Compiler Support for Parallel Code Generation through Kernel Recognition

Manuel Arenaz, Juan Tourino, and Ramon Doallo
Department of Electronics and Systems, University of A Corufa, Spain
{arenaz,juan,doallo} @udc.es

Abstract

The automatic parallelization of loops that contain com-
plex computations is still a challenge for current paralleliz-
ing compilers. The main limitations are related to the anal-
ysis of expressions that contain subscripted subscripts, and
the analysis of conditional statements that introduce com-
plex control flows at run-time. We use the term complex
loop to designate loops with such characteristics. In this pa-
per, we focus on the generation of parallel code for sequen-
tial complex loop nests using a generic compiler framework
(proposed in an earlier paper [3]) that accomplishes kernel
recognition through the analysis of the Gated Single Assign-
ment program representation. Specifically, we present an
extension of this framework that enables its use as a pow-
erful tool for gathering source code information that is rel-
evant for the parallelization of each computational kernel.
A set of example codes are analyzed in detail to illustrate
the potential of our approach. Experimental results using a
benchmark suite of complex loop nests are also presented.

1. Introduction

The automatic parallelization of sequential codes re-
quires knowledge about how to reorder the execution of the
statements of the code while preserving the sequential se-
mantics. Current parallelizing compilers are mainly based
on dependence analysis [13, 18], which provides not only
information about what code sections (usually loops) can
be executed in parallel, but also useful information for the
generation of efficient parallel code. Classical dependence
analysis was shown to be effective for the parallelization of
regular loop nests, which contain array references whose
subscript expressions can be rewritten as affine or linear
functions of the index variables of the enclosing loops.

The classical approach mentioned above often fails to
parallelize complex loop nests because, in general, they rest
on information-gathering techniques that cannot extract the
necessary source code information at compile-time. The
main sources of uncertainty are the presence of array refer-
ences with subscripted subscripts (i.e. the subscripts expres-

sions contain array references) and complex control con-
structs. The parallelization of complex loops has been ad-
dressed through the design of efficient parallelizing trans-
formations that exploit the characteristics of well-known
computational kernels [2, 6, 7, 9, 11, 20]. In general, these
techniques are described assuming that all the necessary in-
formation is available to the compiler. However, it is diffi-
cult to perform this complex task efficiently.

In this paper, the automatic generation of parallel code
for complex loops is addressed using the generic compiler
infrastructure proposed in [3]. The recognition of computa-
tional kernels is carried out by means of two classification
algorithms that perform an exhaustive analysis of the code.
This analysis mainly consists of searching the expressions
that compose the statements of the code for occurrences
of variables that introduce loop-carried dependences. We
present extensions of these algorithms that enable the use of
the infrastructure as a powerful information-gathering tool
that provides efficient support for the generation of parallel
code. The detailed description of the compiler framework
can be found in [3]. In this paper we present the parts of
the framework that are needed to generate parallel code for
a collection of loop nests extracted from real codes.

The paper is organized as follows. Section 2 gives an
overview of both the kernel recognition framework and the
subsequent generation of parallel code. Concepts and terms
that will be used throughout the paper are also introduced.
Section 3 presents some case studies to explain our exten-
sions of the framework. These examples focus on complex
loops that contain computational kernels frequently found
in real codes, namely, irregular assignment and consecu-
tively written array. Section 4 presents experimental results
that show the efficacy of our approach. Finally, Section 5
discusses related work, and Section 6 concludes the paper.

2. Framework Overview
2.1. Kernel Recognition

The compiler framework proposed in [3] consists of an
extensible generic infrastructure for the recognition of a

GSA-BASED COMPILER INFRASTRUCTURE

FOR KERNEL RECOGNITION

,” Recognition of basic

\
Translation into + computational kernels 1+ /
I "o

.~ Recognition of >
loop—-level
computational kernels

PARALLEL CODE GENERATION

, Selection of

| the most efficient | | Generation of

(SCC graph)

' ! /
o GSAform 1\ (SCC classification [. (SCC graph classification '\ transformation , | Parallelcode
. , s algoritm) S algorithm) -7 : !
Tt Teeree T ar o
I I |
N " '
| . "
s " v Demand-driven W Grz:p‘h of ll)?:lc 1 v Loop-level
ource code e »| computational kernels ~
GSA representation I and their dependences | computational kernels of the loop nest
(GSA graph) i i

I

|
|
|
|
|
|
|
|
| of the loop nest
|
|
|
|
|
|
|

Repository of
information

Repository of
parallelizing
transformations

retrieved from
the source code

|

|

|

|

|

|

! |
v Parallel code ‘
|

|

|

|

|

|

|

|

Figure 1. Block diagram of the parallelization framework.

wide variety of computational kernels that are frequently
found both in regular and complex loop nests. The internals
of the framework are shown in Fig. 1. Next, the different
stages, depicted as dashed ovals in the figure, are described.

The first stage is the translation of the source code into
a demand-driven implementation of the Gated Single As-
signment (GSA) form [17]. GSA is an extension of the
well-known Static Single Assignment (SSA) form that cap-
tures the flow of values of scalar and array variables, even in
loops with complex control flow. This task is accomplished
by inserting a set of special operators, ¢, right after the
points of the program where the control flow merges, and
by renaming the variables of the program so that they are
assigned unique names in the definition statements. Three
types of ¢’s are distinguished in GSA: (% out, Tin), Which
appears at loop headers and selects the initial x,,,; and loop-
carried x;,, values of a variable; v(¢, Zirye, X faise)» Which
is located at the confluence node associated with a branch
and captures the condition ¢ for each definition to reach
the confluence node: T ¢yye OF T faise, if ¢ is true/false; and
a(@prey, S, 7hs), which replaces the right-hand side of an
array assignment statement a(s) = rhs, and represents that
the s-th entry of a is assigned the value rhs while the other
entries take the values of the previous definition of the ar-
ray, denoted as aypc,. The GSA intermediate representation
has some properties that ease the development of tools for
automatic program analysis: the elimination of false depen-
dences for scalar and array definitions (not for array ele-
ment references), the syntactical representation of reaching
definition information, and the capture of the conditional
expressions that determine the control flow of the program.

