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Feature selection is a subfield of machine learning focused on reducing the dimensionality of datasets 
by performing a computationally intensive process. This work presents Parallel-FST, a publicly available 
parallel library for feature selection that includes seven methods which follow a hybrid MPI/multithreaded 
approach to reduce their runtime when executed on high performance computing systems. Performance 
tests were carried out on a 256-core cluster, where Parallel-FST obtained speedups of up to 229x for 
representative datasets and it was able to analyze a 512 GB dataset, which was not previously possible 
with a sequential counterpart library due to memory constraints.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
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1. Introduction

The Big Data phenomenon has become popular in recent years 
due to the continuous increase of data stored in different fields 
such as bioinformatics, marketing, physics or engineering. How-
ever, these data are only valuable if we can extract useful informa-
tion from them. This increase of data slows down their analysis, 
and occasionally it does not provide useful information due to the 
presence of redundant or irrelevant data.

Feature Selection (FS) is the Machine Learning (ML) procedure 
to remove these redundant and irrelevant data from the datasets, 
making them smaller and thus more feasible to analyze without 
losing relevant information. There exist many FS methods [2,22], 
each one with its advantages and drawbacks which make them 
useful for different scenarios. However, most FS methods present 
quadratic complexity related to the number of features, which 
makes them impractical for large datasets. In this work we present 
Parallel-FST,1 a novel library that includes parallel implementations 
of seven highly employed FS methods, all of them based on Mutual 
Information (MI). More concretely, Parallel-FST includes the same 
methods as FEAST,2 a broad suite of FS methods implemented in C 
and Matlab that is widely used by researchers from different fields 
of computational science. The FS methods included in FEAST (and 
thus Parallel-FST) are theoretically described in [4].
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(J. González-Domínguez), juan@udc.es (J. Touriño).
1 Publicly available at https://gitlab .com /bieito /parallel -fst.
2 https://github .com /Craigacp /FEAST.
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Parallel-FST allows us to execute all these FS methods in a High 
Performance Computing (HPC) system and thus complete the anal-
yses of large datasets in a reasonable time. Specifically, it was 
developed using a hybrid approach with Message Passing Interface 
(MPI) [32] and C++ threads, for distributed- and shared-memory 
support, respectively.

The rest of the paper is organized as follows. Section 2 sum-
marizes the related work and state of the art. Section 3 explains 
the background about FS necessary to understand the rest of the 
work, such as the base library FEAST and its FS methods. The par-
allel implementation and optimization of the methods included 
in Parallel-FST is described in Section 4. Section 5 provides the 
experimental evaluation in terms of runtime and scalability. Fi-
nally, concluding remarks and future work are presented in Sec-
tion 6.

2. Related work

There exist some ML libraries in the state of the art, such as 
WEKA [10] or MAST [14], which include FS methods that can 
be executed on parallel systems. Nevertheless, these parallel im-
plementations are only valid for shared-memory systems, which 
are quite limited in terms of scalability as they only include tens 
of cores. If more resources are needed, scientists can resort to 
distributed-memory systems such as clusters or supercomputers 
but, up to our knowledge, there was no FS library available that 
could exploit these architectures prior to Parallel-FST.

Regardless, the idea of using parallel computing to speed up 
a certain FS method has been extensively applied, using clusters, 
supercomputing facilities, hardware accelerators (such as GPUs), or 
le under the CC BY-NC-ND license 
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Table 1
State of the art related to parallel FS.

Name Available Framework Year Ref.

PE-EFS No CUDA 2021 [11]
CUDA-JMI Yes CUDA 2020 [9]
parallel M-FS No Spark 2020 [34]
Hadoop-Voting No Hadoop 2020 [37]
fast-mRMR-MPI Yes MPI 2019 [8]
DiCFS Yes Spark 2019 [24]
PAGreedy No Threads 2019 [21]
MR-GAFS No Hadoop 2018 [28]
PAJMI No Threads 2017 [20]
mRMR-MR Yes Spark 2017 [27]
Asy-OS No MPI 2016 [35]
Parallel Filter No Threads 2016 [29]
Fast-mRMR Yes CUDA/Spark 2016 [26]
DWFS Web MPI 2015 [31]
VLSRF No CUDA 2015 [16]

clouds. Table 1 summarizes the state of the art related to the use 
of HPC to accelerate FS algorithms.

Focusing on distributed-memory systems (the target of Parallel-
FST), several approaches are based on the message-passing pa-
radigm. Specific examples include DWFS [31], with a parallel ge-
netic algorithm, fast-mRMR-MPI [8], based on a variant of the 
popular mRMR method [26], and the parallel implementation of 
an online FS algorithm presented in [35].

Furthermore, Big Data frameworks such as Hadoop or Spark 
are gaining attention in recent years and becoming more popu-
lar to develop FS codes that can be executed not only on clus-
ters, but also on cloud environments. We can cite, among oth-
ers, parallel implementations of FS methods based on random 
forests [34], genetic algorithms [37,28], the mRMR algorithm [27], 
and Correlation-based Feature Selection (CFS), either isolated [24]
or combined with methods [12,30].

However, after a thorough analysis of the literature, we can as-
sert that in all these previous works either the code is not publicly 
available or it is reduced to a single algorithm that is not widely 
employed by the research community. An integral library such as 
Parallel-FST that provides several FS methods is a must, so that 
researchers can adapt their analyses to the characteristics of the 
data, as required.

3. Background: feature selection with mutual information

Parallel-FST is based on FEAST, and it includes parallel imple-
mentations of the FS methods that are available in the original 
library (see [4] for further theoretical details). FEAST has been 
chosen as basis as it is highly cited and has been widely used 
and tested by numerous researchers. In fact, it has been used for 
studies in diverse areas such as medicine [3,15], genetics [33], elec-
tronics [7], or transportation [18,6].

As previously mentioned, FS algorithms try to select only those 
features that are interesting for the problem, discarding irrelevant 
or redundant ones. Nevertheless, relevance and redundancy cannot 
be directly measured, so they must be approximated. All FS algo-
rithms included in Parallel-FST are based on MI for this estimation.

Entropy, as the fundamental information unit of a random vari-
able, is necessary to calculate MI. It is denoted by H(X), and quan-
tifies the uncertainty present in the distribution of X . It is defined 
as:

H(X) = −
∑

x∈X

p(x) log p(x) (1)

where x is any value that the random variable X can take. The 
entropy of a variable will be lower if its distribution is biased to-
wards a particular event, and higher when all events present the 
same probability to occur.
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Entropy can be conditioned by other events, and the conditional 
entropy of a random variable X , given another variable Y , can be 
calculated with the following expression:

H(X |Y ) = −
∑

y∈Y

p(y)
∑

x∈X

p(x|y) log p(x|y) (2)

Conditional entropy can be understood as the amount of uncer-
tainty that X holds after the result of Y becomes known.

