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Abstract: A formal, high-level representation of programs is typically needed for static and dynamic
analyses performed by compilers. However, the source code of target applications is not always
available in an analyzable form, e.g., to protect intellectual property. To reason on such applications,
it becomes necessary to build models from observations of its execution. This paper details an
algebraic approach which, taking as input the trace of memory addresses accessed by a single
memory reference, synthesizes an affine loop with a single perfectly nested reference that generates
the original trace. This approach is extended to support the synthesis of unions of affine loops, useful
for minimally modeling traces generated by automatic transformations of polyhedral programs, such
as tiling. The resulting system is capable of processing hundreds of gigabytes of trace data in minutes,
minimally reconstructing 100% of the static control parts in PolyBench/C applications and 99.99%
in the Pluto-tiled versions of these benchmarks. As an application example of the trace modeling
method, trace compression is explored. The affine representations built for the memory traces of
PolyBench/C codes achieve compression factors of the order of 106 and 103 with respect to gzip for
the original and tiled versions of the traces, respectively.

Keywords: program modeling; optimizing compilers; polyhedral optimization; memory traces

1. Introduction

Code analyses and optimizations usually work on top of the application code. Unfor-
tunately, source codes are oftentimes not accessible for analysis. Whether due to licensing,
privacy, obfuscation, or even access to the execution environment, users have to work on
post-mortem execution logs, such as memory access traces, which prevents seamless static
analysis. Even if the source code is available, it may use complex data and control struc-
tures, including code obfuscation [1], making it not amenable to static analysis. In sparse
computations, indirection arrays are used for accessing data, hiding the potential regularity
inherent in the sparsity structure [2]. In all these domains, the generation of compact
closed-forms from a trace of integers allows us to generate code analyzable using classical
techniques. Note that all these problems are equivalent to the reconstruction of the code
of a memory reference from its access trace, and that is the form in which the problem is
discussed in the following.

This paper presents an analytical approach for automatically building piecewise-affine
references that model a sequence of arbitrary integer values. Affine codes [3] are a subclass
of programs that execute large, regular loops, where both instruction- and data-flow depend
only on loop induction variables and constant values. Fundamental kernels extracted from
all computing domains, from supercomputing to embedded systems, including multimedia,
can be represented using this abstraction, and treated using polyhedral optimizers [4,5].
The Trace Reconstruction Engine (TRE) traverses a space in which each node encodes
an affine loop. Level k contains the nodes that represent all the canonical affine loops of
dimensionality lesser or equal than k whose trip count is equal to k, starting from a 1-level
nest which iterates from 0 to k− 1, and ending on a k-level nest with a single iteration per
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level. TRE works by analyzing the memory trace, building equation systems that compute
iteration polyhedra and access functions that reproduce the access strides observed in the
trace. This work analyzes the tractability of employing different exploration strategies for
analyzing iteration spaces with increasing complexities. The main contributions of this
work are:

• A detailed mathematical formulation for the automatic construction of an affine
representation of a sequence of integers using increasingly complex representations.
Simple affine domains are explored first (Section 3), and the formulation is later
generalized to explore the general case of piecewise-affine domains, featuring multiple
lower and upper iteration bounds at each nesting level (Section 4).

• While the space of simple polyhedra can be efficiently explored using brute force, more
complex, piecewise-affine spaces are much larger and require costly algebraic compu-
tations to explore, introducing the need for parallel heuristic exploration techniques
in order to make the problem tractable (Section 4.4).

• A detailed experimental evaluation of the proposed techniques when reconstructing
traces using only a single canonical iteration domain, i.e., a single loop nest where
lower and upper loop bounds are defined by a single affine expression (Section 3.6),
and on piecewise-affine codes (Section 4.6). Our results show that the framework can
be used to reconstruct large, complex traces in acceptable time.

Besides efficient trace compression, the framework can potentially be applied to guide
all sorts of static and dynamic analyses and optimizations in the absence of source and/or
binary codes, or when working with codes that are not amenable to static analysis for any
reason. Examples of applications are hardware and software prefetching, data placement
for locality optimizations, dependence analysis for automatic parallelization, optimal
design of embedded memory systems for locality, or piecewise-regular code generation
for sparse codes. These applications are discussed in depth in Section 5, along with the
related work.

This article is a revision and extension of previous works [6,7]. In the former, the au-
thors covered the reconstruction of single-domain affine traces with integer constraints only.
The latter introduces some results and intuitions for the extension to the piecewise-affine
model. The current work presents the full mathematical formulation that handles the
general class of unions of affine domains. It discusses in detail the mathematical properties
of the trace reconstruction algorithm. The experimental section is greatly extended, incor-
porating a full analysis of the computability of the trace reconstruction for different types
of programs, and revamping the execution environments and platforms to take advantage
of new optimizations and more powerful hardware.

2. Problem Formulation

The trace of memory locations accessed by a program can be considered an arbitrary
sequence of integers. During the execution, this sequence will include accesses gener-
ated by many different instructions, including multiple loop scopes. This work assumes
that each entry in the trace is labeled using a unique identifier for the instruction that
issued the address. An example of this trace format is the one generated by Intel’s Pin
Tool [8]. The unique label allows us to analyze the sequence of integers generated by each
instruction separately. Related works have proposed ways to single out loop sections in
the trace [9,10], which can be used if a single instruction may appear in different loop
scopes. The proposed algorithm focuses on the individual reconstruction of each reference.
Optimizations requiring cross-reference analysis would require a post-processing step to
recombine the different streams considering their respective scopes. This post-processing
is out of the scope of this paper.

While subsequent sections will extend the proposal to the general class of piecewise-
affine loops, to introduce the problem and its mathematical formulation, we initially focus
on the subclass of single-domain integer affine loops. Without loss of generality, these can
be written as:
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DO i1 = 0, u1(
#»ı )

...

DO iD = 0, uD(
#»ı )

V[ f1(
#»ı )] . . . [ fN( #»ı )]

where {uj, 0 < j ≤ D} are affine functions with integer coefficients (We use uj(
#»ı ) to

simplify notation, even though we should formally write uj(i1, . . . , ij−1). It is assumed that
coefficients of out-of-scope indices are 0); { f j(i1, . . . , iD), 0 < j ≤ N} is the set of affine
functions that converts a given point in the iteration space of the nest to a point in the
data space of V; and #»ı k = {ik

1, . . . , ik
D}T is a column vector that encodes the state of each

iteration variable for the kth execution of V. The complete access V[ f1(
#»ı )] . . . [ fN(

#»ı )] is
abbreviated by V( #»ı ). Iteration bounds are assumed to be inclusive. Since f j is affine,
the access can be rewritten as:

V[ f1(
#»ı )] . . . [ fN(

#»ı )] = V[c0 + i1c1 + . . . + iDcD] (1)

where V is the base address of the array, c0 is a constant stride, and each {cj, 0 < j ≤
D} is the coefficient of the loop index ij, and must account for the dimensionality of the
original array (For instance, an access A[2 ∗ i][j] to an array A[N][M] can be rewritten
as A[(2 ∗M) ∗ i + j], where ci = 2M accounts for both the constant multiplying i in the
original access (2), and the size of the fastest changing dimension (M)). This is the canonical
form into which the method proposed in this paper reconstructs single-domain loops.
In the following, the term “affine loop” will refer to a single-domain integer affine loop,
while more general types such as piecewise-affine loops or loops defined using rational
coefficients will be explicitly identified as such. These more general types of loops are
formally described and covered in Section 4.

During the execution of the loop nest, the access to V will orderly issue the addresses
corresponding to V( #»ı 1), V( #»ı 2), etc. These addresses will be registered in the trace file
together with the instruction issuing them and the size of the accessed data.

Geometrical Considerations

Using the polyhedral model, each iteration of a loop is represented as a point in a
D-dimensional space. Inside this infinite space, the set of legal iterations of the loop is
contained by an integer polyhedron of dimension D. The polyhedron is defined as the
intersection of a collection of half-planes defined by affine inequalities. Each inequality
corresponds to a lower or upper bound of an iteration index of the loop. Geometrically,
each inequality constitutes one of the F faces of the iteration polyhedron. In particular,
an affine loop such as the one previously studied corresponds to a polyhedron with D
dimensions and (F ≤ 2D) faces. Faces corresponding to lower or upper bounds have linear
inequations of the forms (ij ≥ 0) and (ij ≤ uj(

#»ı )), respectively. In the following, we will
refer to these as the lower/upper bounds hyperplanes.

Consider two consecutive accesses, V( #»ı k) and V( #»ı k+1), and assume that the loop
index values in #»ı k and the upper bounds functions uj(

#»ı ) are known. The values in #»ı k+1

can be computed as follows:

1. According to common programming language rules, an index ij will reset to 0 when
it reaches its upper bound only if all inner ones have also reached their respective
upper bounds. This can be expressed as:(

ik+1
j = 0

)
⇐⇒ (∀l, j ≤ l ≤ D, ul(

#»ı ) = 0)

The geometrical interpretation is that #»ı k lies on the edge formed by the union of the
upper bounds hyperplanes of the iteration polyhedron for dimension j and inner
dimensions (j + 1), . . . , D.
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2. According to common programming language rules, an index ij will increase by 1
when all inner loops have reached their respective upper bounds, but the loop at level
j has not. This can be expressed as:(

ik+1
j = ik

j + 1
)
⇐⇒

(
∀l, j < l ≤ D, ul(

#»ı k) = 0
)
∧
(

uj(
#»ı k) > 0

)
The geometrical interpretation is that #»ı k lies on the edge formed by the union of
the upper bounds hyperplanes of the iteration polyhedron for inner dimensions
(j + 1), . . . , D, but not on the hyperplane which serves as the upper bounds for
dimension j.