The second and third stages address the recognition of
the kernels computed in the loop nest at two different lev-
els. In the second stage, the strongly connected compo-
nents (SCCs) that appear in the data dependence graph of
the GSA form (GSA graph from now on) are analyzed.

This intra-SCC analysis consists of a recursive algorithm
that determines the class of kernel computed during the ex-
ecution of the statements of the SCC (SCC class from now
on), for instance, irregular assignment, conditional or non-
conditional induction variable, etc. A detailed description
of the kernels can be found in [1]. The SCC classifica-
tion algorithm reduces the computation of a SCC class to
classifying the statements that compose the SCC. For each
statement, a post-order traversal of the corresponding syn-
tax tree is performed. The nodes of the tree represent oper-
ators. The children of a node correspond to the arguments
of the operator. At each node, the class of the operator is
calculated by a transfer function that merges the classes as-
sociated with the operators of the child nodes. In [1] we
present a detailed description of transfer functions for the
most common operators, for instance, sum (7'y), product
(T'), scalar reference (T,) or array reference (T ())- These
transfer functions check whether the statements of a SCC
fulfill the characteristics of one of the computational kernels
recognized by the framework. The SCC classification algo-
rithm provides the compiler with the set of basic kernels
calculated in the SCCs of the loop, and with the data and
control dependences between these basic kernels. This in-
formation is summarized in a data structure called the SCC
use-def chain graph (SCC graph from now on).

The third stage recognizes more complex kernels that re-
sult from a combination of a set of basic kernels, for in-
stance, a consecutively written array, a minimum/maximum
with location kernel, etc. This inter-SCC analysis is car-
ried out by a classification algorithm that processes the SCC
graph. The SCC graph is an intermediate program repre-
sentation that exhibits the minimal set of properties (scenar-
ios) that characterize the computation of a loop-level kernel.
The algorithm uses these scenarios as a guide for the execu-
tion of additional tests (see for instance [10, 19]) that enable
the recognition of loop-level kernels.

2.2. Generation of Parallel Code through Kernel
Recognition

In the literature a great variety of parallelizing trans-
formations targeted for specific computational kernels have
been proposed. In the scope of irregular codes, well-known
examples are irregular reductions [6, 7, 10, 21], irregular
assignments [2, 9], DOACROSS loops [11, 20], and other
classes of kernels [10]. As shown in Fig. 1, our approach
rests on a repository of such parallelizing transformations,
including new techniques we have developed. In addition, a
second repository stores the information retrieved from the
source code during the execution of the SCC classification
algorithm and the SCC graph classification algorithm.

Once the set of loop-level kernels computed in the loop
nest have been recognized, the most efficient code transfor-
mations are selected from the repository in order to max-
imize the performance of the parallel code. The selection
criteria should consider not only the characteristics of the
target parallel architecture (shared/distributed memory, in-
terconnection network...), but also the parameters of the
application (e.g. sparsity, degree of contention..., defined
in [21] for irregular reductions). If there is no technique
for a given kernel in the repository, then a generic ap-
proach could be applied. An example technique based on
the speculative parallel execution of irregular loops is pro-
posed in [14]. First, the code is executed in parallel and,
later, a fully parallel data dependence test is applied to de-
termine if it had any cross-iteration dependence; if the test
fails, the code is reexecuted serially. Generic methods can
be applied to any loop with complex computations. How-
ever, efficiency usually drops with regard to code transfor-
mations that are tuned for the efficient execution of a spe-
cific kernel on a given target architecture.

After the selection stage, the generation of parallel code
is carried out. If the loop contains a set of independent com-
putational kernels, loop fission is applied and each kernel
is parallelized according to the corresponding code trans-
formation. If there are dependences between the kernels,
the compiler analyzes such dependences and derives a set
of constraints that the parallel code must fulfill in order to
preserve the sequential semantics. These constraints will
usually impose a specific mapping of loop iterations to pro-
cessors, and will result in additional pre-processing and/or
post-processing stages in the parallel code.

3. Compiler Support to Parallelize Complex
Loops: Case Studies

In this section, the potential of our extended compiler
framework is shown by analyzing several complex loop
nests that contain a set of computational kernels that are fre-
quently found in real codes. Sections 3.1 and 3.2 describe

a(...)=.

ao(...) =.

DOh =1, fuine DO hy = 1, fuise, 1
a(f(h)) = rhs(h) a1 = p(ao, az)
END DO az = a(ay, f(h1),rhs(h1))
Lo=all).. ENDDO ... = ...ai(...)...
(a) Source code. (b) GSA form.
.@m’ lin
[
U irhs.indew s rha(hy)
lhsindex : ag(f(h1)) |
non—cond/assig/subs

(c) Data depen-
dence GSA graph.

(d) SCC use-def chain graph.

Figure 2. Irregular assignment computations.

the support needed to implement two techniques for the par-
allelization of irregular assignments. An illustrative simple
example is used for this purpose. Section 3.3 focuses on
two loop nests, extracted from the library of sparse matrix
operations SparsKit-1I [15], that contain different variants
of the consecutively written array kernel.

