
Evaluation of UPC Programmability Using
Classroom Studies

Carlos Teijeiro, Guillermo L.
Taboada, Juan Touriño, Basilio B.

Fraguela, Ramón Doallo
Computer Architecture Group
University of A Coruña, Spain

{cteijeiro,taboada,juan,basilio,doallo}@udc.es

Damián A. Mallón, Andrés
Gómez, J. Carlos Mouriño

Galicia Supercomputing Center
Santiago de Compostela, Spain

{dalvarez,agomez,jmourino}@cesga.es

Brian Wibecan

Hewlett-Packard
Nashua (NH), USA

brian.wibecan@hp.com

Abstract—The study of a language in terms of programmability
is a very interesting issue in parallel programming. Traditional
approaches in this field have studied different methods, such
as the number of Lines of Code or the analysis of programs,
in order to prove the benefits of using a paradigm compared
to another. Nevertheless, these methods usually focus only on
code analysis, without giving much importance to the conditions
of the development process and even to the learning stage, or
the benefits and disadvantages of the language reported by
the programmers. In this paper we present a methodology to
accomplish a programmability study with UPC (Unified Parallel
C) through the use of classroom studies with a group of novice
UPC programmers. This work will show the design of these
sessions and the analysis of the results obtained (code analysis
and survey responses). Thus, it is possible to characterize the
current benefits and disadvantages of UPC, as well as to report
some desirable features that could be included in this language
standard.

I. INTRODUCTION

In order to measure the benefits of using UPC, a PGAS
(Partitioned Global Address Space) extension to C, for parallel
programming, a specific methodology based on classroom
studies has been used. This work presents the results of two
classroom studies, which consist of four-hour sessions with a
group of UPC-unexperienced programmers organized in differ-
ent stages. First, the participants fill out a form to characterize
their profile. Then, a seminar explaining the basic constructs
of UPC (using a slideshow and some practical examples)
is given to the programmers. Afterwards they are asked to
parallelize several sequential codes in order to test the acquired
skills. Finally data about their impressions on UPC and some
detected benefits and disadvantages are obtained. The main
advantages of this approach are (1) the time control of the
development stage, (2) the use of unexperienced programmers
in the studied language but with some general background
knowledge on different programming paradigms, and (3) the
inclusion of their opinions as a complement to the analysis of
the developed codes, which gives some guidelines to identify
desirable features in a parallel programming language. This
information is very useful for future UPC programmability
improvements. In the first session, the participants are final
year students of the B.S. in Computer Science Engineering [1]
at University of A Coruña (UDC), whereas in the second one

the participants are a heterogeneous group of research staff
at the Galicia Supercomputing Center (CESGA) [2]. These
two groups present special features that are interesting for
the analysis, specially in terms of programmer profile. The
students at UDC are a quite homogeneous group, with minor
variations in their academic curricula, but the staff at CESGA
present clearly different profiles, as they have different degrees
from different universities.

This paper is organized as follows. First, some general
remarks on programmability in High Performance Computing
(HPC) are made, and the related work on UPC in this field
is presented. Then, the design of the activities is explained,
and the codes and software used in the sessions are presented.
Afterwards, detailed information about the most relevant re-
sults is given. Finally, some conclusions are extracted from
this study.

II. PROGRAMMABILITY IN HPC

In the last years, several works on programmability and
productivity for HPC have been developed. The most impor-
tant results on this area are related to the High Productivity
Computer Systems (HPCS) project [3], funded by DARPA,
which led to the proposal of three relevant languages that
focus on programmability (X10, Chapel and Fortress) [4].
These languages have been designed specifically to improve
programmability and productivity in code development, but
they are not mature enough yet. Some other languages, such
as the PGAS-based UPC, Co-Array Fortran or Titanium, have
been designed as extensions of well-known programming lan-
guages (C, Fortran and Java, respectively) to provide parallel
programming by means of the addition of syntactic constructs.

