
Custom High-Performance Vector Code Generation for
Data-Specific Sparse Computations

Marcos Horro∗

marcos.horro@udc.es
Universidade da Coruña, CITIC

A Coruña, Spain

Louis-Noël Pouchet
pouchet@colostate.edu

Colorado State University
Fort Collins, Colorado, USA

Gabriel Rodríguez
gabriel.rodriguez@udc.es

Universidade da Coruña, CITIC
A Coruña, Spain

Juan Touriño
juan.tourino@udc.es

Universidade da Coruña, CITIC
A Coruña, Spain

Abstract

Sparse computations, such as sparse matrix-dense vector multipli-

cation, are notoriously hard to optimize due to their irregularity and

memory-boundedness. Solutions to improve the performance of

sparse computations have been proposed, ranging from hardware-

based such as gather-scatter instructions, to software ones such

as generalized and dedicated sparse formats, used together with

specialized executor programs for different hardware targets. These

sparse computations are often performed on read-only sparse struc-

tures: while the data themselves are variable, the sparsity structure

itself does not change. Indeed, sparse formats such as CSR have a

typically high cost to insert/remove nonzero elements in the repre-

sentation. The typical use case is to not modify the sparsity during

possibly repeated computations on the same sparse structure.

In this work, we exploit the possibility to generate a specialized

executor program dedicated to the particular sparsity structure

of an input matrix. It creates opportunities to remove indirection

arrays and synthesize regular, vectorizable code for such computa-

tions. But, at the same time, it introduces challenges in code size

and instruction generation, as well as efficient SIMD vectorization.

We present novel techniques and extensive experimental results

to efficiently generate SIMD vector code for data-specific sparse

computations, and study the limits in terms of applicability and

performance of our techniques compared to state-of-practice high-

performance libraries like Intel MKL.

CCS Concepts

· Software and its engineering→ Source code generation; ·

Computing methodologies → Vector / streaming algorithms.

∗With AMD at the time of publication.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PACT ’22, October 8ś12, 2022, Chicago, IL, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9868-8/22/10. . . $15.00
https://doi.org/10.1145/3559009.3569668

Keywords

vectorization, data-specific compilation, sparse data structure

ACM Reference Format:

Marcos Horro, Louis-Noël Pouchet, Gabriel Rodríguez, and Juan Touriño.

2022. Custom High-Performance Vector Code Generation for Data-Specific

Sparse Computations. In International Conference on Parallel Architectures

and Compilation Techniques (PACT ’22), October 8ś12, 2022, Chicago, IL, USA.

ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3559009.3569668

1 Introduction

Sparse data structures, such as sparse matrices, are ubiquitous in

modern computing to represent nonzero-valued regions within a

dense coordinate system. This avoids storing useless zero values,

and bypasses useless computations (e.g., multiplication by zero)

[5, 35]. Sparse tensors, including sparse matrices, are widely used

in physics simulation, graph analytics [45], or may occur after

sparsification of a neural network weight matrix [4, 19].

A typical use case is to create a sparse representation from the set

of nonzero coordinates in a data structure by inspection and com-

pression into multiple arrays, as exemplified with the Compressed

Sparse Row (CSR) format [35]. Such formats are not amenable to

fast insertion/deletion of a nonzero element in the structure: one

or more array reallocations and, more importantly, shifting of all

the data, is typically required. Sparsity at the data structure level is

often immutable, and only the values associated to the nonzero co-

ordinates evolve before another phase of compression into, e.g., CSR

is done again. A generic executor code, applicable on any sparse

matrix of a given format, is typically deployed and optimized for a

particular target [3, 5, 6, 10, 14, 18, 38, 44, 46]. However, this gener-

ality comes at the cost of using indirection arrays, i.e., arrays that

encode the original sparsity structure and that are used to index the

compressed structures, and creating challenges for efficient SIMD

vectorization. The state of practice is typically to select a sparse

format delivering good performance for the considered sparsity

pattern [36], or more simply to rely on a vendor library such as

Intel MKL [40].

In this work, we particularly focus on optimizing sparse-im-

mutable data structures, exploiting data-specific compilation: we

generate code that is specialized (unique) to one sparse structure.

Augustine et al. [4] developed a system for automatically build-

ing sets of regular subcomputations by mining regularly strided

subregions on the irregular data structure, i.e., on a sparse tensor.

https://orcid.org/0000-0002-0184-8527
https://orcid.org/0000-0002-0338-3655
https://orcid.org/0000-0001-9670-1933
https://doi.org/10.1145/3559009.3569668
https://doi.org/10.1145/3559009.3569668

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

1 for (int i = 0; i < N; ++i) {

2 y[i] = 0.0;

3 for(int j = row_ptr[i]; j < row_ptr[i + 1]; ++j)

4 y[i] += A[j] * x[cols[j]];

5 }

Listing 1: Standard SpMV kernel using CSR format.

However, their work is limited to reconstructing loop-based codes

for sparse structures, without further emphasis on generating spe-

cialized SIMD programs for these particular small-loop computation

patterns. Their approach trades off large indirect accesses for larger

code size using direct accesses only, but does not provide solutions to

generate specialized high-performance multi-core SIMD implemen-

tations for such reconstructed programs. We present the MACVETH

system (Multi-Architectural C-VEcTorizer for HPC applications) to

address this problem. Section 2 details the performance challenges

in optimizing such codes, and overviews MACVETH before details

are presented in Section 3. MACVETH is a Clang-based compiler,

which has been used to generate extensive experimental analysis

in Sec. 4.

MACVETH implements a systematic search of functionally equiv-

alent SIMD implementations of packing and reduction operations,

typically at compiler installation time. It uses an SMT solver ap-

proach to reduce the search space size. We support the fusion of

independent reductions on the same SIMD vector(s) to improve

SIMD occupancy for small reductions, in a fully automated way.

As extensively studied in Section 4, MACVETH consistently im-

proves performance over Intel MKL (single-core and multi-core)

for the 200+ sparse matrices we evaluated from the SuiteSparse

repository [12], with diminishing returns with the sparse matrix

size, indicating the limits of our current techniques. We make the

following contributions:

• We introduce MACVETH, the Multi-Architectural C-VEcTorizer

for HPC applications, for synthesis of high-performance SIMD

implementations of regular strided-access reductions or map

loops, as typically occurring in the reconstruction of sparse

matrices in data-specific compilation [4];

• MACVETH is a Clang-based source-to-source compiler, with

the ability to automatically discover functionally equivalent

ASM implementations, profiling them to build machine-specific

recipes for the compiler to use for SIMDization. It embeds sev-

eral problem-specific optimization strategies, such as the fusion

of independent reductions to improve SIMD vector occupancy;

• We present extensive experimental results on 200+ sparse ma-

trices of less than 20M nonzeros, in single-core and multi-core

for two modern processors (Intel Alder Lake and AMD Zen3)

demonstrating consistently better performance obtained with

MACVETH versus Intel MKL.

2 Data-Specific Compilation of Sparse

Structures

In this work we target the optimization of sparse (tensor) computa-

tions, exemplified with the Sparse Matrix - dense Vector product

(SpMV) kernel using the CSR format shown in Listing 1.

In typical practice, a discrete representation of the set of stored

values (i.e., the matrix sparsity structure) is assumed to be known

a priori. Then, a compressed sparse representation can be built,

1 void kernel_spmv_fragment_0(float *__restrict A,

2 float *__restrict x,

3 float *__restrict y) {

4 register int i0;

5 for (i0 = 0; i0 <= 1; ++i0)

6 y[1] += A[i0] * x[i0];

7 for (i0 = 0; i0 <= 2; ++i0)

8 y[2] += A[i0 + 2] * x[i0];

9 for (i0 = 0; i0 <= 1; ++i0)

10 y[3] += A[i0 + 5] * x[i0 + 1];

11 for (i0 = 0; i0 <= 1; ++i0)

12 y[4] += A[i0 + 7] * x[i0 + 1];

13 y[5] += A[9] * x[1];

14 for (i0 = 0; i0 <= 1; ++i0)

15 y[5] += A[i0 + 10] * x[2]; }

Listing 2: Code generated for matrix JGD_Kocay/Trec5

using a variety of formats trading off memory footprint for the

compressed structure versus ease to produce high-performance

code scanning the nonzero elements of the structure. We note the

cost of modifying the sparsity is typically prohibitive for most

sparse formats (e.g., CSR, COO, etc.) as inserting or removing a

nonzero element implies growing/reducing, and then shifting, the

arrays used to index elements. For example, adding one nonzero

element to a CSR representation requires updating A, row_ptr, and

cols. Therefore many practical use cases repeat computations over

the same sparsity pattern, only modifying the fields (i.e., the data

values in the arrays) which are computed on. Generic executors,

as in Listing 1, present the advantage to be sparsity-independent

(the code is the same for any sparse matrix) and therefore generic

[5, 6, 10, 18, 36, 46], but at the cost of using indirection arrays,

limiting the performance.

2.1 Reconstruction by Codelets

In order to avoid the use of indirection arrays, Augustine et al.

