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Synonyms

Big data performance characterization

Definitions

Big Data analysis can be defined as the strategy
of collecting, storing, processing, and analyz-
ing very large and complex datasets to extract
patterns and other useful information. Currently,
there exist multiple Big Data systems specifically
oriented to different fields such as machine learn-
ing, data mining, or graph processing.

At the core of any Big Data system, the data
processing engine is usually in charge of ul-
timately processing the input dataset, and thus
its performance is key for scalable Big Data
analysis. To provide horizontal scalability, most
data processing frameworks generally provide a
distributed mode so that they can be deployed
over the nodes of a cluster. As each cluster has
a certain set of features (e.g., CPU microarchitec-
ture, available memory, networking technology),
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the performance of these frameworks is affected
not only by the software component but also by
the available hardware resources.

Most performance evaluation studies are ori-
ented to compare several distributed processing
frameworks with different configuration param-
eters. To do so, a set of experiments is carried
out, which involves generating the input datasets,
processing them using representative workloads,
and extracting the corresponding performance
metrics. The use of benchmarking tools to per-
form all these tasks is widespread.

This chapter first presents an overview of the
most popular distributed processing frameworks.
Then, a summary of previous studies that have
assessed the performance of these frameworks is
provided together with the benchmarking tools
that are most commonly used to perform this task.

Overview

According to the literature, it has been established
that distributed frameworks can be classified into
three main groups according to the specific capa-
bilities of their underlying data processing engine
and targeted use cases: (1) batch-only, (2) stream-
only, and (3) hybrid.

Batch-only frameworks enable to store and
process static, very large datasets in a scalable
and easy-to-program way. According to the
MapReduce paradigm originally proposed by
Google (Dean and Ghemawat 2008), input data
are split and processed in chunks by using the two
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phases that name the model, which are derived
from functional programming. Apache Hadoop
(2008), as an open-source implementation of
the MapReduce model, has long been one of
the most popular frameworks for large-scale
batch processing over the last decade. Basically,
Hadoop consists of three components or layers:
(1) the Hadoop MapReduce as data processing
engine; (2) the Hadoop Distributed File System
(HDFS) (Shvachko et al. 2010) as data storage
layer; and (3) the Yet Another Resource
Negotiator (YARN) (Vavilapalli et al. 2013) as
resource management layer. Furthermore, the
vast ecosystem around Hadoop has become the
most commonly used platform to solve Big Data
problems. This ecosystem consists of multiple
open-source projects such as Apache Mahout
for machine learning, Apache Giraph for graph
processing, Apache Hive for SQL-like query
processing on HDFS, or Apache HBase as a non-
relational, columnar database implemented on
top of HDFS, among many other projects.

It is also worth mentioning some modifica-
tions of Hadoop that adapt it to specific network-
ing technologies such as RDMA-Hadoop (Wasi-
Ur-Rahman et al. 2013) or that seek overall per-
formance improvements like Flame-MR (Veiga
et al. 2016b). On the one hand, RDMA-Hadoop
adapts several Hadoop subsystems to take advan-
tage of Remote Direct Memory Access (RDMA)
networks in order to achieve better communi-
cation efficiency. On the other hand, Flame-MR
presents a novel design that includes several op-
timizations such as an event-driven architecture,
pipelined data movements, and efficient iterative
support.

The second group of distributed processing
frameworks, stream-only, was developed to allow
building pipelines that process data which arrives
continuously and from different sources, even
in real time. In this scenario, batch processing
is not applicable due to time constraints, the
possibility of having an unending stream, and the
lack of support for real-time processing. Popular
stream processing projects are Apache Storm
(Igbal and Soomro 2015), Apache Heron (Kulka-
rni et al. 2015), Apache Samza (Noghabi et al.
2017), and the Kafka Streams library (Isah et al.
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2019). All of them follow a different approach
than the MapReduce model, generally creating
a graph-based architecture using pipelines and
direct acyclic graphs. Data management in stream
frameworks is also different from the batch-only
approach, which mainly uses HDFS. The stream-
ing paradigm introduces the idea of data sources
and sinks. A source is defined as the origin of the
data into the streaming architecture, whereas the
sink is the end where output data is persisted. A
data ingestion layer at the front end is responsible
for accepting streams of data into the system.
This layer ensures scalable and fault-tolerant data
distribution across the cluster from multiple input
data streams, thus decoupling the data sources
from other parts of the system. To play this
role for data ingestion, message-oriented queuing
systems such as Apache Kafka (Kreps etal. 2011)
are usually deployed together with the stream
processing framework.

