
PhD Thesis

Parallel Prefix Operations on
Heterogeneous Platforms

Adrián Pérez Diéguez

2018

Parallel Prefix Operations on

Heterogeneous Platforms

Adrián Pérez Diéguez

PhD Thesis

October 2018

PhD Advisors:

Margarita Amor López

Ramón Doallo Biempica

PhD Program in Information Technology Research

Dra. Margarita Amor López

Profesora Titular de Universidade

Dpto. de Enxeñaŕıa de Computadores

Universidade da Coruña

Dr. Ramón Doallo Biempica

Catedrático de Universidade

Dpto. de Enxeñaŕıa de Computadores

Universidade da Coruña

CERTIFICAN

Que a memoria titulada “Parallel Prefix Operations on Heterogeneous Platforms”

foi realizada por D. Adrián Pérez Diéguez baixo a nosa dirección no Departamento

de Enxeñaŕıa de Computadores da Universidade da Coruña, e conclúe a Tese de

Doutoramento que presenta para a obtención do t́ıtulo de Doutor en Enxeñaŕıa

Informática pola Universidade de Coruña coa Mención de Doutor Internacional.

En A Coruña, a de de 2018

Asdo.: Margarita Amor López

Directora da Tese de Doutoramento

Asdo.: Ramón Doallo Biempica

Director da Tese de Doutoramento

Asdo.: Adrián Pérez Diéguez

Autor da Tese de Doutoramento

Aos que me apoiastes nesta andaina,

mais sobre todo aos meus pais.

Agradecementos

En primeiro lugar, quixera agradecerlle aos meus directores, Marga e Ramón, a

oportunidade que me deron ao confiar en mı́n, a súa dedicación e prezada axuda,

pero especialmente a paciencia acadada conmigo. Foi unha honra ter traballado ao

voso lado todos estes anos, unha etapa da miña vida que non esquecerei endexamais.

Aı́nda que tamén me gustaŕıa estender este recoñecemento a todos os profesores do

Grupo de Arquitectura de Computadores.

Tamén quixera mostrar o meu agradecemento, dun xeito especial, aos meus com-

pañeiros de laboratorio, aos que seguen nel e aos que xa marcharon. Unha relación

que sen dúbida vai moito máis alá do académico, e que agardo que se manteña por

moitos anos. Foi unha ledicia compartir todos eses momentos con vós. En particular,

seŕıa inxusto non destacar a labor de Jacobo nesta tese, o meu mentor e salvador

asemade nos primeiros pasos desta aventura.

Pero se alguén debe ser nomeado, eses son os meus pais. Sacrificaron todo para

darme a oportunidade de estar eu aqúı. Non teño palabras para vós, moitas grazas

de corazón. Tamén ao meu irmán e a toda a miña familia. Aos meus compañeiros

de piso destes anos, aos meus amigos de Pontevedra, de Coruña e aos que están

espallados por ah́ı adiante, aos que fixen no mundo do deporte, da cultura e das

reivindicacións, non me esquezo de vós. A todos eles, env́ıolles hoxe unha aperta.

Of course, I do not want to forget the japanese people. I gratefully thank Dr.

Satoshi Matsuoka and Dr. Akira Nukada for hosting and advising me during my

visit to the Tokyo Institute of Technology, Japan, and also the Titech people, but

especially Sergio, Shweta, Kevin, Pak, Xu and Artur. Arigato gozaimasu.

vii

viii

Finalmente, gustaŕıame estender o meu agradecemento a todas as entidades que

financiaron este traballo. Dunha parte, ás redes estatais de investigación CAPAP-H4

e CAPAP-H5, ás redes europeas NESUS IC1305 e HiPEAC, á Xunta de Galicia (ref.

GRC2013/055, ED431C 2017/04, R2014/041, ED431D R2016/05, ED431G/01 e a

axuda predoutoral ED481A-2015/230) e ao Goberno de España (ref. TIN2013-42148-

P, TIN2016-75845-P, axuda predoutoral FPU14/02801 e de estad́ıa EST16/00579).

Aśı mesmo, ao Grupo de Arquitectura de Computadores, ao Departamento de En-

xeñaŕıa de Computadores e á Universidade da Coruña. Tamén, á empresa Inditex

polo financiamento dunha estad́ıa.

Adrián Pérez Diéguez

Nothing has such power to broaden the mind as the ability

to investigate systematically and truly all that comes under

thy observation in life.

(Nada ten tanto poder para ampliar a mente coma a capaci-

dade de investigar de xeito sistemático e real todo o que é

susceptible de observación na vida)

Marco Aurelio

Resumo

As tarxetas gráficas, coñecidas como GPUs, aportan grandes vantaxes no ren-

demento computacional e na eficiencia enerxética, sendo un piar clave para a com-

putación de altas prestacións (HPC). Sen embargo, esta tecnolox́ıa tamén é custosa

de programar, e ten certos problemas asociados á portabilidade entre as diferentes

tarxetas. Por outra banda, os algoritmos de prefixo paralelo son un conxunto de

algoritmos paralelos regulares e moi empregados nas ciencias compuacionais, cuxa

eficiencia é esencial en moitas aplicacións. Neste eido, áında que as GPUs poden

acelerar a computación destes algoritmos, tamén poden ser unha limitación cando

non explotan axeitadamente o paralelismo da arquitectura GPU.

Esta Tese presenta dúas perspectivas. Dunha parte, deséñanse novos algoritmos

de prefixo paralelo para calquera paradigma de programación paralela. Pola outra

banda, tamén se propón unha metodolox́ıa xeral que implementa eficientemente

algoritmos de prefixo paralelos, de xeito doado e portable, sobre arquitecturas GPU

CUDA, mais que se centrar nun algoritmo particular ou nun modelo concreto de

tarxeta. Para isto, a metodolox́ıa identifica os paramétros da GPU que inflúen no

rendemento e, despois, seguindo unha serie de premisas teóricas, obtéñense os valores

óptimos destes parámetros dependendo do algoritmo, do tamaño do problema e

da arquitectura GPU empregada. Ademais, esta Tese tamén prové unha serie de

funcións GPU compostas de bloques de código CUDA modulares e reutilizables, o

que permite a implementación de calquera algoritmo de xeito sinxelo. Segundo o

tamaño do problema, propóñense tres aproximacións. As dúas primeiras resolven

problemas pequenos, medios e grandes nunha única GPU, mentras que a terceira

trata con tamaños extremadamente grandes, usando varias GPUs.

As nosas propostas proporcionan uns resultados moi competitivos a nivel de

rendemento, mellorando as propostas existentes na bibliograf́ıa para as operacións

probadas: a primitiva scan, ordenación e a resolución de sistemas tridiagonais.

xi

Resumen

Las tarjetas gráficas (GPUs) han demostrado grandes ventajas en el rendimiento

computacional y en la eficiencia energética, siendo una tecnoloǵıa clave para la

computación de altas prestaciones (HPC). Sin embargo, esta tecnoloǵıa también es

costosa de programar, y tiene ciertos problemas asociados a la portabilidad de sus

códigos entre diferentes generaciones de tarjetas. Por otra parte, los algoritmos de

prefijo paralelo son un conjunto de algoritmos regulares y muy utilizados en las

ciencias computacionales, cuya eficiencia es crucial en muchas aplicaciones. Aunque

las GPUs puedan acelerar la computación de estos algoritmos, también pueden ser

una limitación si no explotan correctamente el paralelismo de la arquitectura GPU.

Esta Tesis presenta dos perspectivas. De un lado, se han diseñado nuevos algo-

ritmos de prefijo paralelo que pueden ser implementados en cualquier paradigma de

programación paralela. Por otra parte, se propone una metodoloǵıa general que im-

plementa eficientemente algoritmos de prefijo paralelo, de forma sencilla y portable,

sobre cualquier arquitectura GPU CUDA, sin centrarse en un algoritmo particular o

en un modelo de tarjeta. Para ello, la metodoloǵıa identifica los parámetros GPU que

influyen en el rendimiento y, siguiendo un conjunto de premisas teóricas, obtiene los

valores óptimos para cada algoritmo, tamaño de problema y arquitectura. Además,

las funciones GPU proporcionadas están compuestas de bloques de código CUDA

reutilizable y modular, lo que permite la implementación de cualquier algoritmo de

prefijo paralelo sencillamente. Dependiendo del tamaño del problema, se proponen

tres aproximaciones. Las dos primeras resuelven tamaños pequeños, medios y gran-

des, utilizando para ello una única GPU; mientras que la tercera aproximación trata

con tamaños extremadamente grandes, usando varias GPUs.

Nuestras propuestas proporcionan resultados muy competitivos, mejorando el

rendimiento de las propuestas existentes en la bibliograf́ıa para las operaciones pro-

badas: la primitiva scan, ordenación y la resolución de sistemas tridiagonales.

xiii

Abstract

Graphics Processing Units (GPUs) have shown remarkable advantages in com-

puting performance and energy efficiency, representing one of the most promising

trends for the near-future of high performance computing. However, these devices

also bring some programming complexities, and many efforts are required to provide

portability between different generations. Additionally, parallel prefix algorithms

are a set of regular and highly-used parallel algorithms, whose efficiency is crutial

in many computer science applications. Although GPUs can accelerate the compu-

tation of such algorithms, they can also be a limitation when they do not match

correctly to the GPU architecture or do not exploit the GPU parallelism properly.

This dissertation presents two different perspectives. On the one hand, new

parallel prefix algorithms have been algorithmically designed for any parallel pro-

gramming paradigm. On the other hand, a general tuning GPU methodology is

proposed to provide an easy and portable mechanism to efficiently implement par-

allel prefix algorithms on any CUDA GPU architecture, rather than focusing on a

particular algorithm or a GPU model. To accomplish this goal, the methodology

identifies the GPU parameters which influence on the performance and, following a

set of performance premises, obtains the convinient values of these parameters de-

pending on the algorithm, the problem size and the GPU architecture. Additionally,

the provided GPU functions are composed of modular and reusable CUDA blocks

of code, which allow the easy implementation of any parallel prefix algorithm. De-

pending on the size of the dataset, three different approaches are proposed. The first

two approaches solve small and medium-large datasets on a single GPU; whereas the

third approach deals with extremely large datasets on a Multiple-GPU environment.

Our proposals provide very competitive performance, outperforming the state-

of-the-art for many parallel prefix operations, such as the scan primitive, sorting

and solving tridiagonal systems.

xv

Preface

Introduction and Motivation

In recent years, GPUs (Graphics Processing Units) have experienced a notice-

able increase in their relevance and usage in high performance computing, since they

can perform much faster than regular CPUs (Central Processing Units). Parallel

computing is a form of computation in which many calculations are performed simul-

taneously. Parallel computing involves different perspectives, being this work mainly

focused on: computer architecture and parallel programming. Computer architecture

(hardware aspect) refers to support parallelism at architectural level, whereas par-

allel programming (software aspect) focuses on fully using the computational power

of the target architecture.

From a computer architecture perspective, modern GPUs can execute up to a

thousand of physical threads per device, which are optimized for intensive arith-

metic operations, performing especially well in regular algorithms with reduced flow

control, and better hiding the execution latencies owing to overlap computation and

communication. This overlapping is possible thanks to assign a certain number of

logical threads to each core, reducing idle cycles through multi-threading.

From a programmability point of view, the CPU programmability has much

more advantages. First, there are many APIs to facilitate the parallel adaptation

from a serial code to a parallel approach, such as OpenMP [21], and parallel pro-

gramming libraries like MPI [47]. Furthermore, there is a huge and experienced

community behind the programming languages focused on a CPU, such as C++,

Python and Java, providing easy and powerful tools for software development, pro-

filing and debugging on these languages. In contrast, most of the high level GPU

xvii

xviii

languages are quite recent; thus, specialized developing tools, APIs and libraries

are scarce. Additionally, this novel GPU capability is limited by the overall com-

plexity of hardware and typical workloads. Programmers have to choose suitable

parallel algorithms for these architectures that also require special languages such

as CUDA [93] or OpenCL [68]; and also have to fully understand the hardware and

the problem, considering optimization techniques to fully exploit the GPU resources

and achieve the said performance.

There are several proposals in order to facilitate the programmability of these

architectures: Autotuning [38], directives [131], automatic compilers [2] or acceler-

ated libraries [44]. Autotuning [38] [73] is a very interesting option for applications

whose execution time, memory usage or energy consumption can vary depending

on a set of parameters and their execution environment. The autotuner determines

the best parameter combination to maximise an user-defined metric. Nevertheless,

this technique requires writing code in a parametrized way to accommodate various

performance tuning parameters. Another approach is the use of directives such as

OpenACC [131] or hiCuda [55]. Most of this kind of libraries require to have GPU

expertise. Furthermore, the code is not easily readable and there are also some lim-

its, for example, the programmer cannot use CUDA intrinsic functions within the

accelerator region. Automatic compilers are another interesting option that auto-

matically generate code for GPUs, such as Par4all [2] and Bones [88], saving time

and effort to programmers. However, these approaches sometimes rely on the user

knowledge for tuning applications. In addition, some systematic code translations,

without a previous analysis of the problem, can lead to reduce performance. Fi-

nally, the use of accelerated tuned libraries for each architecture version, such as

SkePU [44], MAGMA [64] or SkelCL [118], can enable applications to fully exploit

the power of current heterogeneus parallel systems. Due to the fast GPU market

evolution, each GPU architecture version highly vary its desing from one generation

to another, and the parameters which influence on performance also change and

must be re-adjusted.

This Thesis is primarily interested on the forth approach, tuning an accelerated

library, as it provides an optimal implementation independently of the target archi-

tecture, providing generality and usability, and being transparent to the user.

xix

On the one hand, a parallel computation is work efficient when it does not

perform more work than its sequential version; in other words, both versions have the

same complexity. An approach that is work efficient follows a work and depth based

model. On the other hand, a processor based model takes into account computing

costs, such as execution times, the number of processors, synchronization barriers

or communications costs of the implementation, trying to minimize the execution

time of the algorithm, but not the work efficiency. In this work, the complexity of

the algorithms is not analyzed; only final execution times are considered, following

a processor based model. On the other hand, the complexity of GPU hardware is

reflected in the diversity of its performance models, and it is not easy predict how

long an implementation takes or suggest a precise formula to find out its optimal

GPU parameters. In [62], a very complex model is presented, using more than

20 equations; whereas a model formulation based on graphs was presented in [5].

Additionally, other proposals can be found in [1] and [22].

Objectives and Work Methodology

The aim of this Thesis is to propose a GPU performance parameter tuning

methodology to predict the best GPU parameter configuration that influences on

the performance for each GPU architecture generation, especially focused on a set of

regular and highly-used parallel algorithms, called pararell prefix algorithms [75] [76],

as well as designing and developing new pararell prefix algorithms that match well to

the parallel paradigm. These algorithms are regular algorithms whose communica-

tion pattern does not depend on execution values, as it is given by a linear function

which is well suited to GPU architectures. Furthermore, each resulting element is a

combination of previous results from other elements with common calculations that

can be reused. Therefore, using the proposed methodology is posible to efficiently

parallelize and solve several frequently used operations: the Fast Fourier Transform

(FFT), the scan primitive, tridiagonal system solvers (TS) or sorting. Regarding

this methodology, these problems can be classified depending on their size:

Small datasets. The problem data fit in the GPU scratchpad memory (also

known as shared-memory in CUDA architectures).

xx

Medium and Large datasets. The problem size is bigger than the scrathpad

memory but still fits into the device memory of a single GPU.

Extremely Large datasets. The problem size is bigger than the device memory

of a single GPU, and the dataset is distributed among several GPUs.

To accomplish our goal, this research work has evolved across these three stages,

progressively developing an incremental methodology for each kind of dataset and

adapted to different CUDA architectures. Firstly, a tuning methodology was pro-

posed for small datasets, providing an efficient implementation for both tridiagonal

systems, the scan primitive and a sorting algorithm. After this, we have increased

the methodology to support medium and large datasets, implementing different

scan and tridiagonal system solver approaches under this methodology. Finally, the

methodology was extended to extremely large datasets, introducing several GPUs

and computing nodes in the design, providing an efficient proposal for the scan prim-

itive. It should be observed that the scope of this work is limited to CUDA GPUs,

as it is the leading programming model and pioneer for general-purpose computing

on GPUs, but the proposals of this Thesis could be applied to other frameworks,

as OpenCL, as long as similar hardware architecture is used. In addition to the

tuning methodology, this Thesis also provides three new parallel prefix algorithms,

two for solving tridiagonal systems and one for sorting. These algorithms were de-

signed from a algorithmical perspective to match well to any parallel paradigm,

demonstrating their efficiency on GPUs.

In [8], a dissertation about tuning GPU performance parameters for Index-Digit

algorithms and small datasets is presented. In contrast to that text, this work

extends the methodology for parallel prefix algorithms, a superset that also includes

Index-Digit algorithms, as will be explained later, as well as supporting medium,

large and extremely large datasets.

xxi

Main Contributions of the Thesis

The main contributions of this Thesis are the following:

A literature review about the most employed parallel prefix algorithms and

recent Graphic Processing Units (GPUs).

Design, development and algorithmic formulation of new parallel prefix algo-

rithms.

Development of a general tuning methodology for parallel prefix algorithms

and Index-Digit algorithms on different GPU systems.

Experimental analysis of the proposed methodology for several parallel prefix

operations.

Provide an accelerated GPU library that outperforms the state-of-the-art for

the corresponding operations.

Thorough peformance evaluation of the library using real-world applications.

Structure of the Thesis

This Thesis is organized as follows:

Chapter 1 introduces the Graphcis Processing Units (GPUs) and describes the

basics of CUDA programming and its execution model. Additionally, it also

summarizes the GPU architectures employed in this Thesis.

Chapter 2 defines both the parallel prefix algorithms and a subset of them

called Index-Digit algorithms. Specifically, the following algorithms are ana-

lyzed in this chapter: Tridiagonal system solvers, scan primitive and sorting

algortihms.

Chapter 3 presents the new parallel prefix algorithms designed and developed

in this Thesis. These new algorithms are algorithmically formulated in this

xxii

chapter, and also a hand-tuned GPU implementation is provided for some of

them. Concretely, two new algorithms are created to solve tridiagonal systems,

and a new algorithm for sorting is also proposed.

Chapter 4 addresses the development of a general GPU tuning methodology

for both parallel prefix algorithms and Index-Digit algorithms, considering

datasets that fit in the shared memory a of CUDA GPU, and providing an

accelerated library with the corresponding implementations. The proposed

methodology is analyzed against the state-of-the-art, and the experimental

results are presented.

Chapter 5 conducts the extension of the previous methodology to larger datasets

which do not fit in the shared memory of a GPU but still can be stored in the

device memory of a single GPU. The methodology is also tested for well-known

operations, surpassing the state-of-the-art on different GPU architectures.

Chapter 6 extends the proposed methodology for extremely large datasets

which cannot be stored in a single GPU, needing a Multiple-GPU system. The

resulting library based on the methodology is tested for tridiagonal systems

and the scan primitive in different Multiple-GPU environments, analyzing the

experimental results of their execution.

Chapter 7 analyzes the efficiency of the final library built on this Thesis in real-

world applications. Specifically, the multiplication of high-precision integers,

which is used in many computer science fields, such as cryptography, is tested

using our proposal.

Chapter 8 extracts the conclusions of the Thesis and presents the future work.

Funding and Technical Means

The following means and funding have been used to carry out this Thesis:

Working material, as well as human and financial support provided by the

Computer Architecture Group (GAC) of the University of A Coruña.

xxiii

Fellowships funded by the Ministry of Education, Culture and Sport of Spain

(FPU program, ref. FPU14/02801) and by the Galician Government (Xunta

de Galicia, ref. ED481A-2015/230).

Access to bibliographical material through the library of University of A

Coruña.

Additional funding through the following research projects:

• European funding: ”Network for Sustainable Ultrascale Computing” (NE-

SUS COST Action ref. IC1305), ”High-Performance Embedded Archi-

tecture and Compilation Network of Excellence” (HiPEAC3 NoE).

• State funding by the Ministry of Economy and Competitiveness of Spain

through the projects ”New Challenges in High Performance Comput-

ing: from Architectures to Applications” (refs. TIN2013-42148-P and

TIN2016-75845-P); and the ”Red de Computación de Altas Prestaciones

en Arquitecturas Heterogéneas” (CAPAP-H4 and CAPAP-H5).

• Regional funding by the Galician Government (Xunta de Galicia) un-

der the Consolidation Program of Competitive Research Groups (Com-

puter Architecture Group, refs. GRC2013/055 and ED431C 2017/04);

Network of Cloud and Big Data Technologies for HPC (refs R2014/041

and ED431D R2016/045) and Funding for the Accreditation, Structuring

and Improvement of the Remarkable Research Centre on Information and

Communication Technology (CITIC ref. ED431G/01).

Access to clusters, supercomputers and other computing platforms:

• Pluton cluster (Computer Architecture Group, University of A Coruña,

Spain).

• Roma and Warsaw cluster (Global Scientific Information and Computing

Center, Tokyo Institute of Technology, Japan).

• TSUBAME-KFC supercomputers (Global Scientific Information and Com-

puting Center, Tokyo Institute of Technology, Japan).

• DGX-1 workstation by the Real World Big-Data Computation Open

Innovation Laboratory (RWBC-OIL) (National Institute of Advanced In-

dustrial Science and Technology (AIST), Japan and NVIDIA Company)

xxiv

• NVIDIA Tesla Kepler K40 card donated by NVIDIA Company.

Two three-month research visits to the Global Scientific Information and Com-

puting Center at Tokyo Institute of Technology in Japan, funded by the Min-

istry of Education, Culture and Sport of Spain (ref. EST16/00579), by the

INDITEX-UDC 2016 collaboration grant and by the High-Performance Em-

bedded Architecture and Compilation Netfowrk of Excellence Collaboration

2017 Grant.

Registered Software

The following software product has been registered in the IP registry as outcome

of this Thesis:

Adrián Pérez Diéguez, Jacobo Lobeiras Blanco, Margarita Amor López, Ramón

Doallo Biempica. BPLG: A Tuned Butterfly Processing Library for GPUs ar-

chitectures. December 2016. Record entry number: C-241-2016. Owning

entity: Universidade da Coruña. Priority country: Spain.

Publications from the Thesis

Journal Papers (5)

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Tree Partitioning Reduc-

tion: A New Parallel Partition Method for Solving Tridiagonal Systems. In

ACM Transactions on Mathematical Software. (Accepted under second revi-

sion).

JCR Impact Factor (2017): 2.905, Q1 in Computer Science, Hardware & Ar-

chitecture.

xxv

Adrián P. Diéguez, Margarita Amor, Ramón Doallo, Akira Nukada, Satoshi

Matsuoka. Efficient High-Precision Integer Multiplication on the GPU. In

International Journal of High Performance Computing Applications. (Sub-

mitted)

JCR Impact Factor (2017): 2.015, Q2 in Computer Science, Hardware & Ar-

chitecture.

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Parallel Prefix Opera-

tions on GPU: Tridiagonal System Solvers and Scan Operators. In The Journal

of Supercomputing (Accepted under second revision).

JCR Impact Factor (2017): 1.532, Q2 in Computer Science, Hardware & Ar-

chitecture.

Adrián P. Diéguez, Margarita Amor, Jacobo Lobeiras, Ramón Doallo. Solving

Large Problem Sizes of Index-Digit Algorithms on GPU: FFT and Tridiago-

nal System Solvers. In IEEE Transactions on Computers, volume 67, issue 1,

pages 86-101. January 2018.

JCR Impact Factor: 3.052, D1/Q1 in Computer Science, Hardware & Archi-

tecture.

DOI 10.1109/TC.2017.2723879

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. BPLG-BMCS: GPU-

Sorting Algorithm using a Tuning Skeleton Library. In The Journal of Super-

computing, volume 73, issue 1, pages 4-16. January 2017.

JCR Impact Factor: 1.532, Q2 in Computer Science, Hardware & Architec-

ture.

DOI 10.1007/s11227-015-1591-9

International Conferences (7)

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. A Tuning Strategy for

Tridiagonal System Solvers on GPU. In 18th International Conference on

Computational and Mathematical Methods in Science and Engieering (CMMSE’18).

July 2018.

ISBN 978-84-697-7861-6

xxvi

Adrián P. Diéguez, Margarita Amor, Ramón Doallo, Akira Nukada, Satoshi

Matsuoka. Efficient Solving of Scan Primitive on Multi-GPU Systems. In 32nd

IEEE International Parallel and Distributed Processing Symposium (IPDPS’18),

pages 794-803. May 2018.

ISSN 1530-2075

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Solving Multiple Tridi-

agonal Systems on a Multi-GPU Platform. In 26th Euromicro International

Conference on Parallel, Distruted and Network-based Processing (PDP’18),

pages 759-763. March 2018.

ISSN 2377-5750

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. New Tridiagonal System

Solver on GPU architectures. In 22th International Conference on High Per-

formance Computing (HiPC’15), pages 85-93. December 2015.

ISBN 978-1-46738487-2

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Solving Tridiagonal Sys-

tems with BPLG Library. In 11th International Summer School on Advanced

Computer Architecture and Compilation for High-Performance and Embedded

Systems (ACACES’15), pages 267-270. July 2015.

ISBN 978-88-905806-3-5

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. BS-Comb: An Efficient

Sorting Algorithm for GPUs. In 15th International Conference on Computa-

tional and Mathematical Methods in Science and Engineering (CMMSE’15),

pages 461-473. July 2015.

ISBN 978-84-617-2230-3

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Efficient Scan Operator

Methods on a GPU. In 26th International Symposium on Computer Archi-

tecture and High Performance Computing (SBAC-PAD’14), pages 190-197.

October 2014.

ISSN: 1550-6533

xxvii

Book Chapters (1)

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. Chapter: Techniques for

Autotuning Algorithms on Heterogeneous Platforms. In First PhD Symposium

on Sustainable Ultrascale Computing Systems, pages 25-28. Computer Archi-

tecture, Communications and Systems Group (ARCOS) University Carlos III

Madrid. Spain (2016).

ISBN 978-84-608-6309-0

National Conferences (1)

Adrián P. Diéguez, Margarita Amor, Ramón Doallo. CUDA Optimization

Techniques for Scan Operator. In XXV Jornadas de Paraalelismo, pages 287-

292. September 2014.

ISBN: 84-697-0329-3

Contents

1. An Introduction to GPU Computing 1

1.1. The CUDA Programming and Execution Model 1

1.1.1. SM Resource Partition . 6

1.2. Efficient Memory Accesses in CUDA 7

1.2.1. Global Memory Accesses . 8

1.2.2. Shared Memory Accesses . 9

1.2.3. Shuffle Instructions . 10

1.2.4. Atomic Operations . 11

1.3. Multiple-GPU Programming . 11

1.4. CUDA Architectures . 13

1.4.1. Fermi Architecture . 13

1.4.2. Kepler Architecture . 14

1.4.3. Maxwell Architecture . 16

1.4.4. Pascal Architecture . 17

1.4.5. Volta Architecture . 19

2. Parallel Prefix Algorithms 23

xxix

xxx Contents

2.1. Parallel Prefix Definitions . 23

2.1.1. Index-Digit Algorithms . 24

2.2. Fast Fourier Transform (FFT) . 27

2.2.1. The Real Fourier Transform 30

2.3. Tridiagonal System Solvers . 31

2.3.1. Thomas Algorithm . 33

2.3.2. Parallel Algorithms for Solving Tridiagonal Systems 34

2.3.3. The Partitioning Problem . 38

2.4. Scan Operator . 40

2.4.1. Brent-Kung Pattern . 41

2.4.2. Kogge-Stone Pattern (KS) . 42

2.4.3. Han-Carlson Pattern . 43

2.4.4. Ladner-Fischer Pattern . 44

2.5. Sorting Algorithms . 44

2.6. CUDA Notation for Paralell Prefix Algorithms 47

3. New Parallel Prefix Algorithms 49

3.1. Redundant Reduction: A New Algorithm for Solving Tridiagonal Sys-

tems . 50

3.1.1. The Redundant Reduction Operation 50

3.1.2. Redundant Reduction Algorithm using the Kogge-Stone Pattern 52

3.1.3. Redundant Reduction Algorithm using the Ladner-Fischer Pat-

tern . 54

3.1.4. Experimental Results for the RR operation in CUDA 55

Contents xxxi

3.2. Tree-Partitioning Reduction: A New Algorithm for Solving Tridiag-

onal Systems . 62

3.2.1. The TPR Forward Reduction phase 62

3.2.2. The TPR Backward Substitution phase 69

3.2.3. An example of the TPR method 69

3.3. Bitonic Merge Comb Sort: A New Algorithm for Sorting 70

3.3.1. A CUDA Implementation for the Bitonic Merge Sort Algorithm 71

3.3.2. Bitonic Merge Comb Sort . 72

3.3.3. Experimental Results for BMCS in CUDA 76

3.4. Conclusions of the Chapter . 79

4. A Tuning Methodology for Small Problem Sizes on a GPU 81

4.1. GPU Resource Utilization Analysis Phase 82

4.1.1. Premises for Performance Maximization 83

4.2. CUDA Kernel Optimization Phase 84

4.3. Performance Parameter Tuning Phase 87

4.4. Tridiagonal System Solvers under a three-phase methodology 88

4.4.1. Cyclic Reduction Tridiagonal System Solver (BPLG-CR-TS

Algorithm) . 89

4.4.2. Parallel Cyclic Reduction Tridiagonal System Solver (BPLG-

PCR-TS Algorithm) . 93

4.4.3. Ladner-Fischer Tridiagonal System Solver (BPLG-LF-TS Al-

gorithm) . 98

4.4.4. Experimental Results for Tridiagonal System Solvers with Small

Problem Sizes . 100

4.5. Scan Primitive under a three-phase methodology 108

xxxii Contents

4.5.1. Scan operator using the Ladner-Fischer pattern (BPLG-LF-

SC Algorithm) . 109

4.5.2. Scan operator using Kogge-Stone pattern (BPLG-KS-SC Al-

gorithm) . 112

4.5.3. Experimental Results for the Scan Primitive with Small Prob-

lem Sizes . 114

4.6. Sorting under a three-phase methodology (BPLG-BMCS Algorithm) . 119

4.6.1. CUDA Kernel Optimization phase: BPLG-BMCS 122

4.6.2. Performance Parameter Tuning phase: BPLG-BMCS 122

4.6.3. Experimental Results for Sorting with Small Problem Sizes . . 123

4.7. Conclusions of the Chapter . 127

5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes 129

5.1. A two-phase Methodology for Index-Digit Algorithms 130

5.1.1. GPU Resources Utilization Analysis Phase 131

5.1.2. CUDA Kernel Optimization Phase: String Operators and Map-

ping Vector . 134

5.2. Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-

ID-TS) . 139

5.2.1. MS-ID-TS Mapping Vector . 143

5.3. Experimental Results for ID-Algorithms with Medium-Large Problem

Sizes . 146

5.4. A three-phase Methodology for Parallel Prefix Algorithms 150

5.4.1. GPU Resources Utilization Analysis 151

5.4.2. CUDA Kernel Optimization 154

Contents xxxiii

5.4.3. Performance Parameter Tuning 154

5.5. Scan Primitive based on Ladner-Fischer 154

5.5.1. CUDA Kernel Optimization: Scan-SP 156

5.5.2. Performance Parameter Tuning: Scan-SP 159

5.6. Tridiagonal System Solver based on the Tree Partitioning Reduction . 161

5.6.1. CUDA Kernel Optimization: TPR 162

5.6.2. Performance Parameter Tuning: TPR 164

5.7. Experimental Results for Parallel Prefix Algorithms with Medium-

Large Problem Sizes . 167

5.7.1. Scan Primitive . 167

5.7.2. Tridiagonal Systems . 169

5.8. Conclusions of the Chapter . 177

6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing

with Extremely Large Problem Sizes 179

6.1. A Tuning Methodology for Parallel Prefix Algorithms on Multiple-

GPU Environments . 180

6.2. A Multiple-GPU Strategy for the Scan Operator 184

6.2.1. Multi-GPU Batch Parallelism (MBP) 184

6.2.2. Multi-GPU Problem Scattering (MPS) 185

6.2.3. Multi-GPU Problem with Prioritized Communications (MP-

PC) . 187

6.2.4. Performance Maximization of Scan Approaches 187

6.3. Experimental Results for the Scan Primitive with Extremely-Large

Problem Sizes . 189

6.3.1. Multi-GPU Environment . 189

xxxiv Contents

6.3.2. Multi-Node Environment . 196

6.4. A Multiple-GPU Strategy for Index-Digit Algorithms on Multiple-

GPU Environments . 198

6.4.1. A Two-phase Tuning Methodology 198

6.5. A Multiple-GPU Strategy for a Tridiagonal System Solver 200

6.5.1. Multi-GPU Batch Parallelism (MBP) 200

6.5.2. Multi-GPU Problem Scattering (MPS) 205

6.5.3. Multi-GPU Problem with Prioritized Communications (MP-

PC) . 207

6.5.4. Performance Maximization of the Tridiagonal System Approaches209

6.6. Experimental Results for the Tridiagonal System Solver with Extremely-

Large Problem Sizes . 210

6.6.1. Batch Parallelism . 210

6.6.2. Problem Parallelism . 214

6.7. Conclusions of the Chapter . 217

7. Using Accelerated Parallel Prefix Operations on Real Applications219

7.1. Introduction to High-Precision Integers 219

7.2. The Strassen FFT Multiplication Algorithm 221

7.3. The CUDA FFT-based Multiplication Approach 222

7.3.1. The Complex-ID Proposal . 223

7.3.2. The Real-ID Proposal . 224

7.4. The CUDA Tiling Multiplication Approach 224

7.4.1. The vector convolution algorithm 225

7.4.2. CUDA implementation . 225

Contents xxxv

7.5. The Carry Normalization . 227

7.6. Experimental Results for the High-Precision Multiplication 230

7.6.1. Numerical analysis . 231

7.6.2. Performance analysis . 232

7.6.3. Results Discussion . 240

7.7. Conclusions of the Chapter . 242

8. Conclusions and Future Work 245

References 253

A. Resumo Estendido en Galego 267

List of Tables

2.1. Classification of the algorithms employed in this work 26

2.2. Description of the GPU parameters used. 48

3.1. Description of the test platforms for the RR algorithms 56

3.2. Kernel profile analysis of our proposals on the Kernel Platform . . . 63

3.3. Description of the test platforms for the sorting problem 76

3.4. MData/s comparison of GPU multi-batch sorting algorithms. 80

3.5. GPU parameters and profiling metrics for our sorting proposals. . . . 80

4.1. Description of tuning strategy parameters. 83

4.2. Performance parameters which maximize the number of warps and

blocks per SM . 87

4.3. Description of tridiagonal tuning parameters. 93

4.4. Description of the test platforms . 101

4.5. BPLG-LF-TS occupancies . 106

4.6. Performance comparison of different performance parameters values

for BPLG-LF-TS in MRows / s . 109

4.7. Description of the LF scan tuning parameters. 112

4.8. Description of the KS scan tuning parameters. 115

xxxvii

xxxviii List of Tables

4.9. Performance comparison of different performance parameters values

for BPLG-LF-SC in MData / s . 120

4.10. Description of the BPLG-BMCS sorting tuning parameters. 123

4.11. MData/s comparison of GPU multi-batch Sorting Algorithms in the

Maxwell Platform. 127

5.1. Description of string operators. 139

5.2. Description of the test platforms . 147

5.3. Complex MS-ID-TS kernel performance and profiler analysis (Kepler

K20 Platform) . 148

5.4. Complex MS-ID-TS kernel performance and profiler analysis (Maxwell

Platform) . 148

5.5. Description of the performance parameters for parallel prefix algo-

rithms. 152

5.6. Performance parameters per SM on Kepler Platforms with compute

capability 3.7 . 155

5.7. Description of tuning parameters, where S = P · L and P = 2. 165

5.8. Description of the test platform . 168

5.9. Relative error of the two FP32-TPR configurations for a Topletz matrix175

5.10. Matrix types used in the numerical evaluation from [74] 175

5.11. Relative errors for FP32 . 176

5.12. Relative errors for FP64 . 177

6.1. Description of tuning strategy parameters. 183

6.2. Description of a computing node in the test platform 190

6.3. Description of the performance parameters for ID-algorithms in Multiple-

GPU. 199

List of Tables xxxix

6.4. Description of the test platforms . 211

7.1. Description of the computing platforms employed 231

7.2. Numerical analysis for our FFT proposals. 232

List of Figures

1.1. A GPU composed of an array of Streaming Multiprocessors (SM) . . 3

1.2. CUDA memory subsystem . 5

1.3. Communication among kernels across global memory 5

1.4. Description of an SM in the Fermi architecture 14

1.5. Description of the Fermi memory subsystem 15

1.6. Description of an SM in the Kepler architecture 15

1.7. Description of the Kepler memory subsystem 16

1.8. Description of an SM in the Maxwell architecture 17

1.9. Description of the Maxwell memory subsystem 18

1.10. Description of an SM in the Pascal architecture 18

1.11. Description of the Pascal memory subsystem 19

1.12. Description of an SM in the Volta architecture 20

1.13. Description of the Volta memory subsystem 21

2.1. A parallel prefix algorithm, Cooley-Tukey, with N = 16. 24

2.2. Difference between an Index-Digit algorithm (a) and a Parallel Prefix

non-ID algorithm (b) . 26

2.3. Examples of FFT algorithms with r = 2 and N = 16. 29

xli

xlii List of Figures

2.4. Patterns for different tridiagonal system solvers with N = 16 elements. 37

2.5. Reduction of two triads in the Wang and Mou algorithm 38

2.6. Cyclic Reduction example for N = 16 elements 39

2.7. Equation dependencies among slices in the coefficient matrix for the

Cyclic Reduction algorithm . 40

2.8. Taxonomy of the existing parallel algorithms for scan operator based

on VLSI adders. 42

2.9. Brent-Kung pattern for addition with N = 8. 43

2.10. Kogge-Stone pattern for addition with N = 8. 44

2.11. Han-Carlson pattern for addition with N = 8. 45

2.12. Ladner-Fischer pattern for addition with N = 8. 46

2.13. Bitonic Merge Sort Algorithm with N = 16. 46

3.1. Redundant Reduction scheme for Ek
i and Ek

j where A,B circles de-

note the resulting equation of applying Reduction A or Reduction B,

respectively. 52

3.2. Reduction and substitution steps in RR-KS for N=8 equations. . . . 53

3.3. RR-KS algorithm pseudocode . 53

3.4. Reduction step in RR-LF for N=8 equations. 55

3.5. Performance results on the Fermi Platform for G = 256 batches. . . . 57

3.6. RR-LF speed-up over CUDPP for differentG batch sizes on the Fermi

Platform. 58

3.7. RR-LF speed-up over CUSPARSE for different G batch sizes on the

Fermi Platform. 58

3.8. Performance results on the Kepler Platform for G = 256 batches. . . . 59

List of Figures xliii

3.9. RR-LF speed-up over CUDPP for different G batch sizes on Kepler

Platform. 60

3.10. RR-LF speed-up over CUSPARSE for different G batch sizes on Ke-

pler Platform. 61

3.11. Performance results on the Maxwell Platform for G = 256 batches. . . 61

3.12. RR-LF speed-up for different G batch sizes over CUDPP on the

Maxwell architecture . 63

3.13. RR-LF speed-up for different G batch sizes over CUSPARSE on the

Maxwell architecture . 64

3.14. Forward reduction phase for N = 16 elements in the TPR method . 64

3.15. Coefficient matrix evolution in the TPR method 65

3.16. Tree Partitioning Reduction example for N = 16 elements with S = 8 67

3.17. Coefficient reductions in the TPR forward reduction phase for a node

computation . 68

3.18. Kernel code for Bitonic Merge Sort algorithm (BS-naive). 72

3.19. Bitonic Merge Comb Sort Algorithm with N = 16. 74

3.20. Bitonic Merge Comb Sort Algorithm for N = 16. 75

3.21. Comparison of our proposal optimizations in the Kepler Platform. . . 77

3.22. Comparison of our proposal optimizations in the Maxwell Platform. . 77

3.23. Comparison of GPU sorting implementations for one batch in the

Kepler Platform. 78

3.24. Comparison of GPU sorting implementations for one batch in the

Maxwell Platform. 78

4.1. Parallel Prefix Patterns for N = 16. 90

4.2. Forward Reduction code for CR tridiagonal algorithm using BPLG. . 91

xliv List of Figures

4.3. Code for the PCR tridiagonal algorithm in BPLG. 94

4.4. Operator nodes allocation for the PCR algorithm with N = 16. . . . 95

4.5. Operator nodes for the PCR algorithm with N = 16 using the Effi-

cient Allocation strategy. 96

4.6. PCR dependences when applying the Equation-warp matching with

N = 16. 97

4.7. Code for LF tridiagonal algorithm in BPLG. 99

4.8. MRows/s comparison of the CR tridiagonal proposals in the Kepler

Platform. 102

4.9. MRows/s comparison of the CR tridiagonal proposals in the Maxwell

Platform. 102

4.10. MRows/s comparison of the PCR tridiagonal implementations in the

Kepler Platform. 104

4.11. MRows/s comparison of the PCR tridiagonal implementations in the

Maxwell Platform. 104

4.12. MRows/s comparison of LF tridiagonal implementations in the Ke-

pler Platform. 105

4.13. MRows/s comparison of LF tridiagonal implementations in the Maxwell

Platform. 106

4.14. Comparison of BPLG tridiagonal solvers performance in the Kepler

Platform. 107

4.15. Comparison of BPLG tridiagonal solvers performance in the Maxwell

Platform. 107

4.16. Kernel code for the LF-scan algorithm in BPLG. 110

4.17. Kernel code for KS scan algorithm in BPLG. 113

4.18. MData/s comparison of BPLG-LF scan implementations in the Ke-

pler Platform. 115

List of Figures xlv

4.19. MData/s comparison of BPLG-LF scan implementations in the Maxwell

Platform. 116

4.20. MData/s comparison of BPLG-KS scan implementations in the Ke-

pler Platform. 117

4.21. MData/s comparison of BPLG-KS scan implementations in the Maxwell

Platform. 117

4.22. MData/s performance comparison of BPLG scan proposals in the

Kepler Platform . 118

4.23. MData/s performance comparison of BPLG scan proposals in the

Maxwell Platform . 118

4.24. Kernel code for the BMCS algorithm using BPLG skeletons. 121

4.25. Comparison of our proposals in the Kepler Platform. 124

4.26. Comparison of our proposals in the Maxwell Platform. 125

4.27. Comparison of GPU sorting implementations for one batch on the

Kepler Platform. 126

4.28. Comparison of GPU sorting implementations for one batch on the

Maxwell Platform. 127

5.1. Data mapping with r = 2, n = 11, s = 9, p = 4 and bx = 2. 137

5.2. Distribution of the ID-LD-TS proposal with two stages for N = 16,

p = l = 1 and bx = 2 . 141

5.3. Performance comparison of MS − ID − TS proposal 149

5.4. Three kernel execution for the scan primitive when G = 1 problems. 157

5.5. Scan computation in one warp, considering warpSize=4, P = 4 and

Lx = 4. 159

5.6. Cascade approach computation. 159

5.7. TPR forward reduction. 163

xlvi List of Figures

5.8. TPR backward substitution. 164

5.9. Forward Reduction code for the TPR tridiagonal algorithm using

BPLG. 165

5.10. Performance analysis for the scan primitive when G = 1 problems. . 168

5.11. Performance analysis for the scan primitive with G problems. 168

5.12. Overall FP32 performance comparison of the TPR method 170

5.13. Overall FP64 performance comparison of the TPR method 172

5.14. Performance comparison of two different TPR configurations: perfor-

mance vs numerical stability, executing 1 batch in simple precision. . 173

5.15. Performance comparison of two different TPR configurations: perfor-

mance vs numerical stability, executing 1 batch in double precision.

. 173

5.16. Performance comparison of two different TPR configurations: perfor-

mance vs numerical stability, executing 64 batches in simple precision. 174

5.17. Performance comparison of two different TPR configurations: perfor-

mance vs numerical stability, executing 64 batches in double precision. 174

6.1. Multi-GPU topology within a Multi-Node environment. 181

6.2. Multiple-GPU computation with no communication among GPUs . . 181

6.3. Multiple-GPU computation with communication among devices . . . 181

6.4. Multi-GPU Problem Scattering on a Multi-GPU environment. 186

6.5. Pseudo-code of Scan-MPS in a Multi-Node environment. 188

6.6. 12 problems being solved by 4 different PCI-e networks with 2 GPUs

each. 188

6.7. Performance analysis for the Multi-GPU Problem Scattering approach

(Scan-MPS proposal) where G = 228/N 190

List of Figures xlvii

6.8. Performance analysis for the Multi-GPU Problem with Prioritized

Communications approach (Scan-MP-PC proposal) where G = 228/N .192

6.9. Performance analysis for our best Multi-GPU proposal when G = 1. . 192

6.10. Performance analysis for our best Multi-GPU proposal when G =

228/N problems. 193

6.11. Comparison of CUB and Thrust libraries under a segmented execu-

tion when G = 228/N problems. 193

6.12. Performance analysis for the Multi-GPU Batch Parallelism approach

(Scan-MBS proposal) where G = 226/N 195

6.13. Performance analysis for our best Multi-Node proposal for G = 228/N

problems. 197

6.14. Breakdown of times spent on M=2 and W=4 for G = 228/N problems.198

6.15. Multi-GPU approach with W GPUs for solving G problems of N

elements: Each GPU solves G/W entire problems of N elements. . . 201

6.16. Pseudocode for the MBP invocation in the Multi-GPU approach . . . 202

6.17. Pseudocode for the MBP invocation in the Multi-Node approach . . . 203

6.18. MPS approach for G problems and W GPUs 206

6.19. Pseudocode for the MPS approach where all GPUs belong to the

same PCI-e . 207

6.20. An example for the MPS approach with N = 16, G = 1, W = 2 and

B = 2. 208

6.21. Multi-GPU approach for G = 8. 211

6.22. Multi-GPU approach for G = 64. 212

6.23. Multi-GPU approach for G = 256. 212

6.24. Multi-Node approach for G = 8. 213

6.25. Multi-Node approach for G = 64. 213

xlviii List of Figures

6.26. Multi-Node approach for G = 256. 214

6.27. Multi-Node approach for G = 512. 214

6.28. Performance analysis for the Multi-GPU Problem Scattering (MPS)

approach with G = 8. 215

6.29. Performance analysis for the Multi-GPU Problem Scattering (MPS)

approach with G = 64. 215

6.30. Performance analysis for the Multi-GPU Problem with Prioritized

Communications (MP-PC) approach with G = 8 216

6.31. Performance analysis for the Multi-GPU Problem with Prioritized

Communications (MP-PC) approach with G = 64 216

6.32. Performance evaluation for all Multi-GPU approaches with G = 64 . 217

7.1. Pseudocode of the vector convolution operation 226

7.2. Classical multiplication operation in tiles 226

7.3. GPU implementation of the tiled multiplication where N = 4 and

T = 2. 227

7.4. Pseudocode of the carry-propagation operation for large integer mul-

tiplication. 229

7.5. Carry propagation: Serial implementation 229

7.6. Parallel carry propagation design . 230

7.7. Performance comparison for our FP32 approaches in the Kepler Ar-

chitecture . 233

7.8. Performance comparison for the GPU-tiling proposal, when solving G

problems, with respect to FP32 FFT-based proposals on the Kepler

Architecture . 235

7.9. Performance comparison for our FP64 approaches in the Kepler Ar-

chitecture . 236

List of Figures xlix

7.10. Performance comparison for our FP32 approaches in the Pascal Ar-

chitecture . 237

7.11. Performance comparison for the GPU-tiling proposal, when solving G

problems, with respect to FP32 FFT-based proposals on the Pascal

Architecture . 238

7.12. Performance comparison for our FP64 approaches in the Pascal Ar-

chitecture . 239

7.13. Performance comparison for our FP32 approaches in the Volta Archi-

tecture . 240

7.14. Performance comparison for the GPU-tiling proposal, when solving

G problems, with respect to FP32 FFT-based proposals on the Volta

Architecture . 241

7.15. Performance comparison for the FP64 FFT-based proposals executing

a single-batch in the Volta Architecture 241

Chapter 1

An Introduction to GPU

Computing

Graphics Processing Units (GPUs) are parallel processors designed to accelerate

portions of a program, but not to replace CPU computing. The main program is

executed on the CPU, and code fragments, called kernels, are executed on the GPU.

CPU is suitable for control-intensive jobs, whereas GPU is suitable for data-paralell

computation-intensive jobs. CUDA [93] is a general-purpose parallel computing

platform and programming model that leverages the parallel compute engine in

NVIDIA GPUs to solve data-parallel computation-intensive problems in a more

efficient way. The CUDA programming language allows programming the CUDA

GPUs using an extension of C language.

In the following sections, we describe the basics of CUDA programming and

its execution model, as well as the GPU architectures used in this thesis. A more

detailed description can be found in [17], [70] and [92].

1.1. The CUDA Programming and Execution Model

A kernel is expressed as a sequential program, and then, from the host (CPU), the

user specifies how this code is mapped to the logical thread hierarchy of the device

(GPU). Internally, CUDA handles the execution of the program by scheduling and

1

2 Chapter 1. An Introduction to GPU Computing

processing the logical threads over CUDA physical cores. A typical processing flow

in a CUDA program is as follows:

Allocate space in the device memory.

Copy data from host memory to device memory.

Invoke kernels from the host to perform the computation in the GPU

Copy results back from device memory to host memory.

Release memory space in the device.

As can be observed, the CPU and the GPU have separated memories. One of

the most important features of CUDA is its memory hierarchy, where the device has

different memory types, depending on the purpose.

When a kernel is invoked from the host, the execution is performed in the device,

where a large number of logical threads are created and organized following the

user’s indications. These threads follow a two-level thread hierarchy abstraction:

threadblocks and grids of blocks. A grid is composed of many threadblocks; and a

threadblock is a group of threads that cooperate with each other. However, threads

from different threadblocks cannot communicate with each other in the same kernel.

The user specifies how both the grid and the threadblock are scheduled to perform

the execution on the GPU, organizing grids and threadblocks into three dimensions.

This configuration is very important, since it determines how the GPU resources

are distributed and how the GPU memory system is accessed, which has a bearing

on performance.

The GPU architecture is built of an array of Streaming Multiprocessors (SM),

as shown in Figure 1.1. The parallelism is achieved by the replication of these SMs.

Each SM is mainly composed of many CUDA cores for single and double precision,

also known as Streaming Processors (SP), a shared memory, an L1 cache, a register

file, load/store units, special function units (SFU), warp schedulers and memory

controllers.

Each SM is designed to execute hundreds of threads concurrently. When a kernel

is invoked, the threadblocks of the grid are distributed among the available SMs for

1.1 The CUDA Programming and Execution Model 3

Figure 1.1: A GPU composed of an array of Streaming Multiprocessors (SM)

execution, and an SM can hold several threadblocks concurrently, which are called

resident or active threadblocks. Once dispatched, their threads execute concurrently

on that assigned SM only. Also, once the execution of a threadblock is started, the

threadblock remains resident in that SM until it finishes. Each threadblock groups

its threads into warps, a set of 32 threads that executes instructions in lockstep; i.e,

all threads in a warp execute the same instruction at the same time. Thus, each SM

partitions its assigned threadblocks into warps, and these warps are scheduled for

execution on available SM resources. All warps which are scheduled to be executed

concurrently in an SM are called active warps, and their threads are active threads.

There are two types of instruction latency: arithmetic instruction latency (around

10-20 cycles) and memory instruction latency (between 400-800 cycles for global

memory accesses). Switching active warps makes it possible to hide the latency.

It should be observed that the term thread can be confusing: while all threads

in a threadblock run logically in parallel, not all threads can execute physically at

the same time. The GPU programming model executes Single Instruction Multiple

4 Chapter 1. An Introduction to GPU Computing

Thread (SIMT) operations by matching each physical thread as a number of logical

threads. The SIMT architecture is similar to the Single Instruction, Multiple Data

(SIMD) architecture: both broadcast the same instruction to multiple execution

units. However, SIMD requires that all elements in a vector execute together in

a synchronous group; while SIMT allows multiple threads in a warp to execute

independently. This allows different threads in the same warp to take different

instruction paths (branch divergence). In case of divergence, CUDA disables some

of the threads (using a mask) and executes instructions on one path; then it disables

the other threads and executes instructions on the other path.

Memory management and accesses are an important part of CUDA, having a

particularly large impact on performance. CUDA presents a low-latency but lower-

capacity memory subsystem to optimize performance, which is depicted in Figure

1.2. This subsystem is composed of multiple levels of memory with different la-

tency, bandwidth and capacities. Global memory is the largest, but highest-latency,

memory on a GPU. It can be accessed by any thread, even after kernel execution,

as Figure 1.3 shows. Global memory resides in the device memory, an off-chip on-

board DRAM memory. Registers are the fastest memory space. Each thread has

its own set of private registers, and any variable declared in the kernel is generally

stored in a register. Once a kernel completes the execution, a register value cannot

be accessed. Variables in a kernel that are eligible for registers but which cannot be

stored into the register space by the compiler are saved into local memory, a portion

of global memory which is accessed by the corresponding thread only, so local mem-

ory accesses have higher latency and lower bandwidth than registers. This behavior

is called local memory spilling. Furthermore, shared memory is a programmable

on-chip memory, and it has much higher bandwidth and much lower latency than

global memory. Shared memory shares the lifetime of the kernel, and serves as a

inter-thread communication inside a threadblock; thus, only threads within a thread-

block can access this memory space. When a threadblock is finished, its allocation

of shared memory is released. Constant memory is other memory which resides in

device memory. The constant memory must be initialized by the host and kernels

can only read from it. This memory performs well when all threads in a warp read

from the same memory address. Another memory that resides in the device is the

texture memory. Each SM caches this memory with a read-only data cache, and is

only accessed through this dedicated read-only cache. Texture memory is optimized

1.1 The CUDA Programming and Execution Model 5

Figure 1.2: CUDA memory subsystem

Figure 1.3: Communication among kernels across global memory

for 2D spatial locality.

When sharing data across the memory hierarchy, it is necessary to pay attention

how to avoid race conditions or hazards; i.e., unordered accesses by multiple threads

to the same memory location. It is not defined how warp schedulers issue warps and

the order they follow. In order to synchronize threads in a system, there are four

6 Chapter 1. An Introduction to GPU Computing

types of synchronization barriers:

System-level. Wait for all threads on both the host and the device to complete.

This is possible with a cudaDeviceSynchronize() instruction in the host side.

Device-level. Wait for a GPU task to complete. This is done by assigning one

GPU to a CUDA Stream, a sequence of operations that execute in issue-order

on the GPU, and using a cudaStreamSynchronize() instruction in the host

side.

Grid-level. There is not an explicit instruction to wait for all the threadblocks

of a grid to complete. There are several strategies to cover this point, which

are explained below.

Block-level. Wait for all threads within a threadblock to complete. This is

done by using the syncthreads() instruction in the kernel.

1.1.1. SM Resource Partition

When a warp idles due to any dependence or latency, the SM can schedule

another available warp from any threadblock resident on the SM. Switching between

concurrent warps has no penalty. While warps within an SM can be scheduled in

any order, the number of active warps is limited by SM resources. Registers and

shared memory are scarce resources in the SM, and CUDA has to partition these

resources among the threads resident on an SM. Thus, these resources limit the

number of active warps in an SM. Each SM has a set of 32-bit registers that is

partitioned among active threads, and a fixed amount of shared memory that is

partitioned among active threadblocks. The number of threadblocks and warps

that can simultaneously reside on an SM depends on the number of registers and

shared memory available on the SM. Reducing the number of registers a kernel

means that more warps will be executed concurrently. Reducing the amount of

shared memory used by each threadblock will result in it being possible to execute

more threadblocks concurrently. If there are insufficient registers or shared memory

on each SM to execute at least one threadblock, the kernel invocation fails; whereas,

if the number of threads per threadblock is not a multiple of 32, some threads will

be executed as inactive, but they consume SM resources.

1.2 Efficient Memory Accesses in CUDA 7

Specifically, a threadblock becomes an active threadblock when the resources it

needs are assigned. The warp scheduler of the SM chooses active warps on each

cycle to be dispatched to execution. To be eligible, two requirements must be met:

32 CUDA cores are available and all arguments of the current instruction are ready.

If on every cycle, all the warps schedulers have an eligible warp, then a complete

resource utilization is achieved, ensuring that the latency of each instruction can

be hidden by issuing other instructions. Switching the warp context between ac-

tive warps has no penalty, since the required state (program counter, registers and

shared memory) is already on-chip, as is maintained during the entire life-time of

the threadblock.

Therefore, instructions are executed in a sequential way within each CUDA core.

If a warp stalls, the warp scheduler finds other eligible warps to keep the cores

occupied, and hide latency. Warp occupancy is the ratio of active warps to maximum

number of warps per SM. In a similar way, the block occupancy defines the ratio

between active threadblocks to maximum number of threadblocks supported per

SM owing to the fixed amount of shared memory and registers.

During the execution, the grid is divided into waves of threadblocks. The wave

size depends on the number of active threadblocks and the number of SMs. For

example, if 128 threadblocks have to be executed on a Tesla Kepler K20 that has

13 SMs, with a hypothetical number of 4 active threadblocks per SM, then each

full wave is composed of 13 × 4 = 52 threadblocks. Thus, the kernel is executed

in 2 full waves and a much smaller wave with only 24 threadblocks. The last wave

consumes a significant fraction of the runtime, although is under-utilizing the GPU.

This event is called tail effect.

1.2. Efficient Memory Accesses in CUDA

When comparing the measured program values to theoretical peak values, it

is easy to determine if the execution is limited by arithmetic (arithmetic bound

problem) or by memory bandwidth (memory bound problem).

8 Chapter 1. An Introduction to GPU Computing

1.2.1. Global Memory Accesses

Currently, most HPC workloads are bound by memory bandwidth. Especially in

GPUs, most applications tend to be limited by the global memory bandwidth. Cer-

tain conditions need to be met to achieve the maximum performance when reading

and writing data in this memory.