3. In any other case, index ij will not change, i.e.,
(

ik+1
j = ik

j

)
.

Definition 1. A set of indices built complying with these conditions will be referred to as a set of
sequential indices.

Corollary 1. The instantaneous variation of loop index ij between iterations k and (k + 1),
δk

j = (ik+1
j − ik

j ), can only take one of three possible values:

1. If ij is reset to 0⇒ δk
j = −ik

j ;

2. If ij is increased by one⇒ δk
j = 1;

3. If ij does not change⇒ δk
j = 0.

Lemma 1. The stride between two consecutive accesses σk = V( #»ı k+1) − V( #»ı k) is a linear
combination of the coefficients of the loop indices.

Proof. Using Equation (1), σk can be rewritten as:

σk = V + (c0+ c1ik+1
1 + . . .+ cDik+1

D ) −
V + (c0+ c1ik

1 + . . .+ cDik
D) =

= c1δk
1 + . . .+ cDδk

D = #»c
#»

δ k

The class of loops described in this section can model most hand-written affine mem-
ory references and, in particular, all the memory references in the PolyBench/C bench-
marks [11]. Section 3 presents an approach to reconstruct single-domain affine loops using
the minimal possible dimension of the iteration space. Section 4 studies the more complex
problem of reconstructing the general class of piecewise-affine loops. These are rarely used
in hand-written codes, but very commonly appear after applying automated optimizations
to single-domain loops, such as loop tiling [12,13].

3. Modeling Single-Domain References

The approach proposed in order to reconstruct single-domain loops consists in sys-
tematically exploring the solution space, using the access strides of a given instruction,
computed as the first-order differences of the integer sequence, as the exploration guide.
Each node in the solution space encodes an affine loop, which tries to reconstruct a portion
of the entire trace. For each node, its children represent the affine loops in which a single
iteration has been added with respect to their parent. Figure 1 shows a geometrical view of
these concepts, and Figure 2 presents a symbolic view.
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Figure 1. Geometrical view of the explored space. In this example, the analysis has reached a node
representing a loop with iteration polyhedron I, which contains the full points in (a). Its iteration
bounds, shown as dashed lines, are (i1 ≥ 0), (i1 ≤ 1), (i2 ≥ 0), and (i2 ≤ 9). There are five different
legal ways to add a point to I. The ones that correspond to points (1, 9) and (2, 0) are shown as
hollow dots in (a). Both result in a different access stride in the general case, which is compared to
the stride in the trace to assess its correctness. Note that the choice matching the current bounds is
(1, 9). If (2, 0) were selected, it would be necessary to recompute the upper bounds hyperplane for i2
to the one depicted by the dotted line in the figure. This corresponds to the hyperplane defined by
(i2 ≤ 9− i1). The remaining three possible ways to add a point to I correspond to increases in the
nest dimensionality. The one depicted in (b) is generated by adding a new outer loop to the nest (as
point (0, 1, 8) is followed by (1, 0, 0)). A new loop index i3 will be added, and the access function f
will include an associated stride computed to match the stride in the trace, as detailed in Section 3.2.
Note that two additional solutions representing a dimensionality increase exist. In them, the new
loop is added as the middle one (the new point is (1, 1, 0)), and as the inner one (the new point is
(1, 8, 1)), respectively.
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The root of this solution space is a trivial one-iteration loop, which generates the
first two entries in the memory trace. The Trace Reconstruction Engine (TRE) traverses
the solution space, adding one access to the candidate loop in each step, until reaching a
candidate loop that generates the entire sequence of integers in the trace, or concludes that
no affine loop may generate the input. The TRE may not build a solution with the same
dimensionality as the original code. More precisely, it builds the nest with the minimal
dimension required to generate the observed sequence of accesses. For example, a 2-level
loop with indices i and j might iterate sequentially over the elements in array A[N][M] if
the upper bounds are defined as ui = N, uj = M and the access is V[i ∗M + j]. This can
be rewritten as a 1-level loop with index i, using ui = N ∗M and access V[i]. This section
presents strategies to efficiently explore the solution space towards this node, exploiting
the mathematical properties of the problem.

Figure 2. Symbolic depiction of the solution space. Each iteration vector #»ı k can be increased
in (2D + 1) possible ways to compute #»ı k+1. The D vectors on the left side of the figure are

computed as +(j, #»ı ) =
[
ik
1, . . . , ik

j−1, ik
j + 1, 0, . . . , 0

]
. The (D + 1) vectors on the right are com-

puted as f(j, #»ı ) =
[
ik
1, . . . , ik

j−1, 1, 0, . . . , 0
]
. For instance, if #»ı k = [3, 5, 7], there are 7 alterna-

tives for #»ı k+1: +(1, #»ı k) = [4, 0, 0], +(2, #»ı k) = [3, 6, 0], +(3, #»ı k) = [3, 5, 8], f(0, #»ı k) = [1, 0, 0, 0],
f(1, #»ı k) = [3, 1, 0, 0], f(2, #»ı k) = [3, 5, 1, 0], and f(3, #»ı k) = [3, 5, 7, 1].

Let A = {a1, . . . , aP} =
{

V( #»ı 1), . . . , V( #»ı P)
}

be the sequence of addresses generated
by a single reference in a single loop scope, extracted from the execution trace. The recon-
struction algorithm iteratively constructs a solution SP

D = { #»c , U, #»w}, which generates A
using D nested loops. The components of this solution are defined as follows:

• Vector #»c ∈ ZD of coefficients of loop indices.
• Matrix U ∈ ZD×D, and vector #»w ∈ ZD, the upper bounds matrix and vector, respec-

tively. Any single-domain affine loop can be rewritten to have lower bounds functions(
ij ≥ 0, ∀j ∈ (0, D]

)
, and therefore it is not necessary to explicitly store them.

The iteration domain I is an integer polyhedron containing the iteration vectors
#»ı ∈ ZD such that:

U #»ı + #»w ≥ #»

0 T (2)

where U can be arranged in a lower triangular fashion, since no index ij may depend on the
index of an inner loop. Its main diagonal is equal to

#   »−1 ∈ ZD. Its jth row, U(j,:), contains
the coefficients of each loop index in the affine bounds function uj(

#»ı ), while wj contains
its independent term. Together, they encode the upper bounds as (ij ≤ U(j,:)

#»

i + wj).
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To be a valid solution, its generated access strides must match the observed ones in
the trace. Using Lemma 1 this can be expressed as:

#»c I = A ⇔ #»c ( #»ı k+1 − #»ı k) = #»c
#»

δ k = σk, ∀k ∈ [1, P)

The algorithm proceeds iteratively, constructing partial solutions for incrementally
larger parts of the trace A. The first partial solution is built as:

S2
1 =

{
#»c =

[
σ1
]
, U = [−1], #»w = [1]

}
(3)

or, equivalently:
DO i1 = 0, 1

a1 + σ1i1
Consider the source code of the cholesky application from the PolyBench/C suite [11]

in Figure 3. For the sake of clarity, in this example we will only focus on the analysis of the
access A[i][k] in line 11. An excerpt of its memory trace is shown in Figure 4. The first
partial solution, which reconstructs the subtrace {a1 = 0x1e2d140, a2 = a1}, is found to be:

#»c =
[

0
]

U| #»w =
[
−1 1

]
 DO i1 = 0, 1

a1 + 0i1

1 # d e f i n e N 32
2 double p[N], A[N][N];
3 for(i = 0; i < N; ++i) {
4 x = A[i][i];
5 for(j = 0; j <= i - 1; ++j)
6 x = x - A[i][j] * A[i][j];
7 p[i] = 1.0/ sqrt(x);
8 for(j = i + 1; j < N; ++j) {
9 x = A[i][j];

10 for(k = 0; k <= i - 1; ++k)
11 x = x - A[j][k] * A[i][k];
12 A[j][i] = x * p[i];
13 }
14 }

Figure 3. Source code of the cholesky kernel.

1 0x1e2d140 // (i,j,k) = (1,2,0)
2 0x1e2d140 // (i,j,k) = (1,3,0)

...

30 0x1e2d140 // (i,j,k) = (1,31,0)
31 0x1e2d240 // (i,j,k) = (2,3,0)
32 0x1e2d248 // (i,j,k) = (2,3,1)
33 0x1e2d240 // (i,j,k) = (2,4,0)
34 0x1e2d248 // (i,j,k) = (2,4,1)

...

