the genotype markers into different par-

titions. BHIT initializes the partition variable I by placing each SNP into a different

partition and iteratively samples I using Markov chain Monte Carlo, maintaining the

changes to I between iterations if the probability of the model increases. When the

iterative process finishes, BHIT returns the different partitions in which the SNPs have

been divided, the interacting SNPs being the ones grouped in the same partition as the

phenotype variable.

3.2. Evaluation

This evaluation is separated into four parts: data simulation design, runtime eval-

uation, detection power analysis and false positive testing. In data simulation design,

the pipeline created for simulating the datasets used in successive subsections is ex-

plained in detail. Runtime evaluation briefly compares how the different methods
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perform in terms of execution time. Detection power measures the ability to locate

combinations of SNPs associated with the phenotype under different simulation con-

ditions. Lastly, false positive testing measures the ability to discern between significant

and non-significant combinations.

Parameterization of the methods is consistent across the whole evaluation. In gen-

eral terms, parameter selection was done either using the same values of the evaluation

presented in its original work or following indications from the authors. The excep-

tion to this rule were swarm intelligent methods, where the number of iterations and

agents is common to all methods in order to ensure a fair comparison. For most meth-

ods, there is a clear distinction in parameterization for third and fourth-order searches.

When there is no interaction in the data, the parameters corresponding to the highest

order admissible are selected. Appendix A covers, in detail, how the different parame-

ters were chosen for each program.

3.2.1. Data Simulation Design

Many datasets were simulated for the evaluation of the methods, with varying fea-

tures from one another in order to model different characteristics of the simulated

population. The design goal of the simulation process was to generate a wide vari-

ety of datasets resembling real populations, therefore the parameterization used for

modelling the population was chosen using estimates from real traits.

The simulation was carried out using GAMETES [83]. In this program, epistatic

interactions are defined by penetrance tables, which describe the population frequen-

cies of all possible allele sequences in a specific loci combination. The study considers

model-driven interactions showing marginal effects, as well as model-free interactions

with no marginal effects.

Penetrance tables with no marginal effects can be obtained natively through GA-

METES, which follows a stochastic generation procedure to find epistatic relation-

ships [83] under no model assumption. Model-driven penetrance tables, on the other

hand, cannot be calculated within GAMETES and thus were obtained from Toxo [6], a

MATLAB library developed during this thesis and explained in Chapter 6, which can

compute penetrance tables from epistasis models. In this study, we employed the
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widely used additive and threshold models proposed by Marchini et al. in [84], two

models that define epistatic interactions with marginal effects.

Both GAMETES and Toxo calculate penetrance tables meeting a certain parameter-

ization. The following list describes what these parameters are, and what criteria we

used to select values:

Minor Allele Frequency (MAF). The frequency at which the second most com-

mon allele occurs in a given population. The distribution of observed suscepti-

bility SNPs is skewed towards higher MAFs (>20 %) [85], and there is an increas-

ing difficulty of detecting disease-causing variants with low MAF [86]. An ac-

cepted standard of MAF is 0.1, thus we have assayed values in the range [0.1,0.4].

Heritability (h2). The degree to which individual genetic variation accounts for

the population phenotypic variation [87]. Heritability estimates of human traits

for several medical conditions usually cluster in functional domains with its

highest values between 70 and 80 % and the lowest ones between 2 and 30 % [88].

Therefore, we selected heritability values from the range [0.1,0.8].

Prevalence (P (D)). The proportion of individuals from a population that carries

a specific trait or suffers from a disease. Diseases can be categorized as rare if

their prevalence is under 5×10−4 (fewer than 1 in 2000 people), and ultra-rare if

it is under 2×10−5 (fewer than 1 in 50000 people) [89]. For this simulation study,

we have restricted prevalence values to be greater than 1×10−6.

Table 3.2 lists all the parameters of the penetrance tables used throughout the eval-

uation. The criteria were to create penetrance tables of third and fourth-order, with

MAF values of 0.10, 0.25 and 0.40 and heritabilities of 0.10, 0.25, 0.50 and 0.80 whose

prevalence is above 1×10−6. Model-driven tables cannot be obtained for every combi-

nation of MAFs, prevalence and heritability due to restrictions in the underlying math-

ematical model [6], resulting in a different number of tables according to the model.

GAMETES, on the other hand, follows a probabilistic approach, which has problems to

find model-free tables when increasing the interaction order, decreasing the MAF and

increasing the heritability. Consequently, many combinations could not be obtained

in a reasonable time.
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Table 3.2: Interaction orders, MAFs, prevalence and heritability values of the pene-
trance tables used during the data simulation. Missing prevalence values correspond
to a combination of parameters for which a penetrance table could not be obtained
under the simulation conditions.

ADDITIVE MODEL THRESHOLD MODEL NO MODEL (NME)

ORDER MAF H2 P(D) P(D) P(D)

3 0.10 0.10 1.200×10−5 6.460×10−2 -
3 0.10 0.25 4.000×10−6 2.556×10−2 -
3 0.10 0.50 2.000×10−6 1.327×10−2 -
3 0.10 0.80 1.000×10−6 8.417×10−3 -
3 0.25 0.10 5.370×10−3 4.775×10−1 5.860×10−1

3 0.25 0.25 1.153×10−3 2.677×10−1 4.923×10−1

3 0.25 0.50 5.040×10−4 1.545×10−1 4.223×10−1

3 0.25 0.80 3.060×10−4 1.025×10−1 -
3 0.40 0.10 2.546×10−1 7.804×10−1 5.163×10−1

3 0.40 0.25 2.219×10−2 5.870×10−1 5.644×10−1

3 0.40 0.50 8.545×10−3 4.154×10−1 5.019×10−1

3 0.40 0.80 5.091×10−3 3.075×10−1 4.970×10−1

4 0.10 0.10 - 1.256×10−2 -
4 0.10 0.25 - 5.140×10−3 -
4 0.10 0.50 - 2.590×10−3 -
4 0.10 0.80 - 1.623×10−3 -
4 0.25 0.10 2.340×10−4 2.755×10−1 4.201×10−1

4 0.25 0.25 6.800×10−5 1.320×10−1 5.910×10−1

4 0.25 0.50 3.100×10−5 7.068×10−2 -
4 0.25 0.80 1.900×10−5 4.182×10−2 -
4 0.40 0.10 3.628×10−2 6.684×10−1 4.720×10−1

4 0.40 0.25 3.383×10−3 4.464×10−1 4.356×10−1

4 0.40 0.50 1.374×10−3 2.873×10−1 -
4 0.40 0.80 8.220×10−4 2.013×10−1 -

From each penetrance table, 100 datasets were generated containing 500 SNPs

from 2000 individuals (1000 cases and 1000 controls). Non-interacting loci were sim-

ulated using a MAF randomly sampled from the interval [0.05,0.5]. In total, the data

collection consists of 55 different epistatic relationships, 5500 datasets, 2.75 million

SNPs and 11 million individuals.

Lastly, for the false positive testing, we also simulated 100 datasets with 500 SNPs

from 2000 individuals (1000 cases and 1000 controls) containing no interaction. Loci

for these datasets were also sampled from the MAF interval [0.05,0.5].

All the simulation configurations, epistasis models, penetrance tables and datasets
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are publicly available at GitHub1.

3.2.2. Runtime Evaluation

The runtime for each of the method’s implementation was measured and com-

pared using a single core of an Intel E5-2660. SingleMI is the only exception, since

it uses NVIDIA GPUs, and thus it was run on an NVIDIA K20m. Fig. 3.1 compares the

average runtime of all the studied tools for third and fourth-order analysis, across five

repetitions. The first datasets of the additive model using MAF = 0.25 and h2 = 0.25,

both for third and fourth-order, were arbitrarily chosen for this purpose.

MDR, EpiMiner and CINOEDV ’s fourth-order runtimes could not be measured

as the maximum allocatable time in the evaluation system was equal to three days.

HiSeeker’s runtime for fourth-order searches could not be measured as well, due to

errors in the program which are not present during third-order searches.

Runtimes show a clear distinction between exhaustive and non-exhaustive meth-

ods: exhaustive methods are largely influenced by the interaction order, while non-

exhaustive methods generally remain unaffected when moving from third to fourth-

order. The only exceptions are EpiMiner and CINOEDV, programs which already show

an extraordinarily large runtime despite using a dataset of moderate size, a runtime

that is dependent on the combination size used during the search.

3.2.3. Detection Power

Using the simulated data, the detection power of the different methods can be

measured as the ratio of datasets for which the epistatic interaction is correctly identi-

fied. Two different detection power metrics were used in the evaluation: the detection

power considering all interactions reported by each method, and the detection power

when only the first interaction reported is considered. Some implementations provide

its output as a list of combinations in no particular order, therefore only the detec-

tion power of all reported interactions is obtainable. These methods include BADTrees,

StepPLR, MACOED, NHSA-DHSC, ATHENA and BHIT. On the other side, some meth-

1https://github.com/UDC-GAC/epistasis-simulation-data

https://github.com/UDC-GAC/epistasis-simulation-data
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ods only report a single interaction, thus both detection powers will be identical. These

methods are MDR, LRWM, GALE and BEAM3. Additionally, MDR, EpiMiner, CINOEDV

and HiSeeker could not be tested for fourth-order epistasis for the same reasons pre-

sented in the previous section.

Given the large number of configurations used, it is impractical to present all the

individual results. Therefore, in this evaluation, the results are grouped by the interac-

tion order and by the type of epistatic relationships, since these two account for most

of the variation between results from the same method. The complete results are avail-

able in the supplementary material of [3].

Epistasis with Marginal Effects Following an Additive Model

Figs. 3.2 and 3.3 show the detection power of all methods when the data contains

epistatic interactions displaying marginal effects under the additive interaction model.

Fig. 3.2 represents the detection power from each method when all the reported inter-

actions are considered, and Fig. 3.3 represents the same detection power when only

the first reported interaction is considered.

Exhaustive methods reliably find the epistatic interaction in virtually all cases, and

the correct interaction is the one always reported first. Conversely, genetic algorithms

almost always miss the epistatic interaction. The remainder of the methods show

mixed results and have to be discussed individually.

Out of the filtering methods, EDCF and SingleMI perform best with maximum de-

tection powers even when considering only the first reported interaction. MECPM

follows closely, although its detection power takes a toll when increasing the interac-

tion order or when only the first reported interaction is considered. LAMPLINK and

EpiMiner only perform well for third-order interactions when all the reported interac-

tions are considered, DCHE shows mediocre results, and Mendel and Hiseeker cannot

locate interactions whatsoever.

Depth-first methods show polarizing results. On the one hand, FDHE-IW perfectly

identifies the correct interaction. BADTrees also shows a good detection power, al-

though its output includes noise SNPs that do not contribute to the phenotypic out-

come. LRMW, StepPLR and SNPRuler, on the other hand, obtain very low (if not zero)
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detection powers.

Swarm intelligent methods show quite different results attending to the order of

the interaction, with the only exception of IACO. This is coherent with the parame-

terization employed, since the number of iterations and agents (which control how

much of the search space is explored) is kept constant throughout the evaluation de-

spite the search space growing when the interaction order is increased. Swarm intel-

ligent methods are also the most affected ones when only the first interaction is con-

sidered. IACO obtains almost perfect detection powers when all reported interactions

are considered, however its detection power significantly drops when only the first one

is used. epiACO and NHSA-DHSC also obtain high detection powers for third-order

interactions, but their performance drops significantly when moving to fourth-order.

EACO obtains mediocre results for third order, which also drop for fourth-order, and

MACOED, AntMiner and CINOEDV obtain poor results.

Lastly, random-search based methods also obtain mixed results. SNPHarvester re-

ports the correct interaction as the first one in almost all datasets. BEAM3 obtains rel-

atively good results, and BHIT is not capable of finding interactions.

Epistasis with Marginal Effects Following a Threshold Model

Figs. 3.4 and 3.5 show the detection power of all methods when the data con-

tains epistatic interactions displaying marginal effects under the threshold interaction

model. They represent the detection power when all interactions or only the first re-

ported are considered, respectively.

Results for the threshold epistatic model are remarkably similar to those of the ad-

ditive one, with some minor differences. Exhaustive methods noticeably drop their

detection power, while genetic algorithms again fail to find any epistatic interaction.

Out of the filtering methods, HiSeeker, DCHE and LAMPLINK present the most

drastic changes. HiSeeker goes from not being able to detect interactions at all un-

der the additive epistatic model to reporting the correct interaction as the first one in

almost all cases, and DCHE approximately doubles its previous detection power. LAM-

PLINK, on the contrary, drops its detection power down to zero. EpiMiner and EDCF

slightly drop their detection powers. SingleMI and Mendel obtain very similar results
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compared to previous additive model results, the former with high powers and the lat-

ter with powers next to zero.

Depth-first methods obtain similar results compared to their previous values, with

the only exception of StepPLR. FDHE-IW and BADTrees obtain almost the same detec-

tion powers as with the additive model, while LRMW slightly improves it. StepPLR, on

the contrary, increases its detection power from next to 0 % to almost 100 %.

Swarm intelligent algorithms show slight variations from their previous detection

powers, with epiACO, AntMiner, CINOEDV and NHSA-DHSC showing similar results

while EACO significantly increasing its detection power and IACO and MACOED show-

ing a noticeable decrease.

Random-search based algorithms also show minor variations compared to the re-

sults with the additive model. SNPHarvester noticeably drops its detection power for

fourth-order interactions, both when all and only the first reported interactions are

considered, while maintaining its third-order power. BEAM3, on the opposite, in-

creases its detection power, and BHIT remains near zero.

Epistasis with No Marginal Effects under No Interaction Model

Figs. 3.6 and 3.7 show the detection power of all methods when the data contains

epistatic interactions displaying no marginal effects under no interaction model.

Detection powers when no marginal effects are present show a completely differ-

ent story than the previous two interaction models. Out of all the methods tested, only

exhaustive approaches are capable of consistently locating interactions that show no

marginal effects. The only other methods that show a detection power above zero for

third-order interactions are DCHE, EDCF and SNPRuler. DCHE and EDCF show a de-

tection power much lower than in scenarios with marginal effects. SNPRuler, however,

was unable to find any interaction in previous interaction models and now it is one of

the three methods capable of finding the interaction in a fraction of all datasets.
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3.2.4. False Positive Testing

False positive testing evaluates whether or not non-interacting loci are reported

when searching for epistasis. To measure false positive detection the FWER was used,

defined as the ratio of datasets where any combination of non-interacting SNPs is re-

ported.

FWER was measured using the previously presented datasets that contain epistatic

interactions showing marginal effects following additive and threshold models, as well

as those showing no marginal effects under no model assumption. Additionally, FWER

was also measured on datasets containing no epistatic interactions.

FWER could not be measured for all epistasis detection methods and for all scenar-

ios presented. Implementations that are forced to return any number of unordered

SNP combinations could not be included in this evaluation. This includes LRMW,

BADTrees, StepPLR and ATHENA. The FWER for programs that return a fixed number

of ordered combinations was measured considering only the first reported interaction.

In this scenario, the FWER is the complementary measure of the detection power when

only the first reported interaction is considered, and cannot be measured when there

is no epistasis. This includes MDR, MPI3SNP, MECPM, SingleMI and CINOEDV.

Fig. 3.8 represents the FWER for the methods evaluated. The figure shows that false

positives have a significant presence in most of the methods. These results can be

divided into three categories: methods that report many false positives regardless of

the data, methods that report few false positives and methods that show very different

results depending on the epistasis model or presence/absence of epistasis.

Most of the methods fall under the first category. EpiMiner, Mendel, HiSeeker,

EDCF, IACO, epiACO, AntMiner, EACO, CINOEDV, NHSA-DHSC and GALE almost al-

ways include false positives in its output. On the opposite, MDR, MPI3SNP, SNPRuler,

MACOED and BEAM3 keep their FWER under control.

As for methods showing different results depending on the dataset, the most com-

mon behaviour is to report false positives on the presence of marginal effects. DCHE,

LAMPLINK, SNPHarvester, BEAM3 and BHIT report almost no false positives when

there are no marginal effects or there is no interaction. On the other hand, MECPM

and SingleMI show an erratic behavior of the FWER for different datasets.
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3.3. Discussion

It is clear from the previous detection power results that current epistasis detection

methods, outside of the exhaustive approach, rely on the existence of marginal effects

to locate the epistatic interaction. The best non-exhaustive approach for interactions

showing no marginal effects is DCHE, with a detection power of 24.14 % for third-order

interactions which completely disappears when the order is increased.

Table 3.3 summarizes the results for epistatic interactions with marginal effects. For

each program the average detection power is calculated, differentiating between third

and fourth-order. FDHE-IW, MPI3SNP, SingleMI, SNPHarvester, BADTrees, MECPM,

EDCF and BEAM3 show average detection powers above 80 %, both for third and

fourth-order epistasis search. IACO, NHSA-DHSC, epiACO and EACO despite show-

ing detection powers above 80 % for third-order searches, immediately drop by more

than 20 points when moving to fourth-order. MDR, on the other hand, cannot obtain

fourth-order results in a reasonable runtime, and therefore its success is also limited to

third-order.

Genetic algorithms are the only family of methods that is not represented on the

upper half of the table. Swarm intelligent methods, despite their mediocre results for

fourth-order searches, demonstrate good results for third-order, indicating that the

number of agents and iterations selected has to take the order of the interactions into

consideration. Genetic algorithms, on the other hand, do not find any success under

any of the conditions presented.

Table 3.4 synthesizes the results for false positive testing, showing the average

FWER while differentiating between the presence or absence of epistasis. The table

shows that, when looking for epistasis, only five methods report false positives in less

than 25 % of the datasets tested. These methods are SNPRuler, MPI3SNP, MDR, BEAM3

and MACOED. Only three of these five methods show good detection powers, which

questions if the good false positive results of SNPRuler and MACOED are linked to their

lack of detection.

When epistasis is not present, eight methods can obtain FWER close to zero. Out

of these eight, half of them obtain reasonably high detection powers when epistasis is

present, including DCHE, FDHE-IW, BEAM3 and SNPHarvester. The other half, com-
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Table 3.3: Summary of the detection power results when marginal effects are present.

THIRD-ORDER FOURTH ORDER

RANK METHOD POWER (%) METHOD POWER (%)

1 FDHE-IW 100.00 BADTrees 97.90
2 MPI3SNP 100.00 FDHE-IW 97.85
3 SingleMI 99.88 SingleMI 91.90
4 SNPHarvester 99.71 SNPHarvester 91.60
5 BADTrees 99.50 MPI3SNP 89.45
6 MECPM 93.29 MECPM 88.00
7 IACO 92.17 EDCF 87.00
8 EDCF 91.67 BEAM3 80.00
9 NHSA-DHSC 90.38 IACO 69.75

10 BEAM3 85.92 DCHE 62.60
11 MDR 85.54 StepPLR 52.80
12 epiACO 83.67 EACO 49.70
13 EACO 81.29 epiACO 29.55
14 EpiMiner 73.25 LRMW 20.55
15 DCHE 72.88 LAMPLINK 20.25
16 StepPLR 51.33 NHSA-DHSC 11.60
17 HiSeeker-ACO 50.00 Mendel 9.05
18 HiSeeker-E 50.00 AntMiner 1.65
19 LRMW 44.67 MACOED 0.55
20 LAMPLINK 43.50 ATHENA 0.30
21 MACOED 17.13 BHIT 0.05
22 ATHENA 7.75 GALE 0.00
23 Mendel 6.46 SNPRuler 0.00
24 CINOEDV 4.46 CINOEDV -
25 AntMiner 1.42 EpiMiner -
26 BHIT 0.38 HiSeeker-ACO -
27 GALE 0.00 HiSeeker-E -
28 SNPRuler 0.00 MDR -

posed of BHIT, MACOED, SNPRuler and LAMPLINK, obtains poor detection powers

which, again, questions if the good false positive results are linked to their weak detec-

tion ability.

Results also suggest a possible two-stage strategy for finding new epistatic interac-

tions with marginal effects, in a reasonable execution time and with a low probabil-

ity of including false positives: combining FDHE-IW with MPI3SNP. FDHE-IW could

be used first to discern whether a dataset contains epistasis, due to its high detection

power, low runtime and low FWER under the assumption of no epistasis. If any can-

didate combination is reported, MPI3SNP would then be used to analyze only the re-
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Table 3.4: Summary of the FWER results.

WITH EPISTASIS WITHOUT EPISTASIS

RANK METHOD FWER (%) METHOD FWER (%)

1 SNPRuler 0.29 BHIT 0.00
2 MPI3SNP 5.44 DCHE 0.00
3 MDR 11.19 FDHE-IW 0.00
4 BEAM3 16.11 MACOED 0.00
5 MACOED 18.84 SNPRuler 0.00
6 SingleMI 25.18 LAMPLINK 1.00
7 MECPM 29.47 BEAM3 3.00
8 BHIT 35.60 SNPHarvester 3.00
9 LAMPLINK 51.98 EpiMiner 77.00

10 SNPHarvester 76.62 AntMiner 100.00
11 DCHE 79.18 EACO 100.00
12 FDHE-IW 79.98 EDCF 100.00
13 NHSA-DHSC 87.42 epiACO 100.00
14 EpiMiner 93.03 GALE 100.00
15 CINOEDV 96.35 HiSeeker-ACO 100.00
16 GALE 99.98 HiSeeker-E 100.00
17 AntMiner 100.00 IACO 100.00
18 EACO 100.00 Mendel 100.00
19 EDCF 100.00 NHSA-DHSC 100.00
20 epiACO 100.00 CINOEDV -
21 HiSeeker-ACO 100.00 MDR -
22 HiSeeker-E 100.00 MECPM -
23 IACO 100.00 MPI3SNP -
24 Mendel 100.00 SingleMI -

ported SNPs due to its high detection power and low FWER, under the assumption of

epistasis, while circumventing the high runtime associated with exhaustive methods

due to the previous filtering step.

To conclude the evaluation, it is worth mentioning that BADTrees, a method that

achieves very good results in terms of detection power, does not implement any sta-

tistical method that allows the elimination of false positives, which detracts from the

tool’s applicability.
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3.4. Concluding Remarks

This chapter provides an overview of the current methods dedicated to high-order

epistasis detection, as well as a comparison of the results achieved by the different im-

plementations in terms of detection power and type I error rate. For each method,

its detection power and error rates were measured using more than 5000 synthetic

datasets, each one involving different simulation conditions in order to make a fair

comparison.

Results show that many of the current epistasis detection methods, regardless of

the strategy used, can reliably find the epistatic interaction when marginal effects are

present, although their detection power generally decreases with the order of the in-

teraction. The only exception are genetic algorithms, as none of the two methods im-

plementing this strategy can consistently find interactions. Non-exhaustive methods,

however, behave very poorly when marginal effects are absent. In this scenario the only

option that seems to reliably locate the interactions is the exhaustive strategy, with the

subsequent exponential runtime complexity associated with the order of the interac-

tion searched.

False positives’ evaluation speaks of a different story. Out of the 27 methods com-

pared, BEAM3 is the only method capable of reliably finding epistasis while keeping

type I errors to a minimum. Moving forward, authors should give more importance to

type I error control. Methods that consistently report false positives lose much of their

value, since their usability is restricted to the verification of previous findings. Look-

ing for new epistatic interactions requires implementing a tight false positive control

in order to avoid reporting false associations.

Even though exhaustive methods show one of the largest runtimes, and this dis-

crepancy should be exacerbated for higher orders of interaction due to its exponential

computational complexity, they are the only approach that locates epistasis in all sce-

narios. For this reason, this thesis continued to focus on the exhaustive method, trying

to mitigate the growth of the runtime by exploiting clusters as efficiently as possible.

Chapters 4 and 5 propose a vector and a distributed algorithm, respectively, in order to

accelerate the search.