The allocated host memory is pageable; i.e, the operating system can move the

data allocated in this memory to different physical locations (virtual memory sys-

tem). This enables us to use more memory than that physically available. If the

GPU has to transfer data from/to this pageable host memory, a page-locked or

pinned host buffer will need to be created to move data safely. Thus, data are first

moved from host memory to the pinned buffer, and then to the device memory.

Pinned host memory can be allocated directly, to avoid the initial data transfer

(from pageable host memory to the pinned buffer), achieving a high speed-up.

Zero-copy memory is a pinned host memory space that is mapped into the de-

vice address space, being possible to access this memory from both host and device,

performing data transfers across PCI-e by demand. This is useful for leveraging host

memory when insufficient device memory, avoiding explicit data transfers between

host-device, and improving PCI-e transfer rates. However, frequent accesses to this

memory will slow performance down, due to the latency of the PCI-e communica-

tions.

To improve the zero-copy behavior, CUDA 6.0 introduces the Unified Memory to

simplify the memory management. The zero-copy memory is allocated in the host,

and the kernel suffers from the latency of PCI-e transfers. However, the unified

memory decouples the memory spaces to the host and the device, thus data are

transparently migrated on demand, improving locality and performance. This is

possible thanks to the Unified Virtual Addressing (UVA) support, which provides a

single virtual memory address space for all CPU and GPU memories, although it

does not automatically migrate data, which is only done by the unified memory.

All accesses to global memory go through the L2 cache, and depending on the

architecture version, some accesses also pass through the L1 cache. In order to

take advantage of the global memory bandwidth, two requirements must be met,

otherwise the global memory performance slows down significantly: aligned memory

1.2 Efficient Memory Accesses in CUDA 9

accesses and coalesced memory acceses. To perform aligned memory accesses, the

first memory address of the transaction must be a multiple of the cache granularity

(either 32 bytes for L2 or 128 bytes for L1). Coalesced memory accesses occur when

all the threads in a warp access to contiguous memory addresses: this reduces the

number of transactions to service the maximum number of memory requests.

Regarding the memory accesses and the compiler, static indexing represents

the fact that constant indices are derived by the compiler in all accesses to an

array, placing elements directly into registers, and it is the most efficient way to

reference an array. However, when the compiler cannot resolve indices to constants,

it places them into local memory, with the consequent performance loss (dynamic

indexing). Indices must be determined by the compiler and must not depend on a

value determined at runtime. In this case, if all threads within a warp access the

same index (uniform access), performance is fairly high owing to the GPU cache

system. Otherwise, if the threads of a warp access elements using different indices,

it is called non-uniform indexing, this being the worst scenario.

1.2.2. Shared Memory Accesses

Shared memory is faster than global memory as it is a low-latency on-chip mem-

ory. Shared memory is smaller and it is only reachable by the threads within the

same threadblock, but offering much higher bandwidth.

The shared memory is divided into 32 memory modules called memory banks.

These modules are accessible simultaneously and have a bank width that depends on

the architecture. For example, if the 32 threads of a warp access to different banks

simultaneously, the operations are serviced by one memory transaction. Otherwise,

the bank width defines how many threads can access simultaneously to the same

bank; but if this amount is surpassed, it needs more memory transactions to serve

data, decreasing performance. If more threads than those supported by the bank

width capacity try to write into the same memory bank, a bank conflict occurs,

and the operation is replayed. However, different threads can read from the same

memory bank, a broadcast access, with no penalty.

There are two different bank widths depending on the architecture: 4-byte or

10 Chapter 1. An Introduction to GPU Computing

8-byte widths. In the first case, successive 4-byte words are mapped to consecutive

banks, and each bank has a bandwidth of 4 bytes per two clock cycles. In the

second case, there are also two address modes: 8-byte or 4-byte modes. In the

8-byte mode, successive 8-byte words are assigned to consecutive banks, and each

bank has a bandwidth of 8 bytes per cycle. Hence, with this address mode, two

threads can access any sub-word within the same 8-byte word with no penalty. In

the 4-byte mode, succesive 4-byte words are mapped to consecutive banks, and it

is possible to access two 4-byte words in the same bank at once, with no conflict

thanks to the 8-byte bandwidth.

1.2.3. Shuffle Instructions

Shuffle instructions enable threads within the same warp to exchange data through

registers directly, rather than through shared or global memory. This instruction has

higher bandwidth and it is highly interesting for rapidly interchanging data among

threads. To do so, each thread has a unique identifier inside the warp, called the

lane, and there are two datatypes supported by shuffle instructions: integers and

float variables.

On the one hand, shuffle instructions can be used to free up shared memory to

be used for other data or to increase the occupancy. On the other hand, they are

faster than shared memory since they only require one instruction versus three for

shared memory (write, synchronize, read).

There are several communication patterns supported by the shuffle instructions.

The general shuffle instruction, shfl(var, src, width), returns the value var stored

in a register from any other thread. The src thread is identified by its lane, and if

this value is constant, the var value from src is broadcast to all threads. It is also

possible to create thread-groups inside the warp specifying the width of the group,

which is 32 by default. The shfl up(var, delta, width) and shfl down(var, delta,

width) instructions return the var value from a source thread with a lower or higher

lane defined by the delta argument. As of CUDA 9.0, these functions have been

deprecated and changed to shfl sync, shfl up sync, shfl down sync, keeping the

same arguments and behavior.

1.3 Multiple-GPU Programming 11

1.2.4. Atomic Operations

Another common access pattern in computing applications is to access and mod-

ify a single memory location by several threads, but ensuring no interference from

others in each access until completing the operation, in order to avoid race condi-

tions. This memory pattern is called atomic access, since it is necessary to guarantee

the atomicity of read-modify-write operations.

CUDA provides 32-bit and 64-bit atomic operations for global and shared mem-

ory. The most common are atomicAdd, atomicSub, atomicMin and atomicMax.

Depending on the version of the architecture, the hardware provides native support

for these instructions. Otherwise, the desired function can be software implemented,

based on a Compare-And-Swap (CAS) implementation. Instead of writing directly

in memory ensuring no inference (native support), a CAS implementation compares

the contents of a memory location with the given value and, only if they are the

same, does it modify the contents of that memory location to a new given value. If

the value had been updated by another thread in the meantime, the write would

fail.

1.3. Multiple-GPU Programming

So far, different features and techniques of CUDA have been introduced, focusing

on a single GPU. However, when several GPUs participate in the system, a multiple-

GPU programming model should be considered.

The most two common cases for performing a multiple-GPU execution are:

Memory space limits. The datasets are too large to be executed in the memory

of a single GPU.

Scalability. Although the datasets can fit into a single GPU, better perfor-

mance can be obtained by partitioning and executing the problem among

several GPUs concurrently.

The efficiency of the execution depends on how the inter-GPU communication

is designed. It is possible to distinguish two types of environments: a Multi-GPU

12 Chapter 1. An Introduction to GPU Computing

environment represents a single computing node composed of several GPUs; whereas

if the system consists of several of these nodes connected through a low-latency bus,

it is called a Multi-Node environment. When GPUs are arranged in several nodes a

Multi-Node communication is required.

When designing a multiple-GPU execution, the workload is divided among de-

vices. There are two common communication cases, depending on the program. On

the one hand, no data exchange is needed between the partitions of the problem,

thus there is no communication among devices. On the other hand, each partition

of the problem needs to communicate partial data to other partitions, requiring re-

dundant data storage and communication among GPUs. The first case is trivial,

as each partition runs independently in each GPU. The second case is more chal-

lenging, since it is necessary to consider how data can optimally be moved among

GPUs.

CUDA presents a number of features to facilitate Multi-GPU programming. Ker-

nels executed under 64-bit applications on modern devices can directly access the

global memory of any GPU connected to the same PCIe network using the CUDA

peer-to-peer (P2P) API, avoiding communication via the host. This is possible

thanks to their sharing a common memory address space (UVA). Hence, data are

copied between these devices asynchronously along the shortest PCI-e path, enabling

communication-computation overlapping. Specifically, peer-to-peer accesses enable

direct load and store operations within a kernel across GPUs. If the GPUs are not

connected to the same PCI-e bus, it is possible to transfer data from host, peer-to-

peer transactions, through host memory rather than directly across the PCI-e bus.

Synchronization between devices can be performed by assigning a CUDA stream to

each GPU and using the cudaStreamSynchronize() instruction from the host for all

GPUs.

In the case of Multi-Node programming, the communication is performed across

a cluster composed of several computing nodes. In this case, Message Passing Inter-

face (MPI), a well-known standard and portable API, is employed. Using MPI, the

contents of host memory can be transmitted directly by MPI functions. Instead of

copying data from the device memory to the host buffers, and then calling the MPI

API, MPI and CUDA can be combined, sending data directly to the GPU buffers.

This CUDA support is called CUDA-Aware MPI, enabling direct MPI communi-

1.4 CUDA Architectures 13

cation between GPU global memories. Moreover, RDMA - GPU Direct technol-

ogy enables low-latency transfers over an Infiniband connection between GPUs in

different nodes without host processor involvement, reducing CPU overhead and

communication latency.

1.4. CUDA Architectures

Several generations of CUDA-capable GPUs have been released so far. In the

following subsections, a global overview of the CUDA architectures used in this

thesis is given from Fermi to Volta.

1.4.1. Fermi Architecture

Each Fermi SM [91] is composed of 32 CUDA cores, 16 load/store units (LD/ST

units) to address memory operations for sixteen threads per clock, four special func-

tion units (SFU) to execute transcendental mathematical instructions, a memory

hierarchy and warp schedulers, as Figure 1.4 represents.

The board has six 64-bit memory partitions with a 384-bit memory interface

which supports up to 6 GB of GDDR5 DRAM memory. The CPU is connected

to the GPU via a PCI-e bus. Each CUDA core has a fully pipelined arithmetic

logic unit (ALU) as well as a floating point unit (FPU). In order to execute double

precision, the 32 CUDA cores can perform as 16 FP64 units. Each SM has two warp

schedulers which enable issue and execute 2 warps concurrently.

A key block of this architecture is the memory hierarchy, as Figure 1.5 shows.

It introduces 64 KB of configurable shared memory and an L1 cache per SM, which

can be configured as 16 KB of L1 cache with 48 KB of shared memory; or 16 KB

of shared memory with 48 KB of L1 cache. Whereas the CPU L1 cache is designed

for spatial and temporal locality, the GPU L1 is only optimized for spatial locality.

Frequent accesses to a cached L1-memory location does not increase the probability

of hitting the datum, but it is attractive when several threads are accessing to

adjacent memory spaces. The 768 KB L2 cache is unified and shared among all

SMs that services all operations (load, store and texture). Both caches are used

14 Chapter 1. An Introduction to GPU Computing

Figure 1.4: Description of an SM in the Fermi architecture

to store data in local and global memory, including register spilling. However, it is

necessary to configure whether reads are cached in both L1 and L2, or only L2. This

architecture is represented as compute capability 2.x, a special term to describe the

hardware version of the GPU which comprises a major revision number (left digit)

and a minor revision number (right digit). Devices with the same major revision

number belong to the same core architecture, whereas the minor revision number

corresponds to an incremental improvement to the core architecture.

1.4.2. Kepler Architecture

Kepler [96] includes up to 15 SMs and six 64-bit memory controllers. Each SM

has 192 single-precision CUDA cores, 64 double-precision units, 32 SFUs, 32 LD/ST

1.4 CUDA Architectures 15

Figure 1.5: Description of the Fermi memory subsystem

Figure 1.6: Description of an SM in the Kepler architecture

units and 16 texture units, as Figure 1.6 shows.

Also, four warp schedulers, each with 2 dispatch units, which allow four warps

to be issued and executed concurrently. It also increases the number of registers

accessed by each thread, from 63 in Fermi, to 255; it introduces the shuffle instruc-

16 Chapter 1. An Introduction to GPU Computing

Figure 1.7: Description of the Kepler memory subsystem

tions and improves the atomic operations by introducing native support for FP64

atomics in global memory. It also introduces the CUDA Dynamic Parallelism, the

capacity of launching kernels from a kernel. Additionally, the memory hierarchy is

organized similarly to Fermi, as Figure 1.7 depicts.

The 64 KB shared memory / L1 cache is improved by permitting a 32 KB /

32 KB split between the L1 cache and shared memory. It also increases the shared

memory bank width from 32 bits in Fermi to 64 bits, and introduces a 48 KB Read-

Only Data cache to cache constant data. The L2 cache is also increased to 1536 KB,

doubling the Fermi L2 cache capacity. Additionally, Kepler compute capabilities are

represented with the 3.x code.

1.4.3. Maxwell Architecture

Maxwell [99] consists of up to 16 SMs and four memory controllers. Each SM

has been reconfigured to improve performance per watt. It contains four warp

schedullers, each capable of dispatching two instructions per warp every clock cycle.

The SM is partitioned into four 32-CUDA core processing blocks, each with eight

texture units, 8 SFUs and 8 LD/ST units. Figure 1.8 shows this new partition.

Regarding the memory hierarchy (see Figure 1.9), it features a 96 KB dedicated

shared memory (although each threadblock can only use up to 48 KB), while the L1

1.4 CUDA Architectures 17

Figure 1.8: Description of an SM in the Maxwell architecture

cache is shared with the texture caching function. The L2 cache provides 2048 KB of

capacity. The memory bandwidth is also increased, from 192 GB/sec in Kepler, to

224 GB/sec, and native support is introduced for FP32 atomics in shared memory.

Maxwell is represented as compute capabilities 5.x.

1.4.4. Pascal Architecture

A Pascal board [102] is composed of up to 60 SMs and eight 512-bit memory

controllers. Each SM has 64 CUDA cores and four texture units, as Figure 1.10

shows. It has the same number of registers as Kepler and Maxwell, but provides

much more SMs, thus many more registers overall. It has been designed to sup-

18 Chapter 1. An Introduction to GPU Computing

Figure 1.9: Description of the Maxwell memory subsystem

Figure 1.10: Description of an SM in the Pascal architecture

port many more active warps and threadblocks than previous architectures. The

shared memory bandwidth is doubled to execute code more efficiently. It allows

the overlapping of load/store instructions to increase floating point utilization, also

improving the warp scheduling, where each warp scheduler is capable of dispatching

1.4 CUDA Architectures 19

Figure 1.11: Description of the Pascal memory subsystem

two warp instructions per clock. CUDA cores are able to process both 16-bit and

32-bit instructions and data, facilitating the use of deep learning programs, but also

providing 32 FP64 CUDA cores for numerical programs. Global memory native

support is also extended to include FP64 atomics.

The memory hierarchy configuration is also changed, as Figure 1.11 shows. Each

memory controller is attached to 512 KB of L2 cache, providing 4096 KB of L2 cache,

and introduces HBM2 memory, providing a bandwidth of 732 GB/sec. It presents

64 KB of shared memory per SM, and an L1 cache that can also serve as texture

cache, which acts as a coalescing buffer to increase warp data locality. Its compute

capability is represented with the 6.x code.

1.4.5. Volta Architecture

The most recent CUDA architecture is called Volta [103] and delivers the highest

GPU performance so far. A Volta board has up to 84 SMs and eight 512-bit memory

controllers. Each SM has 64 FP32 CUDA cores, 64 INT32 CUDA cores, 32 FP64

CUDA Cores, 8 tensor cores for deep learning matrix arithmetic, 32 LD/ST units,

16 SFUs, a new L0 instruction cache to provide higher efficiency than previous

intructions buffers and a warp scheduler with a dispatch unit, as Figure 1.12 shows.

20 Chapter 1. An Introduction to GPU Computing

Figure 1.12: Description of an SM in the Volta architecture

A merged 128 KB L1 Data Cache / shared memory is introduced, providing 96

KB of shared memory, see Figure 1.13. The HBM2 bandwidth is also improved,

obtaining 900 GB/sec. Additionally, the full GPU includes a total of 6144 KB of

L2 cache and its compute capability is represented with the 7.0 code.

However, the biggest change comes from its independent thread scheduling. Pre-

vious architectures execute warps in SIMT fashion, where a single program counter

is shared among the 32 threads. In the case of divergence, an active mask indicates

which threads are active at any given time, leaving some threads inactive and se-

rializing the execution for the different branch options. Volta includes a program

counter and call stack per thread. It also introduces a schedule optimizer that de-

termines what threads from the same warp must execute together into SIMT units,

1.4 CUDA Architectures 21

Figure 1.13: Description of the Volta memory subsystem

giving more flexibility, as threads can now diverge at sub-warp granularity.

The newest breakout feature of Volta is called a Tensor Core, which makes

up to 12x faster for deep learning applications compared to previous Pascal P100

accelerator. They are essentially arrays of mixed-precision FP16/FP32 cores. Each

of the 640 tensor cores operates on a 4 × 4 matrix, and their associated datapaths

are custom-designed to increase floating-point compute throughput of the operations

over this kind of matrix. Each tensor core performs 64 floating-point fused-multiply-

add (FMA) operations per clock, delivering up to 125 TFLOPS for training and

inference applications.

Chapter 2

Parallel Prefix Algorithms

As introduced in the Preface, this work focuses on the efficient execution of

parallel prefix algorithms. This chapter covers the definition of these algorithms, and

a subset of them called Index-Digit algorithms. Different parallel prefix algorithms

are analyzed in detail: the Fast Fourier Transform (FFT), tridiagonal system solvers,

the scan primitive and sorting algorithms. An efficient implementation of these

algorithms will be developed in the remaining chapters of this document.

2.1. Parallel Prefix Definitions

A parallel prefix algorithm [75] [76] solves a problem of size N = rn, where r is

called radix, in K steps, which may be depicted by a directed acyclic oriented graph

called prefix circuit [133]. The computations are performed by the Node operator,

which executes the core operation over the corresponding elements. This operator

is represented by small circles in the prefix circuit, as can be observed in Figure 2.1,

which shows the prefix circuit of a parallel prefix algorithm.

Parallel prefix algorithms match well to the GPU architecture. Their commu-

nication patterns are regular and known at compile-time. The pattern is static,

does not depend on the runtime and can be expressed as a linear function with the

element index as a variable. Furthermore, each resulting element is a combination

of the results of other elements.

23

24 Chapter 2. Parallel Prefix Algorithms

(a) Radix-2 pattern (b) Radix-4 pattern

Figure 2.1: A parallel prefix algorithm, Cooley-Tukey, with N = 16.

The Node operator is responsible for performing the computation in parallel

prefix algorithms. Specifically, the Node operator is defined by four aspects: fan in,

the number of input data; fan out, the number of output data; size, which represents

the size in bytes of each data; and the specific core operation, which depends on

the algorithm. The radix r, which is given by the algorithm pattern, has a direct

bearing on the number of steps taken, K. Thus, r and n usually appears in the

expression that calculates K. In general, most of the parallel prefix algorithms use

binary Node operators and employ r = 2; hence, in most cases N = 2n.

2.1.1. Index-Digit Algorithms

There is a subset of parallel prefix algorithms, called Index-Digit (ID) algo-

rithms [82], which have special properties. These algorithms have a number of Node

operators which remains constant along the computing steps, and the elements that

take part in one Node operator are not used by another Node operator in the same

step. Additionally, the number of computing steps is equal to n, K = n, and the

2.1 Parallel Prefix Definitions 25

fan in and fan out values of their Node operators are equal to the radix r. These

properties also imply that the number of Node operators in each step is equal to N
r

,

and the fact that increasing the radix of the algorithm involves decreasing the num-

ber of taken steps. Figure 2.1 shows the Cooley-Tukey algorithm, an Index-Digit

algorithm, for N = 16 elements, where Figure 2.1 (a) shows the execution with r = 2

and Figure 2.1 (b) with r = 4. When using radix 2, there are N
r

= 16
2

= 8 Node

operators and the problem is solved in K = 4 steps, as N = 24. However, when

using radix 4, each Node operator works with 4 elements, there are N
r

= 16
4

= 4

nodes in each step and the problem is solved in K = 2 steps.

An Index-Digit algorithm is formally defined as an algorithm whose data inter-

change can be modeled as the rearrangement of a data array according to common

permutations of the digits of each element index. To this end, a datum, or element,

x(t) with index t = tn · rn−1 + · · ·+ t2 · r+ t1 is written as [tn · · · t2t1]. For example,

element x(5) of an arbitrary radix-2 data sequence of N = 16 = 24 elements, is

represented as [0101]; whereas x(1) is represented as [0001]. Taking this digit repre-

sentation into account, it is possible to model the algorithm, as will be seen in the

following chapters.

Figure 2.2 shows two algorithms that solve tridiagonal systems. The Wang and

Mou algorithm, see Figure 2.2 (a), is based on the Cooley-Tukey pattern, and is an

Index-Digit algorithm. The number of computing steps is K = n, and the fan in

and fan out values of the Node operator are equal to r. There are N
r

Node operators

per step, and each element is not shared among several Node operators. The Cyclic

Reduction algorithm, Figure 2.2 (b), is a parallel prefix algorithm, but it is not

Index-Digit. As can be observed, the number of computing steps is K = 2 · n − 1,

the fan in is 3 in most cases and the fan out is always 1. The number of Node

operators depends on the taking step and elements can be shared by two different

Node operators.

Finally, Table 2.1 shows all the algorithms developed in this work, specifying

whether they are Index-Digit or just parallel prefix algorithms. They are analyzed

in depth the following sections and chapters.

26 Chapter 2. Parallel Prefix Algorithms

(a) The Wang and Mou algorithm (b) The Cyclic Reduction algorithm

Figure 2.2: Difference between an Index-Digit algorithm (a) and a Parallel Prefix
non-ID algorithm (b)

Operation Algorithm Type

FFT
Cooley-Tukey ID algorithm

Stockham ID algorithm

Scan
KS pattern Parallel Prefix algorithm

LF pattern Parallel Prefix algorithm

Tridiagonal System Solver

CR Parallel Prefix algorithm

PCR Parallel Prefix algorithm

RR-LF pattern Parallel Prefix algorithm

RR-KS pattern Parallel Prefix algorithm

WM ID algorithm

Tree-Partitioning Reduction Parallel Prefix algorithm

Sorting
Bitonic Merge Sort Parallel Prefix algorithm

Bitonic Merge Comb Sort Parallel Prefix algorithm

Table 2.1: Classification of the algorithms employed in this work

2.2 Fast Fourier Transform (FFT) 27

2.2. Fast Fourier Transform (FFT)

This section summarizes the basics about the Discrute Fourier Transform (DFT)

and the Fast Fourier Transform (FFT), based on the content explained in [8] and

[117].

The Discrete Fourier Transform (DFT) is a highly important operation for many

applications, such as image and digital signal processing, filtering, compression or

partial differential equation resolution. The DFT changes an N -point input signal

into two-point output signals. Specifically, the input signal is decomposed into two

output signals, which contain the amplitudes of the component sine and cosine

waves. Furthermore, the input signal is in the time domain, whereas the outputs

are in the frequency domain.

In the time domain, a signal x consists of N points or samples. In the frequency

domain, the real part is written as ReX, and the imaginary part as ImX, and each

of these signals are N/2 + 1 points long. The transform from the time domain to

the frequency domain is called Forward DFT (decomposition), also denoted as y,

whereas the Inverse DFT (synthesis) performs the inverse transform. The equation

used to obtain the Forward DFT is the following:

yl =
N−1∑
i=0

xi

[
cos(

2π

N
il)− j sin(

2π

N
il)

]
, 0 ≤ l < N (2.1)

Applying Euler’s formula ejx = cos(x) + jsin(x), it is possible to obtain:

yl =
N−1∑
i=0

xiW
il
N , 0 ≤ l < N (2.2)

where WN = e−j
2π
N . This transform is easily reversed to obtain the time domain

signal by:

xi =
1

N

N−1∑
l=0

ylW
−il
N , 0 ≤ i < N (2.3)

The DFT can be calculated in three different ways: simultaneous equations, which

requires a tremendous number of calculations; correlation, still computing expensive,

28 Chapter 2. Parallel Prefix Algorithms

or using the Fast Fourier Transform (FFT), an algorithm that decomposes a DFT

with N samples into N subsignals of a single sample, being hundreds of times

faster than the other methods. Specifically, getting a O(Nlog2N) time instead of

the O(N2) complexity from classical algorithms. This schema follows a divide-and-

conquer strategy, and many algorithms can be used, such as Cooley-Tukey [67] and

Stockham [121].

The Cooley-Tukey subdivides a signal of size N into two signals of half size,

and repeats this procedure recursively. The pattern continues until there are N

signals composed of a single point. Each time a signal is broken down into two, an

interlaced decomposition is performed; i.e., the signal is separated into its even and

odd numbered samples. This process can be seen as a reordering of the samples

in the signal, where the binary index of the signals are the reversals of each other.

For example, sample 3 (0011) is exchanged with sample 12 (1100) when considering

a signal of size N = 16. This rearranging process can be carried out by a bit

reversal sorting algorithm. The next step is to find the frequency transform of each

single-sample signal. Due to signal properties, the frequency transform of a 1-point

signal is equal to itself, thus there is no work involved. The last step is to combine

the N signals in the exact reverse order to which the time domain decomposition

took place. To combine two signals in time, each signal is diluted with zeros, and

then both signals are added. This is achieved by shifting one of the time signals

to the right by one sample (the same as convolving the signal with a shifted delta

function). In order to perform this combination in frequency, diluting the time

domain with zeros corresponds to duplicating the frequency signal, and the time

shifting corresponds to multiplying the signal by a sinusoid (the transform of a

shifted delta function):

yl =

N/2−1∑
i=0

x2iW
(2i)l
N +

N/2−1∑
i=0

x2i+1W
(2i+1)l
N , 0 ≤ l < N (2.4)

There are two approaches of this algorithm. If the input is bit-reversed and the

output is natural order, then this is called Decimation in time (DIT) and, in this

case, the multiplication is done before additions. Otherwise, the implementation is

called Decimation in frequency (DFT), the multiplication is performed after addi-

tions and the output is bit-reversed. Figure 2.3 (a) presents an example of the DIT

2.2 Fast Fourier Transform (FFT) 29

(a) Cooley-Tukey DIT algorithm

(b) Stockham algorithm

Figure 2.3: Examples of FFT algorithms with r = 2 and N = 16.

30 Chapter 2. Parallel Prefix Algorithms

FFT with N = 16.

This algorithm is an ID-algorithm with r = 2 by default. Thus, each Node

operator reads and writes two elements in K = n steps, and there are N/r Node

operators per step. There is also an additional phase to compute the bit reversal. In

the FFT notation, each Node operator is also known as butterfly, due to the shape

of the operator in the prefix graph. The radix r of the algorithm can be increased in

order to work with more elements by butterfly and reduce the number of computing

steps.

Figure 2.3 (b) depicts the Stockham pattern which provides an output that is

already digit reversed, so there is no need to compute an additional phase. It should

be observed that the read stride in each step coincides with the write stride of the

previous step. This access pattern is usually more efficient on GPU architectures.

The Stockham algorithm is also an ID-algorithm with r = 2, which can increase the

radix to compute half of the steps, as demonstrated in [82].

There are several FFT libraries for multi-core CPUs, such as Intel’s MKL [65],

the IPP library [66], the Fastest Fourier Transform in the West (FFTW) [48] or

the Spiral project [107]. Regarding its GPU implementation, an efficient Brook+

implementation can be found in [80] and a CUDA implementation in [128]. There are

also a number of auto-tuning proposals for GPUs, which achieve high performance,

such as [89, 90, 134]. Specifically, approaches focused on large 1D FFT on a single

coprocessor include [104, 120, 134]. Another proposal for solving this problem in a

sparse format is presented in [129]. However, the most widely used and well-known

GPU implementation is NVIDIA’s CUFFT [94].

2.2.1. The Real Fourier Transform

There is a specialized version of the FFT which works on real data [8] [18]

instead of complex elements. This approach is widely used in audio processing and

other fields where the input signal only takes real values. However, it should be

observed that the output signal is still complex data. One approach to computing

this specialized variant of the FFT is to pack the input in a vector with half of the

size, by storing two consecutive real values into a single complex number, and then

2.3 Tridiagonal System Solvers 31

use a post-processing phase to unpack the output. This is possible thanks to the

symmetry and conjugate property:

yl = ȳN−l, 1 ≤ l ≤ N/2 (2.5)

where ȳN−k is the complex conjugate. Given a complex number, its conjugate is the

same number but with the sign reversed a+ bj = a − bj. It should be noted that

using this property, half of the signal information is redundant. Thus, if the input

signal is packed into:

x′l = xl + x2l+1j (2.6)

then the output signal [y0 . . . yN/2−1] can be obtained as:

yl =
1

2
(zl + z̄N/2−l)−

j

2
e
−2π
N

l(zl − z̄N/2−l) (2.7)

where z is the complex transform of the signal x′l. It should be noted that values

in the range [y1 . . . yN/2−1] have an imaginary component, but both y0 and yN/2 are

pure real values. Due to the periodicity of z, the case of yN/2 can be calculated as:

yN/2 =
1

2
(z0 + z̄0) +

j

2
(z0 + z̄0) = ReX(z0) + ImX(z0)j (2.8)

The [yN/2+1 . . . yN−1] values are easily obtained applying the symmetry and conju-

gate property.

2.3. Tridiagonal System Solvers

Solving systems of linear equations with tridiagonal matrices arises in many sci-

entific, engineering and computing problems, this being a highly important compo-

nent in different fields, such as fluid dynamics, heat conduction, diffusion equations,

numerical analysis, ocean models, cubic spline approximations and real-time ap-

plications in computer graphics. The Thomas algorithm [122] is the best-known

sequential algorithm for solving these systems. Since the 1960s, a wide range of par-

allel algorithms for solving tridiagonal systems have been developed, among which

Cyclic Reduction (CR) [61], Parallel Cyclic Reduction (PCR) [60] and Recursive

32 Chapter 2. Parallel Prefix Algorithms

Doubling (RD) [119] are the most notable methods. Currently, these algorithms

have been also implemented in GPUs, since they are used for scientific computa-

tion, providing high computational throughput and large memory bandwidth, being

less expensive with rather lower power consumption than CPUs. It should be noted

that many applications require solving a number of tridiagonal systems simultane-

ously.

There are many tridiagonal system solver implementations on GPUs. Most of

them solve small problems that can be stored in the GPU shared memory, such

as [23, 136], where parallelism is inherent and there is no partitioning overhead.

CUDPP [98] is another accelerated GPU library that solves small-size tridiagonal

systems and other parallel operations.

In [24], the authors first recognized that partitioning is essential for solving large

matrices on GPUs, using a hybrid PCR - Thomas algorithm to do so, although this

algorithm suffers from a computation overhead. Argüello et al. [3] proposed a split-

and-merge method based on the CR algorithm, reducing the overhead from previous

proposals. This split-and-merge approach is later refined in [16]. In [52], a partition

method based on the SPIKE [109] algorithm is presented. Additionally, a diagonal

pivoting method for numerical stability is first introduced in [74]. Combining QR

factorization with Given rotations in [123] improved the previous implementation.

In [138], a CR-based approach for solving large-problems is also presented. In [77],

authors present a novel work-sharing and register blocking-based Thomas solver. Fi-

nally, NVIDIA implements CUSPARSE [95], a library that uses a hybrid CR-PCR

implementation with pivoting for solving large-problem sizes. However, one of the

disadvantages of the CUSPARSE implementation is that this preprocessing stage is

often extremely slow in comparison to the runtime of the solving phase [40], also

suffering from synchronization penalties [45] [78].

A different approach was presented in [82] for small problem sizes. This approach

adapts the Wang and Mou algorithm [132] for CUDA-enabled GPU architectures.

The Wang and Mou algorithm is based on the same Divide-and-Conquer strat-

egy [105] as the SPIKE algorithm; however, in contrast to the SPIKE algorithm, the

2.3 Tridiagonal System Solvers 33

diagonalization of each block is performed using the Gaussian elimination method,

also reordering the equations in a different way.

A tridiagonal system (TS) is composed of N equations Ei, with i = 1, · · · , N
where Ei takes the form: aixi−1 + bixi + cixi+1 = di. The system can also be repre-

sented by its coefficient matrix, A. The bi coefficients constitute the main diagonal

of the coefficient matrix, whereas ai and ci are known as the lower and upper diag-

onals, respectively. Thus, Ax = d, where x and d are vectors.

A =



b1 c1

a2 b2 c2 0

a3 b3 c3
.

0
. cN−1

aN bN


In this matrix, a1 and cN values are zero. If |bi| ≥ |ai|+ |ci|, ∀i = 1, · · · , N , then the

system is known as diagonally dominant. This kind of matrix guarantees numerical

stability in most of the algorithms proposed in the literature.

In an iterative system solver, an equation Ei is composed of different unknowns

depending on the iteration (step) k in which: Ek
i ≡ aki xi−u + bki xi + cki xi+u = dki is

computed, where u is a function of k. It should be noted that k represents the given

step of the computation, whereas K indicates the total number of steps required.

For the sake of clarity, an equation Ek
i is represented in this work by a tuple of

three numbers {i − u, i, i + u} which corresponds to the indices of the unknowns

that compose the equation in the step k.

2.3.1. Thomas Algorithm

The classic algorithm for solving tridiagonal systems is the Thomas algorithm

[122], which is based on Gaussian elimination. The algorithm comprises two phases,

34 Chapter 2. Parallel Prefix Algorithms

forward elimination and backward substitution. The first phase eliminates the first

unknown in each equation (ai coefficient in Ei equation) by

ck+1
i =

cki
bki − ck+1

i−1 a
k
i

(2.9)

dk+1
i =

dki − dk+1
i−1 a

k
i

bki − ck+1
i−1 a

k
i

with i = 1, ..., N (2.10)

The second phase solves the reduced system by back substitution:

xN = dk+1
N (2.11)

xi = dk+1
i − ck+1

i xi+1, i = N − 1, ..., 1 (2.12)

This algorithm is inherently serial, taking 2 ·N computation steps, since ck+1
i , dk+1

i

and xi depend on the preceding ck+1
i−1 , d

k+1
i−1 and xi+1.

2.3.2. Parallel Algorithms for Solving Tridiagonal Systems

There are several parallel algorithms for solving tridiagonal systems, but Cyclic

Reduction (CR) [61] and Parallel Cyclic Reduction (PCR) [60] are the most popu-

lar methods. Additionally, the Wang and Mou algorithm [132] is also a well-known

parallel tridiagonal solver.

On the one hand, CR [61] comprises two phases, forward reduction and backward

substitution, each with radix r = 2, thus n = log2N . Forward reduction reduces a

system to another with half the number of unknowns, until a 2-unknowns system is

reached in K = n−1 steps. Even-indexed equations are updated in parallel as linear

combination of equations Ei, Ei−1 and Ei+1, deriving a system of only even-indexed

2.3 Tridiagonal System Solvers 35

unknowns by

ak+1
i = −aki−1s1, bk+1

i = bki − cki−1s1 − aki+1s2, with s1 =
aki
bki−1

(2.13)

ck+1
i = −cki+1s2, dk+1

i = dki − dki−1s1 − dki+1s2, with s2 =
cki
bki+1

(2.14)

where k denotes the step of the algorithm. In each step of backward substitution,

odd-indexed unknowns xi are solved in parallel by substituting the previously solved

xi−1 and xi+1 values to Ei equation in K = n steps.

On the other hand, PCR [60] is a modification of CR that only has the forward

reduction phase, with the same formula and updating mechanism as CR, but re-

ducing each of the current systems to two half-sized systems. For example, for an

8-unknown system, the first step obtains two 4-unknown systems, then next step

reduces the two 4-unknown systems to four 2-unknown systems. When each system

has 2 unknowns, then it is possible to solve them and the algorithm is finished after

K = n steps.

Figure 2.4 (a) and (b) show the CR and PCR algorithms, respectively, for a

problem size of N = 16 elements, where each i−box represents the Ei equation; the

xi-boxes shows the unknowns vector; and the black circles the Node operators. Each

Node operator, also known as reduction in the TS notation, performs the coefficient

updating for an equation, as explained above. Both algorithms are paralell prefix

algorithms of radix r = 2, but not ID-algorithms. The number of Node operators is

not constant along steps and the same element is shared by several Node operators.

In the case of CR, the fan in of each Node operator is three and the fan out is one;

the same as in the PCR case. However, the final step of PCR uses a Node operator

with both fan in and fan out equal to two in order to perform the substitution.

The number of Node operators in the CR forward phase is N
2k
, 1 ≤ k ≤ K; and

N
2K−k+1 , 1 ≤ k ≤ K in the CR substitution phase. In the PCR algorithm, the

number of Node operators in each step k is N with 1 ≤ k ≤ K − 1, except for the

final step, where this number is N
2

.

36 Chapter 2. Parallel Prefix Algorithms

As can be observed in Figure 2.4, these methods do not allow the problem to

be partitioned into independent chunks, as elements that take part in a reduction

are used in two different Node operators in the same computing step. In the case

of CR, it takes 3 computing steps to perform the forward reduction of the example,

and 4 steps for the backward reduction; whereas PCR only needs 4 computing steps

for the whole process.

In addition to these algorithms, the Wang and Mou (WM) algorithm, an ID-

algorithm with radix r = 2 and shown in Figure 2.4 (c), divides the computation

into K = n steps, and each Node operator works on triads of equations, labeled

Left, C enter and Right, represented as:

[i]k−1 = [Ek−1
q·2k−1︸ ︷︷ ︸
Li

, Ek−1
i︸ ︷︷ ︸
Ci

, Ek−1
(q+1)2k−1−1︸ ︷︷ ︸

Ri

] (2.15)

where q = bi/2k−1c and the equation i -th in k − 1 step is of the type:

Ek−1
i = {ak−1i xq2k−1−1 + bk−1i xi + ck−1i x(q+1)2k−1 = dk−1i } (2.16)

Figure 2.5 depicts the reduction of two elements (triads) that take part in a Node

operator. In addition to this, when all elements are stored in the same memory space,

it is possible to only work with the Central equation, Ci, instead of storing the whole

triad, since Li and Ri are easily obtained when necessary as follows:

Li = Ca → a = 2k × bi/2kc (2.17)

Ri = Cb → b = 2k × (1 + bi/2kc)− 1 (2.18)

This algorithm is easily partitioned among different independent chunks, if nec-

essary.

2.3 Tridiagonal System Solvers 37

(a) Cyclic Reduction (b) Parallel Cyclic Reduction

(c) Wang and Mou algorithm

Figure 2.4: Patterns for different tridiagonal system solvers with N = 16 elements.

38 Chapter 2. Parallel Prefix Algorithms

Figure 2.5: Reduction of two triads in the Wang and Mou algorithm

2.3.3. The Partitioning Problem

As introduced above, partitioning the system is crucial for being over mem-

ory limits. In order to efficiently solve the problem on distributed platforms, each

private-memory system of the distributed platform must process a subset of equa-

tions as independently as possible, to avoid communication latency. In this work,

each subset of equations, which is computed in a private-memory space, is called a

slice. However, most of the iterative algorithms cannot be easily partitioned. In the

case of the Cyclic Reduction (CR) method, equations that take part in a reduction

may belong to different slices. Specifically, the equation Ek
i , at step k, is the result

of reducing the [Ek−1
i−u , E

k−1
i , Ek−1

i+u ,] equations, with u = 2k−1.

Figure 2.6 shows an example of the CR method for N = 16 equations. Specifi-

cally, Figure 2.6 (a) depicts the forward reduction phase, where the equations shown

in bold in each step are the result of reducing three equations from the previous step,

and Figure 2.6 (b) shows its substitution phase. As can be observed in Figure 2.7

for a coefficient matrix, the problem cannot be directly partitioned into independent

slices (marked with horizontal lines in figure), as equations need other slice equations

to be reduced. This reduction schema is the same for the PCR method, although

the number of equations which are reduced per step is higher in PCR, compared

with CR. Regarding WM, an equation Ek
i , at step k, is the result of reducing the

[Ek−1
i , Ek−1

i+u] equations, with u = 2k−1.

2.3 Tridiagonal System Solvers 39

(a) CR forward reduction

(b) CR backward substitution

Figure 2.6: Cyclic Reduction example for N = 16 elements

40 Chapter 2. Parallel Prefix Algorithms

(a) Step k = 1 (b) Step k = 2

(c) Step k = 3

Figure 2.7: Equation dependencies among slices in the coefficient matrix for the
Cyclic Reduction algorithm

2.4. Scan Operator

The scan operator [56] is defined as an associative and binary operator ⊕ with

identity I, where, given an input array of N elements [a0, a1, ..., aN−1], it returns

[I, a0, (a0 ⊕ a1), ..., (a0 ⊕ a1 ⊕ ...⊕ aN−2)]

The scan operator defined here is an exclusive scan, since the aj element is not

taken into consideration for calculating the position j of the result. Otherwise, it

would be an inclusive scan, although the transformation from one to the other is

trivial. Hereinafter, we will use addition as scan operator in our examples.

The algorithm performs N adds for arrays of N elements; thus it possesses an

O(N) work complexity and the calculation of the i -element requires of the calculation

of i− 1 elements.

The scan operator is widely used in areas such as the construction of summed

area tables [87], stream compaction [114], sorting [56], image filtering [87], Brownian

2.4 Scan Operator 41

values generation [106], polynomial evaluation [41] or cryptography [130], among

many others.

The patterns here expouned herein are parallel prefix algorithms, whose prop-

erties have already been explained. Scan primitive in VLSI adders was proposed

by Sklansky in 1960 [116]. Most implementations on GPU are based on either the

Kogge-Stone or the Brent-Kung parallel prefix patterns, although also exists another

GPU approach based on VLSI adders, which was developed by Han-Carlson in 1987.

Figure 2.8 shows a taxonomy of these existing parallel prefix implementations based

on VLSI adders.

The analysis of different proposals for the scan operator permits us to classify

them in terms of their prefix graph, which enables us to describe the operations

carried out on the data.

The following approaches provide a solution focused on just the scan primitive;

however, there is a growing trend towards using accelerated libraries that solve this

and other parallel operations. In the case of the scan primitive, most of these libraries

use hybrid approaches which combine several prefix algorithms with high-efficient

CUDA optimization techniques. An example of these accelerated libraries, which

solve the scan, are CUSPARSE [95], CUDPP [98], Merrill’s CUB [100], Thrust [101]

and ModernGPU [97].

2.4.1. Brent-Kung Pattern

The Brent-Kung pattern [12] [9] reduces the complexity through the use of two

balanced binary trees of radix r = 2. This algorithm performs K = 2 · log2N steps

and the work complexity is O(N). Once the input tree is built, the next step is to

sweep it to and from the root in two phases: up-sweep phase and down-sweep phase.

Figure 2.9 shows this pattern for N = 8 elements. The up-sweep phase computes

partial sums at internal nodes, whereas the down-sweep phase uses previous partial

sums for building the scan in place. In the down-sweep phase, there also exists a

step where values are passed to its child node (dashed line notation in Figure 2.9).

The Brent-Kung pattern is a VLSI area efficient method that uses two balanced

binary trees to obtain this efficiency. Blelloch developed this primitive in an efficient

42 Chapter 2. Parallel Prefix Algorithms

Figure 2.8: Taxonomy of the existing parallel algorithms for scan operator based
on VLSI adders.

way for supercomputing in 1990. This pattern was first implemented for GPUs

in [56].

2.4.2. Kogge-Stone Pattern (KS)

The Kogge-Stone pattern [72] was used as a parallel carry look-ahead adder.

This takes up more area than Brent-Kung adder but this layout has a minimum

depth, which increases performance. The work complexity is observed as O(N ·
log2N) and takes K = log2N steps. Figure 2.10 depicts the KS pattern for N = 8

elements. However, this pattern is considered work inefficient in comparison to the

serial implementation which is bounded by O(N).

The Kogge-Stone VLSI adder pattern [72] was designed for a small VLSI area,

as it is work inefficient. In [58], this algorithm was adapted for supercomputing

with O(N · log2N) complexity. This algorithm was demonstrated for GPUs in [63]

who used this scan for a non-uniform stream compaction operation as well as for

a collision-detection application. A scan for summed-table area generation was

subsequently proposed in [57], improving the implementation of [63] by pruning

2.4 Scan Operator 43

Figure 2.9: Brent-Kung pattern for addition with N = 8.

unnecesary work, but still obtaining a O(N · log2N) complexity. The first O(N)

implementation was published in 2006 [114], emphasizing the algorithm’s depth as

a key performance parameter in GPU implementation [112]. The funcionality to

combine the Kogge-Stone and Brent-Kung patterns was presented in [85], and a

strategy for computing large arrays was introduced in [39].

2.4.3. Han-Carlson Pattern

The Han-Carlson pattern [54], see Figure 2.11, combines both the Kogge-Stone

and Brent-Kung methods, seeking a tradeoff between area and time required. This

44 Chapter 2. Parallel Prefix Algorithms

Figure 2.10: Kogge-Stone pattern for addition with N = 8.

pattern makes it possible to obtain a tradeoff between area and time required. At

the beginning and at the end, it executes Brent-Kunt steps, whereas Kogge-Stone

works in the middle of the graph. However, this proposal also offers an O(N · log2N)

complexity. In 2013 [53], a GPU work efficient algorithm based on this third pattern

was proposed.

2.4.4. Ladner-Fischer Pattern

Additionally, the Ladner-Fischer pattern was introduced in [75] as a paral-

lel solution of Boolean combinational circuits and finite-state transducers, taking

K = log2N steps. The algorithm is based on the Brent-Kung reading stage, but

computing a block of 2k adjacent positions for each element in the k step. Unlike

other algorithms, the number of read and write operations remains constant over all

steps. Figure 2.12 shows this pattern for N = 8 elements.

2.5. Sorting Algorithms

Sorting is a computational building block of high importance, it being one of the

most studied algorithms due to its impact. Many algorithms rely on the efficiency

of sorting routines as the main pillars of their efficiency. For example, sorting is

2.5 Sorting Algorithms 45

Figure 2.11: Han-Carlson pattern for addition with N = 8.

widely used in computer graphics and geographic information systems for building

spatial data structures, as well as a basis for solving sparse matrix operations or

MapReduce patterns [25]. Sorting is also applied in database queries [50] and for

collision detection in physics simulation, among many others.

There are several parallel sorting algorithms, such as Radix sort [137], Merge-

sort [69], Bitonic sort [7], and Quicksort [59]. Furthermore, many of these algo-

rithms have been developed for GPUs. Radix sort was efficiently implemented on a

GPU in [56]. Quicksort algorithm was first implemented on a GPU in [113], being

improved in [15] and [83]. A hybrid algorithm that combines Mergesort and Bucket-

sort [14] was presented in [115]; whereas new implementations based on Radix sort

and Mergesort were developed in [110]. There are several accelerated libraries that

integrate sorting routines inside a set of different algorithms. As example of these

libraries, we can find CUDPP [98], CUB [100] and ModernGPU [97], where Mod-

ernGPU is currently the fastest one on small problem sizes, although all of these

libraries were developed focusing on large problem sizes.

Bitonic Merge Sort is a parallel prefix algorithm with radix r = 2 for sorting [7].

The classic complexity is of N · (logN)2. Figure 2.13 shows the classic algorithm

representation for N = 16 where each horizontal line represents a key value, starting

at the left end and finishing at the right end. Vertical segments are the Node oper-

46 Chapter 2. Parallel Prefix Algorithms

Figure 2.12: Ladner-Fischer pattern for addition with N = 8.

Figure 2.13: Bitonic Merge Sort Algorithm with N = 16.

ators, also known as comparators in sorting notation, which make the comparison

of the two selected keys, swapping their values if necessary. Both the fan in and

fan out is two in this Node operator. The sorting is processed along K = log2N

steps (blue boxes) where step k has k internal steps (line rectangles) incurring in

O(N · (logN)2). This process is repeated until a single N -element sorted sequence

is obtained.

2.6 CUDA Notation for Paralell Prefix Algorithms 47

2.6. CUDA Notation for Paralell Prefix Algorithms

These parallel prefix algorithms can be implemented in any parallel paradigm,

although the following chapters are focused on their usage in GPUs, to which this

work is devoted. In order to work with these algorithms in CUDA, it is necessary to

identify the different parameters that take place in its design. Table 2.2 provides a

global summary of the basic parameters employed here. Depending on the strategy

followed to compute the different problem sizes, this list of parameters is extended,

as well as new relations are established among them in the remaining text.

Each problem has size N = rn, and G = rbatch batches of the same length

are concurrently solved. The batch data are divided among B = rb threadblocks,

and each of these threadblocks executes L = rl threads. A thread performs the

calculation of P = rp elements stored in private registers and threads within a

threadblock have access to S = rs data stored in shared memory. Here, b may be

formed by two coordinates b = (bx, by). In a similar manner, l may be composed of

three coordinates (lx, ly, lz). Finally, the l parameter can be related with s and p

using s = p + l, as all threads within a threadblock usually have a copy in shared

memory of the elements stored in their registers. It should be observed that P

represents the number of elements stored by each thread in registers, but does not

specify the size of the element datatype. For example, one complex element occupies

8-bytes in the FFT algorithm; whereas a single-precision equation occupies 32 bytes

in TS, and 4 bytes are used per element in the scan operator; however, all of them

are considered as a single element when establishing P in our notation. The same

occurs with the S definition: it only considers number of elements but not their size.

One thread is responsible for computing one Node operator in the CUDA imple-

mentation, working with as many elements as the fan in / fan out values specify.

However, if the given architecture allows more than these elements to be stored in

registers, without an SM occupancy penalty, it may be interesting to process more

elements per thread. There are two options. One option is to process more than one

Node operator per thread. It should be observed that this only affects the implemen-

tation, both the same r and number of steps taken are maintained for the algorithm,

only the number of threads to compute the problem is reduced when increasing the

number of Node operators per thread. In this case, the number of Node operators

48 Chapter 2. Parallel Prefix Algorithms

Parameter Definition

N = rn Problem size.

G = rbatch Number of problems being simultaneously solved.

P = rp Number of elements stored in registers per thread.

B = rb Number of thread blocks per stage, where B = Bx ·By

L = rl Number of threads per thread block, where L = Lx · Ly · Lz

S = rs Number of shared-memory elements per thread block

Table 2.2: Description of the GPU parameters used.

per thread is given by P
max(fan in,fan out)

. Another option to force working with more

elements per thread is to increase the radix r of the algorithm, where each thread

continues working with a single Node operator. This option changes the definition

of the algorithm, not only the implementation, as N = rn, decreasing the number

of steps taken, K.

As mentioned above, most of the parallel prefix are defined with r = 2, and only

Index-Digit algorithms can easily extend its radix definition to a higher value. Thus,

taking the algorithms used in this work into account, we work with a radix r = 2

implementation for all parallel prefix algorithms which are not ID-algorithms. To

increase the number of elements to be stored in registers, the first explained option

is used. However, the radix r can be increased to a higher value when working with

ID-algorithms, if considered desirable, employing the second option.

In the case of an arbitrary N (not power of r), our methodology is easily ex-

tended. There are two alternatives. One approach is to compute the the smallest

power of r able to compute N , padding those extra locations with the identity for

the given operation. This approach may be expensive for some operations and prob-

lem sizes; in such case, the following approach is used. If N is not a power of r,

then it can be expressed as rn +N ′. On the one hand, rn is computed following the

explained methodology. On the other hand, the smallest power of r able to compute

N ′ is executed, and then rn and N ′ data are integrated into one step.

Chapter 3

New Parallel Prefix Algorithms

As seen so far, this work is composed of two different perspectives. On the one

hand, the algorithmic perspective, which chooses efficient parallel prefix algorithms

to solve several common parallel problems in computer science. On the other hand,

this work also provides the high performance computing perspective: an efficient

CUDA methodology for the selected algorithms.

In this chapter, a number of new parallel prefix algorithms are presented. These

new algorithms have been created and designed in this work, being novel to the best

of our knowledge, and their aim is to solve certain parallel problems in the most

efficient possible way. Although they were designed focusing on the GPU computing

model, they can be implemented in any other parallel programming paradigm. In the

following chapters, an efficient CUDA tuning methodology is proposed for different

parallel prefix algorithms and sizes.

Specifically, two new different algorithms have been designed to solve tridiagonal

systems: Redundant Reduction (RR) and Tree-Partitioning Reduction (TPR); and

a new algorithm for sorting, Bitonic Merge Comb Sort (BMCS), is also proposed.

The work presented in this chapter was originally introduced in [31], [32] and [34].

49

50 Chapter 3. New Parallel Prefix Algorithms

3.1. Redundant Reduction: A New Algorithm for

Solving Tridiagonal Systems

As previously introduced in Chapter 2, solving many tridiagonal systems simulta-

neously in parallel is critical in many applications, such as combustion and chemical

simulation models. However, many solvers were designed to deal with large systems,

proving to be inefficient when many problems of small size are processed simulta-

neously. Furthermore, complex systems are commonly transformed into multiple

small independent systems, rendering the original problem more manageable. Thus,

it is important to solve small problem sizes as well as multiple problems simultane-

ously. Accordingly, the aim of this section is to provide an efficient GPU approach

to address the solution of many problems simultaneously in a single invocation of

the library.

Although the most common parallel algorithms for solving tridiagonal systems

are CR, PCR and the Wang&Mou, this work creates and develops a new reduction

method for solving small tridiagonal systems, which is better suited to the GPU

architecture and performs fewer computing steps. The main idea of this new method

is to use a communication pattern well-suited to the GPU architecture. Following

this idea, we have created a new operation for reducing two equations, which is

called Redundant Reduction (RR), introduced in [32].

This operation is combined with a communication pattern from a parallel prefix

pattern. Specifically, our proposal uses two different prefix patterns: Kogge-Stone

[72] (RR-KS) and Ladner-Fischer [75] (RR-LF), resulting in our work being capable

of surpassing the performance of the state-of-the-art.

3.1.1. The Redundant Reduction Operation

The idea of this new operation is that each Node operator reads two equations,

instead of three, to perform the reduction. This implies less accesses to memory,

and thus, lower latencies in the execution. Additionally, the whole algorithm (i.e.,

this operation plus the communication pattern) must be able to compute the overall

result in log2N steps, and the substitution phase is only one step.

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 51

The RR operation performs the reduction over a pair of equations {Ek
i , E

k
j } with

i = j − l and where the value of l depends on the k step and the communication

pattern. With this operation, the reduction of two equations, Ek
i and Ek

j , only

updates the coefficients of the Ek+1
j equation, with the other equation coefficients

remaining constant (Ek+1
i = Ek

i). Specifically, the following two equations

Ek
i : aki xi−l + bki xi + cki xi+l = dki

Ek
j : akjxj−l + bkjxj + ckjxj+l = dkj

}
j=i+l−→

aki xi−l+ bki xi + cki xi+l = dki
akjxi + bkjxi+l + ckjxi+2l = dkj

(3.1)

have two common unknowns {xi, xi+l}, with two possible reductions. Eliminating

either the xi unknown (called Reduction A in our work) or the xi+l unknown (Re-

duction B). In the RR operation, we propose that each Ek
i equation is represented

by a complex format with two forms, Iki and Ck
i , such that Ek

i = Iki ∪ Ck
i . Each

one of these forms is an auxiliary equation, equivalent and representative of Ek
i , but

necessary for performing our proposal. Ik+1
j is obtained by reducing Iki with Ck

j ,

following the Reduction B case, and this intermediate result is also reduced with Ikj
(Reduction A). To obtain Ck+1

j , firstly Iki is reduced with Ck
j by the Reduction A,

and its result with Ck
i (Reduction B). Figure 3.1 shows the Redundant Reduction

scheme for a pair of equations in the step k, where each equation is represented

by the two forms. In this figure, the Iki equation is reduced with the Ck
j using the

Reduction A and the Reduction B possibilites (A,B circles). The resulting equation

from the Reduction A is processed with Ck
i using the Reduction B method, generat-

ing Ck+1, and the resulting equation from the Reduction B is reduced with Ikj using

the Reduction A method, obtaining Ik+1
j .

After the final step of the algorithm, the second form of the last complex equa-

tion, C log2N−1
N , contains the value of the unknown x1. The other Ei equations, with

i = 1, · · · , N − 1, will have a two-unknown equation where one unknown is x1 and

the other one is xi+1. At this point, all unknowns can be solved simultaneously in

only one step.

Regarding the CUDA implementation of this operation, the Node operator reads

two equations, Ek
i and Ek

j , from global memory to registers. After each processing

step, the Node operator stores Ek+1
j in shared memory for the next step. Since Ek+1

j

52 Chapter 3. New Parallel Prefix Algorithms

Figure 3.1: Redundant Reduction scheme for Ek
i and Ek

j where A,B circles denote
the resulting equation of applying Reduction A or Reduction B, respectively.

is the only equation updated in the operation, only Ik+1
j and Ck+1

j forms are stored.

3.1.2. Redundant Reduction Algorithm using the Kogge-

Stone Pattern

The solver presented in this section (RR-KS) is the result of combining RR with

the Kogge-Stone [72] pattern in the reduction step. Figure 3.2 depicts the RR-KS

approach for N = 8, where each box number represents an Ei equation with its two

different forms, Ii and Ci. This algorithm has log2N forward steps, each with N−2k

Node operators (k = {0, · · · , log2N − 1}) and only one substitution step.

Figure 3.3 shows the pseudocode of our RR-KS proposal. In this code, lines

2-5 contain the computation of the first step. As initial equations are specified

in a single form, each Ei equation is reduced with the Ej equation by Reduction

A and Reduction B, obtaining the I form and the C form of the E1
i+1 equation,

respectively. The RR function updates the new equation coefficients. Its first and

second arguments are the equations to be reduced, whereas the third argument

represents the resulting equation; finally, the fourth argument indicates the reduction

case: Reduction A or Reduction B. Lines 8-16 compute the rest of steps, according

to the explained reduction scheme. Line 20 obtains the x1 unknown’s value, and

lines 22-24 perform the parallel substitution for the others unknowns.

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 53

Figure 3.2: Reduction and substitution steps in RR-KS for N=8 equations.