88 0x1e2d248 // (i,j,k) = (2,31,1)
89 0x1e2d340 // (i,j,k) = (3,4,0)
90 0x1e2d348 // (i,j,k) = (3,4,1)
91 0x1e2d350 // (i,j,k) = (3,4,2)
92 0x1e2d340 // (i,j,k) = (3,5,0)
93 0x1e2d348 // (i,j,k) = (3,5,1)
94 0x1e2d350 // (i,j,k) = (3,5,2)

...

Figure 4. Excerpt of the memory trace generated by the access A[i][k] (line 11 of Figure 3).

Starting from this first partial solution the engine begins exploring the solution space,
adding one element to the trace in each step, until it arrives at a full solution for A.
In each step, the algorithm processes access ak+1, calculating the observed access stride,
σk = ak+1 − ak, and building a diophantine linear equation system according to Lemma 1
to compute the candidate indices #»ı k+1, which result in an access stride equal to the
observed one:

#»c ( #»ı k+1 − #»ı k) = σk ⇒ ( #»c T #»c )
#»

δ k = #»c Tσk (4)
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where ( #»c T #»c ) ∈ ZD×D is the system matrix, and
#»

δ k ∈ ZD is the solution. There are two
possible situations when solving this system:

1. The system has one or more integer solutions. In this case, for each solution
#»

δ k,
the new index #»ı k+1 = #»ı k +

#»

δ k, which must be sequential to #»ı k, is calculated. U, #»w,
and #»c remain unchanged. Each of these solutions, whose calculation is detailed in
Section 3.1, must be explored independently as described in Section 3.3.

2. The system has no solution generating an index sequential to #»ı k, in which case there
are three courses of action:

(a) Increase the dimensionality D (Section 3.2).
(b) Modify the bounds U and #»w (Section 3.4).
(c) Discard the solution and backtrack.

3.1. Efficiently Solving the Linear Diophantine System

Although the system in Equation (4) has infinite solutions in the general case, only
a few are valid in the context of affine loop reconstruction, which makes it possible to
develop very efficient ad hoc solution strategies.

Lemma 2. There are at most D valid solutions to the system in Equation (4). These correspond
to indices:

{+(l, #»ı k) =
[

ik
1 . . . ik

l−1 ik
l + 1 0 . . . 0

]
, 0 < l ≤ D}

Proof. If index #»ı k+1 must be sequential to index #»ı k as per Definition 1, then there is a
single degree of freedom for

#»

δ k: the position δk
l that is equal to 1.

#»

δ k = [ δk
1 . . . δk

l−1 δk
l δk

l+1 . . . δk
D ]T =

= [ 0 . . . 0 1 −ik
l+1 . . . −ik

D ]T

Positions {ij, 0 < j < l}will not change between iterations k and (k + 1), and therefore
δk

j = 0; while positions {ij, l < j ≤ D} will be reset to 0, and therefore δk
j = −ik

j .

Taking this result into account, it is possible to find all valid solutions of the system
in linear time, O(D), by simply testing the D valid candidates +(l, #»ı k), calculating their
associated strides σ̂k

l = #»c
#»

δ k
l , and accepting those solutions with a stride equal to the

observed one, σ̂k
l = σk. These are particular solutions of the subtrace {a1, . . . , ak+1}, which

will be explored to construct a solution for the entire trace.
Following the cholesky example, the next access in the trace to be processed is

a3 = 0x1e2d140. The engine computes the access stride as σ2 = a3 − a2 = 0. At this point,
a 1-level loop has been constructed and the engine checks whether #»ı 3 = +(1, #»ı 2) =

[
2
]

produces a stride that matches the observed one. The equality σ̂2
1 = #»c

#»

δ 2
1 =

[
0
][

1
]
=

σ2 holds, and the solution is accepted. The algorithm continues processing the trace until it
builds S30

1 , with I30 =
[

0 1 . . . 29
]
. At this point, the observed stride changes to:

σ30 = a31 − a30 = 0x1e2d240− 0x1e2d140 = 256

The constructed loop with #»c =
[

0
]

cannot produce a stride different from 0. As such,
the subtrace {a1, . . . , a31} cannot be generated with an affine access enclosed in a 1-level
loop and the dimensionality of the current solution S30

1 must be increased to build S31
2 .

3.2. Increasing Solution Dimensionality

Let Sk
D = { #»c , U, #»w} be a partial solution for the subtrace {a1, . . . , ak}. If no valid index

in {+(l, #»ı k), 0 < l ≤ D} provides σ̂k
l = σk, it may be because a loop index that had not

appeared before is increasing in access (k + 1). This can cause σk to be unrepresentable
either as a linear combination of the loop coefficients #»c , or through an index sequential
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to #»ı k. It is always possible to generate at least (D + 1) valid partial solutions Sk+1
D+1 from

Sk
D by enlarging the dimensionality of the current solution components. These (D + 1)

solutions correspond to the indices {f(p, #»ı k), 0 ≤ p ≤ D}. For each insertion position p
of the newly discovered loop, the set of indices Ik+1 ∈ Z(D+1)×(k+1), is built as matrix:

Ik+1 =

 Ik
(1:p,:)

#»ı k+101×k

Ik
(p+1:D,:)


where a 0 in position p has been added to each index in Ik, and a new column #»ı k+1 =
f(p, #»ı k) has been added to the matrix. The coefficient c′p associated with the new loop
index can be derived from Equation (4):

#»c
#»

δ k =
[

. . . cp c′p cp+1 . . .
]


...
0
1
−ik

p
...

 = σk ⇒

c′p = σk +
D

∑
r=p+1

ik
r cr

U and #»w are updated as described in Section 3.4 to reflect the new information avail-
able. If no solution is found for the boundary conditions, then the generated polyhedron
is not convex and this branch is discarded. However, at least the insertion point (p = 0),
i.e., adding a new outer loop to the nest, will always have affine associated bounds. Note
that there must be a practical limit to the maximum acceptable solution size, as in the
general case any trace {a1, . . . , aP} can be generated using at most (P− 1) affine nested
loops with integer coefficients. To ensure that a minimal solution, in terms of the dimen-
sionality of the generated Z–polyhedron, is found, the solution space should be traversed
in a breadth-first fashion.

Revisiting the cholesky example, there are two possible insertion points for the new
loop in S31

2 . As the most common situation is that newly discovered loops are outer than
the previously known ones, it explores (p = 0) first. The new loop coefficient vector and
iteration polyhedron are calculated as:

c′0 = σ30 + i30
1 c1 = 256 + 0 · 29⇒ #»c =

[
256 0

]
I31 =

[
0 . . . 0 1
0 . . . 29 0

]
The traversal of the solution space continues. The next observed stride is σ31 =

a32 − a31 = 8. No increase of the currently found loop indices produces such a stride:{
σ̂31

1 = #»c
#»

δ 31
1 =

[
256 0

][
1 0

]T
= 256

σ̂31
2 = #»c

#»

δ 31
2 =

[
256 0

][
0 1

]T
= 0

Hence, the solution must grow to S32
3 . Now, there are three different insertion points.

The first two yield the following coefficient vectors:{
p = 0⇒ #»c =

[
264 256 0

]
p = 1⇒ #»c =

[
256 8 0

]
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As soon as the first points are explored in these branches, the engine will find that
further dimensionality increases are necessary to model the entire trace. Due to the breadth-
first nature of the exploration, it will then backtrack to the third possible insertion point:

p = 2⇒ #»c =
[

256 0 8
]

At this stage the engine has correctly calculated the coefficients of the three levels of
the original nest. It generates the new iteration polyhedron:

I32 =

[
I(1:2,:) #»ı 32

0 . . . 0

]
=

 0 . . . 0 1 1
0 . . . 29 0 0
0 . . . 0 0 1


For the sake of simplicity, this section does not discuss the calculations associated to

loop bounds. These will be detailed in Section 3.4.

3.3. Branch Priority

The approach proposed above is capable of efficiently finding the relevant solutions
of the linear Diophantine system for each address of the trace, but can still produce a
large number of potential solutions that will be discarded when processing the remaining
addresses in the trace. In the general case, the time for exploring the entire solution space
of a trace containing P addresses generated by D loops would be O(DP). Consequently,
exploring all branches is not a tractable problem in the general case. To guide the traversal
of the solution space, consider the column vector #»γ k ∈ ZD defined as:

#»γ k = U #»ı k + #»w (5)

Lemma 3. Each element γk
j ∈

#»γ k indicates how many more iterations of index ij are left before it
resets under bounds U, #»w.

Proof. γk
j is equal to the value of the upper bounds of the loop in ij minus the current

value of ij or, equivalently, to the distance from #»ı k to the upper bounds face associated to
index ij:

γk
j = U(j,:)

#»ı k + wj︸ ︷︷ ︸
wj+uj,1i1+...+uj,(j−1)i(j−1)−ij

= uj(
#»ı )− ij

By construction of the canonical loop form, the step of all loops is 1. Therefore, γk
j is

equal to the number of iterations of loop ij before (ij = uj(
#»ı )).

This result suggests that, assuming that U and #»w are accurate, the most plausible
value for the next index is ( #»ı k+1 = +(l, #»ı k)), where l is the position of the innermost
positive element of #»γ k. The correctness of this prediction can be assessed by comparing the
predicted stride σ̂k

l with the observed one σk. Note that using #»γ k as described above guar-
antees consistency with the boundary conditions in Equation (2), which further improves
the efficiency of the approach by saving calculations.