Chapter 4

SIMD Implementation of the

Association Test

Most modern CPU architectures, if not all, include Vector Processing Units (VPUs)

in their processing cores. Although compilers incorporate automatic vectorization

techniques to exploit the VPUs, they show limitations on what can be automatically

vectorized, and the performance obtained is not always the optimal. In this chapter,

we propose an exhaustive epistasis detection algorithm to find interactions of any or-

der that makes use of an explicit Single Instruction Multiple Data (SIMD) implemen-

tation to maximize the performance per core. Starting from the MI association test

introduced in Chapter 1, Section 4.1 describes how the MI association test can be im-

plemented in C++ and vectorized using AVX Intrinsics. Section 4.2 describes how the

exhaustive search can be adapted to the MI vector algorithm. Section 4.3 presents the

experimental evaluation, comparing the performance achieved by the explicit vector

implementations using AVX Intrinsics with the performance achieved by the automatic

vectorization that compilers offer and the performance of the MPI3SNP implementa-

tion. At last, Section 4.4 discusses the conclusions extracted from this study, reflects on

its limitations and comments on the next steps to be followed.

55
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4.1. Vector Implementation of the MI Association Test

This section covers the explicit vectorization of the MI association test introduced

in Section 1.3, using 256-bit and 512-bit AVX Intrinsics from the AVX2 and AVX512BW

extensions. This section also addresses several optimizations to improve the perfor-

mance of the vectorized codes.

The AVX2 vector extension was first introduced with the Intel Haswell microarchi-

tecture (2013) while the AVX512BW extension first appeared in the Skylake-X proces-

sors (2017) of the Skylake microarchitecture. These two vector extensions are used not

only to optimize the runtime of the epistasis detection tool on a long list of CPUs, but

also to compare the performance that the two vector widths offer.

4.1.1. Vectorization of the Genotype Table Calculation

Listing 4.1 shows a C++ implementation of the genotype table construction oper-

ation described in Section 1.3.1. The function, named combine, takes as arguments a

genotype table representing the combination of any number of SNPs, a genotype table

of a singular SNP and a genotype table where the results will be stored. Note that the

template argument uint64_t, common to all genotype table classes, indicates the type

used to store the binary information (Lines 11–12). Since the x86_64 instruction set

operates with 64-bit integers, this type is ideal to hold the genotype information, each

value representing the information of 64 individuals, and each computation operat-

ing with 64 individuals at once. The function calls the combine_subtable subroutine

twice to combine each of the two subtables for cases and controls. This function con-

sists of three nested for loops, with the two outermost loops (Lines 4 and 5) combining

the different rows of the input genotype tables. The innermost loop (Line 6) iterates

over the different uint64_t values of the selected rows, reading one value from each

input table, calculating its intersection and storing the result in the output table. The

computational time complexity of this operation is O(3k m), where m is the number of

individuals in the data and k is the size of the combination.

The function combine_subtable is the one implementing the computation of a

genotype subtable from two previous subtables, and thus our target for vectorization.

In this function, we can identify a vectorization opportunity at the innermost loop,
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Listing 4.1: Genotype table combination function
1 inline void combine_subtable(const uint64_t *gt_tbl1 , const size_t size1 ,
2 const uint64_t *gt_tbl2 , const size_t words , uint64_t *gt_tbl3)
3 {
4 for (size_t i = 0; i < size1; i++) {
5 for (size_t j = 0; j < 3; j++) {
6 for (size_t k = 0; k < words; k++) {
7 gt_tbl3 [(i * 3 + j) * words + k] = gt_tbl1[i * words + k] &
8 gt_tbl2[j * words + k];
9 }}}}

10

11 void combine(const GenotypeTable <uint64_t > &t1,
12 const GenotypeTable <uint64_t > &t2, GenotypeTable <uint64_t > &out)
13 {
14 combine_subtable(t1.cases , t1.size , t2.cases , t1.cases_words , out.cases);
15 combine_subtable(t1.ctrls , t1.size , t2.ctrls , t1.ctrls_words , out.ctrls);
16 }

where the intersection of two rows from two tables is calculated by performing as many

bitwise AND operations as values contained in the row (Lines 7–8). This operation is

already exploiting the data-parallelism that 64-bit operations offer, as the information

of a singular individual is stored in a single bit of the data type uint64_t. With the

introduction of 256 and 512-bit AVX instructions, the throughput of this operation can

be multiplied.

Listing 4.2 shows the implementation using 256-bit AVX Intrinsics from AVX2. For

simplicity, we assume that the number of bytes in a row of the genotype table is divis-

ible by the vector unit width. This is achieved by padding the rows with zeros if the

number of individuals is not divisible by the width of the vector unit, and it will not

influence the result of the following popcount operation. The new figure replaces the

C++ code corresponding to the two array accesses, the AND and the store operations

with AVX loads, ANDs and store intrinsics (Lines 13–19). With just the introduction of

the AVX Intrinsics, there is a front-end bound problem in which the CPU wastes many

clock cycles waiting for instructions to be fetched. Therefore, to correct this behaviour,

the middle loop was unrolled completely so that the three rows from the second geno-

type table are processed concurrently.

The 512-bit vector implementation using intrinsics from the AVX512BW extension

is almost identical to the one shown in Listing 4.2, and thus it was omitted. The only

differences are the name of the functions that implement the same operations for a

512-bit width, the types that these operations use and the step of the innermost loop,
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Listing 4.2: Genotype table combination function vectorized with AVX2 Intrinsics
1 inline void combine_subtable(const uint64_t *gt_tbl1 , const size_t size1 ,
2 const uint64_t *gt_tbl2 , const size_t words , uint64_t *gt_tbl3)
3 {
4 const __m256i *ptr1 = gt_tbl1;
5 for (size_t i = 0; i < size1; ++i) {
6 const __m256i *ptr2_1 = gt_tbl2 + 0 * words;
7 const __m256i *ptr2_2 = gt_tbl2 + 1 * words;
8 const __m256i *ptr2_3 = gt_tbl2 + 2 * words;
9 __m256i *ptr3_1 = gt_tbl3 + (i*3+0) * words;

10 __m256i *ptr3_2 = gt_tbl3 + (i*3+1) * words;
11 __m256i *ptr3_3 = gt_tbl3 + (i*3+2) * words;
12 for (size_t k = 0; k < words; k += 4) {
13 __m256i y0 = _mm256_load_si256(ptr1 ++);
14 __m256i y1 = _mm256_load_si256(ptr2_1 ++);
15 __m256i y2 = _mm256_load_si256(ptr2_2 ++);
16 __m256i y3 = _mm256_load_si256(ptr2_3 ++);
17 _mm256_store_si256(ptr3_1++, _mm256_and_si256(y0, y1));
18 _mm256_store_si256(ptr3_2++, _mm256_and_si256(y0, y2));
19 _mm256_store_si256(ptr3_3++, _mm256_and_si256(y0, y3));
20 }}}

which doubles the one used in the 256-bit implementation.

4.1.2. Vectorization of the Contingency Table Calculation

Listing 4.3 shows a C++ function implementing the contingency table construction.

This function does not faithfully implement the operation described in Section 1.3.2.

Instead, it combines the genotype table and contingency table calculations in a single

step in order to avoid the numerous store operations that the genotype table construc-

tion requires. The function combine_and_popcnt consists of two calls to the subrou-

tine popcnt_subtable to compute the contingency subtables of the two new genotype

subtables, and this subroutine consists of the same three nested loops as Listing 4.1.

However, instead of immediately storing the multiple uint64_t values resulting from

the bitwise AND operations, the popcount operation is called, the results from the same

row are summed up in a single uint32_t value and the sum is stored in the contin-

gency table (Lines 9–10). In contrast with the genotype table class, the contingency

table class uses the uint32_t type (passed as a template argument in Line 14) to repre-

sent the total count of individuals having a particular genotype because it can contain

a large enough integer, and for the convenience of matching the size of a float value

which will be useful later during the vectorization of the MI computation. The compu-
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Listing 4.3: Contingency table calculation function
1 inline void popcnt_subtable(const uint64_t *gt_tbl1 , const size_t size1 ,
2 const uint64_t *gt_tbl2 , const size_t words , uint32_t *ct_tbl ,
3 const size_t ct_size)
4 {
5 for (size_t i = 0; i < size1; i++) {
6 for (size_t j = 0; j < 3; j++) {
7 ct_tbl[i * 3 + j] = 0;
8 for (size_t k = 0; k < words; k++) {
9 ct_tbl[i * 3 + j] += std::bitset <64>( gt_tbl1[i * words + k] &

10 gt_tbl2[j * words + k]).count();
11 }}}}
12

13 void combine_and_popcnt(const GenotypeTable <uint64_t > &t1,
14 const GenotypeTable <uint64_t > &t2, ContingencyTable <uint32_t > &out)
15 {
16 popcnt_subtable(t1.cases , t1.size , t2.cases , t1.cases_words , out.cases , out.size);
17 popcnt_subtable(t1.ctrls , t1.size , t2.ctrls , t1.ctrls_words , out.ctrls , out.size);
18 }

tational time complexity of this operation is also O(3k m), with m being the number of

individuals in the data and k the size of the combination.

The main difference between the codes for calculating genotype and contingency

tables (Listings 4.1 and 4.3, respectively) is the presence of the popcount operation.

Up until very recently, with the introduction of the Intel Ice Lake processors, there was

no AVX vector instruction implementing a popcount. Muła et al., in [90], have already

explored this problem and they proposed multiple algorithms for implementing pop-

ulation counts using the AVX2 extension. Furthermore, in their GitHub repository1,

they have developed updated versions of the algorithms to make use of the more re-

cent AVX512BW and AVX512VBMI extensions.

Deciding which algorithm runs the fastest is not trivial and cannot be measured

in isolation, as interleaving additional loads and bitwise AND operations in between

popcounts will undoubtedly affect the performance of the function as a whole. For

this reason, we implemented multiple versions of the combine_and_popcount function

and compared the performance of each choice. Table 4.1 includes the elapsed time

during the computation of a contingency table for the different implementations of

the function, running on an Intel 6240 processor, the one used for the experimental

evaluation in Section 4.3, and compiled with GCC version 8.3. The table considers:

1https://github.com/WojciechMula/sse-popcount

https://github.com/WojciechMula/sse-popcount
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Table 4.1: Elapsed time, in seconds, during the computation of a single contingency
table using different operation widths and popcount implementations. The table high-
lights with green background the best times using the AVX512BW extension, and with
red text the best times using the AVX2 extension

AND
WIDTH

POPCNT
WIDTH

POPCNT
ALGORITHM

INDIVIDUALS COUNT

256 512 1024 2048 4096 8192

512 512 harley seal 8.60×10−7 8.60×10−7 1.02×10−6 1.31×10−6 1.88×10−6 1.60×10−6

512 512 lookup 2.47×10−7 2.47×10−7 3.39×10−7 5.57×10−7 9.63×10−7 1.78×10−6

512 256 cpu 4.04×10−7 4.04×10−7 6.91×10−7 1.18×10−6 2.20×10−6 4.19×10−6

512 256 harley seal 7.59×10−7 7.59×10−7 1.05×10−6 1.61×10−6 1.72×10−6 2.82×10−6

512 256 lookup 2.98×10−7 2.98×10−7 4.64×10−7 7.66×10−7 1.40×10−6 2.67×10−6

512 256 lookup orig. 2.99×10−7 2.99×10−7 4.57×10−7 8.01×10−7 1.46×10−6 2.81×10−6

512 64 popcnt movdq 3.02×10−7 3.02×10−7 5.19×10−7 9.99×10−7 1.86×10−6 3.60×10−6

512 64 popcnt un. err. 4.36×10−7 4.36×10−7 7.09×10−7 1.17×10−6 2.06×10−6 3.82×10−6

256 256 cpu 1.95×10−7 2.90×10−7 5.32×10−7 9.38×10−7 1.81×10−6 3.46×10−6

256 256 harley seal 5.08×10−7 6.06×10−7 7.85×10−7 1.16×10−6 1.14×10−6 1.85×10−6

256 256 lookup 2.24×10−7 3.13×10−7 4.65×10−7 5.71×10−7 9.98×10−7 1.83×10−6

256 256 lookup orig. 2.15×10−7 2.90×10−7 4.56×10−7 7.82×10−7 1.44×10−6 2.75×10−6

256 64 popcnt movdq 1.60×10−7 2.58×10−7 4.73×10−7 8.82×10−7 1.73×10−6 3.36×10−6

256 64 popcnt un. err. 1.86×10−7 3.08×10−7 5.42×10−7 1.04×10−6 2.02×10−6 3.93×10−6

1. Two different vector widths for the bitwise AND operations: 256 and 512 bits.

2. Three different vector widths for the popcount operations: 64 bits, using the

hardware popcount instruction from the Bit Manipulation Instructions (BMI) ex-

tension, and 256 and 512 bits, using the software implementations proposed by

Muła et al.

3. Six different table row widths: 256, 512, 1024, 2048, 4096 and 8192 individuals in

each row (or 32, 64, 128, 256, 512 and 1024 bytes per row, respectively), equal for

cases and controls.

From these results we can conclude that the fastest implementation is dependant

on the width of the genotype tables. For less than 512 individuals per subtable, the

best times are obtained by the implementations that make use of the BMI popcount

instruction. However, if we have more than 512 individuals, the lookup implementa-

tions for both the AVX2 and AVX512BW extensions offer the fastest alternative for most

of the widths tested. Taking a look at all the epistasis studies referenced throughout

this thesis, we can find that most of them consider a number of individuals between

512 and 4096. Therefore, we will use the AVX2 and AVX512BW implementations of the

popcount lookup algorithm.
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Vectorizing the combine_and_popcount function from Listing 4.3 requires vectoriz-

ing its auxiliary subroutine popcnt_subtable. Starting with the AVX2 implementation,

Listing 4.4 shows an implementation of the vectorized function, combining the com-

putation of the new genotype table with the popcount lookup algorithm. This function

includes the following modifications to the original lookup algorithm:

1. Instead of iterating over an input array as in the original popcount function

(Lines 32–43 from file popcnt-avx2-lookup.cpp2), popcnt_subtable consists of

three nested loops: the two outer ones (Lines 21 and 22) combining the different

rows of the input genotype tables, and the two innermost loops (Lines 24 and 37)

applying the popcount iteration to each 256-bit word of the two selected rows.

The first of the two innermost loops (Lines 24–35) maintains the original un-

rolling of eigth 256-bit words.

2. Each iteration step (inlined function iter) reads a 256-bit word from each table

row (Line 4), computes the bitwise AND of the two words (Line 5) and continues

with the Muła et al. popcount algorithm (Lines 6–10, which correspond to Figure

10 from [90]).

Listing 4.5 shows the implementation of the same popcnt_subtable subroutine

but using Intrinsics from the AVX512BW extension. The original popcount lookup al-

gorithm for AVX512BW (file popcnt-avx512bw-lookup.cpp3) is very similar to its AVX2

implementation, with the obvious difference of not applying unrolling to its innermost

loop (Lines 39–49). Therefore, the same considerations for the AVX2 implementation of

the function apply to the AVX512BW algorithm: the function combines the input geno-

type tables using three nested loops (Lines 10, 11 and 14), and each popcount iteration

of the Muła et al. algorithm is preceded by two loads that read a 512-bit word from each

input genotype table (Lines 17 and 18) and a bitwise AND operation (Line 19).

2https://github.com/WojciechMula/sse-popcount/blob/master/popcnt-avx2-lookup.cpp
3https://github.com/WojciechMula/sse-popcount/blob/master/popcnt-avx512bw-lookup.

cpp

https://github.com/WojciechMula/sse-popcount/blob/master/popcnt-avx2-lookup.cpp
https://github.com/WojciechMula/sse-popcount/blob/master/popcnt-avx512bw-lookup.cpp
https://github.com/WojciechMula/sse-popcount/blob/master/popcnt-avx512bw-lookup.cpp


62 Chapter 4. SIMD Implementation of the Association Test

Listing 4.4: Contingency table calculation function vectorized with AVX2 Intrinsics
1 inline void iter(const uint64_t *ptr1 , const uint64_t *ptr2 , const __m256i &lu,
2 const __m256i &low_mask , __m256i &local)
3 {
4 __m256i o1 = _mm256_load_si256(ptr1), o2 = _mm256_load_si256(ptr2);
5 __m256i vec = _mm256_and_si256(o1, o2);
6 __m256i lo = _mm256_and_si256(vec , low_mask);
7 __m256i hi = _mm256_and_si256(_mm256_srli_epi16(vec , 4), low_mask);
8 __m256i popcnt1 = _mm256_shuffle_epi8(lu,lo);
9 __m256i popcnt2 =_mm256_shuffle_epi8(lu,hi);

10 local = _mm256_add_epi8(_mm256_add_epi8(local , popcnt1), popcnt2);
11 }
12 inline void popcnt_subtable(const uint64_t *gt_tbl1 , const size_t size1 ,
13 const uint64_t *gt_tbl2 , const size_t words , uint32_t *ct_tbl , size_t ct_size)
14 {
15 __m256i lookup = _mm256_setr_epi8(/*0*/0, /*1*/1, /*2*/1, /*3*/2, /*4*/1, /*5*/2,
16 /*6*/2, /*7*/3, /*8*/1, /*9*/2, /*a*/2, /*b*/3, /*c*/2, /*d*/3, /*e*/3, /*f*/4,
17 /*0*/0, /*1*/1, /*2*/1, /*3*/2, /*4*/1, /*5*/2, /*6*/2, /*7*/3, /*8*/1, /*9*/2,
18 /*a*/2, /*b*/3, /*c*/2, /*d*/3, /*e*/3, /*f*/4);
19 const __m256i low_mask = _mm256_set1_epi8 (0xf);
20 size_t i, j, k;
21 for (i = 0; i < size1; ++i) {
22 for (j = 0; j < 3; ++j) {
23 __m256i acc = _mm256_setzero_si256 ();
24 for (k = 0; k + 32 <= words; k += 32) {
25 __m256i local = _mm256_setzero_si256 ();
26 iter(gt_tbl1+i*words+k+0, gt_tbl2+j*words+k+0, lookup , low_mask , local);
27 iter(gt_tbl1+i*words+k+4, gt_tbl2+j*words+k+4, lookup , low_mask , local);
28 iter(gt_tbl1+i*words+k+8, gt_tbl2+j*words+k+8, lookup , low_mask , local);
29 iter(gt_tbl1+i*words+k+12, gt_tbl2+j*words+k+12, lookup , low_mask , local);
30 iter(gt_tbl1+i*words+k+16, gt_tbl2+j*words+k+16, lookup , low_mask , local);
31 iter(gt_tbl1+i*words+k+20, gt_tbl2+j*words+k+20, lookup , low_mask , local);
32 iter(gt_tbl1+i*words+k+24, gt_tbl2+j*words+k+24, lookup , low_mask , local);
33 iter(gt_tbl1+i*words+k+28, gt_tbl2+j*words+k+28, lookup , low_mask , local);
34 acc = _mm256_add_epi64(acc , _mm256_sad_epu8(local , _mm256_setzero_si256 ()));
35 }
36 local = _mm256_setzero_si256 ();
37 for (; k < words; k += 4) {
38 iter(gt_tbl1+i*words+k, gt_tbl2+j*words+k, lookup , low_mask , local);
39 }
40 acc = _mm256_add_epi64(acc , _mm256_sad_epu8(local , _mm256_setzero_si256 ()));
41 ct_tbl[i*3+j] = _mm256_extract_epi64(acc ,0) + _mm256_extract_epi64(acc ,1) +
42 _mm256_extract_epi64(acc ,2) + _mm256_extract_epi64(acc ,3);
43 }}
44 for (i = size1 * 3; i < ct_size; ++i)
45 ct_tbl[i] = 0;
46 }
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Listing 4.5: Contingency table calculation function vectorized with AVX512BW Intrin-
sics

1 inline void popcnt_subtable(const uint64_t *gt_tbl1 , const size_t size1 ,
2 const uint64_t *gt_tbl2 , const size_t words , uint32_t *ct_tbl ,
3 const size_t ct_size)
4 {
5 const __m512i lookup = _mm512_setr_epi64(
6 0x0302020102010100llu , 0x0403030203020201llu , 0x0302020102010100llu ,
7 0x0403030203020201llu , 0x0302020102010100llu , 0x0403030203020201llu ,
8 0x0302020102010100llu , 0x0403030203020201llu);
9 const __m512i low_mask = _mm512_set1_epi8 (0xf);

10 for (size_t i = 0; i < size1; ++i) {
11 for (size_t j = 0; j < 3; ++j) {
12 size_t k = 0;
13 __m512i acc = _mm512_setzero_si512 ();
14 while (k < words) {
15 __m512i local = _mm512_setzero_si512 ();
16 for (size_t l = 0; l < 255 / 8 && k < words; ++l, k += 8) {
17 __m512i z0 = _mm512_load_si512(gt_tbl2 + j * words + k);
18 __m512i z1 = _mm512_load_si512(gt_tbl1 + i * words + k);
19 __m512i z2 = _mm512_and_si512(z0, z1);
20 __m512i lo = _mm512_and_si512(z2, low_mask);
21 __m512i hi = _mm512_and_si512(_mm512_srli_epi32(z2, 4), low_mask);
22 __m512i popcnt1 = _mm512_shuffle_epi8(lookup , lo);
23 __m512i popcnt2 = _mm512_shuffle_epi8(lookup , hi);
24 local = _mm512_add_epi8(_mm512_add_epi8(local ,popcnt1), popcnt2);
25 }
26 acc = _mm512_add_epi64(acc ,_mm512_sad_epu8(local ,_mm512_setzero_si512 ()));
27 }
28 ct_tbl[i * 3 + j] = _mm512_reduce_add_epi64(acc);
29 }}
30 for (size_t i = size1 * 3; i < ct_size; ++i)
31 ct_tbl[i] = 0;
32 }

4.1.3. Vectorization of the Mutual Information Calculation

Listing 4.6 shows a C++ function implementing the MI computation described in

Section 1.3.3. It computes H(X ,Y ) and H(X ) in a single for loop (Lines 6–13 and 14–17,

respectively). The loop includes three if branches to avoid computing the logarithm

of 0, which would lead to an undefined product of 0×−∞, resulting in a NaN value.

H(Y ) and the inverse of the number of individuals (iinds) are provided as function

arguments because they are independent of the genotype distribution of individuals,

and thus can be calculated just once outside the function (Line 1). The MI function

operates with float types since single-precision floating point numbers offer enough

numerical precision to represent the MI values. The time complexity of this operation

is O(3k ), where k is the size of the combination represented in the input contingency

table.
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Listing 4.6: MI computation function
1 float MI(const ContingencyTable <uint32_t > &table ,const float h_y ,const float iinds)
2 {
3 float h_x = 0.0f, h_all = 0.0f;
4 const size_t table_size = table.size;
5 for (size_t i = 0; i < table_size; i++) {
6 float p_case = table.cases[i] * iinds;
7 if (p_case != 0.0f) {
8 h_all -= p_case * logf(p_case);
9 }

10 float p_ctrl = table.ctrls[i] * iinds;
11 if (p_ctrl != 0.0f) {
12 h_all -= p_ctrl * logf(p_ctrl);
13 }
14 float p_any = p_case + p_ctrl;
15 if (p_any != 0.0f) {
16 h_x -= p_any * logf(p_any);
17 }
18 }
19 return h_x + h_y - h_all;
20 }

In contrast to the two previous functions, calculating the MI of a contingency ta-

ble requires floating-point arithmetic, including multiplications, Fused Multiply-Adds

(FMAs) and logarithms. Multiplications and FMAs are supported natively, both for 256-

bit and 512-bit vector operations, but there is no hardware instruction that implements

a logarithm. However, Intel does provide an AVX logarithm routine through their Short

Vector Math Library (SVML), an extension to the Intel Intrinsics available only with the

Intel Compiler. GCC provides a vector implementation of the logarithm through GNU’s

glibc vector math library, available since version 2.22, although the number of vector

functions available is much more limited compared to Intel’s SVML.

