
Future Generation Computer Systems 138 (2023) 270–279

U

n
g
m
T
h
A
f
s
s
p
C
a
t

R
a
c
i
R

(

h
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

pRIblast: A highly efficient parallel application for comprehensive
lncRNA–RNA interaction prediction
Iñaki Amatria-Barral ∗, Jorge González-Domínguez, Juan Touriño
niversidade da Coruña, CITIC, Computer Architecture Group, Spain

a r t i c l e i n f o

Article history:
Received 4 April 2022
Received in revised form 22 July 2022
Accepted 23 August 2022
Available online 30 August 2022

Keywords:
Bioinformatics
lncRNAs
High Performance Computing
Parallel Computing
MPI
OpenMP

a b s t r a c t

Long non-coding RNAs (lncRNAs) play a key role in several biological processes and scientists are
constantly trying to come up with new strategies to elucidate their functions. One common approach
to characterize these sequences consists in predicting their interactions with other RNA fragments.
Nevertheless, the high computational cost of the bioinformatics tools developed for this purpose
prevents their application to large-scale datasets. This paper presents pRIblast, a highly efficient parallel
application for comprehensive lncRNA–RNA interaction prediction based on the state-of-the-art RIblast
tool, which has been proved to show superior biological accuracy compared to other counterparts in
previous experimental evaluations. Benchmarking on a multicore CPU cluster shows that pRIblast is
able to compute in a few hours analyses that would need more than three months to complete with
the original RIblast algorithm, always achieving the same level of prediction accuracy. Furthermore,
this novel application can process large input datasets that cannot be processed with the former tool.
pRIblast is free software publicly available to download at https://github.com/UDC-GAC/pRIblast under
the MIT license.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
l
m
a
o
I
h
p
b
t
p
t
h

1. Introduction

With the development of next generation sequencing tech-
ologies, scientists have witnessed amazing discoveries with re-
ards to RNA biology. For instance, it has been found out that
ost RNA in the human genome does not translate into protein.
his is the so called non-coding RNA (ncRNA), whose discovery
as drastically changed the way biologists approach genetics.
mong them, long non-coding RNAs (lncRNAs), classically de-
ined as transcripts longer than 200 nucleotides, have gained
pecial attention because their dysfunction is associated with
evere diseases, such as diverse types of cancer [1,2], cardiac
athologies [3], preeclampsia [4], Parkinson’s disease [5], or SARS-
oV-2 [6]. However, most lncRNAs are still poorly characterized
nd scientists are still searching for new strategies to elucidate
heir function.

As lncRNAs work by being assembled with other proteins or
NAs, the identification of their interaction partners is a powerful
pproach for inferring their function. Hence, fast and reliable
omputational prediction of interacting lncRNA–RNA pairs is an
ndispensable technique to further progress in long non-coding
NA characterization. Nevertheless, as prediction models become

∗ Corresponding author.
E-mail addresses: i.amatria@udc.es (I. Amatria-Barral), jgonzalezd@udc.es

J. González-Domínguez), juan@udc.es (J. Touriño).
ttps://doi.org/10.1016/j.future.2022.08.014
167-739X/© 2022 The Author(s). Published by Elsevier B.V. This is an open access a
more sophisticated (and thus results more accurate), the com-
putational cost associated to lncRNA–RNA interaction prediction
grows exponentially and prevents its application to large-scale
datasets.

This paper presents pRIblast, a highly efficient parallel applica-
tion for comprehensive lncRNA–RNA interaction prediction. It is
based on RIblast [7], a highly accurate (as proven in [8]) and pub-
icly available tool specifically developed for this purpose. pRIblast
akes use of High Performance Computing (HPC) technologies to
ccelerate the analyses on supercomputing facilities and multin-
de computing clusters. Concretely, it includes Message Passing
nterface (MPI) routines and OpenMP pragmas. Furthermore, it
as been thoroughly optimized and it can run the interaction
rediction algorithm over huge datasets that would have never
een processed with RIblast. As a consequence, pRIblast obtains
he same level of prediction precision as its sequential counter-
art and achieves speedups of up to 128x on a 256-core cluster,
herefore completing a three-month-long analysis in just a few
ours.
The main contributions of this work are:

• pRIblast, the only tool in the state of the art capable of
predicting lncRNA–RNA interactions on multicore clusters

and supercomputing facilities.

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.future.2022.08.014
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2022.08.014&domain=pdf
https://github.com/UDC-GAC/pRIblast
http://creativecommons.org/licenses/by/4.0/
mailto:i.amatria@udc.es
mailto:jgonzalezd@udc.es
mailto:juan@udc.es
https://doi.org/10.1016/j.future.2022.08.014
http://creativecommons.org/licenses/by/4.0/


I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

i
t
t

Table 1
Publicly available tools in the state of the art to predict RNA–RNA interactions, indicat-
ing their search strategy, support for parallel computing on shared-memory (SM) and
distributed-memory (DM) systems, and their references.
Tool Search strategy Parallel (SM) Parallel (DM) Ref.

AccessFold Alignment No No [19]
ASSA Alignment & Accessibility Yes No [11]
IntaRNA2 Accessibility No No [20]
IRIS Complex joint No No [21]
LASTAL Alignment No No [22]
LncTar Complex joint No No [23]
RactIP Complex joint No No [24]
RIblast Alignment & Accessibility No No [7]
RIsearch2 Interaction only Yes No [25]
RNAup Accessibility No No [26]
RRP Alignment & Accessibility No No [12]
i

• Two data distribution algorithms (named the area sum and
the dynamic decomposition) and two multithreading opti-
mizations (the dynamic scheduling and the sorting heuris-
tic) that efficiently balance the workload and improve thread
utilization, both statically and at runtime (Section 4.1).

• A database paging mechanism to reduce the memory us-
age of the interaction prediction algorithm, thus enabling
pRIblast to process huge datasets (Section 4.2).

• A parallel-aware I/O procedure to decouple the scalability
of the tool to that of the disk operations in those scenarios
where an optimal workload decomposition does not im-
ply equal computation times, and so processes finish their
computations at different time steps (Section 4.3).

The rest of the paper is organized as follows. Related work
s presented in Section 2. Section 3 explains the behavior of
he original tool RIblast as necessary background to understand
he parallel implementation of pRIblast, which is described in
Section 4. Section 5 shows the experimental evaluation, and
conclusions are presented in Section 6.