[4] developed a system for automatically building sets of regular

subcomputations by mining regularly strided subregions on the

irregular data structure, i.e., on a sparse tensor. This approach gen-

erates data-specific code for each input sparse structure, such as in

those included in the SuiteSparse collection [12]. An example of the

output of this system for the input sparse matrix JGD_Kocay/Trec5

is depicted in Listing 2. At compile-time, the nonzero coordinates

are inspected and a code scanning the exact same coordinates is pro-

duced, but without any indirection array. In essence, the nonzero

coordinates stored in row_ptr and cols are replaced by their actual

values in the code generated, making it specialized to this specific

sparsity pattern.

Listing 2 depicts a very simple and intuitive example of code

fragment that is reconstructed using rectangular template shapes

being mined over the full set of nonzero coordinates [4]. This set of

nonzero coordinates (𝑖, 𝑗) in the 2D sparse matrix leading to such

code is, for the first loop, ((1, 0); (1, 1)), then ((2, 0); (2, 1); (2, 2))

for the second loop, etc. Taking into account the 𝐴 data vector,

where non-zero values are typically stored in contiguous fashion, is

required to emit correct code manipulating the CSR representation.

3D codelets are mined for, for the (𝑖, 𝑗, 𝐴_𝑝𝑜𝑠) coordinates. Precisely

in the example above, we have (1, 0, 0); (1, 1, 1) for the first loop,

(2, 0, 2); (2, 1, 3); (2, 2, 4) for the second, etc.

Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations PACT ’22, October 8–12, 2022, Chicago, IL, USA

With these coordinates known at compile-time, the above code is

produced by mining for the existence of (hyper-)rectangles contain-

ing regularly strided coordinates (i.e., the values indexing y, x, and

A above) that can be expressed as simple affine functions of loop

iterators [4]. Note that more complex loop shapes may be used to

further compress sparse coordinates by using a geometric approach

to build aZ-polyhedron that fits a given set of points, instead of

mining for the existence of a given shape (eTRE) [4]. In this work,

we focus on codelet-based reconstruction, which appears to provide

a good trade-off between code size and eventual performance [4].

2.2 Performance Trade-offs

The simple loop-based codes above present a difficult performance

trade-off to navigate: on the one hand, more specialized code, with

regular loops and no indirection arrays, should be amenable to

high-performance SIMD implementation. On the other hand, the

program remains entirely functionally equivalent to Listing 1 if it is

invoked on the JGD_Kocay/Trec5 sparse matrix, up to a reordering

of the iterations.

In general, even after reordering, it does performnon-consecutive

(scattered) memory accesses, especially along the dense vector x,

following the sparsity pattern of the input matrix. Furthermore,

generated loops typically have a very small trip count, insufficient to

pack a full SIMD vector, and contain numerous short reductions.

Augustine et al. noted several sources of ineffectiveness of these

data-specific codes. First, and most importantly, code size explosion,

as the sparsity information is now encoded in the form of specialized

loop nests. This triggers performance issues related to instruc-

tion cache prefetching (or lack thereof): as code is typically not

reused, for good performance one shall implement a form of soft-

ware prefetching for the code itself [4]. They also relied on existing

auto-vectorizers for the generated code, which limits performance

due to generic cost models and the small size of the loops to op-

timize. Compilers’ auto-vectorizers synthesize machine-specific

assembly code exploiting SIMD units of the target processor. Most

of these techniques are conservative and are only applied if certain

patterns are found in the code, and if a cost model has assessed their

profitability. For instance, GNU GCC and Clang/LLVM use both

Loop-Level Vectorization (LLV) and Superword-Level Parallelism

(SLP) [17, 27, 29].

When accessing scattered (non-consecutive) memory addresses,

gather is a convenient but complex x86 macro-instruction, intro-

duced in AVX2 for loading random data points given a starting

address and a set of indices. This instruction has been reported to

deliver variable latencies [1], depending on the source and destina-

tion operands. Hofmann et al. [20] demonstrate the performance

variability of the gather instruction for the Intel Knights Corner and

Intel Haswell architectures, depending on the number of elements

fetched by the gather instruction from a cache line. A single gather

instruction may be decoded into many micro-operations, a number

that varies depending on the architecture, e.g., in modern AMD

architectures, such as Zen2 and Zen3, gather may be decoded into

more than 30 micro-operations1, depending on the vector width.

Implicitly, this controls the ASM code size (a single gather) while

enabling a complex computation (numerous executed 𝜇-operations).

1According to values reported in https://uops.info/table.html ([1, 15]).

As such, gather can be a good idiom for code-size-aware applications,

but it may not be the best solution in terms of performance when it

comes to throughput. Actually, even though a gather instruction can

save machine code bytes for the L1 instruction cache, it could take

up more space in the 𝜇op-cache (or L0 cache) than other solutions

due to its decoding phase. The 𝜇op-cache is a specialized cache for

storing pre-decoded micro-operations [37], improving the perfor-

mance in the decoding phase. It is present in modern architectures

and it has a significant impact on performance [9], as it allows the

decoder to idle when reusing micro-operations.

In this work, we tackle the problem of automatically generating

machine-specific SIMD implementations for loop-based codes coming

from the reconstruction of sparse structures as in Listing 2. We specif-

ically focus on codes reconstructed for matrices in the SuiteSparse

collection [12] and deliver a system optimized for SpMV-style com-

putations, generating multi-core (OpenMP) and AVX2/SSE SIMD

implementations of such programs. Combining Augustine et al.’s

long-distance rescheduling approach by codelet mining with the spe-

cialized short-distance SIMD optimizer we introduce in this work

leads to a complete, hierarchical scheduling and packing approach to

generate efficient SIMD programs for sparse-immutable computations.

The optimized programs we generate systematically outperform

Augustine et al.’s approach [4], as well as Intel MKL and a reference

CSR implementation, as extensively studied in Section 4. In partic-

ular, we present a fully automated synthesizer of ASM-based

łsoftware emulationž of arbitrary gather instructions, with

the aim to improve performance over gather for random

vector packing operations. By profiling a variety of alternate

implementations for the same type of access pattern once at instal-

lation time, machine-specific performance profiles are exploited.

They are deployed in a novel Clang-based packing and SIMD vector

code generation tool for reduction codelets, that is, for small loops

computing reductions (e.g., loops in Listing 2).

Other related work Little prior work focused on exploiting the

sparsity information to emit data-specific codes. EGGS implements

sparsity-specific code generation [39] but does not exploit loop-

based compression of the sparse coordinates [4]. The TACO com-

piler [11, 23] generates format/problem-specific efficient implemen-

tations of sparse tensor operations, which can also lead to very

large binaries, even without data-specific compilation. Sparse for-

mats and associated executors have been proposed with a focus on

SIMD potential [14, 25, 38], including more recent work specifically

targeting better utilization of SIMD units [7, 8, 26, 43]. However, to

the best of our knowledge none exploit the actual sparsity informa-

tion to generate specialized and simplified codes at compile-time,

nor have the ability to substitute a gather instruction by higher-

performing operations for a particular memory load pattern as we

do in the present work.

Numerous prior works on automatic SIMD vectorization are

directly applicable on such reconstructed programs, due to the

simplicity of the loops generated. SLP vectorization may be ap-

plied (e.g., after unrolling) [30, 31] and several techniques for auto-

vectorization of strided accesses have been developed [28, 34],

including problem-specific ones [24]. To the best of our knowl-

edge, while these techniques are applicable off-the-shelf to the

https://uops.info/table.html

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

highly regular codes we generate, none is implementing the ran-

dom vector packing strategies we present in Section 3, nor fusion

of reductions for better SIMD occupancy in such an automated

system as MACVETH. The Spiral system illustrates very well the

ability to mine for effective machine-specific SIMD implementa-

tions [16, 24, 33] albeit via an algebraic system to search for equiv-

alent implementations. In contrast, we develop data packing SIMD

recipes that are tuned to the non-regular strided accesses in recon-

structed loops, by first automatically characterizing their perfor-

mance profile on the target machine, avoiding the limitations of

static cost models.

2.3 Overview of MACVETH

In this work we take an aggressive approach to pattern-specific and

data-specific auto-vectorization by developing MACVETH. This

Clang-based source-to-source compilation framework targets the

automatic vectorization of code regions (delimited by pragmas).

We implement vectorization using a SIMD-Intrinsics-style ap-

proach, to facilitate portability to a variety of concrete SIMD ISAs.

We develop platform-aware cost-driven algorithms to efficiently

pack arbitrary operands and operations into SIMD vectors. For this

purpose, we have also developed MRKVS (Mega-Random Kernel Vec-

tor SMT), a tool for generating candidate combinations of instructions

to efficiently pack random elements into vector registers given a con-

crete ISA and a subset of instructions to consider. Equipped with this

model, MACVETH supports vector packing across multiple distinct

loop nests to maximize vector occupancy, in particular when loops

have a very small trip count, targeting operations such as reductions.

These codes may typically be found in sparse tensor computations.

MRKVS is our proposed SMT-based model and system for gen-

erating combinations of instructions given an ISA to gather and

pack random memory positions within a vector register. The goal

is to emulate the behavior of a gather instruction, by combining other

available ASM instructions to achieve the same functionality, even-

tually leading to performance trade-offs such as (binary) code size

versus performance. Indeed, gather may be replaced by several

ASM instructions, growing the binary size.