3.4. Calculating Loop Bounds

So far, the calculation of the boundary conditions, U and #»w, has been overlooked.
As before, assume that the algorithm has already identified a partial solution Sk

D =
{ #»c , U, #»w}. Upon processing access ak+1, the algorithm will try to explore the branch,
which increments the index il corresponding to the innermost positive element of #»γ k,
as described in Section 3.3. However, it might happen that the calculated stride for the
selected branch does not match the observed stride, i.e., σ̂k

l 6= σk. A different candidate
index il′ will have to be generated as described in Section 3.1, but the resulting +(l′, #»ı k)
will not be sequential to #»ı k under bounds U and #»w. In this scenario, it is necessary to
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generate new upper bounds U′ and #»w′ for all inner indices that were not expected to reset,
i.e., (ij, j > l, U(j,:)

#»ı k > 0). Each of these hyperplanes must: (i) contain #»ı k, so that index ij

resets after #»ı k; (ii) contain the z indices that lay on the previous upper bounds hyperplane
defined by Uj and wj, to preserve the sequentiality in Ik; and (iii) leave all iteration vectors
in Ik+1 beneath it, to guarantee polyhedron convexity. Mathematically, we are looking to
build a matrix row U(j,:) and associated #»w j fulfilling two conditions:

U(j,:)i + wj11×(z+1) = 01×(z+1) (6)

U(j,:)I
k+1 + wj11×(k+1) ≥ 01×(k+1) (7)

where i ∈ ZD×(z+1) is a matrix with (z + 1) columns: #»ı k, and the z iteration vectors lying
on the previous upper bounds hyperplane, as per (i) and (ii) above. Besides, there are two
structural constraints on the values of U(j,:):

1. U(j,j) = −1, i.e., this hyperplane is associated to a function of type ij < uj(
#»ı ).

2. U(j,j+1:D) = 0, i.e, uj(
#»ı ) does not depend on iteration indices inner than j.

This problem is solved using integer linear programming [14] through the piplib
library [15]. First, we solve Equation (6), building the hyperplane containing i. Note that
it is only necessary to choose at most j linearly independent columns from i to build the
equation system, as points in i are cohyperplanar by definition. Afterwards, if any point
in Ik+1 lies beyond this hyperplane, we iteratively modify the face so that it contains the
point furthest away from it (in a way similar to Quickhull [16]). This process repeats until
either a solution satisfying both Equations (6) and (7) is found; otherwise there is no convex
polyhedron containing all points in Ik+1, and #»ı k+1 and i lie on one of its faces (i.e., this
iteration sequence is not generated by an affine loop).

Applying Equation (6) to index i3 in the cholesky example upon processing access a31:

U′3i + w′311×2 = 01×2 ⇒

[
u′3,1 u′3,2 −1

] 0 1
1 0
0 1

+
[

w′j w′j
]
=
[

0 0
]

One possible solution to this underdetermined system is:

U′| #»w′ =

 −1 0 0 1
0 −1 0 29
1 0 −1 0


The calculated bounds are shown in Figure 5a. Continuing the example, #»γ 32 =[

0 29 0
]T , and the engine predicts #»ı 33 =

[
1 1 0

]T , which generates a stride

that matches the observed one. #»γ 33 =
[

0 28 1
]T and the engine predicts #»ı 34 =[

1 1 1
]T , which also generates a stride that matches the observed one. This process

continues, alternating iterations of i2 and i3, until access a88 is incorporated to the solution,
with index #»ı 88 =

[
1 28 1

]T . At this point, #»γ 88 =
[

0 1 0
]T , and an iteration of

i2 is predicted, with σ̂88
2 = −8. However, σ88 = a89 − a88 = 248. The engine defaults to

the brute force mode, calculating the strides for each of the currently known indices (see
Section 3.1): {

σ̂88
1 = #»c

#»

δ 88
1 =

[
256 0 8

][
1 −28 −1

]T
= 248

σ̂88
3 = #»c

#»

δ 88
3 =

[
256 0 8

][
0 0 1

]T
= 8
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Figure 5. Evolution of predicted polyhedron faces through the reconstruction process of access
A[i][k] in cholesky. Faces associated to the row of U being recalculated are shaded. Edges of the
previously predicted polyhedron are dashed. Iteration points already discovered are hollow. Points
used to build matrix i during the calculation of the face are marked in black.

The engine explores the path with #»ı 89 =
[

2 0 0
]
, and the loop bounds have to

be updated:
#»w′ =

[
2 29 0

]T

The first and third rows of U′ do not change. For the second, the following system
is solved:

U′(2,:)i + w′211×1 = 01×1 ⇒

[
u2,1 −1 0

] 0 1
29 28
0 1

+
[

29 29
]
=
[

0 0
]

and the new upper bounds hyperplanes:

U′| #»w′ =

 −1 0 0 2
−1 −1 0 29
1 0 −1 0


The resulting geometric bounds are depicted in Figure 5b. All the necessary infor-

mation to solve the problem has been collected. From this point on, the engine will
keep incorporating elements in the trace to the solution, with #»γ accurately predicting all
the remaining iterations, until it reaches the end of the trace having reconstructed the
following terms:

#»c =
[

256 0 8
]

U| #»w =

 −1 0 0 29
−1 −1 0 29
1 0 −1 0




DO i1 = 0, 29
DO i2 = 0, 29− i1

DO i3 = 0, i1
a1 + 256i1 + 8i3

Note that this reconstruction method does not regenerate the constant term c0 in
Equation (1), and assumes the base address of the access to be V′ = a1. This is not a
problem for any practical application of the constructed affine model, as the set of accessed
points is identical to that of the original, potentially non-canonical loop.
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3.5. Algorithm

Algorithm 1 presents the pseudocode of the Extract() function, which implements
the Trace Reconstruction Engine (TRE) for modeling traces as single-domain integer affine
loops. The recursive solution is not practical for a real implementation, but clearly illustrates
the idea. The computations to calculate the new loop insertions described in Section 3.2 are
encapsulated into a Grow() function, shown as Algorithm 2. The reconstruction starts by
calling Extract() with the initial S2

1 defined in Equation (3). In the worst case, when no
access is correctly predicted using #»γ , the algorithm uses the brute force approach (O(DP)).
In the best case, every access is correctly predicted (O(P)).

Algorithm 1: Pseudocode of Extract().
Input: the execution trace, A, a partial solution S = { #»c , U, #»w}, and the iteration polyhedron I
Output: a global solution or None if no solution found

1 k = #columns of I;
2 while k < len(A)− 1 do
3 σ = ak+1 − ak;

// Try to use #»γ (Section 3.3)
4 calculate #»γ = U #»ı k + #»w;
5 calculate predicted stride σ̂l =

#»c
#»

δ l ;
6 if σ̂l = σ then
7 I = [I|+ (l, #»ı k)];
8 k = k+1;
9 continue;

10 end
// Brute force approach (Section 3.1)

11 for l=D down to 1 do
12 calculate σ̂l =

#»c
#»

δ l ;
13 if σ̂l = σ then
14 I′ = [I|+ (l, #»ı k)];
15 {U′, #»w ′} = update bounds // (Section 3.4)
16 if { #»c , U′, #»w ′} is affine then
17 S ′ = Extract(A, { #»c , U′, #»w ′}, I′);
18 if S ′ 6= None then return S ′;
19 end
20 end
21 end

// Add loop (Section 3.2)
22 for p=0 to D do
23 S ′ = Extract(A, Grow(S , p, I));
24 if S ′ 6= None then return S ′;
25 end
26 return None;
27 end
28 return S;

The TRE implementation loads into memory: (i) the input trace; (ii) U, #»w, and #»c for
each explored node in the solution space; and (iii) matrix I for the current node being
explored. The largest of these structures is I, and so the consumed memory can be bound as
O(P× D). Other temporaries, e.g., equation systems, do not store more than a few dozen
values, and so their memory consumption is not relevant. Note that the full trace will not
reside into memory at any time during the reconstruction process. The trace is explored on
a point-by-point basis, and therefore the virtual memory subsystem will dynamically load
the relevant parts of the trace on demand.
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Algorithm 2: Pseudocode of Grow() (Section 3.2).
Input: the partial solution S = { #»c , U, #»w}, the insertion point x, and the iteration polyhedron I
Output: modified partial solution and iteration polyhedron with a new loop in position x, or None if

the insertion point generates a nonlinear solution
// Insert a new row and column in U

1 U′ =

 U(1:x,1:x) 0x×1 U(1:x,x+1:D)

0 . . . 0 −1 0 . . . 0
U(x+1:D,1:x) 0(D−x)×1 U(x+1:D,x+1:D)

;
// Insert a new element in #»w

2
#»w ′ =

[
#»w (1:x)|0| #»w (x+1:D)

]
;

// Insert new index into I

3 I′ =

 I(1:x,:)
0 . . . 0 f(x, #»ı k)

I(x+1:D,:)

;
4 {U′, #»w ′} = update bounds // (Section 3.4)
5

#»c ′ = [ #»c (1:x)|cx | #»c (x+1:D)];
6 if { #»c ′, U′, #»w ′} is not affine then return None;
7 return { #»c ′, U′, #»w ′}, I′;

3.6. Performance of Single-Domain Trace Reconstruction

The reference implementation of the TRE has been tested with all benchmarks in-
cluded in the PolyBench/C 4.2.1 suite [11]. PolyBench contains 30 applications from
different computational domains, such as linear algebra, data mining, or stencil codes.
The proposed approach was applied to one reference for each loop scope in each SCoP (i.e.,
the main computational kernel of each application). All benchmarks were executed using
-DLARGE_DATASET, except for floyd-warshall, which performs a number of memory ac-
cesses one order of magnitude larger than the second largest benchmark, and was executed
using -DMEDIUM_DATASET. Table 1 details the characteristics of each test input trace. Each
execution was performed on an AMD Ryzen 9 5950X, equipped with 128 GB of RAM.