MI measures the amount of information shared between two 
variables, and it can be derived from entropy. The MI between two 
random variables X and Y is computed as:

M I(X; Y ) = H(X) − H(X |Y )

=
∑

x∈X

∑

y∈Y

p(xy) log
p(xy)

p(x)p(y)

(3)

Since it is the difference between two entropies, MI can also be 
understood as the amount of uncertainty that is removed once Y
is known. Alternatively, a simpler definition could be the amount 
of information that one variable provides over the other.

As with entropy, MI can also be conditional. That is, the amount 
of information that is still shared between two variables after a 
third one becomes known. The MI between X and Y conditioned 
by Z is computed as follows:

M I(X; Y |Z) = H(X |Z) − H(X |Y Z)

=
∑

z∈Z

p(z)
∑

x∈X

∑

y∈Y

p(xy|z) log
p(xy|z)

p(x|z)p(y|z)
(4)

The following subsections provide a basic introduction to the 
algorithms included in Parallel-FST. It should be noted that the no-
tation Jm(X) refers to the score of a random variable (or feature) 
X when using the algorithm m. High scores mean high relevance 
and low redundancy.

3.1. MIM - Mutual Information Maximisation

A first approach for computing the score of each feature could 
be some kind of correlation metric between the feature and the 
class label, and MI is a metric that can be used for this purpose. 
This way, the MIM score for a feature Xk and a class Y is computed 
as follows:

J M I M(Xk) = M I(Xk; Y ) (5)

This heuristic has often appeared in the literature, for example 
in [17]. The MIM score assumes independence between the fea-
tures of the dataset, so it only considers the relevance of a feature, 
but not the redundancy. For this reason, the score only needs to be 
computed once for each feature of the dataset, which makes MIM 
the least computationally complex method of FEAST and Parallel-
FST.

The main disadvantage appears when features are not indepen-
dent. For example, if the feature with the highest score appears 
twice in the dataset, it will be selected more than once, and the 
set of selected features will hold a high level of redundancy.

3.2. CondMI - Conditional Mutual Information

The CondMI criterion is an optimization derived from the for-
mulation of the FS problem as a conditional likelihood problem [4]. 
The score for a feature Xk , a class Y and the set of already selected 
features S is computed as:

JCondM I (Xk) = M I(Xk; Y |S) (6)



B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
That is, the MI between the feature and the class, conditioned 
by the features selected so far.

3.3. Methods in the beta-gamma space

3.3.1. MIFS - Mutual Information Feature Selection
The MIFS criterion was presented in [1] and introduces en-

hancements over MIM in order to reduce redundancy. The compu-
tation of the score of a feature Xk , a class Y and a set of selected 
features S follows the formula:

J M I F S(Xk) = M I(Xk; Y ) − β
∑

X j∈S

M I(Xk; X j) (7)

where β is a user-defined parameter that can be understood as the 
disagreement with the assumption of dependency among features.

3.3.2. CIFE - Conditional Infomax Feature Extraction
This criterion, which was proposed in [19], can be derived from 

several transformations of CondMI. The score for a feature Xk , a 
class Y and a set of selected features S is computed with the fol-
lowing expression:

JC I F E(Xk) = M I(Xk; Y )

−
∑

X j∈S

M I(Xk; X j) +
∑

X j∈S

M I(Xk; X j|Y ) (8)

Three main terms can be identified: the MI with the class 
M I(Xk; Y ), which suggests relevance; the MI with the already se-
lected features 

∑
M I(Xk; X j), which suggests redundancy, and the 

MI with the already selected features conditioned by the class ∑
M I(Xk; X j|Y ), which can be understood as conditional redun-

dancy.

3.3.3. Beta-gamma space
As can be seen, the formulas of the MIFS and CIFE criteria have 

a similar shape. If we parametrize the terms for redundancy and 
conditional redundancy, we can define a two-dimensional space 
in which both criteria could be expressed as a linear combination 
of information theory terms. That is, with two parameters (β and 
γ ) we can set a weight for redundancy and conditional redun-
dancy.

This way, any criterion in this space (named “Beta-Gamma”) 
can be defined as:

J BetaGamma(Xk) = M I(Xk; Y )

− β
∑

X j∈S

M I(Xk; X j) + γ
∑

X j∈S

M I(Xk; X j|Y )(9)

From this expression, some already explained criteria can be 
found:

• MIM: β = 0, γ = 0
• MIFS: β ∈ [0, 1], γ = 0
• CIFE: β = 1, γ = 1

Since both MIFS and CIFE can be derived from the Beta-Gamma 
space, they were merged into a single method “Beta-Gamma” 
rather than implementing a different method for each of them. 
Meanwhile, although MIM can be computed with β = 0 and γ = 0, 
it was implemented in a single method in order to avoid the com-
putation of information measurements that would be otherwise 
multiplied by zero.
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3.4. JMI - Joint Mutual Information

The JMI criterion is an alternative approach to MIFS presented 
in [36], which aims to increase complementary information among 
features rather than minimizing redundancy. Given a feature Xk , 
the class Y and the set of already selected features S , the JMI score 
is computed as follows:

J J M I (Xk) =
∑

X j∈S

M I(Xk X j; Y ) (10)

That is, the sum of the information between the class and a 
random joint variable Xk X j is defined by joining the candidate 
Xk with every already selected feature. This criterion is based on 
selecting a candidate feature when it contributes with new infor-
mation complementary to the other selected features.

3.5. mRMR - Max-Relevance Min-Redundancy

Another criterion that varies with the number of selected fea-
tures is mRMR [25]. However, it does not take conditional redun-
dancy into account unlike CIFE. The mRMR score of a feature Xk

according to the class Y and a set of selected features S can be 
computed as:

JmRM R(Xk) = M I(Xk; Y ) − 1

|S|
∑

X j∈S

M I(Xk; X j) (11)

3.6. ICAP - Interaction Capping

This criterion was proposed in [13] and, unlike the previous 
methods, it makes use of order operators. The score of a feature 
Xk , given a class Y and a set of selected features S , is computed 
as:

J IC A P (Xk) = M I(Xk; Y )

−
∑

X j∈S

max
[
0, {M I(Xk; X j) − M I(Xk; X j|Y )}] (12)

The usage of order operators complicates a probabilistic inter-
pretation of the ICAP criterion. However, it can be seen that fea-
tures with higher redundancy will achieve lower scores.

3.7. DISR - Double Input Symmetrical Relevance

Finally, DISR is a modification of JMI proposed in [23]. The score 
of a feature Xk , given the class Y and the set of selected features S , 
is calculated by dividing the MI value by the conditional entropy, 
with the following expression:

J D I S R(Xk) =
∑

X j∈S

M I(Xk X j; Y )

H(Xk X j|Y )
(13)

3.8. Inclusion of weights

Some of the described methods (MIM, CondMI, JMI and DISR) 
have weighted versions. These approaches take an additional vec-
tor of weights that is used to specify the importance of each sam-
ple, so that the computation of the entropy or MI can be manually 
biased.

