
SparkEC: speeding up alignment‑based DNA
error correction tools
Roberto R. Expósito* , Marco Martínez‑Sánchez and Juan Touriño

Background
As the need to process large amounts of DNA sequences (the so-called reads) to con-
duct novel research keeps growing, new technologies grouped under Next Genera-
tion Sequencing (NGS) have arisen over the last decade to solve this requirement [1].
However, NGS platforms are not perfect and can introduce sequencing errors in the
generated reads which can affect the quality of downstream analysis. Therefore, error

Abstract

Background: In recent years, huge improvements have been made in the context of
sequencing genomic data under what is called Next Generation Sequencing (NGS).
However, the DNA reads generated by current NGS platforms are not free of errors,
which can affect the quality of downstream analysis. Although error correction can
be performed as a preprocessing step to overcome this issue, it usually requires long
computational times to analyze those large datasets generated nowadays through
NGS. Therefore, new software capable of scaling out on a cluster of nodes with high
performance is of great importance.

Results: In this paper, we present SparkEC, a parallel tool capable of fixing those errors
produced during the sequencing process. For this purpose, the algorithms proposed
by the CloudEC tool, which is already proved to perform accurate corrections, have
been analyzed and optimized to improve their performance by relying on the Apache
Spark framework together with the introduction of other enhancements such as the
usage of memory‑efficient data structures and the avoidance of any input preprocess‑
ing. The experimental results have shown significant improvements in the computa‑
tional times of SparkEC when compared to CloudEC for all the representative datasets
and scenarios under evaluation, providing an average and maximum speedups of 4.9×
and 11.9× , respectively, over its counterpart.

Conclusion: As error correction can take excessive computational time, SparkEC pro‑
vides a scalable solution for correcting large datasets. Due to its distributed implemen‑
tation, SparkEC speed can increase with respect to the number of nodes in a cluster.
Furthermore, the software is freely available under GPLv3 license and is compatible
with different operating systems (Linux, Windows and macOS).

Keywords: Error correction, Big data, Distributed processing, Apache Spark

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Expósito et al. BMC Bioinformatics (2022) 23:464
https://doi.org/10.1186/s12859‑022‑05013‑1

BMC Bioinformatics

*Correspondence:
roberto.rey.exposito@udc.es

Universidade da Coruña, CITIC,
Computer Architecture Group,
Campus de Elviña, 15071 A
Coruña, Spain

http://orcid.org/0000-0002-2077-1473
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-022-05013-1&domain=pdf

Page 2 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

correction is an important preprocessing step in many NGS pipelines (see Section 1 of
Additional file 1 for more information about this topic).

Due to its importance, multiple correction algorithms have been proposed in the lit-
erature [2, 3]. However, most of the previous solutions usually lack either accuracy in
correction, performance when processing large datasets, or the capability to scale out
on a computing cluster. Among them, CloudEC [4] has been proved to perform precise
corrections together with a scalable approach by relying on Big Data technologies, since
its correction algorithms have been designed upon the MapReduce paradigm [5] using
its most popular open-source implementation Apache Hadoop [6] (more details about
Big Data and MapReduce are provided in Section 2 of Additional file 1). However, the
usage of this tool comes at the cost of poor performance in terms of computational time
when managing the huge amounts of data usually generated by NGS platforms. Accord-
ing to their own published results [7], the fastest experiment takes more than 18 h when
correcting a dataset with 200 million reads on an 80-node computing cluster, showing a
limited speedup of 5 × (5 times faster execution time using 8 times the number of nodes).
In order to overcome this problem, in this work we are introducing SparkEC as a new
tool based on this previous approach that can tackle these scalability limitations without
giving up either of its advantages in terms of correction accuracy.

The main contributions of this paper are:

• A new parallel tool based on Apache Spark [8] aimed at correcting errors in genomic
reads that relies on accurate algorithms based on multiple sequence alignment strat-
egies.

• A novel split-based processing strategy with a two-step k-mers distribution that
allows correcting large NGS datasets much faster than previous tools.

• A simplified workflow for scientists and researchers by directly supporting standard
unaligned formats without any need for input preprocessing.

Related work

According to recent literature, current state-of-the-art correction approaches can be
grouped into three main categories [9]: k-mer spectrum-based algorithms, suffix-tree
based approaches, and strategies that rely on Multiple Sequence Alignment (MSA). The
first category is based on grouping and counting subsequences of a fixed length K from
the reads (i.e., the so-called k-mers). After this counting has been performed, k-mers are
classified as solid or weak depending on their number of appearances. After that step,
corrections on input reads are made to transform the weak k-mers into solid ones. The
second category is an extension of the previous approach, where instead of keeping a
hash table with all the different k-mers, the data structure to store them is based on a
tree that keeps track of the different suffixes of the reads. This allows these algorithms
to find low frequency strings composed by high frequency substrings, enabling them to
easily spot the errors. Finally, MSA algorithms [10] are based on identifing groups of
similar sequences and aligning them in order to construct a reference read that has more
similarity with the original one. After this step, changes on input reads are made in order
to near them to the original sequence.