3.1. Irregular Assignments: Inspector-Executor

An irregular assignment (see Fig. 2(a)) consists of a loop
where, at each iteration h, the array entry a(f(h)) is as-
signed a value denoted as rhs(h), f being the subscript ar-
ray. The expression rhs(h) does not contain occurrences
of a, thus the code is free of loop-carried true data depen-
dences. Nevertheless, as the subscript expression f(h) is
loop-variant, loop-carried output data dependences may be
present at run-time (unless f is a permutation array).

We proposed in [2] a strategy for the parallelization of
irregular assignments using the inspector-executor model.
The key idea consists of mapping loop iterations to proces-
sors so that each processor carries out conflict-free com-
putations that exploit data write locality and preserve load-
balancing. The implementation of the inspector-executor
approach in a parallelizing compiler requires the extrac-
tion of the following information from the source code at
compile-time: the array of results (a in Fig. 2(a)), the sub-
script array that defines the write access pattern (f), the
most efficient location for the insertion of the inspector
code, the size of the arrays a and f (@ s;.e and fs;..), and the
number of processors (). This information is summarized
in Table 1. For each parallelizing transformation applica-
ble to a computational kernel, the mechanism needed to re-
trieve each piece of information is shown, namely, the com-

Table 1. Information-gathering requirements for the generation of parallel code.

Computational Parallelizing Relevant information for the Gatherl‘ng
kernel transformation generation of parallel code mechanism
Fwk [Ext | Other
a v
Inspector-executor Arrays of the access pattern Vv
(see Section 3.1) Location of the inspector code Vv
Irregular P, asize, fsize vV
Assignment a, a-statements Vv
Array expansion P, asize 4
(see Section 3.2) Mapping of sequential iterations v/
Mapping of array entries V4
a v
Arrays of the access pattern N4
Inspector-exccutor Location of the inspector code N4
Irregular P, asize, [size vV
Reduction a Vv
. P , Asize
Array expansion Mapping of sequential iterations \\?
Mapping of array entries V4
. Reduction variable Vv
Semantic .
reduction Parallel reduction P . S V4
Mapping of sequential iterations 4
Splitting and merging “ %
. P V4
Consecutively (see Section 3.3.1) i v
written array DOALL loop with a Vv
run-time test U, A Vv
(see Section 3.3.2) P v

piler framework (Fwk), the extensions proposed in this pa-
per (Ext), or other mechanism (Other) such as user-supplied
parameters, compiler directives or lexical/syntactical analy-
sis. Within our framework, the array of results a is retrieved
straightforwardly as the unique source code variable repre-
sented by a SCC that enables the recognition of the irreg-
ular assignment kernel (see Section 3.1.1 for more details).
The parameters ag;.c, fsize and P are obtained by means of
the lexical/syntactical analysis of the source code, user sup-
plied parameters, or default values determined by the com-
piler. The remaining pieces of information need extensions
of the framework and, thus, are the focus of the following
sections. Section 3.1.1 describes the recognition of the ir-
regular assignment of Fig. 2(a) and explains our extensions
to gather the array variable f that defines the write access
pattern. Section 3.1.2 outlines an algorithm to determine
the location of the inspector code.

3.1.1 Array Variables of the Write Access Pattern

As shown in Fig. 1, the first step of the framework is the
translation of the loop doy, into the GSA form of Fig. 2(b).
In this step special operators, ;2 and «, that capture the run-

time flow of values of the array variable a are inserted in the
code. Furthermore, each definition of a is assigned a unique
name (a; and ag) in order to represent reaching definition
information syntactically.

The second step is the construction of the SCC graph
of doy, through the execution of the SCC classification al-
gorithm. The data dependence graph of the GSA form is
depicted in Fig. 2(c). The nodes and the edges represent
statements and use-def chains between statements, respec-
tively. The nodes are labeled with the left-hand side symbol
of the statement in the GSA form. For the sake of clar-
ity, the use-def chains whose target is a definition located
outside the loop (ag, f and rhs) are not depicted. The
GSA graph contains two SCCs: SCC'(h1), which consists
of by = 1, fsize, 1 and represents the computation of the
linear index variable h; and SCC'(a1,az), which is com-
posed of a1 = p(ao, a2) and as = «a(ay, f(h1),rhs(h1))
and captures the computation of the array variable a. As a
result, the SCC graph of Fig. 2(d) contains two nodes la-
beled as SC'C'(h) (the oval) and SCC (a1, as) (the rectan-
gle). The class of kernel computed at run-time during the
execution of the statements of each SCC is printed next to
the corresponding node. Thus, the SCC class of SCC'(h1)

is lin, which means that the loop index variable & is a lin-
ear induction variable. The notation non-cond/assig/subs
corresponding to the class of SCC'(a1,az) is as follows:
non-cond indicates that the execution of a(f(h)) = rhs(h)
does not depend on any condition; assig is the abbreviation
for assignment operation (in contrast to reduction and re-
currence operation); finally, subs captures the loop-variant
nature of the left-hand side subscript expression f(h) of the
statement a(f(h)) = rhs(h). The interpretation of the SCC
graph is completed with the description of the edges, which
represent the use-def chains between statements of different
SCCs. The labels show the expression that contains the oc-
currence of the variable defined in the target SCC, as well
as the location of the expression within the statement of the
source SCC: left-hand side subscript (lhs_index) or right-
hand side subscript expression (rhs_index). The relevance
of this information for kernel recognition will be pointed
out throughout the paper.