1 // First step

2 for i=1 to N-1 in parallel

3 RR(Ei, Ei+1, Ii+1,optionA)

4 RR(Ei, Ei+1, Ci+1,optionB)

5 end

6
7 // Other steps

8 for j=2:j<N:j*=2

9 for i=1 to i ≤ N − j in parallel

10 RR(Ii,Ci+j ,auxA ,optionA)
11 RR(Ii,Ci+j ,auxB ,optionB)
12
13 RR(auxB ,Ii+j ,Ii+j ,optionA)
14 RR(auxA ,Ci,Ci+j ,auxB ,optionB)
15 end

16 end

17
18 // Substitution step

19
20 x1 = CN .d/CN .b

21
22 for i=1 to N-1 in parallel

23 solve_unknown(Ci,x1, xi+1)

24 end

Figure 3.3: RR-KS algorithm pseudocode

As explained, facts that influence GPU performance include coalescence issues in

global memory accesses and shared memory bank conflicts. A good feature of RR-

KS algorithm is the shared memory communication pattern: elements within a warp

access consecutive memory directions; hence it does not generate bank conflicts. In

a similar manner, data loading from global memory is performed following coalesced

patterns, where adjacent threads access adjacent memory elements, minimizing the

54 Chapter 3. New Parallel Prefix Algorithms

number of transactions in global memory. To this end, one different vector is built

for each coefficient (obtaining 4 different arrays a, b, c, d). To exploit the coalescing

pattern, each thread reads two consecutive elements in a single memory transaction

through CUDA (float2, float4) datatypes, when working on simple precision. Owing

to the algorithm’s communication pattern, the same equation is read and written

by different threads in the same step, with the use of synchronization barriers being

necessary. In algorihtms of this type, memory bound problems, the global memory

bandwidth may become a limiting factor due to the enormous use made of it. In

order to deal with this, as will be shown in Section 3.1.4, our implementation for

Kepler and Maxwell architectures takes advantage of their read-only data cache,

providing extra bandwidth performance owing to its separated pipeline.

3.1.3. Redundant Reduction Algorithm using the Ladner-

Fischer Pattern

In this section we propose a second new solver based on our Redundant Reduction

operator and the Ladner-Fischer [75] prefix pattern (RR-LF), which has obtained

very good performance results for GPU architectures previously [26]. Figure 3.4

depicts the RR-LF approach for N = 8 (the substitution step is the same as the one

in the RR-KS algorithm), where each box number represents an Ei equation with

its two different forms. As happens with RR-KS, the reduction is performed with

2 equations, sharing the same reduction scheme (see Figure 3.1) but changing the

communication pattern. It has log2N forward steps, each with N
2

Nodes operators.

Regarding its CUDA implementation, it should be noted that the algorithm

needs to store two different forms per equation, but unlike the RR-KS algorithm,

the number of active threads remains constant along steps, skipping the conditional

instructions used to control the thread identifier. However, as result of this non-

divergent pattern, a small rate of shared memory bank conflicts appears in the

execution due to the fact that consecutive threads are not accessing to adjacent

shared memory banks. Different padding techniques have been implemented to

avoid these conflicts, although the index calculation overhead is not worth the small

latency generated by conflicts.

Furthermore, Kepler architecture offers the possibility of 8-byte shared memory

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 55

Figure 3.4: Reduction step in RR-LF for N=8 equations.

accesses, as mentioned in Section 1.2.2 of Chapter 1, which significantly reduces the

number of bank conflicts with this configuration. In addition to the saving in condi-

tional instructions, this pattern also reduces the number of synchronization barriers,

as the same equation is never read and written simultaneously by different threads.

Concerning global memory bandwidth, the Kepler and Maxwell implementations

also use the benefits of their read-only data cache when reading the coefficients of

the input arrays.

3.1.4. Experimental Results for the RR operation in CUDA

In this section, the results of our two proposals on different NVIDIA GPU ar-

chitectures are presented and analyzed. All tests were run in single precision using

input arrays in the range N = {64, 128, 256, 512, 1024} over 100 iterations for differ-

ent batch sizes. The test platforms used in our experiments are described in Table

3.1. In our tests, we have used a diagonally dominant system and test data are

already on the GPU, thus there are not data transfers during the benchmarks. Ad-

ditionally, Chapter 4 also presents an implementation of this algorithm under the

proposed CUDA tuning methodology of this work.

One of the main requirements for GPU performance is to explicitly achieve the

right balance between the high number of simultaneous warps and the proper utiliza-

tion of the SM shared resources. The number of warps that can be executed by each

56 Chapter 3. New Parallel Prefix Algorithms

Fermi Platform Kepler Platform Maxwell Platform

CPU Intel Core i7-2600 Intel Xeon E5-2660 Intel Core i7-2600

3.4 GHz 2.2 GHz 3.4 GHz

Memory 8 GB DDR3 1333 64 GB DDR3 1600 8 GB DDR3 1333

OS Ubuntu 12.04 LTS CentOS 6.4 Ubuntu 12.04 LTS

Compiler GCC 4.4.7 GCC 4.4.7 GCC 4.6.3

GPU GeForce GTX580 Tesla K20 GeForce GTX980

Driver 304.116, SDK 5.0 320.17, SDK 5.0 343.22, SDK 6.5

Table 3.1: Description of the test platforms for the RR algorithms

SM is limited by the amount of shared memory bytes per threadblock and the max-

imum number of registers per thread. Without considering temporal data storage

used by the compiler, our Node operator requires at least 2×2×4×sizeof(datatype)

bytes in registers, owing to 2 equations are read by the Node, each equation has two

forms and each form has four coefficients, respectively. However, elements stored in

registers do not become a limiting factor in our implementations, as there are enough

registers without any case of spilling. On the other hand, the amount of shared mem-

ory reserved for each block in the RR operation is N × 2× 4× sizeof(datatype), as

they have N elements, each with two forms and 4 coefficients per form. Therefore,

the maximum size that may be processed with our proposal is N = 1024 (which

implies 32768 shared memory bytes per threadblock). This limit is given by the

maximum shared memory that can be allocated for a single block. In Fermi and

Kepler architectures, the size of shared memory per SM is 48 KB per multiproces-

sor, whereas Maxwell architecture allows 96 KB per SM. Although Maxwell allows

up to 96 KB per SM, the threadblock limit remains 48 KB. Larger problems would

require a different approach, which will be studied in next chapters.

Figure 3.5 shows a performance comparative on the Fermi Platform between our

proposals, the CUSPARSE library [95] and CUDPP library [98], the most well-

known libraries to solve tridiagonal systems on GPU for small problem sizes. These

results were taken for G = 256 batches. Note that 1024 equations is the maximum

number that can be processed per batch due to the shared memory restriction.

As can be observed, our two algorithms offer a clear advantage over CUSPARSE

library, proving to be around three times faster. For problem sizes between N = 128

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 57

Figure 3.5: Performance results on the Fermi Platform for G = 256 batches.

and N = 512, the RR-KS algorithm is, on average, 1.7x faster than CUSPARSE.

A competitive result is also obtained when N = 1024. RR-LF provides better

performance, achieving 3.25x when N = 256. Regarding CUDPP, RR-KS improves

it up to N = 128 and RR-LF is better when N is lower than 512. In both proposals,

the limiting factor for achieving higher block occupancy is the shared memory, since

both algorithms need to store two forms per equation. Thus, when N is higher

than 256, occupancy decreases and CUDPP is faster in these cases. Concerning our

proposals, the main advantage of the RR-LF algorithm over the RR-KS algorithm

is the avoidance of several synchronization barriers, since the same equation is never

read and written by different threads. As each SM has only 32 SP in Fermi, avoiding

synchronization points increases the performance, especially in large threadblocks.

Furthermore, RR-LF reduces warp divergence, since the number of active threads

remains constant along steps and uses fewer synchronization barriers than RR-KS.

Figure 3.6 shows the performance evolution along G, the number of batches, for

our best proposal, RR-LF, with respect to CUDPP. Our proposal shows a good

improvement up to G = 256. The reason is the block occupancy per SM, which is

reduced through shared memory requirements increase. Figure 3.7 shows the same

analysis over CUSPARSE, where our proposal shows better performance for any G

value with respect to this NVIDIA library.

58 Chapter 3. New Parallel Prefix Algorithms

Figure 3.6: RR-LF speed-up over CUDPP for different G batch sizes on the Fermi
Platform.

Figure 3.7: RR-LF speed-up over CUSPARSE for different G batch sizes on the
Fermi Platform.

Figure 3.8 shows a global overview on the Kepler Platform when G = 256.

Firstly, the difference between RR-LF and RR-KS is less pronounced, as the syn-

chronization penalties are lower in Kepler; but RR-LF still achieves the best perfor-

mance, as shared memory bank conflicts disappear in Kepler with the 8-byte bank

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 59

Figure 3.8: Performance results on the Kepler Platform for G = 256 batches.

access configuration. For this G value, RR-LF is always better than CUDPP and

CUSPARSE, being up to 3.2x faster than CUDPP and up to 12x over CUDPP. In

the case of RR-KS, it is always faster than CUSPARSE (up to 11.21x) but it does

not improves CUDPP for N > 256. Figure 3.9 shows our RR-LF proposal speed-up

for different batch sizes over CUDPP on Kepler, where the best results are obtained

for small sizes. Figure 3.10 shows the same analysis with respect to CUSPARSE.

The monotonically-decreasing performance is related with the SM block par-

allelism. Attempting to improve performance by increasing the number of active

warps per SM may not give rise to the optimal performance [126]. In our proposals,

the need to store two different forms per equation doubles the memory usage in

both registers and shared memory. Hence, the increases of N imply doubling the

allocated resources, L and S, reducing the number of threadblocks that are executed

by each SM. This behavior decreases the block occupancy twice as fast as other al-

gorithms, leading to use a multi-kernel strategy starting from smaller N sizes than

other algorithms. In order to study this behaviour, we have performed a kernel

profile analysis. Table 3.2 presents the results of profiling our two algorithms on the

Kepler Platform. We can see that, although warp occupancy remains constant in

general terms, block occupancy decreases when increasing N , as the shared mem-

ory become a scarce resource, which consequently reduces the SM block parallelism.

60 Chapter 3. New Parallel Prefix Algorithms

Figure 3.9: RR-LF speed-up over CUDPP for different G batch sizes on Kepler
Platform.

Furthermore, when decreasing G, our competitives are extremely inefficient since

they invoke several kernels to perform the reduction. As G increases, the multi-

kernel strategy is less penalized. Looking again at Figure 3.10, it is easy to see that

certain N sizes sometimes obtain better performance than smaller N values (see

N = 64 and N = 128 when G = 512). This behavior is known as tail effect, as

explained in Section 1.1.1 (Chapter 1): when the GPU launches a grid for a kernel,

the grid is divided into waves of threadblocks. The case of G = 512, N = 64 implies

having 2 full waves and another wave at 13% capacity, while N = 128 two full waves

and another at 85% capacity. Finally, in order to see the effect on performance, we

have also tested invoking m kernels, each with G
m

problems, but without obtaining

satisfactory results.

Finally, Figure 3.11 shows the overall results on the Maxwell Platform when

G = 256. RR-LF also achieves higher performance than RR-KS. In this case,

the main reason is the fact that Maxwell reduces the number of SPs per SM, in

comparison to Kepler; therefore, the synchronization barriers have more impact in

Maxwell. As RR-KS has more barriers than RR-LF, the performance is penalized in

Maxwell. Our RR-KS is up to 2.8x faster than CUSPARSE and up to 1.48x faster

than CUDPP, although it does not surpasses this library when N ≥ 128; whereas

RR-LF outperforms both libraries, being up to 4.9x faster than CUSPARSE and 2x

3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems 61

Figure 3.10: RR-LF speed-up over CUSPARSE for different G batch sizes on Kepler
Platform.

Figure 3.11: Performance results on the Maxwell Platform for G = 256 batches.

with respect to CUDPP. On the other hand, both proposals obtain higher speed-up

over CUDPP and CUSPARSE library than in Kepler, as Figure 3.12 and Figure

3.13 show. As previously mentioned, so far the limiting factor was shared memory,

decreasing the block occupancy per SM. However, Maxwell increases shared memory,

becoming less limiting in this architecture. Furthermore, increasing the number of

62 Chapter 3. New Parallel Prefix Algorithms

resident blocks per SM also allows occupancy to be increased in our proposals, when

it was minimum in previous architectures, thus increasing performance.

In summary, when N ≤ 512, our RR-LF proposal is up to 3.25x faster than

the NVIDIA CUSPARSE library on the Fermi Platform, up to 2.80x faster on

the Kepler Platform, and up to 4.96x on the Maxwell Platform. It also obtained

fairly competitive results for N = 1024 problem sizes. Even the CUDPP library is

surpassed, up to 3.5x on the Fermi Platform, 4.7 on the Kepler Platform, and up to

28.9x on the Maxwell Platform for small problem sizes. Shared memory becomes a

limiting factor for larger problem sizes, which are addressed later in this text.

3.2. Tree-Partitioning Reduction: A New Algo-

rithm for Solving Tridiagonal Systems

In this section, a new tridiagonal system solver, called Tree Partitioning Re-

duction (TPR), is presented. This method is based on a division of the problem

into independent slices to compute large-problem sizes and was originally presented

in [34]. The TPR algorithm has two phases: the forward reduction and the back-

ward substitution. In contrast to most iterative solvers, equations that take part in

the TPR can be reduced independently in each slice over many steps, facilitating

the computation of large systems.

The goal of the forward reduction, which is shown in Figure 3.14, is to compute as

many steps in independent slices as possible, where there is no communication among

slices, and finally, to integrate all the resulting equations in the lowest number of

steps possible. In the backward substitution, unknowns are solved with the equations

obtained in the forward reduction.

3.2.1. The TPR Forward Reduction phase

Regarding the forward reduction, the TPR method divides the coefficient matrix

A into M = N/S sub-matrices of equal size S, A = {A0, ..., AM−1}, where each

sub-matrix corresponds to an independent slice. A sub-matrix Aj is composed of

3.2 Tree-Partitioning Reduction: A New Algorithm for Solving Tridiagonal
Systems 63

G N Proposal L S Warp Occup. Block Occup.

16384

64
RR-KS 64 2048 50% 100%

RR-LF 32 2048 25% 100 %

128
RR-KS 128 4096 68% 68.75%

RR-LF 64 4096 37% 75%

256
RR-KS 256 8192 61.30% 31.25 %

RR-LF 128 8192 37.50 % 37.50%

512
RR-KS 512 16384 50.10 % 12.50%

RR-LF 256 16384 37.50% 12.50%

1024
RR-KS 1024 32768 50% 6.25%

RR-LF 512 32768 25.10% 6.25%

Table 3.2: Kernel profile analysis of our proposals on the Kernel Platform

Figure 3.12: RR-LF speed-up for different G batch sizes over CUDPP on the
Maxwell architecture

the following set of equations {Ej·S+1, · · · , Ej·2·S}. Each row in the sub-matrix

corresponds to an equation and is represented by its coefficients; thus, the sub-

matrix Aj has the following starting rows (k = 0): {E0
j·S+1 ≡ {j · S, j · S + 1, j · S +

2}, · · · , E0
j·2·S ≡ {j ·2 ·S−1, j ·2 ·S, j ·2 ·S+1}}. Figure 3.15 depicts the evolution of

the coefficient matrix in the TPR forward reduction. The TPR method transforms

the starting coefficient matrix, as shown in Figure 3.15 (a), into an equivalent matrix

composed of sub-matrices, where the bottom row (equation) of each sub-matrix has

64 Chapter 3. New Parallel Prefix Algorithms

Figure 3.13: RR-LF speed-up for different G batch sizes over CUSPARSE on the
Maxwell architecture

Figure 3.14: Forward reduction phase for N = 16 elements in the TPR method

two common columns (unknowns) with respect to the top row of its lower sub-

matrix, as represented in Figure 3.15 (b). Thanks to this process, each sub-matrix

computes many steps independently, and subsequently, can easily use equations

3.2 Tree-Partitioning Reduction: A New Algorithm for Solving Tridiagonal
Systems 65

(a) Coefficient matrix in the starting step

(b) Coefficient matrix after processing sub-matrices

Figure 3.15: Coefficient matrix evolution in the TPR method

66 Chapter 3. New Parallel Prefix Algorithms

from other sub-matrices to build the overall final reduction. This transformation is

carried out in log2S + 1 steps, called sliced forward reduction, where the rows of a

sub-matrix are independently reduced with other rows from the same sub-matrix.

As can be observed, columns from the top rows of each sub-matrix are carried to its

bottom rows in order to provide these unknowns to lower sub-matrices. Likewise,

columns from the bottom rows of each sub-matrix are carried to its top rows in

order to provide these unknowns to upper sub-matrices. After log2S + 1 steps,

the corresponding rows from one sub-matrix work with the same two unknowns as

the ones of the corresponding rows from adjacent sub-matrices, and allowing to be

reduced in a tree-form reduction that follows the updating schema defined below in

Equation 3.2. After the reduction, a tree-form substitution is performed to obtain

the value of the unknowns.

In terms of computation, each sub-matrix represents a slice of the problem to

be computed in an independent memory space. Equations of each slice are inde-

pendently computed through log2S + 1 iterations, without communication among

slices. The suitable Ei equations in each slice are reduced with the Ei−u and Ei+u

equations from the same slice in log2S steps, starting with u = 1 and where the do-

main of u shrinks exponentially in each step (u = 2k−1). To determine the suitable

Ei equations in the step k, each slice j, which represents the Aj sub-matrix, updates

the coefficients of the Ei equations that match one of the following index conditions:

i = j ·S+1+2 ·u ·q (blue equations in Figure 3.16 (a)) or i = j ·S+1+2k−1+2 ·u ·q
(red equations), for all q ∈ N/ 0 ≤ q ≤ S

2k
− 1. Hence, the suitable equations for

each step k are updated as Figure 3.17 shows by

ak+1
i = −aki−us1, bk+u

i = bki − cki−us1 − aki+us2, with s1 =
aki
bki−u

ck+1
i = −cki+us2, dk+u

i = dki − dki−us1 − dki+us2, with s2 =
cki
bki+u

(3.2)

using the [Ek−1
i+u , E

k−1
i , Ek−1

i−u] equations, if they are in the same private-memory space.

Finally, in the step log2S + 1, the Ej·S+1 equation in each slice j is updated using

Ej·2·S. Figure 3.16 (a) and Figure 3.16 (b) shows the forward reduction and sub-

stitution phases of this method, respectively, for N = 16 elements, partitioning the

system into two sub-matrices of size S = 8 elements.

3.2 Tree-Partitioning Reduction: A New Algorithm for Solving Tridiagonal
Systems 67

(a) TPR forward reduction

(b) TPR backward substitution

Figure 3.16: Tree Partitioning Reduction example for N = 16 elements with S = 8

68 Chapter 3. New Parallel Prefix Algorithms

Figure 3.17: Coefficient reductions in the TPR forward reduction phase for a node
computation

This sliced forward reduction can also be seen as the transformation of each sub-

matrix Ak
j into a half-size matrix Ak+1

j composed of the {Ei} equations that suit

either i = j · S + 1 + 2 · u · q or i = j · S + 1 + 2k − 1 + 2 · u · q, with 0 ≤ q ≤ S
2k
− 1.

Thus, the number of rows in each sub-matrix is reduced by half in each step. After

log2S steps, the sub-matrix is composed of only two equations: the top and bottom

equations of the initial sub-matrix, Ej·S+1 and E(j+1)·S. The Ej·S+1 equation is

reduced using the E(j+1)·S equation in the step log2S + 1. Therefore, log2S + 1

steps are computed independently inside each sub-matrix, but after this point, sub-

matrices must be reduced with each other. After log2S+1 steps, the E(j+1)·S equation

(sub-matrix Aj) is reduced with the E(j+1)·S+1 equation (sub-matrix Aj+1) in the

log2S+ 2 step. Let us define Â as the coefficient matrix which contains the updated

equations from all sub-matrices at this point. The remaining steps of the forward

reduction phase will work with only M rows of Â, specifically with the E(j+1)·S

equations. A conventional tree-form reduction is performed for these M equations

of Â during log2M − 1 additional steps until a system of two equations is reached;

the coefficients are updated in each step following the Equation 3.2. In every step,

the odd equations are eliminated by their two adjacent equations, resulting in a

half-sized matrix formed of the remaining unsolved equations.

To sum up, the forward reduction phase is composed of three blocks. In the first

block, equations of each slice are independently reduced in log2S + 1 steps. These

steps are also known as sliced forward reduction. Then, the bottom equation of each

slice is computed with the top equation of its corresponding lower slice in one step.

And finally, in the third block, the resulting equations of previous steps are solved

in a single overall single matrix, in log2N/S steps. At this point, the backward

substitution phase is performed.

3.2 Tree-Partitioning Reduction: A New Algorithm for Solving Tridiagonal
Systems 69

3.2.2. The TPR Backward Substitution phase

Concerning the backward substitution, a two-unknown system composed of two

equations, and received from the forward reduction phase, is solved in its first step.

Then, each step of the backward substitution solves the unknown variables in the

overall matrix Â in log2M steps, by substituting solutions obtained from the previous

step:

xi =
di − aixi−u − cixi+u

bi

decreasing u exponentially step-by-step, uk = uk−1

2
, whereas the domain of i in-

creases exponentially, as Figure 3.16 (b) shows. Once the M rows of Â are solved,

a subset of the equations calculated in the sliced forward reduction can be reused

to solve the remaining unknowns in conjunction with a subset of the original start-

ing equations from the original coefficient matrix A. Specifically, the Ei equations

that suit i%2 6= 0 are taken from A0; i.e. the E0
i starting equations (i rows of

A0); whereas the Ei equations that match i%2 = 0 are the ones calculated after

the sliced forward reduction; i.e. the Elog2S+1
i equations (i rows of Â). After this

replacement, the remaining unknowns are calculated by the same substitution pro-

cess explained above. It should be observed that this computation of the last log2S

steps can be performed independently in slices, since each slice only needs to know

the bottom equation of its upper slice, which does not vary during the final steps,

and these steps are known as sliced backward substitution. This algorithm can be

implemented efficiently in any parallel programming paradigm, as Chapter 5 shows.

3.2.3. An example of the TPR method

Figure 3.16 shows an example of the TPR method for N = 16 equations, where

the matrix is divided into M = 2 independent sub-matrices of size S = 8; i.e. the

computation is divided into two slices, as depicted in Figure 3.16 (a). The forward

reduction phase is performed in (log2S)+2 = 5 steps, as defined above. Specifically,

the first log2S steps are computed inside each slice, with no communication with

other slices. To this end, the suitable Ei equations are reduced with the Ei−u and

70 Chapter 3. New Parallel Prefix Algorithms

Ei+u equations from the same slice, where u shrinks exponentially in each step:

u = {1, 2, 4, ...}.

The suitable Ei equations, whose coefficients are updated using Eq. 3.2, are

determined in each step by the following index conditions i = j ·8 + 1 + 2 ·u · q (blue

equations in figure) or i = j · 8 + 1 + 2k − 1 + 2 · u · q (red equations), for all q ∈ N/
0 ≤ q ≤ 8

2k
− 1. Hence, the suitable equations in slice 0 are:

k = 1: {E1, E3, E5, E7} and {E2, E4, E6, E8}

k = 2: {E1, E5} and {E4, E8}

k = 3: {E1} and {E8}

Suitable equations in slice 1 are obtained in a similar manner. In k = 4, E1

is updated with E8 in slice 0, whereas E9 with E16 in slice 1. At this point, the

sliced forward reduction is completed, and all the computation have been performed

independently inside each slice. In k = 5, E8 is updated with E9, and the Â single

overall matrix is built with [E8, E16]. In this case, Â represents a 2-unknown system

whose unknowns are x8 and x16; and this can be solved directly in the first step of

the backward substitution phase. At this point, the substitution can be performed

again in slices for the last 3 steps. It should be observed that slice 1 needs the

E8 equation in its substitutions, but E8 does not vary since the sliced backward

substitution starts.

In the Chapter 5, this algorithm is implemented under the proposed CUDA

tuning methodology of this work. Additionally, a numerical stability analysis is also

provided.

3.3. Bitonic Merge Comb Sort: A New Algorithm

for Sorting

As already introduced, sorting is an important computing operation that takes

part in many applications. In order to obtain a high performance implementation

for GPUs, it is necessary to consider an algorithm which matches well to GPU

3.3 Bitonic Merge Comb Sort: A New Algorithm for Sorting 71

architectures, but also apply different optimization programming techniques. In this

section, we present an efficient and portable sorting operator for GPUs, a CUDA

implementation of the Bitonic Merge Sort (BMS) algorithm [7]. However, in order

to achieve the said efficiency, we have developed an algorithmic variant of BMS,

called Bitonic Merge Comb Sort (BMCS), and we have applied different CUDA

optimizations.

3.3.1. A CUDA Implementation for the Bitonic Merge Sort

Algorithm

Before introducing our BMCS proposal, let us explain a CUDA implementation

for the BMS algorithm. The parallel pattern of this algorithm is easily programmable

in GPUs. In an initial implementation, each vertical segment of the Figure 2.13 in-

troduced in Chapter 2 represents a Node operator performed by one CUDA thread.

Figure 3.18 contains the CUDA code of the Bitonic Merge Sort. This first implemen-

tation is tagged as BS-naive in the experimental results. According to our notation,

the fan in and fan out of the Node operator are both two. Each thread processes

one Node operator, and each threadblock performs the sorting of a single problem.

The code can be divided into four main sections:

Initialization section (lines 3-6). We define the thread and threadblock identi-

fiers, and memory offsets for load and store operations. Furthermore, registers

and shared memory are allocated.

Load data from global memory (line 8) and first computing step (lines 9-10).

We load coalescent data using a 64-bit load to obtain 2 consecutive elements,

instead of accessing a single data element per memory request. Since elements

loaded by each thread are not shared among other threads, they are directly

processed in registers by the compare function. Finally, computed data are

stored in shared memory for the next step.

Compute steps of the algorithm (lines 13-25). The loop computes the remain-

ing steps of the algorithm, each step k contains a number of j = k sub-steps.

For this, the loop reordes data registers using shared memory and synchro-

nization barriers. For accesses, both memory offsets and strides are calculated

72 Chapter 3. New Parallel Prefix Algorithms

1 template <int N>

2 __global__ void Bitonic (int * glbData) {

3
4 const int globalId = ..., threadId = ... ;

5 __shared__ int shm[N];

6 int regs [2];

7
8 copy <..>(regs ,glbData ,...);// loads coalescing data from glbMem to regs

9 compare(regs); //it compares and swaps if necessary

10 copy <..>(shm ,regs ,...);// stores data in shm

11 __syncthreads ();

12
13 for(int k=2;k<N;k*=2){

14 copy <..>(regs ,shm ,...);// load data from shm to reg

15 compare(regs);

16 copy <..>(shm ,regs ,...);// store data in shm

17 __syncthreads ();

18
19 for(int j=k; j>1; j/=2) {

20 copy <..>(regs ,shm ,...);// load data from shm to reg

21 compare(regs);

22 copy <..>(shm ,regs ,...);// store data in shm

23 __syncthreads ();

24 }

25 }

26 copy <..>(glbData ,regs ,...);// Stores data from regs to glbMem

27 }

Figure 3.18: Kernel code for Bitonic Merge Sort algorithm (BS-naive).

using bit masks, binary operators and displacements to be efficient. The inter-

nal loop keeps the same structure as the external loop, returning the results

of the last internal step in registers.

Store data to global memory (line 26). The last iteration of the loop stores

the results into registers, moving these data from registers to global memory

here. Even for smaller problems, coalescence is achieved thanks to the cache

hierarchy of the GPU.

3.3.2. Bitonic Merge Comb Sort

The Bitonic Merge Sort algorithm presented above can be improved to achieve

high parallelism and efficiency in GPUs. We present an algorithmic variant of

Bitonic, Bitonic Merge Comb Sort (BMCS), that matches well to the GPU features,

adapting the thread workload to available registers, obtaining coalescing accesses,

avoiding bank conflicts, decreasing the number of synchronization barriers and en-

3.3 Bitonic Merge Comb Sort: A New Algorithm for Sorting 73

abling the use of shuffle instructions. This work was originally introduced in [31].

Increasing the thread workload, depends on two factors: one is the existence

of available registers and the other is that the increase does not reduce the warp

occupancy. Profiling the execution, we can find out this trade-off for each CUDA

architecture. In our tests, best results were achieved when each thread works with

four elements, so we have modified the algorithm accordingly. The classic Bitonic

Merge Sort has log2N external steps, each with log2N internal steps, where the

fan in and fan out are both two, processing two elements per thread. However,

increasing it up to four elements per thread implies that each thread reads and

writes four elements in the algorithm, so fan in and fan out are both four. The

naive algorithm is radix 2, and the number of external steps is log2N . We propose

a hybrid algorithm with log2N − 1 external steps, each with log4N steps (Radix

4). In the case of external steps, we read four consecutive elements from global

memory, computing them directly in registers, thus the two first external steps

are reduced to one (log2N − 1). Figure 3.19 displays a scheme for a problem of

N = 16 with 4 threads, where each thread computes a Node operator with r = 4.

As can be observed in this figure, the number of steps decreases. When working

with arrays, as in this case, it is necessary to pay attention to accesses. Highest

performance is achieved with accesses where the compiler can derive constant indices

in all accesses, placing elements into registers. If the compiler cannot determine the

index and it depends on a value determined at run-time, array elements are placed

in local memory in a process known as dynamic indexing, as explained in Section

1.2 (Chapter 1). We have carefully designed our code in order to take advantage of

the compiler to produce constant indices.

On the other hand, if each thread computes several elements, it is also necessary

to specify what elements are accessed in order to avoid bank conflicts or coalescencing

problems. Figure 3.19 also shows the distribution of work per thread in terms of

efficiency. Despite coalescing accesses, consecutive threads loads consecutive sets of

four adjacent elements in its first external step from global memory to registers. The

first step is designed on this way to enable the use of customized CUDA datatypes

such as Float2 or Int4. These datatypes reduce the number of memory transactions,

as well as allowing coalescing accesses. In a similar manner, the last step of the

algorithm is designed for computing four adjacent elements in registers, and then

74 Chapter 3. New Parallel Prefix Algorithms

Figure 3.19: Bitonic Merge Comb Sort Algorithm with N = 16.

storing the result in global memory using these datatypes. Even for smaller problems

coalescence is achieved thanks to the cache hierarchy of the GPU.

Matching of threads with elements is not trivial in the remaining steps. Depend-

ing on the k external step, the number of internal steps could be a non-power of

two. In this case, a mixed computation of Radix 2 is required in the first internal

step of k, whereas the reamining steps are Radix 4. Furthermore, each thread has

to operate with the corresponding four elements that allow two steps in the radix

2 approach to be transformed into one step in the radix 4 proposal. This fact can

be easily understood in Figure 3.19 when k = 3. In the last internal step of k = 3,

four elements are consecutively written for each thread. If we focus on thread 0, first

four elements are processed. To obtain this, in the previous internal step, the first,

fifth, twelfth and sixteenth elements were computed by thread 0 and only these four

elements allow us to process four consecutive elements in the last step. If there were

more previous steps, our algorithm scheduler would choose the corresponding four

elements, which would allow four consecutive elements to be processed in the last

step. This distribution pattern also avoids shared memory bank conflicts.

Figure 3.20 also shows the algorithm but changing the representation of the Node

operator to a r = 4 representation. Increasing the radix implies reducing the number

of steps, in other words, reducing the number of synchronization barriers. It should

3.3 Bitonic Merge Comb Sort: A New Algorithm for Sorting 75

Figure 3.20: Bitonic Merge Comb Sort Algorithm for N = 16.

be noted that the classical algorithm has n+ n(n+1)
2

synchronization barriers, being

N = 2n, whereas our proposal has n−1+ n/2(n/2+1)
2

. The decrease in synchronization

barriers is especially visible in Fermi CUDA architectures, where each SM has only

32 SPs, but also in current CUDA architectures, as Section 3.3.3 shows.

Finally, it is also possible to reduce the synchronization barriers and memory

latency even further. Shuffle instructions allow the exchange of information us-

ing registers instead of shared memory, among threads in the same warp, as already

mentioned. These instructions free up shared memory to be used for other data or to

increase the occupancy; these are faster as they only require one instruction, instead

of three (write, synchronize and read). This approach avoids warp-synchronization

barriers, although they are limited to the warp scope. In the CUDA implemen-

tation of BMCS, the initial steps are computed using shuffle instructions, sorting

fan in× 32 elements in each warp, and then using shared memory as communica-

tion channel among warps. If N ≤ 128, then there are no synchronization barriers

in the execution. Otherwise, this technique saves 9 synchronization barriers.

76 Chapter 3. New Parallel Prefix Algorithms

Kepler Platform Maxwell Platform

CPU Intel Xeon E5-2660 CPU 2.2 GHz Intel Core i7-2600 3.4 GHz

Memory 64 GB DDR3 1600 8 GB DDR3 1333

OS CentOS 6.4 Ubuntu 12.04 LTS

Compiler GCC 4.4.7 GCC 4.6.3

GPU Nvidia Tesla K20 GPU Nvidia GeForce GTX980

Driver 340.58, SDK 6.0 343.22, SDK 6.5

Table 3.3: Description of the test platforms for the sorting problem

3.3.3. Experimental Results for BMCS in CUDA

In this section, the results of our proposals on different NVIDIA GPU architec-

tures are presented. All tests were run using integers as datatype. All the data reside

in the GPU memory at the beginning, so there are no data transfers to CPU during

benchmarks. The test platforms used in our experiments are described in Table 3.3.

All these algorithms were developed to take advantage of the read-only data cache,

which slightly improves global memory read bandwidth. The performance of these

experiments is measured in million data processed per second, MData/s. Addition-

ally, many applications need to solve G batch problems in parallel. Therefore, we

use a multi-batch execution to compute G problems each time. The size of the batch

depends on the input size and is given by the expresssion G = 224/N in order to

use most device memory and exploit the GPU parallelism. Thus, MData/s value is

performed using the expression N ×G× 10−6/t.

First, Figure 3.21 depicts a performance comparison of the classical BMS and

the BMCS for the Kepler Platform executing several batches in parallel. In order

to demonstrate the portion of efectiveness of the algorithm and other optimizations,

both proposals were hand-tuned for each architecture. In Chapter 4, this algorithm

is implemented under the the proposed CUDA tuning methodology of this work.

BS-Naive tag refers to a CUDA implementation using the classical BMS algorithm

presented in Section 3.3.1, whereas BS-R4 is the radix-4 BMCS variant introduced

in Section 3.3.2 but without using shuffle instructions. Finally, BS-Comb is the

radix-4 variant introduced in Section 3.3.2, which uses shuffle instructions and ob-

tains the best performance. In general, shared memory is an expensive resource that

progresively reduces performance (and warp occupancy per SM) when N increases,

3.3 Bitonic Merge Comb Sort: A New Algorithm for Sorting 77

Figure 3.21: Comparison of our proposal optimizations in the Kepler Platform.

Figure 3.22: Comparison of our proposal optimizations in the Maxwell Platform.

since more data are stored in this memory, becoming the limiting factor. Proposals

obtain a peak of performance with N = 256 or N = 512 as occupancy is maximum,

obtaining high performance in their computations, where BS-Comb has an improve-

ment of up to 3.45x over BS-Naive and 2.6x over BS-R4. Figure 4.25 shows the same

comparison on the Maxwell Platform, obtaining similar results, where BS-Comb is

up to 3x faster than BS-naive and 1.34x than BS-R4.

Regarding the performance of our proposals in the Kepler Platform, Figure 3.23

78 Chapter 3. New Parallel Prefix Algorithms

Figure 3.23: Comparison of GPU sorting implementations for one batch in the
Kepler Platform.

Figure 3.24: Comparison of GPU sorting implementations for one batch in the
Maxwell Platform.

compares our proposal results to the CUDPP library [98] and the ModernGPU

library [97]. It should be noted that this comparison is done in terms of execution

time for only one batch. CUDPP shows the worst results for small problem sizes

that can be directly processed in shared memory. Our proposal, BS-Comb, shows

very competitive results compared to ModernGPU, the fastest sorting library for

3.4 Conclusions of the Chapter 79

small problem sizes, to the best of our knowledge. This implementation obtains an

improvement of up to 10x over CUDPP, and up to 2.6x over ModernGPU. On the

other hand, Figure 4.27 presents the same comparison on the Maxwell Platform,

where results are similar to the Kepler Platform, obtaining up to 40x in comparison

to CUDPP and up to 4.8x over ModernGPU.

Table 3.4 contains the MData/s obtained for the proposal BS-Comb. It compares

our results to the CUDPP and ModernGPU ones. Both ModernGPU and CUDPP

are extremely inefficient with problems in which many batches of small size are

processed in parallel, since they were designed to solve just one large-size problem. In

order to solveG problems of sizeN , these two libraries have to launchG light kernels.

Our proposal is up to 2431x faster than CUDPP library and up to 1094x over

ModernGPU. Table 3.4 also shows the MData/s obtained in the Maxwell Platform.

Here, performance is higher owing to the Maxwell design. Our proposal is up to

2592x faster than CUDPP and up to 1446x than ModernGPU.

Finally, Table 3.5 shows different GPU parameters and profiling metrics for the

BS-naive and BS-Comb proposals in the Kepler Platform. The warp occupancy

is lower with the BS-Comb proposal at smaller sizes, since it uses a r = 4 imple-

mentation that implies using less threads. As can be observed, registers are not

a limiting factor of the SM parallelism, whereas the parallelism is bounded by the

number of threads employed and shared memory consumption. For small problem

sizes, both the number of threads and shared memory are so low, although there

are the maximum number of active threadblocks, the number of warps per thread-

block is low and the warp occupancy is also low. However, when the problem size

is larger, there are more threads per threadblock, maximizing the warp occupancy.

In this case, the shared memory consumption also increases, decreasing the number

of active threadblocks.

3.4. Conclusions of the Chapter

This chapter presents the new parallel prefix algorithms developed in this work.

Specifically, it analyzes the algorithmic design of two new tridiagonal system solvers,

Redundant Reduction (RR) and Tree-Partitioning Reduction (TPR); and a new al-

80 Chapter 3. New Parallel Prefix Algorithms

Kepler Platform Maxwell Platform

N G BS-Comb ModernGPU CUDPP BS-Comb ModernGPU CUDPP

64 262144 2188 2 0.9 6219 4.3 2.4

128 131072 3246 3.7 1.8 8529 8.3 4.9

256 65536 4040 7.1 4 6918 16.3 10

512 32768 3783 13.4 7.9 5185 31.4 19.6

1024 16384 2846 25.2 14.7 4151 61.2 35.9

2048 8192 2018 34.4 16.1 3229 66.5 33.4

4096 4096 1444 50.4 16 2406 97.2 48

Table 3.4: MData/s comparison of GPU multi-batch sorting algorithms.

BS-naive BS-Comb

N S L # Registers W. Occupancy S L # Registers W. Occupancy

64 256 32 11 25% 256 16 16 25%

128 512 64 11 50% 512 32 16 25%

256 1024 128 11 100% 1024 64 17 50%

512 2048 256 11 100% 2048 128 17 100%

1024 4096 512 11 100% 4096 256 17 100%

2048 8192 1024 11 100% 8192 512 17 100%

Table 3.5: GPU parameters and profiling metrics for our sorting proposals.

gorithm for sorting, Bitonic Merge Comb Sort (BMCS).

Additionally, although these algorithms can be implemented on any parallel

paradigm, this chapter also presents some naive GPU implementations for RR and

BMCS. The RR proposal is up to 3.25x times faster than CUSPARSE, the state-

of-the-art; and BMCS outperforms other well-known libraries such as CUDPP (up

to 10x) and ModernGPU (up to 2.6x) in the case of solving a single problem, and

obtaining a speed-up of several magnitudes in the case of solving several batches si-

multaneously. In the remaining text, the three algorithms developed on this chapter

are accurately implemented for GPUs following a methodology.

Chapter 4

A Tuning Methodology for Small

Problem Sizes on a GPU

As explained in the Preface, the aim of this work is to provide programmers with

a tuning accelerated library; i.e., an easy way to execute high performance parallel

algorithms through simple routines, without the need for accurate knowledge of

the language or the target GPU architecture. To do this, we develop a tuning

methodology composed of a set of guidelines and CUDA skeletons that allows us to

easily design any parallel prefix algorithm in CUDA and efficiently execute them on

any CUDA GPU architecture.

This chapter presents an original contribution with respect to previous works. A

three-phase tuning methodology is presented to efficiently solve parallel prefix algo-

rithms of small size on a GPU. In the first phase, GPU Resource Utilization Analysis,

presented in Section 4.1, the main features which influence the GPU performance

for each algorithm are determined, establishing a number of tuning parameters and

a set of premises for performance maximization. In the second phase, CUDA Kernel

Optimization, algorithms are implemented using parameterized CUDA skeletons, ex-

plained in Section 4.2. The third phase, Performance Parameters Tuning, analyzed

in Section 4.3, obtains the suitable values for the performance parameters described

in the first phase for each algorithm, depending on the problem size and the target

architecture.

This methodology is an adaption of the strategy presented in [82]. In said paper,

81

82 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

the authors present a tuning strategy for ID-algorithms which fit in the shared

memory, i.e. small problem sizes. Nevertheless, many parallel prefix algorithms do

not match in the Index-Digit description. In this work, we extend that strategy to a

larger set of algorithms, the parallel prefix algorithms, which have less uniform and

systematic properties, complicating the design of the methodology.

Following this methodology, we have developed three different tridiagonal sys-

tem solvers (Section 4.4), two scan primitive solvers (Section 4.5) and one sorting

operator (Section 4.6), outperforming the state-of-the-art for limited-size problems

which fit in the shared memory of the GPU. This work was originally introduced

in [27], [28] and [33].

4.1. GPU Resource Utilization Analysis Phase

This phase identifies the problem and the GPU performance parameters, col-

lected in Table 4.1, which maximize the GPU execution throughput of radix-2 par-

allel prefix algorithms; hence, r = 2. Many of them were previously introduced

in Chapter 2. Each thread works with at least one pair of elements, thus p ≥ 1.

Considering that all the data stored in registers also have a copy in shared memory

to perform the inter-step memory exchanges, s = p + l, implies l ≤ s − 1. Ad-

ditionally, as the data of each problem fit directly into the shared memory of one

threadblock, n ≤ s, then LG problems can be simultaneously solved in each block,

where LG = S/N . This allows the parallelism to be increased when the number of

threads required to compute one problem is low.

Hence, G = 2batch problems of N = 2n elements are simultaneously processed,

being identified by (n, p, s, l, b). However, the following relations among parameters

allow the tuple to be expressed with only three parameters, (n, p, s): on the one

hand, s = p+ l as explained above. On the other hand, the number of thread blocks

is given by the batch size, which is only known at runtime, b = batch − (s − n).

Consequently,

B =
G

LG

and L =
N

P
× LG (4.1)

are also obtained.

4.1 GPU Resource Utilization Analysis Phase 83

Problem Parameters

N = 2n Problem size.

G = 2batch Number of problems being solved simulteneously.

GPU Performance Parameters

S = 2s Number of shared-memory elements per block.

P = 2p Number of elements stored in registers per thread.

B = 2b Number of thread blocks executed per GPU

L = 2l Number of threads that compose a block, where s = p+ l

LG

Number of problems being solved per
block, where B = G

LG
and L = N

P
× LG

WSM Number of warps per SM

Wmax Maximum number of warps per SM

WB Number of warps per thread block

Ba Number of active thread blocks simultaneously executed per SM

Bmax Maximum number of thread blocks per SM

Br Number of thread blocks per SM limited by the registers available

Bs Number of thread blocks per SM limited by the shared memory available

Table 4.1: Description of tuning strategy parameters.

4.1.1. Premises for Performance Maximization

Once performance parameters are established, the values which maximize GPU

performance need to be assigned. The main features that influence the GPU perfor-

mance are the efficiency of the memory operations and the SM parallelism achieved.

Thus, it is crucial to develop coalescing-friendly implementations that expose global-

memory load/store efficiency. Thanks to the communication patterns of the parallel

prefix algorithms used in this work, as well as the provided skeleton-implementation,

the global-memory load/store efficiency achieved for our proposals is very high.

Thus, this phase focuses on establishing a balanced ratio between the number of

parallel threads and the amount of shared resources that can be assigned to each

thread. Actually, the level of parallelism can be determined in terms of the number

of thread blocks per SM (SM block parallelism), or the number of warps per SM

(SM warp parallelism), and a trade-off must be sought between them depending on

the problem features.

84 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

The number of warps per SM, WSM , is limited by the maximum number of warps

per SM, Wmax, and given by the expression: WSM = Min(Wmax,WB ×Ba), where

WB is the number of warps per threadblock (WB = L/32 in current architectures).

Additonally, Ba is the number of active threadblocks that are simultaneously ex-

ecuted per SM: Ba = Min(Br, Bs, Bmax), where Br the number of threadblocks

limited by the registers available in the SM, Bs the number of threadblocks limited

by shared memory and Bmax the SM threadblock limit of the hardware.

It is not always possible to obtain both WSM = Wmax and Ba = Bmax; in such a

case, our priority is to obtain WSM = Wmax, since it helps to hide latency. It should

be noted that WSM can be Wmax, even when Ba < Bmax. In addition to this,

there are cases where achieving WSM = Wmax is impossible due to an unavoidable

resource consumption; in theses cases, the goal of our proposal is to obtain the

highest WSM possible. In the case of there being several configurations for reaching

a given WSM value, our proposal always selects the one that uses the greatest Ba

value. In order to ascertain the ratio between active warps employed per SM by the

maximum number of warps enabled per SM, the warp occupancy rate is introduced.

The Performance Parameters Tuning phase will select the performance parameters

which maximize the warp parallelism.

4.2. CUDA Kernel Optimization Phase

The flexibility and adaptability of our proposals come from a set of parameter-

ized CUDA skeletons. These skeletons are predefined and generic functions that

implement common specific patterns of computation and data movements, which

can be customized with user-defined code parameters. These skeletons are assigned

the task of implementing the computation and data movements behaviors from the

parallel prefix algorithms. In addition to this, thanks to the use of skeletons, the

body of the kernel remains invariant across different algorithms, simply changing

the Node operator skeleton for each algorithm.

In [81], the Butterfly Processing Library for GPUs (BPLG) is presented. This

library is composed of a set of CUDA skeletons, which are also called building blocks.

All these skeletons have common features:

4.2 CUDA Kernel Optimization Phase 85

The use of templates that allows generic programming and template metapro-

gramming, performing many optimizations at compile time (such as reducing

code complexity or avoiding temporal registers for function calls).

Knowing additional information at compile-time, such as the problem size

or the number of threads, makes it possible to perform private thread data

reordering using register renaming. It is possible to take advantage of fully

unrolling static loops avoiding dynamic addressing of register arrays.

All functions have been designed to operate in any GPU memory space hier-

archy.

Owing to this parameterizable design, the BPLG skeletons are written as tem-

plates, and receive the optimal values of the performance parameters as template

arguments. In the code, a table is built for each problem size and architecture, spec-

ifying the performance parameter values for each case. At compile-time, all kernel

combinations from the table are generated and, once the problem size and target ar-

chitecture are defined in the execution, the corresponding skeleton is automatically

loaded at runtime. There is no need to manually choose any configuration, since the

suitable skeleton is automatically chosen in runtime for the given problem size and

architecture. Thus, the tuning process is transparent for the user.

Based on this procedure, this work extends the existing BPLG skeletons with a

set of improvements:

Efficient index calculation avoiding non-uniform access. Static Indexing repre-

sents the fact that constant indices are derived by the compiler in all accesses

to an array, placing elements directly into registers, and it is the most efficient

way to reference an array. However, when the compiler cannot resolve indices

to constants, it places them into local memory, with the consequent perfor-

mance loss (dynamic indexing). Indices must be determined by the compiler

and must not depend on a value determined at runtime. In this case, if all

threads within a warp access the same index (uniform access), performance

is fairly high thanks to the GPU cache system. Otherwise, if the threads of a

warp access elements using different indices, it is called non-uniform indexing,

86 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

this being the worst scenario. Our BPLG skeletons have been carefully de-

signed to take advantage of static indexing whenever possible (loop unrolling

or using constants at compile time).

Hybrid communication strategy inside a block. Shuffle instructions allow infor-

mation to be shared among threads in the same warp using registers instead

of shared memory. The use of these instructions is faster than shared memory

communication, although they are limited to the warp scope. The parame-

ter W represents the number of threads employed per warp in our strategy

(W = 32). In our proposal, a hybrid strategy is provided: the largest possible

number of steps are computed with shuffle instructions, and then, shared mem-

ory is used to obtain the final result among different warps. Depending on the

communication pattern of the parallel prefix algorithm, different approaches

are proposed for each algorithm.

Specialized skeletons. BPLG skeletons were originally developed with generic

templates; i.e., naive implementations use a single skeleton for each operation,

where data types and performance parameters are not specified in code, but

they are passed as template arguments in the compilation process. Never-

theless, the specialization of these operations is usually more efficient than a

parameterizable process. This entails, having different customized instances

for each skeleton, where each instance directly implements a concrete data

type and P , and subsequently, the desired version of that skeleton is chosen

at compile-time. Using this specialization, it is possible to work directly over

customized datatypes in registers, such as float2, float4 and int4.

In addition to the use of these skeletons, each algorithm can benefit from different

CUDA optimizations, depending on its characteristics.

4.3 Performance Parameter Tuning Phase 87

Archit.

Warps

per

block

Regs

per

thread

Shared

memory

per block

Warp

occupancy

(WSM/W
max)

SM

blocks

(Ba)

1 128 3072 25% 16

2 64 3072 50% 16

4 32 0 100% 16

4 40 0 75% 12

Kepler

cc 3.5
4 32 3072 100% 16

4 32 4096 75% 12

8 32 6143 100% 8

8 32 8192 75% 6

16 32 12285 100% 4

16 32 16384 75% 3

32 32 24576 100% 2

1 64 2048 50% 32

2 32 0 100% 32

2 40 0 75% 24

Maxwell

cc 5.0
2 32 2048 100% 32

4 32 4096 100% 16

8 32 8192 100% 8

16 32 16384 100% 4

32 32 32768 100% 2

Table 4.2: Performance parameters which maximize the number of warps and blocks
per SM

4.3. Performance Parameter Tuning Phase

After having identified the GPU performance parameters in the first phase, and

having developed the kernels for each algorithm in the second one, the suitable val-

ues for the performance parameters need to be found. The choice of these values

takes into consideration the algorithm features, the problem size and the target

architecture. Keeping Section 4.1.1 in mind, Table 4.2 shows some possible config-

urations for a given WB entry, which obtain the maximum number of threadblocks

and warps per SM, although there are other possible configurations that do not ap-

88 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

pear. This analysis is performed for Kepler and Maxwell architectures, with compute

capabilities 3.5 and 5.0, respectively. As in the previous phase, the Performance

Parameter Tuning phase depends on the algorithm features. Hence, this table will

be used later to configure the (s, p, l) values of each proposal in Section 4.4, Section

4.5 and Section 4.6. It is important to note the bold row of 4 warps per block on

Kepler architecture, and the bold row of 2 warps per block on Maxwell platforms,

since they achieve both the maximum block parallelism and warp occupancy when

working with these parameters values. Henceforth, we are assuming single-precision

floating points to calculate these tunable values.

While the first phase of our strategy is common to all algorithms, the second

and third phases are specific to each one. The second phase applies different CUDA

optimizations to each method, and the third phase chooses the suitable performance

parameters for each algorithm. In Section 4.4, Section 4.5 and Section 4.6, each

algorithm is analyzed and improved with the applicable optimizations, the technique

commented previously in Section 4.2, Hybrid communication strategy inside a block,

is explained in greater detail, and the optimal performance parameters are chosen.

Finally, our proposals are compared against a non-skeleton implementation and a

naive BPLG implementation (which uses previous skeleton implementations) in the

experimental results in order to demonstrate the efficiency of our new skeletons

implementations.

It should be noted that these parameter values can be theoretically obtained for

any architecture by simply constructing a similar table as the one shown in Table

4.2 for the supported sizes and architectures. In terms of CUDA code, these values

are defined in a static table and easily loaded and sent to kernels at compile-time,

thus the tuning procedure has no time penalty in our approach.

4.4. Tridiagonal System Solvers under a three-

phase methodology

This section presents the tridiagonal systems solvers [28] [33] used in our library

and their implementation following our three-phase methodology.

4.4 Tridiagonal System Solvers under a three-phase methodology 89

4.4.1. Cyclic Reduction Tridiagonal System Solver (BPLG-

CR-TS Algorithm)

CR comprises two phases: forward reduction and backward substitution. Its re-

duction schema is shown in Section 2.3.2. As explained previously, forward reduction

reduces a system to another with half the number of unknowns, until a 2-unknowns

system is reached. In each step of backward substitution, odd-indexed unknowns xi

are solved in parallel, by substituting the previously computed values xi−1 and xi+1

into the equation Ei. The forward reduction is performed in log2N steps (see Figure

4.1 (a)), whereas the backward substitution needs log2N − 1 additional steps.

Figure 4.2 presents the CR forward reduction code using BPLG skeletons:

Initialization section (lines 3-7). Registers and shared memory are allocated

using the customized Float4 data type in order to represent equations, reducing

the number of memory transactions.

Load data from global memory (lines 8-9). Instead of accessing a single data

element per memory request, a 128-bit load to obtain 4 consecutive elements is

used. Function copy < X, p > loads X elements by p times, thus copy < 3, p >

is used in this case, since each thread works with 3 equations.

First step of the algorithm (lines 10-11). The first computing step is performed.

Remaining computing steps in forward reduction (lines 16-26). Both offsets

and strides are efficiently calculated using bit masks, binary operators and dis-

placements. First, it stores equations from previous step into shared memory.

After a synchronization barrier, each thread loads new equations, from shared

memory to registers, for the corresponding computing step and their reduction

is performed in registers.

Backward substitution phase (lines 28-41). The loop loads the equation nec-

essary to solve the corresponding unkown in global memory. Even for smaller

problems, coalescence is achieved thanks to the cache hierarchy of the GPU.

90 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.1: Parallel Prefix Patterns for N = 16.

CUDA Kernel Optimization phase: BPLG-CR-TS

A BPLG-CR-TS-Naive implemention uses previous BPLG skeletons [81] to test

its performance. Regarding the Hybrid communication strategy in our new proposal,

the pattern of this algorithm complicates the use of shuffle instructions, as the same

equation is shared among several threads, giving rise to a dependency among warps.

4.4 Tridiagonal System Solvers under a three-phase methodology 91

1 template <int N, int p, int S> __global__ void

2 BPLG_CR(const float* __restrict__ src , float* dstX)

3 Float4 reg[p*3];

4 __shared__ Float4 shm[N > p ? S : 1];

5 // Load data from global mem to reg

6 copy <3,p >(...);

7 // First computing step

8 compute <p,MixR >(reg);

9 for(int accR=MixR; accR < N/2 ; accR *=2) {

10 // Obtains strides and offsets

11 int readOffset = ..., readStride = ... ;

12 int writeOffset = ..., writeStride = ... ;

13 //Reg -> Shm -> Reg

14 if(accR >MixR) __syncthreads ();

15 copy <1,p>(shm+writeOffset , writeStride ,reg ,...);

16 __syncthreads ();

17 copy <3,p>(reg ,shm+readOffset ,readStride ,...);

18 compute <p>(reg); // Computation in registers

19 }

20 // Thread 0 solves x_N and x_N /2

21 if(! threadId){

22 ...

23 }

24 // Backward substitution

25 for(int j= N/2, num_threads =2; j>1; j/=2, num_threads *=2) {

26 __syncthreads ();

27 int readOffset = ..., writeOffset = ...;

28 if(threadId <num_threads)

29 {

30 copy <1,p>(reg , shm+readOffset ,..); // copy from

Shm the corresponding equation

31 float value= ... ; // Solving unknown

32 copy <1,p>(dstX+writeOffset , ...); // Update the

unknown value in Glb Memory

33 }

34 }

Figure 4.2: Forward Reduction code for CR tridiagonal algorithm using BPLG.

In order to address this, shuffle instructions are applied in the final steps of the

reduction phase, and in the initial steps of the substitution phase. Specifically, the

selected steps are those where all Node operators are located in the same warp. In

the remaining steps, shared memory is used for communication. Thus, there are no

synchronization barriers along the shuffle steps.

Unknowns can be stored either in global memory, reusing the independent-terms

vector, or in shared memory. On the one hand, since the substitution phase has

log2N−1 steps, multiple accesses are performed; thus, global memory latency could

be a limiting factor. On the other hand, shared memory consumption could suppose

a disadvantage, as the SM block parallelism might be reduced. Selecting which

memory is better for the substitution phase depends on the CUDA architecture. In

92 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Section 4.4.4, BPLG-CR-TS-GM represents the use of global memory when storing

the unknowns vector, whereas BPLG-CR-TS-SH tags the case of shared memory

usage.

Performance Parameter Tuning phase: BPLG-CR-TS

As explained in Section 4.1.1, the objective is to maximize the warp parallelism.

Firstly, it should be pointed out that each element is an equation composed of 4

coefficients (4 × 4 bytes in the case of single precision). With P = 2 (p = 1),

each thread stores 2 equations (8 coefficients) in registers, but since it needs a third

equation to perform the reduction, it takes this auxiliary equation from another

thread. Thus, it is important to take into account this extra register consumption.

The (s, p, l) values for the Kepler architecture are explained in Table 4.3. If n ≤ 6,

the computation can be performed exclusively with shuffle instructions (N ≤ P ×
W), without shared memory. Keeping in mind Table 4.2, the optimal configuration,

which maximizes both threadblock and warp parallelism, is achieved with l = 7

and fewer than 32 registers per thread in Kepler architecture (the 3rd row in Table

4.2). Taking into consideration additional variables and index calculation, p must

be equal to 1 in order to consume less than 32 registers per thread. Finally, since

each problem is performed with up to W = 32 threads, and l = 7, then LG > 1 in

this case.