For instance, the computation of the MI for two variables X
and Y would be calculated as follows, where w(xy) is the weight 
of the co-occurrence of two values of each feature:
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Fig. 1. Diagram of the distributed execution for all methods included in Parallel-FST.
Table 2
Example of dividing a continuous range 
between 0.6 and 3.1 into five bins.

Bin Range

0 [0.6, 1.1)
1 [1.1, 1.6)
2 [1.6, 2.1)
3 [2.1, 2.6)
4 [2.6, 3.1]

M I(X; Y ) =
∑

x∈X

∑

y∈Y

w(xy)p(xy) log
p(xy)

p(x)p(y)
(14)

This makes it possible to introduce knowledge and to give a 
meaning to certain samples.

4. Methodology

The Parallel-FST library includes the explained FS methods, 
written in C++ with MPI routines and threads to accelerate the 
execution on multicore clusters. Information about system require-
ments, as well as instructions to install, compile, and execute 
the library are included in its website: https://gitlab .com /bieito /
parallel -fst.

Fig. 1 illustrates the general workflow of the approach followed 
by Parallel-FST. Besides the appropriate work distribution among 
processes and threads, with the necessary synchronizations to find 
the best candidate features, the workflow also includes a prepro-
cessing step (data discretization) and two optimizations (semi-
distributed data loading and range compression). Each of these 
phases are detailed in the following subsections.

4.1. Data discretization

MI, and consequently all the methods explained in Section 3, 
work with discrete data. As many real datasets contain continu-
ous data, Parallel-FST also includes an auxiliary tool to discretize 
the input datasets as a preprocessing step. Specifically, it applies 
a binning approach where the continuous range is divided into 
n bins or fragments of equal length, and each value in the input 
dataset is replaced by the identifier of the fragment that contains 
it.

Tables 2 and 3 illustrate, for an example with five continuous 
data between 0.6 and 3.1, the procedure to convert them into dis-
crete values using five bins. First, the range is divided into five 
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Table 3
Assignment of a discrete value to a continuous one using the bins of the previous 
table.

Feature Value

f 1.4 0.6 0.9 3.1 2.8
f ′ 1 0 0 4 4

fragments of equal size (0.5) and the bins are created (see Table 2). 
Then, the continuous values are replaced by the identifier of the 
bin (Table 3).

4.2. Data and workload distribution

Parallel-FST uses MPI to exploit the computational capability of 
HPC clusters, by distributing data and work among the available 
cluster nodes and cores within each node. Algorithm 1 shows the 
structure of the FS methods included in Parallel-FST. They all start 
with the selection of the first feature as the one having the high-
est MI with the class (Lines 5 to 8). Then, the rest of the features 
are selected according to the metric used by the FS method (Line 
15), as seen in Section 3. As previously explained, most metrics 
depend not only on the class, but also on the already selected fea-
tures. Note that Line 13 avoids calculating the score of previously 
selected features, as they cannot be chosen again.

An analysis of the pseudocode shows that most of the work is 
performed in the nested loops of Lines 10 and 12. The outer loop 
(Line 10) cannot be parallelized, as an iteration cannot start un-
til the previous one has finished (the information of the previously 
selected feature is necessary to choose the next one). Nevertheless, 
the inner loop is a suitable target for parallelization as the com-
putation of the score for each feature is independent of the other 
computations. Therefore, the FS implementations in Parallel-FST di-
vide the input dataset into N P blocks with the same number of 
features per block, N P being the number of MPI processes (Lines 
6 and 12). Each process computes the score of all the features in 
the block. This distribution of features is performed once at the 
beginning of the execution and all processes work over the same 
features in all the iterations of the outer loop. This static data dis-
tribution with equal-sized blocks is suitable for the FS methods 
included in Parallel-FST as the workload (computation of the score) 
is similar for all features (the complexity depends on the number 
of samples, which is the same for all features). Consequently, the 
workload is balanced among the MPI processes. The only imbal-
ance can be generated by those features that have already been 

https://gitlab.com/bieito/parallel-fst
https://gitlab.com/bieito/parallel-fst


B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
Algorithm 1: General structure of the FS methods included 
in Parallel-FST for each process (MPI routines in red and 
loops shared among threads in blue).

1 Input: Discrete subdataset with M
N P features, N samples, and one class Y ; 

Number of features to select N S
2 Output: Vectors selIds and selScores, of length N S , with the ids of the 

selected features and the scores obtained by the metric, respectively

3 Initialize f eat Score as a vector of length M
N P

4 Initialize selData as a vector of length N S
5 // Compute scores of local features (multithread)

6 for every local feature Fi with 0 ≤ i < M
N P do

7 f eat Score[i] = M I(Fi; Y )

8 selIds[0], selScore[0] = FindAndShareBest(featScore, selData[0])
9 // Select the other features

10 for every k with 0 < k < N S do
11 // Compute scores for unselected local features

12 for every local feature Fi with 0 ≤ i < M
N P do

13 if i is not in selIds then
14 // Depends on the selected metric
15 f eat Score[i] = calcScore(Fi; Y ; selData)

16 selIds[k], selScore[k] = FindAndShareBest(featScore, selData[k])

Procedure FindAndShareBest(featScore, selData_k)
17 // Find id and score of best local feature
18 localId = argMax( f eat Score)
19 localScore = max( f eat Score)
20 // Find best global score and owner process
21 globalScore, oRank = AllreduceM A X L O C (localScore, pRank)

22 if oRank == pRank then
23 globalId = localId + pRank ∗ M

N P
24 selData_k = FlocalId

25 f eat Score[localId] = 0
26 globalId = BcastoRank→W O RLD (globalId)

27 selData_k = BcastoRank→W O RLD (selData_k)

28 return globalId, globalScore

selected and thus do not need to have their score calculated again 
(Line 13). The worst scenario would be that all selected features 
fall in the same block. However, we must take into account that 
in a real world analysis the percentage of selected features must 
be low in order to obtain useful information. Therefore, the im-
pact of this workload imbalance is almost negligible even in the 
worst-case scenario.

Each process has the data corresponding to its block of features 
stored into its memory prior to the nested loop, through the pro-
cedure that will be explained in Subsection 4.4. Therefore, the only 
point of synchronization among processes is the choice of the fea-
ture with the highest score (procedure FindAndShareBest in 
Algorithm 1). Due to distributing the loops of Lines 6 and 12, each 
process has found the most promising feature of its block, but the 
algorithm must select only the best one among them. This is per-
formed by an MPI_Allreduce collective with the MPI_MAXLOC
operator (Line 21). Once the feature is selected, the owner process 
sends its data to the other processes with MPI_Bcast routines, 
as this information is necessary in the next iterations of the outer 
loop to compute the new scores (Line 15).

4.3. Hybrid MPI/multithreaded implementation

The previous subsection has explained how the data and work-
load are distributed among different MPI processes. This approach 
would be sufficient to execute the FS methods on distributed-
memory systems by creating one MPI process per core. However, 
Parallel-FST includes a second level of parallelism, where each pro-
cess can launch several C++ threads that collaborate in the compu-
tation of the scores of the block.