We also develop a platform-specific cost model derived from the

candidates generated by the MRKVS system. This model is built

by accurately micro-benchmarking all these candidates for each

possible case using the MARTA framework [22], an automated

tool for micro-benchmarking and building cost models from data,

and selecting the most promising and profitable candidate for each

platform. This profiling phase is reused across the compilation of

different sparse structures on the same machine, and is typically

done once at installation time.

Our implementation of MACVETH works as a Clang AST-based

source-to-source compiler for vectorizing codes reconstructed from

sparse structures. This compiler is able to vectorize multiple reduc-

tions within the same vector register, and to fuse independent re-

ductions using the same vector operations, and even across multiple

vectors. This solution also includes the platform-aware random

packing combinations described above, for efficiently packing ran-

dom operands in the same vector.

The only input to the system is a concrete C/C++ filewithmarked

regions to be considered for vectorization. The output is a SIMD

version of that code, if the cost model predicts its profitability;

otherwise it just emits scalar code. For simplicity, we focus in this

paper on x86 architectures with AVX2 only, but the same approach

can be applied to other architectures and ISAs: we develop machine-

independent techniques to produce automatically machine-specific

codes.

3 SIMD Code Synthesis

We now outline our approach for SIMD synthesis of strided codelets,

that is fully implemented in MACVETH. We first generate a collec-

tion of semantically-equivalent micro-programs that pack scalar

operands stored at arbitrary addresses in memory into a contiguous

SSE / AVX vector, for all possible data packing situations (e.g., same

or different cache lines, etc.).

The performance of these implementations is then characterized,

by actual measurement on the host machine, as well as using cost

models such as LLVM-MCA, to find the best performing versions.

This forms a set of SIMD packing code templates forMACVETH, to be

used each time a compilation using MACVETH is to be performed.

For the actual compilation of programs to SIMD with MACVETH,

we operate on a DAG-based representation of the computation,

obtained after fully unrolling loops in the code region to vectorize.

MACVETH packs operands and operations into vector form, tiling

this DAG by instantiating the proper templates and replacing scalar

code by these instantiations in the input program. Similarly SIMD

operations are also generated, following the SIMD operands being

packed. Additional optimizations for performance, such as fusing

two independent and short reductions on the same SIMD vector,

are implemented by MACVETH to improve vector occupancy and

eventual performance.

3.1 Generation of Data Packing Recipes

A major performance problem to address is finding the most ef-

ficient (wall-clock time) machine-specific code to pack randomly

placed operands in memory into a single SIMD vector. This random

vector packing phase can be implemented with a gather instruc-

tion. Our objective is first to create specialized code that emulates

the gather semantics, for every possible situation (i.e., locations of

the scalars to pack) it may be called on. We do so because maximal

performance may be achieved with very different ASM instructions

depending on where the operands to pack are placed in memory. As

operands may be mostly randomly placed in memory after codelet

reconstruction, we must implement a high-performance solution

for each possible packing scheme.

Intuitively, we can define each of the load instructions as a func-

tion that, for a given virtual address 𝑝 , returns a set of contiguous

positions in memory using a little-endian format: 𝑓 (𝑝) := {𝑣𝑛−1 =

𝑓 (𝑝 [𝑛 − 1]), ..., 𝑣0 = 𝑓 (𝑝 [0])}. For instance, _mm_loadu_ps(p) and

_mm_loadu_ss(p) are represented as:

𝑙𝑜𝑎𝑑𝑢_𝑝𝑠 (𝑝) := {𝑣3 = 𝑝 [3], 𝑣2 = 𝑝 [2], 𝑣1 = 𝑝 [1], 𝑣0 = 𝑝 [0] }

𝑙𝑜𝑎𝑑_𝑠𝑠 (𝑝) := {𝑣3 = ∅, 𝑣2 = ∅, 𝑣1 = ∅, 𝑣0 = 𝑝 [0] }

Representing swizzle instructions in our approach can be done, e.g.,

for the _mm_shuffle_ps(a,b,m) instruction:

Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations PACT ’22, October 8–12, 2022, Chicago, IL, USA

𝑠ℎ𝑢𝑓 𝑓 𝑙𝑒_𝑝𝑠 (𝑎,𝑏,𝑚) := {𝑣3 = 𝑓 (𝑏,𝑚[7 : 6]), 𝑣2 = 𝑓 (𝑏,𝑚[5 : 4]),

𝑣1 = 𝑓 (𝑎,𝑚[3 : 2]), 𝑣0 = 𝑓 (𝑎,𝑚[1 : 0]) }

𝑤ℎ𝑒𝑟𝑒 𝑓 (𝑠𝑟𝑐, 𝑐) := 𝑠𝑟𝑐 [31 + 32 ∗ 𝑐 : 32 ∗ 𝑐]

In this case, the output of this instruction depends on the value

of the mask𝑚, so we must compute all possible mask values (256

different values since the mask width is 8 bits), e.g.,

𝑠ℎ𝑢𝑓 _000_𝑝𝑠 (𝑎, 𝑏) := {𝑣3 = 𝑏 [0], 𝑣2 = 𝑏 [0], 𝑣1 = 𝑎[0], 𝑣0 = 𝑎[0]}

𝑠ℎ𝑢𝑓 _001_𝑝𝑠 (𝑎, 𝑏) := {𝑣3 = 𝑏 [0], 𝑣2 = 𝑏 [0], 𝑣1 = 𝑎[0], 𝑣0 = 𝑎[1]}

. . .

𝑠ℎ𝑢𝑓 _255_𝑝𝑠 (𝑎, 𝑏) := {𝑣3 = 𝑏 [3], 𝑣2 = 𝑏 [3], 𝑣1 = 𝑎[3], 𝑣0 = 𝑎[3]}

A packing strategy that needs to be synthesized can be expressed

in a similar notation, e.g. pack_001(a[0],a[2],b[0],b[1]) :=

{v_3 = a[0], v_2 = a[2], v_1 = b[0], v_0 = b[1]}making the

problem amenable to constraint solving. We look for a combination

of instructions in the set I of instructions considered, such that

their composition matches the semantics of the desired Packing

Class, i.e., of the pack_xxx prototype.

Note that the space created by generating all possible combina-

tions of these instructions would grow exponentially and quickly be-

come intractable. Exploring all combinations of memory addresses

and their possible packing candidates for getting the performance-

optimal recipe is an NP-complete problem, so purely brute force

will not scale. On the other hand, it is possible to tackle this issue by

carefully defining the exploration space to traverse, and applying

heuristics to prune the set of candidates to combine in each step as

shown below.

3.2 MRKVS: Mega-Random Kernel Vector SMT

One of the issues when enumerating all the candidates is the combi-

natorial explosion of the number of variants of a single instruction

according to its masks or control value. So instead of generating and

testing all these possible combinations, a smarter strategy would

be to check whether there is any value that for a combination of

instructions is able to meet the packing conditions, i.e., the packing

of memory points into a vector register in a certain order.

Wegner developed x86-sat [42], a system for building an auto-

generated formal model of x86 Intrinsics by interpreting the pseudo-

code in the official documentation, and transforming it into a valid

model for the Z3 SMT solver [13]. This tool is mainly written in

Python, and it can help assess the equivalence of two different ways

of permuting values, i.e., to find equivalent implementations, or to

find the values of some variables in a formula.

x86-sat works as follows. A set of assertions or conditions describ-

ing the behavior of each instruction according to the documentation

are added to the solver using the Z3 library (a custom parser is used

to automate this process [41]). Next, the check function tests if

those conditions can be satisfied for those variables or instructions

and, in that case, the system also returns a model containing the

values required. This system avoids testing all different control

value combinations for a concrete instruction. The system is also

interesting for performing sanity checks given a set of instructions

Algorithm 1: High-level approach of the MRKVS system.

Input: Instructions I, PackClass 𝑆𝑙 , int𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

Result: Set of Candidates

1 candidates = {};

2 max_ins = compute_max_ins(𝑆𝑙);

3 load_ins = prune_load_instructions(𝑆𝑙 , I);

4 for load in load_ins do

5 if check(load, 𝑆𝑙) then

// Base case: only a load required,

// no need to explore

6 candidates.append(load);

7 continue;

8 if new_candidate = recursive_search(load, I, 𝑆𝑙 , max_ins)

then

9 candidates.append(new_candidate);

10 if size(candidates) >= max_candidates then

11 break;

12 end

13 return candidates;

and the conditions to be satisfied, or even for finding bugs in the

documentation. In addition, this system can be easily extended with

any other desirable instruction by just using the same syntax as in

the Intel Intrinsics documentation.

MRKVS searches the solution space as described in Algorithm 1.

Our approach follows a depth-first fashion, with a limited number of

levels, and where the level is determined by the number of chained

instructions used. This algorithm is a modification of the naive

brute force approach, where the explosion of new combinations is

minimized by applying heuristics to prune the set of new candidates,

i.e., new instructions to consider, and the use of the SMT system to

parameterize and check the satisfiability of the chain of instructions.

The system has also a variable stop condition when the number of

candidates found has reached, at least,𝑚𝑎𝑥_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 .

We note that candidate instructions are pruned depending on

their type and number in each recursive step, in order to reduce the

node explosion as we create new levels in the exploration space.