Many studies related with this subject are usually devoted
to general considerations and requirements for a parallel lan-
guage in terms of productivity [5], as well as comments about
benefits and disadvantages of the most popular approaches
(MPI and OpenMP). Moreover, there are also some works
on programmability in HPC devoted to the proposal and
analysis of different metrics [6], [7] and the design of specific
benchmarks [8]. An interesting conclusion from some of these
studies is that a language is considered to be good in terms
of programmability if it contains expressive constructs which



allow a more compact and simple coding, hence making low-
level complexity transparent to the user. However, program-
ming languages are difficult to compare in terms of real
programmability, because programmability-oriented languages
are quite novel and code developers are used to working with
the most popular approaches. Therefore, the success of these
new languages for HPC seems to be bound only to their
productivity enhancements, whereas extensions of traditional
languages can benefit from a more broad acceptance.

Additionally, a good way to prove if a language provides
good programmability is to make a survey on a group of
programmers. The benefits and disadvantages reported by
various code developers, especially when they have different
skills, can give valuable information about the programming
language and also help guess if it could become popular among
the parallel programming community.

III. RELATED WORK

Until now, most studies on UPC have focused on perfor-
mance, and there are still very few specific works on UPC
related to programmability. The most relevant previous works
deal with constructs and algorithms focused on performance
increase [9], [10] compared to other approaches measuring
programming effort in terms of Lines Of Code (LOC) [11].

Classroom programmability sessions are used as a good
reference in order to measure productivity. Some tests with
homogeneous groups of students have also been carried out,
obtaining general conclusions for different languages and
paradigms [12], [13], [14]. UPC has also been considered for
a programmability study [15] in a comparison with MPI that
includes an analysis of statistical significance of the results.
However, the development times were not taken into account
and the experimental conditions of the study were undefined.

In these studies, the typical measures that are used to eval-
uate programmability are Source LOC (SLOC) and speedup,
directly measured from the codes developed during a pro-
grammability session. Here, special applications to manage log
and report complete information about the work performed by
each participant in the study are generally used [16]. Among
these tools it is worth mentioning UMDInst [17], which
consists of a set of wrappers that create XML logs including
the most relevant actions performed at code development
(edition, compilation and execution), also saving snapshots
of the codes. These features help to give a more accurate
measure of the development time and cost associated to the
parallelization of a code.

IV. PROGRAMMABILITY STUDY

This work presents an improved methodology that addresses
concerns associated with previous studies of programmability.
In this study we (1) control development time, (2) provide
an assessment of the profile of the programmers, and (3)
conduct a survey of impressions of the language. We gath-
ered programmability results from two different environments.
The classroom studies are closed sessions with a restricted
and well-defined framework to accomplish a programmability

evaluation. These restricted classroom studies allow to control
the duration and keep track of the whole development process,
as well as to ensure that all participants have the same initial
and basic knowledge of UPC (presented at the beginning of
the session). Control on the information flow is performed by
using logging tools.

The two sessions organized at UDC and CESGA have
followed the same overall structure. First, every participant
was asked to fill out an initial questionnaire about his academic
profile and parallel programming background, as well as his
interest on this area. The questions have been adapted to the
participants of each study.

After the initial test, the participants attended a seminar
on UPC. The contents of this talk were taken from slides
used in UPC seminars at UC Berkeley [18], and included all
basic concepts and constructs needed to understand the PGAS
paradigm (shared address space vs. private address space) and
develop UPC codes (upc forall construct, barrier synchroniza-
tions, pointers, distribution of shared arrays and raw memory
copies). During this talk, the students were asked to test some
sample codes (Hello World, Pi Computation using the Monte
Carlo Approach and Matrix-Vector Multiplication). The UPC
seminar, including the explanations and the execution of the
test codes, lasted about 1 hour and 30 minutes.

Then, at the development stage, the participants were asked
to develop three parallel codes in UPC from their sequential
versions, implemented in C, that were given to them. The
overall coding time was 2 hours. The three proposed codes
are:

• A simple Stencil operation on a 106-element vector,
analogous to one of the example codes included in the
Berkeley UPC distribution. The vector has 106 elements
and the operation is performed 100 times (it uses an
external 100-iteration loop).