Page 3 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

MSA-based approaches typically allow for higher error correction precision but at the
expense of greater computational complexity due to the multiple alignments. The Clou-
dEC tool proposes two correctors that fit into this last category, and consequently our
proposal also falls into this type of algorithms.

Big data and parallel correctors

Big Data technologies are increasingly being used to handle the processing of large
genomic datasets in a scalable way, including aligners and assemblers, among oth-
ers [11–16]. In the context of DNA error correction, multiple solutions have been pro-
posed in recent years. If we delve into the literature, there exist representative works
for each one of the three aforementioned correction strategies: (1) those that count the
frequency of the different substrings or k-mers in order to spot misread bases (e.g., Rep-
tile [17], BLESS2 [18], Musket and its Spark-based approach [19, 20]); (2) tools that gen-
eralize the previous strategy by using trees to analyze the suffixes of the strings (e.g.,
Pluribus [21], SHREC [22]); and (3) correctors that rely on MSA strategies to make mul-
tiple alignments of the input reads to apply the corrections among them [23, 24].

Delving into MSA-based parallel tools, the ALLPATHS-LG assembler [25] provides
a built-in error corrector implemented using a set of tasks that are executed through
a Makefile. Therefore, it easily allows to set up a multi-threaded execution by taking
advantage of the support provided by Makefile for such goal. However, it is not possi-
ble to distribute the computation across a cluster of nodes with this approach. For this
reason, CloudRS [26] has been proposed by taking the corrector of ALLPATHS-LG as
baseline and implementing it upon Apache Hadoop. Thanks to this change, CloudRS
is able to process the sequences using multiple worker nodes, effectively allowing it to
handle larger datasets than ALLPATHS-LG in less time. Finally, CloudEC [7] is another
Hadoop-based MSA corrector that was presented as an enhanced version of CloudRS.
The major improvement of CloudEC over its counterpart was the introduction of the
spread corrector, a new MSA-based algorithm which increases the reliability of the reads
at the cost of reducing its performance, as this algorithm is much more computationally
intensive than the one provided by CloudRS (i.e., the pinch corrector). Although provid-
ing more accurate correction algorithms represents a clear advance in the state of the
art, their usage in large datasets is unaffordable in terms of computational time. This is
the main challenge that our proposal tries to overcome.

Implementation
As mentioned earlier, the correction algorithms provided by our tool SparkEC are the
ones originally proposed by the MSA-based reference tool CloudEC (i.e., the spread and
pinch correctors). In this work, we did not take any action to enhance those correction
algorithms in terms of their accuracy, since they have been extensively evaluated in pre-
vious works [7, 26]. Instead, our objective is twofold: increasing their performance by
reducing the execution time, and improving their usability by removing the need from
the user to manually execute some tedious tasks. These enhancements will be presented
and analyzed throughout this section.

Page 4 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

CloudEC architecture

Before getting into details about SparkEC, it is important to outline how CloudEC is
structured at a high level. This tool makes use of the Pipe &Filter architectural pattern,
which decomposes the whole job to be undertaken into multiple phases through which
the data flow gets progressively transformed into the desired final result. More specifi-
cally, CloudEC consists of six phases: two correctors (PinchCorrect and SpreadCorrect),
which are responsible of implementing the MSA-based algorithms themselves; two fil-
ters (LargeKmerFilter and UniqueKmerFilter), which speed up the execution of the cor-
rectors by tagging sequences that should not be processed; and two auxiliary phases
(PreProcess and PostProcess), which handle both the input and output data flow of the
tool, respectively. The overall pipeline defined with these six phases, which is depicted in
Fig. 1, will be kept in our implementation except for minor changes during the preproc-
essing step aimed at supporting additional input formats, as will be later explained.

As previously mentioned, CloudEC is implemented upon the Hadoop framework
(more details in Section 2.2 of Additional file 1). The procedure used to set up the pipe-
line described earlier with Hadoop is as follows: for each phase, a set of MapReduce jobs
is dispatched one after another, chaining the output of a phase with the input of the next

Fig. 1 Phases of the CloudEC pipeline

Page 5 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

one. This tool defines a common internal data format among all the pipeline phases that
is used for this intermediate communication between them. Furthermore, the dataset
provided to CloudEC as input is expected to be stored in this custom format, requiring
the user to preprocess the sequencing data on his/her own to convert the input reads
before being able to run the pipeline. This additional preprocessing step means that
CloudEC has seven effective phases, with the first one not being parallelizable. Moreo-
ver, this tool is unable to directly process standard sequence formats such as FastQ.

The execution of multiple MapReduce jobs to implement the pipeline has also some
implications in terms of performance: firstly, a Shuffle & Sort task (see Section 2.1 of
Additional file 1) has to be undertaken by the Hadoop data processing engine in most
of the jobs, which degrades the overall performance of CloudEC due to the usage of
network and secondary storage for temporary data (e.g., data shuffling); secondly, data
processed by MapReduce jobs are typically stored in long-term storage, degrading even
more the throughput of the application. With our first optimization detailed next we
provide a solution to these two problems.