Consequently, the work of the loops in Lines 6 and 12 is dis-
tributed in two levels: first, the features are divided into equal-
sized blocks, with one block per MPI process; and, second, the 
110
features of each single block are distributed among the threads 
launched by the owner process.

One typical use of this hybrid MPI/multithreaded approach on 
modern multicore clusters consists in creating one process per 
node, and the same number of threads as cores in the node, but in-
termediate configurations with different number of processes and 
threads can be applied. This approach has the following advan-
tages:

• Creation, synchronization and destruction of threads is lighter 
than for processes. Therefore, reducing the number of pro-
cesses per node in each execution should decrease runtime.

• It allows to exploit the HyperThreading technology currently 
available in most processors, where two logical threads can 
share the resources of a single physical core.

• As explained in the previous subsection, the data of the 
lastest selected feature must be sent from its owner pro-
cess to the others. The use of threads allows replacing costly 
explicit message-passing communications (broadcasts in this 
case) with implicit shared-memory communications at node 
level.

4.4. Semi-distributed data loading

As mentioned in Subsection 4.2, the input datasets are parti-
tioned and distributed among MPI processes so that they can work 
in parallel over their assigned blocks of features. A naive approach 
for this data distribution would consist in the root process read-
ing the whole dataset from disk and storing it into a buffer, which 
would later be scattered among all processes using the appropriate 
MPI routines. However, that approach is limited by the memory of 
the node where the root process runs, so it would not be possi-
ble to straightforwardly analyze datasets larger than this memory 
size.

Since the amount of information that is collected has signif-
icantly grown in the latest years, most extremely large datasets 
are nowadays stored using a sparse format, i.e., some values (usu-
ally zeros) are not explicitly stored in order to reduce disk storage. 
Parallel-FST needs a solution that allows an efficient processing 
of these huge sparse datasets. For instance, the sequential imple-
mentations in FEAST need the data as dense matrices so that a 
preprocessing step to convert them is required. Our solution con-
sists of three steps, following the diagram of Fig. 2:

1. The root process reads the dataset as a sparse matrix.
2. The MPI_Bcast collective is used to send the sparse matrix 

to all processes.
3. Each process “expands” as a dense matrix its assigned block of 

features exclusively.

In this way, the memory size limitation is overcome, and it is 
possible to analyze datasets that fulfill these two conditions:

• They fit in the memory of one node in sparse format.
• The block of features assigned to each MPI process fits in its 

available memory.

These conditions are significantly less restrictive than the origi-
nal one (the whole matrix in dense format should fit in the mem-
ory of only one node) and thus this semi-distributed data loading 
allows working over large datasets. Furthermore, as the broadcast 
is performed with the data in sparse format, its impact on the total 
runtime remains limited.

It should be noted that other approaches could be developed 
for this purpose. For instance, the root process could iteratively 
read blocks of data from disk, expand them into dense format, 
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Fig. 2. Diagram of the semi-distributed data loading procedure.

Feature Values

f1 0 2 2 0 1
f2 1 3 3 2 1

f1 \ f2 0 1 2 3
0 0 1 1 0
1 0 1 0 0
2 0 0 0 2

Fig. 3. Features and co-occurrence matrix (dimension 3x4) when the number of 
different values is close to the difference between the minimum and the maximum 
sample.

and send each block of features to the process that will use it. 
However, this approach would perform all the format translation 
sequentially, with high impact on performance, while our semi-
distributed data loading performs the expansion in parallel. More-
over, communication would be more expensive as blocks would be 
sent in dense format. A similar alternative that sends the data to 
the other processes in sparse format could also be implemented. 
However, many widely employed sparse formats store the datasets 
in a sample-major fashion (for instance, LIBSVM [5]), while the 
FS algorithms work with feature-major matrices. This would mean 
that each row (i.e. sample) would be split into blocks, and each 
block would be sent to a different process, so there would be a 
large number of small size communications, and therefore high 
overhead.

Finally, it is important to note that Parallel-FST is flexible 
enough to work with different types of files as input. In scenar-
ios where the dataset is stored in dense format, it is loaded with 
the naive approach explained at the beginning of this subsection. 
The semi-distributed data loading is only applied to sparse for-
mats, which is the common case for large datasets.

4.5. Range compression

The original sequential FS methods are based on the usage 
and combination of information metrics, which need to calculate 
co-occurrences between values instead of focusing on the values 
themselves. For instance, the values {100, 200, 100} are treated 
similarly to {1, 2, 1}. In order to compute the information metrics 
between two features, bidimensional histograms are created. How-
ever, when intermediate values are missing in the feature, these 
histograms may contain some rows or columns in which all values 
are zero. These rows and columns imply a waste of memory and 
computation time since they have no impact in the results of the 
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Feature Values

f3 0 1000 1000 0 1000
f4 1000 2000 2000 1000 1000

f3 \ f4 0 . . . 1000 . . . 2000
0 0 . . . 2 . . . 0

. . . . . . . . . . . . . . . . . .
1000 0 . . . 1 . . . 2

Fig. 4. Features and co-occurrence matrix (dimension 1001x2001) when the number 
of different values is much lower than the difference between the minimum and the 
maximum sample.

information metrics. Two examples are shown in Figs. 3 and 4. The 
former illustrates a common case, where only the first column is 
completely full of zeros, while the latter shows an extreme exam-
ple where memory requirements are huge.

Some datasets hold features that take values from a wide 
range of numbers, so this issue might slow the computation or 
even completely fill the memory of the system. For example, a 
dataset about CPUs in which there are features for minimum 
and maximum frequency (in kHz) with ranges [0, 700000] and 
[500000, 4000000] respectively, would need a co-occurrence ma-
trix of 10 TB.

Parallel-FST includes an efficient solution to this problem, 
which has been named as “range compression”. It basically per-
forms a translation of the values of the feature so that the inter-
mediate values are suppressed. This way, the creation and compu-
tation over rows and columns that do not affect the results of the 
metrics are avoided.

Algorithm 2 shows a pseudocode of the procedure. Each feature 
(i.e. row) is processed independently, and Parallel-FST attempts 
to find new values so that the range of the resulting feature is 
minimal. This is achieved through f eatMap and mapCounter: the 
former an array used to keep the relationship between new and 
old values, and the latter an accumulator that counts the number 
of distinct values found so far.

Algorithm 2: Range compression procedure.

1 Input: Matrix A with M rows (features) and N columns (samples)
2 Output: Updated matrix A

3 for every feature F j in A with 0 ≤ j < M do
4 maxState ← max(F j)

5 f eatMap ← zeros(maxState)
6 mapCounter ← 1
7 for every i with 0 ≤ i < N do
8 old_s ← F j [i]
9 if f eatMap[old_s] = 0 then

10 f eatMap[old_s] ← mapCounter
11 mapCounter ← mapCounter + 1
12 F j [i] ← f eatMap[old_s] − 1

This procedure presents linear complexity, thus its execution 
is very fast. Consequently, the overhead of performing the range 
compression is almost negligible, but the impact on the reduc-
tion of the FS execution time can be huge. Furthermore, as range 
compression is a per-feature procedure, it can be executed in 
parallel by the MPI processes, thus further reducing the over-
head.