• The Buffon-Laplace Needle problem, a Monte Carlo
simulation that gives an accurate approximation of Pi
based on the probability that a needle of length l that
is dropped in a grid of equally spaced parallel lines will
touch at least one line. The number of predefined trials
is 107.

• The Computation of the Minimum Distance among dif-
ferent nodes in a graph (a version of the Floyd-Warshall
algorithm [19]). This code was implemented by some of
the students at UDC as an MPI project during a previous
course on parallel programming. The size of the source
distance matrix is 500x500 (that is, 500 nodes).

After parallelizing each code, the students were asked to
run their codes and then report their performance. Finally,
the participants had to fill out a final survey about their
impressions about UPC, their interest on the language, the
benefits or disadvantages they could notice and the features
they would like to see in UPC.

The number of participants that attended the classroom
study at UDC were 22 final year students of the B.S. in
Computer Science Engineering at UDC with some previous
knowledge of MPI and OpenMP. At CESGA, 13 programmers



with different profiles (e.g. B.S. degrees and PhD in computer
science, physics and mathematics) took part in the experiment.
In general, all participants at CESGA had experience with
programming languages, but very few reported to have a
previous knowledge on parallel programming. Even some of
these programmers did not have much experience with C, as
they were used to working with other languages (e.g. Java and
PHP).

The experimental testbed for the tests consisted of an 8-node
InfiniBand cluster, with 4 cores per node and hyperthread-
ing [20], and 16 single-core nodes of a Myrinet cluster [21].
All performance results were obtained using the Berkeley UPC
compiler, version 2.8.0 [22]. The UMDInst system has been
used in the cluster to generate logs. A summary of the most
relevant results from each code has been obtained with two
Perl scripts that parse the UMDInst logs. Additionally, the
number of SLOCs for each code has been got using the CLOC
Perl script [23].

V. ANALYSIS OF RESULTS

The analysis of the different results obtained in the two
classroom studies has been accomplished using two sources
of information: the codes developed by each participant and
their profiles and opinions about UPC. The study of the codes
is based on the speedup achieved, the number of SLOCs and
the development time for each code.

A. Overall Summary

Table I presents a summary of the UPC codes developed
in the classroom studies undertaken, indicating the number
of SLOCs of the sequential versions of the three codes (in
order to be used as a reference for the SLOC analysis)
and the number of correct and incorrect codes developed by
the participants. When the sum of the correct and incorrect
versions of a code is not equal to the number of participants
in the session, it indicates that some participants in that session
have not even started developing a code. Two conclusions
can be extracted from this table: on the one hand, most of
the participants could obtain a correct solution for the Stencil
and the Buffon-Laplace Needle problems; on the other hand,
few of them were able to parallelize the Minimum Distance
Computation.

Regarding the incorrect implementations obtained by some
of the participants, there are several points in common among
them. The Stencil code is quite simple, but four people (2
at UDC and 2 at CESGA) did not obtain a correct solution,
because all of them parallelized the external iterations loop
instead of the stencil loop. Although the results obtained
with these codes are correct, this work distribution causes all
threads to perform all the operations over the whole array
instead of splitting the array processing among the different
threads. Thus, these participants have misunderstood the basic
concepts of SPMD processing and work distribution with
upc_forall, and hence their implementations for this code
are highly inefficient.

The incorrect Buffon-Laplace Needle codes (7 at UDC and
3 at CESGA) also shared a common error: these participants
forgot to synchronize the threads after the computation of
the Pi estimation in each thread. This race condition can
produce an erroneous result, because there is no guarantee
that the partial results are updated when the root thread tries
to get them from shared memory. Additionally, 6 of these 10
erroneous codes also used a scalar shared variable to get the
partial results for every thread, instead of storing them in a
shared array and performing a reduction on it, thus causing a
race condition. Again, this error is due to a misunderstanding
of the UPC memory model.

Moreover, unlike in the previous cases, the characterization
of the errors in the Minimum Distance code is more difficult,
because many of them are due to a bad initialization of the
matrix or some misunderstanding of the algorithm. In general,
many participants (even the ones that developed a correct
code) found it difficult to deal with shared array arguments
in functions because of the block size definitions.