Listing 4.7 shows a C++ function implementing the MI computation using AVX In-

trinsics from the AVX2 extension. This code assumes that the contingency table size

is divisible by the vector unit width. Similar to the genotype table and contingency

table calculations, we can achieve this by padding the input contingency table with

0’s, which will not contribute to the final MI value. The computation follows the same

strategy of avoiding the calculations of the logarithm of zero as in the regular MI im-

plementation (Listing 4.6) but by different means: instead of skipping the logarithm

altogether, which is not possible now unless all eight values of the vector are zero, the

function replaces the zeros in the vector registers with values of one, which will evalu-

ate to zero and will not contribute in the following FMA operations (Lines 10–11, 15–16
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Listing 4.7: MI computation function vectorized with AVX2 Intrinsics
1 float MI(const ContingencyTable <uint32_t > &table ,const float h_y ,const float iinds)
2 {
3 const __m256 ones = _mm256_set1_ps (1.0);
4 const __m256 ii = _mm256_set1_ps(iinds);
5 __m256 h_x = _mm256_setzero_ps ();
6 __m256 h_all = _mm256_setzero_ps ();
7 for (auto i = 0; i < table.size; i += 8) {
8 __m256i y0 = _mm256_load_si256(table.cases + i);
9 __m256 y3 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), ii);

10 __m256 y1 = _mm256_cmp_ps(y0, _mm256_setzero_ps (), _CMP_NEQ_OQ);
11 __m256 y4 = _mm256_log_ps(_mm256_blendv_ps(ones , y3, y1));
12 h_all = _mm256_fmadd_ps(y3, y4, h_all);
13 y0 = _mm256_load_si256(table.ctrls + i);
14 y4 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), ii);
15 __m256 y2 = _mm256_cmp_ps(y0, _mm256_setzero_ps (), _CMP_NEQ_OQ);
16 __m256 y5 = _mm256_log_ps(_mm256_blendv_ps(ones , y4, y2));
17 h_all = _mm256_fmadd_ps(y4, y5, h_all);
18 y5 = _mm256_add_ps(y3, y4);
19 y1 = _mm256_or_ps(y1, y2);
20 y3 = _mm256_log_ps(_mm256_blendv_ps(ones , y5, y1));
21 h_x = _mm256_fmadd_ps(y5, y3, h_x);
22 }
23 y3 = _mm256_hadd_ps(h_all , h_x);
24 return (y3[0] + y3[1] + y3[4] + y3[5]) - h_y - (y3[2] + y3[3] + y3[6] + y3[7]);
25 }

and 19–20).

Moving onto AVX512BW, this extension provides mask registers and masked opera-

tions, which allow for the execution of operations only on some of the values contained

in the vector register. Masked logarithms are a very convenient operation to skip the

computation of the logarithm of zero. With masks we can avoid the zeros without hav-

ing to blend two vector registers beforehand. Unfortunately, masked logarithms are

only available under the SVML and for a vector width of 512 bits. The rest of the imple-

mentations still have to rely on the sequence of blends and logarithms.

Listing 4.8 shows the same code implemented using 512-bit intrinsics from the

AVX512BW extension. Comparisons are now made using the new intrinsic functions

operating with 16-bit masks (Lines 10, 15 and 19) instead of a whole vector register,

and the blend operation takes these masks as an argument. If the SVML is available,

the logarithm plus blend sequences of operations (Lines 11, 16 and 20) can be replaced

with a single call to the intrinsic mm512_mask_log_ps, which only calculates the loga-

rithm on the positions specified by the mask.

The AVX512BW extension also includes mask functions for 256-bit operations.
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Listing 4.8: MI computation function vectorized with AVX512BW Intrinsics
1 float MI(const ContingencyTable <uint32_t > &table ,const float h_y ,const float iinds)
2 {
3 const __m512 ones = _mm512_set1_ps (1.0);
4 const __m512 ii = _mm512_set1_ps(inv_inds);
5 __m512 h_x = _mm512_setzero_ps ();
6 __m512 h_all = _mm512_setzero_ps ();
7 for (auto i = 0; i < table.size; i += 8) {
8 __m512i z0 = _mm512_load_si512(table.cases + i);
9 __m512 z2 = _mm512_mul_ps(_mm512_cvtepi32_ps(z0), ii);

10 __mmask16 m1 = _mm512_cmp_epi32_mask(z0, _mm512_setzero_si512 (), _MM_CMPINT_NE);
11 __m512 z3 = _mm512_log_ps(_mm512_mask_blend_ps(m1, ones , z2));
12 h_all = _mm512_fmadd_ps(z2, z3, h_all);
13 z0 = _mm512_load_si512(table.ctrls + i);
14 z3 = _mm512_mul_ps(_mm512_cvtepi32_ps(z0), ii);
15 __mmask16 m2 = _mm512_cmp_epi32_mask(z0, _mm512_setzero_si512 (), _MM_CMPINT_NE);
16 __m512 z4 = _mm512_log_ps(_mm512_mask_blend_ps(m2, ones , z3));
17 h_all = _mm512_fmadd_ps(z3, z4, h_all);
18 __m512 z1 = _mm512_add_ps(z2, z3);
19 __mmask16 m3 = _kor_mask16(m1, m2);
20 z2 = _mm512_log_ps(_mm512_mask_blend_ps(m3, ones , z1));
21 h_x = _mm512_fmadd_ps(z1, z2, h_x);
22 }
23 return _mm512_reduce_add_ps(h_all) - _mm512_reduce_add_ps(h_x) - h_y;
24 }

Therefore, for comparison purposes, a third version of the MI function using a width of

256 bits was also created. This version uses the same sequence of blend plus logarithm

intrinsic functions shown in Listing 4.8 both for the SVML and glibc libraries, since

Intel does not include in the SVML a masked version of the 256-bit logarithm intrinsic.

4.2. Vector-Aware Exhaustive Epistasis Search Algorithm

This section presents an exhaustive epistasis search algorithm supporting interac-

tions of any given order (Section 4.2.1) that makes use of the vector implementation of

the MI association test presented in the previous section. From this algorithm, further

improvements are introduced in order to mitigate the runtime penalties caused by the

differences in frequency at which different vector operations run in x86_64 processors

(Section 4.2.2).
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Algorithm 4.1: non-segmented_sequential_search: Any-order exhaustive
exploration of all variant combinations

Input:
a: Array of genotype tables representing n input SNPs for m individuals
k: Order of the interactions to identify

Output:
List of k-SNP combinations and their associated MI value

1 gt ← Array of k −1 genotype tables, for sizes between 1 and k −1
2 ct ← Contingency table of size k
3 s ← Empty stack
4 e ← H(Y )
5 inv_inds ← 1/m
6 out ← Empty list
7 for i ← 0 to n do
8 gt[1] ← a[i ]
9 for j ← i +1 to n do

10 push(s, {i , j })
11 while s is not empty do
12 {c1, . . . ,cl } ← pop(s)
13 if l < k then
14 gt[l ] ← combine(gt[l −1], a[cl ])
15 for j ← cl +1 to n do
16 push(s, {c1, . . . ,cl , j })

else
17 ct ← combine_and_popcnt(gt[l −1], a[cl ])
18 v ← M I (ct,e, inv_inds)
19 append(out, {{c1, . . . ,cl }, v})
20 return out

4.2.1. Sequential Exhaustive Algorithm

Algorithm 4.1 shows the pseudocode of a depth-first exploration algorithm which

relies on the genotype table, contingency table and MI functions previously defined

to combine the different SNPs of the input data and assess the degree of association

between the SNP combinations and the phenotype of study. The key element of this

algorithm is that it iterates over all the combinations in a depth-first manner with the

help of a stack. This is fundamental to prevent multiple calculations of the same geno-

type table, since combinations may share a common set of SNPs with other combina-

tions. When the combination space is explored depth-first, we exhaust all combina-

tions starting with a particular prefix (and therefore its corresponding genotype table)

before moving onto the next one.
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The arguments to this routine are an array a containing the genotype tables of all

individual SNPs in the data and the order k of the interactions to locate. As a result, it

returns and a list of k-SNP combinations and the MI associated with each one. In the

first four lines, the function starts by allocating enough space for an array gt of k − 1

genotype tables of size 1 to k − 1, a contingency table ct for combinations of the tar-

get size k, a stack s of combinations of SNP indexes and a list out in which the output

combinations and MI values are stored. Before starting the exploration, the function

computes the inverse of the number of individuals inv_inds, and the entropy e of the

phenotype variability H(Y ) (Lines 4 and 5), the two arguments of the MI function com-

mon to all combinations.

After that, the function starts to loop through all SNPs, exploring all the combina-

tions starting with that SNP before moving onto the next one. To do this, the genotype

table of the SNP i is copied in gt[1], and all combinations of two SNPs starting with that

one are pushed into the stack (Lines 8–10). Then, using a while loop, the combinations

of the stack are processed until it is emptied. In each iteration, the top combination

{c1, . . . ,cl } of the stack is popped (Line 12). If l is smaller than the target interaction

order k, its corresponding genotype table is computed from the genotype table of its

prefix (stored in the array gt) and the table of the last SNP a[cl ] (Line 14). Then, all sub-

sequent combinations starting with {c1, . . . ,cl } are pushed into the stack (Lines 15–16).

Otherwise, if l is equal to k, its contingency table and MI are computed, and the result

is stored in the vector of results out (Lines 17–19).

For simplicity, in the pseudocode, all combinations with its MI are appended to the

vector of results, although in the actual implementation only the combinations with

the highest MI value are retained in the vector. The computational time complexity of

this algorithm is O((3n)k m), where n and m are the number of SNPs and samples per

SNP in the data, respectively, and k is the size of the combinations explored.

4.2.2. Vector-Aware Sequential Exhaustive Algorithm

Although the algorithm presented in Algorithm 4.1 already incorporates the SIMD

functions described in the previous subsections, it does not consider all the implica-

tions that vectorization brings with it. The performance per core is being penalized

due to the interleaved execution of vector instructions running at very different fre-
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quencies. Intel CPUs, such as the Intel 6240 used during the evaluation, are known to

downscale their CPU clock frequency based on the number of active cores and the se-

quence of instructions executed due to differences in power consumption and/or heat

dissipation. In the processor technical document [91], Intel identifies three different

frequency licenses in which the processor operates: non-AVX, AVX 2.0 and AVX-512

base core frequencies. Furthermore, different operations inside each license are not

guaranteed to run at the same frequency, these are only base frequencies that the pro-

cessor is guaranteed to run at. For example, floating-point arithmetic vector opera-

tions run at a slower clock frequency than integer arithmetic or bitwise vector opera-

tions.

As a direct consequence of this, the exploration algorithm would run on the lowest

frequency imposed by any of the vector operations, since the change in frequency is

not immediate and depends on the pipeline of operations executed. To resolve it, Algo-

rithm 4.2 proposes a modification to the previous one, segmenting the operations into

different blocks attending at the running frequencies to avoid the frequency change

problem.

Instead of declaring a single contingency table, the function now reserves space to

store b combinations and compute b tables before applying MI to any of them (Lines 2–

3). Combinations are now explored using two nested while loops, the outer one iter-

ating until the stack is empty and all combinations starting with the SNP i have been

explored (Line 9), and the inner one iterating until the block of b contingency tables

has been filled (Line 11).

Every iteration of the innermost loop starts by checking if the stack is empty. If

that is the case, and there are no more SNPs to explore, the loop exits (Line 14); other-

wise, the genotype table of the SNP i is copied in gt[1], all combinations of two SNPs

starting with i are pushed into the stack, the counter i is increased and the execution

continues on the next iteration of the inner while loop (Lines 15–19). If the stack is

not empty, the loop operates similarly as the old one: the top combination {c1, . . . ,cl }

of the stack is popped (Line 20). If l is smaller than the target interaction order k,

its genotype table is computed and stored in the array of genotype tables g t , and all

subsequent combinations starting with {c1, . . . ,cl } are pushed into the stack (Lines 22–

24). Otherwise, {c1, . . . ,cl } and its contingency table are stored in the ids and ct arrays,

respectively (Lines 25–27). When the arrays ids and ct of b index combinations and ta-
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Algorithm 4.2: segmented_sequential_search: Any-order exhaustive ex-
ploration of all variant combinations, with vector operations divided into two
blocks

Input:
a: Array of genotype tables representing n input SNPs for m inds.
k: Order of the interactions to identify
b: Size of the block of operations

Output:
List of k-SNP combinations and their associated MI value

1 gt ← Array of k −1 genotype tables, for sizes between 1 and k −1
2 ids ← Array of b combinations of size k
3 ct ← Array of b contingency tables of size k
4 s ← Empty stack
5 e ← H(Y )
6 inv_inds ← 1/m
7 out ← Empty list
8 i ← 0
9 while s is not empty or i < n do

10 cnt ← 0
11 while cnt < b do
12 if s is empty then
13 if i ≥ n then
14 Break from the inner while loop

else
15 gt[1] ← a[i ]
16 for j ← i +1 to n do
17 push(s, {i , j })
18 i ← i +1
19 Continue on the next iteration of the inner while loop
20 {c1, . . . ,cl } ← pop(s)
21 if l < k then
22 gt[l ] ← combine(gt[l −1], a[cl ])
23 for j ← cl +1 to n do
24 push(s, {c1, . . . ,cl , j })

else
25 ids[cnt] ← {c1, . . . ,cl }
26 ct[cnt] ← combine_and_popcnt(gt[l −1], a[cl ])
27 cnt ← cnt +1
28 for j ← 0 to cnt do
29 v ← M I (ct[ j ],e, inv_inds)
30 append(out, {ids[ j ], v})
31 return out
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bles, respectively, have been filled, the inner while finishes and a for loop iterates over

all the computed contingency tables, calculating its MI and adding the combination

into the vector of results v (Lines 28–30).

The selection of a proper value for the block size b is key in order to obtain good

performance. It has to be large enough to make the impact of the transition between

frequencies negligible, but not large enough to exceed the second-level cache of the

processor. Through experimental testing, we found that an appropriate b for the Intel

6240, the processor used in the evaluation, is 1474560/3k , with k being the order of

the search. This size corresponds to the smallest block size tested at which the average

running frequencies of the functions are very close or equal to the running frequencies

of these same functions in isolation.

4.3. Evaluation

We have conducted an extensive evaluation of the performance achieved by the

automatic vectorization offered by the GCC and Intel compilers, in contrast to man-

ual vectorization using Intel Intrinsics, when implementing a SIMD epistasis detec-

tion algorithm. It considers the performance of the different functions that compose

the epistasis search in isolation, as well as the whole depth-first search algorithm. This

evaluation starts by assaying the individual functions separately, and identifying which

of the implementations obtains the best performance in each part. Then, the search

algorithm is evaluated showcasing how the relative differences in time spent in each

of the functions, and the operations that each function involves, influence the perfor-

mance of the whole search. At last, the best performing implementation is compared

against the original MPI3SNP [2] program using the compiler’s automatic vectoriza-

tion, to put into perspective the performance gain achieved.

Given the exponential time complexity of the operations that compose an epistasis

search, and the search itself, it is difficult to represent elapsed time results for different

problem sizes in the same graph and extract conclusions from them. For this reason,

this evaluation uses the average elapsed time per cell or row (depending on the com-

putation being evaluated) as the metrics to present the results. These measures of time

express the compute time relative to the complexity of the computation, thus remov-
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Table 4.2: Characteristics of the SCAYLE nodes from the cascadelake partition.

SCAYLE NODE (CASCADELAKE PARTITION)

CPUS 2x Intel 6240 (36 cores) @ 2.6 GHz
MEMORY 192 GB

NETWORK Infiniband HDR @ 100 Gbps
GPU CARDS NVIDIA V100

OS CentOS 7.7
KERNEL 3.10

ing the impact of this complexity from the results and highlighting the differences in

performance from multiple implementations of the same operation.

The two compilers used throughout the evaluation are GCC version 8.3 (with glibc

version 2.29) and ICC version 19.1. The same optimization flags were used for both

compilers: -O3, -march=native and -mtune=native. Additionally, we enabled opti-

mizations on floating-point arithmetic operations using -fast-math and -fp-model=

fast for the two compilers respectively, as it is a requirement for GCC in order to

vectorize some calls to the math library. Furthermore, for the automatic vectoriza-

tion, we considered the effects of indicating a preference for a particular vector width

during the compilation through the flags -mprefer-vector-width={256,512} for the

GCC compiler and -qopt-zmm-usage={low,high} for the Intel compiler. Only the flag

-qopt-zmm-usage=high had a positive impact on performance, thus it is the only one

included in the results.

All experiments were run on the cascadelake partition of the SCAYLE cluster,

briefly described in Table 4.2. As mentioned in Section 4.2.2, performance during

SIMD operation in modern Intel CPUs is tied to the number of active threads and the

type of vector operations used in the instruction pipeline [91]. Therefore, to obtain

a realistic multithreaded performance, elapsed times throughout the evaluation are

measured during a simultaneous execution of the function in question on every core

of the processor. The 18 different times are then averaged and presented as a single

value.
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Figure 4.1: Average elapsed time per row during the calculation of genotype tables, for
an increasing number of individuals and a fixed combination size of three, both using
the GNU C Compiler and the Intel C++ Compiler.

4.3.1. Genotype Table Calculation Performance

Figs. 4.1 and 4.2 represent the performance results for the genotype table calcula-

tion function. The figures compare the performance of the explicit vectorization using

256-bit and 512-bit vector instructions with the automatically vectorized code, both for

the GCC and Intel compilers. The measure of time used in both figures is the average

time per row, that is, the average elapsed time during the calculation of a single row of

the table including both cases and controls, for all of the genotype tables of the order

and number of individuals specified.

Both compilers are capable of automatically vectorizing this function with no prob-
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Figure 4.2: Average elapsed time per row during the calculation of genotype tables, for
combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both using the
GNU C Compiler and the Intel C++ Compiler.

lems. Despite this, and as the figures show, the performance of the autovectorization

for both compilers is worse than the performance of both explicitly vectorized alterna-

tives.

Fig. 4.1 represents the time per row during the computation of genotype tables cor-

responding to a combination of three SNPs, for a growing number of individuals. The

time per row grows linearly with the number of individuals, as every row of the geno-

type table contains information about all the individuals in the data. Both compilers

show a gap between the performance of the automatic and explicit vectorizations that

is present until a number of individuals higher than 7040. The 512-bit explicit imple-

mentation performs slightly better in general than the 256-bit one.

Fig. 4.2 represents the time per row during the computation of genotype tables cor-

responding to combinations of 2, 4 and 8 SNPs, using a fixed number of individuals

of 2048. Here, the time per row should remain constant when increasing the size of

the combinations (k), as the number of rows in the table (3k ) grows with the number

of SNPs in combination considered, but each row contains the same 2048 individu-

als. This is the case for combination sizes smaller than eight, where the time per row

remains mostly constant between combination sizes of two to seven. Starting at geno-

type tables of eight SNPs, there is an increase in the elapsed time due to the size of the

operands and result tables exceeding the level 1 data cache of the processor, which is

manifested in the results by bringing the vector and non-vector performances much
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closer.

For second and fourth-order interactions, both explicit vectorization alternatives

obtain again better results than the vectorization applied by the compiler, with the

512-bit implementation performing the best. For eighth order interactions the perfor-

mance gap is smaller, with less relative difference between implementations.

When taking a look at the frequencies at which the different implementations run,

we observe that the genotype table calculation runs at 3270 MHz for the 256-bit vec-

tor width and 2805 MHz for the 512-bit vector width. In a different architecture, or

in future Intel microarchitectures, where the difference in frequencies between vector

widths could be smaller or nonexistent, we can expect the performance gap between

the two widths to be larger.

As an example, the elapsed time per row of calculating a fourth-order genotype

table of 2048 individuals at a fixed frequency of 2.6 GHz (the base frequency of the

processor) is 6.52×10−9 s and 3.00×10−9 s for the explicit 256-bit and 512-bit imple-

mentations under GCC, respectively; and 6.32× 10−9 s and 4.04× 10−9 s for the same

implementations under Intel, respectively. That is, the 512-bit implementation is 2.18

and 1.56 times faster than the 256-bit one for each compiler, significantly larger than

what we observe in Fig. 4.2 between these two implementations (1.66 and 1.01).

4.3.2. Contingency Table Calculation Performance

Figs. 4.3 and 4.4 represent the performance results for the contingency table calcu-

lation function. Similar to the figures from the genotype table calculation, these also

compare the performance of the explicit vectorization using 256-bit and 512-bit vector

operations with the automatically vectorized code using both GCC and Intel compil-

ers. In this case, we use the average elapsed time per cell to represent the performance

results, that is, the average time for the calculation of a single cell of the table, for all

the contingency tables of the order and number of individuals specified.

For this function, only the Intel compiler is capable of vectorizing the popcount op-

eration via the introduction of its own vector implementation. GCC, on the other hand,

refuses to vectorize this function due to the presence of the aforementioned operation

inside the innermost loop.
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Fig. 4.3 represents the time per cell during the computation of contingency tables

corresponding to a combination of three SNPs, for a growing number of individuals.

The elapsed time per cell during the creation of contingency tables also grows linearly

with the number of individuals, since the function operates with the rows from the two

previous genotype tables, which include the data of all individuals. The differences in

compiler behavior are apparent: GCC results display a linear increase of the elapsed

time per cell with the number of individuals, at a faster pace than the Intel results do

due to the lack of vectorization. It is also worth noting that there is a small reduction of

the elapsed time per cell in the explicit 256-bit vectorization under GCC at 3712 indi-

viduals, which corresponds to the minimum number of individuals required to enter

the loop that includes unrolling (Listing 4.4, Line 24). Anyhow, both explicit implemen-

tations are faster than the codes that the two compilers offer, with the 512-bit explicit

vectorization being the fastest alternative.

Fig. 4.4 represents the time per cell during the computation of contingency tables

for combination sizes of 2, 4 and 8, and using the same number of 2048 individuals.

Analogous to the elapsed time per row during the calculation of genotype tables, the

time per cell should also remain constant with the size of the combinations explored.

However, contrary to those results, there is no increase in the elapsed time for eight or-

der tables due to cache problems thanks to the avoidance of the genotype table storage.

This is due to the merge of the last level genotype table calculations and contingency

table computations in a single function. Results show that the explicit implementa-

tions are faster than the compiler-generated code, with the 512-bit vectorization being

the fastest implementation.

Similar to the genotype table calculations, we observe that the contingency table

computation function runs at a frequency of 3195 MHz for the 256-bit vector width

and 2800 MHz for the 512-bit vector width. If we run the function at a fixed frequency

of 2.6 GHz (the base frequency of the processor), the elapsed time per cell of calculating

a fourth-order contingency table of 2048 individuals is 1.97×10−8 s and 1.24×10−8 s for

the explicit 256-bit and 512-bit implementations under GCC, respectively; and 1.58×
10−8 s and 1.29× 10−8 s for the same implementations under Intel, respectively. This

represents a speedup of 1.59 and 1.23 between vector widths for each compiler, slightly

larger than those observed in Fig. 4.4 (1.42 and 1.11).
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Figure 4.3: Average elapsed time per cell during the calculation of contingency tables,
for an increasing number of individuals and a fixed combination size of three, both
using the GNU C Compiler and the Intel C++ Compiler.

4.3.3. Mutual Information Calculation Performance

Fig. 4.5 shows the performance results for the MI computation function. This fig-

ure compares the performance of the automatically vectorized code with three explicit

implementations: two 256-bit vector implementations using Intrinsics from the AVX2

and AVX512BW extensions, respectively, and a 512-bit vector implementation using

Intrinsics from the AVX512BW extension. Here, we also use the time per cell to rep-

resent the performance results. This time measures the average elapsed time during

the MI calculations corresponding to a single cell of the contingency table (both for

cases and controls), for all the tables of the specified order. The number of cells of a
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Figure 4.4: Average elapsed time per cell during the calculation of contingency tables,
for combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both using
the GNU C Compiler and the Intel C++ Compiler.
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Figure 4.5: Average elapsed time per cell during the calculation of the MI metric, for
combination sizes of 2, 4 and 8, both using the GNU C Compiler and the Intel C++
Compiler.

contingency table only depends on the number of SNPs in combination. Thus, MI, as

opposed to the previous routines, does not depend on the number of individuals.