When n = 7, it is possible to avoid shared memory communications, using p = 2

(N ≤ P × W), but this consumes more than 32 registers. Thus, there are three

different options: the first case, using l = 6 with either (7, 1, 6) or (0, 2, 6) (2nd row

in Table 4.2), which achieves 50% of warp occupancy; the second option is (0, 2, 7)

(4th row in the table), achieving 75% of warp occupancy and Ba = 12; and finally,

(8, 1, 7) (6th row in the table), which obtains 75% of warp occupancy and Ba = 12.

Hence, both (0, 2, 7) and (8, 1, 7) show the maximum parallelism, choosing (0, 2, 7)

in this case to avoid the shared memory communications.

When n > 7, shared memory is needed for storing the problem data; thus s = n.

When s occupies more than 3072 bytes, as in the the case of n > 7, neither the

maximum warp parallelism nor the maximum block parallelism is possible, choosing

the configurations that maximize the warp occupancy (6th, 8th and 10th row in

4.4 Tridiagonal System Solvers under a three-phase methodology 93

Problem size (s,p,l) values

Kepler Platform

n ≤ 6 (0, 1, 7)

n = 7 (0, 2, 7)

n > 7 (n, 1, n− 1)

Maxwell Platform

n ≤ 6 (0, 1, 6)

n = 7 (0, 2, 6)

n > 7 (n, 1, n− 1)

Table 4.3: Description of tridiagonal tuning parameters.

Table 4.2). To maximize warp parallelism, p = 1 is always established; thus, l = s−1,

since s = p + l. Shared memory becomes the limiting performance resource in this

approach, but still achieving a warp occupancy of 75%.

A similar reasoning can be applied in Maxwell architecures, following Table 4.2,

which obtains the tuning values shown in Table 4.3.

4.4.2. Parallel Cyclic Reduction Tridiagonal System Solver

(BPLG-PCR-TS Algorithm)

PCR is a modification of CR that performs more Node operators per step but,

instead, the substitution phase is solved in a single step, using the same formulas

and updating mechanism as CR (see Figure 4.1 (b)). In fact, PCR is a variant of

CR that only changes the number of reductions performed per step, but not the

reduction method itself.

A straightforward implementation of Figure 4.1 (b) with previous BPLG skele-

tons is called BPLG-PCR-TS-Naive and its code has almost the same structure

that of the CR, as shown in Figure 4.3. After the reduction phase, results are

stored in shared memory for the substitution phase, which requires half as many

Node operators as the reduction phase. Finally, the value is stored directly in global

memory.

94 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

1 template <int N, int p, int S> __global__ void

2 BPLG_PCR (const float* __restrict__ src , float* dstX) {

3 Float4 reg[p*3];

4 __shared__ Float4 shm[N > p ? S : 1];

5 // Load data from global mem to shm

6 copy <1,p >(...);

7 __syncthreads ();

8 // Load data from shm to reg

9 copy <3,p >(...);

10 // First computing step

11 compute <p,MixR >(reg);

12 for(int accR=MixR; accR < N/2 ; accR *=2) {

13 // Obtains strides and offsets

14 int readOffset = ..., readStride = ... ;

15 int writeOffset = ..., writeStride = ... ;

16 //Reg -> Shm -> Reg

17 if(accR >MixR) __syncthreads ();

18 copy <1,p>(shm+writeOffset , writeStride ,reg , ...);

19 __syncthreads ();

20 copy <3,p>(reg ,shm+readOffset ,readStride , ...);

21 compute <p>(reg); // Computation in registers

22 }

23 copy <1,p >(...);

24 _syncthreads ();

25
26 // Substitution phase

27 ...

28 }

Figure 4.3: Code for the PCR tridiagonal algorithm in BPLG.

CUDA Kernel Optimization phase: BPLG-PCR-TS

Two different techniques have been developed for this algorithm in order to take

advantage of its characteristics and communication pattern: the Efficient Allocation

and the Equation-warp matching techniques.

In the BPLG-PCR-TS-Naive version, each thread executes one Node operator

per step, storing three equations in registers. However, following our three-phase

methodology, this pattern needs to be redesigned in order to achieve l ≤ s − 1.

The same equation is shared among different Node operators, as shown in Figure

4.1 (b). Keeping this in mind, it is possible to store 4 equations per thread instead

of 6, applying an Efficient Allocation technique. The reduction in the number of

equations decreases the register usage, leading to more active threadblocks per SM

if registers are the limiting factor in occupancy. The key is to rearrange the reading

indices per thread in each step, in order to work with nested Node operators. This

recalculation can be effectively performed using displacements and bit masks avoid-

4.4 Tridiagonal System Solvers under a three-phase methodology 95

Figure 4.4: Operator nodes allocation for the PCR algorithm with N = 16.

ing non-uniform accesses, as the thread offset between equations is a power of two.

Figure 4.4 shows the distribution of two Node operators per thread when N = 16,

without using the Efficient Allocation strategy and where each vertical line repre-

sents the work per thread. As it can be seen, consecutive threads load consecutive

sets of adjacent equations and each thread needs 6 equations per stage. In contrast,

Figure 4.5 shows the Efficient Allocation technique when N = 16.

The second technique, Equation-warp matching, allows the efficient utilization

of shuffle instructions. Applying shuffle instructions directly in PCR is not triv-

ial. PCR has a collaborative communication pattern in which warps have to always

share their equations with other warps, avoiding an independent computation in-

side the warp. Each computation in a Node operator entails reading equations from

other Node operators. If these Node operators are located in the same warp, shuffle

instructions can be used for exchanging them; otherwise, they have to take equa-

tions from another warp through the shared memory. Hence, we have agglomerated

threads to minimize the communication among warps, reordering the equation-warp

matching. With this technique, it is now possible to reach a point where there is no

96 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.5: Operator nodes for the PCR algorithm with N = 16 using the Efficient
Allocation strategy.

dependence among warps (at the final computing steps, enabling the use of shuffle

in these steps and in the substitution phase). Figure 4.6 shows this technique for

N = 16 with 4 warps, where the gray-line rectangles represent warps, the numbered

boxes are threads and the dashed boxes indicate dependencies between threads.

For the sake of simplicity and a more compact representation of the example, it is

assumed that the warp size is composed of 4 threads. In k = 1, in order to re-

duce the first and last equation of each warp, it is necessary to access the last and

the first thread from the previous and the next warp, respectively. When reaching

k = 3, there is no dependence among warps, thus a shuffle computation is possible.

Specifically, the mapping that assigns Node operators to warps is now expressed by

Mapping(NOi) =
ROR(NOi, k − 1)

W
with 0 ≤ i ≤ N/P (4.2)

where NOi is the Node operator id, W the warp size and ROR moves k − 1 bits of

NOi that falls off the least-significant bit up to the most-significant bit in the word;

bits moved out the right-hand end are rotated back into the left-hand end.

4.4 Tridiagonal System Solvers under a three-phase methodology 97

Figure 4.6: PCR dependences when applying the Equation-warp matching with
N = 16.

Performance Parameter Tuning phase: BPLG-PCR-TS

The same tuning values as the ones explained for CR in Table 4.3 are obtained

for PCR. However, in comparison to CR, each thread takes two auxiliary equations

from other threads, instead of one, having to store them in additional registers.

In Kepler, when n ≤ 6, the tuple (s, p, l) = (0, 1, 7) is obtained with LG > 1,

without shared memory consumption. With n = 7, (s, p, l) = (0, 2, 7) is set up,

and (s, p, l) = (n, 1, n − 1) is established in the remaining cases, obtaining 75%

warp occupancy for each size. If n > 7, it is not possible to achieve the maximum

parallelism due to shared memory consumption, which is the limiting factor here.

Maxwell parameters are also outlined in the Table 4.3.

98 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

4.4.3. Ladner-Fischer Tridiagonal System Solver (BPLG-LF-

TS Algorithm)

In Section 3.1, a new Node operator for reducing tridiagonal systems was pre-

sented, called Redundant Reduction (RR). Unlike CR and PCR, each Node operator

reads only 2 equations, instead of 3, when performing the reduction. This new Node

operator has to be combined with a communication pattern in order to build the

parallel prefix algorithm. In this chapter, this new solver is implemented under

our tuning methodology. Here, the Ladner-Fischer pattern was chosen (see Fig-

ure 4.1(c)), as its communication pattern combined with RR has shown the best

performance.

Figure 4.7 presents the reduction phase of the algorithm, using BPLG skeletons:

Initialization section (lines 3-5). As previously, registers and shared memory

are allocated. In contrast to previous algorithms, this proposal needs to store

two forms of each equation, doubling the shared memory requirements and

the amount of registers.

Load data from global memory (lines 7) and first mixed computing step (line

9). Each node loads 64-bit coalescing data, obtaining 2 consecutive elements.

These data are stored in the form1 registers. Then, the mixed computing step

performs the first reduction. As initial equations are specified in a single form,

the mixed compute function copies this result to the form2 registers, obtaining

the I form and the C form of each equation.

Remaining computing steps (lines 10-25). First write in shared memory does

not need a previous synchronization barrier, as no element has been previously

read from shared memory. Then, each Node operator stores the two equations

in their two forms. Remaining writes only store the modified equation in

shared memory.

CUDA Kernel Optimization phase: BPLG-LF-TS

An implementation of the algorithm that uses previous BPLG skeletons is tagged

as BPLG-LF-Naive. Regarding the Hybrid communication strategy of this proposal,

4.4 Tridiagonal System Solvers under a three-phase methodology 99

1 template <int N, int p, int S> __global__ void

2 BPLG_LF (const float* __restrict__ src , float* dstX) {

3 Float4 form1 [2*p], form2 [2*p];

4 __shared__ Float4 shm[N > p ? S : 1];

5 __shared__ Float4 shm2[N > p ? S : 1];

6 // Load data from global mem to registers

7 copy <2,p>(form1 ,...);

8 // First computing step

9 compute <p,MixR >(form1 ,form2);

10 for(int accR=MixR; accR < N ; accR *=2) {

11 // Obtains strides and offsets

12 ...

13 //Reg -> Shm -> Reg

14 if(accR >MixR) __syncthreads ();

15 if(accR==MixR)

16 copy <2,p>(shm+writeOffset ,writeStride ,form1);

17 copy <2,p>(shm2+writeOffset ,writeStride ,form2);

18 else

19 copy <1,p>(shm+writeOffset , writeStride ,form1);

20 copy <1,p>(shm2+writeOffset , writeStride ,form2);

21 __syncthreads ();

22 copy <2,p>(form1 ,shm+readOffset ,readStride);

23 copy <2,p>(form2 ,shm2+readOffset ,readStride);

24 compute <p>(form1 ,form2); // Computation in registers

25 }

26 // Substitution

27 ...

28 }

Figure 4.7: Code for LF tridiagonal algorithm in BPLG.

shuffle instructions are used for small problem sizes (N ≤ P ×W) to avoid shared

memory communications. As N grows, a hybrid strategy is followed, combining both

shuffle and shared memory communication: firstly, P ×W equations are reduced

with shuffle instructions in the early steps. Considering k as the current step of the

execution, where k = {0, 1, .., n − 1}, the communication through shared memory

are applied in the k-steps that meet 2k > P ×W .

Performance Parameter Tuning phase: BPLG-LF-TS

The RR reduction operation uses two representatives for each element; thus, each

element stores two equations of 4 coefficients each (2×2×4×4 bytes per thread, in

case of floats and P = 2). Hence, this condition must be taken into account when

selecting the performance parameters based on Table 4.2. As the number of registers

must not exceed 32, considering registers employed for additional variables, p must

be strictly 1. The same performance values as in previous algorithms are obtained,

100 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

shown in Table 4.3, although the achieved parallelism is different.

In Kepler architecture, three cases are defined. First, as P ×W elements can

be performed exclusively with shuffle instructions, shared memory is not used when

n ≤ 6; thus, (s, p, l) = (0, 1, 7) with LG > 1. In the case of n = 7, there are

two possibilites, using the hybrid communication strategy with p = 1 or shuffle

instructions exclusively with p = 2. Using (0, 2, 7) achieves a warp occupancy of 56%,

whereas (8, 1, 7) only reaches 38% (these entries do not appear in Table 4.2). For the

remaining sizes, shared memory is needed and more than 3072 shared memory bytes

are consumed. To obtain the highest warp parallelism possible, (s, p, l) = (n, 1, n−1)

is utilized when n > 7.

In Maxwell architecture, three cases are also considered. In the first case, (s, p, l)

= (0, 1, 6), with LG > 1. In the second case, when n = 7, (s, p, l) = (0, 2, 6) is

established. Otherwise, shared memory becomes the performance limiting factor,

and (n, 1, n− 1) is employed.

4.4.4. Experimental Results for Tridiagonal System Solvers

with Small Problem Sizes

In this section, the results of our proposals on different CUDA GPU architectures

are presented and analyzed. All the tests were run in single precision, and all the

data reside in the GPU device memory at the beginning of each test, so there are

no data transfers to CPU during the benchmarks to prevent interactions with other

factors in the study. The test platforms used in our experiments are described in

Table 4.4, composed of a Kepler Platform and a Maxwell Platform. The kernels

were executed setting the cudaFuncCachePreferShared cache configuration flag in

the Kepler platform, so it is possible to use up to 48 KB of shared memory, but only

16 KB of L1 cache are available. In the case of the Maxwell architecture, although

each SM contains 96 KB of shared memory, each block can only use up to 48 KB.

Different driver versions were also tested with little impact on performance.

Firstly, we compare our three-phase strategy implementations against the same

algorithm implemented directly without any BPLG skeleton, in order to see the im-

pact of the BPLG library on the results, and also against previous BPLG skeletons

4.4 Tridiagonal System Solvers under a three-phase methodology 101

Kepler Platform Maxwell Platform

CPU Intel Xeon E5-2660 CPU 2.2 GHz Intel Core i7-2600 3.4 GHz

Memory 64 GB DDR3 1600 8 GB DDR3 1333

OS CentOS 6.4 Ubuntu 14.04 LTS

Compiler GCC 4.4.7 GCC 4.8.4

GPU Nvidia Tesla K20 GPU Nvidia GeForce GTX980

Driver 367.57, SDK 8.0 384.90, SDK 8.0

Table 4.4: Description of the test platforms

implementations (Naive version). We then compare the results of our library with

respect to the CUDPP [98] and CUSPARSE [95] libraries, and a tridiagonal system

solver based on the Wang&Mou algorithm (BPLG-WM-TS) [82]. The performance

of the experiments for solving tridiagonal systems is measured in million rows pro-

cessed per second, MROWS/s, using diagonally dominant systems, the same metric

and assumptions as [74] does. The number of concurrent problems depends on the

input size and is given by the expression G = 224/N . Thus, the MROWS/s value is

obtained using the expression: N ·G · 10−6/t.

BPLG-CR-TS Results

Concerning the Cyclic Reduction algorithm, Figure 4.8 shows a comparison

among different implementations on the Kepler Platform. A CR implementation

without using BPLG (CR-TS proposal in graphics) is also considered. The per-

formance of BPLG-CR-TS-Naive achieves an improvement of up to 3.7x over the

CR-TS implementation. However, better results are obtained using BPLG-CR-

TS-GM and BPLG-CR-TS-SH, which apply the optimizations explained in Section

4.4.1. The difference between them is the place where the unknown array is stored:

global memory or shared memory. As expected, BPLG-CR-TS-GM performs better

due to shared memory constraints on Kepler, obtaining an improvement of up to 13x

over the CR-TS implementation and 3.6x over BPLG-CR-TS-Naive. When n < 7,

this implementation can execute Ba = 16 active blocks per SM with 100% of warp

occupancy. In the case of n = 7, it achieves Ba = 10 blocks but warp occupancy of

63% due to register consumption. The occupancy is lower if N grows due to shared

102 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.8: MRows/s comparison of the CR tridiagonal proposals in the Kepler
Platform.

Figure 4.9: MRows/s comparison of the CR tridiagonal proposals in the Maxwell
Platform.

memory requirements and thread block size. When n = 8, Ba = 12 blocks and

warp occupancy of 75% are reached. In the case of n = 9, Ba = 6 blocks and warp

occupancy of 75% are obtained and, finally, Ba = 3 blocks and warp occupancy of

75% when n = 10.

On the other hand, very similar results are obtained on the Maxwell architecture

solving the unknowns vector in global memory or in shared memory, as shown in

Figure 4.9. The new Maxwell architecture provides 96 KB per SM of shared memory

4.4 Tridiagonal System Solvers under a three-phase methodology 103

(although only 48 KB can be used within a block). Thus, the unknown array is stored

in shared memory without much penalty. When n ≤ 6, this implementation achieves

100% block and warp occupancy. In the case of n = 7, the register consumption is

higher than 32 registers due to p = 2, thus Ba = 20 blocks and warp occupancy of

63% are obtained. For the remaining cases, the following occupancies are reached:

Ba = 16 blocks and warp occupancy of 100% when n = 8, Ba = 8 blocks and warp

occupancy of 100% in the case of n = 9 and Ba = 4 blocks and warp occupancy of

100% if n = 10. These final approaches obtain an improvement of up to 8.9x over

CR-TS and up to 5x over BPLG-CR-TS-Naive.

BPLG-PCR-TS Results

Figure 4.10 shows the performance of the Parallel Cyclic Reduction algorithm

in the Kepler Platform. An implementation of this algorithm without using BPLG

is denoted as PCR-TS in Figure 4.10. As can be observed on the Kepler Platform,

the naive approach (BPLG-PCR-TS-Naive) offers a clear advantage over PCR-TS,

achieving up to 6x of improvement; whereas on the Maxwell Platform, it reaches

a remarkable 5.30x. Concerning our proposals, BPLG-PCR-TS uses the Efficient

Allocation and Equation-warp matching strategies. On the Kepler Platform, if n <

7, it obtains Ba = 12 concurrent blocks and 75% of warp parallelism due to the

use of 37 registers per thread. When n = 7, our proposal achieves Ba = 9 active

blocks per SM and 56% warp occupancy, owing to p = 2. In the remaining cases,

Ba = 12 blocks and 75% warp occupancy are achieved when n = 8; if n = 7 then

Ba = 6 blocks and 75% warp occupancy are obtained, and Ba = 3 blocks with

75% warp occupancy in the case of n = 10, being up to 1.36x times faster than

BPLG-PCR-TS-Naive.

On the Maxwell Platform, Figure 4.11, our proposal has a speed-up of up to 1.19x

over BPLG-PCR-TS-Naive. For non-shared memory implementations, it obtains

Ba = 24 blocks and 75% warp occupancy when n ≤ 6; and Ba = 18 blocks and 56%

when n = 7. In the remaining cases, it always achieves 75% warp occupancy, where

the number of blocks (12, 6, 3) for n = (8, 9, 10), respectively.

104 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.10: MRows/s comparison of the PCR tridiagonal implementations in the
Kepler Platform.

Figure 4.11: MRows/s comparison of the PCR tridiagonal implementations in the
Maxwell Platform.

BPLG-LF-TS Results

Figure 4.12 shows the performance of our Ladner-Fischer approaches on the

Kepler Platform. Firstly, an implementation of LF without BPLG, tagged as LF-TS

in graphics, is provided. Then, BPLG-LF-TS-Naive is also implemented, achieving

an improvement of up to 2.95x over LF-TS in Kepler, and up to 2.05x in the

Maxwell version. BPLG-LF-TS achieves the best improvement, being up to 7.60x

better than LF-TS and up to 2.76x with respect to BPLG-LF-TS-Naive in the

4.4 Tridiagonal System Solvers under a three-phase methodology 105

Figure 4.12: MRows/s comparison of LF tridiagonal implementations in the Kepler
Platform.

Kepler architecture.

In Maxwell, Figure 4.13, up to 3.07x and 2.1x speed-ups were obtained, re-

spectively. This algorithm consumes a high amount of shared memory, twice that

consumed with other tridiagonal systems solvers. However, when N ≤ (W × P),

there is no shared memory consumption, as exchanges can be performed in registers

with shuffle instructions using our Hybrid communication strategy. That is the rea-

son why in Figure 4.12 there is a decrease in performance after n = 7 (N = 128),

since occupancy decreases due to shared memory restrictions. Table 4.5 shows the

occupancies achieved for both platforms. The limiting factor in all problem sizes

is shared memory. In contrast to Kepler, throughput in Maxwell does not decrease

along N , despite shared memory consumption. For example, with floats, when

n = 10, a number of 2048 equations of 4 coefficients are stored (32768 bytes) in

shared memory. In this case, Kepler obtains 25% warp occupancy due to shared

memory limitations, but in Maxwell, thanks to its 96 KB of shared memory, warp

occupancy rises to 50%, it also being able to allocate more active blocks.

Overall Results

Finally, Figure 4.14 and Figure 4.15 provide a global overview, and a comparison

with respect to CUSPARSE [95] and CUDPP [98] libraries, and a BPLG implemen-

106 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.13: MRows/s comparison of LF tridiagonal implementations in the Maxwell
Platform.

Kepler Platform Maxwell Platform

n
Block
Parallel.

Warp
Occup.

Block
Parallel.

Warp
Occup.

6 12 75,00% 24 75,00%

7 9 56,00% 18 56,00%

8 6 38,00% 8 50,00%

9 3 38,00% 4 50,00%

10 1 25,00% 2 50,00%

Table 4.5: BPLG-LF-TS occupancies

tation of Wang&Mou. All these libraries are outperformed by our proposals. The

CUSPARSE library launches several kernels to solve the batch problem; therefore,

the global memory bandwidth becomes a limiting factor. Only for larger problems

does it amortize the cost of the multi-kernel approach. Regarding CUDPP, it assigns

a single tridiagonal system problem to each threadblock and some threads will be

idle.

The Kepler results are shown in Figure 4.14, where BPLG-LF-TS achieves the

best results among our proposals for N ≤ 512, obtaining up to 9.31 x of speed-up

over CUSPARSE, up to 9.37x over CUDPP and up to 2.01x over BPLG-WM-TS.

For larger problems, N = 1024, the shared memory becomes a limiting factor since

it has to store two forms per equations, and BPLG-PCR-TS obtains the maximum

4.4 Tridiagonal System Solvers under a three-phase methodology 107

Figure 4.14: Comparison of BPLG tridiagonal solvers performance in the Kepler
Platform.

Figure 4.15: Comparison of BPLG tridiagonal solvers performance in the Maxwell
Platform.

speed-up, being 4.6x faster than CUSPARSE, and 4.63x faster than CUDPP in the

worst-case scenario. BPLG-CR-TS also outperforms the CUSPARSE and CUDPP

libraries, being up to 6.49x and 6.53x faster, respectively. Nevertheless, none of our

proposals surpasses BPGL-WM-TS for this size.

Figure 4.15 presents a similar performance comparison on the Maxwell Platform.

108 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

In Maxwell, our BPLG-LF-TS proposal is the best one, being up to 19.28x faster

than CUSPARSE, presenting a speed-up of 3.7x over CUDPP and up to 1.57x over

BPLG-WM-TS. In the case of BPLG-PCR-TS, our proposal is up to 12.9x faster

than CUSPARSE and 2.4x faster than CUDPP, but it does not outperform BPLG-

WM-TS ; whereas BPLG-CR-TS has a speedup of up to 12.94x over CUSPARSE, up

to 2.4x over CUDPP. As the main limitation of our approaches is shared memory,

the new Maxwell’s shared-memory increment helps to increase occupancy in our

proposals, increasing the performance gap between our solvers and the state-of-the-

art ones.

Efficiency of the Performance Parameters Tuning Phase

In order to check the effectiveness of our strategy, this section compares the

performance achieved by using the proposed performance parameters, against the

performance achieved by an exhaustive search of performance parameters for the

Kepler platform. Table 4.6 demonstrates the success of our strategy criteria for

BPLG-LF-TS, where the maximum performance achieved empirically is shown in

colored cells, whereas the performance resulted by using our strategy is highlighted

for each N size. Please note that there are some configurations that are not allowed

due to shared memory consumption limitations or sizes greater than p + l. In this

case, the performance parameters proposed were (s, p, l) = (0, 1, 7) when n ≤ 6;

(s, p, l) = (0, 2, 7) when n = 7; and (s, p, l) = (n, 1, n−1) in the remaining cases. As

can be observed, all tuples proposed in the Performance Parameter Tuning phase

of the algorithm match with the results obtained empirically.

4.5. Scan Primitive under a three-phase method-

ology

In this section, two different parallel prefix algorithms [28] are implemented to

compute the scan under our three-phase methodology.

4.5 Scan Primitive under a three-phase methodology 109

(p, l)

n
n = 6 n = 7 n = 8 n = 9 n = 10

p = 1

l = 5 4890 x x x x

l = 6 7716 4688 x x x

l = 7 8152 4725 4326 x x

l = 8 8052 4245 3838 3554 x

l = 9 7878 2169 2127 2054 1839

l = 10 4690 x x x x

p = 2

l = 5 5591 5737 x x x

l = 6 7079 7940 3153 x x

l = 7 7241 8033 3087 2812 x

l = 8 6693 7463 1799 1700 1554

l = 9 6680 6523 x x x

(l = 10 4800 4992 x x x

Table 4.6: Performance comparison of different performance parameters values for
BPLG-LF-TS in MRows / s

4.5.1. Scan operator using the Ladner-Fischer pattern (BPLG-

LF-SC Algorithm)

This proposal is our own adaptation of the Ladner-Fischer parallel prefix algo-

rithm (see Figure 4.1 (c)) for performing scan operations. Solutions are obtained

after log2N steps, and unlike with other scan algorithms, here the number of read

and write operations remains invariant over all steps; i.e. the number of active

threads remains constant along steps. Figure 4.16 contains the code structure with

BPLG skeletons for the BPLG-LF-Naive algorithm, considering p = 1. The code

can be divided into four main sections:

Initialization section (lines 3-4). This allocates registers and shared memory.

Load data from global memory (lines 5-6) and first computing step (line 7).

This section of code changes with respect to tridiagonal solvers, as elements

are not shared by different nodes in the first step, so they can be directly

loaded from global memory to registers, and computed in registers.

110 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

1 template <int N, int p, int S> __global__ void

2 BPLG_LF_scan (const float* __restrict__ src , float* dst) {

3 float reg[p*2];

4 __shared__ float shm[N > p ? S : 1];

5 // Load data from global memory to regs

6 copy <2,p >(...);

7 compute <p,MixR >(reg);

8 for(int accR=MixR; accR < N ; accR *=2) {

9 // Obtains strides and offsets

10 ...

11 //Reg -> Shm -> Reg

12 if(accR >MixR) __syncthreads ();

13 copy <1,p>(shm+writeOffset , writeStride ,reg);

14 __syncthreads ();

15 copy <2,p>(reg ,shm+readOffset ,readStride);

16 compute <p>(reg); // Computation in registers

17 }

18 copy <1,p>(dst+glbWPos ,reg ,...); // Storing data in Glb

memory

19 copy <1,p>(dst+glbWPos ,shm+shmOffset +...);

20 }

Figure 4.16: Kernel code for the LF-scan algorithm in BPLG.

Remaining computing steps (lines 8-17). The loop reorders data registers using

shared memory and performs the computation in each step.

Storing results to global memory (lines 18-19). Figure 4.1 (c) shows that

the last step of the algorithm processes the second half of data, so threads

have the second half of final results stored in registers, after the last iteration.

Thus, N/2 elements are directly stored from registers into global memory. The

remaining elements are moved from shared memory.

CUDA Kernel Optimization phase: BPLG-LF-SC

In Ladner-Fischer, unlike other algorithms, there are not two separate phases for

reading and writing operations: elements read by one thread are never overwritten

by another thread in the same iteration. Hence, this proposal saves an extra syn-

chronization barrier in each step. However, this pattern can produce shared memory

bank conflicts, so it is important to define the pair of elements which are accessed

by each thread. Accessing adjancent pairs of elements per thread generates a high

percentage of bank conflicts, since some banks are addressed several times while

others are never addressed. Specifically, this proposal takes bank conflicts into ac-

count looking for the stride among thread elements which reduces these conflicts. To

4.5 Scan Primitive under a three-phase methodology 111

this end, each thread works with Node operators whose elements are separated by

threadblock’s size positions. Previous implementations for this algorithm achieved

a 5% rate of bank conflicts on average (shared memory reply overhead in profiler),

but this proposal allows to be reduced to 0.1%.

Regarding the Hybrid communication strategy inside a block, shuffle instructions

are used to compute the scan in each warp, performing the whole scan in chunks of

P ×W elements. After this, each warp saves its partial sum in shared memory (the

final element of each chunk), and this process is repeated over the values stored in

shared memory. This repetition is currently performed by only one warp, as 32 warps

were used at most in the chunk computation. Thus, at most there are 32 elements

in shared memory per problem. After computing the scan in shared memory, each

warp adds its corresponding element from shared memory to all elements in the

chunk, obtaining the final result.

Performance Parameter Tuning phase: BPLG-LF-SC

It should be noted that the Hybrid communication strategy stores S = 32× LG

elements per threadblock in shared memory, which means, 32 elements per problem

being solved. It is also important to emphasize that s is different to p + l here,

thanks to the shuffle approach explained previously, where only a small portion of

elements are stored in shared memory.

Table 4.7 shows the two tuning cases in the Kepler platform. Looking at Table

4.2, obtaining the maximum warp and block parallelism is possible with l = 7 and

fewer registers per thread than 32. Taking into account auxiliary variables and

index calculation, p must be less than or equal to 2. In addition to this, shared

memory consumption must be lower than 3072 bytes. As each problem stores 32

elements in shared memory (128 bytes), the number of concurrent problems per

threadblock, LG, must be less than or equal to 3072
128

= 24. Considering S = 32×LG

and L = LG × N
P

, then s = 5 + (l + p− n) and (s, p, l) = ((14− n), 3, 7) in order to

achieve maximum warp and block parallelism. If n > 9, the previous tuple cannot

be applied since 14 − n must be at least 5, as well as the fact that more than 128

threads are needed for solving each problem when p = 2. In that case, LG = 1, thus

L = N
P

and (s, p, l) = (5, 2, n− 2).

112 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Problem size (s,p,l) values

Kepler Platform

n ≤ 9 ((14− n), 2, 7)

n > 9 (5, 2, n− 2)

Maxwell Platform

n ≤ 8 ((13− n), 2, 6)

n > 8 (5, 2, n− 2)

Table 4.7: Description of the LF scan tuning parameters.

Table 4.7 also shows the tuning values for the Maxwell architecture, where the

same reasoning was followed to maximize the parallelism. Using 2 warps per block

(l = 6), fewer than 32 registers per thread and no more than 2048 bytes of shared

memory, then 32 active blocks and 100% warp occupancy are achieved. Thus,

applying p = 2 and the previous premises, (13 − n, 2, 6) is built when n ≤ 8, with

LG ≤ 16. The second case is focused on n ≥ 9, obtaining (s, p, l) = (5, 2, n− 2).

4.5.2. Scan operator using Kogge-Stone pattern (BPLG-

KS-SC Algorithm)

A second proposal for the scan algorithm using our three-phase methodology is

analyzed here, considering the Kogge-Stone pattern as the communication pattern of

the algorithm. This algorithm requires log2N steps, as can be observed in Figure 4.1

(d). The number of Node operators per step decreases by a factor of 2k, introducing

divergence into the final warp of each threadblock. By contrast, this pattern reduces

bank conflicts since adjacent threads access adjacent shared memory banks. As

each element is used by several threads, it is necessary to have a two-phase loading

process, using shared memory for loading one element, instead of working directly

in registers, as Figure 4.17 depicts.

4.5 Scan Primitive under a three-phase methodology 113

1 template <int N, int p, int S> __global__ void

2 BPLG_KS_scan (const float* __restrict__ src , float* dst) {

3 float reg[p*2];

4 __shared__ float shm[N > p ? S : 1];

5 // Load data from global mem to regs

6 copy <1,p>(reg ,src +... ,);

7 copy <1,p>(shm+...,reg);

8 __syncthreads ();

9 if(threadId <(blockDim.x-1))

10 copy <1,p>(reg+1,shm +...);

11 compute <p,MixR >(reg);

12 for(int accR=MixR; accR < N ; accR *=2) {

13 // Obtains strides and offsets

14 ...

15 //Reg -> Shm -> Reg

16 if(accR >MixR) __syncthreads ();

17 if(threadId < (blockDim.x - accR /2))

18 copy <1,p>(shm+writeOffset , writeStride ,reg , ...);

19 __syncthreads ();

20 if(threadId < (blockDim.x-accR))

21 copy <2,p>(reg ,shm+readOffset ,readStride , ...);

22 compute <p >(reg); // Computation in registers

23 }

24 copy <1,p>(dst+glbWPos ,reg ,...);

25 copy <1,p>(dst+glbWPos ,shm+shmOffset +...);

26 }

Figure 4.17: Kernel code for KS scan algorithm in BPLG.

CUDA Kernel Optimization phase: BPLG-KS-SC

Regarding the Hybrid communication strategy inside a block logic, this is very

similar to the Ladner-Fischer one, but using the shfl up instructions instead of shfl

instructions, due to the Kogge-Stone communication pattern structure.

Performance Parameter Tuning phase: BPLG-KS-SC

As occurred in Section 4.4.2, here each element is also shared by two different

Node operators. Thus, although each Node operator works with P elements, it

only has P
2

elements stored in its own registers, taking the remaining elements from

other threads. This can be expressed as P ′ = P
2

, obtaining L = LG × N
P ′

, since each

element is shared by two Node operators in each computing step.

Since the same Hybrid communication strategy as LF is performed here, this

algorithm applies the same reasoning as in the previous one. Table 4.8 contains the

two distinguished cases for Kepler. The first one considers n ≤ 8, with (s, p, l) =

114 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

(13−n, 2, 7), achieving the maximum warp and block parallelism. In higher sizes, the

tuple is updated to (s, p, l) = (5, 2, n− 1). Regarding Maxwell, the same reasoning

is followed in Table 4.8, obtaining (s, p, l) = (12−n, 2, 6) when n ≤ 7, and (s, p, l) =

(5, 2, n− 1) when n ≥ 8.

4.5.3. Experimental Results for the Scan Primitive with

Small Problem Sizes

This section presents the results of our strategy implementations for the scan

primitive in the Kepler and Maxwell architectures from Table 4.4. As in the case

of tridiagonal system solvers, we have compared our implementations against both

non-BPLG and BPLG-naive implementations. Finally, each proposal is compared

with respect to the CUDPP [98], Thrust [101], ModernGPU [97] and CUB [100]

libraries. In the case of scan algorithms, the performance is expressed in million

elements processed per second, MDATA/s, following the expression N · G · 10−6/t

where G = 221.

BPLG-LF-SC Results

Figure 4.18 and Figure 4.19 depict the performance of our different versions

for the Ladner-Fischer scan algorithm. Specifically, Figure 4.18 shows the perfor-

mance on the Kepler Platform, where BPLG-LF-SC-Naive starts with fairly good

performance, achieving a high occupancy (64 active warps and 16 active blocks per

SM). As N increases, this occupancy decreases (64 warps but only 2 blocks when

N = 2048) due to a high shared memory requirement (8192 bytes per block). On

the other hand, as the amount of shared memory remains invariant in the BPLG-

LF-SC implementation independently of N , the performance is also constant, with

the global memory bandwidth being the limiting factor of our implementation. The

BPLG-LF-SC proposal achieves an improvement of up to 2.31x with respect to

BPLG-LF-SC-Naive, and up to 3.54x over the non-BPLG implementation. The

BPLG-LF-SC always obtains a 100% warp occupancy, achieving Ba = 16 active

blocks when n ≤ 9 and Ba = 8 active blocks if n = 10. The decrease in the number

of active blocks is unavoidable when l = n− p.

4.5 Scan Primitive under a three-phase methodology 115

Problem size (s,p,l) values

Kepler Platform

n ≤ 8 ((13− n), 2, 7)

n > 8 (5, 2, n− 1)

Maxwell Platform

n ≤ 7 ((12− n), 2, 6)

n > 7 (5, 2, n− 1)

Table 4.8: Description of the KS scan tuning parameters.

Figure 4.18: MData/s comparison of BPLG-LF scan implementations in the Kepler
Platform.

The Maxwell architecture (see Figure 4.19) increases shared memory to 96 KB

per SM, increasing the block occupancy in these proposals. This fact means that

the performance difference between proposals is less pronounced in this architecture.

The performance of BPLG-LF-SC-Naive and LF-SC increases due to the compu-

tational power of Maxwell. However, BPLG-LF-SC performance does not rise, due

to the bandwidth, which is the limiting factor, but it still obtains up to 1.45x of

improvement over BPLG-LF-SC-Naive and 1.57x over LF-SC. Here, 100% of warp

parallelism is achieved in all cases, but the maximum threadblock parallelism cannot

be obtained when n > 8, due to l = n− p.

116 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.19: MData/s comparison of BPLG-LF scan implementations in the
Maxwell Platform.

BPLG-KS-SC Results

On the other hand, Figure 4.20 and Figure 4.21 show a performance comparison

of our Kogge-Stone scan proposals on both platforms. Figure 4.20 depicts results on

the Kepler Platform, where BPLG-KS-SC-Naive shows poor performance as N in-

creases. Furthermore, as can be observed, neither KS-SC nor BPLG-KS-SC-Naive

reaches N = 2048 as L = 1024 at most in current architectures and, although they

work with two elements per thread (P = 2), it uses P ′ = 1 in these implementations.

On the other hand, BPLG-KS-SC implementation consumes very little shared mem-

ory, and this amount is constant regardless of N . Specifically, each problem is solved

with 32 elements in shared memory, as explained.

On the Kepler Platform, BPLG-KS-SC is up to 4.03x faster than BPLG-KS-

SC-Naive and 4.94x faster than KS-SC. Empirically, it uses 27 registers per thread,

thus solving 8 elements per thread was the correct choice. On the Maxwell Plat-

form, Figure 4.21, it is important to notice that BPLG-KS-SC-Naive performance

increases in Maxwell owing to two reasons: more block occupancy due to 96 KB of

shared memory per SM, and the cache hierarchy in global memory accesses. These

two features reduce the performance impact of BPLG-KS-SC implementation, with

an improvement of up to 2.11x over BPLG-KS-SC-Naive and 2.53x over KS-SC.

4.5 Scan Primitive under a three-phase methodology 117

Figure 4.20: MData/s comparison of BPLG-KS scan implementations in the Kepler
Platform.

Figure 4.21: MData/s comparison of BPLG-KS scan implementations in the
Maxwell Platform.

Overall Results

This section gives a global overview of our best proposals with respect to CUDPP

[98], Thrust [101], ModernGPU [97] and CUB [100] libraries on both Platforms.

Although the most representative scenario of our proposal lies in solving several

problems simultaneously in one single invocation (G > 1), only CUDPP supports

this feature. Thrust, ModernGPU and CUB do not implement a multi-batch scan,

118 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.22: MData/s performance comparison of BPLG scan proposals in the Ke-
pler Platform

Figure 4.23: MData/s performance comparison of BPLG scan proposals in the
Maxwell Platform

invoking the library several times. Figure 4.22 and Figure 4.23 show the performance

results against CUDPP. However, Thrust, ModernGPU and CUB libraries are not

shown in the graph due to scale imperceptibility when G = 224/N .

On the Kepler Platform, Figure 4.22, BPLG-LF-SC obtains an improvement of

up to 7.44x over CUDPP, whereas BPLG-KS-SC has a very similar improvement,

being up to 7.43x faster than CUDPP. Our proposals, with very similar performance,

are 1447x, 610x and 1512x, on average, faster than Thrust, ModernGPU and CUB,

4.6 Sorting under a three-phase methodology (BPLG-BMCS Algorithm) 119

respectively, as they do not support a multi-batch scan and the several invocations

performed penalyze throughtput. Executing them for the case of G = 1, a single

invocation in all libraries, ModernGPU is the fastest one, but our proposals still

surpass Thrust (up to 4.23x), CUB (up to 1.04x) and CUDPP (up to 1.49x).

On the Maxwell Platform, Figure 4.23, BPLG-LF-SC is up to 4.84x faster than

CUDPP and BPLG-KS-SC obtains an improvement of up to 4.72x over CUDPP,

again similar results are obtained for both proposals. With respect to Thrust, Mod-

ernGPU and CUB, which do not support a multi-batch scan execution, our propos-

als are, respectively, 823x, 355x and 813x times faster on average.

Efficiency of the Performance Parameters Tuning Phase

This section compares the performance achieved by using the proposed perfor-

mance parameters, against the performance achieved by an exhaustive search of

performance parameters for the Kepler Platform. Table 4.9 shows this informa-

tion for BPLG-LF-SC on Kepler. For this algorithm, the values proposed were

(s, p, l) = ((14 − n), 2, 7) when n ≤ 9 and (s, p, l) = (5, 2, n − 2) in the remain-

ing cases. In this case, all the proposed values obtain the maximum performance

possible. Taking this empirical analysis into account, we can conclude that the

premises outlined in Section 4.1.1 for performance maximization obtain the best

performance parameters from the searching space, demonstrating the effectiveness

of our proposal.

4.6. Sorting under a three-phase methodology (BPLG-

BMCS Algorithm)

This proposal is the adaptation of the BMCS sorting algorithm presented in

Section 3.3.2 to our three-phase methodology [27]. Figure 4.24 presents an imple-

mentation of the BMCS algorithm using BPLG skeletons. The code can be divided

into four main sections:

120 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

(p, l)

n
n = 6 n = 7 n = 8 n = 9 n = 10 n = 11

p = 1

l = 5 6458 x x x x x

l = 6 11959 11876 x x x x

l = 7 17637 17356 17137 x x x

l = 8 17321 16653 16644 16564 x x

l = 9 16723 16336 16274 16142 16023 x

l = 10 13771 13785 13869 14173 14280 14239

p = 2

l = 5 12021 12011 x x x x

l = 6 17269 17276 17211 x x x

l = 7 19172 19179 19205 19189 x x

l = 8 19123 19129 19123 19172 19161 x

l = 9 19010 19030 18934 17968 19149 19150

l = 10 17458 17423 17767 17736 18180 18327

p = 3

l = 5 15399 16021 16028 x x x

l = 6 18580 18600 18602 18714 x x

l = 7 18342 18379 18379 18197 182890 x

l = 8 18408 18410 18416 18410 118237 18330

l = 9 18331 18382 18376 18381 18388 18194

l = 10 17464 17730 17723 17679 17801 18002

Table 4.9: Performance comparison of different performance parameters values for
BPLG-LF-SC in MData / s

Initialization section (lines 3-4). Allocates registers and shared memory.

Load data from global memory (lines 5-6) and first computing step (line 8).

Loads coalescent data using a 64-bit load to obtain 2 consecutive elements

instead of accessing a single data element per memory request. Then, elements

are directly processed in registers by the compute function, which compares

and swaps values.

Computing steps of the algorithm (lines 9-29). The loop computes the remain-

ing steps of the algorithm, with its internal steps. To this end, the loop loads

the corresponding data into registers using shared memory and synchroniza-

tion barriers. The synchronization barrier in line 13 can be avoided in the first

iteration, as the data are already in registers. The same behaviour occurs in

4.6 Sorting under a three-phase methodology (BPLG-BMCS Algorithm) 121

1 template <int N, int p, int S> __global__ void

2 BPLG_Bitonic (const int* __restrict__ data) {

3 int reg[p*2];

4 __shared__ int shm[N > p ? S : 1];

5 // Load data from global memory to registers

6 copy <2,p>(reg , data +...);

7 // First computing step

8 compute <p,MixR >(reg);

9 for(int accR=MixR; accR < N ; accR *=2) {

10 // Obtains strides and offsets

11 int readOffset = ..., readStride = ... ;

12 //Reg -> Shm -> Reg

13 if(accR >MixR) __syncthreads ();

14 copy <2,p>(shm +2* threadId , 1,reg , ...);

15 __syncthreads ();

16 copy <2,p>(reg ,shm+readOffset ,readStride , ...);

17 // Computation in registers of first internal step

18 compute <p,MixR >(reg);

19 // Remaining internal steps

20 for(int j=accRad; j>1; j/=2) {

21 int readOffset = ..., readStride = ... ;

22 int writeOffset = ..., writeStride = ... ;

23 if (j<accRad) __syncthreads ();

24 copy <2,p>(shm+writeOffset , writeStride ,reg , ...)

;

25 __syncthreads ();

26 copy <2,p>(reg ,shm+readOffset ,readStride , ...);

27 compute4 <p-1>(reg);

28 }

29 }

30 copy <2,p>(data ,reg ,...);

31 }

Figure 4.24: Kernel code for the BMCS algorithm using BPLG skeletons.

the internal loop on line 23, where results are returned in registers.

Store data to global memory (line 30). The final iteration of the loop stores

the results into registers; thus, the final result is moved from registers to global

memory using 64-bit stores, reducing the number of memory transactions.

This algorithm uses a radix-2 expression for the external steps, whereas a radix-4

implementation is used in the internal steps, as explained in Section 3.3.2. In each

external step, an increased sub-sequence of the problem is solved in several internal

steps. The size of this sub-sequence is doubled in each iteration, along log2N − 1

iterations. Thus, some sub-sequence sizes are power of 2 (r = 2) and others are

power of 4 (r = 4). In order to integrate both radix, the implementation works with

radix r = 2 and considers N = 2n. Furthermore, each thread may work with two

Node operators of fan in = 2, or with one Node operator of fan in = 4, depending

122 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

on the sub-sequence size. When the sub-sequence size is not a power of 4, the mixed-

radix compute function is the responsible of determining whether the first step is

performed with r = 2 (each thread works with 2 Node operators of fan in = 2) or

with r = 4 (each thread works with a single Node operator of fan in = 4). The

remaning steps are always performed with r = 4 (compute4 function in the code)

and each thread works with a single Node operator of fan in = 4.

4.6.1. CUDA Kernel Optimization phase: BPLG-BMCS

The effectiveness of BMCS has been demonstrated in Section 3.3.3. Here, BMCS

is here adapted to BPLG, providing specialized kernels for different datatypes and p

values, with the specific code for each case that exploits the maximum parallelism.

For example, specialized kernels that enables the use of customized data types as

Float2 or Int4 has been implemented, reducing the number of memory requests and

improving performance. This approach has been also optimized with the Hybrid

communication strategy inside a block where initial steps are computed using shuffle

instructions, sorting p × warpSize elements in each warp; whereas the other steps

use shared memory as a communication channel between warps. If N ≤ 128, then

there is no synchronization barrier in the execution.

4.6.2. Performance Parameter Tuning phase: BPLG-BMCS

Using our notation, this algorithm uses P = 4 (p = 2), then S = L × 4. The

use of P = 4 with integers does not surpass the established limit of 32 registers per

thread, and enables the communication with shuffle instructions exclusively when

n ≤ 7.

In Kepler architectures, when n ≤ 7, the values proposed for (s, p, l) are (0, 2, 7),

as they obtain both maximum warp occupancy and maximum number of active

threadblocks per SM, where LG > 1. When 8 ≤ n ≤ 9, the following tuple is

obtained (s, p, l) = (9, 2, 7), using performing communications across shared mem-

ory, but still achieving both maximum warp and threadblock occupancy. When

9 < n ≤ 12, the tuple (s, p, l) = (n, 2, n − 2) is employed, where LG = 1, obtaining

the maximum warp parallelism, but decreasing the number of active threadblocks

4.6 Sorting under a three-phase methodology (BPLG-BMCS Algorithm) 123

Problem size (s,p,l) values

Kepler Platform

n ≤ 7 (0, 2, 7)

8 ≤ n ≤ 9 (9, 2, 7)

n > 9 (n, 2, n− 2)

Maxwell Platform

n ≤ 7 (0, 2, 6)

n = 8 (8, 2, 6)

n > 8 (n, 2, n− 2)

Table 4.10: Description of the BPLG-BMCS sorting tuning parameters.

when increasing n, due to the high shared memory requirements.

In Maxwell architectures, similar values are obtained. When n ≤ 7, (s, p, l) =

(0, 2, 6), achieving both maximum warp occupancy and maximum number of active

threadblocks per SM, with LG > 1. When n = 8, then the tuple (s, p, l) = (8, 2, 6)

is obtained, using shared memory but still achieving both maximum warp and

threadblock occupancy. For the remaining sizes, 9 ≤ n ≤ 12, the tuple (s, p, l) =

(n, 2, n− 2) is used, obtaining 100% warp parallelism but decreasing the number of

active threadblocks progressively owing to shared memory consumption. Table 4.10

shows these values for both architectures.

4.6.3. Experimental Results for Sorting with Small Problem

Sizes

In this section, we present the results of our proposals. All tests were run using

integers as datatype. All the data initially reside in the GPU memory, so there

are no data transfers to CPU during benchmarks. The test platforms used in our

experiments are described in Table 4.4. The performance of these experiments is

measured in million data processed per second, MData/s. Many applications need to

solve G batch problems in parallel; therefore, we used a batch execution to compute

G problems each time. The size of the batch depends on the input size and is

124 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.25: Comparison of our proposals in the Kepler Platform.

given by the expression G = 224/N . Thus, MData/s value is performed using the

expression N ×G× 10−6/t.

Firstly, Figure 4.25 depicts a performance comparison among our implementa-

tions in the Kepler platform. The BMS tag refers to an optimized Bitonic Merge Sort

implementation, whereas BMCS represents the implementation of our algorithmic

variant with shuffle communications presented in Section 3.3.2. BPLG-BMS-Naive

denotes a naive implementation using the previous BPLG skeletons. BPLG-BMCS

is the approach proposed in this chapter. In general, while shared memory is not

an expensive resource, BPLG skeletons are much better due to the explained fea-

tures of the library. Until N = 256, BPLG-BMCS runs faster than BMCS, as each

threadblock executes several batches in parallel, which guarantees a high occupancy,

being up to 5.4x faster than BMCS, and 3.8x with respect to BPLG-BMS-Naive.

As N increases, the number of batches per block is reduced in BPLG-BMCS, and

performance is very similar with BMCS. In the case of BMCS, the peak of per-

formance is achieved with N = 256 and N = 512, as the occupancy is maximum

with these values. In problem sizes that are larger than N = 512, both BMCS

and BPLG-BMCS can only execute one problem per threadblock, owing to resource

consumption. Even in this case, BPLG-BMCS is slightly better than BMCS. As

demonstrated, BPLG skeletons offer a simple way of programming, obtaining the

same, or higher, performance as with other complex-optimized verbose kernels for

4.6 Sorting under a three-phase methodology (BPLG-BMCS Algorithm) 125

Figure 4.26: Comparison of our proposals in the Maxwell Platform.

the same task, such as BMCS. However, in both implementations, shared memory

becomes a limiting factor.

Figure 4.26 shows the same comparison on the Maxwell platform, maintaining

the same nomenclature. The MData/s achieved on this platform is higher, which

can be ascribed to the fact that Maxwell presents a power-efficient performance

which provides a higher delivered performance per CUDA core than Kepler owing

to its new datapath organization, new improved instruction scheduler, new memory

hierarchy and bandwidth, obtaining a higher number of active blocks per Stream-

ing Multiprocessor. The architecture doubles the number of blocks per SM, up to

32 blocks (double than Kepler), although the available shared memory per block

remains the same. Owing to this behaviour, BMCS occupancy is maximum with

N = 128 in Maxwell. In this platform, BPLG-BMCS is up to 2.63x faster with re-

spect to BMCS and up to 3.76x over BPLG-BMS-Naive, when small sizes; although

this speed-up is reduced for all proposals when larger sizes, due to the shared mem-

ory consumption penalty.

Figure 4.27 compares BPLG-BMCS with respect to the CUDPP [98], CUB [100]

and ModernGPU [97] libraries, where ModernGPU is the reference library for sort-

ing small problem sizes. It should be noted that this comparison is made in terms of

execution time for only one batch. CUDPP shows the worst results for small prob-

126 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Figure 4.27: Comparison of GPU sorting implementations for one batch on the
Kepler Platform.

lem sizes that can be directly processed in shared memory. Our proposal, BPLG-

BMCS, provides highly competitive results compared to ModernGPU, obtaining an

improvement of up to 10x over CUDPP, up to 8.26x over CUB and up to 2.6x over

ModernGPU. On the other hand, Figure 4.28 presents the same comparison on the

Maxwell Platform. Results are similar to the Kepler Platform, obtaining up to 40x

in comparison to CUDPP, up to 20.9x over CUB and up to 4.8x over ModernGPU.

Table 4.11 compares our BPLG-BMCS to CUDPP, CUB and ModernGPU,

which prove to be extremely inefficient with problems where many batches of small

size are processed in parallel, as they were designed for solving just one large-size

problem. In order to solve G problems of size N , these libraries have to launch G

light kernels. Our proposal is up to 11.79x faster than CUDPP library, up to 7.58x

over CUB and up to 5.31x over ModernGPU on the Kepler Platform. Table 4.11

shows the MData/s obtained in the Maxwell Platform. The MData/s achieved are

higher owing to Maxwell design. Our proposal is up to 6.47x faster than CUDPP,

up to 5.35x over CUB and up to 3.61x than ModernGPU.

4.7 Conclusions of the Chapter 127

Figure 4.28: Comparison of GPU sorting implementations for one batch on the
Maxwell Platform.

Kepler Platform Maxwell Platform

N G BPLG-BMCS ModernGPU CUDPP CUB BPLG-BMCS ModernGPU CUDPP CUB

64 262144 10614 2 0.9 1.4 15521 4.3 2.4 2.9

128 131072 7492 3.7 1.8 2.7 10457 8.3 4.9 6.1

256 65536 4496 7.1 4 5.3 7218 16.3 10 12.3

512 32768 3817 13.4 7.9 10.2 5333 31.4 19.6 23.5

1024 16384 2897 25.2 14.7 20.4 4234 61.2 35.9 43.1

2048 8192 2144 34.4 16.1 5.5 3314 66.5 33.4 24.2

4096 4096 1549 50.4 16 10.4 2534 97.2 48 40.1

Table 4.11: MData/s comparison of GPU multi-batch Sorting Algorithms in the
Maxwell Platform.

4.7. Conclusions of the Chapter

This chapter provides a three-phase tuning methodology for parallel prefix algo-

rithms of small size on a GPU (whose size fits in the GPU shared memory). In the

first phase, GPU Resource Utilization Analysis, the GPU performance parameters

are identified, and a set of performance premises are established. In the CUDA

Kernel Optimization phase, the algorithms are implemented using CUDA skeletons.

Finally, in the Performance Parameters Tuning phase, the suitable values for the

GPU performance parameters are obtained for each problem size and GPU archi-

tecture.

128 Chapter 4. A Tuning Methodology for Small Problem Sizes on a GPU

Following this methodology, three different tridiagonal system solvers (BPLG-

CR-TS, BPLG-PCR-TS and BPLG-LF-TS) have been developed, as well as two

scan operators (BPLG-LF-SC and BPLG-KS-SC) and a sorting operator (BPLG-

BMCS). In the case of tridiagonal solvers, the three proposals are tested on two

different GPU architectures, outperforming both CUDPP and CUSPARSE, the

state-of-the-art, performing especially well BPLG-LF-TS. Both scan proposals have

a similar performance, outperforming CUDPP in most cases. Regarding BPLG-

BMCS, surpasses CUDPP, CUB and ModernGPU, the state-of-the-art, being up to

11.79x, 7.58x and 5.31x, respectively. It should be observed that this methodology

is especially well suited to solve several batches simultaneously, and the proposed

values for the GPU performance parameters proposed by the methodology match

very well with those obtained empirically.

Chapter 5

A Tuning Methodology for

Parallel Prefix Algorithms on a

GPU: Medium and Large Problem

Sizes

In this chapter, the previous tuning methodology for small problem sizes is ex-

tended to support medium and large problem sizes; i.e., problems that do not fit in

the CUDA shared memory, but which still can be stored in the global memory a

single GPU. This is done by partitioning the computation into several stages (multi-

stage strategy). As was introduced in Chapter 2, Index-Digit algorithms are a subset

of parallel prefix algorithms which have special features. Thus, owing to these spe-

cial features, this tuning methodology is initially specialized for ID-algorithms, and

then generalized to the superset of the parallel prefix algorithms.

In the case of ID-algorithms, this methodology is tested for the Wang & Mou

tridiagonal system solver (WM); whereas the methodology focused on general par-

allel prefix algorithms is tested for the scan primitive and the Tree-Partitioning

Reduction tridiagonal system solver (TPR). This work was originally introduced

in [28], [34] and [36]. In [36], we also presented a FFT proposal (MS-ID-FFT) under

the ID methodology, in collaboration with other authors and based on the Stockham

algorithm [121].

129

130
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

5.1. A two-phase Methodology for Index-Digit Al-

gorithms

Similar to [82], this tuning methodology for ID-algorithms also has two phases.

In the first phase, we need to determine the main features which influence the GPU

performance for these problem sizes and establish a set of theoretical performance

premises. Based on these premises, a number of tunable parameters is obtained and,

for each algorithm, the optimal values are chosen. In the second phase, CUDA ker-

nels are built with CUDA skeletons and previous values, and the suitable performing

kernel version is chosen at compile-time with the corresponding tuning parameters

(according to the problem size and target architecture).

When working with problem sizes that are bigger than one threadblock’s shared

memory capacity but which still fit into the global memory of a single GPU, data

interchange is performed via global memory, and different options for synchronizing

threadblocks can be considered:

Multi-Stage Strategy. In this case, the work is divided into several kernels;

i.e., into several stages. Here, each kernel invocation acts as a global synchro-

nization. Threadblocks from each kernel write their partial results into global

memory. As a synchronization mechanism for this data interchange, another

kernel is launched with its corresponding threadblocks. These new thread-

blocks build new partial results using the previous kernel data from global

memory. This strategy significantly increases the global memory bandwidth

requirements.

Dynamic parallelism. Using dynamic parallelism, a kernel directly from the

GPU can spawn other kernels. Its main objective is to reduce the overhead

of starting and synchronizing kernels. Even considering the added flexibility,

the generated code tends to run slower due to the relocatable device code

generation and the use of local memory, global memory accessible only by the

thread that declares it, used as a stack [135]. This approach is suitable for

problems that require mesh refinement (such as finite element methods) using

a dynamic work distribution.