The results of each session are analyzed in more detail in the
following sections. Tables II-VII show the results of all correct
UPC codes developed in the programmability session at UDC
(Tables II-IV) and CESGA (Tables V-VII), respectively. The
codes have been classified according to the performance ob-
tained in terms of speedup when they are executed with up to
16 threads. The speedup is specified qualitatively, and each of
these values corresponds to a different behavior of the speedup
for this code when the number of threads increases (e.g. if
the efficiency is almost 100%, the speedup is considered as
“excellent”). Alongside the speedup, the average (µ) SLOCs
and the average development time (Dev. Time) of all the codes
included in each group are shown in every table, because they
can help give a measure of the acquired capability of each
group to develop UPC programs.

B. Programmability Session at UDC

The results presented in Table II show that there are five pos-
sible classifications in terms of speedup for the 20 UPC Stencil
codes developed in the session at UDC. As the parallelization
of this code is defined using a few syntactic constructs, it is
easy to find a correlation between the use of these constructs
and the runtime speedup obtained by each code. Thus, the
only one that included the correct parallel constructs, and also
used a privatization method for one of the arrays, could obtain
an “excellent” speedup (which means that it was very close
to the ideal). A “quite good” speedup (about 80% of parallel
efficiency) has been obtained by codes that included the correct
parallel constructs, but without a privatization method (that
is, they used a upc_forall loop with an optimal blocking
factor for both arrays and performed all operations in shared
memory), thus obtaining a slightly lower speedup than with
privatizations. Most of the Stencil codes obtained a speedup
rating of “good”, because they were parallelized using the
upc_forall loop, but with non-optimal array blocking for
both arrays. An “average” speedup has been obtained by
two codes that implemented the upc_forall loop, but



Table I
SUMMARY OF CODES OBTAINED IN THE CLASSROOM STUDIES

Code # SLOCS (seq) # Participants # Correct # Incorrect
Stencil (UDC) 21 22 20 2
Stencil (CESGA) 21 13 10 3
Buffon-Laplace N. (UDC) 90 22 15 7
Buffon-Laplace N. (CESGA) 90 13 9 3
Minimum Dist. (UDC) 63 22 7 8
Minimum Dist. (CESGA) 63 13 2 4

performed a particular array blocking: the two arrays used
for the Stencil operation had a different blocking factor, that
is, one had a block distribution and the other used a cyclic
distribution. Thus, depending on the definition of affinity in the
upc_forall loop, both codes achieve different speedup, but
it is always lower than in the previous cases. Finally, one code
could not get any speedup at all, because of a bad definition
of the affinity in the upc_forall loop, which maximized
the number of remote accesses.

Additionally, the study of SLOCs for Stencil indicates that a
quite good speedup can be obtained without increasing the size
of the code, but the best performance is achieved with more
lines. This is due to the use of privatizations, that requires
additional processing (e.g. the definition of private arrays and
the copy of the shared arrays to private memory).

In terms of development time, the participants at UDC spent
around 50 minutes on average with this code. As stated during
the session, many of them had reviewed all the information
about UPC that was given to them during the seminar in
order to develop their first UPC code, therefore some of this
development time can be assigned to a small learning curve.
Nevertheless, some significant differences among participants
were appreciated here.

Table II
STENCIL WITH 106 ELEMENTS (UDC)

Speedup # Codes µ # SLOCs µ Dev. Time
Excellent 1 28 38’ 19”
Quite good 4 22 49’ 35”
Good 12 23 50’ 28”
Average 2 22 50’ 20”
Bad 1 23 1 h 1’ 43”

Table III presents the results for the Buffon-Laplace Needle
code. All the developed codes achieve excellent speedup. The
reason is that Buffon-Laplace Needle presents few parallel
alternatives: a correct parallel code is likely to obtain high
speedup, and the lack of a feature in the code (e.g. synchro-
nization barriers, shared array definition) tends to result in an
incorrect program.

It is also significant that the amount of development time for
this second exercise is less than for the first one. This happens
because this code is based in the evaluation of trials similarly
to the computation of Pi using the Monte Carlo method, which
was proposed as an example in the UPC seminar. Thus, many
participants probably found the analogy between these two

codes and they could obtain a correct code easily. Regarding
the length of the codes, the average number of additional
SLOCs used here in order to parallelize this code is 8.