Finally, hybrid frameworks try to offer a
unified solution for data processing by covering
both batch and streaming scenarios. These
solutions inherit some of the functionalities
offered by batch models like MapReduce, as well
as the new features from streaming architectures.
Currently, Apache Spark (Zaharia et al. 2016)
and Apache Flink (Carbone et al. 2015) are the
most popular open-source frameworks under
this category. On the one hand, Spark provides
a batch processing engine based on a novel
data structure, Resilient Distributed Datasets
(RDDs), which are in-memory data collections
partitioned over the cluster nodes. As RDDs keep
data in memory, Spark can avoid disk traffic
and alleviate some of the issues that hinder
Hadoop performance, especially for iterative
workloads. Initially, Spark supported stream
processing by providing the Streaming API,
which was based on a micro-batch processing
model: streams are split into finite chunks of
data (i.e., batches) that are then processed in
parallel in batch mode. More recently, Spark
2.2 introduced the Structured Streaming API to
support real-time processing instead of using
micro-batches (Armbrust et al. 2018). Structured
Streaming is built on top of the Spark SQL
engine so that it manages streaming data as of
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a relational table where data is continuously
appended to it. Furthermore, Spark includes built-
in libraries for machine learning (MLIib) and
graph algorithms (GraphX). On the other hand,
Flink specifically targets streaming scenarios.
The basic building blocks of Flink programs
are streams and transformations, defined as
data sources and data operators, respectively.
Unlike Spark Streaming, Flink provides a native
stream engine that allows handling incoming
data on an item-by-item basis as a true stream.
Batch processing is also supported by simply
considering batches to be data streams with finite
boundaries. Similar to Spark, Flink also includes
built-in libraries for machine learning (FlinkML)
and graph algorithms (Gelly).

In terms of the physical architecture, most
current frameworks can be deployed in a clus-
ter of commodity machines, usually following
a master/slave architecture. Regarding resource
management, YARN and Mesos (Hindman et al.
2011) are widely supported as cluster managers,
but many of the frameworks can also run in
stand-alone mode or even provide support for
container-based platforms such as Kubernetes.

As a summary, Table 1 shows the main char-
acteristics of the most relevant frameworks dis-
cussed previously.

Key Research Findings

Evaluating Big Data systems has been an active
area of research over the last decade. Most studies
have assessed and characterized the performance
of distributed processing frameworks at multiple
levels in an effort to provide useful guidelines for
identifying the most appropriate one for a specific
use case. This section provides a summary of the
main research results.

Data Processing Engine

The underlying data processing engine defines
the type of data operators that can be performed
over the input datasets or streams of data, and so
its performance is a crucial factor that determines
the overall throughput. As mentioned before,
MapReduce has been one of the most popular

batch engines so far, with Hadoop as its de facto
standard implementation. Consequently, many
early works have thoroughly assessed Hadoop
performance using representative workloads
(Fadika et al. 2011; Dede et al. 2014; Jakovits
and Srirama 2014).

However, the underlying Hadoop architecture
presents various limitations that hinder its overall
performance, such as the writing of intermediate
results to HDFS. Thus, it has been acknowl-
edged that Hadoop cannot be the one-size-fits-
all solution, which has led to the development of
multiple alternatives that try to optimize its per-
formance. So, later studies focus on in-memory
data processing engines such as Spark due to their
better flexibility and performance. For instance,
Shi et al. (2015) compared Hadoop with Spark,
showing that the latter can reduce the execution
time up to 80% for batch iterative workloads.
Further evaluations are conducted by Veiga et al.
(2016a), comparing Hadoop with Spark and Flink
for batch processing. Their results have shown
that Spark and Flink can reduce Hadoop runtimes
by 77% and 70% on average, respectively.

When comparing Spark with Flink, most
works conclude that their performance is
highly dependent on the workload executed.
Spangenberg et al. (2015) have compared both
frameworks using standard batch workloads
(e.g., WordCount, KMeans, PageRank), showing
that Flink outperforms Spark except in one of
them. Another study by Bertoni et al. (2015)
using three genomic applications has shown that
Flink beats Spark in two of them. Some internal
design characteristics of both frameworks are
addressed by Marcu et al. (2016), identifying a
set of configuration parameters that have a major
influence on their execution time and scalability.