These pruning techniques are ad hoc and dependent on the set of

considered ASM instructions, which in our case is a small subset of

the AVX2 ISA. Some of these techniques involve limiting the maxi-

mum number of instructions of a type to consider in a combination,

avoiding the appearance of costly instructions (such as masked

loads or blends) more than once for each candidate, or avoiding the

use of load instructions to load only one element more than twice.

Random vector packing templates format: In order to make these

candidates portable to anymemory address, we developed a template-

based format to capture their semantics and be input agnostic. Any

system can then fill any of the candidates generated byMRKVSwith

the desired input memory addresses or vector registers for packing

the operands. These templates are in MACVETH Random Tem-

plate format (.mrt). MACVETH leverages these templates to pack

random operands filling the input values with the corresponding

memory addresses from the code.

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

1 ;; Candidate 0

2 vmovss xmm2 , DWORD PTR [r12 + 0x40]

3 vinsertps xmm1 , xmm2 , DWORD PTR [rcx], 0x14

4 vinsertps xmm0 , xmm1 , DWORD PTR [rdx], 0x68

5

6 ;; Candidate 1

7 vblendps xmm1 , xmm3 , XMMWORD PTR [rsi], 0x0b

8 vinsertps xmm2 , xmm1 , DWORD PTR [rcx], 0x18

9 vinsertps xmm0 , xmm2 , DWORD PTR [rdx], 0x28

Listing 3: Example of generated assembly code

3.3 Search Space and its Evaluation

The next step after having built a set of candidate implementations

is to evaluate their performance on the target machine. This stage

is typically performed once on the host machine, at installation

time of MACVETH (or when the system has been modified, such

as when using a different compiler/version).

In this work, we use MRKVS to generate random vector packing

formulas for AVX2 with floats as data type. However the approach

can be easily extended to other ISAs and data types. The output

of the SMT-based system is a set of candidate implementations for

each equivalent functionality (i.e., identical layout in the destination

register from the input registers). Each equivalence class, referred

to as a łpacking classž, is defined here by the contiguity of the

memory addresses to pack, vector width and data type.

For example, the compilation of two candidate implementations

for packing three non-contiguous elements is shown in Listing 3. In

the Zen3 processor we experimented with, both choices retire the

same number of micro-operations, and the cycles consumed are on

average the same. Regarding a Cascade Lake processor we experi-

mented with, both candidates also have identical performance in

terms of cycles, but the number of micro-operations retired is lower

for the first candidate. These are the two metrics considered for

building our cost model: in the first place the number of execution

cycles or cycles consumed, and in case of identical performance

(within an error margin due to measurement errors), the number

of micro-operations retired. Results obtained in LLVM-MCA using

MARTA for these candidates confirm the values reported by our

empirical measurements. The recently released uiCA tool [2] also

reports better reciprocal throughput (i.e., cycles per instruction) for

the first candidate.

Once we have chosen the best candidates for each platform and

for each packing class, in order to assess their quality, we compare

their performance with that of the equivalent gather instruction.

According to our measurements, for Intel Cascade Lake, most of the

candidates proposed by our automated system outperform gather

in terms of number of execution cycles. However, for less than

15% of the cases, gather outperforms by 10-15% the latency of

our approach. In contrast, according to LLVM-MCA all candidates

outperform the gather instruction, showing the need for in-situ

measurements. Our cost model is driven by these measurements

and will therefore use the gather instruction for those equivalence

classes where there is no speedup from the candidates generated,

to favor also reducing the final binary size.

1 __vop2 = _mm256_loadu_ps (&z[0]);

2 __vop0 = _mm256_hadd_ps(__vop0 , __vop2);

3 __mv_lo128 = _mm256_castps256_ps128(__vop0);

4 __mv_hi128 = _mm256_extractf128_ps(__vop0 , 0x1);

5 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

6 __mv_hi128 = _mm_shuffle_ps(__mv_lo128 , __mv_lo128 ,

7 0b00110001);

8 __mv_lo128 = _mm_add_ps(__mv_lo128 , __mv_hi128);

9 tmp0 = tmp0 + __mv_lo128 [0];

10 tmp1 = tmp1 + __mv_lo128 [2];

Listing 4: Example of synthesis in MACVETH for the fusion

of two independent reductions of 8 32-bit elements each, in

two different vectors

3.4 Fusion of Independent Reductions

In the middle-end of MACVETH, the packing cost model tries to

maximize the vector occupancy for reductions. MACVETH consid-

ers two forms of fusing independent reductions: using the same

vector register (intra-register), and using multiple vector registers

(inter-register). For the first case, the back-end just performs a par-

tial reduction on the register to be reduced. In the second case, the

compiler uses the same operations to simultaneously compute both

independent reductions. This approach has a limitation: the num-

ber of values in each independent reduction must be the same, and

the values must be placed contiguously. This is why the packing

cost model must pack, typically, a multiple of 2 reductions together.

Following the example, packing 5 reductions on tmp0 and 3 on

tmp1 cannot be done with the approach proposed here. We have

developed fully automated algorithms to detect opportunities (and

profitability of) packing independent reductions together. For the

sake of space saving we limit to displaying Listing 4 to illustrate

the code we can generate for fusing such reductions.2

3.5 SIMD Code Generation

MACVETH relies on the Clang AST for parsing the input code. In-

stead of lowering this abstraction to LLVM IR, our compiler rewrites

the original code using SIMD directives in an Intrinsics style when-

ever profitable, thanks to the Clang’s LibTooling library, which

supports rewriting the original source code. The high-level picture

of the system’s architecture is depicted in Figure 1. We logically

divide our source-to-source compiler architecture into front-end,

middle-end and back-end.

MACVETH uses different abstraction levels and IRs in order to

facilitate the vectorization process. The input AST is obtained with

Clang. From there, MACVETH generates three-address code in

SSA form, which itself facilitates the creation of a Directed Acyclic

Graph (DAG) for the computation, after unrolling loops as needed.

Typically MACVETH operates on a window of the AST at a time, to

limit the size of the DAGmanipulated, especially for large programs.

This DAG structure is suitable for finding patterns in the code

such as reductions and long-distance load sharing opportunities.

The operations and operands in this DAG are packed when possible

to generate vector operations, based on the measured profitability

of the corresponding vector packing recipes. These are generated

in the SIMD back-end. Then, using the Clang framework, the front-

end rewrites the original source code synthesizing the SIMD code

generated in the back-end.

2Full details and all algorithms are available in Chapter 5 of [21]

Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations PACT ’22, October 8–12, 2022, Chicago, IL, USA

DAG

VectorIR

SIMDBackend

Node

C/C++ SIMD
codeC/C++ code

Clang AST MACVETH
Front-end

Random Vector
Packing

Templates

Back-end

Front-end and driver

Middle-end
Packing

Cost Model

Clang
Rewriter

Clang LibTooling

selects

uses

calls

Figure 1: High-level diagram of MACVETH’s architecture

showing the different IRs used by the system.

4 Experimental Results

MACVETH was used to vectorize the data-specific programs gen-

erated from the sparse matrix ś vector multiplication of the 200

matrices by Augustine et al. [4]3. These are selected from the full

SuiteSparse [12] by applying a sieve process in which matrices are

classified according to the decile they belong to in terms of matrix

size and the percentage of points that are issued as micro-codelets.

This sieve yields 100 categories. Inside each category, 𝑘-means

clustering is used to select representative matrices. The number of

representatives per cluster is selected so that the probability density

of the sample matches the original one.

Experiments were executed on an Intel Core i9 12900K (Alder

Lake) with 128 GiB of RAM memory. All runs were repeated 10

times, reporting the best performance achieved for each experi-

ment after removing outliers, identified as those measurements

that deviate more than 3𝜎 from the mean. The CPU frequency

was fixed at the base of 3.2 GHz to prevent thermal constraints

affecting experimental variability. The data and code segments are

stored into 2 MiB hugepages. The data-specific codes implementing

SpMV for each selected matrix were synthesized using the DSCG

tool that applies the shape-based mining approach by Augustine

et al. [4] (763 different hyper-rectangular shapes with increasingly

large sizes and strides). Codes were compiled with GCC v11.2.0

with -Ofast -march=alderlake. All vectorization flags were en-

abled when compiling baseline codes. The PolyBench [32] and

MARTA testing harnesses were used for performance measure-

ments. Prefetching of the text segment was included in the linking

process [4]. Other CPUs and compilers were used for sensitivity

studies, detailed in Section 4.7. Using these same basic setup and

running on the 16 logical P-cores of this machine, Intel Linpack re-

ports an average raw performance of 364.2 GFLOPS, with a peak of

499.6 GFLOPS. The memory-bound Intel HPCG benchmark reports

a raw performance for SpMV computations of 5.5 GFLOPS, which

can be used to contextualize our results.

3The full list of matrices used in these experiments can be double-blindly consulted at
https://pastebin.com/kqMABFUQ.

1 #pragma omp for private(j) nowait

2 for(i = 0; i < N; ++i) {

3 y[i] = 0.0;

4 for(j = row_ptr[i]; j < row_ptr[i+1]; ++j)

5 y[i] += A[j] * x[cols[j]];

6 }

Listing 5: CSR executor employed as a baseline throughout

the experimental section. The start of the omp parallel

region is left out of the timed scope, to avoid measuring

thread-creation overheads. OpenMP is disabled for single-

threaded experiments.