Results show that the time per cell for the explicit vector implementations gener-

ally decreases with the table size, despite the fact that, ideally, the workload per con-

tingency table cell should remain constant regardless of the size of the table. This can

mostly be attributed to the additional computations derived from the padding intro-

duced in the input contingency tables. The larger the tables are, the lower the number

of unnecessary computed cells is relative to the total number of cells in the table.
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The best vector performance is achieved by the automatic vectorization of the In-

tel Compiler when coupled with the flag -qopt-zmm-usage=high. In contrast, GCC’s

automatic vectorization does not vectorize the loop, despite having a vectorized loga-

rithm function available in the glibc library. Explicit vectorization using 512-bit AVX in-

structions obtains the best performance out of the explicit vector implementations (for

GCC it is the fastest alternative). Furthermore, the introduction of 256-bit AVX512BW

masked instructions in the function have no significant impact on the elapsed time

when compared to the AVX2 implementation.

When examining the assembly code to characterize the difference in perfor-

mance between the explicit vector implementations and the code that the Intel auto-

vectorizer generates, we found that the compiler calls a function from the SVML that

is not available using intrinsics: __svml_logf8_mask_e9 (a logarithm function for a

vector width of 256 bits that uses a masked input). Therefore, in some scenarios, ex-

plicit vectorization may never obtain a performance equal or better than Intel’s auto-

vectorization due to the difference in SVML functions available through intrinsics.

As for the frequencies at which the function is executed, the 256-bit implemen-

tation runs at 2805 MHz (we only measured the 256-bit implementation using AVX2

Intrinsics, since the elapsed times are almost the same) while the 512-bit implementa-

tion runs at 2500 MHz. These frequencies are considerably lower than the two previous

functions due to the usage of floating-point arithmetic operations. If the running fre-

quencies are fixed to 2.5 GHz (slightly lower than the base frequency because the 512-

bit implementation runs at this frequency), we observe that the elapsed time per cell of

calculating the MI of a fourth-order contingency table are 3.48×10−9 s and 2.10×10−9 s

for the 256-bit and 512-bit vectorizations under GCC, respectively, and 2.87×10−9 s and

2.10×10−9 s under the Intel Compiler. This represents a speedup of 1.66 and 1.36 be-

tween vector widths for each compiler, respectively, slightly larger than those observed

in Fig. 4.5 (1.49 and 1.23).

4.3.4. Exhaustive Search Performance

At last, Figs. 4.6 and 4.7 present the performance results for the whole exhaustive

search algorithm. The two figures compare the performance of the 256 and 512-bit

explicit vectorization approaches using operations from the AVX2 and AVX512BW ex-
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(c) ICC compiler, without segmentation
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Figure 4.6: Average elapsed time per cell during the exhaustive search of epistasis, for
combination sizes of 2, 4 and 8 and a fixed number of 2048 individuals, both using the
GCC and Intel compilers. The times for each approach is divided into the calculation
of the Genotype Tables (GT), Contingency Tables (CT), Mutual Information (MI) and
the rest of the operations included in the algorithm.

tensions, with the automatically vectorized code using both GCC and Intel compilers,

for both versions of the search algorithm presented in Algorithms 4.1 and 4.2.

Figs. 4.6 and 4.7 use the average elapsed time per cell to represent the performance

results. The time per cell is the average elapsed time spent during the computation

of a single contingency table cell, the subsequent MI operations corresponding to the

cell of the table and a fraction of the time spent during the calculations of previous

genotype tables (this time is equally divided across all cells of all combinations that

make use of that genotype table), for all of the contingency tables of the order, number
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Table 4.3: Problem sizes used during the exhaustive search evaluation. The number
of combinations is the binomial of the size of the combinations and the number of
SNPs. The number of cells is the product between the number of combinations and
the number of cells (3k ). The deviation is the relative difference of the number of cells
from the number used for the second-order.

SIZE SNPS COMBINATIONS TOTAL CELLS DEVIATION

2 25000 312487500 2812387500 0.00 %
4 242 34389810 2785574610 −0.95 %
8 23 490314 3216950154 14.39 %

of SNPs and individuals specified.

Fig. 4.6 represents the time per cell, shown as stacked bars indicating the fraction

of the time spent in each of the functions, during the search of epistasis in combina-

tions of 2, 4 and 8 SNPs, and for a fixed number of individuals of 2048. The number

of SNPs was tied to the size of the combinations so that the workload among different

explorations was as similar as possible. Table 4.3 indicates, for each exploration or-

der, the number of SNPs selected, the resulting number of SNP combinations of said

order, the number of different cells among those combinations and the difference in

workload that that exploration order and number of SNPs supposes from the first one.

The figure shows that the 512-bit explicit vectorization performs the best out of all of

the versions compared, which is coherent with what we saw during the evaluation

of the individual functions. The 256-bit explicit implementations obtain practically

the same results and the only compiler-generated vectorization that beats any of the

explicit vectorizations is the Intel Compiler when coupled with the optimization flag

-qopt-zmm-usage=high for low-order epistasis searches.

The segmentation of operations introduced in the algorithm has an overall posi-

tive effect on the explicitly vectorized implementations. From a CPU frequency per-

spective, the segmentation algorithm achieves its goal. When there is no separation

between integer/binary arithmetic and floating-point arithmetic, the whole program

runs at 2.8 and 2.5 GHz for the 256-bit and 512-bit implementations, respectively. How-

ever, when there is segmentation, genotype and contingency table calculations run at

3.05 and 2.75 GHz, and the MI operations run at 2.8 and 2.5 GHz for each implemen-

tation respectively. From the performance perspective, the segmentation strategy only

works with the explicitly vectorized implementations and results in a noticeable reduc-
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tion of the elapsed time of the searches under GCC, and a much smaller gain under the

Intel Compiler for high-order interactions.

Fig. 4.7 represents the time per cell for a growing number of individuals from 128

to 8192, using a fixed combination size of three and a fixed number of SNPs of 680.

Although the number of individuals is irrelevant to the calculation of the MI, it affects

the calculation of the genotype tables and contingency tables, and therefore the time

per cell during the whole search also grows linearly with the number of individuals,

although with a less pronounced slope than the two first individual operations. These

two subfigures show similar behaviour to the one shown in Fig. 4.3 because the calcu-

lation of the contingency table accounts for the majority of the elapsed time during the

whole search.

Results from Fig. 4.7 show that the explicit vectorization using 512-bit operations

achieve the best times. These are very similar to those of the contingency table cal-

culation function (Fig. 4.3), which makes sense since it is the most time-consuming

function of the algorithm as Fig. 4.6 showed. The best implementation is again the

explicit 512-bit vectorization.

4.3.5. Performance of the Vectorized Search Compared Against

MPI3SNP

To conclude the evaluation, Table 4.4 compares the elapsed time required to com-

plete a third-order epistasis search using the original MPI3SNP [2] program and the

explicit 512-bit vectorization proposed in this chapter, for an input data consisting of

1000 and 4000 SNPs and 1000 and 2000 individuals, and using a single core of the pro-

cessor. MPI3SNP was compiled using the same flags indicated during the introduction

of this section, enabling the automatic vectorization in both compilers. Results show

that the vector implementation of the algorithm speeds the execution up by an average

factor of 7 using GCC and 12 using the Intel Compiler. The speedup with Intel is in part

due to its poor memory handling when allocating memory for objects inside a loop,

something that has been accounted for in the new implementation and that MPI3SNP

does not do. Therefore, we believe that the speedups obtained by GCC paint a more

realistic picture of what speedups should be expected of this algorithm.
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Table 4.4: Elapsed time, in seconds, and speedup of the 512-bit explicit vector im-
plementation compared to MPI3SNP. Results are the average of three executions of
a single-threaded third-order search.

GCC COMPILER INTEL COMPILER

SNPS INDS. MPI3SNP VECTOR SPEEDUP MPI3SNP VECTOR SPEEDUP

1000 1000 200.77 39.09 5.14 391.47 40.64 9.63
1000 2000 254.43 50.97 4.99 735.52 48.98 15.02
4000 1000 25698.86 2527.58 10.17 25113.33 2626.10 9.56
4000 2000 31506.60 3401.53 9.26 47179.35 3288.37 14.35

4.4. Concluding Remarks

As outlined in the previous chapter, the exhaustive search is the only approach that

guarantees good epistasis detection powers for all epistasis scenarios studied, with the

computational complexity being its main hindrance. In this chapter, we propose dif-

ferent SIMD implementations that exploit the parallelization opportunities inherent

to the epistasis detection problem in order to speed up the execution of an exhaustive

search. This is achieved by the introduction of AVX Intrinsics during the calculation

of the genotype tables, contingency tables and MI metric. We also include general op-

timization strategies, such as the segmentation of the operation pipeline due to the

license-based downclocking on Intel processors, and other optimizations specific to

this code, such as the loop unrolling during the calculation of genotype and contin-

gency tables, or the avoidance of logarithms of 0 during the MI calculation. Although

this chapter considers a specific exhaustive search algorithm, many of these vectoriza-

tion and optimization techniques could be directly applied to a multitude of epistasis

detection methods in the literature where genotype and contingency tables are con-

structed to assess the association between a genotype combination and a particular

phenotype.

The results obtained highlight the potential of the SIMD parallelization when ap-

plied to the epistasis detection problem. For example, the runtime under GCC of an

exhaustive search of an interaction consisting of three SNPs from two datasets con-

taining 4000 SNPs and 1000 and 2000 individuals, respectively, was reduced from 428

and 525 minutes using MPI3SNP down to 42 and 57 minutes when using the 512-bit

vector implementation proposed here.
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The autovectorization provided by the compilers showed varying degrees of suc-

cess attending to the compiler and the operations considered. Intel, for example, was

capable of vectorizing all operations while GCC fell short. As for the performance

achieved, we observed that optimization flags play a big role in the resulting perfor-

mance of the code generated. GCC required the -fast-math flag to be capable of vec-

torizing calls to the math library, while Intel improved the performance significantly

with the usage of the flag -qopt-zmm-usage=high. With respect to performance, Intel’s

autovectorization remained competitive with the explicit implementations for low-

order interaction searches but fell behind when moving past fourth-order interactions.

GCC’s autovectorization, on the other hand, was never close to the performance of the

explicit implementations due to its failure of vectorizing the operations.

Moving forward, with future CPU microarchitectures and the introduction of new

AVX extensions, it is reasonable to expect the performance of the SIMD epistasis de-

tection algorithm to improve even further. During the evaluation we saw the effect

that the Intel frequency model had on the performance attending to the width of

the operations, penalizing the larger vector widths. If these differences in frequency

are reduced in upcoming CPUs, the performance will consequently increase. Fur-

thermore, with future AVX instructions, for example, the popcount operation from

the AVX512VPOPCNTDQ extension recently introduced with Intel Ice Lake processors,

some operations of the algorithm will allow for a more efficient implementation.

In order to exploit all the computing power that current CPUs and clusters of CPUs

offer, instead of the VPU of a single core, the following Chapter 5 presents the combina-

tion of the SIMD association test algorithm proposed here with a distributed execution

of the exhaustive search for epistasis interactions of any order.





Chapter 5

Any-Order Epistasis Search on CPU

Clusters

This chapter presents Fiuncho, an exhaustive epistasis detection tool that supports

interactions of any given order, and exploits all levels of parallelism available in a ho-

mogeneous CPU cluster to accelerate the computation and make it more scalable with

the size of the problem. To the best of our knowledge, the proposed implementation is

faster than any other state-of-the-art CPU method.

The chapter is organized as follows: Section 5.1 details the parallel epistasis search

implemented. Section 5.2 includes the evaluation of Fiuncho. At last, Section 5.3

presents the conclusions reached.

5.1. Fiuncho

Fiuncho implements a parallel exhaustive detection method using a static distri-

bution strategy. Given a collection of genotype variants from two groups of samples

(cases and controls), the program tests for association every combination of variants

for a particular interaction order using the association test presented in Section 1.3,

and reports the most associated combinations. To do this, Fiuncho combines three

different levels of parallelism:

87



88 Chapter 5. Any-Order Epistasis Search on CPU Clusters

Task parallelism: the search method is divided into independent tasks that are

distributed among the processing resources available in a cluster of CPUs. MPI

multiprocessing and multithreading are used for the implementation.

Data and bit-level parallelism: each task exploits the VPUs by using the SIMD

algorithm proposed in Chapter 4. Furthermore, this algorithm uses 64-bit word

arrays to represent each of the rows of the genotype tables, and as a consequence

of that, each intersection operation (bitwise AND) works with 64 samples at once.

This section discusses the method used to exploit the task parallelism. It starts by

describing the distribution strategy followed in order to divide and distribute the work-

load among the computational resources available, and concludes with an algorithm

that implements the epistasis search using the presented strategy.

5.1.1. Distribution Strategy

The strategy used to distribute the workload of an epistasis search of any given

order follows the same principles of the distribution strategy used in the third-order

epistasis search discussed in Section 2.1: divide the workload by combinations of

variants of the target interaction size, while reusing as much information as possible

through the distribution of smaller combinations. For instance, when searching for

fourth-order epistasis, the analysis of the combinations with variants {1,2,3,4}, {1,2,3,5},

{1,2,3,6}, etc. requires the construction of the same genotype table corresponding to

the pair {1,2} and the triplet {1,2,3}. Therefore, assigning all these combinations to the

same unit will allow the reuse of the genotype tables of {1,2} and {1,2,3} for all fourth-

order combinations that contain them.

Fiuncho implements a static distribution strategy in which the combinations of any

given order k are distributed among homogeneous computing units using the com-

binations of size k − 1, following a RR distribution of the combinations sorted by as-

cending numerical order. In other words, every combination of size k −1 is scheduled

among units, and every unit computes all combinations of k variants starting with the

given k −1 prefix. This strategy finds a middle ground between a good workload bal-

ance among computing units and avoiding overlaps in computations among them. By

distributing the workload using the k−1 combination prefixes we guarantee that every
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Figure 5.1: Example of the distribution strategy, arranging combinations of four vari-
ants among three computing units. Each prefix of three variants (represented as rect-
angles with dashed lines) is assigned to a unit (shown as different colors) following a
RR distribution, and that unit tests for association every combination of four variants
starting with the prefix (represented as small colored squares).

combination of size k reuses the genotype tables of its prefix of size k −1, but it intro-

duces an overlap among units during the calculation of the tables of the k −1 prefix.

Nonetheless, repeating these calculations results in a negligible overhead due to the

exponential growth of the combinatorial procedure, as the experimental evaluation

included in Section 5.2 proves.

Fig. 5.1 exemplifies this strategy, showing the distribution of the computations re-

sulting from a fourth-order search (k = 4) of eight variants using three computing units.

The figure uses rectangles with dashed lines to represent all prefixes of k−1 = 3 variants

derived from combining the eight inputs, shown in sorted order from left to right and

top to bottom. Each prefix rectangle includes one or more colored squared in its inte-

rior, representing a combination of four variants to be tested for association, and the

colors indicate the unit which will carry out its test. Every combination under the same

prefix is assigned to the same unit, guaranteeing that the genotype table of the prefix

is computed only once, and every prefix is assigned to one of the three units following

a RR distribution. At the same time, there are small overlaps among the computations

corresponding to the different prefixes. For example, the prefix {1,2,3} and {1,2,4} re-

quire constructing the same genotype table for the combination {1,2}, and since they

were assigned to different units, the table will be constructed more than once. This

strategy assigns twenty-five, twenty-six and nineteen combinations to the three com-
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puting units, respectively. Although it does not create the most balanced distribution

possible, the strategy does not require synchronization or communication between

units, takes the reuse of genotype tables into account and achieves very good results

for a more realistic input size.

5.1.2. Algorithmic Implementation

With the previous distribution strategy in mind, Algorithm 5.1 presents the pseu-

docode for the parallel epistasis detection method. It follows the SPMD paradigm in

which all computing units execute the same function, while each unit analyzes a differ-

ent set of variant combinations. The implementation combines MPI multiprocessing

with multithreading to efficiently exploit the computational capabilities of CPU clus-

ters. Every MPI process reads the input variants and stores each one in a genotype

table, keeping the individual variant information replicated in each process. After that,

each MPI process spawns a number of threads that execute the function presented

over a different set of variant combinations. The input data is provided to the different

threads through shared memory, making an efficient use of the memory inside each

node. This procedure allows the parallel strategy to be abstracted from the topology of

the cluster, so that the workload is assigned to each core partaking in the computation

regardless of its location.

The input arguments to the function are the array a of n genotype tables repre-

senting the individual variants, the list of variant combinations l to analyze and the

size b of the blocks in which the integer and floating-point vector operations will be

segmented. The list of combinations l passed to the function is provided as an itera-

tor that traverses through the combinations assigned to each core without the need of

storing the list in memory. In turn, it returns the list of combinations of k variants with

the highest MI values.

The algorithm uses the same vector functions of the MI association test presented

in Section 4.1: combine, combine_and_popcount and MI. These functions run at very

different frequencies in Intel processors [91], measured during the evaluation in Sec-

tion 4.3, and thus the algorithm divides the operations into different blocks so that

each block can operate at a different frequency. This is the same strategy used in Algo-

rithm 4.2.
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Algorithm 5.1: parallel_search: Distributed algorithm implementing an
exhaustive search of any-order epistasis

Procedure sorted_insert(list, ct, mi)
1 if size of list < s or mi > list[0] then
2 Find first i so that list[i ] > mi
3 Insert {ct,mi} before i
4 if size of list > s then
5 Remove list[0]
6 return

Algorithm parallel_search(a, l, b)
Input:

a: Array of genotype tables representing n input variants
l : List of variant combinations to analyze
b: Size of the block of operations

Output:
List of the s highest ranking k-combinations

7 list ← Empty list
8 ct ← Array of b contingency tables of size k
9 cnt ← 0

10 for {i1, . . . , ik−1} in l do
11 gt ← a[i1]
12 for j ← 2 to k −1 do
13 gt ← combine(gt, a[i j ])
14 for j ← ik−1 +1 to n do
15 if cnt = b then
16 for c ← 0 to cnt do
17 v ← MI(ct[c])
18 sorted_insert(list, ct[c], v)
19 cnt ← 0
20 ct[cnt] ← combine_and_popcount(gt, a[ j ])
21 cnt ← cnt +1
22 for c ← 0 to cnt do
23 v ← MI(ct[c])
24 sorted_insert(list,ct[c], v)
25 return list

Algorithm 5.1 primarily consists of a for loop that traverses the list of variant combi-

nations provided to the function (Line 10). The loop begins by computing the genotype

table for each combination prefix {i1, . . . , ik−1}. This is done in a progressive manner,

starting with the table of the first variant of the prefix i1, and adding one extra variant

to the genotype table at a time using the function combine, until the whole prefix is

included in the table (Lines 11–13). Once this table is computed, every combination

of k variants starting with the given prefix, {i1, . . . , ik−1, j } with j ∈ [ik−1 + 1,n − 1], is
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examined using a for loop (Line 14). On each iteration, the genotype frequencies of

the combination are obtained through the function combine_and_popcount, using the

genotype table of the prefix, gt, and the table of the selected variant, a[ j ] (Line 20). The

frequencies are stored in an array ct of contingency tables. Only when b tables have

been calculated, the loop enters an if branch where the table array ct is processed al-

together using a for loop (Lines 15–19), effectively separating the floating-point vector

computations of the MI function from the genotype and contingency tables construc-

tion operations. On each iteration, a contingency table is processed by computing the

MI of the table, and its result is stored in a list of s elements, sorted by its MI value using

the auxiliary function defined in Lines 1–6.

When the outermost for loop ends, the remaining contingency tables stored in the

array ct are processed (Lines 22–24) and the algorithm returns the sorted list of the

top-ranking s combinations (Line 25).

The beginning and the end are the only two points in the program requiring syn-

chronization among threads and MPI processes. Once all threads of a process termi-

nate, the different lists of top-ranking combinations kept in the shared memory of the

process are joined into one, then sorted by their MI value and truncated to s combina-

tions. Analogously, once all MPI processes have assembled their joint lists, the results

are gathered into a single joint list through the MPI collective MPI_Gatherv. This list is

then sorted by MI and truncated to s combinations again. To conclude, the program

writes the final list to a file and exits.

5.2. Evaluation

This evaluation examines the proposed parallel method in terms of the balance

achieved by the parallel distribution, the overhead introduced by the overlap in op-

erations among the different computing units, the parallel efficiency achieved for an

increasing number of computing units and a comparison with state of the art exhaus-

tive epistasis detection software. For this evaluation we also use the SCAYLE super-

computer, described in Table 4.2. However, in terms of software, we use a more recent

version of GCC (11.2) and glibc (2.34). Additionally, we use OpenMPI version 4.1.
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Figure 5.2: Maximum difference of assigned combinations to any computing unit from
the average number of combinations assigned per unit, relative to the latter, for orders
ranging from 2 to 6.

5.2.1. Parallel Distribution Balance

The distribution strategy presented in Section 5.1.1 does not assign the same ex-

act number of combinations of k variants to test for association to every computing

unit. Instead, the strategy makes a compromise between the balance in combinations

assigned and the reuse of intermediate results.

In order to evaluate how good the designed strategy is, Fig. 5.2 plots the maximum

percentual difference between the number of combinations assigned to a computing

unit and the mean number of combinations assigned to any unit, relative to the latter.

It can be defined as:

100
maxdi −

(n
k

)
/p(n

k

)
/p

(5.1)

with di being the number of combinations assigned to the unit i , n the number of

variants, k the size of the combinations and p the number of computing units used.

The figure represents the differences in workload distribution using combination sizes

from 2 to 6 and a number of units from 18 to 522. In order to keep a similar number of

k-combinations, and thus a similar distribution difficulty across combination orders,

a number of variants of 48828, 1928, 413, 172 and 100 were used for orders 2 to 6,
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Table 5.1: Overhead of the parallel algorithm (run using a single CPU core) compared
to a sequential implementation of the same operation, for interaction orders between
four and six.

Order Variants Combinations T (s) Tal t (s) Overhead (%)

4 464 1906472876 1514.61 1526.48 −0.78
5 152 632671880 1477.57 1453.21 1.68
6 76 218618940 1518.63 1506.17 0.83

respectively.

The results show that the proposed distribution keeps the differences under 3 % for

every scenario tested. For scenarios with larger variant counts, as is the case during

the experimental evaluations of Sections 5.2.3 and 5.2.4, the differences in assigned

workload are expected to be even smaller.

5.2.2. Parallel Overhead

Although the distribution strategy takes into consideration the reuse of genotype

tables to avoid repeating the same operations in different computing units, it certainly

does repeat some operations during the construction of those corresponding to the

combination prefix assigned by the distribution. In order to measure the overhead in-

troduced, we compared the elapsed time of a single-thread execution of the distributed

algorithm with an alternative implementation following the sequential algorithm pre-

sented in the previous chapter (Algorithm 4.2), which avoids the repetition of any cal-

culation pertaining to any genotype table.

Table 5.1 represents the overhead, measured as a percentage and calculated as

100 · (T − Talt)/Talt , with T being the elapsed time of the proposed implementation

and Talt being the elapsed time of the alternative sequential implementation. The fig-

ure omits the second and third-order overheads because, for those combination sizes,

the distribution strategy does not produce any overlap in the computations associated

with the calculation of genotype tables. The results show that there is no significant

difference between the two elapsed times.
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Figure 5.3: Speedups of Fiuncho for multithread executions using 36 threads, com-
pared to a single-thread run, representing both the observed and frequency-adjusted
speedups.

Table 5.2: Elapsed times of single-thread executions of Fiuncho for interaction orders
between two and six.

ORDER VARIANTS COMBINATIONS ELAPSED TIME (S)

2 184865 17087441680 2491.07
3 3246 5694987980 1612.47
4 464 1906472876 1514.61
5 152 632671880 1477.57
6 76 218618940 1518.63

5.2.3. Speedup and Efficiency

This subsection evaluates the speedup and efficiency of Fiuncho using one and

multiple nodes. For both scenarios we selected a number of input variants inversely

proportional to the order of the interactions so that the elapsed times of the analysis

are similar, while the number of samples per variant was kept constant at 2048.