5.1 A two-phase Methodology for Index-Digit Algorithms 131

Persistent threads. This is a decentralized sleeping strategy. Each threadblock

sets a flag when it reaches the intra-block barrier, executing an infinite loop

until a master threadblock changes the flag value. When all flags are set, the

master block resets them and all threadblocks continue execution. This allows

threadblocks to be synchronized in a single kernel. A kernel uses, at most,

as many threadblocks as can be concurrently scheduled on the SM. Thus,

this strategy synchronizes global memory using a single kernel and a constant

number of threadblocks. In many cases, the use of persistent threads on GPUs

results in performance losses [51]; nonetheless, it has been successfully applied

in some optimized libraries, such as CUB [100], as it presents low memory

contention.

In this work we have used the multi-stage strategy as the synchronization mech-

anism among threadblocks. This is the same technique used in other libraries, such

as CUFFT [94] or the proposal presented in [23]. Despite the increased global mem-

ory requirements, if the data exchanges are properly optimized and the workload

is properly balanced among the GPU resources, the multi-stage strategy is quite

efficient, as this work demonstrates.

5.1.1. GPU Resources Utilization Analysis Phase

The mapping of G = rbatch data sequences of size N = rn is identified with a

5-tuple of the form (n, p, s, l, b). In our multi-stage proposal of ID-algorithms, each

problem is computed by dividing it into a set of m stages, where each stage executes

several steps. Each stage executes a kernel which assigns a part of its corresponding

problem to different threadblocks. As introduced in Chapter 2, b is formed by two

coordinates b = (bx, by), where rbx represents the number of threadblocks used per

each problem, while rby represents the number of problems being simultaneously

executed on that kernel in a batch mode. Thus, Bx · By threadblocks process the

whole batch. Furthermore, each thread performs the computations associated to the

Node operator. Data are stored in private registers in order to achieve high perfor-

mance, as register files have lower access latency and higher bandwidth than shared

memory. Finally, threads from the same threadblock exchange data before the next

computing step through shared memory. Specifically, our multi-stage proposal is

132
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

based on only three parameters (n, p, bx) given that s = n − bx, as all the data

stored in registers also have a copy in shared memory to perform the intra-block

memory exchanges; and by = batch is given by the batch size, which is only known

at runtime. In our proposal, l consists of three coordinates (lx, ly, lz), where the

second and third coordinates, (ly, lz), are optional. The l parameter can be related

with s and p using s = p+ l.

Premises for Performance Maximization

In this work, large problems are computed over several kernels. When computing

several kernels, new parameters influence performance. For example, the number

of invoked kernels, the number of steps processed by kernel and the number of

elements processed by each kernel. Considering these factors and attempting to

improve performance, we define the following premises:

1. The minimization of the number of stages, m. Global memory data exchanges

are slower than using other memories, such as shared memory, despite implic-

itly utilizing the L1 and L2 caches. In the multi-stage strategy, data inter-

change via global memory is the only method for sharing information among

kernels, as n > s. In addition to this latency, each kernel invocation implies

an overhead, even for empty kernels. Thus, the number of stages (kernels) in

the multi-stage strategy needs to be minimized. In our proposal, the number

of stages is given by the following expression:

m =
⌈n
s

⌉
(5.1)

In order to minimize this expression, s must be as large as possible. Each

kernel invocation executes as many problem steps as the shared memory al-

lows. Thus, each kernel processes several chunks of S elements (one chunk per

threadblock). Subsequent kernels will merge elements among chunks until the

final result is obtained.

2. Balancing warp and block parallelism. As previously explained, the level of

GPU parallelism can be supported in terms of the number of threadblocks

5.1 A two-phase Methodology for Index-Digit Algorithms 133

per SM (SM block parallelism), or the number of warps per SM (SM warp

parallelism):

a) The maximization of block parallelism in each stage in order to keep

processing the maximum amount of simultaneous threadblocks per SM

(16 in the case of Kepler and 32 in the case of Maxwell -based GPUs). In

fact, the GPU hardware is able to provide highly satisfactory performance

even at lower occupancies (low SM warp parallelism) [126,127].

b) The maximization of warp parallelism in each stage. This premise is

focused on increasing the number of warps per SM.

Our proposal attempts to strike a balance between the maximization of warp

and block parallelism. In order to increase this parallelism, we need to limit the

factors that reduce the SM parallelism, such as the number of registers used

by each thread or the amount of shared memory required by threadblock.

3. Increasing the computational load per thread. Both r and P parameters are

closely related. Note that r is a feature of the algorithm which represents the

number of elements computed in each Node operator. However, if the target

architecture allows more than r elements to be stored in registers, without SM

occupancy penalization, it may be interesting to process more Node operators

per thread, without modifying the base r of N . In this case, each thread

processes P elements in P
r

radix-r nodes. Increasing either P or r means

processing more elements per thread. This influences the number of steps taken

and the number of threads which process a problem, and reduces the number

of synchronization barriers. Thus, larger values obtain higher performance.

Nevertheless, their increase may also require too many registers per thread,

resulting in local memory spilling and the minimization of parallelism. In this

work, P
r

radix-r nodes are easily integrated in a single radix-P node, reducing

the number of steps taken, thanks to the ID-algorithm features.

Combining all of these premises is not easy. Firstly, s needs to be increased in

order for there to be fewer stages (Premise 1). This is fundamental since it avoids

launching several kernels, synchronizations and reads/writes to global memory. This

increment entails more elements being processed by a single kernel. However, the in-

crease of smay decrease the SM block parallelism (Premise 2.a). Each SM has a fixed

134
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

amount of shared memory partitioned among the threadblocks, thus the amount of

shared memory required by each threadblock limits the SM block parallelism. In

order to achieve Premise 2.b, keeping the number of threadblocks constant, l must

be raised. Due to the equation s = p+ l, there are two options: either decreasing p

and keeping s constant or increasing s and keeping p constant. In the former option,

block parallelism remains the same, reducing the workload per thread (which implies

more steps, loop iterations and shared memory accesses), whereas the opposite is

true for the latter. In addition to this, each SM also has a register file partitioned

among threads. Decreasing register consumption implies better warp occupancy.

However, p should be high if Premise 3 is to be achieved. The maximum number of

concurrent warps and threadblocks per SM depends on the architecture.

In the case of Kepler, the total amount of registers per SM is 65536 and the

amount of shared memory per SM is 48 KB, enabling up to 16 concurrent thread-

blocks and 64 concurrent warps. The number of registers used by each thread is

assigned at compile time. In hardware with CUDA capabilities 2.x or 3.0, no more

than 63 registers can be assigned to the same thread. Hardware with CUDA ca-

pabilities 3.5 supports up to 255 registers per thread. If the kernel requires more

registers than those supported by the architecture, local memory spilling will be

generated. This means using global memory for placing values instead of registers,

paying the penalty of global memory latency.

Regarding Maxwell GPUs, the architecture has 96 KB of shared memory per

SM and can use up to 48 KB per threadblock, with the register file size remaining

constant. It enables up to 32 concurrent threadblocks and 64 concurrent warps.

Our main objective in the optimization of these algorithms is to find a trade-

off between premises for each problem on each architecture in order to achieve the

highest possible performance.

5.1.2. CUDA Kernel Optimization Phase: String Operators

and Mapping Vector

This section describes the use of mapping vectors based on the Index-Digit rep-

resentation [46]. The mapping vector is a compact representation of the data distri-

5.1 A two-phase Methodology for Index-Digit Algorithms 135

bution on the system memory hierarchy. A mapping vector divides the Index-Digit

representation into different fields which are used to assign resources of the CUDA

GPU (e.g. threadblock, thread or registers) to the specific data item to be treated

by the GPU. At the beginning and the end of the algorithm, data reside in global

memory; however, data are moved among different resources in the GPU during the

execution. The string operator provides a precise description of the data reordering,

being useful in the design and optimization of different algorithms. Furthermore,

the string operator makes it possible to obtain an Index-Digit representation in each

step of the algorithm. Further information about string operator properties can be

found in [30].

Data sequences are stored in the GPU ’s global memory with a consecutive data

distribution according to the following mapping vector:

[tn+batch · · · tn+1 tn · · · t1] (5.2)

This means that data with size N will be stored consecutively in global memory.

Hence, the first data sequence of the batch will start at location 0, the second at

location N , and the i-th problem of the batch at location i×N .

The mapping vector for data on the SM resources that we consider is

[tn+batch · · · ts+1︸ ︷︷ ︸
b

s︷ ︸︸ ︷
ts · · · tl+1︸ ︷︷ ︸

p

tl · · · t1︸ ︷︷ ︸
l

] (5.3)

Firstly, this means that each threadblock i = [tn+batch · · · ts+1] processes S items of

data which are stored in shared memory, and secondly, thread j = [tl · · · t1] within a

threadblock processes P items of data where datum [tn · · · tl+1 tl · · · t1] is stored on

the register [ts · · · tl+1] of thread j. Note that consecutive data belong to different

threads.

However, the data distribution of a problem could change depending on the

implementation design for a given target architecture. For instance, the previous

example can be also expressed with the following mapping vector:

136
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

[tn+batch · · · ts+1︸ ︷︷ ︸
b

s︷ ︸︸ ︷
ts · · · tp+1︸ ︷︷ ︸

l

tp · · · t1︸ ︷︷ ︸
p

] (5.4)

In this case, each thread j = [ts · · · tp+1] within a threadblock, processes P con-

secutive data stored in registers.

Figure 5.1 depicts an example of mapping the data to the GPU resources when

s = 9, p = 4 and bx = 2 for the case r = 2 and n = 11. Each threadblock receives

a set of elements, 2048/4 = 512, which are stored in shared memory, and evenly

distributed to the registers among 32 threads (l = 9 − 4). The mapping vector for

this example would be:

[tbatch+11 · · · t12︸ ︷︷ ︸
by

t11t10︸ ︷︷ ︸
bx=2

s=9︷ ︸︸ ︷
t9 · · · t5︸ ︷︷ ︸

l=5

t4 · · · t1︸ ︷︷ ︸
p=4

] (5.5)

For example, element 1041 = [· · · 10︸︷︷︸
bx

00001︸ ︷︷ ︸
l

0001︸︷︷︸
p

] is processed by thread 1 (l =

00001) in block 2 (bx = 10) and stored in register 1 (p = 0001) of that thread.

Two types of operators are defined, which correspond to computations and data

permutations [4], respectively. All of these are formally defined in Table 5.1, wherein

the modified digits are underlined. To write the expressions of the string operators

we follow the convention of composing operators from left to right. For example,

in the string operator φ1φ2, we first execute φ1 and then, φ2. First, we define the

operator that represents the computations.

Definition 1. The Node operator, Υr
i , with 1 ≤ i ≤ n where n = logrN , reads those

sets of r data items whose position differs precisely in their i-th digit, performs an

operation over them and writes r results.

Depending on the operation, each Node function will be defined with its own

behavior for each algorithm. This specialization only affects the implementation

details, but not the methodology design. In general, to simplify the notation when

using the basic radix-2 algorithm, the expression of this operator will be referred

to simply as Υi instead of Υ2
i . Furthermore, in order to clarify the explanation, we

5.1 A two-phase Methodology for Index-Digit Algorithms 137

Figure 5.1: Data mapping with r = 2, n = 11, s = 9, p = 4 and bx = 2.

keep the Index-Digit representation with r = 2.

The second type of operators represents data permutations.

Definition 2. The perfect unshuffle operator Γi,j, i ≥ j, performs a cyclic shift to

the right between the i-th and j-th digits of the Index-Digit representation of the data.

We also define a generalization of this operator, Γm
i,j. Instead of performing a

single cyclic shift to the right, it will perform m consecutive shift operations, such

138
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

as Γ2
i,j = Γi,jΓi,j. For instance, Γ2

7,2[t8 t7 t6 t5 t4 t3 t2 t1] = [t8 t3 t2 t7 t6 t5 t4 t1].

Definition 3. The general unshuffle operator Γi,j,k,l, i ≥ j ≥ k ≥ l, is similar to the

previous definition, however it is applied to two digit subfields {i . . . j} and {k . . . l}
of the Index-Digit representation.

Therefore, data in the range {tj−1 · · · tk+1} remain unmodified. For instance,

Γ8,6,2,1[t8 t7 t6 t5 t4 t3 t2 t1] = [t1 t8 t7 t5 t4 t3 t6 t2].

Definition 4. The digit reversal operator ρi,j, i ≥ j, performs the reversal of the

digits between the i and j-th digit of the Index-Digit representation of the data.

For instance, the digit reversal of the sequence ρ7,2[t8 t7 t6 t5 t4 t3 t2 t1] =

[t8 t2 t3 t4 t5 t6 t7 t1]. This operator coincides with its inverse.

Once the algorithm expression is generated with the operators, obtaining the

code is quite straightforward. Permutation operators are easily implemented using

different strides and offsets when transferring data from different memory spaces.

Computation operators are implemented directly from their definition. The imple-

mentation makes extensive use of template functions (CUDA skeletons) to create

several optimized versions, depending on the problem size and the target architec-

ture. Different tables are built, where each problem size represents an entry indi-

cating both how to split the problem over the number of kernels and the optimized

performance parameters for each kernel. The library chooses the entry depending

on the problem size and target architecture, and kernels are then built with these

parameters at compile time, via template metaprogramming. Hence, the user does

not have to generate it. Most of the function calls, register loops and redundant

move operations will be fully optimized at compile time. Thus, this approach pro-

vides generality and usability, generating well performing kernels with little effort,

as can be seen in the performance evaluation section (see Section 5.3).

5.2 Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-ID-TS) 139

Operator Definition

Node
Υr

i , with 1 ≤ i ≤ n, computes r data elements
whose index differs in the i-th digit.

Perfect Unshuffle Γi,j[tn · · · t1] = [tn · · · ti+1tjti · · · tj+1tj−1 · · · t1]

General Unshuffle
Γi,j,k,l[tn · · · t1] =

[tn · · · ti+1tlti · · · tj+1tj−1 · · · tk+1tjtk · · · tl+1tl−1 · · · t1].
Digit Reversal ρi,j[tn · · · t1] = [tn · · · ti+1tjtj+1 · · · titj−1 · · · t1].

Table 5.1: Description of string operators.

5.2. Multi-Stage Index-Digit Tridiagonal System

Solver Algorithm (MS-ID-TS)

There are several reasons for solving tridiagonal systems of large size [74]: (i)

a set of small systems can be expressed as a single large problem by joining their

matrices, (ii) solving a large problem is the most difficult case to implement, since

there is no independence to compute slices of the problem separately, in addition

to which the common shared-memory is limited. In the case of GPU programming,

there is also another strong reason: (iii) although there are a great number of GPU-

based solvers for small problem sizes, only few implementations can handle large

problem sizes.

Our MS-ID-TS proposal is based on the Wang and Mou algorithm [132] and

solves large problem sizes efficiently. The computation is divided into n steps, and

follows a pattern similar to Cooley-Tukey, but excluding the initial bit-reversal stage.

Each Node operator operates on triads of equations, labeled Left, C enter and

Right, represented as:

[i]t−1 = [Et−1
q·2t−1︸ ︷︷ ︸
Li

, Et−1
i︸︷︷︸
Ci

, Et−1
(q+1)2t−1−1︸ ︷︷ ︸

Ri

] (5.6)

First, the middle term of the equation Ri reduces the first term of Lj. The

middle term of the new equation in Lj is used to reduce the final term of Li and

Ci. On the other hand, the final term in Ri reduces the middle term of the original

140
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Lj, and then, the new equation in Lj reduces the first term of Rj and Cj. At the

end, both left-hand equations will be identical (see L′); the same is true for both

right-hand equations (see R′). After n computation steps, the solution xi can be

immediately computed by dividing the second term of Ci by its independent term.

This is the basic computation in the case of radix-2, but higher radix versions can

be used. Therefore, each element in a Node operator is a triad of equations that

requires 3 × 16 bytes of storage. However, when dealing with adjacent equations,

there is a property which means that the whole triad need not be stored, just a single

equation, as the two others are easily obtained from adjacent equations. Specifically,

the left- and right-hand equations are equal to two of the center equations. In step

k, the left- and right-hand equations of [i] can be obtained as follows:

Li = Ca → a = 2k × bi/2kc
Ri = Cb → b = 2k × (1 + bi/2kc)− 1

Hence, each element is represented by a single central equation and is stored in

a float4 data type, since its right- and left-hand equations are easily obtained from

the central equations of other elements. This property only arises in the first stage

of the algorithm, where adjacent equations are stored in a common memory space;

whereas in the remaining stages, triads need to be stored for each equation, since

the central equations used for calculating the right- and left-hand equations could

be placed into another memory space. Henceforth, an element is formed by one

equation in the first stage, thanks to the adjacent property, but by 3 equations (a

triad) in the remaining stages.

Figure 5.2 shows the reason why this property cannot be applied in several

stages. It shows the MS-ID-TS proposal for n = 4, p = l = 1 and bx = 2, where

each number-box represents an element. The computation is divided into two stages;

the first stage processes the first and second steps, while the second stage performs

the third and fourth steps, using four threadblocks in each step. In the first stage,

adjacent elements are stored in the corresponding shared memory of each thread-

block, so only one equation per element is stored. However, it is easy to observe

how this behavior changes in the second stage, as each threadblock works with non-

5.2 Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-ID-TS) 141

Figure 5.2: Distribution of the ID-LD-TS proposal with two stages for N = 16,
p = l = 1 and bx = 2

adjacent elements, storing the whole triads for each element. For example, element

4 is solved by threadblock 0 in the second stage (although it was processed by

threadblock 1 in previous stage). Accordingly, the right-hand equation of element

4, R4, corresponds with the central equation of element 7, C7, in the first step of

the second stage. However, element 4 cannot access element 7, since they are in

different threadblocks: element 4 is stored in threadblock 0, whereas element 7 is

contained in threadblock 3. This fact forces us to store the corresponding three

equations of each triad for all elements.

Changing the access pattern (i.e., changing the current data distribution among

threadblocks) to another pattern where adjacent elements are placed together in

the same threadblock (working with portions of consecutive elements) would imply

increasing the number of stages (with its corresponding latency penalty). This

new communication pattern guarantees processing the maximum number of steps

per stage, thus minimizing the number of stages. For non-initial stages, we have

142
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

preferred to launch a small number of kernels which store whole triads, instead of

launching more kernels whose elements are single equations. We justify this decision

on the basis that the new GPU architectures (and it is highly likely that future

architectures too) increase their shared memory space, which is beneficial for this

implementation.

Due to this limitation, it has been necessary to differentiate the s parameter

depending on its being in the first stage or in subsequent ones. Thus, s is split into

s1 and s2, as data size is not the same for a single equation (first stage) as for a triad

(remaining stages). Therefore, s1 is used to represent the elements in the first stage,

where it is not necessary to store triads, and s2 is used in remaining stages, taking

into account that elements are represented by triads of equations, 3× float4. Note

that both s1 and s2 refer to the number of stored elements, irrespective of their

size. Thus, the first kernel’s shared memory can hold more elements than other

kernels shared memory, as its elements are much lighter than the elements in the

remaining stages, s1 > s2. In our proposal, the first stage computes bs1/pc steps and

the remaining stages will compute w = b (n−s1)
p·(m−1)c steps per stage. In order to take

advantage of the data type used for representing the elements, s1 should be as large

as possible, since more steps can be performed in Stage 1 in comparison to other

stages, while using the same amount of shared memory thanks to the adjacency

property.

Moreover, instead of having only s2 = rw elements per threadblock in the re-

maining stages, our implementation stores s2 elements of the same problem in each

threadblock, where the s2 value is defined to maximize GPU parallelism, as explained

below. Thus, each threadblock computes several sets of rw dependent elements from

the same problem until s2 is fulfilled. This increases warp parallelism, performing

more work in each threadblock. There is dependence among elements of the same set

(computing w steps implies rw elements), but sets are independent from each other.

As each set operates separately without needing information from the other sets,

the number of performed steps is still w, and all threads in a threadblock working

on the same set have the same ly-identifier.

In order to better understand the mapping vector design, the CUDA implemen-

tation steps of our MS-LD-TS algorithm are analyzed below. At the beginning

of computation, there is a table which determines the number of stages and steps

5.2 Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-ID-TS) 143

processed by stage (kernel) for each problem size. Likewise, there is another table

which specifies s, l and, thus, the radix employed for each problem size.

1. Each thread loads P elements from global memory into registers. In the first

stage, these elements are adjacent, benefiting coalescence. In the remaining

stages, each thread loads triads of equations following the corresponding pat-

tern.

2. Compute the first step using radix-P or a mixed radix.

3. Exchange data through shared memory. Equations are stored as float4 ele-

ments in shared memory. Except in the first stage, there are three shared

memory buffers, one for each triad.

4. Compute the following step.

5. If no step remains in that stage, then the result is written to global memory

in last stage or triads are stored into global memory in the remaining stages.

6. There are two possibilities:

a) If all the required stages have been completed, the algorithm ends.

b) Otherwise, the next kernel reads triads from global memory, using the

corresponding offset between their elements, restarting the process of this list

from Point 1.

5.2.1. MS-ID-TS Mapping Vector

In our proposal, p is mapped to the lower part of the Index-Digits to ensure the

global memory coalescence. Each component of the equation is stored in a different

array, and each thread accesses four consecutive elements from up to four equations

using float4 data type. In the first stage, the mapping vector of data on the GPU

resources is as follows:

[tn+batch · · · tn+1︸ ︷︷ ︸
by

n︷ ︸︸ ︷
tn · · · tl+p+1︸ ︷︷ ︸

bx

tl+p · · · tp+1︸ ︷︷ ︸
l

tp · · · t1︸ ︷︷ ︸
p︸ ︷︷ ︸

s

]
(5.7)

144
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

In order to determine the (p, s1, l) tuple, two factors need to be considered: on

the one hand, using the largest shared memory possible is advisable in order to

compute the maximum number of steps in the first stage as explained above; on the

other hand, it is also important to fulfill the three stated premises, analyzing each

target architecture and finding a trade-off.

Following Premise 1, the number of stages should be minimized and is determined

by s. In Kepler, s1 = 11 implies only 1 active threadblock and 25% warp occupancy

per SM; s1 = 10 involves 3 active threadblocks and 38% warp occupancy, whereas

s1 = 9 generates 6 active threadblocks and 38% warp occupancy. Lower s1 values

underexploit shared memory, as registers would be the limiting factor of occupancy.

Thus, s1 = 9 is selected in order to achieve Premise 2, making it possible to solve

n ≤ 18 problem sizes with only m = 2 stages. The same reasoning is applied to

Maxwell, choosing s1 = 9. This involves 8 active threadblocks and 32 active warps

per SM. However, taking into account that s2 stores at least n − s1 elements, and

each element occupies 48 bytes in the second stage, then this involves s2 ≤ 9, owing

to hardware limitations, and the second kernel occupancy would be very low when

n > 16. In order to avoid this, s1 = 10 is utilized when n > 16. Although some

occupancy is lost in Stage 1, performance will be improved in the second stage,

obtaining better global performance in the whole application. For example, note

that executing n = 17 on Kepler with s1 = 9 (and p = 2) in the first stage implies

the following mapping vector in the second stage:

[t17+batch · · · t18
n︷ ︸︸ ︷

t17 · · · t10 t8 · · · t3︸ ︷︷ ︸
l

t2t1︸︷︷︸
p︸ ︷︷ ︸

s2=8

]
(5.8)

Obtaining only 4 concurrent threadblocks and 8 active warps per SM in the

second stage. Nevertheless, using s1 = 10 and s2 = 7 involves the following mapping

vector:

5.2 Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-ID-TS) 145

[t17+batch · · · t18
n︷ ︸︸ ︷

t17 · · · t11 t7 · · · t3︸ ︷︷ ︸
l

t2t1︸︷︷︸
p︸ ︷︷ ︸

s2=7

]
(5.9)

with 8 concurrent threadblocks and 8 active warps per SM in the second stage.

Despite slightly reducing the number of concurrent threadblocks in the first stage,

global performance is enhanced. Additionally, thanks to using s1 = 10 in large

problem sizes, up to n ≤ 19 sizes can be solved in only 2 stages. Maxwell provides

up to 96 KB per SM, delaying this parameter update until n > 17, as it achieves

a higher occupancy than Kepler at the same shared memory consumption. Once

both s1 and s2 have been established, and taking into account that p = 2 according

to [82], the following tuples are obtained for Kepler: (p, s1, l) = (2, 9, 7) when n ≤ 16,

and (p, s1, l) = (2, 10, 8) when 16 < n ≤ 19. Regarding Maxwell, these values are

(p, s1, l) = (2, 9, 7) when n ≤ 17 and (p, s1, l) = (2, 10, 8) otherwise.

In the remaining stages, the mapping vector is:

[tn+batch · · · tn+1︸ ︷︷ ︸
by

tn · · · tbx+ly+p+1︸ ︷︷ ︸
lx

(5.10)

tbx+ly+p · · · tbx+ly+1︸ ︷︷ ︸
p

tbx+ly · · · tbx+1︸ ︷︷ ︸
ly

tbx · · · t1︸ ︷︷ ︸
bx

]

In this case, the use of p as of the bx + ly + 1 Index-Digits also ensures global

memory coalescence. In the remaining stages, the performance parameters used are

given by p = 2, s2 = max(6, n − s1) and (lx, ly) = ((n − s1 − p), (s2 − lx − p)). In

the case of s2 = 6, this ensures having 3072 shared memory bytes per block, not

limiting block parallelism in either Kepler or Maxwell architectures and executing

several sets per threadblock, in the case of small problem sizes. When n > (6 + s1),

a single set of elements is processed by each threadblock, consuming as much shared

memory as necessary. Regarding the distribution of threads in each threadblock,

lx = (n − s1 − p), Lx of them collaborate in the same set of equations that have

dependencies between each other, as explained above, while ly = (s2 − lx − p)

represents the fact that there are Ly sets of equations of the same problem being

146
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

independently solved in the threadblock. Therefore, our implementation uses Lx for

working on the same set, whereas Ly sets of the same problem are solved in parallel

in that threadblock. Finally, Bx thread blocks work on the same problem, whereas

By blocks work on different problems in batch mode.

The string operator used in the first kernel is as follows:

s1/p−1∏
i=1

[
Υp

1Γ
p
(i+1)·p,i·p+1,p,1

]
Υp

1Γ
p
s1,1

(5.11)

In the case of (s1 mod p 6= 0), an extra step is needed. For the remaining kernels,

the same expression is used but an offset of ly+bx+1 digits is applied in sub-indexes,

as its mapping vector is different, executing n−s1
p

steps.

For example, for n = 14, the data mapping vector in the first stage would be

[· · · t15︸ ︷︷ ︸
by

n︷ ︸︸ ︷
t14t13t12t11︸ ︷︷ ︸

bx

t10t9t8t7t6t5t4t3︸ ︷︷ ︸
l

t2t1︸︷︷︸
p

] (5.12)

and in the second stage

[· · · t15︸ ︷︷ ︸
by

n︷ ︸︸ ︷
t14t13t12t11t10︸ ︷︷ ︸

lx

t9t8︸︷︷︸
p

t7t6︸︷︷︸
ly

t5t4t3t2t1︸ ︷︷ ︸
bx

] (5.13)

5.3. Experimental Results for ID-Algorithms with

Medium-Large Problem Sizes

In this section, the results of the tridiagonal system solver are presented and

analyzed.The test data are already on the GPU, thus there are no data transfers

during the benchmarks. The experiments are run in single precision. Table 5.2

describes the test platforms used in our experiments. The first two platforms have

similar features, presenting a Kepler GPU architecture, whereas the third platform

has a Maxwell GPU architecture.

5.3 Experimental Results for ID-Algorithms with Medium-Large Problem Sizes 147

Kepler K20 Platform, Kepler K40 Platform Maxwell Platform

CPU Intel Xeon E5-2660 2.2 GHz Intel Core i7-2600 3.4 GHz

Memory 64 GB DDR3 1600 8 GB DDR3 1333

OS CentOS 6.4 Ubuntu 12.04 LTS

Compiler GCC 4.4.7 GCC 4.6.3

GPU Nvidia Tesla K20, Nvidia Tesla K40 Nvidia GeForce GTX980

Driver 340.58, SDK 6.0 343.22, SDK 6.5

Table 5.2: Description of the test platforms

In the case of tridiagonal system solver, performance is measured in million rows

processed per second, MROWS/s. Therefore, the MROWS/s value is obtained using

the expression N · rbatch · 10−6/t. In these tests, data are initialized using diagonally

dominant equation systems. Our MS-ID-TS proposal considers problem sizes with

8 ≤ n ≤ 19. For dealing with larger sizes, more GPU memory would need to be

used, as explained later in the text. Our proposal is then compared with respect

to CUSPARSE [95], the state-of-the-art for medium and large problem sizes, since

CUDPP [98] does not support these sizes.

Table 5.3 and Table 5.4 present the profiler analysis for the Kepler K20 Platform

and the Maxwell Platform, respectively. Each column contains the values obtained

for the two executed kernels. Firstly, it should be noted that the (p, s1, l) = (2, 9, 7)

tuple was established on Kepler in Section 5.2 when n ≤ 16, as can be seen in Table

5.3, obtaining 768.6 MRows/s when n = 16. From n = 17, the tuple (p, s1, l) =

(2, 10, 8) is used for the reasons explained in Section 5.2 (decreasing block parallelism

on kernel 1, but increasing global performance since block parallelism is increased

on kernel 2), achieving 664.2 MRows/s. Table 5.3 shows global performance for

both cases, s1 = 9 and s1 = 10, highlighting the best result. However, Table 5.4

shows 1554.2 MRows/s when n = 16 and 1623.4 MRows/s when n = 17. In this

case, the same (p, s1, l) = (2, 9, 7) tuple is being used for both cases, as Maxwell

architecture provides up to 96 KB per SM, delaying s1 = 10 until n = 17, as it

maintains a higher occupancy than Kepler at the same shared memory consumption.

With n = 18, 1556 MRows/s are achieved in Maxwell platform, since the new

(p, s1, l) = (2, 10, 8) tuple is being employed, achieving 1.29x with respect to the

s1 = 9 implementation. Finally, it should be observed that greater occupancy is

achieved on Maxwell architectures than on Kepler architectures at the same level

148
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

n MRows/s L Reg
Sh. mem.
bytes

Occup (%)

12 690.6 128,16 56,66 8192,3072 36,25

13 826.2 128,16 56,66 8192,3072 36,25

14 888.4 128,16 56,66 8192,3072 36,25

15 792.6 128,16 56,66 8192,3072 36,25

16 768.6 128,32 56,68 8192,6144 36,13

17 660.3 128 ,64 56,68 8192,12288 36,13

664.2 256,32 59,68 16384,6144 36,13

18 645 128,128 56, 68 8192,24576 36,13

687 256,64 59,66 16384,12288 36,13

19 620 256,128 59,61 16384,24576 36,13

Table 5.3: Complex MS-ID-TS kernel performance and profiler analysis (Kepler K20
Platform)

n MRows/s L Reg
Sh. mem.
bytes

Occup (%)

12 1202.1 128,16 55,63 8192,3072 48,33

13 1130.9 128,16 55,63 8192,3072 48,33

14 1349.3 128,16 55,63 8192,3072 48,33

15 1508.8 128,16 55,63 8192,3072 48,33

16 1554.2 128,32 55,64 8192,6144 48,16

17 1623.4 128,64 55,65 8192,12288 48,16

1516 256,64 59,59 16384,12288 48,16

18 1204 128,128 55,59 8192,24576 48,16

1556 256,64 59,65 16384,12288 48,16

19 1250.4 256,128 59,63 16384,24576 48,13

Table 5.4: Complex MS-ID-TS kernel performance and profiler analysis (Maxwell
Platform)

of shared memory consumption due to the increased SM shared memory size in

Maxwell, as explained above.

Figure 5.3 shows the results of executing a single problem (solid lines) and mul-

tiple batches (dashed lines) on the three Platforms. The performance comparison

with respect to the CUSPARSE library for one batch is very similar on all three

5.3 Experimental Results for ID-Algorithms with Medium-Large Problem Sizes 149

(a) Kepler K20 Platform

(b) Kepler K40 Platform

(c) Maxwell Platform

Figure 5.3: Performance comparison of MS − ID − TS proposal

150
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

platforms. The performance growth of CUSPARSE is very slow, as it launches 10

kernels. However, the performance growth in our solver is immediate. From n = 16

on Kepler Platforms; and from n = 17 on the Maxwell Platform, performance be-

gins to decrease, as was expected owing to the replacement of s1 = 9 by s1 = 10.

In Section 5.2 and Tables 5.3 and 5.4, we have justified the peaks in n = 16 (on

Kepler) and n = 17 (on Maxwell). As having more elements requires more shared

memory, then the fixed amount of shared memory, optimized in our implementa-

tion, is not sufficient and needs to be increased. This increase in shared memory

leads to reduced occupancy and a loss of performance, obtaining those peaks. In the

case of eight batches, the speed-up with respect to CUSPARSE is more modest, as

storing triads from all batches in global memory consumes much more bandwidth.

As more batches are introduced, more GPU parallelism is exploited. Furthermore,

more global memory operations are issued, and L1/L2 cache behavior will determine

the location of peaks for each batch execution. In all cases, the occupancy in the

second kernel is lower, especially when dealing with large problem sizes, where the

shared memory becomes a limiting factor.

In the case of the Kepler K20 Platform and one batch, our solver obtains up to

26.8x improvement over CUSPARSE, being 16.37x times faster on average. With

eight batches, this proposal is, on average, 4.41x faster. On the Kepler K40 Platform,

it is up to 25.9x faster for one batch, 15.7x on average; whereas it provides up to

8.7x of speed-up when processing eight batches simultaneously. Additionally, an

improvement of up to 33.2x is achieved with one batch on Platform 3, 20.14x on

average, while a speed-up of up to 11x with eight batches, 4x on average.

5.4. A three-phase Methodology for Parallel Pre-

fix Algorithms

Index-Digit algorithms are a subset of parallel prefix algorithms, whose com-

munication pattern facilitates their representation with mapping vectors and string

operators. However, as previously mentioned, not every parallel prefix algorithm

suits in the definition of ID-algorithm, and a general methodology is required for

them. To do this, the 3-phase tuning methodology exposed in Chapter 4 for small

5.4 A three-phase Methodology for Parallel Prefix Algorithms 151

problem sizes is here extended to medium and large problem sizes.

As in the previous case, the GPU Resources Utilization Analysis phase identifies

the performance parameters which influence on the GPU throughput, and estab-

lish a set of theoretical performance premises. In the CUDA Kernel Optimization

phase, the corresponding CUDA kernels are built with CUDA skeletons. Finally,

the optimal performance parameter values for the developed kernels are obtained

in the Performance Parameter Tuning phase. Since the morphology of parallel pre-

fix algorithms hinders the representation thereof in terms of string operators and

mapping vectors, the number of phases slightly varies.

Specifically, we analyze this methodology for the scan primitive based on the

Ladner-Fischer pattern, and the Tree-Partitioning Reduction solver for tridiagonal

systems, explained in Chapter 3.

5.4.1. GPU Resources Utilization Analysis

When working with parallel prefix algorithms, we establish r = 2 as radix. Table

5.5 collects the performance parameters identfied. Thus, our strategy considers the

case of simultaneously executing G = 2batch problems of N elements each, where

N = 2n.

In Chapter 2, these parameters where introduced, but not the distribution of the

problem and execution were not explained in terms of them. Problems are solved

using B = 2b threadblocks per kernel, which can be scheduled into a two-dimensional

distribution B = Bx ·By, (b = bx + by). In our strategy, Bx represents the number of

threadblocks used for computing each problem, whereas By represents the number of

problems being simultaneously executed on that kernel. Each threadblock comprises

L = 2l threads, which can be distributed as L = Lx ·Ly, (l = lx + ly). Lx represents

the number of threads per threadblock working on the same problem, whereas Ly

the number of problems being solved in that threadblock. Each thread works with

P = 2p elements of the problem in private registers, whereas all threads into a thread

block can access to S = 2s elements in shared memory. There are cases where the

data stored in registers have no copy in shared memory. For example, when using

shuffle instructions (intra-warp communication via registers), shared memory is not

152
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Problem Parameters

N = 2n Problem size.

G = 2batch Number of problems being solved simulteneously.

GPU Performance Parameters

S = 2s Number of shared-memory elements per block.

P = 2p Number of elements stored in registers per thread.

B = 2b Number of thread blocks executed per GPU, where B = Bx ·By.

L = 2l Number of threads that compose a block, where L = Lx · Ly and S ≤ P · L

m Number of stages (kernels) invoked to compute a problem

Table 5.5: Description of the performance parameters for parallel prefix algorithms.

needed for exchanging information inside a warp. In that case, shared memory is

only used for exchanging data among different warps; thus, s ≤ p+ l. When working

with several kernels, all previously defined parameters use a superscript number to

identify the referred kernel. For example, Bx value of kernel 1 is represented by B1
x,

whereas Bx value of kernel 2, by B2
x.

As in the case of ID-algorithms, the methodology focuses on solving large-size

problems, partitioning the problem among several threadblocks (multi-stage strat-

egy). The exchange of information between threadblocks is performed through

global memory. Threadblocks write their information in global memory, and af-

ter using any global synchronization mechanism, the remaining threadblocks will be

able to read this information from global memory.

However, in contrast to the ID methodology, it should be noted that parallel

prefix algorithms work with radix r = 2, thus all parameters are expressed in terms

of a power of two. This specification slightly varies the GPU Resources Utilization

Analysis phase.

Premises for Performance Maximization

Our tuning strategy is based on a set of premises that aim at obtaining different

GPU performance parameters which maximize the execution throughput. These

premises were explained in Section 5.1.1, and are adapted to work with parallel

prefix algorithms, where the radix is r = 2, as summarized below.

5.4 A three-phase Methodology for Parallel Prefix Algorithms 153

Premise 1. Balancing warp and block parallelism. Higher parallelism obtains

better performance since it hides latency from functional units and the access to

memory. However, this parallelism is limited by the amount of common resources

shared in an SM. More threads per threadblock implies less resources in each thread-

block. In the GPU, the level of parallelism can be supported in terms of the number

of blocks per SM (SM block parallelism), or the number of warps per SM (SM warp

parallelism), so our strategy attempts to strike a balance between the maximization

of both:

1. The maximization of SM block parallelism in each stage in order to keep

processing the maximum amount of simultaneous blocks per SM (16 in the case of

Kepler and 32 in the case of Maxwell -based GPUs). Factors that limit SM block

parallelism are the number of registers used by each thread and the amount of shared

memory required by a threadblock.

2. The maximization of SM warp parallelism in each stage. This premise is focused

on increasing the number of warps per SM, allowing the SM to hide latency among

warps when one stalls.

In order to balance warp and block parallelism, it is necessary to limit the factors

that decrease the SM parallelism, such as the number of registers used by each thread

or the amount of shared memory required per threadblock.

Premise 2. Increase the computational load per thread. The number of elements

processed by each thread, P , influences the number of computing steps per stage

and the number of threads that process a problem. A larger P delivers higher

performance, as there are fewer shuffle exchanges and more elements are processed

in each iteration. Nevertheless, the increase of P may also require too many registers

per thread, reducing the block parallelism or generating memory spilling (high-

latency memory usage when there are no registers available). In contrast to the ID

methodology, increasing P does not reduce the number of computing steps, as r

remains constant.

Premise 3. Maximization of SM occupancy and minimization of global memory

communications. The multi-stage strategy involves the invocation of m kernels. The

number of steps processed by each kernel influences others, thus it is important to

find the optimal distribution that maximizes global throughput.

154
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

5.4.2. CUDA Kernel Optimization

Thanks to the modularity and generality of our CUDA skeletons, they can easily

be extended to other algorithms and designs with no effort. This phase uses our set

of CUDA skeletons developed so far, extending them with the corresponding needs of

each algorithm. Sections 5.5 and 5.6 give greater details about their implementation.

5.4.3. Performance Parameter Tuning

In order to balance warp and block parallelism, it is necessary to limit the factors

that decrease the SM parallelism, such as the number of registers used by each thread

or the amount of shared memory required per block. Table 5.6 summarizes different

GPU performance configurations in order to maximize SM warp and block paral-

lelism in Kepler and Maxwell architectures. It is easy to see that increasing warp

parallelism reduces block parallelism, and vice versa. However, there are configura-

tions, marked as a bold row in the table, that maximizes both types of parallelism,

as Premise 1 indicates. In Sections 5.5 and 5.6, the optimal configuration for each

case is analyzed.

5.5. Scan Primitive based on Ladner-Fischer

As previously introduced, there were three typical parallel patterns for comput-

ing the scan primitive: the Brent-Kung pattern, the Kogge-Stone pattern and the

Han-Carlson pattern. However, when computing large problem sizes in GPUs, the

Brent-Kung offers the worst performance. In [56], the authors present a CUDA im-

plementation of this pattern, whose performance is limited by the existence of two

phases, doubling the number of synchronization barriers and the presence of warp

divergence in some stages. They use a multi-stage strategy in which the problem is

partitioned in different threadblocks, and each threadblock needs to cooperate with

each other. With this in mind, the proposal uses a recursive processing: after each

threadblock computes its own scan, it saves the accumulative addition of the whole

block in an auxiliary array. This procedure is repeated in different levels until the

auxiliary array can be computed by a single threadblock. After this, each element of

5.5 Scan Primitive based on Ladner-Fischer 155

Archit. Warps per block Regs per thread
Shared mem

per block

SM warp

occupancy

SM number

of blocks

1 256 7168 25% 16

2 128 7168 50% 16

Kepler

cc 3.7
4 64 7168 100% 16

8 64 14336 100% 8

16 64 28672 100% 4

32 64 49152 100% 2

1 64 2048 50% 32

2 32 0 100% 32

2 40 0 75% 24

Maxwell

cc 5.0
2 32 2048 100% 32

4 32 4096 100% 16

8 32 8192 100% 8

16 32 16384 100% 4

32 32 32768 100% 2

Table 5.6: Performance parameters per SM on Kepler Platforms with compute ca-
pability 3.7

the auxiliary array at one level is added to all elements of the corresponding thread-

block in the previous level. This strategy is also similar to the method implemented

in [39].

In [85], which combines Brent-Kung and Kogge-Stone patterns, the execution

of large-problem sizes is improved. In order to produce fewer intermediate values,

the number of threadblocks is set to a constant C value before execution. In the

first stage, each threadblock computes the reduction for an input dataset, which

produces C intermediate values to be stored in global memory; in other words, there

are C accesses to global memory. Each threadblock iterates over a loop (cascade

approach), processing a chunk of data in each iteration, using shared memory for

communication between iterations. The second stage reads back these C values

and produces their scan. Finally, the third stage reads all of the input elements

again, performs their scan and updates them with the results of the second stage.

Hence, the total amount of global memory required is 3N + 3C. The value for

C has to be small enough to compute the scan but large enough to obtain the

maximum warp occupancy per SM. Later, this implementation is improved in [53]

by eliminating redundant global memory accesses in the first and last threadblocks,

obtaining (3N + 3C) − (2N
C

+ 3) accesses to global memory. Our multi-stage scan

156
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

proposal, Scan Single-GPU Problem (Scan-SP), is based on this cascade strategy.

5.5.1. CUDA Kernel Optimization: Scan-SP

Based on current large-size scan problems solvers, data are divided into several

data blocks. The reduction value of each data block is computed, stored in an

auxiliary array and then all elements in the auxiliary array are scanned. Data blocks

compute then their local scan and add the corresponding value from the auxiliary

array to their elements, completing the overall scan. This procedure is summarized

in Figure 5.4.

From the CUDA perspective, the execution is divided into three stages (kernels).

As it can be seen in Figure 5.4, firstly, the N elements are divided into chunks,

where each threadblock, represented by a color, processes one chunk. Thus, B1
x

threadblocks work on the same problem, and B1
y = G problems are being solved

simultaneously. The first stage (Chunk Reduce) computes the reduction for each

chunk (light colour square in figure). Note that reduction primitive means writing

the cumulative sum for all elements into the last element, whereas the remaining

elements are not modified. The result of each reduction is stored in an auxiliary

array in global memory. Taking into account the fact that this is a memory-bound

problem in current GPU architectures, storing one element per chunk and computing

the scan later again is preferable to writing all elements in global memory twice. As

each chunk writes its reduction in the auxiliary array, there are G · B1
x elements in

this array. Thus, a second stage (Intermediate Scan) computes the scan of these B1
x

values for each problem using the Ladner-Fischer (LF) pattern, explained in Chapter

2, in a single threadblock. Finally, a third stage (Scan+Addition) performs the local

scan for each chunk, adding the corresponding element from the global memory

auxiliary array, processed in the previous kernel, to all elements in its chunk. Note

that the number of elements per problem processed in Stage 1 and Stage 3 is N ,

whereas it is B1
x for Stage 2. As Stage 1 and Stage 3 input sizes are equal and these

stages share a very similar computational core, each problem is partitioned into

the same number of chunks and both stages use the same amount of SM resources.

Thus, B1
x = B3

x = B1,3
x .

In our strategy, each thread reads P elements from global memory using the int4

5.5 Scan Primitive based on Ladner-Fischer 157

Figure 5.4: Three kernel execution for the scan primitive when G = 1 problems.

customized data type, facilitating coalescence and reducing memory transactions.

These four elements are computed by each thread in registers, as the top part of

Figure 5.5 shows for Lx = 4 and P = 4. For example, if P is equal to 8, then two

loads from global memory are performed by each thread and two 4-elements scans

are computed.

The Lx threads are grouped into warps; therefore, each warp computes P ×
warpSize elements (warpSize = 32 currently, although warpSize = 4 in Figure 5.5

for clarity). Hence, after the initial scan of P elements in a single step (red values

in the figure), each warp computes warpSize elements using shuffle instructions

and the Ladner-Fischer communication pattern. Once the shuffle-scan is performed,

each thread adds the corresponding value to its four elements. Using the exclusive

scan saves an extra communication step, otherwise each thread would have to send

the inclusive result to its neighbor, instead of directly adding the value stored in its

register. Computing the exclusive scan is fast; the initial value is subtracted from the

scanned value. Finally, the last element of the P ·warpSize data sequence is stored

in shared memory in order to share this partial sum with other warps. Hence, shared

memory has as many elements as warps - at most 32 in current architectures. A

158
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

single warp will repeat this process over the 32 partial sums stored in shared memory

in order to build the final result of the P · Lx elements. Note that, thanks to the

use of shuffle instructions, S ≤ 32 (s ≤ 5).

In addition to this computational flow, this implementation also follows a cas-

cade approach [53]. Each threadblock executes K iterations, where each iteration

computes Lx · P elements, as explained in the previous paragraph. Thus, each

threadblock computes K · Lx · P elements; i.e., the chunk size is equal to K · Lx · P
elements. Once one iteration has computed Lx ·P elements, the last one is passed to

the next iteration, adding this value to all Lx · P elements of that iteration. Figure

5.6 shows this approach, which avoids launching an excessive number of thread-

blocks, and allows thread information to be reused, generating fewer instructions

and also using fewer temporal values. After K iterations, the scan of K · Lx · P
elements has been computed. In the case of Stage 1 (Chunk Reduction), the last

element is written in the auxiliary array to be passed to Stage 2. As the chunk size

is a power of two, K is also a power of two.

As already mentioned, there are G problems being simultaneously solved in each

kernel. In Stage 1 (Chunk Reduction) and Stage 3 (Scan+Addition), all threads

in a block work on the same chunk, i.e. on the same problem (L1,3
y = 1), thus

L1,3 = L1,3
x · 1. In Stage 1, each chunk writes its reduction in an auxiliary array;

thus, the number of chunks sets up the number of elements per problem to be

processed in Stage 2, B1,3
x . In the Intermediate Scan kernel, the same block must

process elements from different problems, otherwise warp occupancy would be much

too low, as Stage 2 executes much fewer elements. Therefore, all elements which

come from the same problem have the same L2
y identifier, so L2

y > 1, B2
y = G/L2

y

and B2
x = 1 in Stage 2.

All these operations are efficiently implemented using our CUDA skeletons, which

are carefully designed to attain high levels of efficiency in CUDA architectures.

They are designed with templates, enabling the generation, at compile time, of

tuned kernels according to the more suitable (s, p, l,K) tuple for the specific GPU

architecture in which they are to be executed. The compile-time generation allows

the use of generic programming and template metaprogramming, reducing code

complexity, avoiding temporal registers for function calls and taking advantage of

fully unrolling static loops and avoiding the dynamic addressing of register arrays.

5.5 Scan Primitive based on Ladner-Fischer 159

Figure 5.5: Scan computation in one warp, considering warpSize=4, P = 4 and
Lx = 4.

Figure 5.6: Cascade approach computation.

5.5.2. Performance Parameter Tuning: Scan-SP

The values of (s, p, l,K) parameters determine the performance of the execution

in a GPU. The set of premises previously defined determines their appropriate values,

which maximize execution performance.

Regarding Premise 1, and in order to balance warp and block parallelism, it is

160
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

necessary to limit the factors that decrease the SM parallelism, such as the number

of registers used by each thread or the amount of shared memory required per block.

Focusing on Kepler architectures, and keeping in mind Table 4.2, it is easy to see

that the configuration marked as a bold row in the table maximizes both types of

parallelism: work with 4 warps, less than 7168 shared memory bytes and less than

64 registers per thread.

With respect to Premise 2, the value of p must be as high as possible, without

exceeding 64 registers per thread. Considering integers, each element is stored in a

single 32-bit register, thus p ≤ 6. Following Premise 2, and also considering that

auxiliary variables and index calculation consume many registers, p = 3 is defined.

The K parameter is related with Premise 3 in our strategy. The number of

elements per problem to be processed in Stage 2 is determined by B1
x, which is the

same as the number of chunks, B1
x = N

K1·L1
x·P 1 , where L1

x and P 1 are constant values.

On the one hand, K1 must be small in order to have a large number of elements in

Stage 2 and exploit GPU parallelism. On the other hand, K1 must be large in order

to have fewer chunks and reduce the number of global memory transactions (reads

and writes from/to global memory auxiliary array).

Since B1
x = B3

x, and both Stage 1 and Stage 3 use the same amount of SM re-

sources, K1 = K3. On the other hand, as the number of elements to be processed

in Stage 2 is low, and in favor of exploiting the SM block parallelism for this Stage,

K2 = 1, increasing the number of blocks as much as possible in Stage 2. Therefore,

it is necessary to calculate the optimal value of K1, which depends on the total

number of elements being processed, N · G. To do so, our strategy considers that

the total number of threadblocks processed in Stage 2 must be greater than the

maximum number of threadblocks executed per SM; i.e., 16 for Kepler architecture.

As the number of elements processed in Stage 2 is [G · N
K1·L1

x·P 1] and each threadblock

executes P 2 · L2
x · L2

y in Stage 2, then Premise 3 establishes:

[G · N
K1·L1

x·P 1/(P
2 · L2

x · L2
y) ≥ 16].

Note that L = Lx · Ly, and L1,3
y = 1. Then, K can be defined as:

1 ≤ K1 ≤ G ·N
16 · P 1 · P 2 · L1 · L2

(5.14)

5.6 Tridiagonal System Solver based on the Tree Partitioning Reduction 161

Thus, Equation 5.14 establishes the searching space for K1 that seeks a trade-off

between maximizing SM occupancy and minimizing global memory communications.

Premises 1, 2 and 3 determine the (s, p, l) performance parameters and trim the

subspace to find the K parameter, creating the (s, p, l,K) tuple to be passed to

the skeleton-based kernels in a single GPU environment. The optimal parameter K

depends on the execution (G and N values) and other factors that are difficult to

predict (such as the CUDA memory system management). Thus, once the (s, p, l)

is determined using previous premises, all possible K values that meet Eq. 5.14 are

tested.

5.6. Tridiagonal System Solver based on the Tree

Partitioning Reduction

From a GPU point of view, CR and PCR algorithms are easily implemented in

CUDA when the problem fits in the shared memory of one threadblock, as seen in

Chapter 4. Otherwise, when the problem is bigger than the shared memory capacity,

the computation needs to be divided among several threadblocks, which hinders the

CUDA implementation. Regarding the Wang&Mou efficiency, this algorithm is eas-

ily partitioned among different threadblocks for solving large problem sizes, as seen

above. The main drawback of this algorithm is the need to use three equations per

element (triads). Although the triads can be easily generated from other equations,

storing only one equation per element when the whole problem can be stored in the

same memory space, when distributing the equations among different threadblocks,

the elements are not stored in the same shared-memory space and it is necessary

to work with (and store) whole triads, decreasing the global performance due to

memory bandwidth limitations.

In this section, an efficient CUDA implementation of our Tree-Partitioning Re-

duction algorithm (TPR) is presented under our three-phase methodology.

162
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

5.6.1. CUDA Kernel Optimization: TPR

As stated in Chapter 3, the TPR method can be implemented in any parallel

and distributed programming paradigm. In order to show its efficiency for parallel

platforms, this work provides an efficient implementation for GPU accelerators, since

they currently play a huge role accelerating applications.

Our CUDA implementation of TPR divides the execution into three stages (ker-

nels). The first kernel, Stage 1, is responsible for performing log2S + 1 steps of

the forward reduction, as Figure 5.7 represents, where each slice (sub-matrix) is

computed in one threadblock. After log2S + 1 steps, the last equation of each slice

uses the first equation of the next slice, thus communication among threadblocks is

needed. In order to do this, a second kernel, Stage 2, is launched, working as a global

synchronization barrier among threadblocks. In Stage 2, each problem is represented

by as many equations as the number of slices the first stage had (M = N/S). Stage

2 computes the last log2M steps of the forward reduction, and the first log2M steps

of the backward substitution. Finally, Stage 3 computes the remaining steps of the

backward substitution in slices of S equations, where each slice is again solved by

a threadblock, as shown in Figure 5.8. It should be noted that each slice needs the

last equation of the upper slice to perform its substitutions.

Specifically, the first kernel is invoked with (Bx = N/S, By = G) blocks, and

its pseudo-code is shown in Figure 5.9. Considering floating point single precision

elements, each element is composed of four 4-byte elements, requiring 16 bytes of

storage, which can be stored in a float4 datatype (line 3). In the case of double

precision, it would be represented by a double4 datatype. Each thread performs a

Node operator, and although each Node works with three elements, these elements

are shared by two different Nodes; thus each thread loads P = 2 elements in its

own registers and takes the third element from shared memory (lines 7-11). Please

observe that there are S Node operators in the first step, but there are L = S/P

threads; considering P = 2, each thread has to compute two Node operators in the

first step (lines 13-19). In the following steps, the number of Node operators shrinks

exponentially; thus, it is necessary to control the thread id to know which threads

must perform the reduction (lines 26,31). Please observe that there are cases where

the Node operator only computes two elements. In these cases, the identity equation

5.6 Tridiagonal System Solver based on the Tree Partitioning Reduction 163

Figure 5.7: TPR forward reduction.

is assigned to the third element to avoid influencing in the computation and giving

rise to produce branch divergence. Finally, the Ei equations with i%2 = 0 are

stored in global memory, overwriting their previous values (line 38), whereas the Ei

equations with i%2 6= 0 remain constant in global memory. Additionally, the bottom

equation of each slice is stored in an auxiliary buffer for the next stage (lines 35-36).

It should be noted that the size of this buffer corresponds to G problem times Bx−1

slices per problem (the first slice of each problem can skip this storage action, since

its equation is not used in future steps).

To optimize the communication among threads, the pseudo-code of Figure 5.9

can be improved with the use of shuffle instructions during the last four steps.

Considering W = 32 threads/warp in current architectures, where each thread col-

laborates with one element, implies four steps of enterely warp communication.

Regarding the second kernel (Stage 2), each problem needs as many elements as

slices it had in the previous stage. As this number can be low, each threadblock

can compute several problems. In the first step, each element from the auxiliary

buffer is reduced with its corresponding equation, as Figure 5.7 (a) shows. Then, a

164
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Figure 5.8: TPR backward substitution.

conventional reduction is applied, until the unknowns xN/2 and xN can be solved;

after which, the backward substitution starts.

Finally, the third kernel (Stage 3) performs the remaining substitutions that did

not take place in the Stage 2. The number of threadblocks and threads per block is

the same as in the first kernel, dividing the problem in the same number of slices.

Observing Figure 5.7 (b), each slice needs the last element of its upper slice.

5.6.2. Performance Parameter Tuning: TPR

Considering devices with compute capability 5.0, Table 5.6 shows different con-

figurations and the corresponding parallelism achieved. The row in bold represents

the configuration which maximizes both warp and block occupancy. However, it is

not always possible to use this configuration, since the resource consumption limits

these occupancies and it is necessary to maximize these values within the available

5.6 Tridiagonal System Solver based on the Tree Partitioning Reduction 165

1 template <int N> __global__ void

2 BPLG_\textit{TPR}_Stage1(const float* __restrict__ src , float* bufferAux){

3 Float4 reg [3];

4 __shared__ Float4 shm[N];

5 // Obtain id , offsets and strides

6 ...

7 // Load data from global mem2reg , reg2shm

8 copy <2>(reg ,src+strideId ,...);

9 copy <2>(shm+strideSHM , reg , ...);

10 __syncthreads ();

11 copy <1>(reg+2,shm+strideSHM+offset ,...);

12
13 // First compute step

14 Float4 aux [3]; // second node comp. in first step

15 copy <1>(aux ,shm+strideSHM -1,..);

16 copy <1>(aux+1,reg ,..);

17 copy <1>(aux+2,reg +1 ,..);

18 compute <2,MixStep >(reg);

19 compute <2,MixStep >(aux);

20
21 for(int accR=MixR; accR < N ; accR *=2) {

22 __syncthreads ();

23 // Obtains strides and offsets

24 ...

25 //Reg -> Shm

26 if(threadId <numThreads)

27 copy <1>(shm+writeOffset , reg ,..);

28 __syncthreads ();

29 numThreads /=2;

30 //Shm -> Reg

31 if(threadId <numThreads)

32 copy <3>(reg ,shm+readOffset ,..);

33 compute <2>(reg); // Computation in registers

34 }

35 if(threadId ==1)

36 copy <1>(bufferAux+offset ,reg +1 ,..);

37 copy <1>(reg+1,shm+strideSHM +1 ,..);

38 copy <1>(src+strideId+1,reg ,..);

39 }

Figure 5.9: Forward Reduction code for the TPR tridiagonal algorithm using BPLG.