Table III
BUFFON-LAPLACE NEEDLE WITH 107 TRIALS (UDC)

Speedup # Codes µ # SLOCs µ Dev. Time
Excellent 15 98 28’ 43”

Table IV shows the results of correct Minimum Distance
codes, where the speedups are classified as “excellent” (4)
and “bad” (3). The use of correct upc_forall loops and
privatizations of variables is the reason why the best four
versions of this code obtained good speedup.

In terms of SLOCs, privatizations imply the inclusion of
some additional lines of code (in the best four cases, 12
lines on average). Other improvements used less SLOCs
(on average, 6 were used in different parallelizations using
upc_forall loops), but the benefits were not so important
in terms of speedup.

The mean development time for the best four codes is high,
probably because the correct implementation of privatizations
for these codes may have taken longer.

Table IV
MINIMUM DISTANCE COMPUTATION WITH 500 NODES (UDC)

Speedup # Codes µ # SLOCs µ Dev. Time
Excellent 4 75 1 h 1’ 34”
Bad 3 70 46’ 26”

C. Programmability Session at CESGA

Table V presents the speedup classification of the Stencil
codes developed in the classroom study at CESGA. Here there
are only two types of codes: the ones that achieved a quite
good speedup and the ones that showed bad speedup. The
first ones used a correct upc_forall loop and a suitable
blocking of arrays, whereas the latter used a wrong definition
of the affinity in the upc_forall loop for the selected array
blocking.

The average number of SLOCs for these codes (22 and
24 SLOCs) is very close to the sequential code (21 SLOCs).
However, there are significant differences among the codes
developed at CESGA, which are due to the different profiles
of the participants.



The development time of this code is also a bit lower than
at UDC, because many participants did not spend too much
time testing this code, and some of them had a great ability
to quickly develop the required code.

Table V
STENCIL WITH 106 ELEMENTS (CESGA)

Speedup # Codes µ # SLOCs µ Dev. Time
Quite good 7 24 40’ 19”
Bad 3 22 48’ 30”

The results shown in Table VI are analogous to the ones
obtained at UDC: all the correct codes achieved the best pos-
sible speedups. Nevertheless, there are significant differences
in terms of SLOCs and development time, as the participants
at CESGA used, on average, more SLOCs and more time to
develop the parallel code.

Once again, there are noticeable differences among CESGA
programmers, because many of them did not realize quickly
that this program was analogous to the Pi computation pre-
sented in the seminar, and therefore they had problems on
deciding which was the strategy to parallelize this code. This
led to a mean number of editions and compilations higher
than in the UDC session. However, as with Stencil, some
participants could get to parallelize this code quite quickly.

Table VI
BUFFON-LAPLACE NEEDLE WITH 107 TRIALS (CESGA)

Speedup # Codes µ # SLOCs µ Dev. Time
Excellent 9 101 46’ 20”

The Minimum Distance code has posed a great challenge
to CESGA programmers: this code was not familiar to any of
them, unlike in the UDC session. Therefore, its complexity
and the time involved in developing a correct solution to
the previous codes were the reasons why only half of the
participants in the session at CESGA started developing the
parallel version of this code. As shown in Table VII, none of
the two correct codes could get a good speedup. However, it
can be seen that one code obtained a slightly better speedup
with a higher development time.

Table VII
MINIMUM DISTANCE COMPUTATION WITH 500 NODES (CESGA)

Speedup # Codes µ # SLOCs µ Dev. Time
Bad 1 90 1 h 10’ 53”
Very bad 1 66 30’ 31”

D. Programmability Analysis of UPC vs. MPI

As commented before, some UDC students that attended
this session had also developed previously an MPI version of
the Minimum Distance code, after a 12-hour course on basic
notions of parallel programming (4 hours) and MPI (8 hours).
In order to present a comparison among these two codes,

Table VIII shows the speedups (“+” means “excellent”, “-”
means “bad”), SLOCs and development time of pairs of MPI
and UPC codes developed by the same students (named U-xx).
Five of the seven students that obtained a correct UPC version
of this code had previously developed an MPI implementation,
thus these five codes will be studied in this section. The MPI
development times are an estimation of the time consumed in
the study and parallelization of this code, and it was reported
by the corresponding student.