2. Related work

As of today, there exists a great amount of bioinformatics tools
developed with the goal of predicting RNA–RNA interactions [9,
10]. Table 1 lists the most relevant ones indicating, among other
features, the support provided for parallel computing. However,
most of them are not designed to work with lncRNAs. According
to a recent review [8], those tools that combine information from
local alignments and secondary structures, such as RIblast [7],
ASSA [11], or RRP [12], obtain the most accurate biological results
when working with lncRNAs. Among them, RIblast has been
chosen as the starting point for our parallel approach because
it is more widely used by the scientific community than ASSA
or RRP. Some examples of biological studies that used RIblast
are: the identification of lncRNAs correlated with the presence
of different types of carcinomas (such as papillary thyroid [13],
lung [14] or renal cell [15]), the search of coral reef lncRNAs that
are differentially expressed when infected by certain algae [16],
or the identification of those lncRNAs that are salt-stressed in
grapevine roots [17]. Although a novel alternative has been de-
veloped after the publication of this review (namely IntaRNAhelix
[18]), it has not been considered as basis for our work because it
is not publicly available and its biological accuracy has not been
compared to RIblast.

To the best of our knowledge, the only two tools in the
state of the art that can be executed in parallel to accelerate
the identification of RNA–RNA interactions are ASSA [11] and
RIsearch2 [25]. However, as indicated in Table 1, they are limited

to shared-memory systems as they only include multithreading

271
support. Therefore, there is no previous work focused on exploit-
ing the hardware available in distributed-memory clusters and
supercomputers for this task.

The same HPC technologies (MPI processes and multithr-
eading) used within pRIblast have been successfully applied to
other bioinformatics problems. The workload and data distribu-
tion approach is different depending on the characteristics of the
application. In some cases, such as the construction of genetic
networks [27] or the subtomogram alignment [28], the workload
is similar for all instances or sequences and it is sufficient to
apply a static distribution with the same amount of data for each
process. But it is not the common scenario in bioinformatics, and
more sophisticated distributions must be employed when the
amount of work is irregular for each instance or sequence. One
option consists in maintaining the static data distribution at the
process level and using a dynamic scheduling for multithreading,
as in the case of multiple sequence alignment [29]. However, this
approach is not enough to obtain high scalability on large clus-
ters and supercomputers, as will be shown in the experimental
evaluation of Section 5. Some bioinformatics applications apply a
dynamic distribution also at the process level, but always using
a master–worker paradigm where one master process reads the
input data and sends fragments to the other processes (the work-
ers) as soon as they have finished the previous tasks [30,31]. The
main drawback of this approach is the bottleneck introduced in
the network due to the master–worker communications. As will
be explained in Section 4.1.3, pRIblast overcomes this problem
with a completely dynamic distribution (without a single master)
using MPI one-sided routines which, up to our knowledge, has
never been applied to the bioinformatics domain. An efficient
parallel I/O approach, also based on one-sided routines, as the
one presented in Section 4.3, has not been found in the state of
the art either.

3. Background: RIblast

RIblast [7] is a widely used tool for extensive lncRNA–RNA
nteraction analysis. The key idea behind the RIblast algorithm is
the utilization of a seed-and-extension heuristic, which is broadly
adopted in sequence homology search tools. It also makes use
of suffix arrays, memoization, and an approximate RNA energy
model to predict lncRNA–RNA interactions.

The RIblast execution consists of two major steps: database
construction and RNA interaction search. The second step is gen-
erally the most critical one, because different batches of input
query sequences (the lncRNAs) may be run against the same
target RNA dataset (the database) . Consequently, it is the target
for parallelization in the current version of pRIblast.

In the database construction step RIblast starts by calculating

approximate accessible energies for each sequence in the target



I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

R
t
t
s
t
s
n
s
t

p
e
w
s
t
f
r

i

e
m
t

4

w
p
a
d
p
m
e
p
s
c
i
d
a

u
r
l
n

4

i
s
a
f
s

S

Fig. 1. Pseudocode of the RIblast RNA interaction search step.

NA dataset. Accessible energies are later used in the RNA in-
eraction search step to find promising seed regions. Second, the
arget RNA sequences are reversed and concatenated to build a
uffix array. Third, search results of short substrings are exhaus-
ively precalculated (again, to be later used in the RNA interaction
earch step). And finally, the approximate energies, the concate-
ated sequences, the suffix array, and the search results of short
ubstrings are stored in a set of binary and text files that comprise
he resulting target database.

In the RNA interaction search step RIblast first calculates ap-
roximate accessible energies and constructs a suffix array for
very lncRNA in the input query dataset. Second, seed regions
ith a particularly low interaction energy are found using the
uffix arrays and the accessibility energies of the queries and
arget sequences in the database. Third, interactions are extended
rom seed regions, and finally, interactions that fully overlap are
emoved prior to storing the final results in an output text file.

Fig. 1 shows a high-level pseudocode of the algorithm used
n RIblast for the RNA interaction prediction step. Note that the
seed-and-extension procedure (lines 7 and 8), which is the most
computationally demanding one, accounts for more than 95%
of the total runtime because their computational complexity is
quadratic with respect to the number of sequences. They are
also the reason for pRIblast to focus its performance optimization
fforts on this second step of the algorithm. Not only it is the step
ost often executed in real biological analyses, but also the one

hat requires the largest runtime.

. pRIblast implementation

pRIblast provides a solution to the high computational cost
of lncRNA–RNA interaction prediction by effectively exploiting
the hardware available in multicore clusters and supercomputing
facilities. It obtains the same biological results as RIblast, therefore
achieving the same level of prediction accuracy. As its prede-
cessor, pRIblast provides a command-line interface utility and is
available to the scientific community at GitHub1 under the MIT
license.

As previously stated, the second step of the RIblast algorithm
has been accelerated within pRIblast, since it implements the
most demanding functions behind the computational prediction
of interacting lncRNA–RNA pairs: the seedSearch and extendSeeds
functions shown in Fig. 1. Specifically, a two-level parallelization
procedure has been developed.

On the one hand, the workload is distributed among several
MPI processes launched on different nodes of a computing clus-
ter. MPI is the de facto standard to develop parallel programs
running on distributed-memory systems by providing portable,
efficient, and flexible message-passing routines. On the other

1 https://github.com/UDC-GAC/pRIblast.
272
hand, each MPI process spawns several OpenMP threads to take
advantage of all the CPU cores within each node. OpenMP pro-
vides a scalable and portable application programming interface
for shared-memory systems. This hybrid parallel implementation
based on HPC standards is flexible enough to be adapted to any
multicore cluster or supercomputer. It can also exploit all the
characteristics of the ever-evolving modern CPU architectures
such as vector instructions, thread affinity, and HyperThreading,
which allows to schedule several threads into the same CPU core
to minimize stall cycles, hence improving performance.