The impact of the range compression can be observed in the ex-
amples of Figs. 5 and 6, which show the results of its application 
to the features of Figs. 3 and 4, respectively. Note that the columns 
and rows that were composed of zeros, which were useless to the 
information metrics, do not appear anymore. In the extreme sce-
nario (Figs. 4 and 6) the dimension of the co-occurrence matrix is 
reduced from two million elements to only four.
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Feature Values

f ′
1 0 1 1 0 2

f ′
2 0 1 1 2 0

f ′
1 \ f ′

2 0 1 2
0 1 0 1
1 0 2 0
2 1 0 0

Fig. 5. Features and co-occurrence matrix after range compression (dimension 3x3 
instead of 3x4) when the number of different values is close to the difference be-
tween the minimum and the maximum sample.

Feature Values

f ′
3 0 1 1 0 1

f ′
4 0 1 1 0 0

f ′
3 \ f ′

4 0 1
0 2 0
1 1 2

Fig. 6. Features and co-occurrence matrix after range compression (dimension 2x2 
instead of 1001x2001) when the number of different values is much lower than the 
difference between the minimum and the maximum sample.

As a final remark note that the range compression is a general 
optimization technique that can also be directly applied to the im-
plementations available in FEAST or other sequential libraries in 
order to improve their performance.

5. Experimental evaluation

Parallel-FST has been extensively compared to the sequential C 
version of FEAST,3 whose FS methods have been presented in [4]. 
First, it was proved that the output results of the methods available 
both in FEAST and Parallel-FST are identical. The rest of this section 
compares both libraries in terms of performance.

The comparison with the state of the art was focused on FEAST 
as it is the only library in the literature that includes all these 
methods, its C implementations are fast for sequential compu-
tation, it is widely employed by scientists, and provides exactly 
the same results as Parallel-FST. Although FEAST does not include 
any support for parallel computing the runtime and speedups 
presented in this section are sufficient to prove the quality of 
the hybrid MPI/multithreaded implementation used in Parallel-FST. 
Weka [10], another highly employed library with FS and multi-
threaded support, was also considered for comparison. However, it 
was discarded for two reasons. On the one hand, the FS methods 
included in Weka differ from those implemented in Parallel-FST. As 
will be seen in this section the runtime for FS significantly depends 
on the method, so it would be unfair to compare the speed of dif-
ferent algorithms. On the other hand, Weka is implemented with 
Java, employing its multithreaded support for shared-memory sys-
tems. As Java executions are based on a virtual machine, they are 
usually slower than those of C/C++ and thus not comparable with 
the FEAST/Parallel-FST implementations in order to obtain proper 
conclusions.

5.1. Experimental configuration

A multicore cluster with 16 nodes, each one with two octa-core 
Intel Xeon E5-2660 processors and 64 GB of memory, has been 
used. It means that our experiments could be executed on up to 

3 https://github .com /Craigacp /FEAST.
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Table 4
Characteristics of the datasets (the size is calculated using 8B per value).

#Features #Samples #Classes Size

Epsilon 2,000 400,000 2 6.96GB
RCV1 47,236 20,242 2 7.12GB
News20 62,061 15,935 20 7.37GB
SVHN 3,072 531,131 10 12.16GB
E2006 4,272,227 16,087 - 512.06GB

256 cores (16 cores per node). Moreover, as this architecture pro-
vides HyperThreading, up to 512 threads can be used (two logical 
threads per core). The 16 nodes are connected through an Infini-
Band FDR network with high bandwidth and low latency.

Regarding software, both FEAST and Parallel-FST used the GNU 
C/C++ compiler v8.3.0, while the latter was also linked to the 
OpenMPI library v3.1.4. Finally, all the experiments were run with 
the nodes in exclusive mode, i.e. the hardware was never shared 
by other jobs.

Five publicly available datasets with different characteristics 
(summarized in Table 4) have been used for the evaluation. They 
were all obtained from the LIBSVM collection [5], which stores 
them in sparse format in order to reduce disk and memory con-
sumption. Therefore, the semi-distributed data loading technique 
presented in Subsection 4.4 is very useful in this case. On the one 
hand, two of the datasets (Epsilon and SVHN) are used as ex-
amples for scenarios with more samples than features. The first 
one, with only two classes, is an artificial dataset created for the 
“Pascal large scale learning challenge”. The second dataset, which 
is multiclass, stores pictures of house plates with 32x32 resolu-
tion, with the features representing the RGB values for each pixel. 
On the other hand, the rest of datasets contain more features than 
samples. RCV1 is a dataset with two classes that includes news 
categorized by hand for research purposes. News20 also contains 
documents about news, divided into 20 classes. Finally, E2006 was 
used as an example of a huge dataset that does not fit into the 
memory of one node. It contains information of reports obtained 
from several US companies between the years 1996 and 2006. This 
dataset is usually employed for regression, thus not having a spe-
cific feature used as class.

All the experiments shown in this section have been obtained 
after applying a discretization with 128 bins and by fixing the 
number of selected features to 200. This number is high enough 
to show whether there is workload imbalance because the already 
selected features do not require work, but not too high to avoid 
selecting too many features, which will never be the case in a real 
scenario. Fig. 7 shows (in logarithmic scale) the runtime of the 
different FS methods when using the sequential version available 
in FEAST (and applying the range compression technique). E2006
could not be analyzed as loading it into memory requires more 
than the 512 GB available in a single node of the cluster. This fig-
ure shows that the runtime is extremely variable among the FS 
methods. For instance, as explained in Section 3, MIM is a very 
fast and simple method that takes into account the amount of in-
formation shared between the feature and the class, but not the 
redundancy among features. On the contrary, CondMI is the most 
expensive one, especially when working on datasets with a large 
number of samples (Epsilon and SVHN).

Table 5 shows the runtime of the FEAST version of the most 
computationally expensive method (CondMI) with and without 
range compression, in order to give insights about the benefits 
that this technique can provide to sequential FS methods. Range 
compression is beneficial in all scenarios but, as explained in Sec-
tion 4.5, its impact on performance largely depends on the variety 
of data in the input dataset.

https://github.com/Craigacp/FEAST
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Fig. 7. Runtime (in seconds) needed by the original methods in FEAST.

Table 5
Runtime (in seconds) of the sequential CondMI method in FEAST with and without 
range compression (RC), as well as the time required to complete this technique.

Without RC With RC Time for RC

Epsilon 46,214 44,430 1.91
RCV1 41,596 6,221 2.12
News20 27,611 3,799 2.21
SVHN 96,113 93,246 3.68

5.2. Performance analysis

The performance evaluation started by searching for the best 
combination of threads and MPI processes within each node. As 
each node contains two octa-core processors (16 physical cores) 
and allows for HyperThreading, all configurations launching a to-
tal of 32 threads per node were tested (i.e., one process with 
32 threads, two processes with 16 threads, four processes with 
8 threads and so on). The configuration with two processes per 
node and 16 threads per process obtained the best results in all 
cases, and thus it has been used for all the scalability experi-
ments. This is a reasonable result, as each node has two processors, 
each one with its own memory module. Thus, this configuration 
maps one MPI process per processor and it guarantees that threads 
only access the memory module of the processor where they are 
launched.