Figure 6 details the performance obtained for the reconstruction of these single-domain
kernels. The upper bar shows the reconstruction time in seconds, while the lower one
shows trace sizes in number of entries. The performance obtained for each specific trace
depends on the depth and the structure of the reconstructed loops. The best performance
is obtained for one of the deriche subtraces, an edge detection filter accessing arrays with
a constant, single stride. A single-strided trace is trivial to reconstruct, and this one is
processed at more than 14 billion elements per second. If single-strided references are
not taken into account, the most efficient processing is observed for one of the fdtd-2d
references, a 2D finite-difference time-domain kernel. In the original code, this reference is
written as a 3D loop, but is reconstructed by TRE as a 2D nest, as the two inner loops are
coalesced into a single one. The outer loop trips once per each 1.2 million iterations of the
inner one. In these cases, the reconstruction is streamlined: the trace contains single-strided
blocks of 1.2 million elements, which are trivially predicted by #             »gamma and processed in a
single step. The 600 million accesses in this subtrace are processed in 14 ms, i.e., at a rate of
4.3 billion elements per second.

The worse performance is observed for one of the references in doitgen, containing
3.4 million entries. It is generated by a 2D loop where the largest single-strided block
contains 160 elements only. In this case, the number of steps performed during the re-
construction process is much larger, resulting in a reconstruction rate of only 2.1 million
elements per second, i.e., 2000× slower than the fastest non-single-strided case. The aggre-
gated input is processed at an average rate of 25.4 million accesses per second.
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Table 1. Characteristics of the PolyBench/C benchmarks. The number of loop scopes, trace size and maximum loop depth
are shown for both original and Pluto-tiled versions of each code. The “Type” column in the “Tiled” part shows the details
of the benchmark grouping addressed in Section 4.6.

Benchmark
Original (Section 3.6) Tiled (Section 4.6)

#Scopes #Accesses (×106) Max. Depth #Scopes #Accesses (×106) Max. Depth Type

2 mm 4 1657.58 2 6 1656.96 6 2
3 mm 6 2702.59 3 6 2701.71 6 2

adi 6 1993.01 3 12 996.00 5 4
atax 4 7.98 1 4 7.984 4 2
bicg 3 3.99 1 4 7.984 4 2

cholesky 4 1335.33 3 10 1363.90 6 7
correlation 8 1012.92 3 9 1013.64 6 3
covariance 5 1012.92 3 7 1013.64 6 3

deriche 6 53.08 2 3 26.54 4 2
doitgen 3 544.32 3 3 544.32 4 1
durbin 4 6.00 2 4 6.00 2 1
fdtd-2d 4 1798.40 3 7 598.93 6 6

floyd-warshall 1 125.00 2 1 125.00 5 2
gemm 2 1321.10 3 2 1321.10 6 2

gemver 4 12.00 2 3 8.00 4 2
gesummv 2 1.69 1 5 3.38 4 2

gramschmidt 6 1441.92 3 5 1441.92 5 8
heat-3d 2 1643.03 4 86 842.23 8 7

jacobi-1d 2 2.00 2 6 1.00 4 3
jacobi-2d 2 1684.80 3 23 843.70 6 6

lu 3 2666.67 3 13 2666.67 6 7
ludcmp 8 2672.67 3 15 2676.66 3 1

mvt 2 8.00 2 1 4.00 4 2
nussinov 5 2610.41 3 6 2604.17 5 5
seidel-2d 1 1996.00 3 1 1996.00 6 6

symm 2 600.60 3 5 600.60 3 1
syr2k 2 721.32 3 2 721.32 6 3
syrk 2 721.32 3 2 721.32 6 3

trisolv 2 2.00 2 5 2.00 4 2
trmm 2 600.60 3 2 600.60 6 3

Regarding memory requirements, the exploration engine strictly needs to store only #»c ,
#»w, U and the last reconstructed index #»ı k. To improve performance reconstruction, the ref-
erence implementation also stores points in the convex hull of the iteration polytope, which
are necessary for loop bounds recomputation, but could be recalculated on demand from
the bounds equations for minimal memory consumption. The total storage requirements
for the references in our experimental set vary between 48 bytes and 44 kB.

One simple application of the affine model is compressing the input memory trace. We
compared raw sizes, sizes using NumPy’s NPZ (which uses gzip), and the sizes required to
store U, #»w, and #»c , which are enough to reconstruct the entire trace. The entire experimental
set, which is 230 GB in size and can be compressed into 14.5 GB using NPZ, takes up
14 kB when compressed using the affine loop bounds reconstructed by the TRE. This
represents a 17.2× 106 and 1.1× 106 compression factor with respect to the raw data and
NPZ, respectively.
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Figure 6. Reconstruction times (upper axis) and trace sizes (lower axis) for PolyBench/C benchmarks,
ordered by trace size. Axes are logarithmic.

4. Modeling Piecewise-Affine References

The previously proposed formulation reconstructs traces using a single canonical
loop nest. These are represented by the subspace of polyhedra with D dimensions and
F ≤ 2D faces in which extreme points inside the polyhedron lie exactly on its bounding
hyperplanes. However, many domains are represented using more complex polyhedra,
with F > 2D faces and/or as piecewise-affine union of polyhedra. These correspond to the
general case of polyhedral programs, which can be described as:



Mathematics 2021, 9, 2368 17 of 29

DO i1 = max(. . . , l1,j(
#»ı ), . . .), min(. . . , u1,j(

#»ı ), . . .)
...

DO iD = max(. . . , lD,j(
#»ı ), . . .), min(. . . , uD,j(

#»ı ), . . .)
V[ f1(

#»ı )] . . . [ fN( #»ı )]

where the number of faces F corresponds to, at most, the number of affine functions
used to define the lower and upper bounds of each loop; and coefficients are rational,
i.e., l(:,j), u(:,j) ∈ Q. The mathematical representation presented in Sections 2 and 3 can
be extended to cover this general case. For single-domain loops, the bounds matrix U
was defined as a D× D matrix containing only the upper bounds faces of the polyhedron.
Explicit representation of lower bounds faces was unnecessary, as the canonical form of
these loops is represented by an iteration polyhedron such that all lower bounds faces lie
exactly across one of the canonical axes, i.e., no negative components may exist in iteration
vectors and the first iteration of all loops is always zero. As such, the equation UI + #»w ≥ 0
implicitly incorporates lower bounds faces and the polyhedron:

U| #»w =

 −1 0 0 29
−1 −1 0 29
1 0 −1 0


is actually equivalent to:

U′|
# »

w′ =



−1 0 0 29
−1 −1 0 29
1 0 −1 0
1 0 0 0
0 1 0 0
0 0 1 0


where the bold rows represent lower bounds faces. Note how by adding these rows the
matrix is not square. It is no longer possible, in the general case, to shift the polyhedron so
that all faces lie across a canonical axis. This changes some of the assumptions in Section 2.
In this new configuration, U ∈ ZF×D, and #»w ∈ ZF, where each face of the polyhedron
corresponds to a min/max term in the loop bounds. In the following, the bounds matrices
and vectors will explicitly show the upper bounds faces that were hitherto implicit.