4.1. Data distribution

The main objective of pRIblast is to efficiently distribute the
orkload (essentially the lncRNA sequences) among a set of MPI
rocesses, and spawn OpenMP threads that run in parallel to
ccelerate the prediction of lncRNA–RNA interacting pairs. In-
eed, the data distribution function used to assign sequences to
rocessing units (i.e., processes or threads) is key to achieve maxi-
um performance. But, because pRIblast works using a seed-and-
xtension heuristic, some sequences may be considered more
romising by the tool (i.e., the seedSearch function finds more
eeds), and thus successive steps to predict interactions will be
omputationally more expensive than others. This tricky situation
s therefore the main topic in this section: how to optimally
istribute sequences among processes if they produce different
mounts of work.
Three different approaches to assign sequences to processing

nits are proposed: a pure block distribution, an area sum algo-
ithm, and a dynamic decomposition scheme. They range from
ess to more sophisticated, and they may be used in different sce-
arios to ensure that pRIblast achieves maximum performance.

.1.1. Pure block distribution
The first data distribution approach developed within pRIblast

s the pure block procedure. It is a classical data decomposition
cheme and it is useful when the workload is evenly balanced
mong all the sequences of the input datasets. It is quite straight-
orward: MPI routines are used to divide the input batch of query
equences among a set of processes in chunks of size

=

⌈
#seqs
#procs

⌉
(1)

and then OpenMP threads are spawned within each process to
compute its assigned sequences in parallel.

Nevertheless, as discussed earlier, the workload may not be
evenly balanced among the sequences of the input datasets,
meaning that this decomposition scheme would not achieve
good speedups in virtually any scenario. So, two thread-level
improvements are applied to minimize the impact of the variable
workload: a dynamic OpenMP scheduling policy and a sorting
heuristic.

The dynamic scheduling makes threads not to get assigned
a fixed chunk of the block of sequences. Rather, threads take
one sequence at a time and ask for a new one once they have
finished its computation. No responsibility is therefore assigned
in advance to any thread, and so all of them work together to
compute their block of sequences as fast as they can.

As for the sorting heuristic, it is based on the assumption
that the probability of finding seeds in a sequence is a func-
tion of its length. So, sorting the block of assigned sequences
in length descending order leads to optimal execution times
in multithreading environments. But note that this is a rather
bold assumption. The number of seeds that are generated for a
certain sequence is not only a function of its length. Biological
factors, such as the free energy released by the interaction of

https://github.com/UDC-GAC/pRIblast


I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

t
i
s
p
p

r
a
s
i
p
q
e
t

p
F
a
h

p
a

Fig. 2. Example to illustrate that the sorting heuristic (bottom) produces optimal
results if the workload is a direct function of the lncRNAs’ lengths and a dynamic
scheduling policy is applied.

Fig. 3. Pseudocode of the pure block pRIblast RNA interaction search step.

wo RNA segments, play an important role, too. Therefore, it
s possible to over or underestimate the cost of computing a
equence. Anyway, although not perfect, the sorting heuristic
roved to significantly speed up the pure block distribution in all
reliminary experiments.
Fig. 2 shows an example with the difference in theoretical

untime between using the dynamic scheduling policy alone and
dding the sorting heuristic to process an input vector L of lncRNA
equences with two threads (T0 and T1). L represents the lengths
n characters of the sequences to compute, and the interaction
rediction time of each lncRNA is estimated assuming that se-
uence length and workload are directly proportional (i.e., for
ach character in the sequence string we assume one unit of
ime t).

To sum it all up, Fig. 3 shows a high-level description of the
ure block pRIblast RNA interaction search algorithm. It looks like
ig. 1 back in Section 3, except for lines 4, 6, 8 and 16. Lines 4
nd 6 implement the block distribution procedure and the sorting
euristic, respectively. Line 8 spawns OpenMP threads to execute
 g

273
Fig. 4. Comparison between the pure block decomposition scheme (top) and
the area sum algorithm (bottom).

the loop iterations in parallel using the dynamic scheduling pol-
icy. And finally, line 16 reconstructs the final output file now that
sequences have been distributed among a set of MPI processes.
For now, we assume that the final output file is built sequentially
after all processes finish the interaction prediction loop. However,
a parallel-aware I/O procedure to speed up this file reconstruction
will be presented later in Section 4.3.

4.1.2. Area sum distribution
Preliminary tests showed that the pure block decomposition

was a rather simple, yet effective, data distribution approach.
However, it soon fell short in scalability as execution time op-
timization could only be made at thread level by means of the
dynamic OpenMP scheduling policy and the sorting heuristic.
Or put differently, as the pure block approach fails to address
the problem of variable workload, it relies on two clever but
limited techniques to accelerate the prediction of interacting
lncRNA–RNA pairs. And therefore, as datasets become larger and
sequences more diverse, performance starts to dramatically de-
grade because blocks produce increasingly different amounts of
work (i.e., seeds). To overcome this scenario, a more informed
data decomposition scheme was designed, the area sum algo-
rithm, which addresses the problem of variable workload both
at process and thread level.

Assuming again that the workload is proportional to the
lengths of the sequences (i.e., the probability of finding seeds
increases with the lncRNA length), the area sum distribution
states as follows: assign to each process a number of sequences
so that their lengths sum up to the value

S =

⌊∑n
i=1 length(seqs[i])

#procs

⌋
(2)

In other words, this approach tries to provide a similar amount
of characters to each process so that they all produce a similar
amount of seeds, even though this may mean that they receive a
different amount of sequences.

An O(np) algorithm (where n is the number of sequences and
the number of processes) was developed to implement the

rea sum data distribution procedure. It distributes lncRNAs in a
reedy-like fashion, and its operation is exemplified in Fig. 4 for



I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

t
S
t
s
s

g
q
q
(
s

t
a
n
r
a
s
c
w
a

d
n
s
r
s
o

two processes (P0 and P1), where it is compared with the pure
block algorithm discussed in the previous subsection. This figure
helps to understand what exactly the S parameter represents
here, which is no more than a ‘‘bucket size’’. In this sense, the
area sum procedure carefully fills up the buckets so that all of
them have a similar amount of workload, unlike the pure block
procedure, which does not take into account the length of the
sequences and fails to evenly distribute the workload at process
level.

Now that processes have assigned blocks of sequences that
will ideally produce a similar amount of seeds, OpenMP threads
are spawned and the algorithm is run in parallel to accelerate
the computation. The area sum algorithm addresses the problem
behind the correct assignment of lncRNAs to processes, but se-
quences within a block may be very different in length. Therefore,
the dynamic scheduling policy and the sorting heuristic are once
again used to further enhance pRIblast performance at thread
level.