Other works have focused on the data process-
ing capabilities for streaming scenarios. Some
studies (Chintapalli et al. 2016) have shown that
Spark Streaming outperforms Flink and Storm in
terms of peak throughput at the cost of providing
higher latencies. Samosir et al. (2016) have as-
sessed Spark Streaming, Storm, and Samza using
both quantitative and qualitative tests, showing
that Samza is the worst framework under eval-
uation. The study conducted by Karimov et al.
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Paradigm Cluster managers

Hadoop Batch YARN, Mesos

RDMA- Batch YARN

Hadoop

Flame-MR Batch YARN

Storm Stream YARN, Mesos, Docker,
Kubernetes, stand-alone

Heron Stream YARN, Mesos, Aurora,
Kubernetes, stand-alone

Samza Stream YARN, stand-alone

Kafka Stream YARN, stand-alone

Streams

Spark Hybrid YARN, Mesos, Kubernetes,
stand-alone

Flink Hybrid YARN, Mesos, Docker,

Kubernetes, stand-alone
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Data sources and sinks

Distributed filesystems (e.g., HDFS),
object storage (e.g., S3)

Distributed filesystems (e.g., HDES),
parallel filesystems (e.g., Lustre),
object storage (e.g., S3)

Distributed filesystems (e.g., HDFS),
object storage (e.g., S3)

Distributed filesystems (e.g., HDFS),
databases (e.g., Cassandra), message
systems (e.g., Kafka)

Distributed filesystems (e.g., HDFS),
databases (e.g., Cassandra), object
storage (e.g., S3), message systems
(e.g., Kafka)

Distributed filesystems (e.g., HDFS),
message systems (e.g., Kafka)
Distributed filesystems (e.g., HDES),
databases (e.g., Cassandra), object
storage (e.g., S3), message systems
(e.g., Kafka)

Distributed filesystems (e.g., HDFS),
databases (e.g., Cassandra), object
storage (e.g., S3), message systems
(e.g., Kafka)

Distributed filesystems (e.g., HDFS),
databases (e.g., Cassandra), object
storage (e.g., S3), message systems
(e.g., Kafka)

Iterative
support
No

No

Yes

Yes

Yes

Yes

Yes

Real time

No

No

Yes

Yes

Yes

Yes

Yes

Yes

(2018) confirmed that the general performance
for windowed operations of Spark Streaming and
Flink is better than that of Storm. A more recent
work (van Dongen and Van den Poel 2020) has
assessed the performance of the newest Spark
Structured Streaming API, comparing it with its
predecessor (Spark Streaming), Flink and the
Kafka Streams library. By running four work-
loads that cover different processing scenarios,
the results have shown that when sub-second
latency is critical, Flink would be the best choice.
Otherwise, Structured Streaming offers a high-
level, SQL-like API that provides high through-
put with minimal tuning.

File System
Most Big Data processing frameworks supports
HDFS in order to distribute the storage of large

datasets over the nodes of a cluster, collocating
storage and compute services on the same nodes.
However, HDFS is not widespread in High
Performance Computing (HPC) clusters, which
usually separate compute and storage services
by relying on parallel file systems like Lustre,
OrangeFS, or GPFS. Some works have evaluated
the performance of both approaches, concluding
that GPFS behaves better than HDFS at low
concurrency scenarios, while HDFS is more
suited to high concurrency one (Fadika et al.
2012). Some other works have demonstrated that
parallel file systems can provide performance
improvements over HDFS. For instance, Fadika
et al. (2014) propose MARIANE, a custom
MapReduce framework implemented on top of
GPFS. Another approach presented by Xuan
et al. (2017) relies on a two-level storage system
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that integrates OrangeFS with Tachyon, an in-
memory file system, in order to obtain higher
performance than just using HDFS.

Disk Technology

Traditional magnetic disk drives are being pro-
gressively replaced by solid-state drives (SSDs),
which obtain significantly better performance but
at higher cost per byte. Using SSDs has been
reported to significantly improve the performance
of Hadoop by reducing disk bottlenecks when ex-
ecuting I[/O-bound workloads (Hong et al. 2016;
Bakratsas et al. 2018). Regarding Spark, its per-
formance can be improved by 23% when using
SSDs to store intermediate results compared to a
memory-only approach as shown by Choi et al.
(2015).