100 101 102 103 104 105 106 107

Number of nonzero elements in the matrix

0.6

1

2

3

4

Sp
ee

du
p

0.01

0.1

1

3
5.5

GF
LO

PS
 (m

ov
in

g
av

g.
)

MACVETH speedup
MACVETH GFLOPS
CSR GFLOPS

Figure 2: Speedup of TSC-basedMACVETH version w.r.t. CSR

(left) and raw performance (right). Log axes.

4.1 Using TSC as a Predictor of Performance

We first explore the performance of the 12900K processor on 2568

recipes generated for packing up to 8 single-precision floating-point

elements into a 256-bit vector register. We micro-benchmark the

performance of each packing recipe, selecting for each packing class

the one which runs the fastest, as measured by the Time Stamp

Counter (TSC), a 64-bit register that counts the number of CPU

cycles since reset. We select 256 packing recipes (corresponding to

the 256 packing classes in a 256-bit vector). MACVETH is then used

to vectorize the data-specific SpMV codes for the 200 matrices in

the experimental set using these recipes. In all cases, the MRKVS-

generated recipes are faster, according to the TSC register values,

than using the generic AVX2 gather instruction. The codes are

executed under cold cache conditions: each SpMV operation is run

once for each performance counter measured, to avoid multiplexing

effects. The cache is flushed between executions using clflush

instructions, taking special care to flush the entire text segment to

avoid unfair advantages for DSCG and MACVETH codes.

Performance results versus the irregular CSR executor shown

in Listing 5 are detailed in Figure 2. The geometric mean of the

speedups with respect to the CSR and DSCG versions are 1.16 and

1.14, respectively. We find that the speedups obtained by DSCG

with respect to the CSR executor are significantly smaller when

compared to the ones reported by Augustine et al. [4]. The reason

is that newer compilers feature a much more efficient optimization

of the CSR code. While ICC19 vectorized 44% of the total floating-

point operations in these codes, all of them employing 128-bit vector

operations only, the more recent GCC v11.2.0 vectorizes 79% of

them, and 40% of the total operations are executed using 256-bit

vector operations, resulting in a 15% reduction of the total number

of executed instructions.

We also observe that the SLP vectorizer in GCC is not capable

of vectorizing DSCG codes to the same degree as the CSR executor.

https://pastebin.com/kqMABFUQ

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

Only 49% of the total FLOPs are vectorized, and only 14% of the

total correspond to 256-bit vector operations. This figure is similar

to the one obtained by the older compilers, and appears to suggest

that no relevant improvement in free-code SLP vectorization has

been achieved by more recent compilers.

In contrast, the custom optimization employed by MACVETH

vectorizes 93% of all FLOPs, and 82% of the total is issued using

256-bit vector operations. MACVETH achieves a 3.5x reduction

on the number of executed instructions with respect to CSR,

which represents an additional 1.26x reduction on top of the 2.8x

achieved by data-specific codes compiled by GCC. Note that, in

the CSR version, branch instructions alone account for 12.3% of

the total instruction count. This figure does not include arithmetic

instructions involved in branch computations. While the reduction

in DSCG codes comes mostly from the elimination of control-flow

instructions, the additional reduction provided by MACVETH is

solely due to the improved vectorization.

4.2 Using Instruction Count as a Predictor of

Performance

In order to assess whether the performance obtained by the TSC-

based approach can be improved upon, we carefully analyze the

results of the matrices for which MACVETH performs poorly. One

such matrix is GHS_psdef/apache2, one of the largest ones in the

experimental set, but which includes a high percentage of codelets:

99% of its 9.6 MFLOPs are captured by the DSCG using affine loops,

with an average 9.14 FLOPs per loop. The raw performance in this

case is 0.8 GFLOPS, which corresponds to 1.6x and 1.3x slowdowns

for the MACVETH code with respect to the CSR and DSCG codes,

respectively. The reasons for this slowdown are significant increases

in the number of L3 misses, which are mostly due to code blocks.

In fact, while the size of the CSR code is negligible, the DSCG and

MACVETH codes take up 84 and 110 MB, respectively. Note how

the increase in code size corresponds precisely with the slowdown

obtained by the MACVETH version with respect to the DSCG

version. We observe this effect consistently across the experimental

set, and in fact the Pearson correlation coefficient between speedup

and reduction in code sizes for the DSCG and MACVETH versions

is 𝑅2 = 0.91.

We revise the methodology for generating MACVETH recipes.

Instead of considering the TSC cycles as the driver of performance,

we choose the best recipe for each packing class as the one which

contains the fewest number of instructions4. Furthermore, in this

second version of the packing recipes we consider the performance

of the native AVX2 gather instruction as well, selecting it when

it results in fewer micro-operations than the recipes generated by

MRKVS. In total, 129 out of the 255 packing classes are issued as

MRKVS recipes, while the remaining 126 packing classes are issued

using _mm256_i32gather_ps. We stress that these results have

been generated bymicro-benchmarking theAlder Lake architecture,

and will not generalize to others.

Figure 3 shows the speedups obtained for this new MACVETH

version. The new geometric mean speedup relative to the CSR

and DSCG versions is 1.5x, with a geometric mean reduction in the

number of executed instructions of 4.7x and 1.8x, respectively. With

4As measured by the INSTRUCTIONS_RETIRED performance counter in Alder Lake.

1 sparse_matrix_t M;

2 mkl_sparse_s_create_csr (&M, ...); // Inspector phase

3

4 polybench_start_instruments; // Starts timed scope

5 mkl_sparse_s_mv (...); // Executor phase

6 polybench_stop_instruments; // Stops timed scope

Listing 6: MKL executor.

respect to the DSCG version, the number of L2 misses attributable

to code blocks is reduced by 3.6x, and the total L3 misses by 1.7x.

For the particular case of the GHS_psdef/apache2 matrix, the new

instruction count-based version achieves now a raw performance

of 3.0 GFLOPS, a 3.8x speedup relative to the TSC-based version,

which represents a speedup of 1.2x and 1.5x with respect to the

CSR and DSCG versions, respectively.

MACVETH achieves good results even for matrices with virtu-

ally no operations recognized as codelets. E.g., Mittelmann/fome13

features an SpMV kernel with 570K FLOPs, out of which 99.8% are

written as scalar operations in DSCG codes. MACVETH manages

to execute 86% of them as vector operations (versus 78% by the CSR

executor and 18% by the GCC-compiled DSCG code), achieving a re-

duction in the number of executed instructions of 4.5x and 1.5x with

respect to the CSR and DSCG versions, respectively, and a speedup

of 2.5x and 1.6x. The raw performance achieved by MACVETH

increases from 1.67 GFLOPS using TSC-based packing recipes to

2.40 GFLOPS using instruction count-based recipes. This exempli-

fies how the performance improvements obtained by MACVETH

are not dependent on the regularity of the sparsity patterns

exhibited by the input matrix.

Note that, when using instruction count-based packing recipes,

MACVETH generates vector code for exactly the same operations

as in Section 4.1, but using packing instructions that reduces exe-

cutable size. We compared the results achieved by the instruction

count-based version with the ones obtained by a version which

only uses _mm256_i32gather_ps for data packing. The version em-

ploying MRKVS recipes achieves a 1.12x geometric mean speedup

with respect to the gather-only version, with a 1.18x reduction in

the number of executed instructions.

4.2.1 Hot cache Finally, we analyze the performance obtained by

these codes under hot cache conditions. For this, we execute the

same SpMV operation 100 times, without flushing the cache after

each repetition. Note that these are the usual experimental condi-

tions when computing tensor operations on batches of data, as in,

e.g., the inference of neural networks. Likewise, these are the ex-

perimental conditions for the Intel HPCG benchmark that provided

the reference performance of 5.5 GFLOPS. As expected, we observe

significantly increased benefits for the DSCG and MACVETH codes

with respect to the CSR baseline, as the main bottleneck for these

codes, i.e., text segment sizes, is now alleviated by the 30 MiB LLC

cache in the 12900K processor. The speedups and raw performance

are detailed in Figure 4. Geometric mean speedups are now 2.0x

and 1.2x with respect to the CSR and DSCG baselines, respectively,

while, as was to be expected, the relationship between the number

of executed instructions among the different code versions remains

identical as under cold cache conditions.

Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations PACT ’22, October 8–12, 2022, Chicago, IL, USA

100 101 102 103 104 105 106 107

Number of nonzero elements in the matrix

0.1

1

2

3

4
5

Sp
ee

du
p

0.001

0.01

0.1

1

3
5.5

GF
LO

PS
 (m

ov
in

g
av

g.
)

MACVETH speedup
MKL speedup
MACVETH GFLOPS
MKL GFLOPS
CSR GFLOPS

Figure 3: Speedup of instruction count-based MACVETH w.r.t. CSR and MKL (left) and raw performance (right). Log axes.

100 101 102 103 104 105 106 107

Number of nonzero elements in the matrix

0.7

1

2

3

4

5

Sp
ee

du
p

0.01

0.1

1

2
3
5.5
10

GF
LO

PS
 (m

ov
in

g
av

g.
)

MACVETH speedup
MACVETH GFLOPS
CSR GFLOPS

Figure 4: Hot cache speedup of MACVETH w.r.t. CSR (left)

and raw performance (right). Log axes.