4.1.3. Dynamic distribution
The area sum algorithm proved to be a step forward towards

successfully speeding up the pRIblast RNA interaction search pro-
cedure. Weighting sequences according to their length makes
it possible to correctly balance the workload among processes,
leading to significant boosts in performance.

But there still exists one scenario in which the area sum
distribution may fall as short as the naive pure block procedure.
One process may receive a large amount of sequences consid-
ered unpromising by the area sum algorithm and it may turn
out that they produce the most workload. As it was previously
explained, all the reasoning behind the heuristic knowledge de-
veloped within pRIblast is based on the assumption that the
workload is a direct function of the sequence length, which
indeed is not the only factor. Therefore, such a scenario is com-
pletely feasible, and in that case the workload would remain
extremely unbalanced with the area sum approach.

In order to solve this problem, an additional data decomposi-
tion algorithm was built for pRIblast, a dynamic data distribution
procedure. The idea behind it is to further minimize the time
penalty associated with under or overestimating the cost of com-
puting a sequence. So, instead of distributing sequences, the
dynamic approach uses MPI one-sided communications to create
a shared pool of lncRNA sequences and allow all processes and
threads in a cluster to collaboratively solve the computation. Just
like the OpenMP dynamic scheduler does at thread level within
each process, but now it is done at the whole cluster level. As
a consequence, a situation where one process receives a set of
lncRNAs that turns out to produce the most workload would
never become true. No process would ever have the responsibility
of computing a concrete sequence (again, as it was done with
the OpenMP dynamic scheduling policy within each block of
sequences).

However, this approach increases the amount of communica-
tions required to run the pRIblast algorithm. Whereas before there
was only one point of synchronization (i.e., distributing sequences
at the beginning of the computation), now, for each loop iteration
run by each thread, an MPI call is needed to pull sequences from
the shared pool of lncRNAs. Yet, provided that high performance
interconnection networks are used for communications, and tak-
ing into account that computing a sequence is far more expensive
than an MPI one-sided operation, this overhead can be considered
negligible.

Fig. 5 shows a high-level pseudocode of the dynamic pRIblast
RNA interaction search algorithm. The first most noticeable dif-
ference is that data are no longer distributed among processes
at the beginning of the computation (line 4), but rather all of
 p

274
Fig. 5. Pseudocode of the dynamic pRIblast RNA interaction search step.

hem load into memory the whole input set of query sequences.
econd, now the sorting heuristic (line 6) is applied globally to
he complete set of lncRNA sequences (all processes share the
ame block of sequences, the input dataset). And third, the pool of
hared sequences is implemented using the MPI Fetch_and_op op-
eration (line 10). That is, all the threads in the cluster atomically
pull and increment a shared index to obtain a reference to the
following sequence that has not yet been processed. Therefore,
no concrete OpenMP scheduling policy is needed: all threads in
the cluster run in parallel and ask the higher level in the hierarchy
(the associated MPI process) for sequences to compute. Note that,
even though this data distribution algorithm could rely on MPI
processing alone, threads are still used to share data through
the memory hierarchy, thus reducing memory pressure (e.g., to
hold all the database pages in cache), and to allow the use of
HyperThreading.

4.2. Database paging

RIblast writes results to the output file only after all tar-
et sequences have been compared against a certain lncRNA
uery sequence. Therefore, if a target database is too large or a
uery segment produces a big amount of prediction candidates
i.e., seeds), memory may be filled up before results are finally
aved to disk.
pRIblast introduces a very effective optimization to overcome

his limitation. It divides the target database into several smaller
nd independent pages, which, because of their reduced size, will
ot overflow the available memory space. Put differently, because
esults can only be written after a sequence has been compared
gainst a target database, pRIblast makes predictions against sub-
ets of such database. In this way, once a query sequence has been
ompared against all subsets of the target dataset, the output file
ill hold the same results as if the sequence had been compared
gainst the whole target database in one single round.
Because of the nature of the data structures stored in the

atabase, it is not possible to paginate a target dataset with
o previous preprocessing. Therefore, the database construction
tep (see Section 3) has been slightly modified to be able to
ead chunks of a fixed size later in the RNA interaction search
tep. In any case, databases built without the tweaked version
f the construction step are backwards compatible with the new

RIblast workflow.



I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

t
A
p
m
t
i

c
o
O
w
i
p

s
p
o
w
o
m
b

m
a
e
t
r
v
t
a

r
a
l
w
w
p

5

Fig. 6. Time difference between a sequential I/O procedure (top) to reconstruct
he RIblast output file and the parallel-aware I/O algorithm (bottom) featured
within pRIblast.

4.3. Parallel-aware I/O

pRIblast can process huge datasets whose results grow to the
order of giga and terabytes. Therefore, it is a must to decouple the
scalability of the tool to that of the disk operations. In a similar
fashion, pRIblast is a parallel algorithm, and executing a given
dataset with an increasing number of processes dramatically
reduces the time spent in the interaction prediction loop. In this
case, I/O time becomes comparable to that of the interaction pre-
diction and may compromise the maximum speedup achievable
by the novel tool.

As a solution to this inherent problem in parallel computing,
another optimization has been included in pRIblast: a scalable,
parallel-aware I/O procedure to write results to disk as processes
finish the interaction prediction function. That is, as processes
may receive a different amount of workload (an optimal decom-
position does not mean that all processing units take the same
execution time), I/O operations are cleverly hidden in the pRIblast
parallel execution pipeline to reduce the amount of time that the
tool is really stalled waiting for disk operations to complete. Fig. 6
exemplifies this scenario, showing the time difference between
using the parallel-aware I/O procedure and a sequential recon-
struction of the pRIblast output file. Each tuple in the vector LD
represents the length of a sequence (first number of the pair)
and the units of work t that it takes to save its results to disk
(second number of the pair). Again, we assume that one character
in a sequence string needs one unit of time t . Sequences were
optimally assigned to the two processes, and so the important bit
is to identify the time difference between using a naive sequential
I/O procedure and the parallel-aware I/O procedure built for
pRIblast.