The graphs in Fig. 8 show the speedups obtained by the hybrid 
MPI/threads implementation of the different FS methods present 
in Parallel-FST from one node (16 physical cores) to 16 nodes (256 
physical cores), when compared to the original FEAST counterparts 
(using range compression in all the experiments). E2006 is not 
included as, due to memory constraints, it could only be analyzed 
when using the whole cluster, and thus there is no base sequential 
runtime to calculate the speedup. The following conclusions can be 
drawn:

• In general, the speedups are higher for those datasets with 
more features than samples (RCV1 and News20). The main 
reason is that the complexity of the methods depends on the 
number of features, and the higher the complexity the more 
opportunities of parallelism. Moreover, as explained in Subsec-
tion 4.2, the data of the feature selected in each iteration must 
be broadcast from its owner to the other MPI processes. When 
increasing the number of samples the weight of the commu-
nications, and thus the performance overhead, is higher.

• JMI, ICAP, DISR and the methods of the Beta-Gamma space 
achieve high scalability for the four datasets, reaching parallel 
efficiencies higher than 80% even for the whole cluster. They 
also present superlinear speedups for some experiments with 
two, four and eight nodes.

• mRMR obtains lower speedups than the four previous meth-
ods, due to its lower complexity, but it still achieves good 
scalability for the four datasets. It also presents superlinear 
speedups for some experiments with two nodes (32 cores).
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Table 6
Runtimes of the Parallel-FST methods 
using the whole cluster (16 nodes) to 
analyze the E2006 dataset.

Method Time (s)

MIM 17
JMI 788
mRMR 328
ICAP 1,463
DISR 1,123
BetaGamma 1,505
CondMI 1,783

• CondMI is the method with the highest variability depending 
on the analyzed dataset. It is able to obtain an acceleration 
of 229x over the sequential implementation available in FEAST 
when working with the News20 dataset, but the speedups are 
not higher than 55 for the two datasets with more samples 
than features (Epsilon and SVHN). In general, the perfor-
mance of this FS method is really dependent on the number 
of samples, as was already remarked when analyzing the run-
time of the original implementations (see Fig. 7).

• The only method that presents a limited scalability is MIM. 
The reason is not an inefficient parallel implementation but 
the high speed of this method in the sequential library FEAST, 
as it only has to compute one MI calculation per feature (see 
Subsection 3.1). In fact, the original implementation of MIM 
requires less than 15 seconds for the four datasets that it can 
analyze (see Fig. 7).

The results presented in Fig. 8 prove the large increase in speed 
that can be achieved thanks to Parallel-FST. For instance, the FS 
methods based on the Beta-Gamma space, as well as ICAP and 
DISR, require more than three hours to analyze the SVHN dataset 
with FEAST, and this time is reduced to around one minute with 
the implementations available in Parallel-FST. Another relevant ex-
ample is the News20 dataset, where FEAST can require up to one 
hour to select the 200 features, while all methods in Parallel-FST 
finish in less than 18 seconds. The only exception to these gains 
is the MIM method, where there is no room for improvement us-
ing parallel computing techniques, as its FEAST implementation is 
already very fast.

Finally, but not less important, we should remark that Parallel-
FST not only reduces the runtime compared to FEAST, but it also 
allows us to complete FS analyses on scenarios previously not fea-
sible for the sequential library. For instance, as mentioned earlier, 
every method in FEAST fails when trying to analyze the E2006
dataset, as it would need around 512 GB of memory to be loaded, 
which is too much for almost any shared-memory system. Never-
theless, our parallel implementation distributes the features among 
the MPI processes (see Section 4.2) and thus it can aggregate the 
memory of the whole cluster (64 GB per node, 1 TB in total) to 
complete the FS analysis using the seven methods. Runtimes for 
this dataset are shown in Table 6, ranging from 17 seconds with 
MIM to approximately 30 minutes with CondMI.

6. Conclusion

Feature selection has become a key step in ML due to the con-
tinuous increase of the average dataset sizes in different fields such 
as text mining, genetics or bioinformatics. This technique discards 
those features that are irrelevant or redundant, and whose inclu-
sion in the ML analyses would lead to very high runtimes or even 
inaccurate conclusions. Nevertheless, the high computational and 
memory requirements prevent the use of most FS methods for 
large datasets.
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Fig. 8. Speedups of the FS methods included in Parallel-FST for a varying number of nodes, using as basis the sequential implementations available in FEAST with range 
compression. Each node contains 16 cores and allows for HyperThreading (two MPI processes per node, each one with 16 threads).
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In this work we have presented Parallel-FST, a novel library 
whose aim is to accelerate the FS procedure by providing hybrid 
MPI/multithreaded implementations of seven FS methods (each 
one with two versions, with and without weights). All the methods 
included in the library follow the same parallel approach. Data and 
workload are distributed among MPI processes and C++ threads to 
exploit multicore clusters, including the HyperThreading technol-
ogy. Furthermore, two optimization techniques (semi-distributed 
data loading and range compression) were implemented to im-
prove performance and reduce memory requirements. Parallel-
FST is publicly available to download under open source license 
at https://gitlab .com /bieito /parallel -fst.

The experimental evaluation proved that the features discarded 
by the methods of Parallel-FST are exactly the same as those of 
a widely employed sequential counterpart (FEAST), but the analy-
sis is completed in significantly less time. The scalability of most 
methods is high, reaching speedups of up to 229 on a multicore 
cluster with 16 nodes (256 cores, 89% of efficiency) and even ob-
taining superlinear speedups for experiments with two, four and 
eight nodes (32, 64 and 128 cores, respectively). For instance, all 
parallel methods are able to select the most appropriate 200 fea-
tures of a 7 GB dataset in less than 18 seconds when working on 
the whole cluster. The parallel implementations presented in this 
work distribute the features among MPI processes and thus they 
can exploit the memory of several nodes within a cluster. It means 
that Parallel-FST can complete FS analyses for datasets that do not 
fit in the memory of one single system or node and therefore can-
not be computed by sequential libraries such as FEAST.

Future work can continue in three directions. First, attempt to 
further improve the performance of Parallel-FST by adding SIMD 
support with AVX directives. Second, extend the library to include 
parallel versions of other FS methods not based on MI (e.g. CFS). 
And third, work on the development of a similar parallel library fo-
cused on GPUs, so that researchers could also exploit these widely 
spread architectures.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgment

This research was supported by the Ministry of Science and In-
novation of Spain (PID2019-104184RB-I00/AEI/10.13039/
501100011033), by the Ministry of Universities of Spain under 
grant FPU20/00997, and by Xunta de Galicia and FEDER funds 
of the EU (CITIC, Centro de Investigación de Galicia accredita-
tion 2019-2022, ref. ED431G 2019/01; Consolidation Program of 
Competitive Reference Groups, ED431C 2021/30). Funding for open 
access charge: Universidade da Coruña/CISUG.