4.3 Intel Math Kernel Library

While the previous results are informative of the performance

of the DSCG codes compiled with MACVETH with respect to a

default CSR executor, the current state-of-practice standard is to

employ the Intel Math Kernel Library (MKL) [40], a C++-based

library designed to enable HPC. In particular, MKL provides a set of

SparseBLAS routines, including SpMV.We used Intel MKL v2022.0.2

in our experiments. The SparseBLAS part of the library works in an

inspector-executor fashion. The inspection part was left out of the

timed scope to ensure fair comparisons. The MKL code employed

in these experiments, linked against the single-threaded MKL li-

braries, is detailed in Listing 6. Multithreaded results are presented

in Section 4.4.

Since only 12 out of 200 matrices in the original set had code

sizes above the LLC size of 30 MiB, we added 30 matrices in between

10M and 20M nonzeros. These new matrices were selected using

the same original notion of fairly sampling the SuiteSparse domain

according to matrix sizes and regularity of their sparsity structure.

Figure 3 details the results obtained in these experiments. MKL

achieves a geometric mean speedup of 0.8x with respect to the CSR

executor, i.e., a slowdown. This is due to significant initialization

overhead of the executor function, which is not offset until matrix

Table 1: GFLOPS for each SpMV version. Columns labeled

ł> 𝑋ž are geometric means restricted to matrices with more

than 𝑋 nonzeros.

Cache Version
Performance (GFLOPS)

>1 >10K >1M > 10M Peak

C
o
ld

CSR 1.43 2.15 2.27 2.39 5.26
DSCG 1.42 2.03 2.00 2.07 4.55
MKL 1.15 2.56 3.07 3.29 5.31

MACVETH 2.16 3.41 3.30 3.37 7.91

H
o
t

CSR 2.55 2.70 2.48 2.50 6.80
DSCG 3.81 3.45 2.29 2.12 11.48
MKL 3.29 3.81 3.33 3.31 7.13

MACVETH 4.91 5.27 3.92 3.53 17.48

sizes are significantly large, approximately above 10K nonzeros. If

we consider only that subset, then MKL achieves a geometric mean

speedup of 1.19x. The speedup of the MACVETH codes with respect

to this subset is 1.33x. Generally speaking, in single-threaded exe-

cutions MACVETH keeps a significant lead over MKL for matrices

below 2M nonzeros. After that point, it depends on the particular

characteristics of each input matrix, with MACVETH leading by a

geometric mean speedup of just 1.02x, being faster in 27 out of 47

matrices. The performance of each version for a particular matrix

depends on how the complex execution trade-offs play off for a

given matrix size and sparsity structure. MACVETH achieves a re-

duction of 6.07x in the number of instructions executed, while MKL

features a better execution schedule that incurs 1.33x less L2 misses

and 1.50x less L3 misses than the CSR version. Table 1 summarizes

raw performance in single-threaded executions for each experimen-

tal version, including the larger matrices and performance under

hot cache conditions, measured in a similar way as in Section 4.2.

We ran additional experiments comparing the deprecated MKL

(dMKL) version to the newer inspector-executor MKL (ieMKL).

For the cold cache setup, we found dMKL to be, on average, 1.51x

slower than ieMKL. In our tests, dMKL is slower for 100% of the

matrices. It executes 16.8% less instructions, and presents roughly

the same number of L2 and L3 misses, although it reduces the

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

104 105 106 107

Number of nonzero elements in the matrix
0.1

1

10

20
30
4050

GF
LO

PS
 (m

ov
in

g
av

g.
)

MACVETH
MKL
CSR

Figure 5: Hot cache multithreaded performance. Each of the

four series represents the speedup for 1/2/4/8 threads. Higher

thread count yields higher performance. Log axes.

number of D1 misses by 1.7x. It executes 1.7x more scalar floating

point operations, but it issues 60.8% of the total FLOPs using 256-bit

vector instructions, something that the ieMKL version never does

(it uses 128-bit vector ops for 82.2% of the total FLOPs, and scalar

ops for the rest).

As for the hot cache setup, dMKL is still 1.06x slower on aver-

age, but in this case it is faster than ieMKL for 41 matrices. The

average speedup for these 41 matrices is 1.12x. The general stats

are similar to the ones presented above for cold cache. When we

restrict ourselves to the 41 matrices for which dMKL is faster, the

reduction in the number of instructions reaches 2.1x. The increase

in scalar operations is reduced to 1.57x. The share of FLOPs that

is issued using 256-bit vector ops reaches 85.4%. In order to keep

plots simple, the figures in this section include only results for the

newer, better performing, inspector-executor MKL version.

4.4 Multithreaded Results

We parallelize codes using OpenMP in order to evaluate the scaling

of the speedups observed for single-threaded versions of these

codes. We target the hot cache setup, with 100 repetitions of the

multiplication kernel, in order to ensure that computations are

substantial enough to benefit from parallelization. The CSR baseline

is parallelized by performing a static block distribution of the sparse

matrix rows among the different threads, as seen in Listing 55. The

DSCG andMACVETH codes are parallelized by dividing the number

of FLOPs fairly among the different threads. Note that neither

approach guarantees fair schedules: heterogeneous distribution of

nonzeros among the matrix rows will cause load imbalance between

different threads of the CSR executor. Similarly, for the DSCG and

MACVETH codes the number of FLOPs does not drive performance,

which depends essentially on the access patterns performed by each

thread, determining the vectorization recipes and size of its code

block. We observe a difference of 1% between the average standard

deviations in both parallelization approaches, highlighting that

the experimental setup is fair. MKL schedules computations across

threads according to the inspection phase.

We observe noticeable performance differences between the

parallel codes executed with one thread and the single-threaded

versions. In the CSR case, this difference is due to GCC disabling

5We empirically observed the dynamic distribution to be slightly less performant for
our experimental set.

Table 2: Performance of multithreaded codes, hot cache.

Threads Version
Performance (GFLOPS)

>1 >10K >1M > 10M Peak

1

CSR 2.01 2.05 1.87 1.82 3.65
DSCG 2.94 3.29 2.23 2.10 10.86
MKL 0.65 2.03 2.87 2.98 5.79

MACVETH 3.87 5.00 3.79 3.47 16.40

2

CSR 2.82 3.61 3.25 3.08 7.07
DSCG 4.35 6.10 3.93 3.56 18.49
MKL 0.81 2.87 4.79 4.79 8.21

MACVETH 5.25 8.61 6.44 5.70 30.07

4

CSR 4.08 6.30 5.40 4.60 13.64
DSCG 5.80 9.96 5.16 3.97 38.63
MKL 1.00 3.89 7.64 6.99 15.68

MACVETH 6.87 13.88 9.17 6.81 58.78

8

CSR 5.11 9.67 7.81 5.74 26.47
DSCG 6.57 14.32 6.48 4.40 65.83
MKL 1.12 4.66 10.67 8.62 26.37

MACVETH 7.75 19.14 12.31 7.82 100.87

16

CSR 4.54 10.59 9.12 6.16 32.95
DSCG 5.24 13.37 6.82 4.58 66.45
MKL 1.13 4.84 11.83 9.10 34.49

MACVETH 6.42 18.17 12.51 7.85 105.60

vectorization of the irregular loop when compiling with -fopenmp.6

The number of LLC misses increases by 1.07x, and the executed

instructions by 1.21x. As for MKL, there is a 1.06x overhead incurred

by the parallel version, driven by a 1.15x increase in the LLC misses.

Besides these, all code versions perform significantly worse for

smaller matrices due to the overhead of spawning the threads.

We execute the experimental set using 1, 2, 4, 8, and 16 threads,

pinned to different physical performance cores in the processor

except for the case of 16 threads, where each of the 16 physical

cores is assigned 2 threads (one per logical core). Figure 5 and Ta-

ble 2 show the multithreaded results. Series for 16 threads were

removed from the figure to improve readability, as the speedup

across the entire experimental set was 1x for MKL, and below 1x

(a slowdown) for the CSR, DSCG and MACVETH versions, but

are included in Table 2. The MACVETH version scales the best

for matrix sizes below 8M nonzeros. From that point on, the best

performance is offered either by MACVETH or MKL depending on

the particular trade-offs of each input matrix regarding instruction

count and memory performance. The best geometric mean speedup

is offered by MKL using 4 or more threads. However, MACVETH is

the superior choice for many of the largest matrices in the experi-

mental set, e.g., MACVETH achieves a 1.66x speedup versus MKL

using 16 threads for Mazaheri/bundle_adj, the largest matrix in

the experimental set with 20.2M nonzeros, while it presents a 0.77x

speedup (a slowdown) for DIMACS10/hugetric00010, the second

largest matrix with 19.8M nonzeros. The reason for the reduced

scaling in the DSCG and MACVETH versions for some matrices

appears to be the need for very aggressive code prefetching to feed

instructions to the processor front-end. When using 16 threads the

memory is not capable of providing code at the rate necessary to

keep the front-end running.

4.5 Analysis and Code-Generation Performance

The code generation toolchain used in these experiments includes

three phases: i) matrix inspection and DSCG code generation; ii)

6It is not possible to turn vectorization on again using ivdep or other pragmas.