The SCC classification algorithm performs a post-order
traversal of the syntax trees that represent the statements
of SCC'(hy) and SCC(ai,az2). Let us focus on the sub-
tree that represents the left-hand side subscript expression
f(h1) of az = a(ay, f(h1),rhs(h1)). The goal is to calcu-
late the class [f(hl)]‘:i(lfl(”;lz)()f(hl)). The notation [e] 5777, 1,
is as follows: e is the expression target for classification;
erey 1s the left-hand side expression of the statement being
analyzed; F is the left-hand side, the right-hand side or the
conditional expression of the statement; [is the level of e
within the tree representation of E (see the concept level of
an expression [18, Chapter 3]); sl is the indirection level
of e within F; and /3 indicates the position of E within the
statement where it is included: the left-hand side (denoted
as <), the right-hand side (»), or the conditional expression
of an if—endif statement (denoted as 7). The value of [and s/
is initialized to zero and later incremented as the post-order
traversal advances.

The root node of the subtree of f(hq) corresponds
to an array reference whose child nodes are a reference
to the array f and a reference to the scalar hy. First,
the array f is classified as an invariant expression (i.e.
[f]'f(Qf 1(212)8 f(hyy)=inv) as its value is not modified during
the execution of doy,,. Second, the subscript expression h
is classified as a linear expression ([hl](fgf 2(’}’;2)() F(hyy=lin)
because, in each iteration, it takes the values of the linear in-
duction variable h; represented by SCC'(h1). Finally, the
transfer function of array references, Tm(s), is applied:

unk if x #y, [s]if{lll)y(slﬂ)ﬂ:unk

u(r) subs ifx #y,1>0, [x]z:(a)_i_l)7sl7E:inv,

[x(s)]p:l,sl,E = y(r)

and [s],11) (a1 1), =00

e))

where unk denotes an unrecognized computational kernel.
According to the second entry of Eq. (1), the compiler con-

cludes that [f(hl)}(:_2:5{1(,}:112)())”(}11)):5”1’5' .

Other functionalities can be incorporated in the transfer
functions in order to widen the scope of application of the
framework, for instance, symbolic analysis for the computa-
tion of the closed form expression of an induction variable
(see [5]). Next, we extend T,y so that the array f is re-
trieved from the source code, and stored in the correspond-

ing repository (see Fig. 1). First, [x(s)]g(lr 217 2 is computed

by Eq. (1). After that T',(,) applies the following rule:

retrieve x if [:r(s)]z:(;;)slﬂ:subs, p=<4,sl>1 (2
(h

I?.Our case study, [f(h1)]‘:2:(1.{1(,(112)()““)):subs, the po-

sition p =< and the subscript level sl = 1, which

indicates that f(hi) is a loop-variant subscript expres-
sion that appears in the left-hand side of the statement
as = a(aq, f(h1),rhs(hy)). Thus, the compiler con-
cludes that the array variable f defines the write access pat-
tern of the irregular assignment. Note that the condition
sl > 1 also enables the identification of the set of arrays
involved in array references with multiple indirection levels
(e.g. f and g in the statement a(f(g(h))) = rhs(h)).

3.1.2 Location of the Inspector Code

The performance of the parallelizing techniques based on
the inspector-executor model usually depends on the reuse
of the inspector throughout the execution of the program.
Therefore, the point of the program where the inspec-
tor code is inserted determines the performance. Next,
we briefly outline an algorithm that takes advantage of
the demand-driven implementation of the GSA form. Let
v1, ..., Un, be the set of variables that define the pattern of in-
direct write operations (v, ..., v, are extracted as explained
in Section 3.1.1). Let B po be the basic block of the control
flow graph (CFG) that contains the header of the loop. Let
By, ..., B, represent the basic blocks that contain the defini-
tion statements of vy, ..., v,. The most appropriate location
for the inspector code is the first basic block that is a succes-
sorof By, ..., B, in the CFG, and that dominates Bpo. The
demand-driven implementation of the GSA form provides
an efficient solution to the statement-level reaching defi-
nition problem. Thus, the identification of the By, ..., B,
from v1,...,v, is straightforward. Next, the target basic
block is determined through the analysis of the dominance
tree [12], which is constructed during the translation of the
source code into GSA form.

3.2. Irregular Assignments: Array Expansion

A different parallelization strategy based on array expan-
sion is described in [9]. Each processor computes the ir-

DO ii = 1, nrow
ko = iao(perm(ii))
DO k = ia(ii), ia(ii + 1) — 1
jao(ko) = ja(k)
IF (values) THEN
ao(ko) = a(k)
ND IF

ko=ko+1 B
END DO rhe ks oo
END DO

(a) Source code.

[Subarray a1 of processor 1
[Subarray a5 of processor 2

rhs.index : ia(ii; + 1) -~ ~o
rhs.index : ia(ii3) -~

e /) “~_rhs.index : a(ks) !

, -
rhs_index : ja(kg)///,/’/lhs_indez : jaog(kos)

lin

“~._rhsindex : iao(perm(iiy))

subs subs

1 2
g8 T EEEL. T EEE 566 Tan oiavs)]

non—cond/assigl/lin

(b) Write access pattern of arrays jao and ao.

! ~ \rhs : koo
!
h N
/) S SCC(kos, kog) non—cond/lin
/! N -7 T
| ~ - N -~
/ //l(\\ N \‘~\\1:}}s:k03
/ -7 ~ N S~
P ~ \\
Pt - AN N none
Prd N \
N
~ \
"~ 0\ lhs.index : aoz(kog)
‘ SCC(ao1,a02,a03, aoy) ‘
cond/assig/lin
(c) SCC graph.