References

[1] R. Battiti, Using mutual information for selecting features in supervised neural 
net learning, IEEE Trans. Neural Netw. 5 (4) (1994) 537–550.

[2] V. Bolón-Canedo, N. Sánchez-Maroño, A. Alonso-Betanzos, Feature Selection for 
High-Dimensional Data, Springer, 2015.

[3] N.M. Braman, M. Etesami, P. Prasanna, C. Dubchuk, H. Gilmore, P. Tiwari, 
D. Plecha, A. Madabhushi, Intratumoral and peritumoral radiomics for the 
pretreatment prediction of pathological complete response to neoadjuvant 
chemotherapy based on breast DCE-MRI, Breast Cancer Res. 19 (1) (2017) 1–14.

[4] G. Brown, A. Pocock, M.-J. Zhao, M. Luján, Conditional likelihood maximisa-
tion: a unifying framework for information theoretic feature selection, J. Mach. 
Learn. Res. 13 (2012) 27–66.

[5] C.-C. Chang, C.-J. Linn, LIBSVM: a library for support vector machines, ACM 
Trans. Intell. Syst. Technol. 2 (3) (2011) 27.
115
[6] W. Choi, H.J. Jo, S. Woo, J.Y. Chun, J. Park, D.H. Lee, Identifying ecus using inim-
itable characteristics of signals in controller area networks, IEEE Trans. Veh. 
Technol. 67 (6) (2018) 4757–4770.

[7] A. Das, N. Borisov, M. Caesar, Tracking mobile web users through motion sen-
sors: attacks and defenses, in: Proceedings of the 23rd Annual Network and 
Distributed System Security Symposium, 2016.

[8] J. González-Domínguez, V. Bolón-Canedo, B. Freire, J. Touriño, Parallel feature 
selection for distributed-memory clusters, Inf. Sci. 496 (2019) 399–409.

[9] J. González-Domínguez, R.R. Expósito, V. Bolón-Canedo, CUDA-JMI: acceleration 
of feature selection on heterogeneous systems, Future Gener. Comput. Syst. 102 
(2020) 426–436.

[10] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The 
WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1) 
(2009) 10–18.

[11] N.M. Hijazi, H. Faris, I. Aljarah, A parallel metaheuristic approach for ensem-
ble feature selection based on multi-core architectures, Expert Syst. Appl. 182 
(2021) 115290.

[12] V.J. Hodge, S. O’Keefe, J. Austin, Hadoop neural network for parallel and dis-
tributed feature selection, Neural Netw. 78 (2016) 24–35.

[13] A. Jakulin, Machine Learning Based on Attribute Interactions, Ph.D. thesis, Uni-
versity of Ljubljana, Slovenia, 2005.

[14] A. Kleerekoper, M. Pappas, A. Pocock, G. Brown, M. Lujan, A scalable imple-
mentation of information theoretic feature selection for high dimensional data, 
in: Proceedings of the 2015 IEEE International Conference on Big Data, 2015, 
pp. 339–346.

[15] I.O. Korolev, L.L. Symonds, A.C. Bozoki, Predicting progression from mild cog-
nitive impairment to Alzheimer’s dementia using clinical, MRI, and plasma 
biomarkers via probabilistic pattern classification, PLoS ONE 11 (2) (2016) 
e0138866.

[16] K.-Y. Lee, P. Liu, K.-S. Leung, M.-H. Wong, Very large scale ReliefF algorithm on 
GPU for genome-wide association study, in: Proceedings of the International 
Conference on Parallel and Distributed Processing Techniques and Applications 
(PDPTA), 2015, pp. 78–84.

[17] D.D. Lewis, Feature selection and feature extraction for text categorization, in: 
Proceedings of the 1992 Workshop on Speech and Natural Language, 1992, 
pp. 212–217.

[18] G. Li, S.E. Li, B. Cheng, P. Green, Estimation of driving style in naturalistic high-
way traffic using maneuver transition probabilities, Transp. Res., Part C, Emerg. 
Technol. 74 (2017) 113–125.

[19] D. Lin, X. Tang, Conditional infomax learning: an integrated framework for fea-
ture extraction and fusion, in: Proceedings of the 2006 European Conference 
on Computer Vision, 2006, pp. 68–82.

[20] H. Liu, G. Ditzler, Speeding up joint mutual information feature selection with 
an optimization heuristic, in: Proceedings of the 2017 IEEE Symposium Series 
on Computational Intelligence, 2017, pp. 1–8.

[21] H. Liu, G. Ditzler, A semi-parallel framework for greedy information-theoretic 
feature selection, Inf. Sci. 492 (2019) 13–28.

[22] H. Liu, H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, 
Springer Science & Business Media, 2012.

[23] P.E. Meyer, G. Bontempi, On the use of variable complementarity for feature 
selection in cancer classification, in: Proceedings of the Workshop on Applica-
tions of Evolutionary Computation, 2006, pp. 91–102.

[24] R.-J. Palma-Mendoza, L. de Marcos, D. Rodriguez, A. Alonso-Betanzos, Dis-
tributed correlation-based feature selection in Spark, Inf. Sci. 496 (2019) 
287–299.

[25] H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria 
of max-dependency, max-relevance, and min-redundancy, IEEE Trans. Pattern 
Anal. Mach. Intell. 27 (8) (2005) 1226–1238.

[26] S. Ramírez-Gallego, I. Lastra, D. Martínez-Rego, V. Bolón-Canedo, J.M. Benítez, F. 
Herrera, A. Alonso-Betanzos, Fast-mRMR: fast minimum redundancy maximum 
relevance algorithm for high-dimensional big data, Int. J. Intell. Syst. 32 (2) 
(2017) 134–152.

[27] C. Reggiani, Y.-A. Le Borgne, G. Bontempi, Feature selection in high-dimensional 
dataset using MapReduce, in: Proceedings of the 29th Benelux Conference on 
Artificial Intelligence, 2017, pp. 101–115.

[28] R. Saidi, W.B. Ncir, N. Essoussi, Feature selection using genetic algorithm for 
big data, in: Proceedings of the International Conference on Advanced Machine 
Learning Technologies and Applications, 2018, pp. 352–361.

[29] A. Salmerón, A.L. Madsen, F. Jensen, H. Langseth, T.D. Nielsen, D. Ramos-López, 
A.M. Martínez, A.R. Masegosa, Parallel filter-based feature selection based on 
balanced incomplete block designs, in: Proceedings of the 22nd European Con-
ference on Artificial Intelligence, 2016, pp. 743–750.

[30] C.K. Sarumathiy, K. Geetha, C. Rajan, Improvement in Hadoop performance 
using integrated feature extraction and machine learning algorithms, Soft Com-
put. 24 (1) (2020) 627–636.