Problem size Kernel 1,3 Kernel 2

n ≤ 18 L = 64 L = (Lx, Ly) = (N
S·2 , max(1, 64

Lx
))

n = 19 L = 128 L = (Lx, Ly) = (N
S·2 , 1)

Table 5.7: Description of tuning parameters, where S = P · L and P = 2.

resources.

As explained previously, a problem of size N is solved by partitioning the data

into M = N/S slices of size S. The first and third kernel solve this problem with

Bx = N/S threadblocks of L = S/P threads, whereas the second kernel solves N/S

166
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

elements with N
S·P threads within a single threadblock. In the case of solving G prob-

lems simultaneously, By = G is used. In order to improve the warp occupancy and,

as such, performance, each threadblock of the second kernel computes Ly problems,

resulting in an invocation of B = G/Ly blocks.

Regarding Premise 2, the use of P = 2 already implies employing 40 registers per

thread; thus, higher P values would consume a huge amount of registers, resulting

in inefficiency. Therefore, P = 2 must be used, and S is expressed as S = 2 · L. It

should be noted that the configuration marked in the row in bold cannot be applied

to this case due to the register consumption; thus, an alternative configuration,

which maximizes the occupancy as much as possible, must be found when consuming

40 or a higher number of registers per thread.

In the case of storing the unknowns in global memory, the amount of shared

memory bytes per block (floats) is calculated as S ·4 coef/eq·4 bytes = 2·L·4·4 bytes,
as each equation is composed of 4 coefficients. For the first and third kernel, looking

at Table 5.6, the row of L = 64 threads, 40 registers per thread and up to 2560

shared memory bytes per threadblock, maximizes both the warp occupancy and the

number of active thread blocks per SM, between all other possibilities that consume

40 registers or more, following Premise 1. This configuration implies solving N/128

elements per problem in the second kernel.

With respect to Premise 3, and in order to maximize the global performance,

each threadblock works with L = 64 = Ly · Lx threads in the second kernel, with

the following configuration Lx = N/128
2

and Ly = max(1, 64
Lx

). It should be noted

that the case of n = 19 is the only one in which the value of S is higher than 128.

Otherwise, the number of threads in the second kernel would result in more than

1024 threads per threadblock. In this case, S is the minimum value higher than 64

that allows the execution of the second kernel (fewer or equal to 1024 threads for

current architectures). Table 5.7 summarizes the tuning parameter values for each

N = 2n value.

In the case of storing the unknowns in shared memory, the amount of shared

memory bytes per thread block is S · 4 coef/eq · 4 bytes+S · 4 bytes = 2 ·L · (4 · 4 +

4) bytes. Due to the register consumption, the same warp and block parallelism is

achieved, as in the global memory case, thus the tuning values are the same.

5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large
Problem Sizes 167

5.7. Experimental Results for Parallel Prefix Al-

gorithms with Medium-Large Problem Sizes

This section shows the performance results of our scan and TPR proposals un-

der our 3-phase methodology. Table 5.8 describes the platforms employed in this

analysis, Kepler architecture for the scan proposal and Maxwell architecture for the

TPR proposal.

5.7.1. Scan Primitive

In this section, our tuning strategy’s performance is compared with state-of-the-

art libraries, such as CUDPP [98], ModernGPU [97], Thrust [101], LightScan [79]

and CUB [100]. For this algorithm, we have tested our proposal in the Kepler

Platform described in Table 5.8. All data elements are integers, and they were in

GPUs memory prior to the GPU execution. Regarding the number of problems and

their size, N ≤ 268, 435, 456 (n ≤ 28) is established. In all cases, the K1 parameter

for the given configuration is set with the value which maximizes performance. This

is obtained empirically for each problem size from the search space proposed in

premises, whereas the employed (s, p, l) parameters are the ones obtained in Section

5.4.1.

Figure 5.10 shows a performance comparison with respect to state-of-the-art

libraries, where the number of problems solved is G=1. Our strategy relies on

a massive parallelism for exploiting the Streaming Multirpocessors (SMs) of the

GPU, therefore our strategy performance is not very impressive if the total number

of elements being simultaneously executed is low, G=1 in this case. Here, GPU

computational power is underused, especially for Stage 2. Nonetheless, our proposal

is still very competitive, being up to 1.34x faster than CUDPP and 41.19x against

Thrust. It also surpasses LightScan for some datasets, being up to 1.39x faster for

those cases. However, it does not outperform CUB and ModernGPU.

Figure 5.11 shows the performance achieved with Scan-SP when computing

G = 228/N batches. Although the most representative scenario of our proposal

lies in solving several batches simultaneously, only CUDPP supports this feature

168
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Platform: Kepler Architecture Platform: Maxwell Architecture

CPU Xeon E5-2620 v2 (2.10 GHz, 6 cores) x2 Intel Core i7-2600 3.4 GHz

Memory 64 GB 8 GB

GPU Nvidia Tesla K80 Nvidia GeForce GTX980

Driver 375.51, SDK 8.0 384.9, SDK 8.0

Table 5.8: Description of the test platform

Figure 5.10: Performance analysis for the scan primitive when G = 1 problems.

Figure 5.11: Performance analysis for the scan primitive with G problems.

with its multiScan function. Thrust provides a segmented operation, but it forces

the carrying of an additional flag array, reducing performance. Also, a segmented

scan can be implemented with CUB following [112], modifying the datatype and

5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large
Problem Sizes 169

extending the sum operator with an additional condition. However, better perfor-

mance has been obtained invoking the non-segmented function G times for n > 21 in

the case of Thrust, and n > 17 in CUB. For fairness, we use the option that achieves

the best performance for each data point. In the case of ModernGPU and LightScan

libraries, the corresponding function is also invoked G times. Our proposal is on

average 1.39x faster than CUDPP, 7.3x against Thrust, 5.11x with respect to Mod-

ernGPU, 1.31x faster than CUB and 8.87x against LightScan under such scenario.

It can be observed how performance increases in Thrust, ModernGPU, CUB and

LightScan libraries in line with the rise in N (increasing N implies lower G, reducing

the number of invocations).

5.7.2. Tridiagonal Systems

In this subsection, a study of the performance achieved with the CUDA imple-

mentation of the TPR method and our 3-phase tuning methodology is analyzed

and compared with other solvers for the Maxwell platform. Specifically, our pro-

posal is compared with respect to the CUSPARSE [95] library and the previous

Wang&Mou approach presented in Section 5.2. Here, we should stress that the per-

formance results are measured in million rows computed per second, MROWS/s,

using a diagonally dominant system which ensures numerical stability (Toeplitz ma-

trix with row [-1 2 -1]). The number of batch problems being simultaneously solved

in parallel, G, is studied for G = 1, G = 8 and G = 64, whereas the problem size

range goes from N = 128 to N = 524288. Thus, the MROWS/s value is performed

using the expression N ·G · 10−6/t.

Figure 5.12 shows a global overview and a comparison with respect to CUS-

PARSE and our previous WM implementation. In the case of a single problem

being solved (G = 1), Figure 5.12 (a), the TPR method outperforms the CUS-

PARSE library up to 30.16x for all problem sizes, being 22.03x times faster on

average. Regarding WM, TPR surpasses WM from N ≥ 32768 values, being 1.22x

faster on average, although this speed-up is higher considering large problem sizes,

being up to 2.35x in the case of N = 524288. As explained in Section 5.2, this

Wang and Mou implementation has to store 3 equations per element for solving

large problem sizes, saturating global memory bandwidth when there are many ele-

170
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

(a) When G = 1 problem.

(b) When G = 8 problems.

(c) When G = 64 problems.

Figure 5.12: Overall FP32 performance comparison of the TPR method

5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large
Problem Sizes 171

ments. Although TPR has more computing steps and invokes three kernels instead

of two, it performs a better access to global memory and reduces the use of shared

memory, being especially notable when solving large problem sizes. Figure 5.12

(b) depicts the same comparison but solving 8 problems simultaneously (G = 8).

The TPR method again surpasses CUSPARSE by up to 13.28x for all cases, be-

ing 7.04x faster on average. With respect to WM, as the number of batches has

been increased, there are more elements being processed, thus there are more global

memory transactions in the execution, saturating the global memory bandwidth for

a smaller problem size. In this case, TPR outperforms WM from N ≥ 4096, being

1.64x times faster on average and up to 2.88x in the best case. In contrast to the

previous case, performance stops increasing at N = 524288. This lack of scalability

can be explained by two factors: firstly, as Table 5.7 shows for this problem size, L

increases and the achieved GPU occupancies drop and, secondly, the global memory

bandwidth is saturated. Finally, Figure 5.12 (c) depicts the case of G = 64 batch

problems. In this case, our approach is up to 5.53x faster than CUSPARSE on

average, and up to 8.95x in the best case. With respect to WM, our solver achieves

1.9x on average, and up to 3x in the case of N = 524288.

Additionally, Figure 5.13 depicts the same performance analysis in the case of

double precision. It is easy to see how performance drops in comparison to FP32;

this is due to the fact that this Maxwell platform has 128 FP32 CUDA cores but

just 4 FP64 ALUS per SM, as well as the memory consumption is doubled. In the

case of a single batch, our approach is 7.48x faster than CUSPARSE on average,

and up to 10.44x in the case of N = 1024. With respect to WM, 1.38x on average

and up to 3.02x. When solving G = 8 batches, 1.98x on average compared with

CUSPARSE, and up to 4.42x in the best case. Using WM, the improvement is 1.7x

on average, being up to 3.27x faster for N = 524288. In the case of G = 64, our

approach is, on average, 1.93x faster than CUSPARSE and up to 3.41x than WM.

It should be pointed out that the huge memory consumption of WM does not allow

us to execute N = 524288 in the target architecture.

Depending on the application in which the solver is being executed, the numerical

stability may be essential or may have a minor role. It is impossible to provide a

general solver suitable for all the applications, some of them require solving one

problem, and others need to solve several problems simultaneously. The same is

172
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

(a) When G = 1 problem.

(b) When G = 8 problems.

(c) When G = 64 problems.

Figure 5.13: Overall FP64 performance comparison of the TPR method

5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large
Problem Sizes 173

Figure 5.14: Performance comparison of two different TPR configurations: perfor-
mance vs numerical stability, executing 1 batch in simple precision.

Figure 5.15: Performance comparison of two different TPR configurations: perfor-
mance vs numerical stability, executing 1 batch in double precision.

true for the numerical stability and the execution time. Our proposal allows the

user to choose the rate performance / stability to be employed, depending on the

target application, as well as the number of problems to be solved.

The chosen slice size, S, determines the numerical stability in the TPR method.

Larger slice sizes allow more equations to participate in the reduction phase of Stage

1, increasing the numerical stability. On the other hand, smaller slice sizes limit this

reduction to a reduced number of equations. In the previous performance analysis,

the given results are based on the performance configuration which achieves the best

174
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Figure 5.16: Performance comparison of two different TPR configurations: perfor-
mance vs numerical stability, executing 64 batches in simple precision.

Figure 5.17: Performance comparison of two different TPR configurations: perfor-
mance vs numerical stability, executing 64 batches in double precision.

execution times. However, if strong numerical stability is required, said configura-

tion can be chosen to achieve the maximum numerical stability possible (basically

by increasing the slice size). Figure 5.14 and Figure 5.15 show a performance com-

parison in the case of G = 1 in simple and double precision, respectively, for two

configurations of our proposal: the one which minimizes the execution time (TPR-

fastest in graphics) with respect to the one which maximizes the numerical stability

(TPR-stable in graphics). Specifically, the results presented under the TPR-stable

approach were taken using S = 2048. On average, the TPR-fastest approach obtains

a speedup of 1.33x with respect to the TPR-stable approach. The same analysis is

5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large
Problem Sizes 175

N TPR-stable TPR-fastest Thomas Sequential

128 5.70E-007 1.40E-006 2.10E-006

256 0.00E+000 2.20E-006 5.70E-006

512 8.40E-007 2.40E-005 4.40E-005

1024 0.00E+000 3.90E-007 2.30E-004

2048 2.00E-007 1.70E-007 9.30E-004

4096 9.90E-007 6.70E-006 1.10E-002

8192 4.00E-007 2.50E-005 3.10E-001

16384 2.00E-006 8.80E-005 1.2E+000

32768 7.40E-006 2.50E-004 2.3E+000

65536 3.00E-005 5.90E-004 3.7E+000

131072 1.20E-004 3.20E-002 5.4E+000

262144 4.80E-004 3.20E-003 7.9E+000

524288 1.90E-003 5.50E-001 1.1E+001

Table 5.9: Relative error of the two FP32-TPR configurations for a Topletz matrix

Matrix
Condition
number

Description

1 4.41E+04 Each matrix entry randomly generated from a uniform distribution on [-1,1] (denoted as U(-1,1))

2 1.00E+00 A Toeplitz matrix, main diagonal is 1e8, off-diagonal elements are from U(-1,1)

3 3.52E+02 gallery(’lesp’,512) in Matlab: eigenvalues which are real and smoothly distributed in the inversal approximately [-2*512-3.5,-4.5]

4 2.75E+03 Each matrix entry from U(-1,1), the 256th lower diagonal element is multiplied by 1e-50

5 1.24E+04 Each main diagonal element from U(-1,1), each off-diagonal entriechosen with 50% probability either 0 or from U(-1,1)

6 1.03E+00 A Toeplitz marix, main diagonal entries are 64 and off-diagonal entries are from U(-1,1)

7 9.00E+00 inv(gallery(’kms’,512,0.5)) in Matlab: Inverse of a Kac-Murdock-Szego Toeplitz

8 9.87E+14 gallery(’randsvd’,512,1e15,2,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, 1 small singular value

9 9.97E+14 gallery(’randsvd’,512,1e15,3,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, geometrically distributed singular values

10 1.29E+15 gallery(’randsvd’,512,1e15,1,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, 1 large singular value

11 1.01E+15 gallery(’randsvd’,512,1e15,4,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, arithmetically distributed singular values

12 2.20E14 Each matrix entry from U(-1,1), the lower diagonal elements are multiplied by 1e-50

13 3.21E+16 gallery(’dorr’,512,1e-4) in Matlab: An ill-conditioned, diagonally dominant matrix

14 1.14E+67 A Toeplitz matrix, main diagonal is 1e-8, off-diagonal element are from U(-1,1)

15 6.02E+24 gallery(’clement’,512,0) in Matlab: All main diagonal elements are 0; eigenvalues include plus and minus 511, 509, ... ,1

16 7.1E+191 A Toeplitz matrix, main diagonal is 0, off-diagonal elements are from U=(-1,1)

Table 5.10: Matrix types used in the numerical evaluation from [74]

performed in Figure 5.16 and Figure 5.17 for G = 64, where TPR-fastest is 1.32x

faster than TPR-stable. Table 5.9 shows the relative error of the previous configura-

tions for the FP32 execution, when executing the Toeplitz matrix described in the

introduction of this section and whose unknowns have the value 1.0 as solution.

Table 5.11 and Table 5.12 show a numerical-stability analysis for the different 16

input matrices of size 512 proposed in [74], whose description is shown in Table 5.10,

in simple and double precision (using the TPR-stable configuration). This analysis

compares the achieved stability with respect to other solvers accuracy, using the

Thomas algorithm as a baseline, as in other works [74]. Although Table 5.9 shows

176
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

Matrix TPR WM CUSPARSE

1 4.20E-006 8.80E-006 3.80E-006

2 2.60E-009 2.90E-009 8.60E-010

3 8.70E-008 8.20E-008 4.40E-008

4 2.80E-006 5.30E-006 2.90E-006

5 NAN NAN 1.10E-006

6 1.60E-007 1.60E-007 4.00E-008

7 1.00E-007 9.20E-008 1.80E-007

8 7.90E-007 1.50E-006 1.80E-007

9 4.70E+005 4.70E+005 4.70E+005

10 4.40E+013 4.40E+013 4.40E+013

11 6.10E+000 2.00E-005 3.90E-006

12 4.90E-007 4.70E-007 3.80E-007

13 9.10E-001 1.10E+001 1.10E+001

14 NAN NAN NAN

15 NAN NAN NAN

16 NAN NAN NAN

Table 5.11: Relative errors for FP32

a poor stability for this algorithm with large-problem sizes, it is quite stable for

N = 512. The relative error for a solution x̂ is calculated from the following equation,

where x is the solution of the baseline solver:

‖x̂− x‖2
‖x‖2

(5.15)

It should be noted that these matrices were chosen to test the robustness of

solvers, thus the accuracy of valid solutions varies greatly. In most cases, our pro-

posal produces stable results, similar to the ones achieved by CUSPARSE. Please,

observe it is not possible to compare directly these results with the ones obtained

in [74], since (i) the vector d has been randomly generated, (ii) the baseline solver

is a sequential version of Thomas instead of a Matlab solver, (iii) the CUDA SDK

and drivers are different, and (iv) the relative error formula is slightly different.

5.8 Conclusions of the Chapter 177

Matrix TPR WM CUSPARSE

1 1.30E-014 7.70E-015 5.20E-015

2 1.20E-016 1 .20E-016 3.90E-017

3 1.60E-016 2.40E-016 8.20E-017

4 1.00E-014 2.00E-014 6.00E-015

5 NAN NAN 1.20E-015

6 1.30E-016 1.30E-016 9.50E-017

7 3.60E-016 2.10E-016 3.40E-016

8 4.40E-015 5.50E-015 4.30E-015

9 4.70E+005 4.70E+005 4.70E+005

10 4.40E+013 4.40E+013 4.40E+013

11 6.00E+000 1.60E-015 7.30E-015

12 7.60E-010 3.90E-016 7.80E-016

13 8.50E-001 1.20E-009 7.40E-001

14 1.00E+000 5.40E-014 8.50E-015

15 NAN NAN NAN

16 NAN NAN NAN

Table 5.12: Relative errors for FP64

5.8. Conclusions of the Chapter

In this chapter, the previous tuning methodology for small problem sizes is ex-

tended to support medium and large problem sizes; i.e., problems that do not fit

in the CUDA shared memory, but still can be stored in the global memory a single

GPU. It distinguishes two methodologies: one for parallel prefix algorithms, a 3-

phase methodology, and another one for Index-Digit algorithm (a subset of parallel

prefix algorithms), composed of two phases.

In the case of ID algorithms, the methodology has two phases: the GPU Re-

sources Utilization Analysis phase and the CUDA Kernel Optimization phase. In

the first phase, the GPU performance parameters are identified, and a set of perfor-

mance premises are established. In the second phase, the algorithms are assigned

to the GPU resources thanks to a compact representation of the data distribution,

taking previous premises into account. Specifically, this methodology is applied to

the Wang and Mou (WM) tridiagonal system solver, and tested on three different

platforms. The Wang and Mou (WM) proposal (MS-ID-TS) outperforms the state-

of-the-art, CUSPARSE, being especially competitive and achieving a speed-up of

up to 33.2x.

In the more general case of parallel prefix algorithms, the methodology is com-

178
Chapter 5. A Tuning Methodology for Parallel Prefix Algorithms on a GPU:

Medium and Large Problem Sizes

posed of three phases: the GPU Resources Utilization Analysis, the CUDA Kernel

Optimization and the Performance Parameter Tuning, which slighly varies from the

ID methodology. This proposal is tested for the scan primitive using the Ladner-

Fischer pattern, and the Tree-Partitioning Reduction (TPR) method for solving

tridiagonal systems in a Maxwell platform. For the scan, our approach is focused on

solving several batches simultaneously, as explained in the text, only surpassing the

state-of-the-art for a set of problem size values. However, in the case of tridiagonal

systems, our proposal surpasses both CUSPARSE and WM implementations for

a single batch and multi-batch execution, being up to 30.16x faster. Additionally,

we also present a study about the performance with double precision. Regarding

numerical stability, two versions of TPR are presented: one focused on achieving the

fastest performance and the other one focused on improving accuracy, both being

highly competitive for the overall applications.

Chapter 6

Parallel Prefix Algorithms on

Multiple-GPU systems: Dealing

with Extremely Large Problem

Sizes

So far, all the proposals were designed to be executed in a single GPU. However,

the use of several GPUs, multiple-GPU programming, can be motivated by two cases:

scalability and memory limits. In the first case, although the dataset can fit in the

memory of a single GPU, employing several GPUs can improve throughput. The

second case refers the size of dataset is larger than the memory available in a single

GPU, and several GPUs are used.

In this chapter, the tuning methodology presented previously is extended to

work with parallel prefix algorithms and several GPUs. Specifically, this multiple-

GPU methodology is applied to two different algorithms, a scan operator and a

tridiagonal system solver. This work was originally introduced in [35], where the

tuning methodology was introduced to compute the scan primitive in Multiple-

GPU environments, and [37], which presented the tuning methodology for solving

tridiagonal systems in a Multiple-GPU platform.

179

180
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

6.1. A Tuning Methodology for Parallel Prefix

Algorithms on Multiple-GPU Environments

As introduced in Chapter 2, there are two types of multiple-GPU environments:

a Multi-GPU environment, where multiple devices are connected to the same com-

puting node; and a Multi-Node environment with multiple GPUs per computing

node and several computing nodes connected by a low-latency bus. In the Multi-

GPU environment, the communication through GPUs is performed by high-speed

interfaces, such as PCI-e or NVLink. In the Multi-Node environment, MPI rou-

tines are employed for communicating nodes. The previously introduced 3-phase

methodology is extended in this section to cover these environments.

A typical NVIDIA Multi-Node environment is shown in Figure 6.1, where each

computing node has several GPUs. The same node is composed of 4 GPUs grouped

into two PCI-e networks. Each PCI-e network contains a CPU with two GPUs. The

number of GPUs inside one computing node that are being used in the execution

is represented by W = 2w. In addition to this, Y = 2y is the number of PCI-

e networks being employed in each computing node; whereas V = 2v shows the

number of used GPUs connected to the same PCI-e network. Finally, M = 2m

is the number of computing nodes being used. The first three parameters can be

related as w = y + v. For example, an execution over Node 0 in figure, which uses

the 4 GPUs available, implies W = 4, Y = 2, V = 2 and M = 1. Using only the

GPU 0 and GPU 2 would involve W = 2, Y = 2, V = 1 and M = 1. In a Multi-

Node configuration, M = 2 when using Node 0 and Node 1 with W = 4, V = 2 and

Y = 2. It should be noted that W , Y , V and M values are defined by the tuning

strategy, and are limited by the hardware distribution.

It should be observed that the multiple-GPU computation means solving one

problem by several GPUs, but there could be partial communication among devices,

or no data exchange between them. Based on this, two cases can be scheduled:

Batch Parallelism. Each GPU computes a subset of G problems entirely; i.e.,

each problem is solved in just one GPU. Figure 6.2 depicts this distribution.

Problem Parallelism. All GPUs participate in solving a portion of each prob-

lem, as shown in Figure 6.3.

6.1 A Tuning Methodology for Parallel Prefix Algorithms on Multiple-GPU
Environments 181

Figure 6.1: Multi-GPU topology within a Multi-Node environment.

Figure 6.2: Multiple-GPU computation with no communication among GPUs

Figure 6.3: Multiple-GPU computation with communication among devices

Depending on the communication case, the performance varies hugely. The first

case is trivial, as each part of the problem runs independently in each GPU; how-

ever, the second case is more challenging, since its efficiency depends on how data

movement is designed among GPUs. Hence, this work covers both cases in order to

demonstrate the importance of the data exchange design.

The first phase of our methodology, the GPU Resource Utilization Analysis, iden-

tifies new factors that influence on GPU performance in these environments. The

success of our tuning methodology resides in representing the performance factors

in terms of GPU resources, that can be modeled as parameters whose performance

should be maximized. In the case of multiple-GPU environments, other factors,

related with the hardware node configuration, influence on performance. Previous

182
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

performance parameters are extended with these new factors, as Table 6.1 shows.

The three performance premises presented in previous chapters are summarized

below:

Premise 1. Balancing warp and block parallelism.

Premise 2. Increase the computational load per thread.

Premise 3. Maximization of SM occupancy and minimization of global mem-

ory communications.

A forth premise for the Multiple-GPU environment is now included:

Premise 4. Prioritizing High-Bandwidth Communications. Memory-bound

problems scale very well when the number of GPUs rises; thus, the number of

participating GPUs should be as high as possible. However, it is necessary to

pay attention to how these GPUs are connected, since communication latency

should be reduced, as well as the amount of data to be transferred from/to

each GPU. This premise defines the kind of communications that should be

prioritized depending on the target environment.

Premise 4 distinguishes between several scenarios depending on the problem size

and the hardware distribution. If there is no communication among devices, batch

parallelism, the number of participating GPUs must be maximized. Thus, W, V, M

must be maximized as much as the hardware allows, but maintaining GPUs with

enough data to exploit parallelism. The idea is to reduce the memory bandwidth

limitation, but ensuring a good occupancy rate. If there is communication among

GPUs, problem parallelism, there are two possibilities that depends on how par-

ticipating GPUs are connected. On the one hand, if the participating GPUs in

each problem belong to the same PCI-e network, the communication overhead is

very low, since the computation is performed inside the same node and there is no

communication among nodes. Hence, W, V, M must be maximized as much as the

hardware allows. On the other hand, when the participating GPUs do not belong

to the same PCI-e network, the computation can be distributed either along several

PCI-e networks inside the same node, communicating via host memory and CUDA

6.1 A Tuning Methodology for Parallel Prefix Algorithms on Multiple-GPU
Environments 183

Problem Parameters

N = 2n Problem size.

G = 2g Number of problems being solved simulteneously.

GPU Performance Parameters

S = 2s Number of shared-memory elements per block.

P = 2p Number of elements stored in registers per thread.

B = 2b Number of thread blocks executed per GPU, where B = Bx ·By.

L = 2l Number of threads that compose a block, where L = Lx · Ly

and S ≤ P · L
Node Performance Parameters

Y = 2y Number of PCI-e networks employed per node.

V = 2v Number of GPUs being executed within the same PCI-e network.

W = 2w Number of GPUs used per node, where W = Y · V

M = 2m Number of nodes.

Table 6.1: Description of tuning strategy parameters.

API, or across several nodes via InfiniBand and MPI. Empirically, if the amount

of data is low, the communication via host memory performs better than via MPI,

as MPI introduces a considerable overhead. Therefore, W, V must be maximized.

Nevertheless, the computation of a huge amount of data performs better through

several nodes via MPI - RDMA, since the MPI latency remains constant. Thus, W

and M must be maximized.

The (s, p, l) parameters obtained previously for each case remain constant. How-

ever, Premise 3 can be slightly modified for each algorithm, taking the communica-

tion parameters into account to maximize the SM occupancy.

Regarding the second phase of our methodology, CUDA Kernel Optimization,

the CUDA skeletons seen so far are not modified. The communication between nodes

is mostly invoked in the host side. In the case of belonging to the same PCI-e, inter-

GPU accesses can be performed from kernels, but thanks to the Unified Virtual

Addressing (UVA) is transparent to CUDA skeletons, as explained previously.

When establishing the optimal values for the performance parameters in the

third phase of the methodology, Performance Parameter Tuning, the new Premise 4

is considered to calculate the optimal value of the performance parameters for each

architecture, kernel and problem size.

184
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

6.2. A Multiple-GPU Strategy for the Scan Op-

erator

In Section 5.5 of Chapter 5, a tuning methodology for the scan operator was

presented for medium and large problems in a single GPU. In addition to the per-

formance parameters exposed in Table 6.1, the parameter K represented the number

of iterations in the cascade approach for this proposal, and whose optimal value was

bounded by

1 ≤ K1 ≤ G ·N
16 · P 1 · P 2 · L1 · L2

(6.1)

where the superscript number identified the referred kernel.

This section presents three different approaches for the scan operator when work-

ing in multiple-GPU environments, depending on the batch parallelism or the prob-

lem parallelism case. Solving the batch parallelism case is trivial, simply executing

the single-GPU strategy through several GPUs, since there is no communication

among GPUs. This approach is called Multi-GPU Batch Parallelism. However,

the problem parallelism case requires collaboration among GPUs, and is studied

under the Multi-GPU Problem Scattering and Multi-GPU Problem with Prioritized

Communications approaches.

6.2.1. Multi-GPU Batch Parallelism (MBP)

In this proposal, each GPU computes a subset of G problems entirely; i.e., each

problem is solved in just one GPU, as Figure 6.2 represents. The first G
W

problems

are solved by GPU 0, next G
W

problems by GPU 1, and so on through W GPUs.

This approach is tagged as Scan-MBP proposals in the Section 6.3.

As each GPU processes a set of independent problems, there is no communica-

tion, or cooperation, among GPUs. In terms of performance, this case spends time

on GPU communication routines, improving the global throughput. Regarding the

Multi-GPU implementation, G
W

problems are assigned to each GPU, copying their

data into the corresponding GPU global memory. Each GPU has a stream associ-

6.2 A Multiple-GPU Strategy for the Scan Operator 185

ated, executing the multi-stage proposal seen in Chapter 5 over its G
W

problems.

In the case of the Multi-Node environment, there is no MPI-communication

instructions during execution, since there is no communication among GPU devices.

The same code as the employed one in the Multi-GPU proposal is used here, running

the execution through M ·W GPUs on M nodes.

6.2.2. Multi-GPU Problem Scattering (MPS)

This approach is labeled as Scan-MPS proposal in the results. All GPUs par-

ticipate in solving a portion of each problem, as Figure 6.3 shows for a Multi-GPU

environment. Each problem is solved by W GPUs, where each GPU computes a

portion of the problem (N
W

elements). If there are G problems being simultaneously

solved, then each GPU works with G portions of N/W elements. This approach is

bounded by GPU-communication bandwidth in most cases.

Figure 6.18 shows the schema of this approach. In Stage 1 (Chunk Reduction),

the N/W elements of each problem are divided into chunks of K1 · L1
x · P 1 size for

each GPU, as explained in Section 5.5, performing the chunk reduction. Note that

problems are now divided among W GPUs, thus the number of chunks per problem

in a Multi-GPU environment is W · B1
x, and each chunk is computed by one block.

The resulting element of each chunk is stored in an auxiliary array of G ·W · B1
x

elements. Stage 2 (Intermediate Scan) performs the scan of these values. At this

point, there are two options: either a single GPU performs the auxiliary-array scan

for all problems in its memory space, or several GPUs participate in this task, with

each GPU performing the scan of a set of entire problems in its memory space. This

depends on the node topology performance (if all GPUs are connected in the same

PCI-e network or it is necessary to transfer through host memory), but empirically,

executing this second kernel on a single GPU has better performance than splitting

its execution into several GPUs. Finally, Stage 3 (Scan+Addition), which uses the

same data distribution as Stage 1, performs the local scan over its chunks, also

adding the corresponding elements from the auxiliary array to them.

In a Multi-Node environment, all GPUs participate in solving each problem, thus

there is communication amongM ·W GPUs. As there areG problems simultaneously

186
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.4: Multi-GPU Problem Scattering on a Multi-GPU environment.

executed, each GPU works with G portions of N
M ·W elements, and the number of

chunks per problem is M · W · B1
x. Basically, the same approach as that shown

in Figure 6.18 is used, using the code shown in Figure 6.5. Firstly, each node

divides these data among its W GPUs. One GPU in the system acts as a master

process (GPU 0), allocating an additional array for processing the second stage on

its device memory. After synchronizing all MPI processes, the first stage is executed,

whose goal is to calculate the chunk reductions that are passed to the second stage.

To do so, these values are collected from all GPUs by the master process with

an MPI Gather instruction. The master process computes the second stage in its

memory and returns the resulting values to the corresponding GPUs through an

MPI Scatter instruction. Finally, each GPU executes the third stage, and the result

is collected from GPUs to the node. Please, note that data transfers in the same

node are performed using the MPI API, although if they are on the same PCI-e bus,

6.2 A Multiple-GPU Strategy for the Scan Operator 187

peer-to-peer transfers are automatically used by the CUDA-aware MPI library.

6.2.3. Multi-GPU Problem with Prioritized Communica-

tions (MP-PC)

The Multi-GPU Problem with Prioritized Communications proposal can be con-

sidered as a sub-case of the Multi-GPU Problem Scattering proposal, where the

intra-node PCI-e network communications are prioritized. This approach is tagged

as Scan-MP-PC proposal in the results, and Figure 6.6 shows this schema for a

Multi-GPU environment.

This approach basically focuses on the Multi-GPU Problem Scattering approach

but taking advantage of the PCI-e networks within the compute node. When two

GPUs in the same node are not connected to the same PCI-e network, memory

transfers are performed through host memory, losing a good deal of performance.

In order to minimize this loss, the work is partitioned into the GPUs which belong

to the same PCI-e network. Thus, V GPUs of each PCI-e network work on G/Y

problems, partitioning each problem into V portions of size N/V . Communication

is only performed among the V GPUs of the same PCI-e network node, whereas

other PCI-e GPUs work on their problems, as it can be seen in Figure 6.6 for V = 2,

W = 8, Y = 4 and G = 12. In terms of performance, this proposal improves on the

MPS proposal by avoiding memory copies through the host.

Regarding the Multi-Node version, each node solves several problems, and these

problems are solved only by that node. Specifically, these problems are computed

by V GPUs connected to the same PCI-e network. As there is no communication

among nodes, just inside each node, this approach runs the same code as the Multi-

GPU version, but being executed through several computing nodes. There is no

MPI communication in this proposal.

6.2.4. Performance Maximization of Scan Approaches

Considering Premise 4, the desirable approach is the Scan-MBP proposal, as

there is no communication among GPUs. However, it is not always possible to

188
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

1 for each GPU in Node

2 cudaMemcpyAsync(d_data[i],node_data ,stream[i]);

3 cudaMalloc(scan_array);

4 i f (Node=0 & GPU=0)

5 cudaMalloc(scan_array_master);

6 Reduce(d_data ,scan_array ,N/(W*M),stream);

7 for each GPU in Node

8 cudaStreamSynchronize(stream[i]);

9 MPI_Gather(scan_array_master , scan_array);

10 i f (Node=0 & GPU=0)

11 Scan(scan_array_master ,stream [0]);

12 cudaStreamSynchronize(stream [0]);

13 MPI_Scatter(scan_array , scan_array_master);

14 ScanAdd(d_data ,scan_array ,N/(W*M),stream);

15 for each GPU in Node

16 cudaMemcpyAsync(node_data ,d_data[i],stream[i]);

17 cudaStreamSynchronize(stream[i]);

Figure 6.5: Pseudo-code of Scan-MPS in a Multi-Node environment.

Figure 6.6: 12 problems being solved by 4 different PCI-e networks with 2 GPUs
each.

use this approach, for example when each problem is larger than the memory of a

single GPU. In such case, the best option is to prioritize the communication of GPUs

connected to the same PCI-e, using either the Scan-MPS or Scan-MP-PC proposals.

The specific optimal values for the Node Performance parameters depends on the

given hardware, but following Premise 4 can be easily obtained for each case.

Irrespective of the approach employed, (s, p, l) parameters remain constant from

the analysis of Section 5.5, since they maximize performance in each GPU. Nev-

ertheless, K1 may vary slightly as it has an indirect bearing on the performance

of the other GPUs. Premise 3 justifies the fact of maximizing K1 with Equation

6.1. With several GPUs, a large K1 will generate a low number of chunks and it

implies fewer elements to be written in GPU 0 global memory from other GPUs.

Equation 6.1 from Premise 3 is extended with the following equations when working

6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem
Sizes 189

in Multi-GPU or Multi-Node environments:

N

K1 · L1
x · P 1

≥M ·W (6.2)

N

K1 · L1
x · P 1

≥ V (6.3)

The number of chunks, generated by splitting N into portions of K1 · L1
x · P 1

elements, must be equal or greater than the number of GPUs employed in the case

of MPS and MP-PC proposals, using Equation 6.2 and Equation 6.3, respectively,

in order to ensure each GPU processes at least one chunk.

6.3. Experimental Results for the Scan Primitive

with Extremely-Large Problem Sizes

In this section, our tuning strategy’s performance is compared with state-of-the-

art libraries, such as ModernGPU [97], Thrust [101], LightScan [79] and CUB [100].

The performance results were taken on the platform described in Table 6.2. All data

elements are integers, and they were in GPUs memory prior to the GPU execution.

In all cases, the K1 parameter for the given (W,V,M) configuration is set with the

value which maximizes performance. This is obtained empirically for each problem

size from the search space proposed in premises, whereas the (s, p, l) parameters

employed are those obtained in Section 5.5. Regarding the number of problems

and their size, N ≤ 268, 435, 456 (n ≤ 28) with G = 228/N is established for the

proposals with partial communication among GPUs, Scan-MPS and Scan-MP-PC ;

whereas N ≤ 33, 554, 432 (n ≤ 25) with G = 226/N is used for the proposal with no

communication among GPUs, Scan-MBP.

6.3.1. Multi-GPU Environment

Performance results for the Multi-GPU Problem Scattering approach (Scan-

MPS) are considered in Figure 6.7 where 228 data are solved, divided into G = 228/N

190
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

TSUBAME KFC Node

CPU Xeon E5-2620 v2 (2.10 GHz, 6 cores) x2

Memory 64 GB

GPU 4x Nvidia Tesla K80 (8 GPUs), 2 PCI-e networks

Driver 375.51, SDK 8.0

Inter-node connection InfiniBand FDR

Table 6.2: Description of a computing node in the test platform

Figure 6.7: Performance analysis for the Multi-GPU Problem Scattering approach
(Scan-MPS proposal) where G = 228/N .

batches for each N = 2n problem. It should be noted that this platform has 2 PCI-e

networks, each one with 4 GPUs; thus, W can be configured as 1 ≤ W ≤ 8, as

well as V ≤ 4 and Y ≤ 2. According to Premise 4, if W ≤ 4, then V=W in this

case, since the throughput would scale along GPUs (W=2,4) due to the absence of

host memory communications. However, when W=8, host memory transactions are

used, as the node configuration only allows 4 GPUs connected to the same PCI-e.

This explains why performance drops so markedly when W=8 : there are G prob-

lems being executed simultaneously where each auxiliary array is written by 8 GPUs

through host memory. As fast as N grows and G decreases, the number of auxiliary

arrays being written is also reduced, raising performance. This analysis also shows

that the GPU communication penalty is very low with P2P, demonstrating that the

Multi-GPU Problem Scattering strategy works well when N cannot be stored in a

6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem
Sizes 191

single GPU and P2P API can be used.

Figure 6.8 depicts the Multi-GPU Problem with Prioritized Communications ap-

proach (Scan-MP-PC) with G = 228/N . There are communications among GPUs

but performed with the P2P API, as each problem can be stored in V GPUs of the

same PCI-e network. Note that having Y=2 in each node does not make sense with

only W=2 GPUs: if they are placed in different PCI-e networks, it represents the

trivial case where no communication among GPUs is involved; otherwise, if they are

connected to the same PCI-e network, it is the case of Scan-MPS proposal. Each

node has 2 PCI-e networks with 4 GPUs connected to each network; thus we pro-

pose W=4 and V=2 for one test, and W=8, and V=4 for a second test. As each

problem is solved by V GPUs, when the number of problems, G, is lower than the

number of PCI-e networks, Y , the number of PCI-e being used has to be reduced.

In Figure 6.8, n=28 is not shown since it is solved by a single PCI-e network.

Figure 6.9 depicts a performance comparison with respect to state-of-the-art

libraries, where the number of problems solved is G=1. Our strategy relies on a

massive parallelism for exploiting GPU SMs; therefore, our strategy performance is

not very impressive if the total number of elements being simultaneously executed

is low, G=1 in this case. It should be noted that having only 1 batch, the Scan-MP-

PC proposal is executed on a V=1 PCI-e network, which is the same as executing

the Scan-MPS proposal. In this case, GPU computational power is underused,

especially for Stage 2. Nonetheless, our proposal is still very competitive, being

on average (averaging the speedup obtained for each data point) 1.21x faster than

CUDPP, 7.8x against Thrust, 1.31x against ModernGPU, 1.31x with respect to

LightScan and 1.04x against CUB. Please observe that each N is solved with the

(W,V) > 1 parameters (attached in Figure 6.9) which achieve the best performance.

Multi-GPU proposals cannot be competitive for small problem sizes when G=1, since

the computation time is lower than the communication latency among GPUs. Our

proposal running in a single GPU, called Scan Single-GPU Problem Scan-SP, is also

shown in figure in order to compare the performance with the other libraries. As

said, our proposal is focused on solving simultaneously many problems, thus the

performance for the case of G=1 is not very outstanding.

Figure 6.10 shows the performance achieved with Scan-MP-PC, our best proposal

for G = 228/N batches for each N value, as well as Scan-SP. A Log10 performance

192
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.8: Performance analysis for the Multi-GPU Problem with Prioritized Com-
munications approach (Scan-MP-PC proposal) where G = 228/N .

Figure 6.9: Performance analysis for our best Multi-GPU proposal when G = 1.

scale has been adopted for readability. Although the most representative scenario of

our proposal lies in solving several batches simultaneously, only CUDPP supports

this feature with its multiScan function. Thrust provides a segmented operation,

6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem
Sizes 193

Figure 6.10: Performance analysis for our best Multi-GPU proposal whenG = 228/N
problems.

Figure 6.11: Comparison of CUB and Thrust libraries under a segmented execution
when G = 228/N problems.

but it forces the carrying of an additional flag array, reducing performance. Also,

a segmented scan can be implemented with CUB following [112], modifying the

datatype and extending the sum operator with an additional condition. However,

194
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

better performance has been obtained invoking the non-segmented function G times

for n > 21 in the case of Thrust, and n > 17 in CUB, as Figure 6.11 depicts. For

the sake of fairness, we use the option that achieves the best performance for each

data point. In the case of ModernGPU and LightScan libraries, the corresponding

function is also invoked G times. All competing libraries are executing in a single

GPU, since none of them provides a Multi-GPU support. Our Multi-GPU proposal

is on average 9.48x faster than CUDPP, 49.81x against Thrust, 33.77x with respect

to ModernGPU, 8.92x faster than CUB and 58.44x against LightScan under such

scenario. It can be observed how performance increases in Thrust, ModernGPU,

CUB and LightScan libraries in line with the rise in N (increasing N implies lower

G, reducing the number of invocations). Specifically, when G=32768 problems with

n=13, our proposal is 245.54x times faster with respect to ModernGPU, 71.36x faster

than Thrust, 14.28x against CUB and 549.79x with respect to LightScan. However,

when G=8 and n=25, this speedup is decreased to 6.59x for ModernGPU, 18.5x

for Thrust, 5.55x for CUB and 5.44x for LightScan. Please, note that performance

drops when n = 28, as G=1 and only one PCI-e network is used.

In the case of integers and the test platform described, CUB and Thrust do

not solve problems larger than n > 28, and CUDPP cannot solve problems larger

than n > 26. Only ModernGPU and LightScan support the same problem sizes as

our library, up to n = 31. Please, observe that larger problem sizes would cause

integer overflow. With fairness in mind, previous results show problem sizes up to

n = 28 in order to represent the performance of the highest number of competitors.

In the case of floating point simple precision, CUB and Thrust solve problem sizes

smaller than n < 24, CUDPP for n < 25, and ModernGPU for n < 27; whereas our

library can solve problem sizes up to n = 30. Additionally, thanks to the problems

being distributed through several GPUs, several batch problems can be allocated

in memory at the same time in our library, while most of the competitors can only

allocate one single batch problem at a time for the said sizes.

Finally, Figure 6.12 shows the performance of the Multi-GPU Batch Parallelism

approach (Scan-MBP) when solving 225 data. Specificially, the results are taken

using W = 8 GPUs until n = 23, since larger n will cause G < W , ensuring at

least one batch per GPU. Then, W = 4 GPUs are employed for n = 24 and W = 2

for n = 25. In this approach, n = 26 is not shown as it will be solved by only one

6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem
Sizes 195

Figure 6.12: Performance analysis for the Multi-GPU Batch Parallelism approach
(Scan-MBS proposal) where G = 226/N .

GPU, this being the case of our single-GPU multi-stage proposal; thus, a G = 1

analysis makes no sense in this approach. This proposal is up to 160x times faster

for small sizes with respect to CUB, up to 224x against ModernGPU, up to 4265x

over Thrust, up to 8.4x with respect to CUB and up to 251x over LightScan, all of

them in a single GPU. Considering all sizes, on average, the speed-up achieved is

28x, 38x, 661x, 7.42x and 75x, respectively.

In both Scan-MPS and Scan-MP-PC, there is communication among GPUs,

since each problem is solved by several GPUs. Thanks to this GPU collaboration, it

is possible to solve large problem sizes. Partitioning the problem in several GPUs,

Scan-MBP, where each problem is solved by a single GPU, increases the performance

greatly since GPU communication overhead is avoided, although it is less challeng-

ing. Our approaches based on communication allow us to solve larger problem sizes,

representing a novelty with respect to the state-of-the-art, but this feature is com-

plemented with the non-communication approach to solve many shorter problems

sizes simultaneously.

196
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

6.3.2. Multi-Node Environment

The performance when involving several computing nodes, where there is no

communication among them, can be easily predicted. However in this environment,

the Multi-GPU Problem Scattering proposal performs inter-node communications

through MPI instructions, adding extra complexity to our model as well as new

latency that affect to global performance. OpenMPI 1.8.5 with CUDA-aware and

RDMA support are employed, and GPUs are connected through the same PCI-e

network inside the computing node. In this section, the Multi-GPU Batch Par-

allelism approach is not included, since there is no communication among nodes

and the same performance as the one obtained in the Multi-GPU environment is

achieved.

Different combinations of M and W can be used to compute the scan in a Multi-

Node environment. Depending on the amount of data to be processed, the correct

choice is key to obtaining the maximum performance. For example, in the case of us-

ing 8 GPUs in total, there are several M,W possible combinations (M×W = 8). In

our experiments, the best performance is achieved with M = 2,W = 4, obtaining the

same performance results as M = 4,W = 2 at high N sizes, whereas M = 8,W = 1

obtains the worst results. This is due to the fact that MPI communications intro-

duce an additional overhead in execution, thus the strategy would be to minimize

the number of computing nodes as far as possible, maximizing the use of GPUs con-

nected to the same PCI-e network in each node. However, as soon as the amount of

data grows, the performance difference among different combinations is reduced. In

the case of 213 elements being solved per problem, the configuration M = 2,W = 4

is 1.48x faster than the configuration M = 8,W = 1, whereas in the case of 228 ele-

ments, this speed-up is only 1.03x. This is due to the fact that, empirically, the MPI

overhead is almost constant in spite of the amount of data, while GPU computation

time is proportional to data size. It should also be noted that K1 is a factor that

has a bearing on global performance and must be small enough to have at least as

many chunks as GPUs, N
K1·L1

x·P 1 ≥M ·W .

Figure 6.13 depicts a performance study of our best Multi-Node proposal in

comparison to state-of-the-art libraries for the Multi-GPU Problem Scattering ap-

proach, outperforming all of them. On average, it is 8.51x faster than CUDPP,

6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem
Sizes 197

Figure 6.13: Performance analysis for our best Multi-Node proposal for G = 228/N
problems.

43.82x against Thrust, 24.85x in comparison to ModernGPU, 7.7x with respect to

CUB and 41.2x for LightScan, when simultaneously solving G = 228/N problems.

In the case of low N , these speedups are greater for the libraries with no batch

support: 50.37x for Thrust, 88.31x for ModernGPU, 10.13x for CUB and 109.12x

for LightScan in the case of n = 14. However, they are smaller for high N values,

since the number of memory transactions decreases with G: 8.85x for Thrust, 3.1x

for ModernGPU, 3.13x for CUB and 3.22x for LightScan in the case of n = 28.

Finally, Figure 6.14 shows a breakdown of times spent on each problem size for

M = 2 computing nodes of W = 4 GPUs each, executing 228 elements split into

G = 228/N batches for each problem size. Since MPI communications are introduced

in the execution, there is an additional overhead which remains almost constant

independently of the amount of data to be processed. MPI barriers sometimes

increase their time, as they are blocking collectives; thus the time of the collective

in each MPI process also depends on how long the process has waited for the others.

Note that the time spent on MPI Gather and MPI Scatter collectives is reduced

when G is also decreased, since the number of elements to be processed by Stage 2

is also lessened and the MPI collectives work with fewer elements.

198
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.14: Breakdown of times spent on M=2 and W=4 for G = 228/N problems.

6.4. A Multiple-GPU Strategy for Index-Digit Al-

gorithms on Multiple-GPU Environments

The goal of this section is to extend the 2-phase tuning methodology for ID-

algorithms, based on previous good results, in order to tackle large problem sizes.

In favor of demonstrating the proposal’s efficiency, our approach has been analyzed

for a tridiagonal system solver. Specifically, the Wang&Mou solver developed in the

Chapter 5 for a single GPU is used here.

6.4.1. A Two-phase Tuning Methodology

As a reminder, the ID methodology developed so far was composed of two phases.

In the first phase, the GPU Resources Utilization Analysis, the main factors that

influence on the GPU performance are identified and a set of theoretical performance

presmises are established. Then, during the CUDA Kernel Optimization phase, the

kernels are modeled with string operators and mapping vectors. They are also built

with CUDA skeletons, and the suitable values are obtained for the performance

parameters found out in previous phase and sent to each kernel.

6.4 A Multiple-GPU Strategy for Index-Digit Algorithms on Multiple-GPU
Environments 199

Problem Parameters

N = rn Problem size.

G = rg Number of problems being solved simulteneously.

GPU Performance Parameters

S = rs Number of shared-memory elements per block.

P = rp Number of elements stored in registers per thread.

B = rb Number of thread blocks executed per GPU, where B = Bx ·By.

L = rl Number of threads that compose a block, where L = Lx · Ly and S ≤ P · L

Node Performance Parameters

Y = ry Number of PCI-e networks employed per node.

V = rv Number of GPUs being executed within the same PCI-e network.

W = rw Number of GPUs used per node, where W = Y · V

M = rm Number of nodes.

Table 6.3: Description of the performance parameters for ID-algorithms in Multiple-
GPU.

Table 6.3 shows the performance parameters identfied in the GPU Resources

Utilization Analysis phase of the multiple-GPU methodology. All of them have

already been explained but, in contrast to general parallel prefix algorithms (Table

6.1), they are built in base of a generic r radix, as mentioned previously. As a

novelty, when working with several GPUs, our proposal uses W = rw GPUs within

a node. This node has Y = ry PCIe root networks, and each PCIe network has

V = rv GPUs connected (enabling P2P access among these GPUs), so w = y + v.

The theoretical performance premises identified in the Chapter 5 were:

Premise 1. The minimization of the number of stages.

Premise 2. Balancing warp and block parallelism.

Premise 3. Increasing the computational load per thread.

As was the case in Section 6.1 with general parallel prefix algorithms, it is nec-

essary to introduce a new premise related with the Multiple-GPU communication.

To simplify the methodology, Premise 4 is the same as the one explained in Section

6.1.

Premise 4. Prioritizing High-Bandwidth Communications. The number of

participating GPUs should be as high as possible; but paying attention to how

200
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

these GPUs are connected. This premise defines the kind of communications

that should be prioritized depending on the target environment, prioritazing

the approaches with no communication among devices. In case of needing

communication, the low-latency communication mechanishms have to be se-

lected.

The second phase, CUDA Kernel Optimization, employs the same CUDA skele-

tons as previously, but extending the arguments with the new performance param-

eters related with the communication hardware. Also, the mapping vectors slightly

vary for each algorithm, introducing the new communication parameters, as will be

seen in Section 6.5.

6.5. A Multiple-GPU Strategy for a Tridiagonal

System Solver

The use of several GPUs can be caused due to two reasons: (Case 1) Each prob-

lem can be stored in a single GPU memory, but performance scales very well when

using several GPUs to solve several independent problems; and (Case 2) data are dis-

tributed among several GPUs due to memory space limitations. Below, the Batch

Parallelism and the Problem Parallelism cases are analyzed for the Wang&Mou

tridiagonal system solver in both a Multi-GPU and a Multi-Node environment. The

Multi-GPU Batch Parallelism (MBP) approach represents the case of Batch Paral-

lelism; whereas the Multi-GPU Problem Scattering (MPS) and Multi-GPU Problem

with Prioritized Communications (MP-PC) represent the case of Problem Paral-

lelism.

6.5.1. Multi-GPU Batch Parallelism (MBP)

In the Multi-GPU Batch Parallelism approach, each GPU processes G
W

entire

problems, as Figure 6.15 depicts. As each GPU processes a set of independent

problems, there is no communication, or cooperation, among GPUs. In terms of

performance, this case spends no time on GPU communication routines, improving

6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver 201

Figure 6.15: Multi-GPU approach with W GPUs for solving G problems of N
elements: Each GPU solves G/W entire problems of N elements.

the global throughput.

The computation can be performed in a Multi-GPU environment or in a Multi-

Node environment. It should be noted that there are G problems of N elements

being solved; i.e. G × N data. In the Multi-GPU environment, G problems are

distributed among W GPUs, and each problem is solved by a single GPU, thus

there is no communication (or synchronization points) among GPUs. Specifically,

G/W problems are independently computed by each GPU in two stages, launching

two kernels for that. It should be noted that launching several kernels is due to

synchronizing threadblocks. Firstly, threadblocks of each GPU write their partial

results into its global memory. Then, the second kernel is launched, acting as a

synchronization among threadblocks of that GPU. The new kernel threadblocks

build the final result using previous kernel’s data from its global memory. Despite

raising global memory requirements, if data exchanges are properly optimized and

the workload is properly balanced among the GPU resources, the latency generated

by the communication between kernels via global memory can be efficiently hidden.

In the CUDA adaption of the Wang&Mou proposal, as explained previously, each

202
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

1 for each i in GPUs

2 {

3 cudaSetDevice(i);

4 cudaMalloc ((void**) &d_data[i],..);

5 cudaMalloc ((void**) &triads[i],..);

6 cudaStreamCreate (& stream[i]));

7 cudaMemcpyAsync(d_data[i],&h_data[i*stride],..,stream[i]);

8 }

9 for each i in GPUs

10 {

11 cudaSetDevice(i);

12 cudaStreamSynchronize(stream[i]); // Timing On

13 }

14 for each i in GPUs

15 {

16 cudaSetDevice(i);

17 WM(d_data[i],size , triads , stream[i]);

18 }

19 for each i in GPUs

20 {

21 cudaSetDevice(i);

22 cudaStreamSynchronize(stream[i]); // Timing Off

23 }

24 for each i in GPUs

25 {

26 cudaSetDevice(i);

27 cudaMemcpyAsync(h_data[i*stride],d_data[i],..,stream[i]);

28 }

29 ...

30 for each i in GPUs

31 {

32 cudaSetDevice(i);

33 cudaStreamSynchronize(stream[i]);

34 cudaStreamDestroy(stream[i]);

35 cudaFree (...);

36 }

Figure 6.16: Pseudocode for the MBP invocation in the Multi-GPU approach

element that takes part in the Node operator is a triad of equations, i.e. 3×16 bytes

in the case of floats, a huge consumption compared to other algorithms. However,

there is one property when dealing with adjacent equations that allows us to store

the central equation per element, as the two others are easily obtained from adjacent

equations. Hence, each element can be implemented in the first stage as a float4 data

type, just 16 bytes. The N elements of each problem are partitioned into chunks of

S = P · L elements each. It should be observed that the adjacency property only

arises in the first stage of the algorithm, where adjacent equations are stored in a

common memory space; whereas in the second stage, triads need to be stored for

each equation, since the central equations used for calculating the right- and left-

hand equations might be placed into another memory space. Thus, shared memory

6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver 203

1 int rank , nprocs;

2 MPI_Init (&argc ,&argv);

3 MPI_Comm_size(MPI_COMM_WORLD , &nprocs);

4 MPI_Comm_rank(MPI_COMM_WORLD , &rank);

5 ...

6 for each GPU i in Node

7 {

8 cudaSetDevice(i);

9 cudaMalloc ((void**) &d_data[i],..);

10 cudaMalloc ((void**) &triads[i],..);

11 cudaStreamCreate (& stream[i]));

12 cudaMemcpyAsync(d_data[i],&h_data[i*stride],..,stream[i]);

13 }

14 MPI_Barrier(MPI_COMM_WORLD); // Timing On

15 for each GPU i in Node

16 {

17 cudaSetDevice(i);

18 cudaStreamSynchronize(stream[i]);

19 }

20 for each GPU i in Node

21 {

22 cudaSetDevice(i);

23 WM(d_data[i],size , triads , stream[i]);

24 }

25 for each GPU i in Node

26 {

27 cudaSetDevice(i);

28 cudaStreamSynchronize(stream[i]);

29 }

30 MPI_Barrier(MPI_COMM_WORLD); // Timing Off

31 for each GPU i in Node

32 {

33 cudaSetDevice(i);

34 cudaMemcpyAsync(h_data[i*stride],d_data[i],..,stream[i]);

35 }

36 ...

37 for each GPU i in Node

38 {

39 cudaSetDevice(i);

40 cudaStreamSynchronize(stream[i]);

41 cudaStreamDestroy(stream[i]);

42 cudaFree (...);

43 }

44 MPI_Finalize ();

Figure 6.17: Pseudocode for the MBP invocation in the Multi-Node approach

use is doubled in the second stage, reducing its SM occupancy. As the second

stage needs the whole triads, these triads are exchanged from the first stage to the

second one via global memory. As first kernel makes a better use of shared memory,

having as many steps as possible in first kernel will increment global performance.

Additionally, the number of steps taken is logrN . Thus, increasing r, i.e. increasing

P , reduces the number of steps, involving fewer shared memory communications and

synchronization barriers. It should be noted that increasing P also implies raising

204
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

the number of registers used per thread, leading in poor performance if the use is

too high.

Regarding the Multi-GPU environment, Figure 6.16 shows how to invoke kernels

with several GPUs in the Multi-GPU approach. Device memory buffers are allocated

for each GPU, initializing the corresponding values from host memory, and creating

one stream for each GPU. The use of streams enables asynchronous memory transfers

as well as synchronizing GPUs. Each stream executes G/W problems with the two-

stage strategy explained above. Finally, both GPU buffers and streams are released

for each GPU.