Custom High-Performance Vector Code Generation for Data-Specific Sparse Computations PACT ’22, October 8–12, 2022, Chicago, IL, USA

MACVETH source-to-source optimization; and iii) GCC compila-

tion and linking. The current version of i) is implemented in C in a

single-threaded fashion. MACVETH is implemented in C++, and

can be run in parallel on different files. For many small matrices,

the entire process can be run in seconds. For the largest matrices

these times increase to a fewminutes. Generally speaking, the codes

in the łsweet spotž single-threaded performance region close to

the peak of 5.5 GFLOPS, with sizes around 10M nonzeros, can be

processed and compiled in 5 to 10 minutes. For codes around 1M

nonzeros the processing time is around 1 minute. Processing time

scales mostly linearly with the number of nonzeros, with constant

terms that depend on the regularity of the matrix structure.

The time to directly compile the DSCG codes, using autovector-

ization as implemented in GCC, is roughly equivalent to the time

to run source-to-source optimization using MACVETH and then

compiling the result using GCC. Since the MACVETH-generated

code generates mainly intrinsics and assembly code, the final com-

pilation step is much faster than when deploying autovectorization.

4.6 Code Statistics

We statistically analyzed the MACVETH-generated codes to extract

information about how the scalar operations are being vectorized in

terms of the usage of MACVETH recipes vs. generic AVX2 gathers.

The entire set of matrices on which we experiment contains

approximately 554M nonzeros. Out of these, 16M operations are is-

sued using scalar instructions in theMACVETH codes, which leaves

roughly 538M nonzeros to be processed using vector operations.

The MACVETH codes also contain 46M vector FMAs (1M in 128-bit

mode and 45M in 256-bit mode), and 25M vector MULs (1M in

128-bit mode and 24M in 256-bit mode). The remaining operations

are swizzles, casts, gather-like operations (whether implemented

through gathers or through custom recipes), and reductions through

adds and horizontal adds, but do not perform basic matrix-vector

computation. As such, the 71M combined vector FMAs and MULs

perform an average 7.6 useful scalar multiplications each.

In order to feed these multiplication operations, the code emits

151M gather-like operations, i.e., each FMA or MUL fuses together

an average 2.1 independent reductions. Out of these 151M gather-

like operations, 97M (64%) are issued through custom recipes dis-

covered by microbenchmarking using MRKVS and MARTA, while

the remaining 54M are executed through gathers, and more pre-

cisely through _mm256_i32gather_ps(). Considering that, out of

the 255 packing recipes considered by MACVETH, only 129 (50.5%)

are statically issued through custom recipes, this means that the

targeted packing classes are the ones which most frequently appear

in the experimental set.

4.7 Sensitivity Analysis

The results presented in the previous section depend on architec-

tural and software factors. For instance, the LLC cache size deter-

mines how well the hot cache results will scale with matrix size.

Similarly, the speedup of MACVETH with respect to the CSR ex-

ecutor and the DSCG versions depends on how well the compiler

vectorizes irregular (CSR) and fully-unrolled (DSCG) codes.

In order to assess the impact of our architectural and compiler

choices in the previous results, we experimented on anAMDRyzen9

Table 3: Performance on Zen3, hot cache.

Cache Version
Performance (GFLOPS)

>1 >10K >1M > 10M Peak

H
o
t

CSR 2.02 2.13 1.98 2.04 4.10
DSCG 2.68 2.36 1.89 1.77 9.92
MKL 3.04 3.56 3.15 3.10 6.80

MACVETH 3.16 3.32 2.67 2.37 10.76

5950X (Zen3 architecture), andwe introduced Clang v13.0.1 and ICC

v2022.0.1 as alternate compilers. Note that MACVETH optimization

on the Zen3 machine required re-evaluating the MRKVS-generated

recipes to find again which packing classes benefit from using

ad-hoc recipes instead of the AVX2 gather instruction.

There is no significant performance difference (below 5%) for

the CSR, MKL, and DSCG versions of the single-threaded kernels

when compiled with ICC versus GCC. The reason appears to be less

efficient AVX2 code produced from the MACVETH-generated in-

trinsics. Whereas the GCC version generated 4.8%, 9.1%, and 86.1%

of vector operations as scalars, 128-bit, and 256-bit vector opera-

tions, respectively, the ICC version changes this mix to 6.6%, 4.4%,

and 89%. In this process, it generates 1.14x more instructions, and

consequently 1.13x more LLC misses. When using ICC, MACVETH

still improves versus CSR (1.35x), DSCG (1.40x) and MKL (1.06x).

The Clang-generated MACVETH codes perform identically to the

ones generated by ICC, with a negligible performance difference

under 1%. DSCG codes, however, present a 1.27x slowdown, derived

from a 1.40x increase in the number of floating-point operations due

to a less aggressive vectorization, and consequent 1.14x increase

in the number of total instructions executed, together with a 1.28x

increase in LLC misses.

Performance on the Zen3 machine is lower than on Alder Lake

in our experiments, for all code versions. Note that, in fact, the

reference Intel HPCG benchmark reports a raw SpMV performance

of 4.3 GFLOPS in Zen3, versus 5.5 GFLOPS in Alder Lake. The

geometric mean speedup of MACVETH with respect to the CSR

and DSCG versions is 1.37x and 1.33x, respectively. The same trade-

offs involving number of instructions and memory performance can

be observed for the larger matrices. The raw performance results

for this architecture are provided in Table 3. Besides the weaker raw

performance across the board, we observe decreased scaling of the

benefits of the DSCG and MACVETH versions for large matrices.

The fundamental factor appears to be the processor front-end: the

Zen3 legacy decoder is 4-wide, versus the 5-wide one in Alder Lake.

This factor impacts data-specific codes the hardest: being fully

unrolled, explicit codes, they cannot take advantage of the more

efficient 𝜇-instruction caches in both architectures, from which 6

instructions can be decoded per cycle. The smaller CSR and MKL

kernels benefit from this improved issue rate.

5 Concluding Remarks

Optimizing sparse-immutable data structures by exploiting data-

specific compilation trades off large data size and indirect accesses

for larger code size but using only direct accesses. We presented

the MACVETH system (Multi-Architectural C-VEcTorizer for HPC

applications) to address the synthesis of high-performance SIMD

implementations for such regular strided-access reduction or map

PACT ’22, October 8–12, 2022, Chicago, IL, USA Horro et al.

loops. Experimental results on 230 sparse matrices demonstrate the

performance benefits, and limitations, achieved with MACVETH

versus Intel MKL on modern multi-core processors.

Acknowledgments

This work was funded by the Ministry of Science and Innovation of Spain

(ref. PID2019-104184RB-I00/AEI/10.13039/501100011033), by the Ministry

of Education of Spain under Grant FPU16/00816, by Xunta de Galicia and

FEDER funds of the EU (CITIC - Centro de Investigación de Galicia accredita-

tion 2019-2022, ref. ED431G 2019/01; Consolidation Program of Competitive

Reference Groups, ref. ED431C 2021/30), and by the U.S. National Science

Foundation under Awards CCF-1750399 and CCF-2009020.

References
[1] A. Abel and J. Reineke. 2019. uops.info: Characterizing Latency, Throughput,

and Port Usage of Instructions on Intel Microarchitectures. In Intl. Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS.
Providence, RI, USA, 673ś686.

[2] A. Abel and J. Reineke. 2022. uiCA: Accurate Throughput Prediction of Ba-
sic Blocks on Recent Intel Microarchitectures. In Proceedings of the 36th ACM
International Conference on Supercomputing, ICS. Virtual Event, USA, 33:1ś33:14.

[3] A. Ashari, N. Sedaghati, J. Eisenlohr, S. Parthasarathy, and P. Sadayappan. 2014.
Fast Sparse Matrix-vector Multiplication on GPUs for Graph Applications. In Intl.
Conference for High Performance Computing, Networking, Storage and Analysis,
SC. New Orleans, LA, USA, 781ś792.

[4] T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodríguez. 2019. Generating
piecewise-regular code from irregular structures. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI.
625ś639.

[5] N. Bell and M. Garland. 2008. Efficient Sparse Matrix-Vector Multiplication on
CUDA. NVIDIA Technical Report NVR-2008-004. NVIDIA Corporation.

[6] N. Bell and M. Garland. 2009. Implementing Sparse Matrix-Vector Multipli-
cation on Throughput-Oriented Processors. In ACM/IEEE Conference on High
Performance Computing, SC. Portland, OR, USA.

[7] H. Bian, J. Huang, R. Dong, L. Liu, and X. Wang. 2020. CSR2: a new format for
SIMD-accelerated SpMV. In 20th IEEE/ACM International Symposium on Cluster,
Cloud and Internet Computing, CCGRID. Melbourne, Australia, 350ś359.

[8] X. Chen, P. Xie, L. Chi, J. Liu, and C. Gong. 2018. An efficient SIMD compression
format for sparse matrix-vector multiplication. Concurrency and Computation:
Practice and Experience 30, 23 (2018), e4800:1ś10.

[9] Chips and Cheese. 2021. How Zen 2’s Op Cache Affects Performance. [Accessed:
01-03-2022].

[10] J.W. Choi, A. Singh, and R.W. Vuduc. 2010. Model-Driven Autotuning of Sparse
Matrix-Vector Multiply on GPUs. In 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP. Bangalore, India, 115ś126.

