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Abstract. The current trend to multicore architectures underscores the
need of parallelism. While new languages and alternatives for supporting
more efficiently these systems are proposed, MPI faces this new challenge.
Therefore, up-to-date performance evaluations of current options for pro-
gramming multicore systems are needed. This paper evaluates MPI per-
formance against Unified Parallel C (UPC) and OpenMP on multicore
architectures. From the analysis of the results, it can be concluded that
MPI is generally the best choice on multicore systems with both shared
and hybrid shared/distributed memory, as it takes the highest advantage
of data locality, the key factor for performance in these systems. Regard-
ing UPC, although it exploits efficiently the data layout in memory, it
suffers from remote shared memory accesses, whereas OpenMP usually
lacks efficient data locality support and is restricted to shared memory
systems, which limits its scalability.
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1 Introduction

Currently, multicore clusters are the most popular option for the deployment of
High Performance Computing (HPC) infrastructures, due to their scalability and
performance/cost ratio. These systems are usually programmed using MPI [1]
on distributed memory, OpenMP [2] on shared memory, and MPI+OpenMP on
hybrid shared/distributed memory architectures. Additionally, the Partitioned
Global Address Space (PGAS) languages, such as Unified Parallel C (UPC)
[3], are an emerging alternative that allows shared memory-like programming
on distributed memory systems, taking advantage of the data locality, being of
special interest for hybrid architectures.

In the past other alternatives, such as High Performance Fortran, aimed to
replace MPI as the primary choice for HPC programming. These alternatives
have been dismissed and MPI is still the preferred platform for HPC developers
due to its higher performance and portability. In order to evaluate the current
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validity of this assessment, this work presents an up-to-date comparative per-
formance evaluation of MPI, UPC and OpenMP on two multicore scenarios: a
cluster composed of 16-core nodes interconnected via InfiniBand, and a 128-core
shared memory system. This evaluation uses the standard parallel benchmarking
suite, the NAS Parallel Benchmarks (NPB) [4]. A matrix multiplication kernel
and the Sobel edge detection kernel, have also been used to assess the scalability
of the evaluated parallel programming solutions.

This paper is structured as follows: Section 2 presents current trends in mul-
ticore parallel programming (MPI, OpenMP and PGAS). Section 3 introduces
the benchmarks used for the comparative evaluation and related work. Bench-
marking results obtained from two multicore systems are shown and analyzed
in Section 4. Finally, Section 5 presents the main conclusions of this evaluation.

2 Parallel Programming for Multicore Architectures

This section presents three of the main options for parallel programming multi-
core architectures. These approaches are the message-passing paradigm, shared
memory programming, and the PGAS programming model.

The message-passing is the most widely used parallel programming model
as it is portable, scalable and provides good performance for a wide variety of
computing platforms and codes. It is the preferred choice for parallel program-
ming distributed memory systems, such as multicore clusters. Therefore, as the
programmer has to manage explicitly data placement through point-to-point or
collective operations, the programming of these architectures is difficult. MPI is
the standard interface for message-passing libraries and there is a wide range
of MPI implementations, both from HPC vendors and the free software com-
munity, optimized for high-speed networks, such as InfiniBand or Myrinet. MPI,
although is oriented towards distributed memory environments, faces the raise of
the number of cores per system with the development of efficient shared memory
transfers and providing thread safety support.

The shared memory programming model allows a simpler programming of
parallel applications, as here the control of the data location is not required.
OpenMP is the most widely used solution for shared memory programming, as
it allows an easy development of parallel applications through compiler direc-
tives. Moreover, it is becoming more important as the number of cores per system
increases. However, as this model is limited to shared memory architectures, the
performance is bound to the computational power of a single system. To avoid
this limitation, hybrid systems, with both shared/distributed memory, such as
multicore clusters, can be programmed using MPI+OpenMP. However, this hy-
brid model can make the parallelization more difficult and the performance gains
could not compensate for the effort [5, 6].