The Multi-GPU environment is limited by the number of GPUs in the computing

node, and by the memory of the single node. When the execution needs either

more GPUs or more memory, several nodes have to participate in a Multi-Node

environment, thus data are distributed among M · W GPUs; i.e., M computing

nodes with W GPUs each node. In this case, the communication among nodes and

the data distribution is performed using MPI routines, as Figure 6.17 shows. Firstly,

MPI processes are created and data structures are allocated and initialized for each

GPU in each node. G/M problems are distributed among the M nodes, and then

these G/M problems are partitioned among W GPUs in each node. To measure

the execution time, nodes and GPUs have to be synchronized, thus the MPI barrier

is first executed, and then the GPUs of each node synchronize their streams. Each

GPU in the node executes G/(M ·W) problems, and then, data are gathered from

GPUs. Finally, MPI and CUDA resources are released.

Please observe that the number of problems being solved, G, must be equal to or

greater than the number of GPUs employed in the execution. This means, greater

than W in the case of the Multi-GPU approach, and greater than M ·W in the case

of the Multi-Node approach.

Please note that data are distributed in a different way, thus their mapping

vector varies. In the Multi-GPU environment:

6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver 205

[tbatch+n · · · tby+n+1︸ ︷︷ ︸
w

tby+n · · · tn+1︸ ︷︷ ︸
by

(6.4)

n︷ ︸︸ ︷
tn · · · tly+lx+p+1︸ ︷︷ ︸

bx

tly+lx+p · · · tlx+p+1︸ ︷︷ ︸
ly

tlx+p · · · tp+1︸ ︷︷ ︸
lx

tp · · · t1︸ ︷︷ ︸
p

]

whereas the Equation 6.4 is represented in the Multi-Node environment as follows:

[tbatch+n · · · tby+n+w+1︸ ︷︷ ︸
m

tby+n+w · · · tby+n+1︸ ︷︷ ︸
w

tby+n · · · tn+1︸ ︷︷ ︸
by

(6.5)

n︷ ︸︸ ︷
tn · · · tly+lx+p+1︸ ︷︷ ︸

bx

tly+lx+p · · · t1︸ ︷︷ ︸
s

]

6.5.2. Multi-GPU Problem Scattering (MPS)

In the Multi-GPU Problem Scattering approach, each problem is solved by all the

GPUs available. Specifically, in a Multi-GPU environment, each problem is solved

by W GPUs, where each GPU computes a portion of the problem (N
W

elements).

If there are G problems being simultaneously solved, then each GPU works with

G chunks of N/W elements as Figure 6.18 shows. In terms of performance, this

approach is bounded by GPU-communication bandwidth in most cases.

In this case, the code for invoking kernels involves synchronization among GPUs,

as Figure 6.19 shows. In the first kernel, each GPU reads and writes from/to its

buffers. However, in the second kernel, each GPU reads triads from any buffer, thus

the computation among GPUs needs to be synchronized to ensure data coherence.

Thanks to the UVA, there is no need to specify the memory space source of each

buffer, just working with the variable names. Additionally, if the GPUs are not

connected to the same PCI-e bus, it is not possible to use the P2P API; i.e., GPUs

cannot directly access to other GPU buffers. In that case, before invoking the

second kernel, it would be necessary that each GPU copies the triads to be used to

206
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.18: MPS approach for G problems and W GPUs

a local array with the cudaMemcpyAsync instruction, transfering data through host

memory. Figure 6.20 depicts the partition of a 16-element problem between W = 2

GPUs, each executing B = 2 threadblocks.

In this case, the mapping vectors for the Multi-GPU environment is expressed

as follows:

[tbatch+n · · · tn+1︸ ︷︷ ︸
by

(6.6)
n︷ ︸︸ ︷

tn · · · tn−w+1︸ ︷︷ ︸
w

tbx+ly+lx+p · · · tly+lx+p+1︸ ︷︷ ︸
bx

tly+lx+p · · · tlx+p+1︸ ︷︷ ︸
ly

tlx+p · · · tp+1︸ ︷︷ ︸
lx

tp · · · t1︸ ︷︷ ︸
p

]

In the Multi-Node environment, the mechanism for performing communication

between nodes is the use of MPI routines among them. This MPI communication

introduces a huge overhead in the execution, even when using MPI CUDA-aware

routines, as we have demonstrated in [35] for the scan primitive. For tridiagonal

systems, the global penalty would be worse, as much more data transactions would

be transferred through MPI. Thus, we only consider the Multi-GPU environment

6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver 207

1 // Allocate buffers in each GPU

2 // Copy data to buffers

3 // Create one stream for each GPU

4

5 dim3 blocks (..);

6 dim3 threads (..);

7

8 const int strideData =..;

9 const int strideTriads =..;

10

11 // Other parameters initialization

12

13 for each i in GPUs

14 {

15 cudaSetDevice(i);

16 WM_Stage1 <N1 ,S1,P1><<<blocks ,threads ,0,stream[i]>>>(d_data[i], d_data[

i]+strideData ,.., triads[i],triads[i]+ strideTriads ,..);

17 }

18 ...

19 for each i in GPUs

20 {

21 cudaSetDevice(i);

22 cudaStreamSynchronize(stream[i]);

23 }

24 for each i in GPUs

25 {

26 cudaSetDevice(i);

27 WM_Stage2 <N2 ,S2,P2><<<blocks2 ,threads2 ,0,stream[i]>>>(triads[i],

triads[i]+ strideTriads ,.., d_data[i]+3* strideData ,..);

28 }

29 for each i in GPUs

30 {

31 cudaSetDevice(i);

32 cudaStreamSynchronize(stream[i]);

33 }

34 // Copy solution to host

35 // Destroy stream

36 // Release GPU buffers

Figure 6.19: Pseudocode for the MPS approach where all GPUs belong to the same
PCI-e

for solving the MPS approach in several GPUs.

6.5.3. Multi-GPU Problem with Prioritized Communica-

tions (MP-PC)

This approach basically takes advantage of the PCI-e networks within the com-

puting node, computing the Problem Parallelism case. When the P2P API is not

enabled, memory transfers are done through host memory, losing a good deal of

performance. In order to minimize this loss, V GPUs of each PCI-e network work

208
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.20: An example for the MPS approach with N = 16, G = 1, W = 2 and
B = 2.

on the same G/Y problems, partitioning each problem into V chunks of size N/V .

There is only communication among the V GPUs of the same PCI-e network node,

whereas other PCI-e GPUs work on their problems, as it can be seen in Figure 6.6

with V = 2, W = 8, Y = 4 and G = 12. Thus, this approach uses the same code as

the one shown in Figure 6.19 but, in terms of performance, this strategy improves

the MPS approach by avoiding memory copies through host, and still scaling each

problem along different GPUs.

As the only communication among GPUs is performed across the PCI-e bus, it

makes no sense implement an MPI version for a Multi-Node environment.

In this approach, the mapping vector slightly varies taking the approach data

distribution into consideration. In the case of a Multi-GPU environment:

6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver 209

[tbatch+n · · · tby+n+1︸ ︷︷ ︸
y

tby+n · · · tn+1︸ ︷︷ ︸
by

(6.7)

n︷ ︸︸ ︷
tn · · · tn−w+1︸ ︷︷ ︸

v

tbx+ly+lx+p · · · tly+lx+p+1︸ ︷︷ ︸
bx

tly+lx+p · · · t1︸ ︷︷ ︸
s

]

6.5.4. Performance Maximization of the Tridiagonal System

Approaches

The value of the (s, p, l) performance parameters remains constant from the

multi-stage proposal seen in Chapter 5, independently of the Batch Parallelism, the

Problem Parallelism or the Distributed Problem Parallelism approach. It should be

observed that the total number of chunks into which a problem is divided is equal

to N
S

, as each threadblock processes one chunk of size S that can store in its shared

memory, and each GPU computes a set of this chunks. As explained in Chapter

5, the S1 value must be as large as possible, as first kernel makes a better use of

shared memory. Therefore, having as many steps as possible in first kernel increases

global performance. Similarly, it must also be noted the fact that the number

of chunks generated by spliting N into portions of S elements must be equal or

greater than the number of GPUs employed in the case of Problem Parallelism and

Distributed Problem Parallelism (N
S
≥ W and N

S
≥ V , respectively), ensuring each

GPU processes at least one chunk. This should not be a problem, as the use of

several GPUs is justified for large datasets with many chunks.

Following the Premise 4 for dealing with the Multi-GPU configuration, W must

be as high as possible, since this problem scale well when the number of GPUs is

raised and the communication minimized. Accordingly, the number of communi-

cations among GPUs must also be minimized. Whenever possible, the Multi-GPU

Batch Parallelism approach must be employed in order to avoid that communica-

tion. Otherwise, if all GPUs belong to the same PCI-e network, Problem Parallelism

approach can be used. In the case of having GPUs distributed among different PCI-e

networks, the Distributed Problem Parallelism approach must be considered, per-

forming communication only between GPUs directly connected by the PCI-e bus.

210
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

6.6. Experimental Results for the Tridiagonal Sys-

tem Solver with Extremely-Large Problem

Sizes

In this section, our Wang&Mou proposals are compared with state-of-the-art

libraries, CUSPARSE [95]. The performance results for the Batch Parallelism case

were taken in the test platform described in Table 6.4, a Multi-GPU platform with

Kepler GPUs, and a Multi-Node platform also with Kepler GPUs; whereas the

performance of the Problem Parallelism case is taken in the test platform of the

Table 6.2. Regarding the number of problems and their size, we have established

N ≤ 524, 288, and the number of simulatenous batches depends on the analysis.

Therefore, all data were in GPUs memory before starting the execution, ignoring

the time spent on these memory transactions from host in our measurements. In

our tests, all libraries were initialized with the same diagonally dominant systems,

a way of ensuring a good numerical stability. We would also like to point out the

fact of growing the problem size implies an unavoidable accuracy lost. In the same

way, CUDPP does not execute values larger than N = 1024. There is also a parallel

library from NVIDIA, called NCCL, which is optimized for multiGPU communica-

tions, although it does not have any implementation for tridiagonal systems.

6.6.1. Batch Parallelism

The performance results for the Multi-GPU Batch Parallelism (MBP) on the

Multi-GPU Platform are considered in Figure 6.21, when G = 8 problems are si-

multaneously solved. In this approach, there is no communication among GPUs,

so performance scales very well. From N = 1024, the Multi-GPU WM approach

outperforms our single-GPU multi-stage proposal, being up to 2.2x times faster.

Thus, the implementation scales proportionally with the number of GPUs for this

configuration. In the case of CUSPARSE, our Multi-GPU proposal always surpasses

it, being 5.51x times faster on average. Figure 6.22 depicts the same analysis for

G = 64, being up to 2.6x faster than the WM single-GPU implementation. While

the WM single-GPU implementation is limited by the memory bandwidth for this

amount of data, the execution over 2 GPUs distributes the workload better. How-

6.6 Experimental Results for the Tridiagonal System Solver with Extremely-Large
Problem Sizes 211

Multi-GPU Platform Multi-Node Platform

Description Multi-GPU system: 1 node Multi-Node system: 4 nodes

CPU Intel Xeon E5-2660 2.2 GHz Intel Xeon E5-2660 2.2 GHz

Memory 64 GB DDR3 1600 64 GB DDR3 1600

OS CentOS 6.4 CentOS 6.4

GPU 2x Nvidia Tesla K20 1x Nvidia Tesla K20

Driver 367.57, SDK 7.5 367.57, SDK 7.5

Table 6.4: Description of the test platforms

Figure 6.21: Multi-GPU approach for G = 8.

ever, performance also begins to decrease due to bandwidth saturation. This condi-

tion could be fixed by using more GPUs to distribute the workload and reduces the

bandwidth consumption per GPU. For all problem sizes, the Multi-GPU implemen-

tation outperforms CUSPARSE, being 4.5x faster on average. Finally, Figure 6.23

shows the case of G = 256 batches. It should be noted that problem sizes greater

than N = 131072 for this batch size are not allowed in single-GPU implementa-

tions due to memory limitations, it being essential to use our multi-GPU proposal.

Again, performance drops due to the huge bandwidth consumption of the Wang and

Mou implementation, but still being up to 2.65x faster than the WM single-GPU

implementation, and 4.78x faster than CUSPARSE on average.

Additionally, Figure 6.24 depicts a previous analysis on the Multi-Node Platform,

when G = 8. In the case of M = 2 nodes, our WM Multi-Node proposal runs

212
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.22: Multi-GPU approach for G = 64.

Figure 6.23: Multi-GPU approach for G = 256.

slower than the WM single-GPU implementation. This behavior can be explained

as the result of synchronizing the nodes with MPI routines in the timing window,

since these routines introduce a huge overhead. In the case of M = 4 nodes, our

proposal is up to 3.85x faster than the WM single-GPU implementation, up to 3.74x

faster than the WM Multi-Node implementation with M = 2 and 6.33x faster on

average with respect to CUSPARSE. Similar results are obtained in Figure 6.25 for

G = 64, achieving a speed-up of 5.7x against CUSPARSE. Figure 6.26 shows the

case of G = 256, where only our Multi-Node proposal is capable of solving problem

6.6 Experimental Results for the Tridiagonal System Solver with Extremely-Large
Problem Sizes 213

Figure 6.24: Multi-Node approach for G = 8.

Figure 6.25: Multi-Node approach for G = 64.

sizes greater than N = 131072 for this batch, due to memory consumption. For

this batch size, the WM implementation with M = 4 outperforms CUSPARSE

obtaining a speed-up of 6.25x, on average. The marked drop in performance from

N = 4096 can be fixed by adding more nodes to computation (although there is

no availability in our test platforms). Finally, Figure 6.27 depicts the analysis of

G = 512 batches, where only our WM Multi-Node proposal with M = 4 is capable

of solving N = 524288, due to the memory limitations in the other configurations.

It achieves a speed-up of 6.11x with respect to CUSPARSE.

214
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.26: Multi-Node approach for G = 256.

Figure 6.27: Multi-Node approach for G = 512.

6.6.2. Problem Parallelism

Here, the results for the Problem Parallelism case are explained. In contrast to

the Batch Parallelism case, the performance here was tested on a different Platform

(Table 6.2), as they were analyzed in different studies, but it uses the same GPU

architecture, Kepler. Figure 6.28 shows the analysis for the Multi-GPU Problem

Scattering approach (MPS) with G = 8. Please observe that there are 2 PCI-

e networks, each one with 4 GPUs (V = 4) in this platform, thus the P2P API is

6.6 Experimental Results for the Tridiagonal System Solver with Extremely-Large
Problem Sizes 215

Figure 6.28: Performance analysis for the Multi-GPU Problem Scattering (MPS)
approach with G = 8.

Figure 6.29: Performance analysis for the Multi-GPU Problem Scattering (MPS)
approach with G = 64.

enabled. As the node configuration only enables 4 GPUs connected to the same PCI-

e network, if W > 4, it would use host memory transactions reducing performance

so markedly. However, although transactions do not pass through host memory

when W ≤ 4, performance is very poor compared with the Batch Parallelism case.

The huge amount of data to be transferred saturates PCI-e bandwidth. Figure 6.29

shows the performance analysis for this approach when G = 64.

Figure 6.30 depicts the case of Multi-GPU Problem with Prioritized Communi-

216
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

Figure 6.30: Performance analysis for the Multi-GPU Problem with Prioritized
Communications (MP-PC) approach with G = 8

Figure 6.31: Performance analysis for the Multi-GPU Problem with Prioritized
Communications (MP-PC) approach with G = 64

cations (MP-PC) approach for G = 64. It is slightly better than the MPS approach;

there are communications between GPUs but these are still performed with P2P

API. This approach can only be used when N is stored into V GPUs of the same

PCI-e network. Please, note that this approach makes no sense with only 2 GPUs.

In the case of W=4, we have considered W = 4, Y = 2 and V = 2 for this test,

whereas W=8 represents W = 8, Y = 2 and V = 4. As each problem is solved by

V GPUs, if the number of problems, G, would be less than the number of PCI-e

networks, Y , the number of GPUs being used has to be reduced. The same problem

6.7 Conclusions of the Chapter 217

Figure 6.32: Performance evaluation for all Multi-GPU approaches with G = 64

for MPS arises here, the communication among GPUs via PCI-e introduces a huge

latency. Figure 6.31 performs the same analysis for G = 64.

In order to show the performance difference among MPB, MPS and MP-PC,

Figure 6.32 compares the three approaches in the test platform described in Table

6.2. For the MPS and MP-PC approaches, the huge amount of data transferred in

the Wang&Mou algorithm (three equations per element, each with 4 coefficients)

has a highly negative affect on the global performance. The Problem Parallelism

approaches have to be discarded as alternatives for computing large problem sizes

due to the low performance derived from the GPU communications. However, the

MPB approach scales very well, as there is no communication among devices and

the huge amount of data is distributed among GPUs.

6.7. Conclusions of the Chapter

In this chapter, our tuning methodology is extended to solve extremely large

problem sizes, thanks to the use of multiple GPUs in the computation. In the case

of general parallel prefix algorithm, this methodology is composed of three phases;

whereas it is composed of 2 phases for ID-algorithms.

In the case of general parallel prefix algorithms, our methodology is tested over

the scan operator. Our scan proposal is compared against CUDPP, Thrust, Mod-

218
Chapter 6. Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with

Extremely Large Problem Sizes

ernGPU, LightScan and CUB libraries, achieving a speed-up of up to 1.21x, 7.8x,

1.31x, 1.31x and 1.04x, respectively when computing a single batch (G = 1); and up

to 9.48x, 49.81x, 33.77x, 58.44x and 8.92x when solving G problems simultaneously.

Thanks to our multi-stage design of the scan operator, the amount of data to be

transferred between GPUs is low, and good speed-ups are achieved. Three different

approaches are proposed to deal with multiple GPUs: the Multi-GPU Batch Paral-

lelism (MPB), with no communication among devices; and the Multi-GPU Problem

Scattering (MPS) and Multi-GPU Problem with Prioritized Communication (MP-

PC) approaches, when there is partial communication among GPUs.

In the case of ID-algorithms, our methodology is applied to solve tridiagonal

systems. Specifically, the Wang&Mou algorithm is tested in a multiple-GPU en-

vironment, also providing the MPB, MPS, MP-PC approaches. When there is no

communication among GPUs, MPB approach, our solver is up to 6.11x faster than

the state-of-the-art, the CUSPARSE library. However, the huge amount of data

transferred in the approaches with communication, MPS and MP-PC, penalizes the

global performance too much to be competitive.

Chapter 7

Using Accelerated Parallel Prefix

Operations on Real Applications

In this chapter, our tuning methodology for designing efficient Parallel Prefix op-

erations on GPUs is tested on computing applications that require high performance

calculations. Specifically, the multiplication of large integers is a common operation

in many real-world applications. Especially, many cryptography algorithms require

operating on very large subsets of integer numbers, such as the public-key cryptog-

raphy, which employ arithmetic with hundreds of digits [108]. Additionally, this

multiplication is also frequently used to render fractal images at high magnification,

such as those found in Malderbrot set [13]. In both cases, the multiplication can be

performed involving a FFT operation.

In the following sections, two different approaches, which are based on our pro-

posals, are presented to compute the multiplication of large integers, demonstrating

the efficiency of our methodology. The work introduced in this chapter was originally

presented in [29].

7.1. Introduction to High-Precision Integers

The multiplication of integers with a large number of digits is an operation

commonly used in computer science, being especially important in cryptography.

219

220 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

Public-key cryptography is widely used in secure communication protocols, such

as SSL (Secure Sockets Layer) and TLS (Transport Layer Security). These proto-

cols rely on secure key exchange and signature algorithms such as ECC (Elliptic-

Curve Cryptography), RSA (Rivest-Shamir-Adleman) or DSA (Digital Signature Al-

gorithm). Unfortunately, public-key algorithms are not nearly as computationally

cheap as symmetric encryption algorithms; they are much more time consuming. For

example, according to the study [140], over 90% of the time in cryptographic oper-

ations was spent on the RSA key exchange. In the meantime, the RSA key length

required for internet domains has increased, as Moore’s law continues its scaling.

The RSA-1024 has been overwhelmingly used to secure internet communications.

Nevertheless, the US-based National Institute of Standards and Technology (NIST)

recommended that as early as the year 2010, systems achieving a security level of

80 bits should be deprecated [20]; from 2010 until 2030 a security level of at least

112 bits should be enforced, and a minimum of 128-bit level was recommended from

the year 2030 and beyond. These security levels can be instrumented via RSA using

keys with bit-lengths of at least 1024, 2048 and 3072 bits, respectively. Thus, it is

necessary to perform an urgent migration to higher levels of security, and this re-

quires achieving highly-optimized implementations of the RSA system for larger key

sizes. The main operation on an RSA cryptosystem is the modular multiplication

for large integers used to compute their modular exponentiation. This is just one

example of the importance of solving the multiplication of large integers efficiently.

The classical vector multiplication has O(N2) complexity, where N is the number

of digits. By using the Strassen FFT multiplication algorithm [111], which has

O(Nlog2N) complexity, the time is significantly reduced. This algorithm is derived

from the fact that any integer multiplication can be expressed as a polynomial

product, called vector convolution, followed by a carry normalization.

Previous studies on high-precision integer multiplication were designed for out-

dated GPU architectures, using GPU libraries which are no longer the most efficient

and are mostly focused on the Strassen FFT algorithm. It is crucial to know the

polynomial size at which the FFT Strassen algorithm starts to run faster than others,

and this size threshold varies from one architecture to others, but it is also inter-

esting to discover alternatives for different sizes. Additionally, most of the previous

works do not examine the parallel implementation of the carry normalization.

7.2 The Strassen FFT Multiplication Algorithm 221

There are a number of serial libraries and frameworks which perform large inte-

ger multiplication. For example, Microsoft introduced the BigInteger type in .NET

4.0 to compute large integers [86], which has no upper or lower bounds. Addition-

ally, IntX [19] is a large precision integer library with fast multiplication based on

the Hartley Transform [11]. The GNU MP Library [49] also includes fast calcula-

tion algorithms for arbitrary precision arithmetic. There are also several software

packages for computing symbolically with polynomials and matrices, such as Lin-

box [124], MAGMA [10] and NTL [125], although most of these are devoted to

serial implementation in the case of polynomials. In [42], the FFT multiplication is

implemented and compared with the normal multiplication.

In the case of GPUs, there are several CUDA implementations of large integer

multiplication. All of them focus solely on the Strassen FFT approach, ignoring

any other approximation to work around the problem. Additionally, both the archi-

tectures and libraries employed in these works are completely outdated. The work

presented in [43] employed the CUDA Fermi architecture, whereas the implementa-

tion of [139] is prior even to Fermi. In these works, many decisions were taken based

on the latency and efficiency of some operations, which have been completely over-

hauled in current architectures. Other GPU implementations can be found in [71]

and [84], although they were also tested on outdated CUDA SDKs and architectures.

In [6], a fast integer multiplication based on the cuFFT library [94] is implemented,

surpassing all other previous framework implementations.

7.2. The Strassen FFT Multiplication Algorithm

The Strassen FFT multiplication algorithm [111] is based on the polynomial mul-

tiplication. Any number in base x can be decomposed into a polynomial coefficient

vector. A polynomial p is described by its coefficient vector a = [a0, a1, · · · , aN−1]
as follows:

p(x) =
N−1∑
i=0

aix
i (7.1)

222 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

where x is the base of the polynomial, p(x) is the evaluation of the polynomial for

base x and N the number of digits of the number; i.e., the size of the polynomial.

For example, considering the integer 54321, its polynomial form using x = 10 would

be a = [1, 2, 3, 4, 5] or p(x) = 1 + 2x+ 3x2 + 4x3 + 5x4. Multiplying two polynomials

results in a third polynomial of size 2·N , and this process is called vector convolution.

According to the convolution theorem, if c is the convolution of two input vectors

a and b, c = a · b, then the Discrete Fourier Transform (DFT) of c is equal to

the pairwise multiplication of the DFT transform of each input vector, DFT (c) =

DFT (a)DFT (b), where pairwise multiplication means multiplying the vectors in

pairs, element by element. Thus, the c vector can be also obtained as the Inverse

Discrete Fourier Transform (IDFT) of this pairwise multiplication:

c = IDFT (DFT (a)DFT (b)) (7.2)

Given two input values, a and b, each one with N and M digits, respectively, the

Strassen FFT algorithm performs as follows. Firstly, the integers are represented

as polynomials in their coefficient-form representation, a = a0, a1, · · · , aN−1 and

b = b0, b1, · · · , bM−1. If the input vectors do not have the same length, M < N , the

shortest one is filled with zeros until M = N . Once the integers are represented

as polynomials, the convolution theorem is applied. In order to easily compute the

DFT of each vector, the Fast Fourier Transform is performed for each vector, after

which, the pairwise multiplication is applied as well as the inverse FFT. Finally, the

coefficients have to be normalized to the same base as the one in which the integer

is represented (looping to propagate the carry).

7.3. The CUDA FFT-based Multiplication Ap-

proach

At the beginning of Chapter 5 we mentioned that we had presented a tuned

FFT proposal in [36] that follows the methodology developed in this Thesis. This

FFT proposal (MS-ID-FFT) was focused on medium and large problem sizes, us-

ing a multi-stage strategy. In this approach, we have employed that MS-ID-FFT

7.3 The CUDA FFT-based Multiplication Approach 223

approach to compute the FFT operation of the Strassen algorithm for multiplying

large integers, in a similar way as the authors of [6] did with the cuFFT library.

When using the Strassen algorithm, most of the existing implementations use

the finite field Z/pZ, with prime p, instead of the complex field C, since the error

analysis is easier. Nevertheless, there are several important restrictions with the

finite field. Where x is the base and k the size of the FFT in the finite field:

The field Z/pZ requires a kth root of unity.

The length of the product a times b must be less than k.

The maximum value must fit in the field; i.e., k/2(x− 1)2 < p.

Multiplying in Z/pZ must be modulo p, thus the existence of a fast modulo p

operator is desirable (such as Montgomery reduction algorithm).

Taking previous restrictions into account, our FFT approach has been designed

to work with the complex field C. Additionally, this work uses the MS-ID-FFT

implementation, which only supports the C complex numbers in base x = 10. How-

ever, this floating design forces us to attend to the numerical accuracy. Specifically,

two different proposals were developed following this approach: the Complex-ID

proposal and the Real-ID proposal.

7.3.1. The Complex-ID Proposal

This proposal is tagged as Complex-ID in Section 7.6. The steps explained in

Section 7.2 are performed here for the vectors a and b of size N , using the MS-ID-

FFT implementation for complex numbers (Complex-ID function). The resulting

polynomial of multiplying a and b, c, will have a degree two times greater than the

highest degree of a and b; thus, the size of c is 2 ·N . Before performing the forward

FFT, a and b are extended up to 2 ·N , padding with zeros. The imaginary part of

each element is set to zero, and the coefficients are assigned to the real part. Once

the FFT is applied for each input vector, both signals are pairwise multiplied:

224 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

c.x = a.x ∗ b.x− a.y ∗ b.y; (7.3)

c.y = a.x ∗ b.y + a.y ∗ b.x; (7.4)

At this point, the inverse FFT is performed for the resulting vector from the

pairwise multiplication. It should be noted that a pairwise multiplication kernel

has also been developed to multiply the elements, which are already in the GPU

memory.

7.3.2. The Real-ID Proposal

The previous proposal wastes half of the memory bandwidth carrying zeros in

the imaginary part of each number. In this proposal, tagged as Real-ID in Section

7.6, the FFT operation of the MS-ID-FFT library is extended with real-number

support. Two new functions are developed: a Real-to-Complex (R2C) function for

the Forward FFT, and a Complex-to-Real (C2R) function for the Inverse FFT. To

do this, the real signal is packed into a vector with half of the size (reading each

two consecutive real values as a single complex number), and then the Complex-ID

function performs the transform of this half-size signal. After this, a post-processing

stage is used to combine the output and unpack the data, consuming the half of the

memory bandwidth with respect to the previous proposal. This can be achieved

thanks to the complex conjugate property, where half of the information in the

transformed signal is redundant. It should be observed that the computation of the

post-processing stage is performed in an additional kernel after (before) the forward

(inverse) FFT; thus, in addition to the kernels given by the MS-ID-FFT approach,

a kernel which computes the post-processing stage has had to be developed.

7.4. The CUDA Tiling Multiplication Approach

In this section, a new approach for computing an efficient multiplication of two

large integers on a GPU is proposed. This new approach is based on the classical

7.4 The CUDA Tiling Multiplication Approach 225

vector convolution algorithm and avoids working with the Discrete Fourier Trans-

form.

7.4.1. The vector convolution algorithm

Although the classical algorithm of polynomial multiplication seems sequential,

as Figure 7.1 shows, it is possible to apply a divide-and-conquer strategy to compute

the multiplication in parallel. This approach, tagged as Tiling-based in Section 7.6,

divides the computation of the c reduction (line 5 in pseudo-code) through several

data blocks, where each data block works with tiles of size T . Specifically, each data

block computes 2 × T − 1 elements of c, taking T elements from vector a and T

elements from vector b as inputs. Then, each data block has to integrate its partial

result with the others, in a sequential reduction, in order to obtain the overall result;

whereas the number of data blocks is given by (N/T) × (N/T). From a computer

architecture perspective, each data block is computed by one computing unit of the

target architecture and the optimal value of the tile size, T , also depends on the

given architecture.

Figure 7.2 depicts an example of this approach with N = 4 and T = 2. There

are 2× 2 = 4 computing units, where each computing unit computes 3 elements of

the solution, reading 2 elements from a, and 2 from b.

7.4.2. CUDA implementation

When this approach is implemented on a GPU, each computing unit corresponds

with a threadblock. Each threadblock works with T elements from a and T from b.

The whole computation is performed in a single kernel invocation and the overall

result is calculated by integrating the partial results with atomic instructions in

global memory.

Figure 7.3 shows the work performed by each threadblock. Each pair of T el-

ements from input vectors is assigned to one threadblock. Then, each threadblock

divides the computation of the multiplication among its threads. To do this compu-

tation, this approach does not use shared memory, since all exchanges are performed

226 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

1 for(k from 0 to 2*N-1)

2 c[k]=0

3 for (i from 0 to N-1)

4 for (j from 0 to N-1)

5 c[i+j]+= a[i]*b[j]

Figure 7.1: Pseudocode of the vector convolution operation

Figure 7.2: Classical multiplication operation in tiles

by shuffle instructions. The partial result of each threadblock is stored in private

registers of its threads, and is carried to its positions in the result array, performing

the corresponding reduction with other threadblocks in global memory.

Nevertheless, these operations constitute a significant bottleneck for large-size

inputs. It should be noted that each memory location is atomically accessed as

many times as the number of tiles. Thus, large problem sizes will suffer memory

contention due to atomics, despite the new improvements on these operations in

new architectures. Since higher number of tiles implies higher contention, and the

number of tiles is equal to the number of threadblocks employed, each block must be

executed with the greatest number of threads possible and each thread must be in

charge of the maximum number of elements possible in order to reduce the number

of threadblocks.

In order to find the suitable T value, an exhaustive search is empirically computed

for each supported architecture, ascertaining its optimal value. The optimal T

7.5 The Carry Normalization 227

Figure 7.3: GPU implementation of the tiled multiplication where N = 4 and T = 2.

value is affected by the GPU global memory bandwidth, its SM parallelism, the

performance of the global memory atomics in that GPU and the size N of the input

vectors, using our tuning methodology to obtain the corresponding optimal values.

7.5. The Carry Normalization

After multiplying the vector inputs, each element in the output vector is the

result of the corresponding product, and may be composed of several digits. In

order to obtain the final result, each element must perform the module operation

and propagate the carry to the next more significant elements. This implies that

228 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

each element receives a carry-in from the less significant elements, performs the

module operation and propagates its carry-out to the more significant elements.

This process is called Carry Normalization or Carry Propagation and its pseudo-

code is illustrated in Figure 7.4 for the base x = 10.

In contrast with traditional adders, where the carry flag is a single digit used to

indicate when a carry-out has been generated and is propagated to the immediately

adjacent more significant position, the carry accumulator here (line 8) may be com-

posed of several digits; i.e., the carry must be propagated to several more-significant

elements. This fact limits the parallelization of the algorithm using a carry look-

ahead scheme, since this scheme is designed to propagate a single-digit carry, not a

multiple-digit one, as Figure 7.5 shows for an example, which is the result of multi-

plying two polynomials, and whose polynomial form is a = [579, 23, 2, 0]. In order

to deal with this, the computation is broken into two different phases.

In the first phase, each element will be normalized to a two-digit number in

base 10. To do this, considering integer type codification, each element may be

composed of up to 10 digits; keeping the first digit as the element’s value and

the remaining 9 digits are assigned as the element’s carry-out. Therefore, each

digit of the element’s carry-out has to be propagated to the corresponding adjacent

more-significant elements, nine at most. In other words, each element receives a

single-digit carry-in (a number in [0, 9]) from 9 elements at most. After adding the

single-digit carry-in from its adjacent less-significant elements to itself, each element

will be composed of two digits at most: considering the extreme scenario where the

element’s value is 9 and the nine carry-ins received are also 9, the total addition

would be 90, two digits. The implementation of this idea is depicted in Figure

7.6 (a). Firstly, every element performs the module operation at a time, obtaining

each element’s value, [9, 3, 2, 0] in the example. After this, the generated carry-

outs, [57, 2, 0, 0], have to be propagated to the next elements. Thus, each element

propagates its generated carry-out to its adjacent elements, using shared memory,

where each digit of the carry-out is sent to the corresponding adjacent element. In

the example, the first element sends 7 to the second element and 5 to the third

element; whereas the second element sends 2 to the third one and the third element

sends 0 to the forth one.

In the second phase, the vector is decomposed into two vectors: the one with the

7.5 The Carry Normalization 229

1 CarryPropagation(srcVector , dstVector)

2 {

3 carry :=0

4 for (i from 0 to srcVector.length)

5 sum:= carry+srcVector[i]

6 mod:= sum \% 10

7 dstVector.Add(mod)

8 carry:= sum /10

9 while(carry >0)

10 if(carry.lenght >1)

11 index:= carry.lenght -1

12 else

13 index:= 0

14 dstVector.Add(carry[index])

15 carry:= carry /10

16 }

Figure 7.4: Pseudocode of the carry-propagation operation for large integer multi-
plication.

Figure 7.5: Carry propagation: Serial implementation

result of applying the module operation, and another one with the corresponding

single-digit carry-out generated. The final result is built with their addition. As

these two vectors are composed of single-digit elements, a carry look-ahead scheme

can be applied now for their addition. Figure 7.6 (b) shows the second phase of the

implementation. Specifically, in order to compute the carry look-ahead schema of

the second phase, let us define critical[i] as a boolean array where the ith bit is set

if the ith element is critical; i.e., sensitive to produce a carry-out if and only if there

is a carry-in (i.e., ith element is the digit 9). Also, let us define c[i] as a boolean

array where the ith bit is set if the ith element generates a carry-out. Then, the

carry look-ahead function is as follows:

230 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

(a) First phase (b) Second phase

Figure 7.6: Parallel carry propagation design

carry[i] = (c[i]) or (critical[i] and c[i− 1]) or (7.5)

(critical[i] and critical[i− 1] and c[i− 2]) or · · ·

Although this expression seems very slow to evaluate, it can be replaced by integers

instead of boolean arrays, getting the following expression that can be evaluated in

a single step:

carry = ((c << 1) + carry − in + critical) (7.6)

xor critical

where carry-in is a single carry bit from the previous block of elements. Previous

numerical expression can be evaluated at different levels: thread registers, warp and

threadblock until reaching the final result, as explained in [43].

7.6. Experimental Results for the High-Precision

Multiplication

In this section, an analysis of the results is presented. This analysis is split into

two studies: a numerical study for the FFT-based approach, which uses floating

7.6 Experimental Results for the High-Precision Multiplication 231

Pascal Platform Volta Platform

CPU Xeon E5-2630 Xeon E5-2698

Memory 256 GB 512 GB

GPU NVIDIA Pascal P100 NVIDIA Volta V100

Driver 375.51, SDK 8.0 384.81, SDK 9.0

Table 7.1: Description of the computing platforms employed

point precision, and a performance study for the two approaches.

7.6.1. Numerical analysis

While the classical algorithm and the finite-field FFT-based approaches work

with exact computations, the FFT-based implementations on the Complex field can

show some numerical inaccuracy due to the use of floating-point operations. Most

of this numerical inexactness can be solved executing a round function after the

calculation.

In order to analyze the numerical accuracy of our FFT proposals without any

round, Table 7.2 shows the error obtained for floating-point 32-bit operation and

floating-point 64-bit operations. In order to measure the relative error obtained with

the magnitude employed, the following formula is used

Err(x1, x2) =

√∑N−1
i=0 (x1[i]− x2[i])2√∑N−1

i=0 x2[i]2

where x1 is composed of the FFT results and x2 contains the theoretical integer

results.

As can be observed in table, the numerical inaccuracy is highly acceptable in the

case of working with 32-bit floating point, and extremely low when working with

64-bit floating point. In any case, this inaccuracy is almost non-existent if using a

round function. It should be observed that the Tiling-based approach already works

with integers, thus there is no numerical inaccuracy in its execution.

232 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

N FP32 Error FP64 Error

4096 1.5443149e-07 1.7168e-16

8192 2.1481627e-07 1.9978e-16

16384 1.7213162e-07 2.6860e-16

32768 1.8384862e-07 1.9637e-16

65536 2.3961446e-07 3.5997e-16

131072 3.2599550e-07 2.1811e-16

262144 3.2059985e-07 2.2378e-16

524288 2.9493298e-07 3.0587e-16

1048576 3.5447441e-07 2.5003e-16

2097152 3.4503765e-07 3.5733e-16

4194304 3.4624879e-07 3.8990e-16

8388608 3.2564203e-07 4.1682e-16

Table 7.2: Numerical analysis for our FFT proposals.

7.6.2. Performance analysis

The following results were taken in the computing platforms shown in Table 7.1.

All data elements were in the GPU memory prior to the GPU execution, thus CPU-

GPU memory transfers are not included in the metrics. Specifically, the MData/s

metric gives the number of digits (in millions) calculated by second for the resulting

polynomial.

For each kernel launched in each proposal and architecture, the optimal perfor-

mance parameters that maximize the GPU parallelism have been found empirically

following our tuning methodology. It should be noted that the most important per-

formance factor is to obtain the maximum memory bandwidth in the case of the

FFT proposals, and to minimize the number of atomic operations in the case of the

Tiling approach. In order to compare our approaches with other implementations,

we have also implemented the FFT-based approach using the CuFFT library to

perform the FFTs, since authors of [6] claimed that it surpasses any other state-of-

the-art implementation.

7.6 Experimental Results for the High-Precision Multiplication 233

(a) Single-batch execution

(b) Multi-batch execution

Figure 7.7: Performance comparison for our FP32 approaches in the Kepler Archi-
tecture

The Kepler Platform

Figure 7.7 shows the performance of both the FFT-based proposals and the

Tiling approach for single precision in the Kepler Platform. As the main kernels of

the Strassen algorithm are the FFT operations, the overall performance is limited

by the FFT performance. Figure 7.7 (a) shows the performance when executing a

single-batch problem. In the graphic, both the Real-ID and Complex-ID propos-

als are represented. The Real-ID proposal runs faster owing to its reduced memory

bandwidth consumption, as expected. The performance drops are due to the launch-

ing of an additional kernel in the calculation due the problem size limits. Addition-

234 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

ally, the dashed lines represent the performance of the same FFT-based proposals

but using the CuFFT library. The performance drops of the CuFFT-based proposals

are also due to the launching of an additional kernel for computation. Our Real-

ID proposal surpasses the Real-CuFFT one, obtaining a speed-up of up to 1.65x,

and the Complex-ID is up to 2.42x faster than the Complex-CuFFT proposal. The

Tiling approach, tagged as Tiling-based, is compared against the single-precision

FFT-based approaches for each architecture. The Tiling-based proposal outper-

forms the FFT-based ones while N ≤ 32768. In the case of N = 8192, it is 5.2x

faster than the Real-ID proposal and 5.53x with respect to the Real-CuFFT pro-

posal. This approach only launches one kernel and performs much fewer operations

than the FFT-based approaches. However, large problem sizes imply partitioning

the input vectors through many threadblocks, performing many atomic operations

over the same memory locations and generating a huge latency overhead.

However, the ID-FFT library has been designed to solve several batch problems

simultaneously. Figure 7.7 (b) shows a multi-batch execution. Specifically, in order

to perform a multi-batch execution, 224 digits are allocated for the resulting poly-

nomials where the number of batches, G, is equal to G = 224

2·N , and N is the size

of each input vector. In this case, the Tiling-approach is not shown for the sake

of appearance, since it has a hugely higher performance. Our Real-ID proposal is

up to 1.88x faster than the Real-CuFFT proposal, it being on average 1.61x faster.

In the case of our Complex-ID proposal, it obtains a speed-up of up to 1.49x with

respect to the Complex-CuFFT proposal, achieving 1.37x on average. The perfor-

mance of the Tiling approach solving G problems simultaneously is shown in Figure

7.8 and it is compared against the FP-32 FFT-based proposals. As expected, it runs

faster with small problem sizes, owing to the small number of atomic operations.

Specifically in this case, problem sizes shorter than N = 16384 should use the Tiling-

approach to compute the multiplication, achieving a speed-up of up to 5.53x against

the FFT-based proposals; otherwise, for larger sizes, the Real-ID must be employed.

Figure 7.9 shows the case of double precision in this platform. It should be

observed that this datatype only affects the FFT-based proposals, since the Tiling

approach works with integer types; therefore, the Tiling-approach performance re-

7.6 Experimental Results for the High-Precision Multiplication 235

Figure 7.8: Performance comparison for the GPU-tiling proposal, when solving G
problems, with respect to FP32 FFT-based proposals on the Kepler Architecture

mains constant. In the case of double precision, the shared memory consumption

of the ID-FFT proposals is huge, reducing the SM occupancy excessively. Figure

7.9 (a) shows the FP64 execution for a single problem. For this case, the ID-FFT

implementations are surpassed by the CuFFT-based implementations, since the ID-

FFT proposals use too much shared memory; although this behavior changes for

larger sizes. It can be observed in Figure 7.9 (b), which shows the FP64 execution

for G problems, that our proposals surpass the CuFFT-based ones owing to having

a huge amount of data being executed.

The Pascal Platform

Figure 7.10 (a) shows the performance of our approaches in the Pascal Platform,

using FP32 for the FFT-based proposals, when executing a single-batch problem.

Our Real-ID proposal is up to 2.08x faster compared with the real implementation of

the Real-CuFFT proposal; whereas the Complex-ID proposal is up to 2.74x faster

than the Complex-CuFFT proposal. The Tiling-based proposal outperforms the

Real-ID proposal while N ≤ 65536. In the case of N = 8192, the Tiling-based is

4.34x faster than the Real-ID proposal and 6.23x with respect to the Real-CuFFT

proposal.

However, the ID-FFT library has been designed to solve several batch prob-

lems simultaneously, with G = 224

2·N . This multi-batch case is shown in Figure 7.10

236 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

(a) Single-batch execution

(b) Multi-batch execution

Figure 7.9: Performance comparison for our FP64 approaches in the Kepler Archi-
tecture

(b), where the Tiling-approach is not shown again for the sake of appearance, due

to the range of the axis and the magnitude of the approach values. Our Real-

ID proposal is up to 1.91x faster compared with the real implementation of the

Real-CuFFT proposal; whereas the Complex-ID proposal is up to 1.21x faster than

the Complex-CuFFT proposal. The performance of the Tiling approach solving G

problems is shown in Figure 7.11 and compared against the single-precision FFT-

based approaches for this architecture. It outperforms the Real-ID proposal when

N ≤ 32768. In the case of N = 4096, the Tiling-based is 3.92x faster than the

Real-ID proposal and 7.49x with respect to the Real-CuFFT proposal.

7.6 Experimental Results for the High-Precision Multiplication 237

(a) Single-batch execution

(b) Multi-batch execution

Figure 7.10: Performance comparison for our FP32 approaches in the Pascal Archi-
tecture

Figure 7.12 performs the same comparative for the double precision execution.

As the FFT function is a memory-bound operation, the achieved performance is the

half of the FP32-proposals performance. In the case of a single batch, the FP64

Real-ID proposal is up to 1.51x faster than the Real-CuFFT one; whereas up to

11x is obtained for the complex case, depending on the data point. In a multi-batch

execution, the FP64 Real-ID proposal is up to 1.51x faster than the Real-CuFFT

one; whereas 1.50x is obtained for the complex case.

238 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

Figure 7.11: Performance comparison for the GPU-tiling proposal, when solving G
problems, with respect to FP32 FFT-based proposals on the Pascal Architecture

The Volta Platform

Figure 7.13 shows the performance analysis of our proposals in the Volta Plat-

form, where the FFT-based proposals use FP32 datatypes. It should be observed

that the Volta execution is 1.5x faster, on average, than the Pascal one for a single-

batch execution. Again, this is because of the memory-bound nature of the problem.

The new generation of memory controllers in Volta provides 1.5x delivered memory

bandwidth with respect to the Pascal GP100. In this platform, the MS-ID-FFT

proposals continue surpassing the CuFFT-based ones, achieving, on average, 1.44x

and 1.42x speedups for the case of real and complex numbers, respectively. In gen-

eral terms, this architecture performance is the double than the Pascal one, as can

be observed. Regarding the Tiling approach, the atomic operations still limit the

performance for larger problem sizes in this architecture, although this approach is

up to 5.2x faster than the Real-ID proposal and up to 6.33x with respect to the

Real-CuFFT proposal. In the case of a multi-batch execution, the MS-ID-FFT pro-

posals continue surpassing the CuFFT-based ones, achieving, on average, 1.21x and

1.12x speedups for the case of real and complex numbers, respectively. Figure 7.14

shows the Tiling-based proposal in this platform, which is is up to 3.91x faster than

the Real-ID proposal and up to 7.48x with respect to the Real-CuFFT proposal.

Figure 7.15 shows the results for double precision in this architecture, when

executing a single-batch. In this case, the MS-ID-FFT proposals are competitive

7.6 Experimental Results for the High-Precision Multiplication 239

(a) Single-batch execution

(b) Multi-batch execution

Figure 7.12: Performance comparison for our FP64 approaches in the Pascal Archi-
tecture

when N > 1048576, whereas the CuFFT-based proposals run faster for smaller

problem sizes. In the case of executing several batches, we have obtained inconsistent

results for all the versions when compiling with compute capabilities 7.0 and CUDA

9.0. Specifically, extremely low MData/s is achieved when several bidimensional

threadblocks write double values in global memory. This issue has been reported,

since the performance increases, until reaching expected values, when compiling with

other compute capabilities for this architecture.

240 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

(a) Single-batch execution

(b) Multi-batch execution

Figure 7.13: Performance comparison for our FP32 approaches in the Volta Archi-
tecture

7.6.3. Results Discussion

On the one hand, the FFT-based approaches have some performance weaknesses,

in addition to working with precision inaccuracy. Firstly, each invocation of the FFT

operation launches several kernels, as well as the kernel invocation for the pairwise

multiplication, with the corresponding performance loss. Additionally, the MS-ID-

FFT approach consumes a huge amount of shared memory and shuffle instruction

optimization is not possible [36], affecting performance massively when working on

double precision. Although new GPU architectures have higher theoretical perfor-

mance and higher memory bandwidth, these two factors significantly limit the actual

7.6 Experimental Results for the High-Precision Multiplication 241

Figure 7.14: Performance comparison for the GPU-tiling proposal, when solving G
problems, with respect to FP32 FFT-based proposals on the Volta Architecture

Figure 7.15: Performance comparison for the FP64 FFT-based proposals executing
a single-batch in the Volta Architecture

performance that can be achieved. Despite of these aspects, they have been shown

to be the most efficient implementation for the large problem sizes.

On the other hand, the Tiling approach performance is excessively dependent

on the atomic implementation efficiency, and although the atomic operations can

be replaced by a reduce-pattern, this would imply the use of additional kernels

and global memory. Specifically, the reduction of each element in a reduce-pattern

would need an additional vector in memory with as many elements as the number

of threadblocks invoked by the Tiling-based kernel. This amount of memory ex-

ceeds the memory availability of a single-GPU when solving large problem sizes. In

242 Chapter 7. Using Accelerated Parallel Prefix Operations on Real Applications

CUDA 9, it is possible to perform this reduce operator in a single kernel and with no

additional memory, using the gridSynchronize global barrier. However, the number

of invoked threadblocks must be less than or equal to the number of resident active

threadblocks, in the same manner as for persistent threads, but the Tiling-based ker-

nel uses more than that number of threadblocks. Thus, the current implementation

of the Tiling approach is the most efficient we have found.

Thus, analyzing the results obtained, we can conclude that the Tiling approach

shows high performance when multiplying a small number of digits, and the FFT-

based approaches are the most suitable ones for computing large problem sizes.

Specifically for the single-batch execution, the Tiling approach should be used when

N ≤ 65536 for both Pascal and Volta architectures, whereas larger problem sizes

should be solved with the FFT-based approaches. In the case of a multi-batch

execution, the Tiling approach should be used when N ≤ 32768. Although the

FFT-based approaches suffer from some numerical inaccuracy, this work shows that

this is very low and may be acceptable for most of the applications which use the

large-integer multiplication. Additionally, this work demonstrates that the FFT-

based approaches that use the MS-ID-FFT approach to compute the Fast Fourier

Transform run faster than those which use the CuFFT library.

7.7. Conclusions of the Chapter

This chapter provides a performance analysis of the Parallel Prefix proposals

developed with our tuning methodology, when they are embedded in real-world ap-

plication codes; specifically, we test the multiplication of large integers, widely used

in cryptography. Two approaches for computing an efficient multiplication of large

integers on different GPU architectures are presented: the FFT-based approach,

which uses the Strassen-FFT algorithm, and the Tiling approach, which is based

on the classical algorithm, partitioning the data vectors in tiles. The FFT-based

approach is focused on complex numbers, instead of on a finite-field, and uses a FFT

proposal based on our methodology (MS-ID-FFT) to implement the Strassen algo-

rithm. This approach outperforms other implementations which use the CuFFT

library by 2.74x in Pascal and 1.44x in Volta architectures. Additionally, a nu-

merical accuracy analysis is performed, since this FFT-based approach works with

7.7 Conclusions of the Chapter 243

complex numbers rather than finite fields. The results show that the inaccuracy

is very low when using FP32 complex numbers and almost non-existent with FP64

complex numbers. The FFT-based approaches are highly suitable when dealing with

extreme-large polynomials. Additionally, the flexibility of our methodology allowed

to easily develop a Tiling proposal of the classic algorithm. The Tiling approach

is extraordinarily efficient when working with small and medium polynomials. For

each architecture and execution type(simple-batch or multi-batch), this work also

provides the optimal algorithm for each data point. Finally, a parallel implementa-

tion for the carry propagation is also given.

Chapter 8

Conclusions and Future Work

This Thesis had two main goals: on the one hand, designing new parallel al-

gorithms, which match well to any programming paradigm, to solve very common

computer science operations; on the other hand, developing a general methodology

for NVIDIA GPUs to solve efficiently many different parallel operations that may

be formulated through a parallel prefix algorithm representation. The aim of this

methodology is to provide optimized proposals with competitive performance, as

well as to facilitate the programmer the development of additional parallel prefix

algorithms following the methodology.

Parallel prefix algorithms are a kind of regular parallel algorithm whose com-

munication pattern is static, and does not depend on the runtime. Furthermore,

each element is the result of combining the previous result of other elements. Addi-

tionally, there is a subset of parallel prefix algorithm, called Index-Digit algorithms,

which have special properties. Depending on the category of the algorithm, the

proposed methodology is adapted. Specifically, this Thesis has tested the provided

methodology on the scan primitive, sorting operators and tridiagonal system solvers.

In this Thesis, we have presented different new parallel prefix algorithms, from

an algorithmic formulation, independently of the parallel programming paradigm

to be implemented. These algorithms were novelty designed in this Thesis, to the

best of our knowledge. Starting with tridiagonal system solvers, we firstly presented

the Redundant Reduction, a new reduction operation which performs the reduction

over a pair of equations, rather than using three equations, impliying fewer accesses

245

246 Chapter 8. Conclusions and Future Work

to memory; and solving the substitution phase of the algorithm in one single step.

This new operator is combined with two different communication patterns, Ladner-

Fischer and Kogge-Stone, to produce two new tridiagonal system solvers. In addition

to these algorithms, we have also presented the Tree-Partitioning Reduction which

focuses on solving systems of large size. The main problem of solving large problem

sizes is to divide the problem into independent slices to be solved simultaneously,

since there are dependencies between slices in most of the computing steps. The

proposed algorithm solves the system in two phases with no dependencies between

slices (just in one step of each phase to unify the problem). We also proposed a

new sorting algorithm, the Bitonic Merge Comb Sort, an algorithmic variant of the

Bitonic Merge Sort. Whereas the classic Bitonic Merge Sort has log2N computing

steps, whereN is the size of the problem, and each computing step has another log2N

internal steps; the Bitonic Merge Comb Sort reduces the number of steps to have

log2N−1 computing steps, each with log4N internal steps. Additionally, an efficient

hand-tuned GPU implementation was given to the Redundant Reduction algorithms

(up to 3.25x than CUSPARSE) and the Bitonic Merge Comb Sort (10x with respect

to CUDPP and 2.6x in contrast to ModernGPU); whereas the GPU implementation

of the Tree-Partitioning Reduction is later provided under the methodology.

Depending on the size of the dataset to be solved, the methodology was incremen-

tally extended from small datasets to extremely large datasets. Starting from small

problem sizes (i.e., datasets that fit in the CUDA shared memory of a single GPU),

the proposed methodology first identifies the GPU parameters which influence on

performance and declares a set of performance premises to obtain the suitable values

for these parameters. The CUDA kernels were later implemented with our CUDA

skeletons, blocks of general, modular and reusable code, which enable the portability

and extension of new kernels. Then, the optimal values of the GPU performance

parameters were obtained according to the dataset size, the algorithm and the GPU

architecture. The methodology for Index-Digit algorithm slightly varied due to the

special properties of these algorithms. Although the methodology for ID-algorithms

was already proposed for small problem sizes in [8], we extended it for larger sizes

and for any parallel prefix algorithm. It should be observed that this methodology

focused on solving several batches simultaneously. In the case of parallel prefix algo-

rithms, we tested the methodology for three different tridiagonal system solvers (the

Cyclic Reduction, the Parallel Cyclic Reduction, and our Redundant Reduction on

247

the Ladner-Fischer pattern), two scan operators (based on the Ladner-Fischer and

Kogge-Stone patterns respectively) and a sorting algorithm (Bitonic Merge Comb

Sort).

Regarding the tridiagonal system solvers with small problem sizes, each reduction

of the Cyclic Reduction algorithm works with three equations, resulting in a huge

use of memory bandwidth. Additionally, the existence of two phases with several

computing steps to solve the problem slows down the execution time in comparison

to other algorithms in Kepler architecture. However, the usage of our methodology,

which optimizes the global memory access patterns as well as the communication

between steps with shuffle instructions, provided competitive results. This is a

memory-bound problem; thus, problem sizes larger than N ≥ 256 decrease the per-

formance owing to the enormous consumption of shared memory that reduces the

number of resident threadblocks. The Parallel Cyclic Reduction, despite the fact

that the substitution phase is performed in only one step, produced similar conclu-

sions owing to a similar structure with Cyclic Reduction. In order to demonstrate

the effectiveness of our methodology, our proposals were up to 13x faster than a

direct implementation of these algorithms in CUDA, outperforming the state of the

art. We also studied our Redundant Reduction algorithm with the Ladner-Fischer

pattern. This algorithm offers a good trade-off between computation and memory

bandwidth for small problem sizes, surpassing previous algorithms. However, the

extensive use of shared memory of this algorithm reduces the threadblock occupancy

excessively after N > 128, being less competitive than Cyclic Reduction and Parallel

Cyclic Reduction. Nevertheless, this behavior is reversed with the Maxwell architec-

ture, which increases the amount of shared memory per Streaming Multiprocessor,

keeping almost constant the performance rate in the 64 ≤ N ≤ 1024 interval,

and greatly surpassing the state-of-the-art CUDPP and CUSPARSE. In order to

check the effectiveness of the strategy, both the performance achieved following our

methodology and the optimal performance obtained after an exhaustive empirical

search were compared, demonstrating the success of our methodology criteria.

Respecting the scan primitive with small problem sizes, the effectiveness of

Ladner-Fischer can be extrapolated here. In comparison to tridiagonal systems,

here each element occupies much fewer bytes, thus the shared memory is not as

limiting as in the tridiagonal system case. Both Ladner-Fischer and Kogge-Stone

248 Chapter 8. Conclusions and Future Work

patterns obtained a similar performance, despite the fact that Ladner-Fischer keeps

the number of active threads constant along steps and produces fewer shared mem-

ory bank conflicts. This is easily explained thanks to our methodology and the

communication pattern of these algorithms, which allow us to implement them en-

tirely with shuffle instructions, obtaining both an excelent warp and threadblock

occupancy, maximizing performance to theoretical peaks in a multi-batch execution

for both Kepler and Maxwell. In a multi-batch execution, our proposals surpass all

the competition, obtaining several magnitudes of speed-up; and they even outper-

form Thrust, CUB and CUDPP for a single-batch execution. As in the tridiagonal

system case, a comparison between a direct implementation of the operation and

the implementation under the methodology is provided. Additionally, the effective-

ness of our proposal was tested, comparing the parameter values proposed by the

methodology to the ones obtained empirically, demonstrating once again the suc-

cess of the methodology. With respect to sorting, the Bitonic Merge Comb Sort is

implemented under the methodology. As in previous cases, the methodology imple-

mentation is compared with both a direct implementation of the algorithm and the

state-of-the-art in Kepler and Maxwell architectures, surpassing the state-of-the-art

and resulting in highly satisfactory results in the multi-batch execution.