[31] O. Soufan, D. Kleftogiannis, P. Kalnis, V.B. Bajic, DWFS: a wrapper feature se-
lection tool based on a parallel genetic algorithm, PLoS ONE 10 (2) (2015) 
e0117988.

[32] The MPI Forum, MPI: a message passing interface (version 3.1), http://mpi -
forum .org /docs /mpi -3 .1 /mpi31 -report .pdf, 2015.

https://gitlab.com/bieito/parallel-fst
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBB98D8466A6B5C17EB525C423023EFBFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBB98D8466A6B5C17EB525C423023EFBFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7D4883FEAC2C828238C29CF184665348s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7D4883FEAC2C828238C29CF184665348s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCA9793C6B0DA4E398BBA23AD97420ECFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8B88FD72165158222197F4A4D14AB824s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA3CF19501138F29D2107A275E7670846s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib17C92D65763AAE6711703D152783B232s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib37BE3F7ADF3FCDE36AC0ADB29F267B77s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0C75D2BD181E2690853A080C572A5252s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7E00690C1CD4A2ADBE657F4C804A4FAFs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib14354D69D78781DE8295A50FD7DB897Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib9298136AD2A981933C95C438571DFBD5s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6CE19528A40DDE9521D97CF7BA264ECAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6CE19528A40DDE9521D97CF7BA264ECAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCC8018BD332B63F3D0DD177663DB08DCs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCC8018BD332B63F3D0DD177663DB08DCs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibCEB74219D144AB5760A228E71440C5CAs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib8DE26673BBAAC3AFB564129EF066B2BDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib5C5F4B9B08266ECB7A15D976A124615Cs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibB093DF4FDBE63B69070F48B719FEA4A0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA51EF0746E1B92428685545D946BE931s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib44858D469FFC8DF89789A42B124653EDs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib43AAA1EFAC3EACB0A9535A9110141B44s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib24D760F8E710C806D18C94424A38A679s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib24D760F8E710C806D18C94424A38A679s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA43BF0AD8387AED475B73432A959E196s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibA43BF0AD8387AED475B73432A959E196s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib56AB8823ED1B1B2853BC217FDBE96875s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib6EB87EAB38DA54A1836255E3BFE12369s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibAFF0E9C3CF20E5B6BC881BDDED1E441Es1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibD72B3E607E3CDD7B824AD0E1DEFCA2A9s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib124D1449A077440C1CA23DF7E6A87BA0s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7AA3C537063CD336A9B366B3F1758102s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib0892C30F35BC3EAB116A8E6E271F496As1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib2693B57F0F59DF94CAACEFB811E99851s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib278DD38F2D3FB05CF71B0CDC10B9B831s1
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


B. Beceiro, J. González-Domínguez and J. Touriño Journal of Parallel and Distributed Computing 169 (2022) 106–116
[33] E.R. Velazquez, C. Parmar, Y. Liu, T.P. Coroller, G. Cruz, O. Stringfield, Z. Ye, M. 
Makrigiorgos, F. Fennessy, R.H. Mak, et al., Somatic mutations drive distinct 
imaging phenotypes in lung cancer, Cancer Res. 77 (14) (2017) 3922–3930.

[34] L. Venkataramana, S.G. Jacob, R. Ramadoss, A parallel multilevel feature selec-
tion algorithm for improved cancer classification, J. Parallel Distrib. Comput. 
138 (2020) 78–98.

[35] H. Yang, R. Fujimaki, Y. Kusumura, J. Liu, Online feature selection: a limited-
memory substitution algorithm and its asynchronous parallel variation, in: 
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge 
Discovery and Data Mining, 2016, pp. 1945–1954.

[36] H.H. Yang, J. Moody, Data visualization and feature selection: new algorithms 
for nongaussian data, in: Proceedings of the 12th International Conference on 
Neural Information Processing Systems, 1999, pp. 687–693.

[37] S.-F. Zhang, J.-H. Zhai, S. Tian, X. Zhou, Y. Li, Feature selection for big data based 
on MapReduce and voting mechanism, in: Proceedings of the 2020 Interna-
tional Conference on Machine Learning and Cybernetics, 2020, pp. 213–218.

Bieito Beceiro received the B.S. in computer sci-
ence and the M.S. in High Performance Computing 
(HPC) from the Universidade da Coruña (UDC), Spain, 
in 2020 and 2021, respectively. He is currently a Ph.D. 
student at the Computer Architecture Group of the 
UDC. His work is focused on the acceleration of ma-
chine learning methods for computational science us-
ing HPC techniques.

Jorge González-Domínguez received the B.S., M.S., 
and Ph.D. degrees in computer science from the Uni-
versidade da Coruña (UDC), Spain, in 2008, 2009, and 
2013, respectively. He is currently an Associate Pro-
fessor with the Department of Computer Engineering, 
UDC. His main research interests include the develop-
ment of parallel applications on multiple fields, such 
as bioinformatics, data mining, and machine learning, 
focused on different architectures.

Juan Touriño is a Full Professor with the De-
partment of Computer Engineering, Universidade da 
Coruña, where he also leads the Computer Architec-
ture Group. He has extensively published in the area 
of High Performance Computing (HPC): HPC & AI con-
vergence, programming languages and compilers for 
HPC, high-performance architectures and networks, 
parallel algorithms and applications in computational 
science and engineering. He is coauthor of more than 

170 papers on these topics in international conferences and journals.
116

http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib660B0D3A6B159E5BAC02187B6BC72138s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibFCB8CD2734524CD2F1289E29C10D800Fs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib7F46165474D11EE5836777D85DF2CDABs1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bibBEE977B94523C82F33C2A9B89BF5AED7s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1
http://refhub.elsevier.com/S0743-7315(22)00147-2/bib297A7FDA91EF56DDDA0BAB72B7DC8563s1

	Parallel-FST: A feature selection library for multicore clusters
	1 Introduction
	2 Related work
	3 Background: feature selection with mutual information
	3.1 MIM - Mutual Information Maximisation
	3.2 CondMI - Conditional Mutual Information
	3.3 Methods in the beta-gamma space
	3.3.1 MIFS - Mutual Information Feature Selection
	3.3.2 CIFE - Conditional Infomax Feature Extraction
	3.3.3 Beta-gamma space

	3.4 JMI - Joint Mutual Information
	3.5 mRMR - Max-Relevance Min-Redundancy
	3.6 ICAP - Interaction Capping
	3.7 DISR - Double Input Symmetrical Relevance
	3.8 Inclusion of weights

	4 Methodology
	4.1 Data discretization
	4.2 Data and workload distribution
	4.3 Hybrid MPI/multithreaded implementation
	4.4 Semi-distributed data loading
	4.5 Range compression

	5 Experimental evaluation
	5.1 Experimental configuration
	5.2 Performance analysis

	6 Conclusion
	Declaration of competing interest
	Acknowledgment
	References