The PGAS programming model combines the main features of the message-
passing and the shared memory programming models. In PGAS languages, each
thread has its own private memory space, as well as an associated shared mem-
ory region of the global address space that can be accessed by other threads,
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although at a higher cost than a local access. Thus, PGAS languages allow
shared memory-like programming on distributed memory systems. Moreover, as
in message-passing, PGAS languages allow the exploitation of data locality as
the shared memory is partitioned among the threads in regions, each one with
affinity to the corresponding thread. This feature of the PGAS languages could
makes them important in the near future, as modern multicore architectures
became NUMA architectures with the inclusion of the memory controller in the
CPU. UPC is the PGAS extension to the ISO C language, and has been used
in this evaluation due to its important support by academia and industry, with
compilers available from Univ. of Berkeley, Michigan Tech. Univ., Intrepid/GCC,
IBM, Cray, and HP. UPC provides PGAS features to C, allowing a more pro-
ductive code development [7]. However, as an emerging programming model,
performance analysis are needed [8–10].

3 Parallel Benchmarks on Multicore Architectures

A comparative performance evaluation needs standard, unbiased benchmarks
with implementations for the evaluated options. As UPC is an emerging option,
the number of available benchmarks for UPC benchmarking is limited. The main
source of UPC benchmarks is the Berkeley UPC distribution [11], which includes
the codes selected for our evaluation: the UPC version of the NPB and the Sobel
edge detection kernel coded in MPI, UPC and OpenMP. Additionally, we have
implemented a blocking algorithm for matrix multiplication.

3.1 NAS Parallel Benchmarks Description

The NPB consist of a set of kernels and pseudo-applications, taken primarily
from Computational Fluid Dynamics (CFD) applications. These benchmarks
reflect different kinds of computation and communication patterns that are im-
portant across a wide range of applications, which makes them the de facto
standard in parallel performance benchmarking. There are NPB implementa-
tions available for a wide range of parallel programming languages and libraries,
such as MPI (from now on NPB-MPI), UPC (from now on NPB-UPC), OpenMP
(from now on NPB-OMP), a hybrid MPI+OpenMP implementation (not used
in this comparative evaluation as it implements benchmarks not available in
NPB-UPC), HPF and Message-Passing Java [12], among others.

The NPB evaluated are: CG, EP, FT, IS and MG. NPB-MPI and NPB-OMP
are implemented using Fortran, except for IS which is programmed in C. The
fact that the NPB are programmed in Fortran has been considered as cause of
a poorer performance of NPB-UPC [9], due to better backend compiler opti-
mizations for Fortran than for C. The CG kernel is an iterative solver that tests
regular communications in sparse matrix-vector multiplications. The EP kernel
is an embarrassingly parallel code that assesses the floating point performance,
without significant communication. The FT kernel performs series of 1-D FFTs
on a 3-D mesh that tests aggregated communication performance. The IS kernel
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is a large integer sort that evaluates both integer computation performance and
the aggregated communication throughput. MG is a simplified multigrid kernel
that performs both short and long distance communications. Moreover, each
kernel has several workloads to scale from small systems to supercomputers.

Most of the NPB-UPC kernels have been manually optimized through tech-
niques that mature UPC compilers should handle in the future: privatization,
which casts local shared accesses to private memory accesses, avoiding the trans-
lation from global shared address to actual address in local memory, and prefetch-
ing, which copies non-local shared memory blocks into private memory. Although
OpenMP 3.0 adds data locality support, the NPB-OMP codes do not take ad-
vantage of these features.

3.2 Related Work

Up to now only three works have analyzed the performance of MPI against UPC
in computational kernels [9, 10, 13]. The first work [9] has compared the perfor-
mance of NPB-MPI with NPB-UPC on a 16 processor Compaq AlphaServer SC
cluster, using the class B workload. The second work [10] has used two SGI Ori-
gin NUMA machines, each one with 32 processors, using the class A workload
for 3 NPB. The Sobel edge detector kernel has also been used in both works.
The third work [13] compares MPI with UPC very briefly using 2 NPB kernels
and class B, in a Cray X1 machine, with up to 64 processors. Other works have
tackled the kernel and micro-benchmarking of low-level parameters on multi-
core architectures, especially memory hierarchy performance [14, 15], but they
are limited to 8-core systems, and do not evaluate distributed memory program-
ming solutions such as MPI or UPC.

This paper improves previous works by: (1) using a higher number of pro-
cessor cores (128) with different memory configurations (shared and hybrid
shared/distributed memory); (2) including OpenMP performance in the shared
memory configuration; (3) using a larger workload, more representative of large
scale applications (class C); and (4) providing an up-to-date performance snap-
shot of MPI performance versus UPC and OpenMP on multicore architectures.