4.1. Single-Domain Reconstruction of Piecewise Traces

A first approach for reconstructing traces generated by piecewise-affine codes is to
simply apply the single-domain techniques developed in Section 3. Any reference nested
into a piecewise-affine loop with D levels can be reconstructed using a single affine loop
nest with (D′ ≥ D) levels. There is, however, no a priori bound on D′, as it depends on
the structural characteristics of each original loop nest, and it is not guaranteed that the
problem will be tractable. To test this approach, we applied loop tiling to the PolyBench/C
loops. In the general case, this generates equivalent programs with complex piecewise-
affine loop bounds. Figure 7a shows the obtained reconstruction coverage, where the
vast majority of the references in these codes are not reconstructed. We found that a
fundamental reason for the failure of the “piecewise-as-single” approach is the way in
which the solution space is explored. When building single-domain models decisions
are straightforward. Each trace entry which cannot be incorporated to the trace using
the currently known loops must necessarily require a dimensionality increase, and each
insertion point is explored in a breadth-first fashion. After testing all possible insertion
points, the one which reconstructs a larger portion of the trace is explored first in the
following level. This approach is only tractable as long as loop nest depth does not exceed 5
or 6 levels. For larger nests, reconstructions fail as they either exhaust the available 128 GB
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of RAM or they take too long to complete (executions are aborted after 24 h if no valid
representation has been found).
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Figure 7. Reconstruction results of piecewise-affine traces using different approaches and exploration heuristics. Each
row represents the results obtained by a different reconstruction strategy: (a) applying the single-domain TRE without
modification (Section 4.1); (b) applying the single-domain TRE with heuristic traversal (Section 4.1); (c) generalized TRE
including multiple upper bounds only (Section 4.2); (d) generalized TRE with multiple upper and lower bounds (Section 4.3);
(e) same as (d) with improved heuristic exploration (Section 4.4); and (f) same as (e), but allowing rational coefficients
(Section 4.5). Applications are separated by a continuous line and each box represents a loop scope. The three numbers
to the right of each row represent, from top to bottom, the percentage of total accesses in scopes reconstructed optimally,
sub-optimally, and not reconstructed. Some applications are not labeled due to space constraints, but the figure includes all
PolyBench codes.

An approach to improve the coverage of the single-domain TRE is to modify the
exploration heuristic. We propose to use a simple exponential fitness function that ranks
each point in the exploration space according to the size of the reconstructed trace and the
dimensionality of the loop used for the reconstruction:

f (Sk
d) =

k
Cd (8)

where k is the number of reconstructed trace points, d is the iteration polyhedron dimen-
sionality, and C is a parameter that specifies an expectation of reconstruction size increase
for each new loop level; e.g., if (C = 2), the insertion of a new loop level should be capable
of doubling the size of the reconstructed trace. In this way, more complex branches of the
solution space that look promising are explored before less complex ones, and the explo-
ration of branches in which the increase of complexity does not translate into significant
progress is deferred. If the selected branches do not achieve to increase the number of
reconstruction points by a factor of C, they will be penalized in subsequent evaluation
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phases. Using this heuristic approach, the engine will reach a solution much more quickly
than with a pure breadth-first exploration (making the approach tractable in many cases),
but at the cost of losing the minimal reconstruction guarantee. In our experiments, we
found that (C = e), the Euler number, provides the best total coverage (more details in
Section 4.6). Figure 7b shows the results using this exponential fitness function, which
outperforms the breadth-first strategy for all references in the experimental set.

4.2. Supporting Multiple Upper Bounds per Dimension

While using a heuristic traversal of the solution space increases the coverage of the
TRE, this strategy alone still leaves a large proportion of cases in our experimental set
uncovered. The reasons vary on a per-case basis, but are usually related to the structural
complexity (i.e., loop nest depth) required to reconstruct the multiple affine pieces from
the piecewise-affine trace that are present in the original loop. We aim now to generalize
our reconstruction scheme by allowing non-square bounds matrices in the TRE.

Consider for example the iteration polyhedron represented in Figure 8. A loop mod-
eled by this polyhedron is:

DO i1 = 0, 19
DO i2 = 0, min(9, 19− i1)

... A[i1] ...

0 2 4 6 8
i2

0

5

10

15

20

i1

Figure 8. Example of iteration polyhedron with two different upper bounds hyperplanes associ-
ated to i2. It corresponds to a loop using two different affine functions, f1 and f2, combined as
min( f1(

#»ı ), f2(
#»ı )), in the upper bounds of the inner loop i2. The figure illustrates the state of the

reconstruction upon reaching iteration vector
[

11 8
]
, when it becomes apparent that a new upper

bounds face is needed to model the loop.

During the reconstruction process of this trace, the single-domain TRE reaches the
state S2

119, with #»ı 119 =
[

11 8
]
. The mathematical representation of this state is:

#»c =
[

8 0
]

U| #»w =


−1 0 11
0 −1 9
1 0 0
0 1 0




DO i1 = 0, 11

DO i2 = 0, 9
... A[i1] ...

At this point, #»γ 119 =
[

0 1
]
, which predicts #»ı 120 = +(2, #»ı 119) =

[
11 9

]
,

with σ̂120
2 = 0. However, the observed stride is σ120 = 8. The engine then enters brute force
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mode and finds that #»ı 120 = +(1, #»ı 119) =
[

12 0
]

provides the observed stride. This
is not representable using a single upper bounds hyperplane: the bounds construction
mechanism described in Section 3.4 tries to build a line containing, at the same time, points
(0, 9), (1, 9), and (11, 8). Upon this impossibility, the single-domain TRE fails to find a
D = 2 solution. It will instead reconstruct this example trace using D′ = 4. In order to
model this trace in a piecewise-affine way, a new polyhedron face must be introduced so
that index

[
12 0

]
is sequential to

[
11 8

]
. In the general case, upon finding a new

index #»ı k+1 such that no solution is found to the equation systems described in Section 3.4,
it is necessary to add (at least) one new bounding hyperplane, or correspondingly a row
U(r,:) and element wr such that:

U(r,:)
#»ı k+1 + wr = 0 (9)

and:
U(r,:)I

k + wr11×p ≥ 01×p (10)

This hyperplane is calculated in a way similar to the single-domain case in Section 3.4.
First, the face orthogonal to the canonical axes that contains #»ı k is built (trivial solution
to Equation (9)). Then, if any point in Ik+1 lies beyond this hyperplane (i.e., violates
Equation (10)), we iteratively modify it. In the presented example, the first trivial face is
generated as:

U1
(r,:)|w

1
r =

[
0 −1 8

]
There are several points in the iteration space which lie beyond the newly constructed

half-space, in particular those lying on the previously constructed face:

U(r,:)︷ ︸︸ ︷[
0 −1

][ 0 . . . 10
9 . . . 9

]
+

wr11×p︷ ︸︸ ︷[
8 . . . 8

]
=
[
−1 . . .− 1

]
Since all these points are at the same distance from the new one, we add the first point

to our set of inequations, which now becomes:{
U2
(r,:)

[
11 8

]
+ wr = 0

U2
(r,:)

[
0 9

]
+ wr ≥ 0

which, after solving, yields U2
(r,:)|w

2
r =

[
−1 −1 19

]
, providing a valid solution.

The state of the reconstruction at this point is shown in Figure 8.
Note that more than one face may need to be added in this way. In particular, suppose

that #»ı k+1 lies beyond some upper bounds of the iteration polyhedron, (U(x,:)
#»ı k+1 + wx < 0).

These bounds will be recomputed as described in this section, preserving as many hull
points as possible while leaving #»ı k+1 inside the polyhedron. In so doing, some points
previously lying on the surface of the hyperplane defined by U(x,:) may now become
internal points. As such, a region of space previously outside the polyhedron, composed
of points that do not represent iterations of the original loop, will now lie inside the
polyhedron. As many new faces as necessary are iteratively defined to preserve the original
bounds imposed by U(x,:).

Figure 7c shows the coverage obtained by the TRE version supporting multiple upper
bounds. The percentage of traces that can be optimally reconstructed in this way is multi-
plied by four, while adding very little additional branching and computational complexity.

4.3. Supporting Multiple Lower Bounds per Dimension

Consider the iteration polyhedron represented in Figure 9, generated by the follow-
ing code:
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DO i1 = 0, 19
DO i2 = max(0, i1 − 10), 9

... A[i1 + 2 ∗ i2] . . .

0 2 4 6 8
i2

0

5

10

15

20

i1

Figure 9. Example of iteration polyhedron with two different lower bounds hyperplanes associ-
ated to i2. It corresponds to a loop using two different affine functions, f1 and f2, combined as
max( f1(

#»ı ), f2(
#»ı )), in the lower bounds of the inner loop i2. The figure illustrates the state of the re-

construction of the iteration polyhedron upon reaching iteration vector
[

11 1
]
, when it becomes

apparent that a new lower bounds face is needed to model the loop.

During the reconstruction process, the engine reaches the state S2
109, with #»ı 109 =[

10 9
]
. This state is represented by the following matrices:

#»c =
[

8 16
]

U| #»w =


−1 0 10
0 −1 9
1 0 0
0 1 0




DO i1 = 0, 10

DO i2 = 0, 9
... A[i1 + 2 ∗ i2] ...

At this point, #»γ 109 =
[

0 0
]
, which predicts #»ı 110 = +(1, #»ı 109) =

[
11 0

]
,

with σ̂109
1 = −136. However, the observed stride is σ109 = −120. Since no known loop

index can be increased to provide this stride, the single-domain approach would introduce
a new loop into the system and, in the end, find a model for the full trace using an iteration
polyhedron with D′ = 4. The generalized TRE has been extended to check whether a
stride can be obtained by introducing a new lower bounds face. Mathematically, this can
be modeled by introducing a new operation ⊕(j, #»ı ), which increases index ij by one but,
instead of resetting all inner indices to zero as +(j, #»ı ) does, it resets them to arbitrary
(ζ j+1, . . . , ζd) values so that #»ı k+1 matches the observed stride:

#»c (⊕(j, #»ı k)− #»ı k) =
[

cj . . . cd
]


1
ζ j+1 − ij+1

...
ζd − id

 = σk

This system is underdetermined for any value (j < d− 1). This implies that, in the
general case, there exist infinite vectors #»ı k+1 = ⊕(j, #»ı k) that provide the observed stride.
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In order to reduce the possibilities to a tractable set, two additional restrictions are intro-
duced:

1. Only K unknowns in the set (ζ j+1, . . . , ζd) are allowed to reset to a value different
from the ones predicted by the currently known lower bounds restrictions. In our
experimental tests with tiled PolyBench/C (see Section 4.6), K = 3 is enough to
ensure optimal reconstruction of all references. Smaller values of K will result in less
branching, but will potentially cause no solutions to be found within reasonable time
or memory constraints for some traces.