Table VIII
MINIMUM DISTANCE COMPUTATION - MPI VS. UPC

ID Speedup # SLOCs Dev. Time
MPI UPC MPI UPC MPI UPC

U-04 + - 136 68 24 h 35’
U-05 + + 139 73 36 h 1 h 21’
U-15 + - 158 76 15 h 1 h 6’
U-17 + + 159 87 15 h 1 h 31’
U-20 + + 174 66 18 h 1 h 24’

The analysis of these UPC and MPI results clearly indicates
that UPC allows an easier and faster parallelization than
MPI: compared to their MPI codes, three students could get
a similar speedup with UPC using less development time
and SLOCs (the sequential code has 63 SLOCs). Although
MPI time measurements have not been strictly controlled, the
development time estimation and the SLOC count suggest that
there is a high difference in terms of programmability among
both approaches: the reason is that another two students that
had not developed the MPI version of Minimum Distance were
able to obtain a correct UPC parallel code during the classroom
study (one of them with a very good speedup), which may
confirm that the time necessary to understand the problem is
not very high. Moreover, the learning time for MPI was longer
than for UPC, which confirms the effectiveness of the latter
for a quick parallelization. However, for most of the students,
MPI was the first time they approached parallel programming,
so this fact has to be taken into account. It is also important to
note that the average development time of the best UPC codes
is near an hour and a half, therefore if the time for the session
were longer probably more students could have developed the
UPC version of this code.

E. Reported Comments on UPC

The comments of the participants of this study on UPC
are presented in Figures 1 to 3. Figure 1 indicates that the
most important benefit for many of the participants is that
UPC is an extension of C. Additionally, about half of the
answers to the test considered that the UPC memory model is
a helpful way to develop codes. Nevertheless, some differences
among the two groups of participants are stated when asked
whether UPC allows easy prototyping: UDC students consider
that UPC facilitates prototyping, but CESGA programmers do
not seem to consider this as helpful. This is probably due to
their profiles: some of the CESGA programmers are used to
object-oriented languages (e.g. Java) and found it difficult to



work with C, whereas UDC students are more used to working
with different paradigms.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

C
Extension

Easy
prototyping

Memory
model

Compiler
availability

P
e

rc
e

n
ta

g
e

 o
f 

P
a

rt
ic

ip
a

n
ts

Perceived UPC Benefits

UDC
CESGA

Figure 1. Reported benefits of UPC

The main drawbacks reported in Figure 2 are also different
depending on the group of people studied. Both groups agree
that pointer management is difficult, but also the general im-
pression at CESGA is that UPC is a quite low-level language
that may only be used in HPC. Nevertheless, participants at
UDC found that the definition of block sizes was one of
the most important drawbacks in UPC, alongside with the
perception of poorer performance.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

No draw-
backs

reported

Just for
 HPC

Pointer
manage-

ment

Block
size

definition

Perfor-
mance

Low-level
language

P
e

rc
e

n
ta

g
e

 o
f 

P
a

rt
ic

ip
a

n
ts

Perceived UPC Drawbacks

UDC
CESGA

Figure 2. Reported drawbacks of UPC

The opinions about the most urgent issue to solve in
UPC, that are shown in Figure 3, have followed are similar
to the previous ones: CESGA programmers miss language
abstractions that help to obtain a simpler code, whereas UDC
students’ complaints focus on language performance, as well
as on general data distribution issues. Moreover, the percentage
of participants at CESGA that suggested the use of language
abstractions is a only bit lower than the sum of percentages
of all reported issues at UDC.