Compared to a naive I/O scheme where processes write their
results one after another once all the computation is completed,
the parallel-aware I/O optimization is 45 times faster running
on a 256-core cluster using a dataset that produces 436 GB of
output data. However, if all processes receive the same amount of
 s

275
Fig. 7. Pseudocode of the parallel-aware I/O optimization to save results as soon
as processes finish their computation loop.

workload, this optimization degenerates into a sequential writing
of results to disk. But such scenario is very unlikely (again, an op-
timal decomposition does not mean equal execution times), and
so this optimization has proved to speed up and scale the parallel
prediction of interacting lncRNA–RNA pairs in all the benchmarks
presented in Section 5. This is also the reason to discard the use
of MPI-IO routines as a solution to perform parallel I/O in pRIblast.
s it is extremely unlikely that all processes finish the interaction
rediction function at the same time, MPI-IO would only provide
arginal performance improvements if the last process to finish

he computation shared the storage medium with other processes
n the MPI group.

The building blocks of this optimization are MPI one-sided
ommunications, MPI point-to-point communications and a gl-
bally shared index (which initially holds the special value -1).
n top of them, a message queue is created and processes can
rite their results to a single output file as soon as they fin-

sh their computation. Fig. 7 shows the implementation of the
arallel-aware I/O procedure using a high-level pseudocode.
First, every process atomically pulls the current value of the

hared index and replaces it with its own rank (line 4). If the
ulled value is −1 (line 5), it means that the process is the first
ne to finish the computation and it is free to skip to line 9 and
rite its results to disk. Otherwise, variable last holds the value
f the last process in the queue, and therefore the current process
ust wait until last has finished writing its results by calling the
locking Send operation (line 6).
Once the first process has finished writing its results, it incre-

ents the value of count in line 10 (i.e., how many processes have
lready passed that point in the program). Then, it proceeds to
xecute lines 11 to 14 to notify the next process in the queue
hat it can save its results. For that purpose, it first receives the
ank of the waiting process (line 12) and then updates its count
alue by calling Send (line 13). Similarly, the process waiting in
he queue executes line 6 to send its rank to the leaving process,
nd line 7 to receive the updated value of count.
All processes will execute this repetitive pattern of send and

eceive operations to gradually copy their results one by one
s soon as they finish their interaction search loop. Once the
ast process that finishes the computation saves its results, count
ill be equal to the number of processes and lines 12 and 13
ill be skipped to finish the execution of the parallel-aware I/O
rocedure.

. Experimental evaluation

To assess the performance of pRIblast, a set of comprehen-

ive benchmarks were performed using five real, representative



I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

r
c
b
t
i
i

X
w
o
a
s
i
a
e

T
c
s
w
p
e
s
B
c
s
t
a
p
t
e
i
o
m
o

5

3
c
T
d
a
c

p

d
t
t
t
o
t
p
o
p
A
p
e
u
e

Table 2
Characteristics of the datasets used to assess the performance of the
pRIblast tool.
Dataset lncRNAs RNAs Output size RIblast execution

Lepi 730 1,256 2.68GB Successful
Ursus 935 3,899 6.52GB Successful
Droso 2,266 3,963 13.20GB Successful
Anser 10,422 10,988 436.22GB Out of memory
Anas 14,504 15,061 1.56TB Out of memory

RNA datasets (available to download at the Ensembl genome
browser [32]2). This section presents a performance comparison
between the original RIblast algorithm and the novel pRIblast tool
unning on a 16-node multicore cluster with a total of 256 CPU
ores. Other tools such as ASSA or RRP (see Section 2) have not
een included in the evaluation. The reason is that it is not fair
o compare the runtime of tools that follow a different biolog-
cal approach, and thus do not predict the same lncRNA–RNA
nteractions.

Each node in the computing cluster has two octa-core Intel
eon E5-2660 Sandy Bridge-EP processors (16 cores per node
ith support for HyperThreading) and 64 GB (DDR3 @ 1600 MHz)
f main memory. Nodes are interconnected through a low-latency
nd high-bandwidth InfiniBand FDR network. As for the software
tack, the GNU Compiler Collection (GCC) v8.3.0 and the MPI
mplementation OpenMPI v3.1.4 were the tools used to compile
nd run the applications (both tools were built with the -O3 flag
nabled).
Table 2 summarizes the characteristics of the RNA datasets.

hey range from small and easy to compute to very large and
ompletely unbalanced, with sequences that produce so many
eeds that the data distribution algorithms are forced to make
ise decisions to efficiently distribute the workload. Lepi3 (Le-
idothrix Coronata) and Ursus4 (Ursus Americanus) are consid-
red easy to compute, as their scalability is proportional to their
ize. However, Droso5 (Drosophila Melanogaster), Anser6 (Anser
rachyrhynchus) and Anas7 (Anas Platyrhynchos Platyrhynchos) are
onsidered unbalanced because they are so large and contain
equences so different in length (and thus in amount of work)
hat they quickly bound the efficiency of the pRIblast parallel
lgorithm. Indeed, the two largest datasets (Anser and Anas)
roduce so many seeds that RIblast runs out of memory when
rying to analyze them, whereas pRIblast can complete these
xecutions thanks to the database paging mechanism explained
n Section 4.2. This shows the power of the optimizations devel-
ped within pRIblast, and thus makes it an indispensable tool to
ove forward towards comprehensive computational prediction
f lncRNA–RNA interacting pairs.

.1. Configuration of the experiments

Each dataset was run using 1, 2, 4, 8 and 16 nodes, that is, 16,
2, 64, 128 and 256 cores, respectively. In addition, the time spent
omputing every sequence of each dataset was also measured.
herefore, it was possible to compare the behavior of the data
istribution algorithms to that of a theoretical best one (i.e., using
perfect scheduler that knows a priori how long it takes to

ompute each sequence).

2 http://ftp.ensembl.org/pub/release-97/fasta.
3 http://ftp.ensembl.org/pub/release-97/fasta/lepidothrix_coronata/ncrna.
4 http://ftp.ensembl.org/pub/release-97/fasta/ursus_americanus/ncrna.
5 http://ftp.ensembl.org/pub/release-97/fasta/drosophila_melanogaster/ncrna.
6 http://ftp.ensembl.org/pub/release-97/fasta/anser_brachyrhynchus/ncrna.
7 http://ftp.ensembl.org/pub/release-97/fasta/anas_platyrhynchos_
latyrhynchos/ncrna.
276
Table 3
Runtime of pRIblast on a 16-node cluster (256 CPU cores in total) using
the best configuration of algorithm, threads per process and use of
HyperThreading. Execution times for RIblast are all single-threaded and
those marked with ∗ correspond to estimations calculated with pRIblast .
Dataset RIblast time pRIblast time

Lepi 2h 6 m 42s 3 m 37s
Ursus 4h 38 m 34s 1 m 59s
Droso 14h 43 m 49s 9 m 55s
Anser 22d 8h 13 m 46s∗ 3h 56 m 6s
Anas 101d 10h 52 m 55s∗ 20h 7 m 45s

pRIblast exploits both MPI and OpenMP parallelism. Therefore,
for each node setup, five different configurations of number of
threads and processes were also tested. These are: 1p16t (i.e., 1
process per node launching 16 threads each), 2p8t, 4p4t, 8p2t and
16p1t. This extensive benchmarking allowed to acquire knowl-
edge about which arrangement of threads per process better suits
each data decomposition algorithm and input dataset.