Figure 3. Permutation of the rows of a sparse matrix.

regular assignment corresponding to a set of loop iterations
preserving the order of the sequential execution. The partial
results are stored in expanded arrays, a(1l : agize, 1 : P)and
@a(1 : asize, 1 : P), that allow distinct processors to write
in different memory locations concurrently. The @-array
stores the last loop iteration at which the elements of a were
modified. Next, the processors are synchronized. Finally,
the processors apply a reduction operation that obtains the
partial results with highest iteration numbers.

The implementation of the array expansion approach re-
quires to extract the array variable that stores the result (a),
the source code statements that perform write operations
on that array (a(f(h)) = rhs(h)), the size of the array
(asize), the number of processors (P), and the mapping of
computations to processors to calculate the partial results
and to carry out the final reduction operation. Within our
framework, a, as;.. and P are retrieved as explained in
Section 3.1. Furthermore, the source code statement that
modifies a corresponds to the a-statement of SCC'(a1, az),
that is, as = «(aq, f(h1),7hs(hy)) in Fig. 2(b). Finally,
the two mappings are obtained as user supplied parameters,
or as default values determined by the compiler. This in-
formation is summarized in Table 1. It should be noted
that some transformations do not require extensions of the
framework: the array expansion approaches of irregular as-
signment and irregular reduction, the parallel execution of
semantic reduction operations (e.g. minimum/maximum
and minimum/maximum with location), and the array split-
ting and merging method to parallelize consecutively writ-
ten arrays. These techniques rest on the privatization of
variables in order to allow different processors to write in
different memory locations concurrently. The methods ex-

ecute a final stage where the private results are combined
through an appropriate function that preserves the seman-
tics of the sequential program.

3.3. Consecutively Written Arrays

A consecutively written array (CWA) is a kernel that con-
sists of writing consecutive entries of an array in consecu-
tive locations during the execution of a loop. For illustrative
purposes consider only the innermost loop do, of the level-
2 loop nest of Fig. 3(a). The code was extracted from the
routine rperm (module unary) of the library of sparse ma-
trix operations SparsKit-1I [15]. In general, CWAs are im-
plemented by means of a monotonic induction variable [5]
of step one (ko in dojy of Fig. 3(a)) that determines the
array entries to be written, and an assignment statement
that sets the value of an array entry using as the left-hand
side subscript expression a monotonic function of the in-
duction variable. The figure shows a non-conditional CWA
(jao(ko)), whose distinguishing characteristic is that the ar-
ray variable is modified in all the loop iterations. When the
array is computed only in those iterations where a condi-
tion is fulfilled, the kernel is called conditional CWA (e.g.
ao(ko) in Fig. 3(a)). In the rest of this section, the gen-
eration of parallel code for three complex loop nests that
contain CWAs is analyzed.

3.3.1 Array Splitting and Merging

Current parallelizing compilers usually transform non-
conditional CWAs into parallel code in two phases: first,
a closed form expression for the corresponding linear in-

Private copi/
of processor ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1

a(l:a e

i) = (TP21) +1

sizer 1)

Original array a() ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
. ‘ (1) +1

Private copz
of processor ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
a(l:agjzer 2) - 2

Figure 4. Graphic depiction of array splitting
and merging.

duction variable is computed; and second, the references
to the variable are replaced with such expression. The
SCC classification algorithm used in the framework (sec-
ond stage in Fig. 1) is a generalization of the classification
scheme proposed in [5]. Thus, as described in that work,
the transfer functions can be extended with capabilities for
the symbolic computation of closed form expressions. The
approach described above cannot be applied to conditional
CWA:s, except if the compiler can determine that the con-
ditions are loop-invariant. The array splitting and merging
transformation described in [10] enables the parallelization
of conditional CWAs. The iterations of the sequential loop
are mapped to processors according to a block distribution.
Furthermore, the array is expanded to allow the processors
to work in parallel on a private copy of the array from the
first position. Finally, the original array is constructed by
concatenating the private copies in increasing order of pro-
cessor number (see Fig. 4).

Within our compiler framework, CWAs are recognized
in two steps. First, the SCC classification algorithm per-
forms an intra-SCC analysis that detects two basic ker-
nels: a monotonic induction variable (ko = ko + 1
in doj of Fig. 3(a)) and an array assignment operation
(jao(ko) = ja(k)). Next, the SCC graph classification
algorithm examines the SCC graph of Fig. 3(c). Let us
focus on the use-def chain between SCC(kos, kos) and
SCC (jaoy, jaos, jaos). The label lhs_index : jaos(kos)
indicates that the left-hand side subscript expression of
jao(ko) = ja(k) contains an occurrence of ko. In the
scope of this scenario, the compiler checks whether the sub-
script ko is a monotonic function of ko, and then executes a
monotonicity test [10, 19] to assure that every time jao(ko)
is computed, the monotonic variable ko is updated. As the
test is successful, the variable jao is recognized as a non-
conditional CWA during the execution of the loop. A simi-
lar analysis is applied to ao(ko). Note that values is a loop-
invariant expression, and thus ao(ko) = a(k) is executed in
every (or none) loop iteration.

Regarding the generation of parallel code, the implemen-
tation of the array splitting and merging transformation re-
quires no extension of the framework (see Table 1). The
CWA is identified straightforwardly during the execution

1) F) +1

of the SCC graph classification algorithm. The remaining
information (namely, the size of the array and number of
processors) is retrieved as described in Section 3.2. In the
following sections, some variants of CWAs that require the
implementation of framework extensions are studied in de-
tail.