2. The valid values of each unknown are restricted to a range around the currently
calculated values of its associated index, i.e., only values

ζ j ∈
[

R ·min(Ik
(:,j))− 1, R ·max(Ik

(:,j)) + 1
]

are considered. Using R = 1 is enough to ensure optimal reconstruction of all
references.

Once valid values for (ζ j+1, . . . , ζd) have been determined, a new lower bounds
face containing #»ı k+1 has to be added. The algorithm for doing so is identical to the
one employed in Section 4.2 for upper bounds faces. In the proposed example, there is
only one solution fulfilling all conditions, #»ı 110 =

[
11 1

]
. The new face is calculated

as U(r,:)|wr =
[
−1 1 10

]
. The state of the reconstruction at this point is shown in

Figure 9.
The results obtained using both multiple lower and upper bounds are shown in

Figure 7d. As can be seen, the percentage of traces optimally reconstructed is increased
significantly. The two large subtraces in gramschmidt are suboptimally reconstructed,
as they are generated using rational coefficients, i.e., U ∈ QF×D (considered in Section 4.5).
The large non-reconstructed subtraces in lu can be optimally solved with the proposed
mathematical approach, but feature complicated loop interactions, which make the engine
get stuck exploring infeasible solution subspaces. More advanced exploration strategies
are necessary to cover this kind of trace, as will be next discussed in Section 4.4.

4.4. Exploring the Piecewise-Affine Solution Space

The exploration of the solution space in the single-domain TRE is simple: since the
number of potential candidate solutions +(j, #»ı k) is bounded by D (the dimensionality of
the iteration polyhedron) a simple breadth-first strategy is enough to keep branching under
control. When not allowed to increase in dimensionality, most points in the solution space
will have, at most, a single valid successor. Exploring entire levels of the solution space is a
relatively fast operation, and dimensionality increases are only allowed once it is confirmed
that no solution for the entire trace can be achieved under a given dimensionality constraint.

When reconstructing piecewise-affine traces, however, a vast amount of potential
solutions that were not valid under the single-domain approach must now be considered.
On the one hand, any point in the solution space may lie on a previously undiscovered
upper bounds face of the polyhedron. This means that backtracking must now consider
all previously visited points, while for the single-domain approach, only points sitting on
an upper bounds face are suitable candidates for a dimensionality increase. On the other
hand, any point on an upper bounds face may be followed by a point lying on a previously
undiscovered lower bounds face. Therefore, before discarding a branch, it is necessary
to explore all potential indices of the form ( #»ı k+1 = ⊕(j, #»ı )). As a consequence, in the
piecewise-affine setting an exhaustive, breadth-first traversal is intractable. For this reason,
more advanced backtracking heuristics are introduced.

For the input traces where the reconstruction process fails, the main source of stag-
nation are local maxima in the fitness value. We propose to identify these situations with
points in the exploration space that have neither linear solution, nor a solution introducing
a new upper bounds hyperplane. At this point, and before checking if any solution with a
new lower bounds face is feasible or increasing the polyhedron dimensionality, the engine
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checks whether the current recognition stint has produced enough progress. In this context,
we define a recognition stint as a set of consecutive iteration points that can be added to
the polyhedron without the need to add any new bounds or dimensions to the polyhedron.
If the length of the stint is above average, exploration proceeds normally. Otherwise,
the exploration of this branch is deferred and the most promising one according to its
fitness value is processed next. As shown in Figure 7e, 99.91% trace coverage is achieved
using this method. The 0.09% of uncovered loops is due to exploration heuristic failure,
and corresponds to 4 small and similar loops in heat-3d. The optimal solution paths
for these loops score consistently low on the employed fitness functions, and therefore
they are never explored before memory is exhausted. On the other hand, if we tune the
exploration heuristics to reconstruct these traces, then others become intractable. The 5.37%
of loops that are suboptimally covered corresponds to several small loops in which the
exploration heuristic finds a solution that is a local maximum, but more importantly to
the two gramschmidt subtraces mentioned in Section 4.3, which require the use of rational
coefficients to be optimally reconstructed. These are covered in Section 4.5. In all cases,
the achieved suboptimal solutions are at most one loop level deeper than the optimal ones,
while some of them have optimal dimensionality, but introduce more faces than necessary.

4.5. Half-Spaces with Rational Slopes

To avoid the performance overhead of using rational numbers in polyhedron bounds,
the canonical loop inequality is changed from:

ij ≤ ur,j(
#»ı )

to:
−U(r,j) · ij ≤ ur,j(

#»ı )

This equivalent representation does not require us to explicitly use rational coefficients.
However, the inequation systems governing polytope construction need to be changed:

1. The coefficient U(r,j) in the bounds matrix row r that encodes a face associated to ij
is no longer equal to ±1. Instead, U(r,j) ≤ −1 and U(r,j) ≥ 1 for upper and lower
bounds faces, respectively.

2. A hull point #»ı no longer satisfies U(r,:)
#»ı + wr = 0. Instead, U(r,:)

#»ı + wr <
∣∣∣U(r,j)

∣∣∣.
While the gramschmidt subtraces that originally used rational coefficients in their

loop bounds can be optimally reconstructed, accepting rational solutions can dramatically
increase the branching factor for certain traces (e.g., cholesky and lu). As a result, the total
coverage is reduced using this approach, as shown in Figure 7f.

A simple way to improve coverage and performance is to speculatively launch differ-
ent reconstruction threads sharing a single set of branches to explore, but with different
exploration heuristic parameters. This approach is covered in more depth in Section 4.6.

4.6. Performance of Generalized Trace Reconstruction

Sections 4.1–4.5 have introduced different strategies for reconstructing piecewise-affine
traces, from simply trying to build single-domain integer models using larger polyhedra to
allowing the use of multiple upper and lower bounds per iteration variable and rational
coefficients in bounds functions. These choices entail coverage tradeoffs, as previously
shown in Figure 7. This section analyzes performance tradeoffs. Figure 10 details the recon-
struction performance of tiled PolyBench/C 4.2.1 benchmarks. Pluto 0.11.4 was used to tile
the static control parts in PolyBench/C using the –tile parameter. No parallelization or
vectorization was performed. The different versions of the reconstruction tool were applied
to these traces. The evaluation was carried out in the same execution environment and
under the same conditions as for the reconstruction of single-domain traces in Section 3.6.

For easier analysis, the 30 PolyBench/C codes have been categorized into 8 different
types, according to Table 2 (the last column of Table 1 indicates the type of each benchmark).



Mathematics 2021, 9, 2368 24 of 29

The grouped performance is shown in Figure 10. As a general trend, simpler versions of
the reconstruction tool achieve better performance, specially when the optimal solution
can be found by the simpler approach. However, for some benchmark types simpler
versions achieve suboptimal reconstruction, employing a larger polyhedron dimensionality
than required. This trades off different computational complexities, as simpler versions
require simpler calculations but may potentially deal with higher dimensionality polyhedra
and, therefore, larger equation systems; while more complex approaches solve more
costly equations but may have a dimensionality advantage. Depending on the particular
characteristics of each benchmark, the tradeoff will tip the performance advantage towards
one approach or the other. For example, type 2 benchmarks can be reconstructed using
a single-domain approach, but need multiple upper bounds per loop to be optimally
reconstructed. This optimal solution is found five times faster than the single-domain one,
since it has on average two fewer dimensions than the suboptimal counterpart. Note that,
although using rational coefficients will never cause suboptimal solutions, it does reduce
coverage as for certain benchmarks the exploration algorithm is unable to converge.

Table 2. Benchmark types used in Figure 10 according to reconstruction strategy coverage. The symbols
X,∼, and× indicate optimal, suboptimal (excess dimensionality), and failed reconstruction, respectively.

Z Q
Type Single Mult. UB Mult. UB+LB Mult. UB+LB

1 X X X X
2 ∼ X X X
3 × X X X
4 ∼ ∼ X X
5 × ∼ X X
6 × × X X
7 × × X ×
8 × × ∼ X

1 2 3 4 5 6 7 8
Type of benchmark
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Multiple UB+LB,  (Sec 4.5)

Figure 10. Reconstruction performance grouping benchmarks by type as shown in Table 2. Results
are normalized to the performance of the approach using multiple upper and lower bounds over Z
presented in Section 4.4. Hatched bars indicate suboptimal reconstruction.