[11] S. Chou, F. Kjolstad, and S. Amarasinghe. 2018. Format abstraction for sparse
tensor algebra compilers. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 123.

[12] T. A. Davis and Y. Hu. 2011. The University of Florida Sparse Matrix Collection.
ACM Trans. Math. Software 38 (2011), 1ś25. Issue 1.

[13] L. de Moura and N. Bjùrner. 2008. Z3: An efficient SMT solver. In Intl. Conference
on Tools and Algorithms for the Construction and Analysis of Systems, TACAS.
337ś340.

[14] E.F. D’Azevedo, M.R. Fahey, and R.T. Mills. 2005. Vectorized Sparse Matrix Multi-
ply for Compressed Row Storage Format. In Intl. Conference on Computational
Science, ICCS. Atlanta, GA, USA, 99ś106.

[15] A. Fog. [n. d.]. 4. Instruction Tables. Lists of Instruction Latencies, Throughputs
and Micro-Operation Breakdowns for Intel, AMD, and VIA CPUs. [Accessed:
01-03-2022].

[16] F. Franchetti, Y. Voronenko, P. A. Milder, S. Chellappa, M. R. Telgarsky, H. Shen,
P. D’Alberto, F. de Mesmay, J. C. Hoe, J. MF Moura, et al. 2008. Domain-specific li-
brary generation for parallel software and hardware platforms. In Intl. Symposium
on Parallel and Distributed Processing, IPDPS. 1ś5.

[17] GNU GCC. [n. d.]. Auto-Vectorization in GCC: Using the Vectorizer. [Accessed:
01-03-2022].

[18] J. Godwin, J. Holewinski, and P. Sadayappan. 2012. High-performance Sparse
Matrix-vector Multiplication on GPUs for Structured Grid Computations. In 5th
Annual Workshop on General Purpose Processing with Graphics Processing Units,
GPGPU. London, UK, 47ś56.

[19] T. Hoefler, D. Alistarh, T. Ben-Nun, N. Dryden, and A. Peste. 2021. Sparsity in
Deep Learning: Pruning and growth for efficient inference and training in neural
networks. Journal of Machine Learning Research 22, 241 (2021), 1ś124.

[20] J. Hofmann, J. Treibig, G. Hager, and G. Wellein. 2014. Comparing the Perfor-
mance of Different x86 SIMD Instruction Sets for a Medical Imaging Application
on Modern Multi- and Manycore Chips. In Proceedings of the Workshop on Pro-
gramming Models for SIMD/Vector Processing, WPMVP. Orlando, Florida, USA,
57ś64.

[21] M. Horro. 2022. Manycore Architectures and SIMD Optimizations for High Perfor-
mance Computing. Ph. D. Dissertation. Universidade da Coruña, Spain.

[22] M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. 2022. MARTA: Multi-
configuration Assembly pRofiler and Toolkit for performance Analysis. In IEEE
International Symposium on Performance Analysis of Systems and Software, ISPASS.
Singapore, 79ś89.

[23] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. 2017. The tensor
algebra compiler. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 77:1ś29.

[24] M. Kong, R. Veras, K. Stock, F. Franchetti, L.-N. Pouchet, and P Sadayappan. 2013.
When polyhedral transformations meet SIMD code generation. In Proceedings
of the 34th ACM SIGPLAN conference on Programming Language Design and
Implementation, PLDI. 127ś138.

[25] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. R. Bishop. 2014. A unified
sparse matrix data format for efficient general sparse matrix-vector multiplica-
tion on modern processors with wide SIMD units. SIAM Journal on Scientific
Computing 36, 5 (2014), C401śC423.

[26] Y. Li, P. Xie, X. Chen, J. Liu, B. Yang, S. Li, C. Gong, X. Gan, and H. Xu. 2020.
VBSF: a new storage format for SIMD Sparse MatrixśVector multiplication on
modern processors. The Journal of Supercomputing 76, 3 (2020), 2063ś2081.

[27] LLVM. [n. d.]. Auto-Vectorization in LLVM. [Accessed: 01-03-2022].
[28] D. Nuzman, I. Rosen, and A. Zaks. 2006. Auto-vectorization of interleaved data

for SIMD. ACM SIGPLAN Notices 41, 6 (2006), 132ś143.
[29] A. Pohl, B. Cosenza, and B. Juurlink. 2019. Portable Cost Modeling for Auto-

Vectorizers. In Proceedings of the 27th International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS.
Rennes, France, 359ś369.

[30] V. Porpodas. 2017. Supergraph-SLP auto-vectorization. In 26th International
Conference on Parallel Architectures and Compilation Techniques, PACT. 330ś342.

[31] V. Porpodas, R. CO Rocha, and L. FW Góes. 2018. Look-ahead SLP: Auto-
vectorization in the presence of commutative operations. In Proceedings of the
Intl. Symposium on Code Generation and Optimization, CGO. 163ś174.

[32] L.-N. Pouchet. 2011. PolyBench: The Polyhedral Benchmarking suite, version
PolyBench/C 4.2.1. http://polybench.sf.net. Last accessed: May 2017.

[33] M. Puschel, J. MF Moura, J. R Johnson, D. Padua, M. M Veloso, B. W Singer, J.
Xiong, F. Franchetti, A. Gacic, Y. Voronenko, et al. 2005. SPIRAL: Code generation
for DSP transforms. Proc. IEEE 93, 2 (2005), 232ś275.

[34] I. Rosen, D. Nuzman, and A. Zaks. 2007. Loop-aware SLP in GCC. In GCC
Developers Summit.

[35] Y. Saad. 1990. SPARSKIT: A basic tool kit for sparse matrix computations. (1990).
[36] N. Sedaghati, T. Mu, L.-N. Pouchet, S. Parthasarathy, and P. Sadayappan. 2015.

Automatic selection of sparse matrix representation on GPUs. In Proceedings of
the 29th ACM on Intl. Conference on Supercomputing, SC. 99ś108.

[37] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen. 2001. Micro-
Operation Cache: A Power Aware Frontend for Variable Instruction Length ISA.
In Proceedings of the Intl. Symposium on Low Power Electronics and Design, ISLPED.
Huntington Beach, CA, USA, 4ś9.

[38] W.T. Tang, R. Zhao, M. Lu, Y. Liang, H.P. Huynh, X. Li, and R.S.M. Goh. 2015.
Optimizing and Auto-tuning Scale-free Sparse Matrix-vector Multiplication on
Intel Xeon Phi. In 13th Annual IEEE/ACM Intl. Symposium on Code Generation
and Optimization, CGO. San Francisco, CA, USA, 136ś145.

[39] X. Tang, T. Schneider, S. Kamil, A. Panda, J. Li, and D. Panozzo. 2020. EGGS:
Sparsity-Specific Code Generation. In Computer Graphics Forum, Vol. 39. Wiley
Online Library, 209ś219.

[40] E. Wang, Q. Zhang, B. Shen, G. Zhang, X. Lu, Q. Wu, and Y. Wang. 2014. Intel
Math Kernel Library. In High-Performance Computing on the Intel Xeon Phi.
Springer, 167ś188.

[41] Z. Wegner. [n. d.]. SPRDPL: Simple Python Recursive-Descent Parsing Library.
[Accessed: 01-03-2022].

[42] Z. Wegner. [n. d.]. x86-sat. [Accessed: 01-03-2022].
[43] B. Xie, J. Zhan, X. Liu, W. Gao, Z. Jia, X. He, and L. Zhang. 2018. Cvr: Efficient

vectorization of spmv on x86 processors. In Proceedings of the 2018 International
Symposium on Code Generation and Optimization, CGO. Vösendorf / Vienna,
Austria, 149ś162.

[44] S. Yan, C. Li, Y. Zhang, andH. Zhou. 2014. yaSpMV: Yet Another SpMV Framework
on GPUs. In 19th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP. ACM, Orlando, FL, USA, 107ś118.

[45] C. Yang, A. Buluç, and J. D Owens. 2022. GraphBLAST: A high-performance linear
algebra-based graph framework on the GPU. ACM Transactions on Mathematical
Software, TOMS 48, 1 (2022), 1ś51.

[46] X. Yang, S. Parthasarathy, and P. Sadayappan. 2011. Fast Sparse Matrix-vector
Multiplication on GPUs: Implications for Graph Mining. Proc. VLDB Endow. 4, 4
(2011), 231ś242.

http://polybench.sf.net

	Abstract
	1 Introduction
	2 Data-Specific Compilation of Sparse Structures
	2.1 Reconstruction by Codelets
	2.2 Performance Trade-offs
	2.3 Overview of MACVETH

	3 SIMD Code Synthesis
	3.1 Generation of Data Packing Recipes
	3.2 MRKVS: Mega-Random Kernel Vector SMT
	3.3 Search Space and its Evaluation
	3.4 Fusion of Independent Reductions
	3.5 SIMD Code Generation

	4 Experimental Results
	4.1 Using TSC as a Predictor of Performance
	4.2 Using Instruction Count as a Predictor of Performance
	4.3 Intel Math Kernel Library
	4.4 Multithreaded Results
	4.5 Analysis and Code-Generation Performance
	4.6 Code Statistics
	4.7 Sensitivity Analysis

	5 Concluding Remarks
	References