Finally, this paper addresses performance issues that are present in a cluster
with 16-core nodes, and on a 128-core system, but not in 4- and 8-core systems.
Thus, it is possible to foresee the main drawbacks that may affect performance
on the multicore architectures that will be commonly deployed in the next years.

4 Performance Evaluation

The testbed used in this work is the Finis Terrae supercomputer [16], composed
of 142 HP Integrity rx7640 nodes, each one with 8 Montvale Itanium 2 dual-core
processors (16 cores per node) at 1.6 GHz and 128 GB of memory, interconnected
via InfiniBand. The InfiniBand HCA is a dual 4X IB port (16 Gbps of theoretical
effective bandwidth). For the evaluation of the hybrid shared/distributed mem-
ory scenario, 8 nodes have been used (up to 128 cores). The number of cores
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used per node in the performance evaluation is dn/8e, being n the total number
of cores used in the execution, with consecutive distribution. An HP Integrity
Superdome system with 64 Montvale Itanium 2 dual-core processors (total 128
cores) at 1.6 GHz and 1 TB of memory has also been used for the shared memory
evaluation. The nodes were used without other users processes running, and the
process affinity was handled by the operating system scheduler.

The OS is SUSE Linux Enterprise Server 10, and the MPI library is the
recommended by the hardware vendor, HP MPI 2.2.5.1 using InfiniBand Verbs
(IBV) for internode communication, and shared memory transfers (HP MPI
SHM driver) for intranode communication. The UPC compiler is Berkeley UPC
2.8, which uses the IBV driver for distributed memory communication, and
pthreads within a node for shared memory transfers. The backend for both and
OpenMP compiler is the Intel 11.0.069 (icc/ifort, with -O3 flag).

4.1 Matrix Multiplication and Sobel Kernels Performance

Figure 1 shows the results for the matrix multiplication and the Sobel kernel.
The matrix multiplication uses matrices of 2400×2400 doubles, with a blocking
factor of 100 elements, and the experimental results include the data distribu-
tion overhead. The Sobel kernel uses a 65536×65536 unsigned char matrix and
does not take into account the data distribution overhead. The graphs show the
speedups on the hybrid scenario (MPI and UPC) and in the shared memory
system (UPC and OpenMP).
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Fig. 1. Performance of matrix multiplication and Sobel kernels

The three options obtain similar speedups on up to 8 cores. MPI can take
advantage of the use of up to 128 cores, whereas UPC (hybrid memory) presents
poor scalability, as it lacks efficient collectives [17]. In shared memory, UPC and
OpenMP show similar speedups up to 32 cores. However, on 128 cores UPC
achieves the best performance, whereas OpenMP suffers an important perfor-
mance penalty due to the sharing of one of the matrices, whereas in UPC this
matrix is copied to private space, thus avoiding shared memory access contention.
MPI shows better performance than OpenMP for this reason.
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In the Sobel kernel results, because the data distribution overhead is not con-
sidered, the speedups are almost linear, except for UPC on the hybrid scenario,
where several remote shared memory accesses limit seriously its scalability. Nev-
ertheless, UPC on shared memory achieves the highest speedups as these remote
accesses are intraprocess accesses (UPC uses pthreads in this scenario).

4.2 Performance of NPB Kernels on Hybrid Memory

Figure 2 shows NPB-MPI and NPB-UPC performance on the hybrid config-
uration (using both InfiniBand and shared memory communication). The left
graphs show the kernels performance in MOPS (Million Operations Per Sec-
ond), whereas the right graphs present their associated speedups.

Regarding the CG kernel, MPI performs slightly worse than UPC using up to
32 cores, due to the kernel implementation, whereas on 64, and especially on 128
cores MPI outperforms UPC. Although UPC uses pthreads within a node, its
communication operations, most of them point-to-point transfers with a regular
communication pattern, are less scalable than MPI primitives.

EP is an embarrassingly parallel kernel, and therefore shows almost linear
scalability for both MPI and UPC. The results in MOPS are approximately 6
times lower for UPC than for MPI due to the poorer UPC compiler optimiza-
tions. EP is the only NPB-UPC kernel that has not been optimized through
prefetching and/or privatization, and the workload distribution is done through
a upc forall function, preventing more aggressive optimizations.