Out of the 258 loop scopes analyzed, the heuristic fitness function proposed in
Section 4.4 with (C = e) provides either the best overall performance or within 1 s of
the best overall performance in 205 cases. However, other C values provide different ex-
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ploration tradeoffs, outperforming (C = e) for particular problems. Furthermore, (C = e)
fails to provide a solution for 4 out of the 258 loop scopes. This suggests that a speculative
parallelization strategy can help improve overall coverage and performance. Figure 11
shows the performance of a speculative parallelization approach which employs four
threads to simultaneously explore the solution space for a given problem. Three of these
threads are configured to use integer-only solutions, with (C = {2, e, 4}). (C = 3) is dis-
carded since it provides no significant improvement over (C = e) in our experimental set.
The fourth thread is configured to explore rational solutions using (C = e). It is clear that
the performance of the analysis of traces generated by tiled codes has decreased. Again,
a single-strided trace from deriche takes the top spot performance-wise, processed at a
rate of 14 billion accesses per second. Focusing on non-single strided traces, the fastest
reconstruction is achieved for one of the references in symm, a symmetric matrix multiplica-
tion kernel. This is a 3D triangular loop, in which the inner loop is bounded by the value of
the outer induction variable, and the middle loop iterates 1200 times per iteration of the
outer one. The trace is processed at 66 million accesses per second. The worst performance
is observed for one of the subtraces from heat-3d, a stencil code solving the 3D heat
equation, reconstructed at a rate of only 4500 accesses per second. While this is a small
subtrace, reconstructed in only 90 s, it clearly showcases the overhead of processing higher
dimensionality traces. This is originally a 7D loop, sub-optimally reconstructed using eight
dimensions and 36 polyhedron faces (i.e., iteration bounds). Not only the complexity of the
equation systems is increased, but also the number of potentially valid paths. The entire
aggregated input is processed at a rate of 9 millions of accesses per second, almost three
times slower than the single-domain case.

Using this speculative approach, the total coverage is 99.99%, the only non-recon-
structed reference being a small one with only 431 thousand elements belonging to heat-3d.
The steps necessary to optimally reconstruct this trace are completely unreasonable from
a heuristic point of view, as many loops need to be incorporated in the first few steps of
the recognition process. Regarding trace compresion, we again compare raw sizes, sizes
using NumPy’s NPZ compression, and the sizes required to store U, #»w, and #»c , enough to
reconstruct the entire trace. The entire experimental set now takes up 202 GB, compressed
into 8.1 GB using NPZ, and 1.22 MB when reconstructed using the TRE. This represents a
1.7× 105 and 6.8× 103 compression factor with respect to the raw data and NPZ, respectively.

Another possible approach to improve coverage would be to not restrict ourselves to
a single loop nest per input stream, but rather to use a sequence of nests, each of which
generates a portion of the trace. We implemented this approach on the TRE, adding a
mechanism by which the analysis process stops if a timeout is reached without making
any progress on the trace, i.e., the explored nodes in the iteration space do not achieve
any progress on the input trace. This timeout was set to 10 s for experimentation. Using
this approach, all traces were correctly processed, achieving 100% total coverage. The four
cases where (C = e) fails to provide a solution are reconstructed using a variable number
of nests, ranging from 31 to 46 for each stream.

The theoretical complexity of the generalized algorithm is fundamentally unchanged
from the basic version discussed in Section 3.5, although two considerations need to be
made. Regarding performance, the algorithm is still O(DP) in the worst case, but each
iteration of the basic computational loop is now more expensive, as the number of ways
in which an intermediate solution can be manipulated has increased. In the basic version,
only regular iterations of loops and dimensionality increases are considered. Now, we can
also add new faces to the iteration polyhedron, both upper and lower bounds ones. As for
memory, the amount of memory required to compute the affine inequalities which govern
the solution space is only slightly higher, due to the increase in the number of faces of the
iteration polyhedron and the subsequent enlargement of the bounds matrices. The system,
however, generates a much larger number of candidate solutions, due to the support for
piecewise-affine domains. Nevertheless, since only one of these branches will be explored
at any given time (or a few ones, in speculatively parallelized scenarios), most of these
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unexplored branches do not require to be loaded at all times, and therefore this larger
footprint does not impact memory requirements.

100 101 102 103

Total trace accesses (x106)
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Figure 11. Reconstruction times (upper axis) and trace sizes (lower axis) for the tiled PolyBench/C
benchmarks, ordered by trace size. Axes are logarithmic. The left bar in the time axis represents the
reconstruction time for the original, untiled code and is included for reference.

5. Related Work and Applications

Several works have explored the representation of traces as loops to achieve benefits
such as compression or program optimization. Clauss et al. [17,18] characterized program
behavior using polynomial piecewise periodic and linear interpolations separated into
adjacent program phases to reduce function complexity. Ketterlin and Clauss [19] proposed
a method for trace prediction and compression based on representing memory traces as
sequences of nested loops with affine bounds and subscripts. From a piecewise-affine
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trace as input containing potentially multiple references, they synthesize a program that
generates the same trace when executed. Interestingly, although the objectives are very
similar to our work, their approach is very different. Full traces are modeled using im-
perfectly nested loops, without the need for pre- or post-processing steps. A stack of
terms (trace entries) is used, searching for triplets of terms that can be rewritten as a loop.
Non-minimal solutions may be found due to the greedy approach to merging triplets,
or if some algorithmic parameters (e.g., the window size) are not large enough to detect
regularity. Rodríguez et al. [7] analyzed the relative performance of this approach and the
TRE detailed in the current work.

In contrast, the TRE was designed having isolated references in mind to detect regular-
ity in seemingly non-affine sequences. The TRE has been employed to generate equivalent
affine versions of non-affine codes which may then be optimized using an off-the-shelf
polyhedral compiler. An example is the optimization of the sparse matrix-vector multi-
plication by Augustine et al. [2]. The approach employed was to (i) trace the execution of
a non-affine/irregular code; (ii) analyze the generated trace using the TRE; (iii) use the
TRE output to generate an affine code that performs the same computation as the original
one; and (iv) use off-the-shelf polyhedral compilers to perform the code generation step.
Generating minimal loops in this case is critical to avoid large control overheads in the
automatically generated affine codes.

On the more general topic of trace compression, Larus [20] proposed whole program
paths (WPP), a compressed directed acyclic path trace format. Zhang and Gupta [21]
developed a compaction technique for WPPs by eliminating redundant path traces and
organizing trace information according to a dynamic call graph. Burtscher et al. [22]
proposed VPC, a family of four compression algorithms that employ value predictors to
compress extended program traces. These include PCs, contents of registers, or values on
a bus.

Trace-based code reconstruction has been successfully employed for automatic par-
allelization. Holewinski et al. [23] use dynamic data dependence graphs derived from
sequential execution traces to identify vectorization opportunities. Apollo [24,25] is a dy-
namic optimizer that uses linear interpolation and regression to model observed memory
accesses. Nearly affine accesses are approximated using two hyperplanes enclosing poten-
tially accessed memory regions, and their convex hull incorporated into the dependence
model. Skeleton optimizations are statically built, reducing runtime overhead; and are
dynamically selected, instanced, and verified using speculative mechanisms.

To reduce remote memory accesses in NUMA architectures, good data placement is
essential. Piccoli et al. [26] propose a combination of static and dynamic techniques for mi-
grating memory pages with high reuse. A compiler infers affine expressions for array sizes
and the reuse of each memory access, and inserts checks to assess the profitability of poten-
tial page migrations at runtime. Our proposal can also provide the essential information
for data placement in NUMA architectures, either statically after trace-based reconstruction
and reconstructed code analysis, or dynamically as a software-based prediction mechanism.

Prior research investigated the problem of designing ad-hoc memory hierarchies for
embedded applications. Catthoor et al. [27] proposed a compiler-based methodology to
derive optimal memory regions and associated data allocation. Angiolini et al. [28] use
a trace-based method that analyzes the access histogram to determine which memory
regions to allocate to scratchpad memory [29]. Issenin and Dutt [30] instrument source
code to generate annotated memory traces including loop entry and exit points, and use this
information to generate affine representations of amenable loops and optimize scratchpad
allocation. The TRE can be employed to apply affine techniques for custom memory
hierarchy design for applications for which affine analysis of the source code is not feasible.
This is of particular interest for IP cores included in embedded devices. It can also be
employed to drive memory allocation managers.
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6. Concluding Remarks

This work has presented in full depth an algebraic approach for the construction of
formal models of loop codes through the analysis of their memory traces. A Trace Recon-
struction Engine (TRE) iteratively builds candidate loops that model increasingly larger
portions of the trace, refining and discarding them according to the ordered access strides
in the memory trace. The mathematical formulation of the problem has been carefully
studied, developing methods for the efficient traversal of the solution space. The TRE can
be configured to explore different approaches in parallel, leveraging different computa-
tional and complexity tradeoffs. The efficacy of the approach has been demonstrated using
both single-domain and piecewise-affine inputs, using the original and tiled PolyBench/C
benchmarks, respectively. The experimental results have shown excellent average recon-
struction performance, allowing to model traces containing billions of entries in a matter
of minutes. The proposed modeling is widely applicable to a number of different prob-
lems, such as automatic code generation and optimization, trace compression, dynamic
dependence analysis, memory management, or memory hierarchy design.
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