Finally, for all the combinations of the configurations above, it
was also tested if using Intel’s HyperThreading technology yielded
any improvement in execution time.

5.2. Results

The summary of the benchmarking results is presented in
Table 3 and Fig. 8. Table 3 highlights the significant improve-
ment in execution time when all the 256 cores of the cluster
are used to run pRIblast. The runtimes shown for pRIblast are
the ones using the best configuration for each dataset (i.e., dis-
tribution algorithm, number of threads per process, and use of
HyperThreading). RIblast times are all single-threaded, since it
does not provide parallel processing capabilities. Also, the RIblast
times of Anser and Anas correspond to estimations because, as
mentioned before, RIblast runs out of memory when processing
these datasets. Times were estimated by (1) saving in a file the
runtime that the different processes need in pRIblast to analyze
each sequence; and (2) adding up all these runtimes similarly
to what would happen in a sequential execution, where the
sequences would be computed one by one.

Fig. 8 shows a scalability analysis of the three pRIblast data
ecomposition algorithms. The graphs show the speedups ob-
ained by each algorithm without HyperThreading using the best
hreads-per-process configuration. The graphs include two addi-
ional curves: one for the theoretical best speedup, and another
ne for the best speedup of the tool using HyperThreading. The
heoretical value was calculated with respect to the number of
hysical cores, since it is not possible to simulate the behavior
f the HyperThreading. This is one of the reasons why it is
ossible to outperform the theoretical best speedup. Also, for the
nas dataset it was only possible to get results when running
RIblast with 256 cores. Any other configuration with fewer cores
xceeded the execution timeout of the cluster used for this eval-
ation. With all these experimental results, it was possible to
xtract the following conclusions:

• As the workload is not balanced among the sequences of the
RNA datasets, the scalability of pRIblast is always bounded
by the execution time of the most computationally demand-
ing sequence (the one that produces the highest number
of seeds). Note the flattening in all the curves, including
the theoretical best. Although parallel applications usually
offer better speedups for larger datasets, in this case a large
dataset may also increase the probability of containing a se-
quence more promising than the others (i.e., a sequence that
produces many more seeds), thus limiting the exploitable

http://ftp.ensembl.org/pub/release-97/fasta
http://ftp.ensembl.org/pub/release-97/fasta/lepidothrix_coronata/ncrna
http://ftp.ensembl.org/pub/release-97/fasta/ursus_americanus/ncrna
http://ftp.ensembl.org/pub/release-97/fasta/drosophila_melanogaster/ncrna
http://ftp.ensembl.org/pub/release-97/fasta/anser_brachyrhynchus/ncrna
http://ftp.ensembl.org/pub/release-97/fasta/anas_platyrhynchos_platyrhynchos/ncrna
http://ftp.ensembl.org/pub/release-97/fasta/anas_platyrhynchos_platyrhynchos/ncrna


I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

b

Fig. 8. Speedups of the three different data decomposition algorithms included in pRIblast without HyperThreading. The speedups are compared with a theoretical
est and the best execution of the tool with HyperThreading enabled.
parallelism. This is the case when comparing the results for
Ursus and Droso. Even though Droso is larger than Ursus,
it exhibits worse speedup because it becomes increasingly
limited in scalability as there is one single sequence that
dominates the runtime.

• The area sum algorithm and the dynamic decomposition
are able to solve the performance issues related to the
unbalanced nature of the datasets. These informed data
distribution algorithms consistently outperform the pure
block procedure, achieving and even surpassing the theo-
retical best speedup (thanks to better use of the memory
hierarchy).
277
• The dynamic decomposition procedure beats the area sum
algorithm only when the number of CPU cores is small and
the execution time is not bounded by one sole sequence.
On the other hand, when a large number of cores is used
the area sum algorithm is faster. It makes sense: with more
processes involved the area sum algorithm is less likely to
over or underestimate the cost of computing a sequence,
and therefore it can perfectly balance the workload with no
need for constant communication (as it happens with the
dynamic algorithm).

• As for the configuration of processes and threads, the area
sum algorithm works best when processes spawn more



I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279

w
r
T

6

i
h
a
t
f

t

threads (i.e., 2p8t or 4p4t). In this case, the area sum ap-
proach alone performs relatively well, but it is the sorting
heuristic which really makes a difference here, compen-
sating for any under or overestimation made by the dis-
tribution procedure. In a similar way, because no OpenMP
scheduling is used by the dynamic algorithm and work-
load balancing relies on repeating MPI communications,
this algorithm works better with fewer threads per pro-
cess (i.e., 8p2t). 16p1t is discouraged since multithreading
allows to share data through the memory hierarchy, thus
outperforming an MPI-only approach.

• HyperThreading improves the execution time in those sce-
narios where the computation is not yet bounded by the
prediction of one sequence, although it may hurt perfor-
mance in some cases due to increased memory pressure.

Furthermore, this exhaustive study has allowed to conclude
hen and how to use each one of the data decomposition algo-
ithms developed within pRIblast to achieve maximum speedup.
hese conclusions are:

• Do not use the pure block algorithm, it was developed only
for benchmarking purposes.

• Use the area sum algorithm when there are plenty of com-
puting resources available with respect to the dataset size.
Do not enable HyperThreading as it may hurt performance,
especially when working with a large number of cores. Use
more threads than processes to exploit the sorting heuristic.

• Use the dynamic decomposition procedure if the amount of
computing resources is small with respect to the dataset
size. HyperThreading will not hurt, and can be really ben-
eficial when using a low number of cores. More processes
than threads works best in this case.

. Conclusions

The computational prediction of interacting lncRNA–RNA pairs
s a hot research topic in bioinformatics. Progress in the field may
elp to further advance in the knowledge of severe diseases, such
s cancer or Parkinson’s. Therefore, having publicly available tools
hat can successfully accelerate this task is indispensable to move
orward in this direction.