The performance of FT depends on the efficiency of the exchange collective
operations. Although the UPC implementation is optimized through privatiza-
tion, it presents significantly lower performance than MPI. The UPC results, al-
though significantly lower than MPI in terms of MOPS, it shows higher speedups
than MPI. This is a communication-intensive code that benefits from UPC intra-
node shared memory communication, which is maximized on 64 and 128 cores.

IS is a quite communication-intensive code. Thus, both MPI and UPC obtain
low speedups for this kernel (less than 25 on 128 cores). Although UPC IS has
been optimized using privatization, the lower performance of its communications
limits its scalability, which is slightly lower than MPI speedups.

Regarding MG, MPI outperforms UPC in terms of MOPS, whereas UPC
shows higher speedup. The reason is the poor performance of UPC MG on 1
core, which allows it to obtain almost linear speedups on up to 16 cores.

4.3 Performance of NPB Kernels on Shared Memory

Figure 3 shows NPB performance on the Superdome system. As in the hybrid
memory figures, the left graphs show the kernels performance in MOPS and the
right graphs show the speedups. MPI requires copying data on shared mem-
ory, and therefore could be considered less efficient than the direct access to
shared memory of UPC and OpenMP. The following results do not support this
hypothesis.
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Fig. 2. Performance of NPB kernels on hybrid shared/distributed memory
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Fig. 3. Performance of NPB kernels on shared memory
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Regarding CG, all options show similar performance on up to 32 cores. How-
ever, for 64 and 128 cores UPC scalability is poor, whereas MPI achieves the
best MOPS results. The poor performance of OpenMP on 1 core leads OpenMP
to present the highest speedups on up to 64 cores, being outperformed by MPI
on 128 cores, due to the lack of data locality support of NPB-OMP.

As EP is an embarrassingly parallel code, the scalability shown is almost lin-
ear for MPI, UPC, and OpenMP, although MPI obtains slightly higher speedups,
whereas OpenMP presents the lowest scalability. These results are explained by
the efficiency in data locality exploitation of these three options. In terms of
MOPS, UPC shows quite low performance, as discussed in subsection 4.2.

As FT is a communication-intensive code, its scalability depends on the
performance of the communication operations. Therefore, OpenMP and MPI
achieve high speedups, whereas UPC suffers from a less scalable exchange oper-
ation. The code structure of the OpenMP implementation allows more efficient
optimizations and higher performance. Due to its good scalability OpenMP dou-
bles MPI performance (in terms of MOPS) on 128 cores. UPC obtains the poorest
performance.

IS is a communication-intensive code that shows similar performance for
MPI, UPC and OpenMP on up to 32 cores, both in terms of MOPS and speedups,
as the results on 1 core are quite similar among them. This fact can be partly
explained by the fact that the IS kernels use the same backend compiler (icc).
Regarding 64 and 128 cores results, OpenMP obtains the best performance and
MPI the lowest, as the communications are the performance bottleneck of this
kernel.

Regarding MG, MPI achieves better performance in terms of MOPS than
UPC and OpenMP, whereas UPC obtains the highest speedups, due to the poor
performance of this kernel on 1 core. OpenMP shows the lowest results, both in
terms of MOPS and speedups.

5 Conclusions

This paper has presented an up-to-date performance evaluation of two well-
established parallel programming models (MPI and OpenMP) and one emerging
alternative (PGAS UPC) on two multicore scenarios. The analysis of the results
obtained in the hybrid setup shows that MPI is the best performer thanks to
its efficient handling of the data locality. However, UPC speedups are better for
some benchmarks. Moreover, in some benchmarks the performance in the hybrid
setup with 128 cores is not as high as expected, showing that for some workloads
the network contention using a high number of cores may be a problem. This
will be a bigger issue as the number of cores per node increases in the next
years, where a higher network scalability will be required in order to confront
this challenge.

Both MPI and UPC obtain better speedups in shared memory than in the
hybrid setup up to 64 cores. However, for 128 cores all the options suffer from
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remote memory accesses and poor bidirectional traffic performance in the cell
controller.

MPI usually achieves good performance on shared memory, although UPC
and OpenMP outperform it in some cases. OpenMP speedups are generally
higher than those of MPI due to its direct shared memory access, which avoids
memory copies as in MPI. UPC, despite its direct shared memory access and
data locality support, suffers from its compiler technology and performs worse
than the other two options. However, due to its expressiveness and ease of pro-
gramming, is an alternative that has to be taken into account for productive
development of parallel applications.
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