Network Interconnects

The network plays a key role in the performance
of those Big Data workloads where data shuffling
is the most demanding phase. In streaming sce-
narios, the network is also of utmost importance
to scale applications to a large number of nodes
with a reasonable latency.

Most frameworks implement the network sup-
port on top of a socket-based interface (e.g.,
Hadoop, Spark), which can limit their potential
performance especially on HPC systems where
specialized networking technologies (e.g., Infini-
Band, Intel Omni-Path) are widespread. Conse-
quently, some early works (Islam et al. 2012;
Wasi-Ur-Rahman et al. 2013) have been focused
on adapting Hadoop components (e.g., HDFS)
to take full advantage of such networks. As an
example, a performance improvement of 32%
has been achieved when running the TeraSort
workload with Hadoop on an InfiniBand HPC
cluster using eight nodes.

Later studies have also analyzed the impact of
implementing this advanced networking support
in other frameworks such as Spark (Lu et al.
2016b) or Heron (Kamburugamuve et al. 2017).
For instance, a performance improvement up to
46% for batch workloads has been measured in
the case of Spark.

Memory Management

As Big Data applications process large amounts
of data, managing the available memory
resources efficiently is another important
factor to take into account to achieve scalable
performance. Most current Big Data frameworks
are written in some object-oriented, managed
language (e.g., Java, Scala) executed by the
Java Virtual Machine (JVM). In this context,
objects are automatically tracked by the JVM in
order to release unused memory once they stop
being referenced. This process, performed by
the JVM garbage collector, can cause significant
performance overheads when processing large
datasets.

Modifying the JVM memory management to
adapt it to the characteristics of Big Data sys-
tems can lead to significant performance im-
provements. For instance, Broom (Gog et al.
2015) has proposed a region-based algorithm to
allocate data objects efficiently. Another example
is Yak (Nguyen et al. 2016), which implements
a hybrid approach that utilizes generation- and
region-based algorithms for control and data ob-
jects, respectively. As these memory managers
are implemented in Java, they can be used with
any JVM-based framework.

Other solutions are specific to a certain frame-
work. For example, Deca (Lu et al. 2016a) mod-
ifies the management of data containers in Spark
to estimate their lifetime and allocating memory
regions accordingly. This mechanism provides
a maximum speedup of 41.6 in scenarios with
heavy disk spilling.

Manycore Accelerators

The great majority of Big Data frameworks rely
on CPUs to perform the computations. Some
other works propose the use of specialized many-
core accelerators typically available in heteroge-
neous systems, like GPUs or FPGAs.

Due to the high degree of data parallelism
provided by GPUs, they have become a suit-
able option to accelerate Big Data workloads.
For instance, Mars (Fang et al. 2011) acceler-
ates MapReduce workloads using CPU, GPU,
or hybrid computations, providing a maximum
speedup of 2.8. The exploitation of GPUs has also



been employed to improve the performance of
Spark (Rathore et al. 2018) and Flink (Chen et al.
2018). For instance, the performance of Flink
when running KMeans is improved by 5x on a
10-node GPU cluster.

FPGAs are hardware devices that can be pro-
grammed to build custom accelerators. Neshat-
pour et al. (2015) have assessed the benefits of
accelerating typical machine learning and data
mining applications by offloading some of their
kernels to FPGAs, obtaining a maximum speedup
of 2.72. More recently, Hou et al. (2018) have
proposed an FPGA-based Spark implementation
that provides a modest speedup of 1.79 over the
CPU-only counterpart.

CPU Microarchitecture

The specific CPU microarchitecture of the clus-
ter nodes has been the focus of some previous
works. For instance, the performance and en-
ergy efficiency of “big” nodes based on high-
performance server architectures (e.g., Intel Xeon
x86-64) have been compared to “little” nodes
based on low-powered counterparts (e.g., ARM,
Intel Atom).