3.3.2 Segmented CWAs

An interesting case is the level-2 loop nest from SparsKit-11
shown in Fig. 3(a). It carries out a permutation of the rows
of a sparse matrix (ao, jao, tao). The remarkable charac-
teristic is the computation of a linear induction variable of
step one, ko, that is set to the value of a loop-variant expres-
sion, iao(perm(ii)), at the beginning of each iteration of
the outermost loop do;;. As a result, each do;; iteration per-
forms write operations on a subarray a;; (12 = 1, ..., nrow)
of consecutive entries of ao and jao. The pattern of write
operations is depicted in Fig. 3(b). Without loss of gener-
ality, assume that each loop iteration is mapped to a dif-
ferent processor. The subarray written by each proces-
sor p is defined by a starting position ¢,, and a length ¢,,.
The loop do;; can be executed in a fully parallel manner
(DOALL loop) if the subarrays do not overlap. The over-
lapping cannot be checked at compile-time because, in gen-
eral, the value of 7ao(perm(ii)) is known at run-time only.
We propose a solution that consists of inserting the follow-
ing run-time test in the source code of the program. Let
v = {1/2171/12, ---7"/}nr0w} and A = {517527 ooy 571’!‘011)} be,
respectively, the sets of starting positions and lengths of the
subarrays, a1, as, ..., Gnrow, defined in each loop iteration.
The subarrays a;; do not overlap if there is no subarray
whose starting position corresponds to an entry of another
subarray:

Aaii [v < i < Yptop+1, Yk € {1,...,nrow}, k # ii

3)

For this test to be implemented, the compiler needs to

determine the sets W and A, and an appropriate point of the

program to insert the code of the test proposed above. In the
example code of Fig. 3(a), the starting positions are

U = {iao(perm(ii)) ; it =1...nrow} 4)

Within the framework, this expression is extracted from
the source code during the execution of the SCC graph
classification algorithm. In particular, the algorithm an-
alyzes a use-def chain between the following two SCCs:
SCC(kog) of class subs composed of ko = iao(perm(ii)),
and SCC(kos, kos) of class non-cond/lin corresponding
to ko = ko 4+ 1. As both SCCs define the same vari-
able ko, and the statements belong to loop-bodies of differ-
ent nesting levels, the reinitialized induction variable ko is
recognized successfully. We extend the transfer functions

DO ii = 1, nrow
DO k = imask(it), imask(ii + 1) — 1
iw(jmask(k)) = true
END DO
k1 = ia(ii)
k2 =ia(ii+1) — 1
ic(ii) = len 4+ 1
DOk = k1, k2
j = ja(k)
IF (tw(j)) THEN
len = len + 1
je(len) = j
c(len) = a(k)
END IF
END DO
DO k = imask(it), imask(ii + 1) — 1
iw(jmask(k)) = false
END DO
END DO

(a) Source code.

p=1 p=2 p=3
ic(1l : nrow) ‘1‘5‘7‘1‘3‘3‘1‘1‘ ‘
incr(1l: P) n
ic(1l : nrow) ‘1‘5‘7‘9‘11‘11‘11‘11‘14‘
S=0 X=8 =10

(b) Post-processing stage for the parallelization of the computation of
array ic.

Figure 5. Filter of the contents of a sparse
matrix using a mask matrix.

to gather the right-hand side expression of the statement
ko = iao(perm(it)) during the recognition. Regarding the
set of lengths, it is computed as the number of iterations of
the innermost loop doy, for each do;; loop iteration:

A = {ia(it + 1) —ia(ii) ; it =1...nrow} (5)

The expression above is symbolically computed at the end
of the classification of the SCC that represents the index
variable of do, that is, SCC (k2).

Finally, the compiler must insert the run-time test so that
its overhead is minimized. The arrays iao, perm and ia
involved in the computation of ¥ and A are invariant with
respect to do;;. Thus, the most efficient location is the point
of the program where the results of the test are reused a
higher number of executions of do;;. The extensions needed
to gather these arrays and the optimal location are similar to
those described in Sections 3.1.1 and 3.1.2.

3.3.3 Combination of CWAs with other Computa-
tional Kernels

In Fig. 5(a), a level-2 loop nest do;; extracted from the rou-
tine amask of the module unary of SparsKit-II is presented.
The code builds a sparse matrix in compressed row storage
format (¢, jc, ic) from an input matrix (a, ja, ia) by ex-
tracting only the elements that are stored in the positions
pointed by a sparse mask matrix (¢mask, jmask). From
the kernel recognition point of view, the loop consists of
two non-independentkernels: a conditional CWA (variables
jc and c) and an array assignment operation (variable ic).
The computations associated with the array iw do not intro-
duce loop-carried dependences that prevent the paralleliza-
tion of do;;. This characteristic can be detected using the
SCC graph corresponding to the source code of Fig. 5(a).
The details can be consulted in [3].

The loop nest of Fig. 5(a) can be parallelized accord-
ing to the array splitting and merging technique described
in Section 3.3.1. However, there is an important issue that
must be considered in order to preserve the sequential se-
mantics. In each do;; iteration, the array entry ic(ii) is set
to the value len + 1, [en being the monotonic induction
variable used to compute the CWAs jc and c. This depen-
dence between the two kernels represents a constraint that
must be considered in order to preserve the sequential se-
mantics. Next, we show the translation of such constraint
into parallel code.