These three graphs reveal that there are significantly differ-
ent opinions reported by UDC and CESGA participants, and
the tendencies shown in each figure are also consistent with

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

No issues
reported

Perfor-
mance

Data
distribution

Abstrac-
tion level

Declare
shared vars
in functions

P
e

rc
e

n
ta

g
e

 o
f 

P
a

rt
ic

ip
a

n
ts

UPC’s Most Urgent Issue to Solve

UDC
CESGA

Figure 3. Most urgent reported issue to solve

the results presented in the rest of the figures. As a result,
some facts that appear to be determinant in the way the par-
ticipants accomplished the development UPC codes are their
background knowledge, interests and motivation: participants
with some specific knowledge on parallel programming have
seen some advantages in terms of programmability in the use
of UPC, but unexperienced participants have found it difficult
to understand the implementation of parallelism in a program.

VI. CONCLUSIONS

This paper has presented the classroom study with novice
UPC programmers as a method to assess the programmabil-
ity of UPC. This restricted environment allows much better
control of the coding time and the development problems that
may occur, and the retrieved information is better than the
one obtained only from the study of source codes. Addition-
ally, the objective information acquired through this study is
complemented with the opinions of the participants, which
provides different points of view about the language that is
being studied.

Two programmability sessions with UPC using different
groups of participants have been accomplished using this
methodology. Regarding the codes obtained, most of the
participants could get to parallelize at least one code. The
participants at UDC took advantage of their knowledge on
parallel programming, and some of them also benefited from
the development of the Minimum Distance code in MPI,
because they were acquainted with it. This fact allowed a
programmability comparison between UPC and MPI, which
showed that the development time and SLOCs to parallelize
the Minimum Distance code with UPC is clearly lower com-
pared to MPI. The participants at CESGA had more difficulties
in learning UPC, because many of them had no experience in
parallel programming and had to learn some basic concepts
(e.g. the SPMD model).

Different development problems have been encountered in
the codes obtained in both sessions, but many of them were
typical errors in PGAS novice programmers or were due to the
design of the closed sessions, and not directly related to the



programmers’ background knowledge. In fact, the difficulties
in code development may also be due to the restricted time
of both sessions: although the Stencil and Buffon-Laplace
Needle problems are quite simple, the Minimum Distance
code requires a more detailed study to develop a parallel
version. However, despite these facts, the results obtained with
both classroom studies were satisfactory, and some partici-
pants could even obtain UPC implementations of Stencil and
Buffon-Laplace Needle that achieved good speedup using a
similar number of SLOCs to the sequential versions of each
code.

UPC facilitated an easier parallelization for many partic-
ipants, but their profiles, background knowledge and moti-
vation have shown to have much influence on their opinion
about the language. UDC students, that were used to parallel
programming, were willing to adapt to UPC and reported few
disadvantages regarding the language specification. Neverthe-
less, CESGA programmers interpreted UPC as a low-level
language specifically designed for HPC that might have some
problems to become popular for a wider range of applications,
especially because of the lack of high-level abstractions to
provide easier programming. These different points of view
also define differences in the motivation of both groups when
dealing with the proposed problems, but they help to give an
overall vision of the possibilities of use of UPC in different
areas.

Thus, a general conclusion is that UPC can be used to
develop parallel codes easier than other parallel programming
approaches, but the development of libraries that focus on
programmability can be interesting in order to abstract the
relatively low-level C syntax and expand the use of UPC
beyond the limits of HPC.

ACKNOWLEDGMENTS

This work was funded by Hewlett-Packard and partially
supported by the Spanish Government under Project TIN2007-
67537-C03-02 and by the Galician Government under project
INCITE08PXIB105161PR. We gratefully thank Jim Bovay
at HP for his valuable support, and CESGA for providing
access to the SVG cluster. Also, we greatly appreciate the
collaboration of the UDC students and the staff at CESGA.

REFERENCES

[1] “Computer Science Engineer - Syllabus at University of A Coruña,”
http://www.udc.es/estudos/en/planes/614111.asp [Last visited: August
2009].

[2] “Galicia Supercomputing Center (CESGA),” http://www.cesga.es/, [Last
visited: August 2009].

[3] “High Productivity Computer Systems,” http://www.highproductivity.org
[Last visited: August 2009].

[4] “HPCS Language Project (HPLS),” http://hpls.lbl.gov/ [Last visited:
August 2009].