Loghin et al. (2015) have stated that big Xeon
servers are more efficient for CPU-intensive jobs,
while little ones based on ARM can perform
better for I/O-intensive workloads. The study
conducted by Kalyanasundaram and Simmhan
(2017) has shown that Hadoop performance on
an ARMG64 server is comparable to an x86-64
Xeon counterpart for integer-based workloads
and only lags behind for floating-point-intensive
benchmarks like PageRank. However, the
ARMO64 server has a 3x smaller base power load
than the x86-64 Xeon one. According to Malik
et al. (2019), big Xeon servers are more efficient
than Atom ones as the computational size of the
problem increases while also providing a clear
performance advantage for I/O-intensive Hadoop
applications.

Examples of Application

Most existing benchmarking tools provide mul-
tiple kinds of representative workloads to as-
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sess the performance of Big Data processing
frameworks under different use cases. Early ef-
forts have been originally designed for supporting
batch-only workloads on Hadoop, while later
ones have been mainly focused on the streaming
scenario.

HiBench (Huang et al. 2010) is probably the
first benchmark suite to evaluate and characterize
the performance of Hadoop, being later extended
to support in-memory frameworks such as Spark
and Flink, even including a streaming compo-
nent. Another long-lived, popular project is Big-
DataBench (Wang et al. 2014), which supports
more than 30 workloads classified in 5 differ-
ent application domains (e.g., social networks,
e-commerce). Moreover, this suite focuses on
improving the quality of the input data by gen-
erating them from real-world datasets. BigBench
(Ghazal et al. 2013) proposes a standard end-to-
end benchmark that covers a representative num-
ber of application profiles, with all major char-
acteristics in the lifecycle of Big Data systems.
There also exists some suites specifically oriented
to evaluate the performance of in-memory pro-
cessing frameworks. For instance, SparkBench
(Li et al. 2017) features machine learning, graph
processing, SQL queries, and streaming compu-
tations on Spark.

Regarding streaming scenarios, one of the
most popular projects is the Linear Road
Benchmark (LRB), originally proposed by Arasu
et al. (2004), which is focused on application-
level performance. LRB contains a toolkit
comprising a data generator, a data sender, as
well as a result validator. The Yahoo! Streaming
Benchmark (YSB 2015) allows comparing
multiple frameworks (e.g., Storm, Spark, Flink)
by providing a streaming workload that simulates
a real-world advertising analytics task. Another
interesting project is StreamBench (Qian et al.
2016), which proposes a standard method to
measure the throughput and latency of streaming
engines with the use of a mediator between the
data source and the data processing engine under
evaluation.

Other tools not only provide a set of bench-
marks but also ease the execution of the exper-
iments. MRBS (Sangroya et al. 2012) is able to
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automatically set up a Hadoop cluster in a public
cloud provider. Once the cluster is running, it
injects the input dataset and executes the selected
workloads, allowing to obtain multiple metrics
related to execution time, throughput, and cost.
BDEv (Veiga et al. 2018) is another example
of this kind of tools but extending the support
for other frameworks such as Spark and Flink.
Once the user configures the experiments, BDEv
deploys the frameworks over the cluster, gener-
ates the input datasets, and performs the selected
workloads in a fully automatic manner. This tool
also allows recording several metrics during the
execution of the experiments, including execution
time, resource utilization, energy efficiency, and
hardware performance counters.

Finally, other tools focus on providing fur-
ther insights into the performance of Big Data
frameworks, even in real time. For instance, the
BDWatchdog project (Enes et al. 2018) provides
not only resource usage metrics in real time but
also profiling information about the execution of
the Java bytecode which can be extremely useful
to detect performance bottlenecks.

Future Directions for Research

As explained in previous sections, the overall
performance of Big Data systems is affected by
multiple factors, both in terms of hardware and
software. So, the development of evaluation tools
that can bring more meaningful insights to end
users is key to get a more accurate view of the
performance of Big Data systems.

Distributed processing frameworks are
becoming increasingly complex to deploy,
manage, and configure properly. Although there
are some tools that ease their deployment and the
execution of the workloads over a cluster, future
ones must also cooperate with the frameworks in
a more active way to help end users to make
decisions. In addition to only obtaining raw
performance metrics (e.g., runtime, latency,
throughput), new tools should take advantage
of such information to feed back the system and
thus improve performance. Furthermore, as the
configuration parameters of a framework can

have a large influence on its performance in
a certain scenario, automatic fine-tuning tools
would be of great interest.
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