Fig. 5.3 represents the speedups obtained by Fiuncho using a whole node (36 cores)

when compared to the elapsed times of single-thread executions shown in Table 5.2,

for epistasis orders ranging between two and six. Comparing the speedups from single-

thread and multithread executions on an Intel 6240 CPU suffers from the same fre-

quency disparity problem mentioned in the evaluation in Section 3.2 [91]. To rep-

resent the efficiency achieved more accurately, the observed and frequency-adjusted

speedups are used again. The observed speedup is calculated as T1/TN , with T1 be-
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Table 5.3: Elapsed times of single-node (36 cores) executions of Fiuncho for interaction
orders between two and six.

ORDER VARIANTS COMBINATIONS ELAPSED TIME (S)

2 3755572 7052158645806 56261.70
3 28576 3888727096800 42539.30
4 2409 1399760565126 43176.00
5 561 454852770372 42594.70
6 223 159602946217 43103.40

ing the elapsed time using a single CPU core and TN the elapsed time using N CPU

cores, and the adjusted speedup is calculated as T1/TN ·F1/FN , where F1 is the average

single-core frequency when Fiuncho uses a single core and FN is the average multicore

frequency when N cores are used. The results for a single-node (36 cores) execution

show very good efficiencies when the speedup is adjusted for the frequency differences

between single-core and multicore executions.

Fig. 5.4 shows the speedups obtained for multinode executions using one MPI pro-

cess per node with 36 threads each, comparing the elapsed times obtained with a

single-node run (36 cores) presented in Table 5.3. The datasets used in this second

scenario are substantially larger than those from Table 5.2, in order to keep the elapsed

times over an hour long when 14 nodes (504 cores) are used. Here, in a multinode en-

vironment, there is no difference between the average CPU frequency of the different

nodes since all of them use all the available CPU cores, and thus there is no need to

include an adjusted measure of the speedup. Again, results show very good efficien-

cies except for the second-order interaction. This is due to the large input data for this

interaction order, sizing over 29386 MB and read sequentially, thus limiting the maxi-

mum speedup achievable.

5.2.4. Comparison with Other Software

Lastly, the performance of Fiuncho was compared with other exhaustive epistasis

detection tools from the literature: MPI3SNP [2], MDR [16] and BitEpi [92]. To do this,

we compared the elapsed times of all programs when looking for epistasis interactions

of orders ranging from two to four. In order to keep the elapsed time constrained,

multiple datasets were used containing a number of variants inversely proportional to
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Figure 5.4: Speedups of Fiuncho using 2, 4, 8 and 14 nodes with 36 threads per node,
compared to a single-node execution.

Table 5.4: Elapsed time, in seconds, to complete an epistasis search both with MPI3SNP
and Fiuncho, using a different number of nodes and CPU cores.

ORDER VARIANTS COMBINATIONS NODES CORES FIUNCHO (S) MPI3SNP (S)

3 3246 5694987980 1 1 1612.47 12868.42
3 8505 102498733260 1 18 2240.87 15312.84
3 10716 205033710860 1 36 2269.89 16046.58
3 13501 410062497750 2 72 2260.79 16085.50
3 17010 820134519120 4 144 2291.31 16186.12

the order of the epistasis search. The number of samples per variant, however, is 2048

for all datasets. Since MDR is considerably slower than the rest of programs, smaller

data sizes were used for its evaluation.

Table 5.4 compares the elapsed times of Fiuncho and MPI3SNP, the tool previously

developed by us and described in Chapter 2. This program is limited to third-order

searches, thus the evaluation only considers this interaction order. It implements MPI
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Table 5.5: Elapsed time, in seconds, to complete an epistasis search both with BitEpi
and Fiuncho, using a different number of threads and orders. The total workload be-
tween orders was kept as similar as possible.

ORDER VARIANTS COMBINATIONS CORES FIUNCHO (S) BITEPI (S)

2 184865 17087441680 1 2491.07 18090.91
2 784314 307573833141 18 3582.01 22294.39
2 1109187 615147345891 36 3797.39 23365.74
3 3246 5694987980 1 1612.47 5417.15
3 8505 102498733260 18 2240.87 7474.48
3 10716 205033710860 36 2269.89 7564.48
4 464 1906472876 1 1514.61 2202.65
4 954 34296318126 18 2101.60 3239.25
4 1134 68539472001 36 2111.74 3246.72

multiprocessing, so different scenarios were considered which include single-thread,

single-node and multinode configurations. Both MPI3SNP and Fiuncho assign one

MPI process per node, and create as many threads per process as cores available in

each node. The results show that Fiuncho is significantly faster than MPI3SNP in all

the evaluated scenarios.

Table 5.5 compares the results of BitEpi with Fiuncho. BitEpi is a very novel pro-

gram that only supports interaction orders between two and four, thus the evaluation

is restricted to those orders. Additionally, BitEpi supports multithreading, therefore

single-thread and multithread scenarios are used. BitEpi uses a substantially differ-

ent association test with a time-complexity of O(km), while the association test used

in Fiuncho has a time-complexity of O(3k m). This can be observed in the results as

a shrinking difference between the elapsed times with the epistasis size. Despite this,

Fiuncho is still faster in all configurations tested. Furthermore, BitEpi does not support

multinode environments and can only exploit the hardware resources of a single node,

while Fiuncho can use as many resources as available in order to reduce even further

the elapsed time of the search.

Lastly, Table 5.6 compares the elapsed time of MDR with Fiuncho, using a more lim-

ited number of variants than previous comparisons. MDR is a relatively old program

written in Java, but we decided to include it due to its relevance in the field. It imple-

ments an epistasis search supporting interactions of any order, although its elapsed

time quickly becomes prohibitive even with a reduced input size, so we decided to
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Table 5.6: Elapsed time, in seconds, to complete an epistasis search both with MDR and
Fiuncho, using a different number of threads and orders. The total workload between
orders was kept as similar as possible.

ORDER VARIANTS COMBINATIONS CORES FIUNCHO (S) MDR (S)

2 9300 43240350 1 6.26 3571.77
2 39455 778328785 18 13.16 8656.46
2 55797 1556624706 36 16.04 10285.10
3 580 32350660 1 9.22 3204.88
3 1518 581842316 18 12.94 4710.82
3 1913 1164963436 36 13.34 6598.97
4 160 26294360 1 20.97 3767.28
4 328 473490550 18 29.04 4710.03
4 390 949173615 36 29.37 6491.59

keep the interaction orders between two and four. MDR supports multithreading, so

single-thread and multithread scenarios were considered in this evaluation. Results

show a massive difference in elapsed times, with an average speedup of 358 of Fiuncho

over MDR. This speedup could be increased even further if we considered multinode

scenarios for larger datasets, something that MDR does not support unlike Fiuncho.

5.3. Concluding Remarks

This chapter presents Fiuncho, an epistasis detection program for any-order epis-

tasis detection. It is the culmination of this thesis, combining the SIMD implementa-

tion of the association test for the x86_64 architecture presented in Chapter 4, with a

distributed search algorithm that supports interactions of any order, inspired by the

MPI3SNP method described in Chapter 2.

Fiuncho shows an exceptional performance, with a parallel strategy that balances

the workload remarkably well, obtaining computational efficiencies close to an ideal

growth with the hardware resources provided. When compared to existing epistasis

detection software, Fiuncho offers support for a wider scope of application with no

limit on the target epistasis size, and performs the fastest of all programs considered in

this study. For example, on average, Fiuncho is seven times faster than its predecessor,

MPI3SNP [2], three times faster than BitEpi [92] and 358 times faster than MDR [16].

Moreover, the speedups over BitEpi and MDR could be multiplied if larger experiments



100 Chapter 5. Any-Order Epistasis Search on CPU Clusters

on multinode environments were considered, as they are restricted to the hardware

resources available in a single node.



Chapter 6

Calculating Penetrance Tables of

High-Order Epistasis Models

Simulation is essential in order to study and develop new algorithms or methods

for epistasis detection. Simulations offer a controlled environment for testing the ac-

curacy of new methods where the expected results are known beforehand. In contrast,

real world data are more costly to acquire and provide no direct way of knowing which

result is correct. Here, we introduce a software library named Toxo, capable of simu-

lating penetrance tables that can be used later by epistasis simulators to generate data.

Thanks to it, the review presented in Chapter 3 includes datasets with epistasis inter-

actions following a particular epistasis model.

The chapter is organized as follows: Section 6.1 defines what a penetrance table

is, and the different strategies that are used in the literature in order to obtain them.

Section 6.2 describes the general procedure that Toxo follows in order to calculate pen-

etrance tables. Section 6.3 details how the library was implemented and how can it

be used in conjunction with existing simulators. Section 6.4 evaluates Toxo in terms

of runtime and precision of the results, compares the ability to obtain penetrance ta-

bles with other state-of-the-art applications and discusses what Toxo can and cannot

do. At last, Section 6.5 highlights the conclusions reached and some future areas of

improvement.

101
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6.1. Penetrance Tables

Penetrance tables define the different probabilities of expressing the phenotype

considering the genotype that each individual possess. They are the most common

way to characterize an epistatic relationship, and they are commonly used by simu-

lation software in order to define epistasis interactions. Nonetheless, not all simu-

lators implement the logic necessary to generate the penetrance tables themselves.

SimuPOP [93], HapSample [94], or SBVB [95], for example, can simulate synthetic

datasets employing penetrance tables, but they cannot create them.

Three general approaches are used to create the penetrance tables. The first and

most simple approach consists in using an epistasis model. Epistasis models are math-

ematical relationships that define the penetrance value for each genotype combination

as a function of one or more variables, each one usually representing a statistical pa-

rameter of the interaction. Fig. 6.1 includes some examples of epistasis models. Mar-

chini et al. in [84], for example, use two different parameters to define their models: the

baseline effect (α), the genetic effect present at every locus independently of the actual

allele combination, and the genotypic effect (θ), the increase in the odds of the disease

beyond the baseline level due to genetic interaction. From these models, a penetrance

table can be obtained by giving values to every parameter. However, since penetrances

are probability values, they can only be inside the interval [0,1] and, therefore, there

are some restrictions on how the parameter values can be combined. An example of

the usage of epistasis models to generate penetrance tables as described can be found

in [96].

The second approach is to impose a set of characteristics that should be fulfilled by

the simulated population under study and find a penetrance table that complies with

these requirements. Parameters model certain characteristics of the population, and

the most common are the prevalence P (D) (representing the proportion of individuals

in a population carrying the phenotype of study) and the heritability h2 (representing

the amount of phenotypic variation that corresponds to genetic variation). Finding a

table with such requirements is a more complex process than using an epistatic model,

therefore a software tool is needed. In this regard, GAMETES [83] is an epistasis simula-

tion software that uses a stochastic method to find a penetrance table with the desired

prevalence and heritability levels. It is also able to generate population samples from
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Figure 6.1: Examples of penetrance table models.

these tables. GenomeSIMLA [97] is another simulator capable of finding a penetrance

table under prevalence and heritability constraints. In this case, it uses a GA to reach a

solution.

The third and last approach consists in combining the two previous methods: the

use of epistasis models together with a set of parametric restrictions. This approach

has the advantage of modeling the interaction using the model variables, while also

modeling some population characteristics using the parametric restrictions. Conse-

quently, finding a penetrance table is a significantly more complex task. EpiSIM [98]

and gs [99] are simulators that fall into this hybrid approach. gs offers the ability to cre-

ate penetrance tables for nine embedded second-order models, based on the genotype

odds ratio(s) for each locus and the prevalence of the desired phenotype. The usability

of gs is especially limited due to its restricted set of models. EpiSIM, on the other hand,

can create penetrance tables of up to fourth-order and simulate population samples

from them. It allows us to specify penetrance values as a function of two variables

(i.e., it uses bivariate penetrance functions) and it also permits specifying the desired

values of prevalence and heritability. The EpiSIM implementation attempts to find a

value for the model variables by solving the equation system made of the prevalence

and heritability equations, respectively defined as:
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P (D) =∑
i

P (D|gi )P (gi ) (6.1)

h2 =

∑
i

(
P (D|gi )−P (D)

)2P (gi )

P (D)
(
1−P (D)

) (6.2)

where P (D|gi ) = fi (x, y) is the proportion of individuals showing trait D when hav-

ing the genotype gi , P (gi ) is the population frequency of the genotype gi and fi (x, y)

is the function of two variables that is defined by the epistasis model. EpiSIM seeks to

find the penetrance table or tables that meet certain prevalence and heritability con-

straints by solving an equation system made of the two previous expressions. This

results in a system with two equations and two unknowns: the two variables of the

epistasis model.

Although this approach can work for second-order models and low prevalence and

heritability values, EpiSIM struggles to find solutions to higher-order models or more

realistic parameter values. Toxo, the software library presented, can calculate pene-

trance tables from models containing bivariate penetrance functions with no limita-

tion on the interaction order. Toxo allows the user to create penetrance tables for a

specified epistasis model maximizing the prevalence or heritability when one of the

two is constrained. These tables can be used by other simulation packages to generate

the dataset with the embedded epistasis model and the parametric restriction speci-

fied.

6.2. Method

Based on the limitations described in the previous section, Toxo implements a

method to circumvent these issues and enable simulators to generate high-order epis-

tasis in their data.
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6.2.1. An Alternative Approach to Calculating Penetrance Tables

One of the biggest hurdles of solving the equation system used in EpiSIM (a system

of equations composed of Equations 6.1 and 6.2) is the formulation of incompatible

equation systems by requesting a combination of prevalence and heritability values

that cannot be achieved by the model introduced. If we take the additive model as

an example, shown in Fig. 6.1a, the prevalence and heritability can be expressed as

functions of the model parameters α and θ, and a prevalence and heritability value

can be obtained for any combination of α and θ. However, not every combination

of values represents a valid result. Penetrance values are probabilities, and they are

restricted to the interval [0,1]. In other words, the epistasis model imposes a restriction

on which combinations of α and θ are valid, and thus limits the values of prevalence

and heritability that can be simultaneously achieved by a model. Fig. 6.2 represents the

prevalence and heritability as functions of two variables for the second-order additive

model, giving a visual representation of this phenomenon. The two subfigures show

no common point (α,θ) to both graphs where P (D) = 0.8 and h2 = 0.2, proving it is not

possible to reach both these values simultaneously using this model.

To overcome this limitation, instead of finding a specific combination, Toxo max-

imizes one of the two parameters (prevalence or heritability) when the other is fixed.

Once the maximum is calculated, the interval of achievable values is perfectly defined

as the interval between 0 and the maximum. Following this approach, the likelihood of

formulating an incompatible system when no information of the model is known is sig-

nificantly reduced, since most of the models achieve all prevalences and heritabilities

individually at some point. Toxo also considers the valid range of penetrance values as

constraints to the equation system to be solved. Depending on the parameter to max-

imize (prevalence or heritability) the method slightly varies, so both will be explained

in detail.

Taking into account Equation 6.1, maximizing the prevalence means maximizing

the sum:

∑
i

(
P (D|gi )P (gi )

)
(6.3)

where P (D|gi ) is a function of the model variables (generally referred to as x and y)
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Figure 6.2: Prevalence and heritability as functions of α and θ for the second-order
additive model shown in Fig. 6.1a, using MAF = 0.25, α ∈ [0,1] and θ ∈ [0,2]. Note that
prevalence values closer to 0 and heritability values higher than 0.15 can be achieved
for values of θ higher than two, outside the area represented in the figure.
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and P (gi ) is constant for fixed MAFs, assuming Hardy-Weinberg equilibrium between

the three genotypes at each locus and linkage equilibrium among the loci [100, 98]. To

simplify the maximization process, we impose two restrictions to the input model:

1. All model expressions must be monotonically non-decreasing when x and y are

real positive numbers.

2. The penetrance expressions must be sortable when x and y are real positive

numbers.

These restrictions include the vast majority of models used in the literature, as will

be discussed in Section 6.4.2.

If the penetrance expressions are monotonically non-decreasing and sortable, all

expressions will increment proportionally when increasing their variables. Conse-

quently, their sum will reach its maximum value when the largest P (D|gi ) expression

also takes its maximum. Since penetrances are probabilities, their maximum value is

1. Therefore, we can obtain the maximum prevalence for a model, given a heritabil-

ity value, by solving an equation system made of this heritability constraint and the

condition of maximum prevalence:

∑
i

(
P (D|gi )−P (D)

)2P (gi )

P (D)
(
1−P (D)

) = h2

max
(
P (D|gi )

) = 1

(6.4)

The last step is to discard any solution with negative values for any of the variables

of the model. The restrictions on the models are only true for real positive numbers

and, as a result, there is no guarantee that negative solutions represent a maximum on

the model.

An analogous process is followed to maximize the heritability when fixing the

prevalence. On the heritability expression (Equation 6.2), the only variable term is the

sum in the numerator, since the prevalence and MAFs are fixed. Therefore, to maxi-

mize it we need to maximize the sum:
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∑
i

(
P (D|gi )−P (D)

)
P (gi ) (6.5)

Using the same two restrictions as before, the sum will be maximum when the

largest penetrance expression takes its maximum value since all expressions are mono-

tonically non-decreasing. Again, we can obtain the maximum heritability for a model

given its prevalence value by solving an equation system made of the prevalence ex-

pression and the condition of maximum heritability:

∑
i

(
P (D|gi )P (gi )

) = P (D)

max
(
P (D|gi )

) = 1
(6.6)

6.2.2. Numerical Example

Assume that we work with the second-order additive model shown in Fig. 6.1a. Our

objective is to maximize the prevalence for a fixed MAF and heritability (in this exam-

ple, 0.25 and 0.2, respectively). The first step consists in verifying that the model meets

the restrictions:

Non-decreasing monotone expressions in the real positive number space: model

expressions are monotonic in the real positive number space when its partial

derivatives show no change in the sign for x > 0 and y > 0. The partial derivatives

of all polynomial expressions for the second-order model are:
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∂
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(6.7)

All these derivatives are positive when x > 0 and y > 0.

Sortable expressions in the real positive number space: all polynomial expres-

sions can be sorted unequivocally:

x ≤ x(1+ y) ≤ x(1+ y)2 ≤ x(1+ y)3 ≤ x(1+ y)4, ∀x, y ∈R, x, y ≥ 0 (6.8)

After verifying that the model is appropriate for this method, the next step is to cal-

culate the probability associated with each combination of two genotypes. Assuming

linkage equilibrium between the two loci, and under the Hardy-Weinberg principle,

the probability of a genotype can be calculated as the product of the probabilities of

each allele [100]. This can be extended to any order of interaction by including the

probabilities of each intervening allele in the product, provided that the same assump-

tions hold true. Thus, for an associated MAF of 0.25 for the two loci, the probabilities

of each allele are p = 1/4 and q = 1− p = 3/4, and the resulting allele combination

probabilities are those shown in Table 6.1.
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Table 6.1: Genotype probabilities of two loci combinations with the same MAF = 0.25.

AABB AABB AABB AABB AABB AABB AABB AABB AABB

81/256 27/128 9/256 27/128 9/64 3/128 9/256 3/128 1/256

Table 6.2: Penetrance table of a second-order additive model with MAF = 0.25, h2 = 0.2
and maximum P (D).

AABB AABB AABB AABB AABB AABB AABB AABB AABB

0.0019 0.0092 0.0439 0.0092 0.0439 0.2096 0.0439 0.2096 1.0000

Equations 6.4 have to be used in order to find the maximum prevalence for a

fixed heritability value. The resulting equation system after replacing P (D|gi ) with the

model expressions from Fig. 6.1a, and max(P (D|gi )) with the maximum expression,

x(1+ y)4, is:

3x y2
(
85y6 +672y5 +3264y4 +9728y3 +19968y2 +24576y +16384

)
(y +4)4

(
256−x y4 −16x y3 −96x y2 −256x y −256x

) = 0.2

x(1+ y)4 = 1

(6.9)

The solution to the system, for x ≥ 0 and y ≥ 0, is x = 0.0019 and y = 3.7714. Ta-

ble 6.2 shows the resulting penetrance table, which has an associated prevalence and

heritability of 0.0275 and 0.2 respectively.

6.3. Toxo

This section covers the software architecture of the Toxo library, how it is intended

to be used and concludes with a complete usage example.

6.3.1. Overview

Toxo is a MATLAB library designed for calculating penetrance tables using epista-

sis models containing bivariate penetrance functions, maximizing the prevalence or
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Model

+name: char
+order: double
+penetrances: sym
+variables: sym

«constructor»+Model(path: char)
-max_penetrance(): sym
-solve(varargin: sym): sym
+find_max_prevalence(mafs: double, h: double): PTable
+find_max_heritability(mafs: double, p: double): PTable

PTable

+format_csv: double = 0
+format_gametes: double = 1
+order: double
+vars: sym
+pt: sym

«constructor»+PTable(model: Model, values: double)
-to_gametes(fmask: char, mafs: double): char
+prevalence(mafs: double): double
+heritability(mafs: double): double
+marginal_penetrances(mafs: double): double
+write(path: char, format: double, varargin)

MATLAB Symbolic Math Toolbox

+assume(condition: sym)
+solve(eqn: sym, var: sym, Name: char, Value)
+str2sym(symstr: char): sym
+subs(s: sym, old: sym, new: sym): sym
+symvar(expr: sym): sym
+vpa(s: sym): double

Figure 6.3: Class diagram of Toxo, representing its two classes Model and PTable, as
well as all their attributes and methods. Class Model represents an epistasis model
containing bivariate penetrance expressions and offers methods for calculating pen-
etrance tables according to its definition. Class PTable represents a penetrance table
and offers methods for calculating parameters from the table and writing it into a file.

heritability when one of the two is set. It finds the combination of the two variables

from the model that results in a penetrance table where the prevalence is maximum if

the heritability was constrained, or the heritability is maximum if the prevalence was

the constraint. Toxo does not generate population samples from the tables; instead, it

relies on other programs, such as GAMETES [83], to simulate the samples using these

tables.

The library consists of two classes, Model and PTable, which encapsulate all the

functionality, as represented in Fig. 6.3. The Model class constructor reads the model

(provided as a text file) and creates an object representing it. Its instance offers meth-

ods for calculating the penetrance table with the maximum heritability for a certain

prevalence, or the table with the maximum prevalence for the specified heritability.

These methods return instances of PTable, representing the calculated penetrance ta-

ble and offering methods for, among other things, writing the table to a file using dif-

ferent formats. In the event of not finding a penetrance table with the desired charac-

teristics, an exception will be raised.
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Toxo uses the Symbolic Math Toolbox of MATLAB [101] to represent the models and

to calculate the resulting penetrance table. This allows the user to control the precision

of the results by changing the precision on all the operations computed within Toxo.

If the target prevalence or heritability is a number close to 0 or 1 (the minimum and

maximum values, respectively), it may be necessary to increase the number of digits to

reduce the error in precision (using the MATLAB function digits).

6.3.2. Integration with Other Software

Toxo only calculates penetrance tables and it is intended to be used together with

other software to complete the simulation of the data samples whose interactions cor-

respond to those of the considered model. The design of Toxo is consequently focused

on the integrability with third-party software. To accomplish this, Toxo relies on text

files to communicate with other programs.

An example of this integration is included with the source code of the tool1. In this

case, GAMETES is used to simulate data using the penetrance tables generated by Toxo.

The models are read by Toxo and its outputs (the calculated penetrance tables) are

written following the GAMETES’ format. GAMETES then directly reads the file written

by Toxo, a file comprised of all penetrances for the different allele combinations, and

generates population samples using its own simulation method. Once it finishes, the

result is a data file which segregates individuals as cases and controls, and for each

individual the same genotype markers are specified.

Toxo offers complete flexibility on the output format of the table thanks to its

object-oriented implementation, and it can be easily extended to support any other

format required by a simulator.

6.3.3. Usage Example

For the simple reason that Toxo is a programming library, it does not offer a graph-

ical interface. Instead, it offers an Application Programming Interface (API) to its users

so that any of its functions and methods can be used within any script or program. In

1https://github.com/UDC-GAC/toxo/blob/master/examples/usage_example.m

https://github.com/UDC-GAC/toxo/blob/master/examples/usage_example.m
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order to describe the usage of Toxo, this section will exemplify how to generate a pen-

etrance table for the second-order model shown in Fig. 6.1a with MAF = 0.25 for both

loci that can be loaded directly into GAMETES [83] to generate data samples.