For that purpose, this paper presents the high performance
ool pRIblast, which is capable of exploiting the hardware avail-
able in multicore clusters and supercomputing facilities. pRIblast
is based on RIblast, a highly accurate tool for the prediction
of lncRNA–RNA interacting segments, and reduces computation
times dramatically. Furthermore, pRIblast has been carefully op-
timized and can take on new challenges that may never have
been completed with the original RIblast tool. Indeed, the exper-
imental evaluation performed on a 16-node cluster (256 cores
in total) showed that pRIblast can process two 22- and 101-
day real datasets in as little as 4 and 20 h, respectively. But
these outstanding results do not only come from the fact that
pRIblast can run in parallel. The two optimizations developed
within the novel tool play a key role at the time of computing
these two datasets. The parallel-aware I/O procedure makes it
possible to unbound the scalability of the tool from that of the
disk operations, thus further improving the speedups achieved
when the result files grow to the order of giga or terabytes. And
what is more, it would have never been possible to compute these
two datasets without the database paging mechanism.

Future work may include: (1) parallelize the pRIblast database
construction step, even though its computational weight is low
compared to that of the RNA interaction search step; (2) develop
an approach to automatically choose the most promising data
decomposition algorithm depending on the hardware available
278
and the size of the input dataset; and (3) evaluate whether the
MapReduce paradigm is a good match to further improve pRIblast,
as it could provide redundancy, fault tolerance, and automatic
workload balancing mechanisms at the expense of translating the
prediction algorithm to a different programming language.

CRediT authorship contribution statement

Iñaki Amatria-Barral: Software, Investigation, Validation,
Writing – original draft. Jorge González-Domínguez: Concep-
tualization, Supervision, Writing – original draft. Juan Touriño:
Funding acquisition, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

I have shared all the data and code within the paper.

Acknowledgments

This work was supported by the Ministry of Science and Inno-
vation of Spain (PID2019-104184RB-I00/AEI/ 10.13039/ 5011000
11033), and by Xunta de Galicia and FEDER funds of the Eu-
ropean Union (Centro de Investigación de Galicia accreditation
2019–2022, ref. ED431G 2019/01; Consolidation Program of Com-
petitive Reference Groups, ref. ED431C 2021/30). Funding for
open access charge: Universidade da Coruña/CISUG.

References

[1] M.L. Tornesello, R. Faraonio, L. Buonaguro, C. Annunziata, N. Starita,
A. Cerasuolo, F. Pezzuto, A.L. Tornesello, F.M. Buonaguro, The role of
microRNAs, long non-coding RNAs, and circular RNAs in cervical cancer,
Front. Oncol. 10 (2020) 150.

[2] X. Dong, X. He, A. Guan, W. Huang, H. Jia, Y. Huang, S. Chen, Z. Zhang,
J. Gao, H. Wang, Long non-coding RNA Hotair promotes gastric cancer
progression via miR-217-GPC5 axis, Life Sci. 217 (2019) 271–282.

[3] L. Hobuß, C. Bär, T. Thum, Long non-coding RNAs: at the heart of cardiac
dysfunction? Front. Physiol. 10 (2019) 30.

[4] M.-T. Moradi, Z. Rahimi, A. Vaisi-Raygani, New insight into the role of
long non-coding RNAs in the pathogenesis of preeclampsia, Hypertension
Pregnancy 38 (1) (2019) 41–51.

[5] M. Elkouris, G. Kouroupi, A. Vourvoukelis, N. Papagiannakis, V. Kaltezioti, R.
Matsas, L. Stefanis, M. Xilouri, P.K. Politis, Long non-coding RNAs associated
with neurodegeneration-linked genes are reduced in Parkinson’s disease
patients, Front. Cellular Neurosci. 13 (2019) 58.

[6] M. Moazzam-Jazi, H. Lanjanian, S. Maleknia, M. Hedayati, M.S. Daneshpour,
Interplay between SARS-CoV-2 and human long non-coding RNAs, J.
Cellular Molecular Med. 25 (12) (2021) 5823–5827.

[7] T. Fukunaga, M. Hamada, RIblast: an ultrafast RNA-RNA interaction pre-
diction system based on a seed-and-extension approach, Bioinformatics
33 (17) (2017) 2666–2674.

[8] I.V. Antonov, E. Mazurov, M. Borodovsky, Y.A. Medvedeva, Prediction
of lncRNAs and their interactions with nucleic acids: benchmarking
bioinformatics tools, Brief. Bioinform. 20 (2) (2019) 551–564.

[9] D. Lai, I.M. Meyer, A comprehensive comparison of general RNA-RNA
interaction prediction methods, Nucleic Acids Res. 44 (7) (2016) e61.

[10] S.U. Umu, P.P. Gardner, A comprehensive benchmark of RNA-RNA interac-
tion prediction tools for all domains of life, Bioinformatics 33 (7) (2017)
988–996.

[11] I. Antonov, A. Marakhonov, M. Zamkova, Y. Medvedeva, ASSA: fast iden-
tification of statistically significant interactions between long RNAs, J.
Bioinform. Comput. Biol. 16 (1) (2018) 1840001.

[12] G. Terai, J. Iwakiri, T. Kameda, M. Hamada, K. Asai, Comprehensive predic-
tion of lncRNA-RNA interactions in human transcriptome, BMC Genomics
17 (2016) 12.

http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb1
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb2
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb2
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb2
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb2
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb2
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb3
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb4
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb4
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb4
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb4
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb4
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb5
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb6
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb7
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb8
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb8
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb8
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb8
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb8
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb9
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb9
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb9
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb10
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb10
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb10
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb10
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb10
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb11
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb12
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb12


I. Amatria-Barral, J. González-Domínguez and J. Touriño Future Generation Computer Systems 138 (2023) 270–279
[13] H. Teng, F. Mao, J. Liang, M. Xue, W. Wei, X. Li, K. Zhang, D. Feng, B.
Liu, Z. Sun, Transcriptomic signature associated with carcinogenesis and
aggressiveness of papillary thyroid carcinoma, Theranostics 8 (16) (2018)
4345.

[14] X. Wang, G. Li, Q. Luo, J. Xie, C. Gan, Integrated TCGA analysis implicates
lncRNA CTB-193M12. 5 as a prognostic factor in lung adenocarcinoma,
Cancer Cell Int. 18 (1) (2018) 1–16.

[15] H. Shi, Y. Sun, M. He, X. Yang, M. Hamada, T. Fukunaga, X. Zhang, C.
Chang, Targeting the TR4 nuclear receptor-mediated lncTASR/AXL signaling
with tretinoin increases the sunitinib sensitivity to better suppress the RCC
progression, Oncogene 39 (3) (2020) 530–545.

[16] C. Huang, D. Leng, S. Sun, X.D. Zhang, Re-analysis of the coral Acropora
digitifera transcriptome reveals a complex lncRNAs-mRNAs interaction
network implicated in Symbiodinium infection, BMC Genomics 20 (1)
(2019) 1–15.