In the parallel code of the array splitting and merging
transformation, each processor p uses a private copy of the
scalar len. As a result, the values stored in ¢c at the end
of the parallel execution of do;; do not match the values of
the sequential execution. Within our framework, the SCC
graph contains a use-def chain between the SCCs that rep-
resent the computation of the array ¢c and the monotonic in-
duction variable len, which is referenced in the right-hand
side of the statement ic(ii) = len + 1. At this moment
of the analysis, our extended transfer functions annotate the
loop do;; to indicate that during the parallel code generation
stage the iterations of the loop do;; must be mapped to pro-
cessors according to a block distribution in order to be able
to recover the global monotonic sequence of len from the
private monotonic sequences computed by the processors.
This recovery task is performed in a post-processing stage
inserted just after do;; in the parallel code, and that operates
as follows. Consider the graphic depiction for three proces-
sors shown in Fig. 5(b). Each processor modifies the entries
ic(it) corresponding to its loop iterations. After the parallel
execution, the value of len is equal to its increment during
the execution of the iterations assigned to the processor (ar-
ray incr(l : P) in the figure). Finally, each processor p
corrects the value of its ic(i¢) entries by adding to each en-
try the sum of the total number of elements computed by
processors 1,...,(p — 1), i.e. f;ll iner(i).

Table 2. Effectiveness of our extended frame-
work for the SparsKit-Il library.

| Parallel Sequential |
| Simple loops 136 22
Level-1 109 22
Level-2 26 0
Level-4 1 0
| Independent compound loops 8 2
Level-1 7 2
Level-2 1 0
| Dependent compound loops 7 0
Level-1 1 0
Level-2 6 0

4. Experimental Results

We have developed a prototype of our extended frame-
work of approximately 30, 000 lines of C++ code using the
support given by the internal representation of the Polaris
compiler [4]. Polaris also provides the GSA form and the
CFG of Fortran77 source code. Our benchmark suite is the
SparsKit-1I library [15], which consists of a set of costly
routines to perform operations with sparse matrices. We do
not present experimental results in terms of the efficiency of
the parallelizing techniques as this work was accomplished
by their respective authors. Thus, Table 2 shows results in
terms of the number of loops that can be executed in paral-
lel using our framework. The results are organized in three
categories: simple loops, which contain only one loop-level
kernel; independent compound loops, which present a set of
independent kernels; and dependent compound loops, with
dependences between the kernels. Statistics are presented
for each nesting level. Loop nests with kernels that are not
recognized by the framework were not considered.

SparsKit-II contains 136 simple loops that can be trans-
lated into parallel code straightforwardly because they com-
pute array assignments with regular (72) and irregular (17)
access patterns, irregular reductions (24), scalar reductions
(13), CWAs (6), conditional linear induction variables (1)
and semantic kernels (2 find-and-set kernels and 1 mini-
mum with location). The 22 sequential simple loops cor-
respond to array recurrences with regular access patterns,
whose analysis is not implemented in this version of our
prototype. The kernels mentioned above are described in
detail in [1]. As a comparison, we have checked that the Po-
laris compiler fails to parallelize those loops containing ir-
regular assignments (21) and irregular reductions (2), loops
with induction variables whose closed form expression can-
not be computed (10 conditional CWAS), and some loops
that compute semantic kernels (1 minimum with location).

Regarding independent compound loops, the 10 loop

nests detected in SparsKit-II compute a combination of
the following kernels: regular/irregular assignment, regu-
lar/irregular reduction, CWA, find-and-set kernel, regular
array recurrence, and linear induction variable. Our ex-
tended framework also enables the automatic parallelization
of dependent compound loop nests. The 7 loops that appear
in SparsKit-II consist of a combination of two dependent
kernels: a CWA and a regular/irregular array assignment.
The dependence is due to the use of a linear induction vari-
able as described in the case study of Section 3.3.3. We have
shown that the framework provides efficient support for the
insertion of an appropriate post-processing stage that pre-
serves the sequential semantics.

5. Related Work

In the literature, the automatic generation of loop-
level parallel code is addressed from different viewpoints.
KeBler [8] proposes a speculative program comprehension
method for the recognition of syntactical variants of com-
putational kernels that involve sparse vectors and matrices
(e.g. product, linear system solution, etc.). Aggressive par-
allel code generation is achieved by replacing the loop with
an equivalent parallel algorithm or machine-specific library
routines. Unlike our approach, in automatic program com-
prehension the semantics of the code is considered. How-
ever, the transfer functions of our framework can be ex-
tended to take semantics into account.

A different viewpoint takes advantage of classical data
dependence analysis [13, 18] to disprove the existence of
dependences that prevent parallelization. Code transforma-
tions that remove/handle such dependences [2, 5, 6, 10, 21,
22] are used to enable parallelization. The extended frame-
work described in this paper is targeted for the analysis of
complex loops. However, it also provides a generic plat-
form for the analysis of regular loops by applying both
data dependence techniques and code transformations on
demand.

Suganuma et al. [16] address the generation of parallel
code for a set of complex loop nests that only contain scalar
reductions. Unlike our approach, the main limitation is the
narrow scope of application. Nevertheless, they optimize
the corresponding parallel code by grouping interprocessor
communications. Currently, we do not perform an inter-
loop analysis (i.e., involving different loop nests) to accom-
plish this kind of optimization.

6. Conclusions

This paper has addressed the automatic generation of
parallel code in the scope of complex loop nests where to-
day’s parallelizing compilers fail. We have proposed some

extensions of a generic extensible compiler framework for
kernel recognition that make it a powerful information-
gathering technique. In particular, we have shown the po-
tential of our approach by describing the efficient support
supplied for the parallelization of a set of complex loop
nests extracted from real codes. In addition, we have pre-
sented our framework as a unified platform for the integra-
tion of both existing and new techniques for the automatic
recognition of loop-level parallelism and the generation of
parallel code.