The first step to create a penetrance table is to define the epistasis model to be

used. It must be written to a file using CSV (Comma-Separated Values) format, where

rows correspond to the different genotypes and two columns define the genotype and

its associated penetrance expression. The two variables are arbitrarily named x and

y (Toxo interprets any alphabetic characters in the penetrance expressions column as

variable names). To define the second-order additive model, a file named model.csv

is created containing the following information:

1 AABB , x

2 AABb , x*(1+y)

3 AAbb , x*(1+y)^2

4 AaBB , x*(1+y)

5 AaBb , x*(1+y)^2

6 Aabb , x*(1+y)^3

7 aaBB , x*(1+y)^2

8 aaBb , x*(1+y)^3

9 aabb , x*(1+y)^4

Once the model file is created, an instance of the class Model can be created by

reading it:

1 m = toxo.Model('model.csv')

From this Model instance, the penetrance table with maximum prevalence can be

found using the method find_max_prevalence. The parameters of this method are

the MAF for each of the two loci of the model (given as a vector) and the heritability

constraint. Following the example, the function call to create a penetrance table for

the model with MAFs = 0.25 and h2 = 0.2 is:

1 pt = m.find_max_prevalence ([0.25 , 0.25], 0.2)

In the case of looking for the table with maximum heritability, the method to be

called instead is find_max_heritability. The parameters of this method are, again,

the MAF for each of the two locus of the model (given as a vector) and the prevalence
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constraint of 0.1 instead of the heritability:

1 pt = m.find_max_heritability ([0.25 , 0.25], 0.1)

Finally, the calculated penetrance table can be written to a file so that a simulator

can make use of it to generate datasets, which can be done using the method write of

the class PTable. The output format is chosen using different constants statically de-

clared inside the class PTable. In our example, to use GAMETES we have to introduce

the format_gametes constant:

1 pt.write('table.txt', toxo.PTable.format_gametes , [0.25, 0.25])

The resulting file table.txt can be loaded as a model inside GAMETES, and data

can be simulated from it. The code included in this example is also available at the

GitHub repository, which can be executed line by line to further comprehend the usage

of Toxo1.

6.4. Evaluation and Discussion

The evaluation of Toxo is divided into two parts: the quality of the implementation

achieved in terms of the precision of the results and the elapsed time required to obtain

them, and the scope of models from the literature supported by Toxo. All the tests were

run on a 64-bit Linux machine with two eight-core Intel E5-2660 CPUs and 64 GB of

RAM, using the command line interface of MATLAB version R2018a.

6.4.1. Precision and Runtime Evaluation

A battery of tests was developed to evaluate the precision of the results (the differ-

ence between the requested and the observed heritability) and the runtime. All execu-

tions were repeated five times and their runtimes averaged to avoid outliers. Table 6.3

shows the results for the additive, multiplicative and threshold models [84] (repre-

sented in Figs. 6.1a, 6.1b and 6.1c), generalized for third and fourth-order, and for a va-

riety of MAF and heritability values. The evaluation is focused on the heritability since

1https://github.com/UDC-GAC/toxo/blob/master/examples/usage_example.m

https://github.com/UDC-GAC/toxo/blob/master/examples/usage_example.m
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Table 6.3: Precision error of the heritability obtained for the penetrance table and exe-
cution time, calculated under several models, MAF and heritability configurations.

MODEL ORDER MAF H2 ERROR TIME (S)

Additive 3 0.1 0.1 0 7.06
Additive 3 0.1 0.8 1.31×10−5 7.08
Additive 3 0.4 0.1 0 6.89
Additive 3 0.4 0.8 9.99×10−16 6.95
Additive 4 0.1 0.1 1.58×10−12 14.17
Additive 4 0.1 0.8 4.04×10−12 13.14
Additive 4 0.4 0.1 0 13.59
Additive 4 0.4 0.8 3.92×10−3 13.61
Multiplicative 3 0.1 0.1 0 8.60
Multiplicative 3 0.1 0.8 0 8.51
Multiplicative 3 0.4 0.1 0 8.03
Multiplicative 3 0.4 0.8 0 7.82
Multiplicative 4 0.1 0.1 0 142.32
Multiplicative 4 0.1 0.8 0 145.94
Multiplicative 4 0.4 0.1 0 90.05
Multiplicative 4 0.4 0.8 0 85.42
Threshold 3 0.1 0.1 0 2.55
Threshold 3 0.1 0.8 0 2.54
Threshold 3 0.4 0.1 0 2.50
Threshold 3 0.4 0.8 0 2.50
Threshold 4 0.1 0.1 0 3.57
Threshold 4 0.1 0.8 0 3.57
Threshold 4 0.4 0.1 0 3.59
Threshold 4 0.4 0.8 0 3.58

it is the parameter with the most interest in case-control studies, whereas the preva-

lence is not as important because having a fixed number of cases and controls negates

the effect of phenotype frequency in a non-controlled environment. The selection of

models ranges from a very simple model like the threshold (where all the polynomi-

als inside the model are of first degree) to a more complex one like the multiplicative

(where the degree is generally higher). The MAF and heritability combinations were

also chosen to show a wide spectrum of values. Results show that the precision error

is almost nonexistent for every test. As for the runtimes, all the tables were calculated

in under a quarter of a minute, with the only exception being the fourth-order multi-

plicative model, which took a little more than two minutes.

To compare these results with state-of-the-art competitors, the same table configu-

rations were attempted in EpiSIM [98]. Although gs [99] can also calculate penetrance
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tables from epistasis models containing bivariate functions, it is not included in the

comparison as it does not allow modifying the second-order embedded models in-

cluded within the program. EpiSIM, on the other hand, requires both the prevalence

and heritability to obtain a penetrance table. To make a fair comparison, two differ-

ent cases were tested for each of the configurations defined: one with the exact same

prevalence and heritability combination obtained by Toxo, and a second one with the

former heritability and a fixed prevalence value (1×10−20), supposedly easier to find

since it is below the maximum. Despite this, EpiSIM could not find a single table for

any of the tests.

6.4.2. Model Restrictions and Existing Epistasis Models

As explained in Section 6.2, Toxo only admits models that meet two conditions:

All model expressions are monotonically non-decreasing when the two model

variables take real positive numbers.

The penetrance expressions are sortable when the two penetrance variables take

real positive numbers.

Nevertheless, these two conditions are met by most of the epistasis models that

are actively used in the literature. These include Marchini et al.’s second-order mod-

els [84] as well as their generalizations to higher orders, the epistasis models proposed

in experimental evaluation of BEAM [96], and the heterogeneity models introduced by

Neuman et al. [100].

The only example that we could find of a bivariate model that does not comply

with the required conditions is Shang et al.’s third model [50], also shown in Fig. 6.1d.

In this model, the expression α/ f is not monotonically increasing since it increases

for f ∈ [0,1] and decreases for f ∈ [1,∞). Furthermore, the expressions of the model

cannot be sorted for the real positive number space, as α is greater or equal than α/ f

for f ∈ [0,1] but lower for f ∈ (1,∞).

Recent studies that include simulations based on epistasis models to generate their

evaluation data [102, 103, 104] settle on low-order models whose heritability values are



6.5 Concluding Remarks 117

worryingly moderate. However, real-world diseases are usually determined by a higher

number of genes [105] and a higher heritability [106, 107]. Our assumption is that pre-

vious works needed to use non-realistic low-order models and non-realistic heritability

values due to limitations of state-of-the-art simulators, which are incapable of gener-

ating synthetic data with high heritability levels for high-order models. Toxo can fa-

cilitate current studies to overcome this limitation by finding appropriate penetrance

tables that allow current simulators to create samples that resemble real-world data

more closely.

6.5. Concluding Remarks

This chapter introduced Toxo, a MATLAB library capable of calculating penetrance

tables from models containing bivariate penetrance functions with no limitations on

the interaction order. It allows the user to maximize the prevalence of the resulting

table when the heritability is constrained and vice versa. In addition, Toxo can be easily

integrated with other existing simulators to generate datasets that include the epistasis

relationships described in the penetrance table. It was used in Chapter 3 to generate

the datasets with marginal effects used to compare the high-order epistasis detection

tools available in the literature.

Thanks to the mathematical method used underneath, Toxo can calculate pene-

trance tables with prevalence and heritability values much higher than those observed

in the state-of-the-art. The majority of the works in the literature, if not all, use heri-

tabilities under 0.2 for high-order penetrance tables. However, it is believed that real

world diseases present higher heritabilities. Toxo provides researchers with a library to

generate penetrance tables and, in consequence, data samples that resemble charac-

teristics from real world diseases more closely.

Empirical results show that Toxo is capable of calculating penetrance tables for

high-order models according to the specified parameters with barely any precision er-

ror. Third-order tables can be obtained in under 10 seconds, and fourth-order tables

in about 2 minutes.

Although Toxo solves several of the shortcomings of state-of-the-art simulators, it

also has its own limitations. First, MATLAB is a commercial software and the user will
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need a license to run Toxo. In addition, Toxo is a library and thus, it requires certain

programming knowledge to use it. It also presents limitations in the accuracy of the

results, motivated by the compromise between computing time and precision that

users are forced to make in MATLAB when selecting the number of decimals to oper-

ate with variable-precision arithmetic. To solve all these issues, recently we developed

PyToxo [7], a reimplementation of Toxo in Python. PyToxo provides different user inter-

faces, including a Graphical User Interface (GUI), for ease of use. It also improves the

results achieved by Toxo in terms of runtime, scope of application and precision of the

results.



Chapter 7

Conclusions and Future Work

In the last decade, GWAS have identified hundreds of genetic variations associated

with complex human traits and diseases. However, these variants only explain a small

fraction of the observed heritability. High-order epistasis is hypothesized to be one

of the contributing factors for this missing heritability. A plethora of methods have

been published to study epistasis, although no definitive solution has been found to

the problem. Currently, epistasis detection is still an active research field with new

approaches published every month. In this context, this thesis makes the following

contributions:

A parallel CPU/GPU solution for exhaustive third-order epistasis detection. A

new method was developed to exhaustively search epistasis interaction in homo-

geneous CPU or GPU clusters. The implementation combines MPI with multi-

threading and CUDA to exploit the parallelism available in clusters consisting of

multiple CPUs or GPUs located in different nodes and interconnected through

a network. The static distribution implemented does not require communica-

tions among computing units outside the initialization and completion of the

program, and is ideal for analyzing large datasets using a considerable number

of nodes.

An extensive survey of high-order epistasis detection methods. The study in-

cludes 27 different methods, categorizes them in six different groups attending

to the similarities and differences among them, and presents an evaluation in

119
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terms of elapsed time, epistasis detection power and presence of false positives

in the results using a common set of experiments for all methods. The most no-

table conclusions are the differences in detection power between the presence

and absence of marginal effects in the epistatic interactions. Despite the high

number of non-exhaustive methods finding success in the identification of the

epistatic interactions with marginal effects, only the exhaustive methods can re-

liably identify the interactions in the absence of these effects. On the other hand,

the survey reveals that false-positives are not considered in the design of most

methods, with only BEAM3 being capable of reliably finding epistasis while keep-

ing type-I errors to a minimum.

A parallel CPU application for exhaustive any-order epistasis detection that

exploits all levels of parallelism of a homogeneous x86_64 cluster. This im-

plementation combines a novel SIMD association-testing algorithm with a dis-

tributed execution to exploit the bit-level, data-level and task-level parallelism

of a CPU cluster. The program includes explicit vector implementations of the

MI association test for the AVX2 and AVX512BW vector extensions of the x86_64

architecture, as well as an autovectorization-friendly standard C++ implemen-

tation for different architectures. On top of that, the method implements a dis-

tributed any-order epistasis detection algorithm that exploits the CPU hardware

resources of a cluster through MPI and multithreading to speed up the execution.

The proposed program is, to our knowledge, faster than any other state-of-the-

art method and supports a larger scope of application than the alternatives.

A new method for the calculation of high-order penetrance tables for bivariate

epistasis models. Previous penetrance table calculation methods tried to solve

an extremely complex equation system made of the prevalence and heritability

expressions, when the conditional probabilities of the genotypes based on the

phenotype outcome were replaced in the equations by the bivariate model ex-

pressions. This approach produces incompatible equation systems, as certain

values of prevalence are never reached within the system when the heritability is

fixed to a particular level, and vice versa. In our approach, only one of the two

parameters is fixed, while the other is maximized, dramatically reducing the risk

of formulating an incompatible system. The result is a method capable of han-

dling high order penetrance tables that resemble characteristics from real world
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diseases more closely.

These contributions have been materialized in three different software programs:

MPI3SNP, Fiuncho and Toxo. Both MPI3SNP and Fiuncho are distributed as source

code and compiled through CMake, picking up the libraries for the system and using

the appropriate implementation for the target architecture with little to no user inter-

vention. The programs are run from command-line interface through MPI and the

output is provided as a text file, similar to other MPI applications. Toxo, on the other

hand, is a library written in MATLAB which provides several functions for reading an

epistasis model from an input file, calculating the penetrance table from a set of input

parameters and the model, and writing the calculated table to an output file in multi-

ple formats. It is intended for audiences with basic programming skills, and it is a bit

more complex to use than the previous two programs.

To further improve the ability of detecting epistasis interactions, there are several

lines of work that can be continued in the future. Both MPI3SNP and Fiuncho only

report the top-ranking combinations and the MI associated with them. Although this

metric is appropriate to compare the degree of association between combinations, it is

very difficult to judge if the association effect is significant only analyzing the MI value.

Including a p-value in the final list of combinations could be a solution to this problem.

Furthermore, the MI statistic does not distinguish between additive and non-additive

effects of the epistasis interaction. Future work should also improve the association

test to differentiate between additive and non-additive effects, similar to how Bayat et

al. distinguish between the association power and the interaction effect in [92].

A different line of future work is related to the improvement of the detection power

of non-exhaustive approaches. Current ones are not capable of locating epistasis in-

teractions in the absence of marginal effects. Despite the advances in the exhaustive

method presented in this thesis, this approach is unfeasible for genome-wide high-

order epistasis analysis. Therefore, it is necessary to develop new non-exhaustive ap-

proaches focused on detecting high-order epistasis in datasets without marginal ef-

fects, while considering HPC techniques to accelerate their execution when needed.

As for Toxo (and PyToxo), future work includes expanding the scope of application

even further. The current approach establishes the prevalence or heritability to a par-

ticular value while the other parameter is systematically maximized. However, once
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the maximum prevalence or heritability is obtained, it is guaranteed that values un-

der that maximum are attainable for the current equation system. Further improve-

ments can be made so that after the maximum is obtained and the limits of the epista-

sis model are know, both prevalence and heritabilities can be simultaneously set (one

using the original value and the other complying with the maximum value).

The results of the research carried out throughout this doctoral thesis have been

published in the following international journals:

C. Ponte-Fernández, J. González-Domínguez, and M. J. Martín. «Fiuncho: a pro-

gram for any-order epistasis detection in CPU clusters». In: The Journal of Super-

computing (2022).

B. González-Seoane, C. Ponte-Fernández, J. González-Domínguez, and M. J.

Martín. «PyToxo: a Python tool for calculating penetrance tables of high-order

epistasis models». In: BMC Bioinformatics 23.117 (2022)

C. Ponte-Fernández, J. González-Domínguez, and M. J. Martín. «A SIMD algo-

rithm for the detection of epistatic interactions of any order». In: Future Genera-

tion Computer Systems 132 (2022), pp. 108–123

C. Ponte-Fernández, J. González-Domínguez, and M. J. Martín. «Evaluation of

existing methods for high-order epistasis detection». In: IEEE/ACM Transactions

on Computational Biology and Bioinformatics 19.2 (2022), pp. 912–926

C. Ponte-Fernández, J. González-Domínguez, A. Carvajal-Rodríguez, and M. J.

Martín. «Toxo: a library for calculating penetrance tables of high-order epistasis

models». In: BMC Bioinformatics 21.138 (2020)

C. Ponte-Fernández, J. González-Domínguez, and M. J. Martín. «Fast search of

third-order epistatic interactions on CPU and GPU clusters». In: The Interna-

tional Journal of High Performance Computing Applications 34.1 (2020), pp. 20–

29

A short summary of the results of this thesis have been presented in the following

poster session:
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C. Ponte-Fernández, J. González-Domínguez, and M. J. Martín. «Poster: Genome

wide association studies in high performance computing systems». In: 17th In-

ternational Summer School on Advanced Computer Architecture and Compila-

tion for High-performance Embedded Systems. Fiuggi (Italy), 2021

All presented programs and datasets are distributed as open source software, and

they are available at GitHub:

MPI3SNP:

https://github.com/UDC-GAC/mpi3snp

Fiuncho:

https://github.com/UDC-GAC/fiuncho

Toxo:

https://github.com/UDC-GAC/toxo

Datasets used in Chapter 3:

https://github.com/UDC-GAC/epistasis-simulation-data

https://github.com/UDC-GAC/mpi3snp
https://github.com/UDC-GAC/fiuncho
https://github.com/UDC-GAC/toxo
https://github.com/UDC-GAC/epistasis-simulation-data




Appendix A

Program Configurations Used During

the Survey Study

This appendix addresses how the relevant parameters for each of the methods were

chosen. Formatting of the input data for each method will not be covered.

A.1. AntMiner

AntMiner is a method of the swarm intelligence family and as such, the same num-

ber of 100 iterations and 500 agents were used across methods. In AntMiner, however,

there is no specific parameter to set the number of iterations to 100. The number of

iterations is equal to the number of sub-colonies multiplied by the number of base

iterations. At the same time, the number of sub-colonies is equal to the size of the it-

eration we are looking for. Therefore, the number of base iterations has to be set to 33

and 25 for third and fourth-order searches respectively. All other parameters were left

with their by-default values.

125
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GUI options

PARAMETER THIRD ORDER FOURTH ORDER

Ant Number 500 500

Base Iterations 33 25

Ant Sub-colonies 3 4

Initial Pheromones 100 100

Evaporation Rate 0.05 0.05

Pher Importance 1 1

Heur Importance 1 1

Significance level 0.05 0.05

A.2. ATHENA

ATHENA was executed using the grammatical evolution neural network algorithm

following the sample configuration file casecon.GENN available with the tool, using a

population size of 400 individuals in each of 10 demes during 400 generations, with

crossover and mutation probabilities of 0.9 and 0.01, respectively.

Grammar files

The grammar files used for third and fourth-order searches are slightly modified

versions of the original grammar file genn_add.gram included with the application.

These grammar files have been verified by the maintainers of the application to ensure

correct behaviour.

Third order

1 <p> ::= <pn >(<pinput >)

2 <pn> ::= PA

3 <pinput > ::= <W>(<winput >) <,><W>(<winput >) <,><W>(<winput >) <,>3

4 <winput > ::= <cop ><,><v>

5 | <cop ><,><p>

6 <cop > ::= (<cop ><op><cop >)

7 | <Concat >(<num >)
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8 <Concat > ::= Concat

9 <,> ::= ,

10 <W> ::= W

11 <op> ::= +

12 | -

13 | *

14 | /

15 <num > ::= <dig >1

16 | <dig >.<dig >3

17 | .<dig ><dig >3

18 | <dig >.<dig ><dig >4

19 | <dig ><dig >.<dig ><dig >5

20 <dig > ::= 0

21 | 1

22 | 2

23 | 3

24 | 4

25 | 5

26 | 6

27 | 7

28 | 8

29 | 9

30 <v> ::= G1 -4

Fourth order

1 <p> ::= <pn >(<pinput >)

2 <pn> ::= PA

3 <pinput > ::= <W>(<winput >) <,><W>(<winput >) <,><W>(<winput >) <,><W

>(<winput >) <,>4

4 <winput > ::= <cop ><,><v>

5 | <cop ><,><p>

6 <cop > ::= (<cop ><op><cop >)

7 | <Concat >(<num >)

8 <Concat > ::= Concat

9 <,> ::= ,

10 <W> ::= W

11 <op> ::= +

12 | -
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13 | *

14 | /

15 <num > ::= <dig >1

16 | <dig >.<dig >3

17 | .<dig ><dig >3

18 | <dig >.<dig ><dig >4

19 | <dig ><dig >.<dig ><dig >5

20 <dig > ::= 0

21 | 1

22 | 2

23 | 3

24 | 4

25 | 5

26 | 6

27 | 7

28 | 8

29 | 9

30 <v> ::= G1 -4

Configuration files

Third order

1 ALGORITHM GENN

2 MAXDEPTH 10

3 SENSIBLEINIT TRUE

4 POPSIZE 400

5 PROBCROSS 0.9

6 PROBMUT 0.01

7 GRAMMARFILE genn_add_3.gram

8 CALCTYPE RSQUARED

9 EFFECTIVEXO TRUE

10 GENSPERSTEP 400

11 INCLUDEALLSNPS TRUE

12 BACKPROPFREQ 100

13 BACKPROPSTART 0

14 END GENN

15

16 DATASET data.txt

Fourth order

1 ALGORITHM GENN

2 MAXDEPTH 10

3 SENSIBLEINIT TRUE

4 POPSIZE 400

5 PROBCROSS 0.9

6 PROBMUT 0.01

7 GRAMMARFILE genn_add_4.gram

8 CALCTYPE RSQUARED

9 EFFECTIVEXO TRUE

10 GENSPERSTEP 400

11 INCLUDEALLSNPS TRUE

12 BACKPROPFREQ 100

13 BACKPROPSTART 0

14 END GENN

15

16 DATASET data.txt
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17 IDINCLUDED FALSE

18 MISSINGVALUE -9

19 CONTINMISS -9

20 DUMMYENCODE STEPHEN

21 RANDSEED 1

22 CV 5

23 NUMSTEPS 10

24 WRITECV FALSE

25 SUMMARYONLY TRUE

26 LOG NONE

27 INDOUTPUT TRUE

17 IDINCLUDED FALSE

18 MISSINGVALUE -9

19 CONTINMISS -9

20 DUMMYENCODE STEPHEN

21 RANDSEED 1

22 CV 5

23 NUMSTEPS 10

24 WRITECV FALSE

25 SUMMARYONLY TRUE

26 LOG NONE

27 INDOUTPUT TRUE

A.3. BADTrees

BADTrees was run setting the number of bootstrap samples to 0.01 and the number

of nodes on each tree to 25.

Command line arguments

Invocation is the same for third and fourth order interactions:

1 ./ snplash -engine adtree -phen data.covphen -geno data.geno \

2 -map data.map --bags 100 --nodes 25

A.4. BEAM3

BEAM3 only requires the prior probability common to all SNPs, calculated as the

order of interaction divided by the total number of SNPs in the dataset. In our case,

the prior probability for a third-order search is 0.006, and for a fourth-order search is

0.008.

Command line arguments
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Third order

1 ./BEAM3 data.txt -o out.txt\

2 -prior 0.006

Fourth order

1 ./BEAM3 data.txt -o out.txt\

2 -prior 0.008

A.5. BHIT

With BHIT we used 30000 Markov chain Monte Carlo iterations and 29000 burn-

in iterations, and specified the number of individuals, the number of SNPs and the

average MAF of all SNPs. Since our SNP MAFs are uniformly sampled from the interval

[0.05,0.5], the average MAF will be (0.05+0.5)/2 = 0.275.

Command line arguments

Invocation is the same, regardless of the order of the interactions:

1 ./BHIT data.txt out.txt 30000 29000 2000 500 1 0.275 1

A.6. CINOEDV

CINOEDV is a method of the swarm intelligence family and as such, the same num-

ber of 100 iterations and 500 agents were used across methods. The interaction size

was provided, and the accelerations of the particles, the evaluation measure and the

alpha value were left unchanged from the values of its original paper.