Next, the methodology was extended to medium and large problem sizes that

cannot be stored in the shared memory, but which still fit in the global memory

of a single GPU, distinguishing between parallel prefix algorithms and Index-Digit

algorithms. In both cases, we used a multi-kernel strategy to split and synchronize

the computation among threadblocks, which prove to be the most efficient strategy

when well-implemented. It was necessary to consider the influence of this partition

in the performance premises. In the case of ID-algorithms, we tested the methodol-

ogy on the Wang&Mou tridiagonal system solver, obtaining very competitive results

against CUSPARSE on Kepler K20, Kepler K40 and Maxwell architectures, for both

single and multi-batch executions. The performance decreases proportionally with

the problem size, owing to the features of this algorithm (related with the mem-

ory bandwidth and the shared memory consumption), reducing the threadblock

occupancy. However, the speed-up achieved against CUSPARSE is up to 26.8x in

Kepler; and 31.8x in Maxwell, where there is less penalty due to having more shared

memory bytes per Streaming Multiprocessor. Regarding parallel prefix algorithms,

the scan primitive with the Ladner-Fischer pattern and the Tree-Partitioning Re-

249

duction method for solving tridiagonal systems were tested. In the case of the scan,

our proposal was not very impressive in the case of a single-GPU on Maxwell, since

our methodology is focused on solving multiple batches simultaneously, and there

are kernels where the GPU parallelism is underused. When solving several batches,

our proposal outperforms several well-known libraries in most cases. With respect

to tridiagonal systems, the Tree-Partitioning Reduction algorithm and our method-

ology design are especially suitable for computing large problem sizes, performing

an efficient partition of the problem into slices. Although it has more computing

steps and invokes more kernels than the previous Wang&Mou implementation, it

improves the coalescence in the access to global memory and reduces the use of

shared memory, being especially notable when solving large problem sizes, outper-

forming the state-of-the-art for both single and multiple batch execution (up to

13.28x with respect to CUSPARSE). Although the results given so far were tested

with floating point simple precision, the flexibility of the kernels developed (thanks

to the use of templates) and the established performance premises allow the efficient

execution of other datatypes. Specifically, this method was also tested on floating

point double precission, demonstrating its competitiveness (up to 7.48x with respect

to CUSPARSE). Additionally, depending on the application in which the solver is

executed, the numerical stability may be essential or a minor role. The proposal

also allows the user to choose the rate between performance and numerical stability,

as the slice size used to partition the problem determines the numerical accuracy

of the method. Larger slice sizes imply more equations participating, thus increas-

ing stability. In comparison to other solvers, even when choosing performance over

stability, the numerical accuracy provided was quite acceptable.

We then analyzed the extension of the methodology to extremely-large datasets

and Multiple-GPU systems, again distinguishing between ID-algorithms and parallel

prefix algorithms. To do so, it was necessary to consider the penalty of transferring

data between GPUs, and the hardware distribution of the GPUs on the network. We

concluded that the fastest topology is the one where the GPUs are connected to the

same PCI-e bus, since data move directly between devices without passing through

host memory. This is possible thanks to the Unified Virtual Addressing (UVA) and

the Peer-to-Peer API. However, when the system is more complex and GPUs are

connected along different PCI-e buses, it is important to distribute the computation

among the GPUs which belong to the same PCIe, and then to unify the result in

250 Chapter 8. Conclusions and Future Work

the minimum number of steps possible. Otherwise, there are two options: if the

GPUs belong to the same Node, it is possible to use transfers through host memory;

or, if they belong to different computing nodes, MPI must be employed. Although

MPI CUDA-aware avoids copies through host memory, there is a large overhead

associated to MPI initialization. However, when the problem size is sufficiently

large, this option was empirically preferable rather than copies through host memory

in the same computing node. As ID-algorithm, we used the Wang&Mou solver.

As each element is an equation composed of 4 values, there is a huge overhead

atached to transferring elements between GPUs. Thus, for this case, the best idea

is to distribute batches among GPUs, where each GPU computes entire problems,

scaling very well and achieving up to 6.11x with respect to CUSPARSE. As a parallel

prefix algorithm, we chose the scan primitive with the Ladner-Fischer pattern to

test the methodology. The pattern and features of scan allow us to reduce the

number of transfers between GPUs, providing two interesting approaches: one is to

distribute the batches between GPUs, as in the Wang&Mou case, and the other is

to compute one problem between several GPUs. Our scan proposal was compared

against CUDPP, Thrust, ModernGPU, LightScan and CUB library, surpassing all

of them for single and multi-batch executions.

Finally, an accelerated library, which is built with the implementations proposed,

was designed to efficiently solve the operations addressed in this work. In order

to demonstrate the efficiency of the methodology, we used this library in a real-

world application: the multiplication of high-precission integers, which is used in

many applications, such as cryptography. There is an algorithm called Strassen-FFT

which uses the FFT and a normalization to compute the multiplication; thus, we

used our library to compute the FFT operations in Pascal and Volta architectures,

surpassing other works which follow the same approach. Although the Strassen-FFT

strategy is the most common approach when working with GPUs, the flexibility of

our methodology allowed us to design, with little effort, an implementation of the

classic multiplication algorithm, taking advantage of the new advances of Pascal

and Volta, being a novelty on the field. This new approach outperformed any other

GPU implementation for medium-large problem sizes.

To sum up, this Thesis presents a general methodology for efficiently developing

any parallel prefix algorithm and Index-Digit algorithm for any GPU architecture

251

and datasize, as demonstrated. In addition to analyzing these algorithms, we have

also studied the recent GPU architectures, its memory hierarchy and its new ex-

ecution model. This work also provides new parallel prefix algorithms that can

be implemented in any parallel programming paradigm, not only on a GPU. We

also handled the computation and communication of extremely large datasets on

Multiple-GPU systems, so important after the incursion of Big Data and the im-

mense amount of data available nowadays. In addition to study these algorithms

and the GPU architectures, the proposed methodology provides a set of modular,

efficient and reusable blocks of CUDA code to build the implementation of new al-

gorithms with little effort. The operations tested on this work under the proposed

methodology have also been gathered in an optimized library, which provide users

with an easy way to invoke tuned functions, independently of the problem size and

the GPU architecture, as continuously demonstrated throughout the text.

Future Work

Considering the good results achieved, there are many interesting research lines

that can benefit from the work conducted in this Thesis as future work.

First, any other parallel prefix algorithm or Index-Digit algorithm can be effi-

ciently implemented under the proposed methodology with little effort, and easily

integrated into the provided library. GPUs represent one of the most promising

trends for HPC in the near future, as reflected in TOP500, thus many different

parallel operations used in science and engineering must benefit from these devices.

The methodology provides any programmer with an easy mechanism for developing

new parallel operations for these devices. Additionally, the GPU industry is bur-

geoning, thus it is important to adapt the proposed performance parameter values

to the future GPU generations. The modular design of the methodology and the

use of templates in the code allow effortless updating.

Secondly, the performance achieved by the proposals were mostly measured in

number of data processed by time unit. However, there is a growing trend toward

prioritizing the number of data processed by each power unit, seeking power effi-

ciency; thus, it may be interesting to adapt the performance premises to consider

252 Chapter 8. Conclusions and Future Work

the power efficiency in the calculation of the optimal values.

Next, although the GPUs employed on this Thesis are powerful devices designed

for intensive computation, it may be also interesting test our methodology on GPUs

attached to less powerful GPUs, such as the ones contained on the NVIDIA Tegra

system-on-a-chip.

Additionally, the advent of Machine Learning and Artificial Intelligence in recent

years also offers an interesting opportunity to ascertain the optimal performance pa-

rameter values for each GPU generation in the methodology, rather than using a set

of performance premises, in order to compare the training time and the efficiency

of the Artificial Intelligence search. Additionally, many Deep-Learning operations,

related with the convolution operation, may be improved with our current method-

ology and CUDA skeletons.

Finally, the blockchain technology is a highly interesting candidate for using the

results of this Thesis for efficiently solving the hashing algorithms, as demonstrated

in the Chapter 7 of this text, and many works can be conducted on the field.

Bibliography

[1] C. Alberto and H. Sato. Linear Performance-Breakdown Model: A Frame-

work for GPU kernel programs performance analysis. International Journal

of Networking and Computing, 5(1):86–104, 2015.

[2] M. Amini, B. Creusillet, S. Even, and Keryell. Par4all: From convex array

regions to heterogeneous computing. In IMPACT 2012: Second International

Workshop on Polyhedral Compilation Techniques HiPEAC, 2012.

[3] F. Argüello, D. Heras, M. Bóo, and J. Lamas-Rodŕıguez. The Split-and-

Merge Method in General Purpose Computation on GPUs. Parallel Comput-

ing, 38(6–7):277 – 288, 2012.

[4] F. Argüello, M. Amor, and E. L. Zapata. Ffts on mesh connected computers.

Parallel Computing, 22(1):19 – 38, 1996.

[5] S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, and W.-m. W. Hwu.

An Adaptive Performance Modeling Tool for GPU Architectures. SIGPLAN

Not., 45(5):105–114, 2010.

[6] H. Bantikyan. Big Integer Multiplication with CUDA FFT (cuFFT) Library.

International Journal of Innovative Research in Computer and Communica-

tion Engineering, 2(11):6317–6325, 2014.

[7] K. E. Batcher. Sorting networks and their applications. In Proc. of the 1968

Spring Joint Computer Conference (AFIPS’68), pages 307–314, 1968.

[8] J. L. Blanco. Towards Efficient Exploitation of GPUs: A Methodology for

Mapping Index-Digit Algorithms. PhD thesis, Universidade da Coruña, 2014.

253

254 Bibliography

[9] G. E. Blelloch. Prefix sums and their applications. Technical Report CMU-

CS-90-190, School of Computer Science, Carnegie Mellon University, 1990.

[10] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. The

user language. J. Symbolic Comput., 24(3-4):235–265, 1997.

[11] S. Boussakta and A. G. J. Holt. Fast multidimensional discrete hartley trans-

form using fermat number transform. IEEE Electronic Circuits and Systems

journal, 135(6):253–257, 1988.

[12] R. Brent and H. Kung. A regular layout for parallel adders. IEEE Transactions

on Computers, 31(3):260–264, 1982.

[13] R. Brooks and J. Matelski. The Dynamics of 2-generator Subgroups of

PSL(2,C). In Proc. of the 1978 Stony Brook Conference. Riemann Surfaces

and Related Topics, volume 97, pages 65–71, 1978.

[14] A. Burnetas, D. Solow, and R. Agarwal. An analysis and implementation of

an efficient in-place bucket sort. Acta Informatica, 34(9):687–700, 1997.

[15] D. Cederman and P. Tsigas. GPU-Quicksort: A Practical Quicksort Algorithm

for Graphics Processors. J. Exp. Algorithmics, 14:4:1.4–4:1.24, Jan. 2010.

[16] L.-W. Chang and W.-W. Hwu. Mapping tridiagonal solvers to linear recur-

rences. Technical Report, University of Illinois at Urbana-Champaign, 2013.

[17] J. Cheng, M. Grossman, and T. McKercher. Professional CUDA C Program-

ming. Wrox Press Ltd., Birmingham, UK, UK, 1st edition, 2014.

[18] E. Chu and A. George. Inside the FFT Black Box: Serial and Parallel Fast

Fourier Transform Algorithms. Computational Mathematics. Taylor & Fran-

cis, 1999.

[19] CodePlex Open Source Project. CodePlex IntX Library, 2015. Available at

https://intx.codeplex.com (Last Access Sept 2018).

[20] N. Cruz-Cortés, E. Ochoa-Jiménez, L. Rivera-Zamarripa, and F. Rodŕıguez-

Henŕıquez. A GPU Parallel Implementation of the RSA Private Opera-

tion. In High Performance Computing: Third Latin American Conference

(CARLA’16), pages 188–203, 2017.

https://intx.codeplex.com

Bibliography 255

[21] L. Dagum and R. Menon. Openmp: An industry-standard api for shared-

memory programming. IEEE Comput. Sci. Eng., 5(1):46–55, 1998.

[22] T. T. Dao, J. Kim, S. Seo, B. Egger, and J. Lee. A Performance Model for

GPUs with Caches. IEEE Transactions on Parallel and Distributed Systems,

26(7):1800–1813, 2015.

[23] A. Davidson and J. D. Owens. Register Packing for Cyclic Reduction: A Case

Study. In Proc. of the Fourth Workshop on General Purpose Processing on

Graphics Processing Units (GPGPU-4), pages 1–6, 2011.

[24] A. Davidson, Y. Zhang, and J. Owens. An Auto-tuned Method for Solving

Large Tridiagonal Systems on the GPU. In Proc. of the 25th IEEE Inter-

national Parallel and Distributed Processing Symposium (IPDPS’11), pages

956–965, 2011.

[25] J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. Commun. ACM, 51(1):107–113, 2008.

[26] A. P. Diéguez, M. Amor, and R. Doallo. Efficient scan operator methods on a

GPU. In Proc. of the 2014 IEEE 26th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD’14), pages 190–

197, 2014.

[27] A. P. Diéguez, M. Amor, and R. Doallo. BPLG-BMCS: GPU-sorting Algo-

rithm Using a Tuning Skeleton Library. Journal of Supercomputing, 73(1):4–

16, 2017.

[28] A. P. Diéguez, M. Amor, and R. Doallo. Parallel Prefix Operations on GPU:

Tridiagonal System Solvers and Scan Operators. Journal of Supercomputing.

Accepted under second revision, 2018.

[29] A. P. Diéguez, M. Amor, R. Doallo, A. Nukada, and S. Matsuoka. Efficient

High-Precision Integer Multiplication on the GPU. International Journal of

High Performance Computing Applications. Submitted, 2018.

[30] A. P. Diéguez, M. Amor, J. Lobeiras, and R. Doallo. Operator String Algebraic

Properties and Usage. Internal Report at University of A Coruña, 2016. http:

//gac.des.udc.es/~aperezdieguez/AnnexA5.pdf.

http://gac.des.udc.es/~aperezdieguez/AnnexA5.pdf
http://gac.des.udc.es/~aperezdieguez/AnnexA5.pdf

256 Bibliography

[31] A. P. Diéguez, M. Amor, and R. Doallo. Bs-comb: An efficient sorting algo-

rithm for GPUs. In Proc. of the 15th International Conference Computational

and Mathematical Methods in Science and Engineering (CMMSE’15), pages

461–473, 2015.

[32] A. P. Diéguez, M. Amor, and R. Doallo. New Tridiagonal Systems Solvers on

GPU Architectures. In Proc. of the 22nd International Conference on High

Performance Computing (HiPC’15), pages 85–94, Dec 2015.

[33] A. P. Diéguez, M. Amor, and R. Doallo. A Tuning Strategy for Tridiagonal

System Solvers on GPU. In Proc. of the 18th International Conference Compu-

tational and Mathematical Methods in Science and Engineering (CMMSE’18),

pages 461–473, 2018.

[34] A. P. Diéguez, M. Amor, and R. Doallo. Tree Partitioning Reduction: A New

Parallel Partition Method for Solving Tridiagonal Systems. ACM Transactions

on Mathematical Software. Accepted under second revision, 2018.

[35] A. P. Diéguez, M. Amor, R. Doallo, A. Nukada, and S. Matsuoka. Efficient

Solving of Scan Primitive on Multi-GPU Systems. In Proc. of the 32nd IEEE

International Parallel and Distributed Processing Symposium (IPDPS’18),

pages 794–803, 2018.

[36] A. P. Diéguez, M. Amor, J. Lobeiras, and R. Doallo. Solving Large Problem

Sizes of Index-Digit Algorithms on GPU: FFT and Tridiagonal System Solvers.

IEEE Transactions on Computers, 67(1):86–101, 2018.

[37] A. P. Diéguez, M. A. López, and R. D. Biempica. Solving Multiple Tridi-

agonal Systems on a Multi-GPU Platform. In Proc. of the 26th Euromicro

International Conference on Parallel, Distributed and Network-based Process-

ing (PDP’18), pages 759–763, 2018.

[38] Y. Dotsenko, S. S. Baghsorkhi, B. Lloyd, and N. K. Govindaraju. Auto-tuning

of Fast Fourier Transform on Graphics Processors. In Proc. of the 16th ACM

Symposium on Principles and Practice of Parallel Programming (PPoPP ’11),

pages 257–266, 2011.

Bibliography 257

[39] Y. Dotsenko, N. K. Govindaraju, P.-P. Sloan, C. Boyd, and J. Manferdelli.

Fast scan algorithms on graphics processors. In Proc. of the 22n Annual

International Conference on Supercomputing (ICS’08), pages 205–213. ACM,

2008.

[40] E. Dufrechou and P. Ezzatti. A New GPU Algorithm to Compute a Level

Set-Based Analysis for the Parallel Solution of Sparse Triangular Systems.

In Proc. of the 2018 IEEE International Parallel and Distributed Processing

Symposium (IPDPS’18), pages 920–929, 2018.

[41] Ö. Eğecioğlu, E. Gallopoulos, and Ç. Koç. A Parallel Method for Fast and

Practical High-order Newton Interpolation. Center for Supercomputing Re-

search and Development Urbana, Ill: CSRD report. University of Illinois at

Urbana-Champaign, 1989.

[42] A. Emerencia. Multiplying Huge Integers Using Fourier Transforms. ICS

Project. University of Groningen, 2007.

[43] N. Emmart and C. Weems. High precision integer addition, subtraction and

multiplication with a graphics processing unit. Parallel Processing Letters,

20(4):293–306, 2010.

[44] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Program-

ming Library for multi-GPU Systems. In Proc. of the Fourth International

Workshop on High-level Parallel Programming and Applications (HLPP’10),

pages 5–14, 2010.

[45] D. Erguiz, E. Dufrechou, and P. Ezzatti. Assessing Sparse Triangular Lin-

ear System Solvers on GPUs. In Proc. of the International Symposium on

Computer Architecture and High Performance Computing Workshops (SBAC-

PADW’17), pages 37–42, 2017.

[46] F. Argüello, M. Amor and E.L. Zapata. FFTs on Mesh Connected Computers.

Parallel Computing, 22(1):19–38, 1996.

[47] Forum, Message. MPI: A Message-Passing Interface Standard. Techni-

cal report, University of Tennessee, Knoxville, TN, USA, 1994. http:

http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230

258 Bibliography

//www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=

oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230.

[48] M. Frigo and S. G. Johnson. The design and implementation of fftw3. Pro-

ceedings of the IEEE, 93(2):216–231, 2005.

[49] GNU Open Source Project. GNU Multiple Precision Arithmetic Library, 2016.

Available at https://gmplib.org (Last Access Sept 2018).

[50] G. Graefe. Implementing sorting in database systems. ACM Comput. Surv.,

38(3), 2006.

[51] K. Gupta, J. Stuart, and J. D. Owens. A study of persistent threads style

GPU programming for GPGPU workloads. In Proc. of Innovative Parallel

Computing (InPar’12), pages 1–14, 2012.

[52] H.-S. Kim, S. Wu, L.-W. Chang, W.W. Hwu. A Scalable Tridiagonal Solver

for GPU. In Proc. of the Int. Conf. on Parallel Processing (ICPP’11), pages

444–453, 2011.

[53] S.-W. Ha and T.-D. Han. A Scalable Work-Efficient and Depth-Optimal Par-

allel Scan for the GPGPU Environment. IEEE Transactions on Parallel and

Distributed Systems, 24(12):2324–2333, 2013.

[54] T. Han and D. Carlson. Fast Area-Efficient VLSI Adders. In Proc. of the

Eighth Ann. Sym. Computer Arithmetic, pages 49–56, 1987.

[55] T. D. Han and T. S. Abdelrahman. hiCUDA: A High-level Directive-based

Language for GPU Programming. In Proc. of the 2nd Workshop on General

Purpose Processing on Graphics Processing Units (GPGPU-2), pages 52–61,

2009.

[56] M. Harris, S. Sengupta, and J. D. Owens. Parallel Prefix Sum (Scan) with

CUDA. In GPU Gems 3. Addison Wesley, 2007.

[57] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra. Fast

summed-area table generation and its applications. Computer Graphics Fo-

rum, 24(3):547–555, 2005.

http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
http://www.ncstrl.org:8900/ncstrl/servlet/search?formname=detail&id=oai%3Ancstrlh%3Autk_cs%3Ancstrl.utk_cs%2F%2FUT-CS-94-230
https://gmplib.org

Bibliography 259

[58] W. D. Hillis and J. Steele. Data parallel algorithms. Commun. ACM,

29(12):1170–1183, 1986.

[59] C. A. R. Hoare. Algorithm 64: Quicksort. Commun. ACM, 4(7):321–, July

1961.

[60] R. Hockney and C. Jesshope. Parallel Computers 2: Architecture, Program-

ming and Algorithms. Taylor & Francis, 1988.

[61] R. W. Hockney. A Fast Direct Solution of Poisson’s Equation Using Fourier

Analysis. J. ACM, 12(1):95–113, 1965.

[62] S. Hong and H. Kim. An Analytical Model for a GPU Architecture with

Memory-level and Thread-level Parallelism Awareness. SIGARCH Comput.

Archit. News, 37(3):152–163, 2009.

[63] D. Horn. Stream Reduction Operations for GPGPU Applications in GPU

Gems 2. Addison-Wesley, 2005.

[64] INL, University of Tennessee. Matrix Algebra on GPU and Multicore archi-

tectures (MAGMA), 2015. http://icl.cs.utk.edu/magma (Last Access Sept

2018).

[65] Intel Corporation. Intel Math Kernel Library, v10.2. http://software.

intel.com/en-us/articles/intel-mkl/, 2009. Last Access Sept 2018.

[66] Intel Corporation. Intel Integrated Performance Primitives for Intel Architec-

ture, Reference Manual, 2012.

[67] J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation of

Complex Fourier Series. Mathematics of Computation, 19(90):297–301, 1965.

[68] Khronos OpenCL Group. The OpenCL Specification, 2011.

[69] P. Kipfer and R. Westermann. Improved GPU Sorting. GPU Gems 2-Chapter

46. Adisson Wesley, 2005.

[70] D. B. Kirk and W. W. Hwu. Programming Massively Parallel Processors: A

Hands-on Approach. Morgan Kaufmann Publishers Inc., 1st edition, 2010.

http://icl.cs.utk.edu/magma
http://software.intel.com/en-us/articles/intel-mkl/
http://software.intel.com/en-us/articles/intel-mkl/

260 Bibliography

[71] K. Kitano and N. Fujimoto. Multiple precision integer multiplication on GPUs.

In Proc. of the International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’14), pages 1–7, 2014.

[72] P. M. Kogge and H. S. Stone. A parallel algorithm for the efficient solution of

a general class of recurrence equations. IEEE Trans. Comput., 22(8):786–793,

1973.

[73] J. Kurzak, S. Tomov, and J. Dongarra. Autotuning GEMM Kernels for the

Fermi GPU. IEEE Trans. Parallel Distrib. Syst., 23(11):2045–2057, 2012.

[74] L.-W. Chang, J.A. Stratton, H.-S. Kim, W. W. Hwu. A Scalable, Numeri-

cally Stable, High-performance Tridiagonal Solver Using GPUs. In Proc. of

the International Conference on High Performance Computing, Networking,

Storage and Analysis (SC’12), pages 27:1–27:11, 2012.

[75] R. E. Ladner and M. J. Fischer. Parallel prefix computation. J. ACM,

27(4):831–838, 1980.

[76] S. Lakshmivarahan and K. Dhall. Parallel Computing Using the Prefix Prob-

lem. Oxford University Press, 1994.

[77] E. László, M. Giles, and J. Appleyard. Manycore algorithms for batch scalar

and block tridiagonal solvers. ACM Trans. Math. Softw., 42(4):31:1–31:36,

June 2016.

[78] W. Liu, A. Li, J. Hogg, I. S. Duff, and B. Vinter. A Synchronization-Free

Algorithm for Parallel Sparse Triangular Solves. In Proc. of the Euro-Par

2016: Parallel Processing, pages 617–630, 2016.

[79] Y. Liu and S. Aluru. Lightscan: Faster scan primitive on CUDA compatible

manycore processors. Computing Research Repository, 2016.

[80] J. Lobeiras, M. Amor, and R. Doallo. FFT Implementation on a Streaming

Architecture. In Proc. of the 19th International Euromicro Conference on

Parallel, Distributed and Network-Based Processing (PDP’11), pages 119–126,

2011.

Bibliography 261

[81] J. Lobeiras, M. Amor, and R. Doallo. BPLG: A Tuned Butterfly Processing

Library for GPU Architectures. Int. J. Parallel Program., 43(6):1078–1102,

2015.

[82] J. Lobeiras, M. Amor, and R. Doallo. Designing Efficient Index-Digit Algo-

rithms for CUDA GPU Architectures. IEEE Transactions on Parallel and

Distributed Systems, 27(5):1331–1343, 2016.

[83] E. Manca, A. Manconi, A. Orro, G. Armano, and L. Milanesi. CUDA-

quicksort: An Improved GPU-based Implementation of Quicksort. Concurr.

Comput.: Pract. Exper., 28(1):21–43, 2016.

[84] M. M. Maza and W. Pan. Fast polynomial multiplication on a GPU. Journal

of Physics: Conference Series, 256(1):009–012, 2010.

[85] D. Merrill and A. Grimshaw. Parallel scan for stream architectures. In Tech-

nical report. Dept. of Computer Science, Univ. of Virginia, 2009.

[86] Microsoft. .NET BigInteger Library, 2010. Available at https:

//msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=

vs.110).aspx (Last Access Sept 2018).

[87] D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe. GPU-efficient recursive fil-

tering and summed-area tables. ACM Transactions on Graphics (Proceedings

of the ACM SIGGRAPH Asia 2011), 30(6):176, 2011.

[88] C. Nugteren and H. Corporaal. Bones: An Automatic Skeleton-Based C-to-

CUDA Compiler for GPUs. ACM Trans. Archit. Code Optim., 11(4):35:1–

35:25, 2014.

[89] A. Nukada and S. Matsuoka. Auto-tuning 3-D FFT Library for CUDA GPUs.

In Proc. of the Conf. on High Perf. Computing Networking, Storage and Anal-

ysis (SC’09), pages 1–10, 2009.

[90] A. Nukada, K. Sato, and S. Matsuoka. Scalable Multi-GPU 3-D FFT for

TSUBAME 2.0 Supercomputer. In Proc. of the International Conference

on High Performance Computing, Networking, Storage and Analysis (SC’12),

pages 44:1–44:10, 2012.

https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.numerics.biginteger(v=vs.110).aspx

262 Bibliography

[91] Nvidia Comp. Fermi Compute Architecture Whitepaper, 2009.

[92] Nvidia Comp. NVIDIA CUDA C programming guide, 2010. Available at

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

[93] Nvidia Comp. CUDA Compute Unified Device Architecture, 2011.

[94] Nvidia Comp. CUDA CUFFT Library, 2012. https://developer.nvidia.

com/cufft (Last Access Sept 2018).

[95] Nvidia Comp. CUDA CUSPARSE Library, 2012.

https://developer.nvidia.com/www.nvidia.com/getcuda (Last access Sept

2018).

[96] Nvidia Comp. NVIDIA Kepler GK110 Architecture Whitepaper, 2012.

[97] Nvidia Comp. Modern GPU library, 2013. https://github.com/NVlabs/

moderngpu (Last access Sept 2018).

[98] Nvidia Comp. CUDPP: CUDA Data Parallel Primitives Library, 2014. http:

//cudpp.github.io/ (Last access Sept 2018).

[99] Nvidia Comp. NVIDIA GeForce GTX980 Whitepaper, 2014.

[100] Nvidia Comp. Cub library, 2015. http://nvlabs.github.io/cub/ (Last

access Sept 2018).

[101] Nvidia Comp. Thrust Library, 2015. https://github.com/thrust/thrust

(Last access Sept 2018).

[102] Nvidia Comp. NVIDIA Tesla P100 Whitepaper, 2016.

[103] Nvidia Comp. NVIDIA Tesla V100 GPU Architecture Whitepaper, 2017.

[104] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and D. Kim.

Tera-scale 1D FFT with Low-communication Algorithm and Intel&Reg Xeon

Phi&Trade Coprocessors. In Proc. of the International Conference on High

Performance Computing, Networking, Storage and Analysis (SC’13), pages

34:1–34:12, 2013.

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://developer.nvidia.com/cufft
https://developer.nvidia.com/cufft
https://github.com/NVlabs/moderngpu
https://github.com/NVlabs/moderngpu
http://cudpp.github.io/
http://cudpp.github.io/
http://nvlabs.github.io/cub/
https://github.com/thrust/thrust

Bibliography 263

[105] J. L. Pey. Design and Evaluation of Tridiagonal Solvers for Vector and Parallel

Computers. PhD thesis, Universitat Politecnica de Catalunya, 1995.

[106] R. Pietersz and M. Regenmorte. Bridging brownian libor. Wilmott Magazine,

18:98–103, 2005.

[107] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W.

Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W. John-

son, and N. Rizzolo. Spiral: Code generation for dsp transforms. Proceedings

of the IEEE, 93(2):232–275, 2005.

[108] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-

natures and public-key cryptosystems. Commun. ACM, 21(2):120–126, 1978.

[109] A. H. Sameh and D. J. Kuck. On stable parallel linear system solvers. J.

ACM, 25(1):81–91, 1978.

[110] N. Satish, M. Harris, and M. Garland. Designing Efficient Sorting Algorithms

for Manycore GPUs. In Proc. of the 2009 IEEE International Symposium on

Parallel&Distributed Processing (IPDPS’09), pages 1–10, 2009.

[111] A. Schönhage and V. Strassen. Schnelle multiplikation großer zahlen. Com-

puting, 7:281–292, 1971.

[112] S. Sengupta, M. Harris, and M. Garland. Efficient Parallel Scan Algorithms

for GPUs. Technical Report, 2008.

[113] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan Primitives for

GPU Computing. In Proc. of the 22Nd ACM SIGGRAPH/EUROGRAPHICS

Symposium on Graphics Hardware (GH’07), pages 97–106, 2007.

[114] S. Sengupta, A. E. Lefohn, and J. D. Owens. A work-efficient step-efficient

prefix sum algorithm. Workshop on Edge Computing Using New Commodity

Architectures, pages 26–27, 2006.

[115] E. Sintorn and U. Assarsson. Fast Parallel GPU-sorting Using a Hybrid Al-

gorithm. J. Parallel Distrib. Comput., 68(10):1381–1388, 2008.

[116] J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic

Computers, EC-9(2):226–231, 1960.

264 Bibliography

[117] S. W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing.

California Technical Publishing, 1997.

[118] M. Steuwer and S. Gorlatch. SkelCL: a high-level extension of OpenCL for

multi-GPU systems. The Journal of Supercomputing, 69, n.1(1):25–33, 2014.

[119] H. S. Stone. An efficient parallel algorithm for the solution of a tridiagonal

linear system of equations. J. ACM, 20(1):27–38, 1973.

[120] D. Takahashi. Implementation of Parallel 1-D FFT on GPU Clusters. In

Proc. of the IEEE 16th International Conference on Computational Science

and Engineering (ICCS’13), pages 174–180, 2013.

[121] T.G. Stockham. High-speed Convolution and Correlation. In Proc. of the

April 26-28 Spring joint computer conference (AFIPS ’66), pages 229–233,

1966.

[122] L. H. Thomas. Elliptic Problems in Linear Difference Equations over a Net-

work. Watson Sci. Comput. Lab. Rep., Columbia University, 1949.

[123] I. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. Sameh. A direct

tridiagonal solver based on givens rotations for GPU architectures. Parallel

Computing, 49:101 – 116, 2015.

[124] B. Vialla and J.-G. Dumas. LinBox - C++ library for exact, high-performance

linear algebra, 2017. Available at https://github.com/linbox-team/linbox

(Last Access Sept 2018).

[125] Victor Shoup. NTL: A Library for doing Number Theory, 2015. Available at

http://www.shoup.net/ntl/.

[126] V. Volkov. Better performance at lower occupancy. In Proceedings of the GPU

technology conference, GTC, volume 10, page 16, 2010.

[127] V. Volkov. Use Registers and Multiple Outputs per Thread on GPU. In

Presentation at the 6th International Workshop on Parallel Matrix Algorithms

and Applications (PMAA’10), 2010.

[128] V. Volkov and B. Kazian. Fitting FFT onto the G80 architecture. Technical

Report University of California, Berkeley, 2011.

https://github.com/linbox-team/linbox
http://www.shoup.net/ntl/

Bibliography 265

[129] C. Wang, S. Chandrasekaran, and B. Chapman. cusFFT: A High-Performance

Sparse Fast Fourier Transform Algorithm on GPUs. In Proc. of the 2016 IEEE

International Parallel and Distributed Processing Symposium (IPDPS’16),

pages 963–972, 2016.

[130] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2002.

[131] S. Wienke, P. Springer, C. Terboven, and D. an Mey. OpenACC: First Ex-

periences with Real-world Applications. In Proc. of the 18th International

Conference on Parallel Processing (Euro-Par’12), pages 859–870, 2012.

[132] X. Wang and Z.G. Mou. A divide-and-conquer method of solving tridiagonal

systems on hypercube massively parallel computers. In Proc. of the Third

IEEE Symposium on Parallel and Distributed Processing (IPDPS’91), pages

810–817, 1991.

[133] Y.-Ch. Lin and L.-L. Hung. Fast problem-size-independent parallel prefix

circuits. Journal Parallel Distributed Computing, pages 382–388, 2009.

[134] Y. Dotsenko, S.S. Baghsorkhi, B. Lloyd and N.K. Govindaraju. Auto-Tuning

of Fast Fourier Transform on Graphics Processors. In Proc. of Principles and

Practice of Parallel Programming (PPoPP’11), pages 257–266, 2011.

[135] Y. Yang and H. Zhou. CUDA-NP: realizing nested thread-level parallelism

in GPGPU applications. In Proc. of the 19th ACM SIGPLAN symposium on

Principles and practice of parallel programming (PPoPP’14), pages 93–106,

2014.

[136] Y. Zhang, J. Cohen, J.D. Owens. Fast Tridiagonal Solvers on the GPU. In

Proc. of the 15th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP), pages 127–136, 2010.

[137] M. Zagha and G. E. Blelloch. Radix sort for vector multiprocessors. In Proc.

of the Supercomputing ’91, pages 712–721, 1991.

[138] D. Zhao and J. Yu. Efficiently Solving Tri-diagonal System by Chunked Cyclic

Reduction and single-GPU Shared Memory. J. of Supercomputing, 71(2):369–

390, 2015.

266 Bibliography

[139] K. Zhao. Implementation of Multiple-precision Modular Multiplication on

GPU. Tech. Report, 2010.

[140] L. Zhao, R. Iyer, S. Makineni, and L. Bhuyan. Anatomy and performance of

ssl processing. In Proc. of the IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS’05), pages 197–206, 2005.

Apéndice A

Resumo Estendido en Galego

Nos últimos anos, as tarxetas gráficas, tamén coñecidas como GPUs [17], veñen

de experimentar un notable incremento no seu uso na computación de altas pres-

tacións (HPC), pois poden operar moito máis rápido que as convecionais CPUs. A

computación paralela é un tipo de computación no que se realizan moitas operacións

simultáneamente, e ten dúas perspectivas, a arquitectura de computadores e a pro-

gramación paralela. Dun lado, a arquitectura de computadores, enfocada no aspecto

hardware, ref́ırese a soportar o paralelismo ao nivel da arquitectura, mentras que a

programación paralela, centrada no aspecto software, ref́ırese ao uso dos recursos da

arquitectura para obter o maior rendemento pośıbel.

Desde unha perspectiva de arquitectura de computadores, as GPUs modernas

poden executar até miles de tarefas f́ısicas por dispositivo, o que as fai moi óptimas

para a computación intensiva de operacións aritméticas, sendo especialmente óptima

en algoritmos regulares onde o fluxo de control é reducido, aśı como para agachar as

latencias de execución ao solapar a comunicación coa computación. Este solapamento

é pośıbel grazas á asignación dun certo número de tarefas lóxicas a cada núcleo.

Desde unha visión de programación, programar nunha CPU ten moitas máis van-

taxes. Primero, hai moitas APIs que fan sinxela a adaptación dun código secuencial

a un código paralelo, tales como OpenMP [21], e libreŕıas de programación paralela

como MPI [47]. Alén do anterior, tamén existe unha gran comunidade de soporte

aos linguaxes centrados na CPU, tales como C++, Python ou Java, provendo de

ferramentas doadas e potentes aos programadores. Porén, a maioŕıa de linguaxes

267

268 Apéndice A. Resumo Estendido en Galego

GPU de alto nivel son áında moi recentes, polo que as ferramentas especializadas,

APIs ou libreŕıas, son todav́ıa escasas. Amais, a programación GPU tamén está li-

mitada pola complexidade intŕınseca do seu hardware, onde os programadores teñen

que escoller entre algoritmos paralelos que se poidan adaptar á arquitectura, que

tamén require de linguaxes especiais tales como CUDA [93] e OpenCL [68], aśı como

coñecer con profundidade o seu modelo de execución para poder sacarlle rendemento

ás execucións.

Aı́nda que existen moitas propostas para facer máis sinxela a programación

GPU, todas elas teñen as súas desvantaxes. Autotuning [38] determina a mellor

combinación de parámetros que maximizan a métrica de rendemento establecida.

Sen embargo, esta técnica require escribir o código dun xeito parametrizado. Outra

aproximación é o uso de directivas para paralelizar bloques de código, tales como

OpenACC [131]. Non obstante, a maioŕıa delas obrigan a ter coñecemento avanzado

en GPU, o código xerado non é lido de xeito doado e ten certas limitacións, como

non poder usar funcións intŕınsicas. Os compiladores automáticos son outra opción

interesante que xera automáticamente código para GPU, como Par4all [2]. Nem-

bargantes, estas aproximacións conf́ıan no coñecemento do usuario, e moitas das

traducións automáticas xeradas poden reducir o rendemento agardado. Finalmen-

te, o uso de libreŕıas aceleradas, como SkePU [44] ou MAGMA [64], permiten aos

usuarios obter o máximo rendemento da operación executada para a arquitectura

concreta subxacente para a que foi tuneada. Debido á rapida evolución do mercado

GPU, cada nova versión vaŕıa moito da anterior, mudando o seu deseño conside-

rablemente entre diferentes xeracións, o que fai que os parámetros de tuneado e

rendemento tamén teñan que ser reaxustados.

Esta Tese básease principalmente no tuneado dunha libreŕıa acelerada, xa que

proporciona una implementación óptima das operacións tratadas, independentemen-

te da arquitectura subxacente, o que proporciona xeneralidade, portabilidade, usa-

bilidade e sinxeleza, sendo transparente ao usuario. Exactamente, esta Tese ten dous

obxectivos claros. Dunha parte, o deseño de novos algoritmos paralelos que poidan

ser executados en calquera paradigma de programación paralela; e, doutra parte,

desenvolver unha metodolox́ıa xeral que permita resolver diferentes operacións pa-

ralelas de xeito óptimo para diferentes arquitecturas GPU diferentes.

Concretamente os algoritmos paralelos empregados son os algoritmos de prefixo

269

paralelo [75], un tipo de algoritmo regular e paralelo cuxo patrón de comunicación

é estático, é dicir, non depende da execución. Ademais, cada elemento é o resultado

de combinar o resultado previo doutros elementos. Tamén existe un subconxunto des-

tes algoritmos, chamados algoritmos Índice-Dı́xito (ID) [82] que teñen propiedades

especiales, e nos que esta Tese tamén se centra. Dependendo do tipo de algoritmo, a

metodolox́ıa proposta é adaptada. Concretamente, a metodolox́ıa proposta próbase

para as operacións de scan, ordenación e resolución de sistemas tridiagonais.

Esta Tese proporciona tres novos algoritmos de prefixo paralelo, desde un pun-

to de vista algoŕıtmico, e independentes do paradigma de programación paralela

onde vaian ser implementados. O primeiro de eles chámase Reducción Redundante

(RR) [32], e é unha operación de reducción para a resolución de sistemas tridiago-

nais. Esta nova técnica opera sobre un par de elementos, en vez de tres coma outros

algoritmos, o que aforra accesos a memoria, substitúındo as incógnitas nun só paso

computacional. Esta nova operación comb́ınase con dous patróns de comunicación

paralelos diferentes, Ladner-Fischer (LF) e Kogge-Stone (KS), xerando aśı dous

novos algoritmos de resolución de sistemas tridiagonais. A continuación, tamén pre-

sentamos o algoritmo Reducción Particionada en Árbore (TPR) [34], outro algoritmo

que resolve sistemas tridiagonais. Este novo algoritmo céntrase en sistemas de gran

tamaño, xa que o principal problema deles é a dificultade (dependenzas) de parti-

los en bloques e que cada bloque do problema sexa resolto independentemente. O

algoritmo proposto permite resolver o sistema en dúas fases, sen que existan de-

pendenzas entre os bloques (só no último paso computacional de cada fase para

unificar o resultado). O derradeiro algoritmo deseñado é referente á ordeación, cuxo

nome en inglés é Bitonic Merge Comb Sort (BMCS) [31], unha variante algoŕıtmica

do Bitonic Merge Sort (BMS). O algoritmo BMS ten log2N pasos computacionais,

onde N é o tamaño do problema, e cada un destes pasos leva asociado outros log2N

pasos internos. Sen embargo, a nosa versión BMCS resolve o problema en log2N − 1

pasos con log4N etapas internas, reducindo o número total de pasos computacionais.

Para o caso de RR e BMCS, proporciónanse unhas implementacións GPU tuneadas

a man. Sendo no caso de RR até un 3,25x máis rápidas que a libreŕıa estado-do-arte

CUSPARSE [95]; e no caso de BMCS até 10x con respecto a CUDPP [98] e 2,6x

contra ModernGPU [97].

A metodolox́ıa proposta foise incrementando segundo o tamaño do problema a

270 Apéndice A. Resumo Estendido en Galego

ser resolto. Comezando por problemas pequenos, é dicir, aqueles que poden ser al-

macenados na memoria compartida dunha GPU, a metodolox́ıa proposta identifica

os parámetros que inflúen no rendemento, e logo, en base a unhas premisas teóricas,

obtéñense os valores axeitados para cada algoritmo, tamaño de problema e arquitec-

tura GPU. A maiores, faciĺıtanse unha serie de kernels CUDA, baseados en CUDA

skeletons, que son bloques de código xeral, modular e reusable, facilitando a por-

tabilidade e a creación de novas implementación a partir deles sen maior esforzo.

A metodolox́ıa para os algoritmos de Índice-Dı́xito vaŕıa mı́nimamente á propos-

ta para os algoritmos de prefixo paralelo, debido ás propiedades destes. Para estes

tamaños de problema, a metodolox́ıa foi probada en tres algoritmos de resolución

de sistemas tridiagonais [33], dous para resolver a primitiva scan [28] e outro de

ordenación [27]. No caso de sistemas tridiagonais, implementáronse os algoritmos

de Reducción Cı́clica (CR) [61], Reducción Cı́clica Paralela (PCR) [60] e o RR-LF,

xa presentado. A maiores, tamén se presenta unha implementación directa, sen o

uso da metodolox́ıa, para analizar o bo rendemento desta. Na arquitectura GPU

Kepler, os mellores resultados acadados amósanse con RR-LF, áında que o seu uso

excesivo de memoria compartida, o factor limitante da implementación que decre-

menta o paralelismo, fai que PCR a mellore para grandes tamaños. Na arquitecuta

GPU Maxwell, que proporciona máis memoria compartida por Streaming Multipro-

cessor, non se penaliza a implementación RR-LF, sendo a que mellor rendemento

obtén. En ambas arquitecturas, a nosa proposta mellora considerablemente o ren-

demento do estado do arte CUDPP [98] e CUSPARSE [95]. Aśı mesmo, adxúntase

unha táboa que demostra que os valores óptimos obtidos emṕıricamente tras unha

ardua búsqueda, cadran cos propostos pola metodolox́ıa. No eido da primitiva scan,

ambas as dúas propostas baseadas na nosa metodolox́ıa renden de xeito similar,

tamén sobrepasando o estado do arte: Thrust [101], CUDPP [98] and CUB [100]

para as arquitecturas GPU Kepler e Maxwell. Finalmente, a proposta de ordeación

de BMCS adáptase perfectamente ás arquitecturas Kepler e Maxwell, conseguindo

unha aceleración de até 11,7x, 7,5x e 5,3x respectivamente para as libreŕıas CUDPP,

CUB e ModernGPU.

A continuación, a metodolox́ıa foi estendida para resolver tamaños de problema

de media e larga lonxitude. Estes problemas non caben na memoria compartida

dunha GPU pero si na súa memoria global. A metodolox́ıa distingue neste caso al-

goritmos de prefixo paralelo e Índice-Dı́xito, debido ás propiedades especiais destes

271

últimos. En ambos casos, a principal novidade introducida na implementación dos

algoritmos é a necesidade de sincronizar o traballo de diferentes bloques de tarefas,

e para iso faise necesario o uso de varios kernels. Como distribuir a carga compu-

tacional entre os diferentes kernels é clave para o rendemento global acadado, polo

que introdúcese este suposto nas premisas de rendemento. No caso dos algoritmos

Índice-Dı́xito, a metodolox́ıa é probada [36] co algoritmo de resolución de sistemas

tridiagonais Wang&Mou (WM) [132], que obtén resultados moi competitivos con-

tra a libreŕıa CUSPARSE nas arquitecturas Kepler K20, Kepler K40 e Maxwell,

tanto resolvendo un único problema como varios simultáneamente. Analizando o

algoritmo, que require dunha inxente cantidade de transferencia de datos para estes

tamaños, o principal problema é o ancho de banda pero, sobre todo, a memoria com-

partida. Por iso, para tamaños grandes, o paralelismo decrece polo gran uso deste

recurso. A aceleración lograda neste caso é de até 26,8x contra CUSPARSE. En

canto a metodolox́ıa en algoritmos de prefixo paralelo, probouse sobre a primitiva

scan co patrón LF e co algoritmo de Reducción Particionada en Árbore (TPR) para

sistemas tridiagonais. No caso do scan, áında que para a resolución dun único pro-

blema non é tan competitivo, xa que a metodolox́ıa está enfocada en resolver varios

problemas simultáneamente e quedan kernels infrautilizados para este caso, si que o

é para varios problemas, mellorando na maioŕıa dos casos á competencia. En canto

ao TPR e o seu deseño enfocado a minimizar ás dependenzas entre as particións

do problema (e bloques de tarefas) consegue unhas aceleracións moi superiores a

WM segundo o tamaño do problema vaise facendo maior, pois minimiza o uso de

memoria. A flexibilidade na implementación dos nosos kernels, co uso de templates,

permiten a execución de calquera tipo de dato. Os valores óptimos para os paráme-

tros de rendemento, como é obvio, vaŕıan co tipo de dato, pero esta caracteŕıstica

está soportada nas premisas da metodolox́ıa, polo que TPR tamén é probado para

tipos de coma flotante en dobre precisión (non só en simple precisión, como até ago-

ra), obtendo unha aceleración positiva con respecto a CUSPARSE, de até o 7,48x.

Finalmente, tamén se fixo un estudo sobre a estabilidade numérica do algoritmo,

sendo satisfatoria para a maioŕıa de tipos de sistema testados. Aśı mesmo, faciĺıta-

selle ao usuario a posibilidade de escoller o equilibrio entre rendemento e estabilidade

numérica para o tipo de execución desexada.

O seguinte paso foi a estensión da metodolox́ıa para tamaños de problema moi

grandes. Neste caso, úsanse sistemas compostos de varias GPUs para distribuir o

272 Apéndice A. Resumo Estendido en Galego

problema. O deseño da topolox́ıa de conexión e rede son considerados nas premisas

da metodolox́ıa para este tipo de problemas. Se as GPUs están conectadas ao mes-

mo bus PCI-e, grazas á tecnolox́ıa Unified Virtual Adressing e a API Peer-to-Peer,

a transferencia de datos é directa entre GPUs, sen pasar pola memoria do host,

sendo esta a opción deseada, pois minimiza o sobrecusto de comunicación. Can-

do non pertencen ao mesmo bus PCI-e, se están no mesmo nodo computacional,

a comunicación faise a través da memoria do host. Se pertencen a diferentes nodos

computacionais, o uso da libreŕıa MPI é necesaria. Para os algortimos Índice-Dı́xito,

probouse o algoritmo de Wang&Mou [37]. Sen embargo, a gran cantidade de datos

a ser transferidos polo algoritmo, penaliza seriamente o uso das comunicacións entre

GPUs, engadindo un gran sobrecusto ao tempo de execución. Tense que considerar

que cada ecuación do algoritmo está formado por catro elementos, e que ca cada

elemento necesita de tres ecuacións. Neste caso, para minimizar o número de co-

municacións, decidiuse repartir o número de problemas a ser resolto entre as GPUs

dispoñ́ıbeis, onde cada problema é resolto por unha soa GPU. Sen embargo, para o

caso de algoritmos de prefixo paralelo, usouse o scan con LF [35], cuxa estructura,

patrón e implementación permiten mover moitos menos datos, resultando eficiente

o uso de comunicacións entre GPUs. Neste caso, un mesmo problema pode ser re-

solto por varias GPUs sen case penalización, onde o rendemento escalou moi ben co

número de GPUs participantes. A proposta foi probada tanto en entornos onde as

GPUs estaban conectadas ao mesmo bus PCI-e, ao mesmo nodo pero con distintos

PCI-e e incluso entre diferentes nodos utilizando a libreŕıa MPI. O resultado acada-

do foi o esperado, acelerando en varios ordes de magnitude ás libreŕıas CUDPP [98],

Thrust [101], ModernGPU [97], LightScan [79] e CUB [100].

Para rematar, as implementacións tuneadas das operacións tratadas na Tese

baixo a metodolox́ıa proposta son recollidas nunha libreŕıa que permite a execución

eficiente destas operacións para as arquitecturas referidas. Para demostrar a eficien-

cia da metodolox́ıa, probouse dita libreŕıa nunha aplicación real: a multiplicación

de enteiros de gran precisión, que é moi empregada en diferentes aplicacións como

a criptograf́ıa. Existe un algoritmo chamado Strassen-FFT [111] que usa a trans-

formada rápida de Fourier (FFT), máis un proceso de normalización do resulto,

para realizar o cálculo. Para tal, usamos unha implementación FFT da nosa libreŕıa

nas últimas arquitecturas GPU CUDA, Pascal e Volta, sobrepasando o rendemento

doutros traballos que seguiron o mesmo enfoque. Pero ademais, a flexibilidade pro-

273

porcionada polos bloques de código CUDA desenvolvidos, xunto cos avances destas

novas arquitecturas, permitiunos implementar sen esforzo a operación seguindo o al-

goritmo clásico de multiplicación, unha aproximación totalmente novedosa no eido

das GPUs. Dita implementación resultou tremendamente eficiente para tamaños de

problema medios [29].

	1 An Introduction to GPU Computing
	1.1 The CUDA Programming and Execution Model
	1.1.1 SM Resource Partition

	1.2 Efficient Memory Accesses in CUDA
	1.2.1 Global Memory Accesses
	1.2.2 Shared Memory Accesses
	1.2.3 Shuffle Instructions
	1.2.4 Atomic Operations

	1.3 Multiple-GPU Programming
	1.4 CUDA Architectures
	1.4.1 Fermi Architecture
	1.4.2 Kepler Architecture
	1.4.3 Maxwell Architecture
	1.4.4 Pascal Architecture
	1.4.5 Volta Architecture

	2 Parallel Prefix Algorithms
	2.1 Parallel Prefix Definitions
	2.1.1 Index-Digit Algorithms

	2.2 Fast Fourier Transform (FFT)
	2.2.1 The Real Fourier Transform

	2.3 Tridiagonal System Solvers
	2.3.1 Thomas Algorithm
	2.3.2 Parallel Algorithms for Solving Tridiagonal Systems
	2.3.3 The Partitioning Problem

	2.4 Scan Operator
	2.4.1 Brent-Kung Pattern
	2.4.2 Kogge-Stone Pattern (KS)
	2.4.3 Han-Carlson Pattern
	2.4.4 Ladner-Fischer Pattern

	2.5 Sorting Algorithms
	2.6 CUDA Notation for Paralell Prefix Algorithms

	3 New Parallel Prefix Algorithms
	3.1 Redundant Reduction: A New Algorithm for Solving Tridiagonal Systems
	3.1.1 The Redundant Reduction Operation
	3.1.2 Redundant Reduction Algorithm using the Kogge-Stone Pattern
	3.1.3 Redundant Reduction Algorithm using the Ladner-Fischer Pattern
	3.1.4 Experimental Results for the RR operation in CUDA

	3.2 Tree-Partitioning Reduction: A New Algorithm for Solving Tridiagonal Systems
	3.2.1 The TPR Forward Reduction phase
	3.2.2 The TPR Backward Substitution phase
	3.2.3 An example of the TPR method

	3.3 Bitonic Merge Comb Sort: A New Algorithm for Sorting
	3.3.1 A CUDA Implementation for the Bitonic Merge Sort Algorithm
	3.3.2 Bitonic Merge Comb Sort
	3.3.3 Experimental Results for BMCS in CUDA

	3.4 Conclusions of the Chapter

	4 A Tuning Methodology for Small Problem Sizes on a GPU
	4.1 GPU Resource Utilization Analysis Phase
	4.1.1 Premises for Performance Maximization

	4.2 CUDA Kernel Optimization Phase
	4.3 Performance Parameter Tuning Phase
	4.4 Tridiagonal System Solvers under a three-phase methodology
	4.4.1 Cyclic Reduction Tridiagonal System Solver (BPLG-CR-TS Algorithm)
	4.4.2 Parallel Cyclic Reduction Tridiagonal System Solver (BPLG-PCR-TS Algorithm)
	4.4.3 Ladner-Fischer Tridiagonal System Solver (BPLG-LF-TS Algorithm)
	4.4.4 Experimental Results for Tridiagonal System Solvers with Small Problem Sizes

	4.5 Scan Primitive under a three-phase methodology
	4.5.1 Scan operator using the Ladner-Fischer pattern (BPLG-LF-SC Algorithm)
	4.5.2 Scan operator using Kogge-Stone pattern (BPLG-KS-SC Algorithm)
	4.5.3 Experimental Results for the Scan Primitive with Small Problem Sizes

	4.6 Sorting under a three-phase methodology (BPLG-BMCS Algorithm)
	4.6.1 CUDA Kernel Optimization phase: BPLG-BMCS
	4.6.2 Performance Parameter Tuning phase: BPLG-BMCS
	4.6.3 Experimental Results for Sorting with Small Problem Sizes

	4.7 Conclusions of the Chapter

	5 A Tuning Methodology for Parallel Prefix Algorithms on a GPU: Medium and Large Problem Sizes
	5.1 A two-phase Methodology for Index-Digit Algorithms
	5.1.1 GPU Resources Utilization Analysis Phase
	5.1.2 CUDA Kernel Optimization Phase: String Operators and Mapping Vector

	5.2 Multi-Stage Index-Digit Tridiagonal System Solver Algorithm (MS-ID-TS)
	5.2.1 MS-ID-TS Mapping Vector

	5.3 Experimental Results for ID-Algorithms with Medium-Large Problem Sizes
	5.4 A three-phase Methodology for Parallel Prefix Algorithms
	5.4.1 GPU Resources Utilization Analysis
	5.4.2 CUDA Kernel Optimization
	5.4.3 Performance Parameter Tuning

	5.5 Scan Primitive based on Ladner-Fischer
	5.5.1 CUDA Kernel Optimization: Scan-SP
	5.5.2 Performance Parameter Tuning: Scan-SP

	5.6 Tridiagonal System Solver based on the Tree Partitioning Reduction
	5.6.1 CUDA Kernel Optimization: TPR
	5.6.2 Performance Parameter Tuning: TPR

	5.7 Experimental Results for Parallel Prefix Algorithms with Medium-Large Problem Sizes
	5.7.1 Scan Primitive
	5.7.2 Tridiagonal Systems

	5.8 Conclusions of the Chapter

	6 Parallel Prefix Algorithms on Multiple-GPU systems: Dealing with Extremely Large Problem Sizes
	6.1 A Tuning Methodology for Parallel Prefix Algorithms on Multiple-GPU Environments
	6.2 A Multiple-GPU Strategy for the Scan Operator
	6.2.1 Multi-GPU Batch Parallelism (MBP)
	6.2.2 Multi-GPU Problem Scattering (MPS)
	6.2.3 Multi-GPU Problem with Prioritized Communications (MP-PC)
	6.2.4 Performance Maximization of Scan Approaches

	6.3 Experimental Results for the Scan Primitive with Extremely-Large Problem Sizes
	6.3.1 Multi-GPU Environment
	6.3.2 Multi-Node Environment

	6.4 A Multiple-GPU Strategy for Index-Digit Algorithms on Multiple-GPU Environments
	6.4.1 A Two-phase Tuning Methodology

	6.5 A Multiple-GPU Strategy for a Tridiagonal System Solver
	6.5.1 Multi-GPU Batch Parallelism (MBP)
	6.5.2 Multi-GPU Problem Scattering (MPS)
	6.5.3 Multi-GPU Problem with Prioritized Communications (MP-PC)
	6.5.4 Performance Maximization of the Tridiagonal System Approaches

	6.6 Experimental Results for the Tridiagonal System Solver with Extremely-Large Problem Sizes
	6.6.1 Batch Parallelism
	6.6.2 Problem Parallelism

	6.7 Conclusions of the Chapter

	7 Using Accelerated Parallel Prefix Operations on Real Applications
	7.1 Introduction to High-Precision Integers
	7.2 The Strassen FFT Multiplication Algorithm
	7.3 The CUDA FFT-based Multiplication Approach
	7.3.1 The Complex-ID Proposal
	7.3.2 The Real-ID Proposal

	7.4 The CUDA Tiling Multiplication Approach
	7.4.1 The vector convolution algorithm
	7.4.2 CUDA implementation

	7.5 The Carry Normalization
	7.6 Experimental Results for the High-Precision Multiplication
	7.6.1 Numerical analysis
	7.6.2 Performance analysis
	7.6.3 Results Discussion

	7.7 Conclusions of the Chapter

	8 Conclusions and Future Work
	References
	A Resumo Estendido en Galego