As future work, we intend to measure the effectiveness
of our automatic parallelization strategy in the analysis of
complex loop nests included in other representative bench-
mark suites. The parallelization of regular loops through the
integration of classical dependence tests within our frame-
work will be studied. Finally, we intend to extend the com-
piler framework with inter-loop analysis to generate effi-
cient parallel code targeted for specific architectures. For
instance, this analysis could improve locality exploitation
and reduce interprocessor communication.

References

[1] M. Arenaz. Compiler Framework for the Automatic Detec-
tion of Loop-Level Parallelism. PhD thesis, Departament
of Electronics and Systems, University of A Corufia, Mar.
2003. Available at http://www.des.udc.es/™ arenaz.

[2] M. Arenaz, J. Tourifio, and R. Doallo. Run-time support

for parallel irregular assignments. In 6¢h Int’l Workshop on

Languages, Compilers, and Run-time Systems for Scalable

Computers, LCR’02, Washington DC, Mar. 2002.

M. Arenaz, J. Touriflo, and R. Doallo. A GSA-based

compiler infrastructure to extract parallelism from complex

loops. In 17th ACM Int’l Conference on Supercomputing,

1CS’03, pages 193-204, San Francisco, CA, June 2003.

W. Blume, R. Doallo, R. Eigenmann, J. Grout, J. Hoeflinger,

T. Lawrence, J. Lee, D. Padua, Y. Pack, W. M. Pottenger,

L. Rauchwerger, and P. Tu. Parallel programming with Po-

laris. IEEE Computer, 29(12):78-82, Dec. 1996.

M. Gerlek, E. Stoltz, and M. Wolfe. Beyond induction varia-

bles: Detecting and classifying sequences using a demand-

driven SSA. ACM Transactions on Programming Languages

and Systems, 17(1):85-122, 1995.

E. Gutiérrez, O. Plata, and E. Zapata. Balanced, locality-

based parallel irregular reductions. In /4th Int’l Workshop

on Languages and Compilers for Parallel Computing, LCPC

2001, Cumberland Falls, KY, Aug. 2001.

H. Han and C.-W. Tseng. Efficient compiler and run-time

support for parallel irregular reductions. Parallel Comput-

ing, 26(13-14):1861-1887, 2000.

C. KeBler. Applicability of program comprehension to

sparse matrix computations. In 3rd Int’l European Confer-

ence on Parallel Processing, Euro-Par’97, pages 347-351,

Passau, Germany, Aug. 1997.

(3]

(4]

(3]

(6]

(7]

(8]

10

[9] K.Knobe and V. Sarkar. Array SSA form and its use in par-
allelization. In 25th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL
1998, pages 107-120, San Diego, CA, Jan. 1998.

Y. Lin and D. Padua. On the automatic parallelization of
sparse and irregular Fortran programs. In 4th Int’l Work-
shop on Languages, Compilers, and Run-Time Systems for
Scalable Computers, LCR’98, pages 41-56, Pittsburgh, PA,
May 1998.

M. Martin, D. Singh, J. Tourifio, and F. Rivera. Exploiting
locality in the run-time parallelization of irregular loops. In
31st Int’l Conference on Parallel Processing, ICPP 2002,
pages 27-34, Vancouver, Canada, Aug. 2002.

S. Muchnick. Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, 1997.

K. Psarris and K. Kyriakopoulos. Data dependence testing
in practice. In 7999 Int’l Conference on Parallel Architec-
tures and Compilation Techniques, PACT’99, pages 264—
273, Newport Beach, CA, Oct. 1999.

L. Rauchwerger and D. Padua. The LRPD test: Speculative
run-time parallelization of loops with privatization and re-
duction parallelization. /EEE Transactions on Parallel and
Distributed Systems, 10(2):160—180, Feb. 1999.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix
computations. Available at http://www-users.cs.umn.edu/-
/™ saad/software/SPARSKIT/sparskit.html.

T. Suganuma, H. Komatsu, and T. Nakatani. Detection and
global optimization of reduction operations for distributed
parallel machines. In /0th ACM Int’l Conference on Su-
percomputing, ICS’96, pages 18-25, Philadelphia, PA, May
1996.

P. Tu and D. Padua. Gated SSA-based demand-driven sym-
bolic analysis for parallelizing compilers. In 9th ACM Int’l
Conference on Supercomputing, ICS’95, pages 414-423,
Barcelona, Spain, July 1995.

M. Wolfe. High performance compilers for parallel com-
puting. Addison-Wesley, 1996.

P. Wu, A. Cohen, J. Hoeflinger, and D. Padua. Monotonic
evolution: An alternative to induction variable substitution
for dependence analysis. In 15th ACM Int’l Conference on
Supercomputing, ICS’01, pages 78-91, Sorrento, Italy, June
2001.

C.-Z. Xu and V. Chaudhary. Time stamp algorithms for run-
time parallelization of DOACROSS loops with dynamic de-
pendences. IEEE Transactions on Parallel and Distributed
Systems, 12(5):433-450, 2001.

H. Yu and L. Rauchwerger. Adaptive reduction paralleliza-
tion techniques. In /4th ACM Int’l Conference on Super-
computing, ICS’00, pages 6677, Santa Fe, NM, May 2000.
F. Zhang and E. D’Hollander. Enhancing parallelism by
removing cyclic data dependencies. In 6th Int’l PARLE
Conference, Parallel Architectures and Languages Europe,
PARLE’94, pages 387-397, Athens, Greece, July 1994.

[10]

[11]

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