R code snippet

Third order

1 Effect <- PSOSearch(pts=data$pts , class=data$class , MaxOrder=3,

2 Population =500, Iteration =100, c1=2, c2=2, TopSNP =100,
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3 measure=2, alpha =0)

4 Effect <- NormalizationEffect(MaxOrder=3,

5 SingleEffect=Effect$SingleEffect , TwoEffect=Effect$TwoEffect ,

6 ThreeEffect=Effect$ThreeEffect , FourEffect=Effect$FourEffect ,

7 FiveEffect=Effect$FiveEffect)

8 Effect <- NotationName(MaxOrder=3,

9 SingleEffect=Effect$SingleEffect , TwoEffect=Effect$TwoEffect ,

10 ThreeEffect=Effect$ThreeEffect , FourEffect=Effect$FourEffect ,

11 FiveEffect=Effect$FiveEffect , SNPNames=data$names)

Fourth order

1 Effect <- PSOSearch(pts=data$pts , class=data$class , MaxOrder=4,

2 Population =500, Iteration =100, c1=2, c2=2, TopSNP =100,

3 measure=2, alpha =0)

4 Effect <- NormalizationEffect(MaxOrder=4,

5 SingleEffect=Effect$SingleEffect , TwoEffect=Effect$TwoEffect ,

6 ThreeEffect=Effect$ThreeEffect , FourEffect=Effect$FourEffect ,

7 FiveEffect=Effect$FiveEffect)

8 Effect <- NotationName(MaxOrder=4,

9 SingleEffect=Effect$SingleEffect , TwoEffect=Effect$TwoEffect ,

10 ThreeEffect=Effect$ThreeEffect , FourEffect=Effect$FourEffect ,

11 FiveEffect=Effect$FiveEffect , SNPNames=data$names)

A.7. DCHE

In DCHE we indicated the maximum order of epistasis, the Bonferroni-corrected p-

value threshold of 0.05 (resulting in 7.0×10−4 for second-order combinations, 5.0×10−9

for third-order combinations and 4.0 × 10−22 for fourth-order combinations) and to

retain 10000, 4000 and 100 top-ranking combinations for the second, third and fourth

orders, respectively.

Configuration files
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Third order

1 [NO.SAMPLES] 2000

2 [NO.CASES] 1000

3 [NO.SNPS] 500

4 [ORDER] 3

5 [ALPHA0] 7.0E-4, 5.0E-9

6 [SIZELIST] 10000, 100

Fourth order

1 [NO.SAMPLES] 2000

2 [NO.CASES] 1000

3 [NO.SNPS] 500

4 [ORDER] 4

5 [ALPHA0] 7.0E-4, 5.0E-9, 4.0

E-22

6 [SIZELIST] 10000, 4000, 100

A.8. EACO

EACO is a method of the swarm intelligence family and as such, the same number of

100 iterations and 500 agents are used across methods. Other than that, the interaction

order and an evaporation rate of 0.3 were specified.

MATLAB code definitions

Interaction order can only be specified by changing a variable named Dimension

inside of the EACO function (Line 30):

Third order

1 Dimension = 3;

Fourth order

1 Dimension = 4;

MATLAB code snippet

Since interaction order is established on an internal variable, the function invoca-

tion is the same regardless of the order:

1 [Result , Value , Time] = EACO('data.txt', 500, 100, 0.3);
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A.9. EDCF

For EDCF we specified the maximum epistasis size, a number of 2500 retained

top-ranking combinations, a permutation test p-value threshold of 0.05 and the

Bonferroni-corrected p-value thresholds of 2.41×10−10 and 7.77×10−15 for third and

fourth-order combinations, respectively.

Configuration files

Third order

1 [DISEASEN] 3

2 [MULFACTR] 25

3 [MAX_PVAL] 2.41E-10

4 [MAXGWPVL] -1

5 [ALPHA_RF] 0.05

Fourth order

1 [DISEASEN] 4

2 [MULFACTR] 25

3 [MAX_PVAL] 7.77E-15

4 [MAXGWPVL] -1

5 [ALPHA_RF] 0.05

Command line arguments

Third order

1 ./ edcflinux_64bit 100

Fourth order

1 ./ edcflinux_64bit 100

A.10. epiACO

epiACO is a method of the swarm intelligence family and as such, the same number

of 100 iterations and 500 agents were used across methods. Additionally, the interac-

tion order and an evaporation rate of 0.2 were specified.
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MATLAB code definitions

Interaction order can only be specified by changing a variable named Dimension

inside the epiACO function (Line 32):

Third order

1 Dimension = 3;

Fourth order

1 Dimension = 4;

MATLAB code snippet

Since interaction order is established on an internal variable, the function invoca-

tion is the same regardless of the order of the interaction:

1 [Result , Value , Time] = epiACO('data.txt', 500, 100, 0.2);

A.11. EpiMiner

EpiMiner was run using the exact calculation of the co-information index and let-

ting the SVM decide the number of SNPs to retain from the filtering step. We refrained

from using Monte Carlo sampling to approximate the index, since the authors do not

suggest any number of samples to use and we found no correlation between this num-

ber and the runtime of the program.

GUI options

PARAMETER THIRD ORDER FOURTH ORDER

Max Dimension 3 4

Enumeration Automatic Automatic
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A.12. FDHE-IW

For FDHE-IW we specified the maximum epistasis order present in the data, a p-

value threshold of 0.05 and the average MAF of all SNPs of (0.05+0.5)/2 = 0.275.

MATLAB code snippet

Third order

1 data = dlmread('data.txt','\t', 1, 0);

2 [~,col]= size(data);

3 Dim = col - 1;

4 epi_dim = 3;

5 MAF = 0.275;

6 pvalue = 0.05 / nchoosek(Dim , epi_dim) / MAF;

7 col = col - 1;

8 su = zeros(1,col);

9 hx = zeros(1,col);

10 state = data(:,col + 1);

11 tm = 2;

12 K = epi_dim;

13 w = ones(1,col);

14 for i = 1:col

15 Hxy(i) =jointEntropy(data(:,[i,col +1]))+hx(i);

16 su(i) = SU2(data(:,i),state , Hxy(i));

17 end

18

19 su2 = su;

20 CandidateSize =4;

21 S = [];

22 F = 1:col;

23 w(1:col) = 1;

24 selSize = 0;

25 Candidate = [];

26 combResult = [];

27 pvalResult = [];

28 while selSize <CandidateSize

29 if ~isempty(Candidate)
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30 CsSize = length(Candidate (:,1));

31 else

32 CsSize = 0;

33 end

34 Candidate = iwf(S,w,K,su2 ,tm,F,data ,state ,Candidate);

35 w(Candidate (1: length(Candidate (:,1)) ,1)) = 0;

36 selSize = selSize + length(Candidate (:,1)) - CsSize;

37 end

38

39 for r = 1: CandidateSize + 1

40 S = Candidate(r,:);

41 S = sort(S);

42 [P_value] = Gtest_score(data(:,S),data(:,Dim+1));

43 if P_value < pvalue

44 [P_value2] = permutation(data(:,S),data(:,Dim+1) ,100,

45 pvalue);

46 if P_value2 < pval

47 combResult = [combResult; S];

48 pvalResult = [pvalResult; P_value2 ];

49 end

50 end

51 end

Fourth order

1 data = dlmread('data.txt','\t', 1, 0);

2 [~,col]= size(data);

3 Dim = col - 1;

4 epi_dim = 4;

5 MAF = 0.275;

6 pvalue = 0.05 / nchoosek(Dim , epi_dim) / MAF;

7 col = col - 1;

8 su = zeros(1,col);

9 hx = zeros(1,col);

10 state = data(:,col + 1);

11 tm = 2;

12 K = epi_dim;

13 w = ones(1,col);

14 for i = 1:col



A.12 FDHE-IW 137

15 Hxy(i) =jointEntropy(data(:,[i,col +1]))+hx(i);

16 su(i) = SU2(data(:,i),state , Hxy(i));

17 end

18

19 su2 = su;

20 CandidateSize =4;

21 S = [];

22 F = 1:col;

23 w(1:col) = 1;

24 selSize = 0;

25 Candidate = [];

26 combResult = [];

27 pvalResult = [];

28 while selSize <CandidateSize

29 if ~isempty(Candidate)

30 CsSize = length(Candidate (:,1));

31 else

32 CsSize = 0;

33 end

34 Candidate = iwf(S,w,K,su2 ,tm,F,data ,state ,Candidate);

35 w(Candidate (1: length(Candidate (:,1)) ,1)) = 0;

36 selSize = selSize + length(Candidate (:,1)) - CsSize;

37 end

38

39 for r = 1: CandidateSize + 1

40 S = Candidate(r,:);

41 S = sort(S);

42 [P_value] = Gtest_score(data(:,S),data(:,Dim+1));

43 if P_value < pvalue

44 [P_value2] = permutation(data(:,S),data(:,Dim+1) ,100,

45 pvalue);

46 if P_value2 < pval

47 combResult = [combResult; S];

48 pvalResult = [pvalResult; P_value2 ];

49 end

50 end

51 end
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A.13. GALE

GALE was run using the same parameters as in the original paper: 10 cross-

validation partitions, 2500 iterations, a 25 by 25 grid size, a uniform resource allocation,

allowing rule pruning and a probability of wild incorporation of 0.75.

Command line arguments

Command invocation is equal for both interaction orders:

1 python2 ./ GALE_Main.py gh data.txt data.txt progress output \

2 1 10 1 2500 25 0 1 0.75

A.14. HiSeeker

During the HiSeeker evaluation, a p-value threshold of 0.05 and a relaxation scale

factor of 10000 were used, and the order of the epistasis interaction was provided.

Both ACO and exhaustive alternatives of HiSeeker were run, and for the ACO version

we modified the number of ants to 500 and the iterations to 100 in order to match the

rest of ACO methods; all other parameters were left with their default values.

Configuration files

Third order – ACO

1 input_file: data.txt

2 threshold: 0.05

3 the_scale_factor: 10000

4 rou: 0.05

5 phe: 100.00

6 alpha: 1.00

7 iAntCount: 500

8 iterCount: 100

Fourth order – ACO

1 input_file: data.txt

2 threshold: 0.05

3 the_scale_factor: 10000

4 rou: 0.05

5 phe: 100.00

6 alpha: 1.00

7 iAntCount: 500

8 iterCount: 100
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9 kLociSet: 2

10 kEpiModel: 3

11 kTopModel: 1000

12 topK: 100

13 typeOfSearch: 1

14 numberOfthread: 1

Third order – Exhaustive

1 input_file: data.txt

2 threshold: 0.05

3 the_scale_factor: 10000

4 rou: 0.05

5 phe: 100.00

6 alpha: 1.00

7 iAntCount: 500

8 iterCount: 100

9 kLociSet: 2

10 kEpiModel: 3

11 kTopModel: 1000

12 topK: 100

13 typeOfSearch: 0

14 numberOfthread: 1

9 kLociSet: 2

10 kEpiModel: 4

11 kTopModel: 1000

12 topK: 100

13 typeOfSearch: 1

14 numberOfthread: 1

Fourth order – Exhaustive

1 input_file: data.txt

2 threshold: 0.05

3 the_scale_factor: 10000

4 rou: 0.05

5 phe: 100.00

6 alpha: 1.00

7 iAntCount: 500

8 iterCount: 100

9 kLociSet: 2

10 kEpiModel: 4

11 kTopModel: 1000

12 topK: 100

13 typeOfSearch: 0

14 numberOfthread: 1

A.15. IACO

IACO is a method of the swarm intelligence family and as such, the same number

of iterations and agents were used across methods. For IACO we also indicated the

interaction order.

MATLAB code definitions

Interaction order can only be specified by changing a variable named Dimension

inside the IACO function (Line 26):
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Third order

1 Dimension = 3;

Fourth order

1 Dimension = 4;

MATLAB code snippet

1 [Result , Value , Time] = IACO('data.txt', 500, 100);

A.16. LAMPLINK

LAMPLINK only requires to specify the variation range of the MAF [0.05,0.5] com-

mon to all SNPs. Additionally, we also use a recessive model following the authors’

recommendations, since using a dominant model leads to large runtimes when paired

with high MAF values.

Command line arguments

Command invocation is equal for both interaction orders:

1 ./ lamplink --file 'data.txt' --allow -no-sex --lamp \

2 --model -rec --sglev 0.05 --upper 0.5 --out output.txt

A.17. LRMW

LRMW barely needs any parameterization, only requiring the maximum order of

combinations to explore.

Command line arguments
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Third order

1 ./gwggi --file data.txt \

2 --lmw --hz --hiorder 3 \

3 --out output.txt

Fourth order

1 ./gwggi --file data.txt \

2 --lmw --hz --hiorder 4 \

3 --out output.txt

A.18. MACOED

MACOED is a method of the swarm intelligence family and as such, the same num-

ber of iterations and agents were used across methods. MACOED additionally requires

the epistasis order and the Bonferroni corrected value of the p-value 0.05, resulting in

the p-values of 2.4145× 10−9 and 1.9432× 10−11 for third and fourth-order combina-

tions, respectively.

MATLAB code snippet

Third order

1 filter_snps = acomop_seek(data.Variables , 3, 500, 100);

2 adj_pvalue = 0.05/ nchoosek(size(data , 2) - 1, 3);

3 epistatic = Chisuqare_test(data.Variables , filter_snps , 3,

4 adj_pvalue);

Fourth order

1 filter_snps = acomop_seek(data.Variables , 4, 500, 100);

2 adj_pvalue = 0.05/ nchoosek(size(data , 2) - 1, 4);

3 epistatic = Chisuqare_test(data.Variables , filter_snps , 4,

4 adj_pvalue);
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A.19. MDR

The combination search size in MDR was restricted to those of the same size as the

epistatic combination included in the data. 10 cross-validation partitions were used

according to its original evaluation.

Command line arguments

Third order

1 java -jar ./mdr_3 .0.2. jar -min=3 -max=3 -cv=10 -table_data=true\

2 -nolandscape -top_models_landscape_size =100 data.txt

Fourth order

1 java -jar ./mdr_3 .0.2. jar -min=4 -max=4 -cv=10 -table_data=true\

2 -nolandscape -top_models_landscape_size =100 data.txt

A.20. MECPM

MECPM was executed using the greedy approach, with the default pool size of 25

and indicating the order of the target epistatic combination. The rest of the parameters

were left with their by-default values.

C code definitions

MECPM parameters can only be changed inside the C header file mecpm.h (Lines 4–

15):

Third order Fourth order
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1 #define dim 500

2 #define max_num_pts 2000

3 #define Ncon 25

4 #define max_degree 3

5 #define max_constraints 10

6 #define num_iters 10

7 #define num_codes 2

8 #define num_classes 2

9 #define like_thresh 1e-3

10 #define eps 1e-10

1 #define dim 500

2 #define max_num_pts 2000

3 #define Ncon 25

4 #define max_degree 4

5 #define max_constraints 10

6 #define num_iters 10

7 #define num_codes 2

8 #define num_classes 2

9 #define like_thresh 1e-3

10 #define eps 1e-10

A.21. Mendel

Mendel method description includes three different stages, however authors only

use two during its evaluation: the first filtering stage and the last interaction selec-

tion stage. To replicate that, we took one of the example configuration files provided

with the tool (Control24c.in) and disabled the Penalized_Regression option, set

the number of predictors in each of the stages as 10 and 20 (since they are the best

choice according to the authors) and disabled the group weighting because it is not

used (nor mentioned) in the original evaluation.

Configuration files

Third order

1 Definition_file = Def.in

2 Pedigree_file = Ped.in

3 SNP_definition_file = SNP_def.in

4 SNP_data_file = SNP_data.in

5 Case2_Control1 = True

6 Summary_file = Summary.out

7 Analysis_option = GWAS

8 Model = 2

9 Min_Success_Rate_Per_SNP = 0

10 Min_Success_Rate_Per_Individual = 0
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11 Quantitative_Trait = Status

12 Marginal_Analysis = True

13 Penalized_Regression = False

14 Penalized_Interaction = True

15 Interaction_Levels = 3

16 Desired_Predictors = 10 :: Marginal

17 Desired_Predictors = 20 :: Interactions

18 Uniform_Weights = True

Fourth order

1 Definition_file = Def.in

2 Pedigree_file = Ped.in

3 SNP_definition_file = SNP_def.in

4 SNP_data_file = SNP_data.in

5 Case2_Control1 = True

6 Summary_file = Summary.out

7 Analysis_option = GWAS

8 Model = 2

9 Min_Success_Rate_Per_SNP = 0

10 Min_Success_Rate_Per_Individual = 0

11 Quantitative_Trait = Status

12 Marginal_Analysis = True

13 Penalized_Regression = False

14 Penalized_Interaction = True

15 Interaction_Levels = 4

16 Desired_Predictors = 10 :: Marginal

17 Desired_Predictors = 20 :: Interactions

18 Uniform_Weights = True

A.22. MPI3SNP

In our modified version of MPI3SNP, the combination size can be specified as a

command-line argument to restrict the search space to combinations of a given size.

Additionally, we indicated to use a single thread during the execution and to output 10

combinations, following the advice of [40].
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Command line arguments

Third order

1 mpiexec -n 1 ./ mpi3snp -t 1\

2 -s 3 -n 10 data.tped \

3 data.tfam output.txt

Fourth order

1 mpiexec -n 1 ./ mpi3snp -t 1\

2 -s 4 -n 10 data.tped \

3 data.tfam output.txt

A.23. NHSA-DHSC

In NHSA-DHSC the recommended number of agents and iterations is far off the

values of the rest of the swarm intelligence methods, and therefore those were used.

We specified the order of the interaction, a harmony memory size of 100, a maximum

number of iterations of 60000, a maximum number of local search iterations of 2000, a

candidate memory size of 10 per metric and Bonferroni-corrected p-value thresholds

of 2.4145×10−9 and 1.9432×10−11 for third and fourth order, respectively.

MATLAB code snippet

Third order

1 epi_dim = 3;

2 Dim = size(data , 2) - 1;

3 pvalue = 0.05 / nchoosek(Dim , epi_dim);

4 CX = Dim - epi_dim + 1 : Dim;

5 [Candidate , canSize , ~, ~, ~] = NHSA3(

6 data , epi_dim , 100, 60000, epi_dim * 500, 10, CX);

7 G_set = [];

8 for i = 1: canSize

9 c = Candidate(i, 1: epi_dim);

10 P_value = Gtest_score(c, data(:, Dim+1));

11 if P_value < pvalue

12 [p, ~] = permutation(data(:, c), data(:,Dim+1), 100,

13 pvalue , 0);

14 G_set = [G_set; c p];
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15 end

16 end

Fourth order

1 epi_dim = 4;

2 Dim = size(data , 2) - 1;

3 pvalue = 0.05 / nchoosek(Dim , epi_dim);

4 CX = Dim - epi_dim + 1 : Dim;

5 [Candidate , canSize , ~, ~, ~] = NHSA3(

6 data , epi_dim , 100, 60000, epi_dim * 500, 10, CX);

7 G_set = [];

8 for i = 1: canSize

9 c = Candidate(i, 1: epi_dim);

10 P_value = Gtest_score(c, data(:, Dim+1));

11 if P_value < pvalue

12 [p, ~] = permutation(data(:, c), data(:,Dim+1), 100,

13 pvalue , 0);

14 G_set = [G_set; c p];

15 end

16 end

A.24. SingleMI

In SingleMI we specified the maximum combination size, and set the number of

candidate SNPs to be extracted from the clusters equal to 50.

Command line arguments

Third order

1 ./ singlemi -p data.tped \

2 -f data.tfam -c 50 -k 3

Fourth order

1 ./ singlemi -p data.tped \

2 -f data.tfam -c 50 -k 4
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A.25. SNPHarvester

For SNPHarvester we followed the parameterization used during its original eval-

uation, only modifying the minimum and maximum combination size to indicate the

interaction order and increase the p-value to 0.05 to match the rest of the methods.

Java code definitions

SNPHarvester parameters can only be changed inside the Java source code file

SNPHarvester.java (Lines 785-795):

Third order

1 String path = "data.txt";

2 String measure =

3 "chi_square";

4 String resultType =

5 "thresholdBased";

6 int numSuccessiveRun = 3;

7 double pValue = 0.05;

8 int maxk = 3;

9 int mink = 3;

10 int topK = 5;

Fourth order

1 String path = "data.txt";

2 String measure =

3 "chi_square";

4 String resultType =

5 "thresholdBased";

6 int numSuccessiveRun = 3;

7 double pValue = 0.05;

8 int maxk = 4;

9 int mink = 4;

10 int topK = 5;

A.26. SNPRuler

SNPRuler was used with a search tree size of 50000, a maximum depth equal to the

epistatic interaction order and a utility threshold for rule updating of 0.001.

Command line arguments

Third order Fourth order
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1 java -jar ./rule.jar 50000 \

2 3 0.001 data.txt

1 java -jar ./rule.jar 50000 \

2 4 0.001 data.txt

A.27. StepPLR

With StepPLR we replicated the evaluation parameters used in [108], leaving the

default penalization coefficient λ of 1×10−4, and using the default BIC cost function

in the SNP selection process with both forward and backward selection steps.

R code snippet

The code is equal for both interaction orders:

1 fit = step.plr(x, y, trace = FALSE)



Apéndice B

Extended Summary in Spanish

En este apéndice se incluye un resumen más extenso de la tesis. Está estructurado

en un total de siete secciones. En primer lugar se introducen algunos conceptos pre-

vios y se explica el test de asociación empleado a lo largo del trabajo. A continuación

presentamos una herramienta para la detección de epistasia de tercer orden en clús-

teres de CPUs y GPUs. A esto le sigue una revisión y evaluación de las herramientas

existentes en el estado del arte. Una vez hecho esto, presentamos una implementación

vectorial del test de asociación, y a su vez incluimos esta implementación en una herra-

mienta paralela capaz de detectar epistasia de cualquier orden en clústeres de CPUs.

Por último, discutimos las conclusiones de esta tesis, el trabajo futuro y los resultados

de la investigación realizada.

B.1. Introducción

Esta tesis se centra en la mejora de las herramientas dedicadas a la detección de

la epistasia en estudios de asociación del genoma completo (GWAS, por sus siglas en

inglés). Los GWAS son estudios que buscan establecer una relación entre marcado-

res genómicos y un fenotipo de interés. Estos estudios son especialmente importantes

porque nos permiten obtener información de una enfermedad para entender su fun-

cionamiento y poder prevenirla, diagnosticarla y tratarla. Pese a la gran cantidad de

variantes genéticas identificadas como asociadas a determinados fenotipos [14], es-
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tos estudios no dieron los resultados esperados. Una de las hipótesis para esta falta de

resultados es la epistasia, la interacción entre genes que enmascaran dichas asociacio-

nes. En este trabajo nos centramos en la epistasia desde una perspectiva estadística,

mediante la cual se define la epistasia como la desviación de la expresión de un feno-

tipo como la suma de efectos individuales de los genes que intervienen.

La detección de epistasia computacionalmente supone encontrar la combinación,

o combinaciones, de variantes correctas de entre
(n

k

)
posibilidades, siendo n el número

de variantes en cuestión y k el tamaño de las combinaciones, conocido también como

orden de la interacción. Motivados por este crecimiento exponencial del problema, los

autores de este campo se decantaron por aproximaciones que se pueden dividir en dos

grupos:

Métodos exhaustivos. Es una aproximación de fuerza bruta, donde se recorren

todas las combinaciones de k variantes posibles y se identifican aquellas que

presentan asociación con el rasgo de interés. Estos métodos tienen una com-

plejidad temporal de O(nk · A), siendo A la complejidad del test de asociación

que se repite para cada combinación. Esta complejidad asume que el número

de combinaciones,
(n

k

)
, es equivalente a nk , ya que k < n −k. Las implementa-

ciones disponibles en la bibliografía se centran en mejorar el rendimiento y se

diferencian principalmente en la elección de los aceleradores o la infraestructu-

ra de computación de altas prestaciones (HPC, por sus siglas en inglés) utilizada.

Métodos no exhaustivos. Siguen una heurística para guiar la búsqueda, evitando

recorrer todas las combinaciones. El enfoque de este segundo grupo de méto-

dos es más algorítmico, con aproximaciones con complejidades muy diferentes.