[5] E. Lusk and K. Yelick, “Languages for High-Productivity Computing:
the DARPA HPCS Language Project,” Parallel Processing Letters,
vol. 17, no. 1, pp. 89–102, 2007.

[6] J. Kepner, “High Performance Computing Productivity Model Synthe-
sis,” Intl. Journal of High Performance Computer Applications, vol. 18,
no. 4, pp. 505–516, 2004.

[7] M. Snir and D. Bader, “A Framework for Measuring Supercomputer
Productivity,” Intl. Journal of High Performance Computer Applications,
vol. 18, no. 4, pp. 417–432, 2004.

[8] J. Gustafson, “Purpose-Based Benchmarks,” Intl. Journal of High Per-
formance Computing Applications, vol. 18, no. 4, pp. 475–487, 2004.

[9] K. Yelick et al., “Productivity and Performance Using Partitioned Global
Address Space Languages,” in Intl. Workshop on Parallel Symbolic
Computation (PASCO’07), London, Ontario (Canada), 2007, pp. 24–
32.

[10] R. Nishtala, G. Almasi, and C. Cascaval, “Performance without Pain =
Productivity, Data Layouts and Collectives in UPC,” in 13th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’08), Salt Lake City (UT), 2008, pp. 99–110.

[11] F. Cantonnet, Y. Yao, M. M. Zahran, and T. A. El-Ghazawi, “Productiv-
ity Analysis of the UPC Language,” in 18th Intl. Parallel and Distributed
Processing Symposium (IPDPS’04), Santa Fe (NM), 2004, p. 254a.

[12] R. Alameh, N. Zazwork, and J. Hollingsworth, “Performance Measure-
ment of Novice HPC Programmers Code,” in 3rd Intl. Workshop on
Software Engineering for High Performance Computing Applications
(SE-HPC’07), Minneapolis (MS), 2007, pp. 3–8.

[13] A. Funk, V. Basili, L. Hochstein, and J. Kepner, “Application of a De-
velopment Time Productivity Metric to Parallel Software Development,”
in 2nd Intl. Workshop on Software Engineering for High Performance
Computing System Applications (SE-HPCS’05), St. Louis (MO), 2005,
pp. 8–12.

[14] J. Manzano, Y. Zhang, and G. Gao, “P3I: The Delaware Programma-
bility, Productivity and Proficiency Inquiry,” in 2nd Intl. Workshop
on Software Engineering for High Performance Computing System
Applications (SE-HPCS’05), St. Louis (MO), 2005, pp. 32–36.

[15] I. Patel and J. R. Gilbert, “An Empirical Study of the Performance and
Productivity of Two Parallel Programming Models,” in 22nd IEEE Intl.
Symposium on Parallel and Distributed Processing (IPDPS’08), Miami
(FL), 2008, pp. 1–7.

[16] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta,
“Measuring HPC Productivity,” Intl. Journal of High Performance
Computing Applications, vol. 18, no. 4, pp. 459–473, 2004.

[17] Development Time Working Group - HPCS, “UMDInst,”
http://hpcs.cs.umd.edu/index.php?id=18 [Last visited: August 2009].

[18] K. Yelick, “Lecture Notes on Global Address Space Programming in
UPC - Applications of Parallel Computing (CS267) at UC Berkeley,”
http://crd.lbl.gov/˜dhbailey/cs267/lecture13 upc ky08.pdf [Last visited:
August 2009].

[19] R. W. Floyd, “Algorithm 97: Shortest Path,” Commun. ACM, vol. 5,
no. 6, p. 345, 1962.

[20] “NM Cluster - Department of Electronics and Systems. University of A
Coruña,” http://nm.des.udc.es/, [Last visited: August 2009].

[21] “SVG Cluster - Galicia Supercomputing Center,”
http://www.cesga.es/content/view/409/115/lang,en/, [Last visited:
August 2009].

[22] UC Berkeley / LBNL, “Berkeley Unified Parallel C (UPC) Project,”
http://upc.lbl.gov, [Last visited: August 2009].

[23] Northrop Grumman Corporation - IT Solutions, “CLOC - Count Lines
Of Code,” http://cloc.sourceforge.net/ [Last visited: August 2009].