[17] Z. Jin, S. Gao, W. Ma, X. Lyu, X. Cao, Y. Yao, Identification and functional
prediction of salt stress-related long noncoding RNAs in grapevine roots,
Environ. Exp. Bot. 179 (2020) 104215.

[18] R. Gelhausen, S. Will, I.L. Hofacker, R. Backofen, M. Raden, IntaRNAhelix-
composing RNA-RNA interactions from stable inter-molecular helices
boosts bacterial sRNA target prediction, J. Bioinform. Comput. Biol. 17 (5)
(2019) 1940009.

[19] L. DiChiacchio, M.F. Sloma, D.H. Mathews, AccessFold: predicting
RNA–RNA interactions with consideration for competing self-structure,
Bioinformatics 32 (7) (2016) 1033–1039.

[20] M. Mann, P.R. Wright, R. Backofen, IntaRNA 2.0: enhanced and customiz-
able prediction of RNA–RNA interactions, Nucleic Acids Res. 45 (W1)
(2017) W435–W439.

[21] D.D. Pervouchine, IRIS: intermolecular RNA interaction search, Genome
Inform. 15 (2) (2004) 92–101.

[22] S.M. Kiełbasa, R. Wan, K. Sato, P. Horton, M.C. Frith, Adaptive seeds tame
genomic sequence comparison, Genome Res. 21 (3) (2011) 487–493.

[23] J. Li, W. Ma, P. Zeng, J. Wang, B. Geng, J. Yang, Q. Cui, LncTar: a tool for
predicting the RNA targets of long noncoding RNAs, Brief. Bioinform. 16
(5) (2015) 806–812.

[24] Y. Kato, K. Sato, M. Hamada, Y. Watanabe, K. Asai, T. Akutsu, Rac-
tIP: fast and accurate prediction of RNA-RNA interaction using integer
programming, Bioinformatics 26 (18) (2010) i460–i466.

[25] F. Alkan, A. Wenzel, O. Palasca, P. Kerpedjiev, A.F. Rudebeck, P.F. Stadler, I.L.
Hofacker, J. Gorodkin, RIsearch2: suffix array-based large-scale prediction
of RNA-RNA interactions and siRNA off-targets, Nucleic Acids Res. 45 (8)
(2017) e60.

[26] U. Mückstein, H. Tafer, J. Hackermüller, S.H. Bernhart, P.F. Stadler, I.L.
Hofacker, Thermodynamics of RNA–RNA binding, Bioinformatics 22 (10)
(2006) 1177–1182.

[27] J. González-Domínguez, M.J. Martín, MPIGeneNet: Parallel calculation of
gene co-expression networks on multicore clusters, IEEE/ACM Trans.
Comput. Biol. Bioinform. 15 (5) (2017) 1732–1737.

[28] Y. Lü, X. Zeng, X. Zhao, S. Li, H. Li, X. Gao, M. Xu, Fine-grained alignment
of cryo-electron subtomograms based on MPI parallel optimization, BMC
Bioinformatics 20 (1) (2019) 1–13.
279
[29] J. González-Domínguez, Y. Liu, J. Touriño, B. Schmidt, MSAProbs-MPI:
parallel multiple sequence aligner for distributed-memory systems,
Bioinformatics 32 (24) (2016) 3826–3828.

[30] S. Santander-Jiménez, M.A. Vega-Rodríguez, L. Sousa, Exploiting multi-
level parallel metaheuristics and heterogeneous computing to boost
phylogenetics, Future Gener. Comput. Syst. 127 (2022) 208–224.

[31] M.V. Shegay, D.A. Suplatov, N.N. Popova, V.K. Švedas, V.V. Voevodin,
parMATT: parallel multiple alignment of protein 3D-structures with trans-
lations and twists for distributed-memory systems, Bioinformatics 35 (21)
(2019) 4456–4458.

[32] K.L. Howe, P. Achuthan, J. Allen, J. Allen, J. Alvarez-Jarreta, et al., Ensembl
2021, Nucleic Acids Res. 49 (D1) (2020) D884–D891.

Iñaki Amatria-Barral received the B.S. in computer
science from the Universidade da Coruña (UDC), Spain,
in 2021. He also holds an M.S. in High Performance
Computing from UDC since 2022. His research interests
are related to the acceleration of bioinformatics tools
using HPC techniques. His homepage is https://amatria.
dev.

Jorge González-Domínguez received the B.S., M.S., and
Ph.D. degrees in computer science from the Universi-
dade da Coruña (UDC), Spain, in 2008, 2009, and 2013,
respectively. He is currently an Associate Professor with
the Department of Computer Engineering, UDC. His
main research interests include the development of
parallel applications on multiple fields, such as bioin-
formatics, data mining, and machine learning, focused
on different architectures (multicore systems, GPUs,
clusters, and so on). His homepage is http://gac.udc.
es/~jorgeg.

Juan Touriño is a Full Professor with the Department
of Computer Engineering, Universidade da Coruña,
where he leads the Computer Architecture Group. He
has extensively published in the area of HPC: HPC
in Bioinformatics, HPC & Big Data convergence, high
performance architectures and networks, HPC program-
ming languages and compilers, parallel algorithms and
applications. He is coauthor of more than 170 pa-
pers on these topics in international conferences and
journals. His homepage is http://gac.udc.es/~juan.

http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb13
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb14
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb14
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb14
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb14
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb14
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb15
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb16
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb17
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb17
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb17
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb17
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb17
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb18
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb19
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb20
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb20
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb20
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb20
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb20
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb21
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb22
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb22
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb22
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb23
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb23
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb23
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb23
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb23
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb24
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb24
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb24
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb24
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb24
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb25
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb26
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb27
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb28
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb28
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb28
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb28
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb28
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb29
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb30
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb30
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb30
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb30
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb30
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb31
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb32
http://refhub.elsevier.com/S0167-739X(22)00275-8/sb32
https://amatria.dev
https://amatria.dev
https://amatria.dev
http://gac.udc.es/~jorgeg
http://gac.udc.es/~jorgeg
http://gac.udc.es/~jorgeg
http://gac.udc.es/~juan

	pRIblast: A highly efficient parallel application for comprehensive lncRNA–RNA interaction prediction
	Introduction
	Related work
	Background: RIblast
	pRIblast implementation
	Data distribution
	Pure block distribution
	Area sum distribution
	Dynamic distribution

	Database paging
	Parallel-aware I/O

	Experimental evaluation
	Configuration of the experiments
	Results

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