Dentro de este grupo se puede hacer una distinción adicional: por una parte te-

nemos métodos que combinan conocimiento biológico para filtrar el total de

combinaciones a analizar, y por otro lado tenemos aquellas herramientas cen-

tradas en el análisis estricto de los datos y que se alimentan de una multitud de

campos como la teoría de la información, el aprendizaje automático, análisis de

regresión, etc.

Independientemente de la aproximación, todos los métodos necesitan una forma

de cuantificar el grado de asociación entre una combinación de genotipos y el fenotipo
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de estudio. En esta tesis hemos usado el mismo test de asociación a lo largo de todo el

trabajo. Es un test basado en la Información Mutua (IM), y que se compone de tres

partes:

1. La representación de la información genética en tablas de genotipos cuya fun-

ción es, además de la propia representación en formato binario, la agrupación

de los individuos en función de sus características genotípicas y fenotípicas.

2. La caracterización de las frecuencias genotípicas atendiendo al fenotipo, a través

de una tabla de contingencia.

3. El cálculo de la IM a partir de la tabla de contingencia anterior.

Considerando lo anterior, la primera tarea fue la creación de una herramienta

exhaustiva de detección de epistasia basada en la IM, a partir de la cual evaluar el

estado del arte y continuar mejorando el rendimiento de la misma, tanto desde una

perspectiva de eficiencia computacional como de capacidad de detección de epista-

sia.

B.2. Búsqueda de Epistasia de Tercer Orden en clústeres

de CPUs y GPUs

La detección de epistasia, al igual que muchos otros campos de la bioinformáti-

ca, es un problema para el que muchos autores han recurrido al uso de HPC con el

objetivo de acelerar el cómputo y poder abarcar problemas de dimensiones superio-

res. En nuestro caso, en la búsqueda de epistasia, nuestra primera aproximación fue la

implementación de una búsqueda exhaustiva de interacciones de tres variantes. La he-

rramienta, bautizada MPI3SNP, aprovecha las CPUs o GPUs disponibles en un clúster

a través de la librería MPI, en combinación con multithreading y CUDA.

De cara a paralelizar la tarea, establecimos como unidad de reparto las diferentes

combinaciones de dos variantes. Aunque pueda parecer anti-intuitivo, el reparto de

pares garantiza que no haya solape entre las operaciones asignadas a cada unidad de
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procesamiento (núcleos para la implementación CPU, o tarjetas gráficas en la imple-

mentación GPU). Estas unidades analizan todas las combinaciones de tres variantes

que comienzan por los pares asignados, obteniendo las tablas de contingencia y cal-

culando la IM asociada. Los pares son repartidos mediante una distribución cíclica a

todas las unidades de cómputo (núcleos de CPUs o tarjetas GPUs), y el programa de-

vuelve una lista de las combinaciones cuyo valor de IM es el más alto de entre todas.

La evaluación experimental de MPI3SNP demuestra tanto el balanceo de carga óp-

timo obtenido con la estrategia de reparto como la eficiencia paralela en el uso de re-

cursos. Por una parte, hemos medido la diferencia de combinaciones de tres variantes

asignadas a cada unidad de cómputo con respecto a la asignación ideal, y hemos ob-

servado que en el peor de los casos esta diferencia solo llega a ser del 3 %. Por otra parte,

hemos evaluado la eficiencia paralela conforme aumentamos el número de recursos

usados, tanto para la implementación CPU como la de GPU. Los resultados muestran

unas eficiencias que se aproximan a la ideal.

B.3. Evaluación de Métodos de Detección de Epistasia de

Orden Alto

Una vez diseñada una herramienta exhaustiva que nos sirva como punto de parti-

da, procedimos a evaluar el estado del arte de la detección de epistasia de forma ex-

perimental, con un énfasis en la detección de interacciones de orden superior. Esta

evaluación incluye veintiséis herramientas adicionales, y las compara en términos de

tiempo de ejecución, poder de detección de epistasia y presencia de falsos positivos en

la salida.

La primera mitad del estudio compara las herramientas en cuanto a aproximación,

discutiendo las semejanzas y diferencias entre ellas. El estudio comienza agrupando

los diferentes métodos en seis grupos, atendiendo a cómo efectúan la búsqueda:

Métodos exhaustivos. En este grupo encontramos a MDR [70] y MPI3SNP [2].

Métodos de filtrado. Estos métodos se caracterizan por eliminar polimorfismos

de un solo nucleótido (SNP, de sus siglas en inglés), o combinaciones que co-
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mienzan por algunas combinaciones de dos SNPs particulares, antes de comen-

zar la búsqueda. Para ello emplean un estadístico que determina la relevan-

cia de ese SNP o par de SNPs, evitando explorar combinaciones de orden su-

perior que los incluyan. DCHE [37], EDCF [62], EpiMiner [29], HiSeeker [66],

LAMPLINK [68], MECPM [71], Mendel [72] y SingleMI [30] siguen este procedi-

miento.

Métodos de búsqueda en profundidad. Exploran el espacio de búsqueda incor-

porando SNPs al grupo seleccionado a la vez que se maximiza alguna métri-

ca. Estos métodos terminan cuando obtienen un número fijo de combinacio-

nes, o bien ya no logran encontrar ninguna otra que consideren asociada. A es-

te grupo pertenecen BADTrees [57], FDHE-IW [64], LRWM [69], SNPRuler [75] y

StepPLR [33].

Métodos de inteligencia de enjambre. Usan un algoritmo de inteligencia

de enjambre para guiar la búsqueda de epistasia. Aquí nos encontramos a

AntMiner [56], CINOEDV [60], EACO [61], epiACO [63], IACO [67], MACOED [32]

y NHSA-DHSC [73].

Algoritmos genéticos. Emplean algoritmos genéticos para converger hacia una

combinación de variantes que explique las diferencias fenotípicas entre los dife-

rentes individuos. ATHENA [31] y GALE [65] pertenecen a este grupo.

Métodos de búsqueda aleatoria. Exploran el espacio de soluciones mediante un

muestreo estocástico, evaluando la asociación de cada combinación explora-

da y devolviendo aquellas que mejor fitness obtienen. BEAM3 [58], BHIT [59]

y SNPHarvester [74] siguen este procedimiento.

La segunda mitad del estudio se centra en la evaluación experimental de las herra-

mientas. Para ello empleamos conjuntos de datos sintéticos, pues la simulación ofrece

un escenario donde poder controlar todos los parámetros poblacionales a nuestro an-

tojo (como la frecuencia del alelo menos común, abreviada como MAF de sus siglas en

inglés, de los SNPs; o la penetrancia o heredabilidad del fenotipo) y conocer de ante-

mano la solución al problema de la búsqueda de epistasia. Para este propósito desarro-

llamos 55 modelos de epistasia empleando unos parámetros poblacionales inspirados
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en los de enfermedades humanas, a partir de los cuales simulamos 5500 conjuntos de

datos que suman un total de 2,75 millones de SNPs y 11 millones de individuos.

En primer lugar, la evaluación del tiempo de ejecución confirma la hipótesis de

partida: el aumento del tiempo de ejecución con el orden es más acusado en las herra-

mientas exhaustivas que en las no exhaustivas. En segundo lugar, en cuanto a poder

de detección de epistasia, el estudio concluye que la única estrategia exitosa ante la

ausencia de efectos marginales en las interacciones epistáticas es la exhaustiva. Los

métodos no exhaustivos son incapaces de localizar las interacciones cuando las va-

riantes que la componen no muestran cierta asociación por si solas con el fenotipo

de estudio. Por último, en cuanto a falsos positivos se refiere, todas las herramientas

obtienen de forma generalizada malos resultados. De las veintisiete herramientas, tan

solo BEAM3 es capaz de minimizar la presencia de falsos positivos sin perder la capa-

cidad de detección de epistasia.

B.4. Implementación Vectorial del Test de Asociación

Una conclusión que se puede sacar de la evaluación anterior particular al método

de detección de epistasia basado en la IM es que obtiene un muy buen poder de detec-

ción independientemente del modelo u orden de las interacciones a localizar. Es por

ello que el siguiente paso de esta tesis fue optimizar su implementación en arquitec-

turas CPU. Para ello proponemos una estrategia de vectorización y unas implementa-

ciones concretas empleando AVX Intrinsics, tanto para un ancho de 256 bits como de

512.

Anteriormente habíamos descompuesto este test de asociación en tres partes: la

representación de la información en tablas de genotipos, el consiguiente cálculo de las

tablas de contingencia a partir de las anteriores, y el cálculo de la IM a partir de las

últimas. Todas estas operaciones emplean bucles que iteran sobre las diferentes celdas

de las tablas, bien para construir otras o para obtener finalmente el valor de IM. Es por

ello que el test de asociación es un muy buen candidato a la vectorización, ya que estas

operaciones repetitivas sobre celdas diferentes de las tablas siguen el paradigma SIMD

(del inglés Single Instruction Multiple Data). Casi todas las operaciones involucradas

disponen de una instrucción AVX dedicada (lógica booleana y operaciones aritméticas
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que incluyen sumas y productos), o bien existe una librería estándar que la implemen-

ta (la función logaritmo). La única excepción es el caso de la operación popcount, que

cuenta el número de 1’s en una palabra binaria, y para la cual no existe instrucción AVX

hasta la microarquitectura Intel Ice Lake. Este problema fue resuelto mediante el uso

de una implementación software de la operación vectorial.

Además de la propia vectorización del test de asociación, también proponemos un

algoritmo para la detección de epistasia que tiene en cuenta los cambios de frecuen-

cia de los procesadores x86_64 asociados al uso de instrucciones vectoriales. Dichos

procesadores se caracterizan por bajar la frecuencia al operar con aritmética vectorial

en punto flotante con respecto a la aritmética vectorial entera o booleana. Es por eso

que dividimos la carga de trabajo en bloques de operaciones, separando la aritmética

de punto flotante del resto y así no ralentizando la ejecución. Aunque no es el obje-

tivo principal de este trabajo, este algoritmo ya implementa la búsqueda de epistasia

de cualquier orden, pues la implementación del test de asociación lo permite simple-

mente variando cuántas veces combinamos las tablas de genotipos entre sí antes de

calcular la tabla de contingencia.

La evaluación de este algoritmo vectorial compara varias implementaciones vec-

toriales explícitas, empleando varios anchos vectoriales del test de asociación, con los

códigos vectorizados de forma automática por los compiladores GCC e ICC. Esta eva-

luación compara tanto las operaciones individuales que componen el test de asocia-

ción, como el algoritmo al completo. Los resultados revelan que la implementación

explícita es superior a las que ofrecen los compiladores. En cuanto al ancho vectorial,

el de 512 bits generalmente ofrece mejores resultados para todos los órdenes de inte-

racción y número de individuos probados.

B.5. Detección de Epistasia de Cualquier Orden en clús-

teres de CPUs

Una vez implementado el test de asociación aprovechando todos los recursos que

un núcleo de CPU nos puede ofrecer, es necesario revisitar el problema de la búsqueda

de epistasia en una arquitectura clúster, pero esta vez considerando interacciones de

cualquier orden. Aunque la búsqueda exhaustiva pueda parecer irrealizable para in-
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teracciones de más de tres variantes dada la complejidad computacional del método,

existen estudios en el estado del arte que se limitan a analizar unos pocos cientos de

marcadores genéticos y que se pueden beneficiar de dicha aproximación.

El punto de partida es el mismo que con MPI3SNP: distribuir una lista de combina-

ciones, esta vez de tamaño variable k, entre todas las unidades de cómputo, que esta

vez son los núcleos del procesador, evitando la repetición de cálculos en la medida de

lo posible. La estrategia en esta ocasión consiste en repartir dichas combinaciones em-

pleando los prefijos compuestos por k−1 variantes, de forma que cada unidad de pro-

cesamiento calcule la IM de todas las combinaciones que comiencen por dicho pre-

fijo. Esta estrategia introduce un pequeño sobrecoste durante el cálculo de las tablas

de genotipos para la búsqueda de interacciones de tamaño 4 o superior. El algoritmo

distribuido tiene en cuenta el problema de frecuencias del procesador x86_64 descrito

en la sección anterior, y sigue la misma estrategia de separar la aritmética vectorial de

punto flotante en un bloque de operaciones diferente de la aritmética booleana y de

enteros, evitando la ralentización del segundo.

Esta nueva herramienta, llamada Fiuncho, fue evaluada tanto por separado como

con otros métodos de búsqueda exhaustiva disponibles en el estado del arte. En pri-

mer lugar medimos la eficiencia de la estrategia de reparto, obteniendo la diferencia

entre el número de combinaciones asignadas a cada núcleo de cómputo y la asigna-

ción ideal, empleando hasta 522 núcleos. Los resultados indican que en el peor de los

casos esta diferencia solo llega a ser el 3 % del total de combinaciones asignado al nú-

cleo. A continuación medimos el sobrecoste introducido en la implementación para-

lela con respecto a la secuencial por la repetición de cálculos para órdenes superiores

a tres, y los resultados indican que es despreciable. El siguiente paso fue medir la efi-

ciencia en el uso de recursos durante una ejecución paralela, llegando a emplear hasta

504 núcleos, y obteniendo una eficiencia paralela cercana al ideal. Por último, compa-

ramos Fiuncho con su antecesor MPI3SNP para la búsqueda de interacciones de tres

variantes, y con BitEpi y MDR para interacciones de entre dos y cuatro variantes. Los

resultados muestran que Fiuncho es la herramienta más rápida, siendo en promedio

siete veces más rápida que MPI3SNP, tres veces más rápida que BitEpi y 358 veces más

rápida que MDR. Las diferencias con BitEpi y MDR podrían ser todavía mayores si de-

cidiésemos emplear más recursos hardware, pues estas herramientas están limitadas

a ejecuciones internodo.
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B.6. Cálculo de Tablas de Penetrancia para Modelos de

Orden Alto

El cálculo de las tablas de penetrancia empleadas para la simulación de una inte-

racción epistática es, sin lugar a duda, el tema que más se aleja de los objetivos ini-

cialmente planteados para esta tesis. Las tablas de penetrancia son aquellas tablas que

describen la frecuencia poblacional de un rasgo fenotípico para cada valor genotípico

que los individuos presentan. Estas tablas, junto a unos valores de MAF para las varian-

tes que intervienen, permiten definir la interacción epistática al completo. Es por ello

que los simuladores de epistasia las usan con frecuencia para definir la interacción.

No obstante, los simuladores del estado del arte presentan limitaciones a la hora de

obtener dichas tablas para interacciones de orden alto y siguiendo un modelo de inte-

racción particular. Es por ello que desarrollamos Toxo, una librería escrita en MATLAB

que permite el cálculo de dichas tablas de forma que los simuladores existentes las

puedan usar y, por consiguiente, simular dichas interacciones epistáticas. Mediante

Toxo podemos obtener tablas de penetrancia para interacciones de orden alto usan-

do la mayoría de los modelos de interacción de la literatura existente. Gracias a esta

herramienta hemos sido capaces de generar interacciones de hasta ocho variantes, un

número muy superior a lo visto hasta la fecha, y para valores de prevalencia y here-

dabilidad mucho más cercanos a los valores que presentan enfermedades reales en

poblaciones humanas.

B.7. Conclusiones y Trabajo Futuro

En la última década, los estudios GWAS han conseguido identificar cientos de va-

riantes genéticas asociadas a enfermedades u otros rasgos humanos. Pese al gran nú-

mero, estas variantes solo explican un porcentaje muy pequeño de la heredabilidad

observada en estos fenotipos. Una hipótesis que explica este suceso es la presencia

de epistasia de alto orden durante la expresión de dichos rasgos. Es por este motivo

que la detección de la epistasia sigue siendo un campo activo de investigación. En este

contexto, la tesis aquí presentada ha hecho las siguientes contribuciones:
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Una herramienta paralela para la búsqueda exhaustiva de epistasia de tercer

orden en clústeres de CPUs o GPUs. La implementación combina MPI con mul-

tithreading y CUDA para explotar las diferentes CPUs o GPUs disponibles en los

nodos interconectados del clúster. La distribución paralela estática implementa-

da no requiere comunicaciones entre las diferentes unidades de cómputo, salvo

durante la inicialización y terminación del programa, lo que la convierte en ideal

para analizar grandes conjuntos de datos.

Un estudio empírico de los métodos de detección de epistasia de alto orden

existentes. El estudio incluye veintisiete métodos, agrupados en seis categorías

atendiendo a sus similitudes y diferencias en la forma de buscar las interaccio-

nes, y los evalúa de forma empírica en términos de tiempo de ejecución, poder

de detección y presencia de falsos positivos empleando un conjunto de datos

común a todos los métodos. Sin duda, las conclusiones más relevantes de este

estudio son las diferencias en capacidad de detección de epistasia ante la pre-

sencia y ausencia de efectos marginales en la interacción. A pesar del gran nú-

mero de herramientas no exhaustivas capaces de encontrar las interacciones de

forma consistente cuando estas presentan efectos marginales, solo las exhausti-

vas son capaces de hacer lo mismo cuando estos efectos desaparecen. Además,

el estudio revela que la mayoría de métodos no tienen en consideración los fal-

sos positivos, siendo BEAM3 la única herramienta capaz de detectar epistasia a

la vez que mantiene los errores de tipo I bajo control.

Una aplicación CPU paralela para la detección de epistasia de cualquier or-

den, empleando todos los niveles de paralelismo de un clústeres homogéneos

de CPUs x86_64. Esta implementación combina un algoritmo SIMD que imple-

menta el test de asociación basado en la IM con una ejecución distribuida para

aprovechar el paralelismo a nivel de bit, de datos y de tarea disponibles en un

clúster de CPUs. El programa incluye implementaciones vectoriales explícitas

para las extensiones vectoriales AVX2 y AVX512BW de la arquitectura x86_64, así

como código C++ estándar fácilmente vectorizable por un compilador para otras

arquitecturas. Además, la herramienta implementa un algoritmo distribuido pa-

ra la detección de epistasia de cualquier nivel que explota los recursos CPU de

un clúster a través de MPI y multithreading. Esta herramienta es la más rápida y

soporta más casuísticas para la búsqueda de epistasia que cualquier otra alter-
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nativa del estado del arte que conocemos.

Un método innovador para el cálculo de tablas de penetrancia bajo modelos

de epistasia de orden alto. Los métodos existentes para el cálculo de tablas de

penetrancia intentan resolver un sistema de ecuaciones muy complicado, resul-

tante de sustituir en las ecuaciones de la prevalencia y heredabilidad las probabi-

lidades de desarrollar el fenotipo condicionadas al genotipo del individuo por las

expresiones bivariable del modelo de epistasia. Esta aproximación al problema

puede producir sistemas de ecuaciones incompatibles, pues no todos los valores

de prevalencia y heredabilidad se pueden obtener de forma simultánea. Nuestro

método fija solo uno de estos dos parámetros y obtiene el valor máximo alcan-

zable para el otro, reduciendo el riesgo de formular un sistema incompatible. El

resultado es un método capaz de obtener tablas de penetrancia de orden alto

para valores más realistas de prevalencia y heredabilidad.

Estas contribuciones dieron lugar a tres programas diferentes: MPI3SNP, Fiuncho

y Toxo. Tanto MPI3SNP como Toxo son distribuidos como código libre y usan CMake

para su configuración y compilación. Los programas emplean una interfaz de línea de

comandos, son ejecutados a través de MPI y la salida es proporcionada como un fiche-

ro de texto. Por el contrario, Toxo es una librería escrita en MATLAB que proporciona

funciones para la lectura del modelo desde un fichero de entrada, el cálculo de la tabla

de penetrancia a partir del modelo y una serie de parámetros, y una última función pa-

ra escribir la tabla resultante en varios formatos de salida. Es dirigido a una audiencia

con conocimientos de programación y su uso es más complejo que los dos primeros

programas.

La investigación aquí presentada ofrece varios caminos por los que proseguir para

continuar mejorando la detección de epistasia. Ambos programas solo son capaces de

devolver las combinaciones con los valores más altos de IM encontrados. Aunque esta

métrica es útil para comparar el grado de asociación entre combinaciones de varian-

tes diferentes, es muy difícil juzgar si esta asociación es finalmente relevante usando

exclusivamente el valor de IM. Una solución a este problema puede ser calcular un

p-valor asociado a estas combinaciones que finalmente son reportadas. Yendo más

allá, también podría ser factible distinguir entre efectos aditivos y no aditivos en el test

de asociación, de forma similar a como Bayat y col. distinguen entre poder de asocia-

ción y efecto de interacción en [92].
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Una línea de trabajo futuro diferente es la mejora del poder de detección de apro-

ximaciones no exhaustivas. Los métodos actuales no son capaces de detectar epistasia

ante la ausencia de efectos marginales. A pesar de los avances en la estrategia exhaus-

tiva presentados en esta tesis, esta sigue sin ser viable para la búsqueda de epistasia de

orden alto usando conjuntos de datos muy grandes. Por este motivo, es necesario con-

tinuar desarrollando nuevas estrategias no exhaustivas que mejoren el rendimiento en

escenarios sin efectos marginales, e incluyendo técnicas HPC cuando sea necesario.

En cuanto a Toxo (y PyToxo) se refiere, el trabajo futuro incluye expandir los es-

cenarios de uso soportados. La aproximación actual solo permite fijar la prevalencia

o heredabilidad del fenotipo simulado mientras que el otro es maximizado. Sin em-

bargo, una vez obtenido el máximo valor alcanzable de prevalencia o heredabilidad, es

posible plantear un sistema de ecuaciones compatible siempre que el valor elegido sea

menor que el máximo, y obtener una tabla de penetrancia para valores de prevalencia

y heredabilidad fijados simultáneamente.

Los resultados de la investigación llevada a cabo a lo largo de esta tesis doctoral han

sido publicados en las siguientes revistas internacionales:

C. Ponte-Fernández, J. González-Domínguez y M. J. Martín. «Fiuncho: a program

for any-order epistasis detection in CPU clusters». En: The Journal of Supercom-

puting (2022)

B. González-Seoane, C. Ponte-Fernández, J. González-Domínguez y M. J. Martín.

«PyToxo: a Python tool for calculating penetrance tables of high-order epistasis

models». En: BMC Bioinformatics 23.117 (2022)

C. Ponte-Fernández, J. González-Domínguez y M. J. Martín. «A SIMD algorithm

for the detection of epistatic interactions of any order». En: Future Generation

Computer Systems 132 (2022), págs. 108-123

C. Ponte-Fernández, J. González-Domínguez y M. J. Martín. «Evaluation of exis-

ting methods for high-order epistasis detection». En: IEEE/ACM Transactions on

Computational Biology and Bioinformatics 19.2 (2022), págs. 912-926

C. Ponte-Fernández, J. González-Domínguez, A. Carvajal-Rodríguez y M. J. Mar-

tín. «Toxo: a library for calculating penetrance tables of high-order epistasis mo-

dels». En: BMC Bioinformatics 21.138 (2020)
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C. Ponte-Fernández, J. González-Domínguez y M. J. Martín. «Fast search of third-

order epistatic interactions on CPU and GPU clusters». En: The International

Journal of High Performance Computing Applications 34.1 (2020), págs. 20-29

También se ha expuesto un breve resumen de los resultados alcanzados en esta

tesis en la siguiente sesión de pósteres:

C. Ponte-Fernández, J. González-Domínguez y M. J. Martín. «Poster: Genome wi-

de association studies in high performance computing systems». En: 17th Inter-

national Summer School on Advanced Computer Architecture and Compilation

for High-performance Embedded Systems. Fiuggi (Italy), 2021

Todos los programas y datasets aquí presentados se distribuyen como código libre,

y se encuentran alojados en GitHub:

MPI3SNP:

https://github.com/UDC-GAC/mpi3snp

Fiuncho:

https://github.com/UDC-GAC/fiuncho

Toxo:

https://github.com/UDC-GAC/toxo

Datasets used in Chapter 3:

https://github.com/UDC-GAC/epistasis-simulation-data

https://github.com/UDC-GAC/mpi3snp
https://github.com/UDC-GAC/fiuncho
https://github.com/UDC-GAC/toxo
https://github.com/UDC-GAC/epistasis-simulation-data
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