Replacement of the data processing paradigm

The first step carried out was to migrate the underlying data processing engine from
Hadoop to Spark. This transition implies the replacement of all the explicit MapRe-
duce jobs executed by CloudEC to the specific paradigm defined by Spark, based on an
implicit handling of these tasks via the usage of abstract data transformations.

To do so, the Resilient Distributed Datasets (RDDs) [27] defined by Spark were used.
These structures allow the developer to store data that are defined as a set of elements
in a distributed way across a cluster of nodes. Details about RDDs are provided in Sec-
tion 2.3 of Additional file 1. Their interesting features, such as the support of in-memory
computations in a fault-tolerant manner, are specially beneficial for the performance of
our tool. In fact, they can either solve or, at least, reduce the impact of the two CloudEC
problems mentioned earlier: (1) most of the operations performed over RDDs are lazily
computed, enabling Spark to coalesce some of them and thus minimizing the Shuffle &
Sort tasks that have to be undertaken; and (2) since the RDDs can be stored into main
memory, the usage of secondary storage can be reduced, improving the overall perfor-
mance. Moreover, the RDDs can be cached to prevent Spark from disposing them, being
able to reuse the data previously generated. In SparkEC, this functionality is applied to
the input reads, keeping always the most recent version of the dataset cached in mem-
ory. This configuration allows our tool to generate the k-mers that will be used by both
correctors and filters and, after applying the corresponding algorithm, join those k-mers
again with their original sequences.

Finally, Spark also allows developers to manage both the number of partitions and
the partitioning strategy used for each RDD to determine how many pieces an RDD
is decomposed into and the algorithm to assign the RDD elements to each partition,
respectively. In our proposal, we have chosen to customize the default Spark behaviour
when none of these values are provided, by keeping the number of partitions constant
throughout all the execution. This way, we prevent the use of an extremely low num-
ber of partitions since the default behaviour of Spark is to set this value to the default
parallelism level. Moreover, SparkEC relies on a hash-based partitioning strategy, which

Page 6 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

partitions the data based on the hashcode of the RDD elements. This strategy works
well in our context and does not introduce the overhead of the range-based partitioning
approach that is needed to guarantee that all partitions have the same size [28]. Further-
more, in order to achieve a homogeneous distribution with the hash-based partitioner,
SparkEC defines the hashcode of the RDD elements in such a way that they get oddly
distributed.

Input preprocessing

Another important drawback of the CloudEC tool is the need to preprocess the input
dataset to transform the FastQ sequences into an internal custom format named Sim-
pleFastQ (SFQ). This step is specially heavy, since CloudEC does not provide any parallel
approach that could take advantage of multiple nodes or threads. Only after executing
this preprocessing step, the user can upload the transformed dataset to a distributed file
system, such as the Hadoop Distributed File System (HDFS) [29], in order to be cor-
rected in parallel by CloudEC.

To solve this issue, SparkEC relies on the the Hadoop Sequence Parser (HSP) [30]. HSP
is a Hadoop-based library written in Java that allows developers to read both genetic
and protein sequences stored in formats commonly used in the field (i.e., FastQ/FastA)
from either local or distributed file systems such as HDFS. In our proposal, this library
is introduced into the PreProcess phase (see Fig. 1), removing the requirement of pre-
processing the input dataset and thus further optimizing performance. It is important to
note that this optimization not only improves performance but also simplifies the overall
pipeline that the users need to set up, enhancing the overall usability of the tool.

Split‑based system

By replacing Hadoop with Spark we can take advantage of its advanced features and
extensions compared to the MapReduce model. However, simply replacing the underly-
ing data processing engine would be a naive approach. A certain computing algorithm
that works using the secondary storage might not perform adequately when constrained
to use the main memory, as there is typically less memory than storage space available
on disk. The default behaviour of Spark in such scenario, where it gets overwhelmed by
the memory needs, is either to discard and recompute the RDD partitions as needed or
instead to use local disks to store them, thus reducing the potential benefits of in-mem-
ory computations. Therefore, CloudEC is a clear example where a straightforward code
migration from Hadoop to Spark may bring little to no performance advantage, since
this tool provides very precise but memory-intensive correction algorithms that directly
challenge the way Spark processes data in memory.

Therefore, a thorough redesign of CloudEC was mandatory in order to fully exploit
Spark performance. To do so, SparkEC introduces a novel split-based processing system
to keep the aggregate memory usage bounded during the computations. This optimiza-
tion consists in preventing the alignment of all the sequences simultaneously. To achieve
this behaviour, our tool starts by computing the total amount of memory available to
Spark by multiplying the memory assigned to each Spark executor by the number of
available executors (see Section 2.3.2 of Additional file 1 for an overview of Spark clus-
ter deployment). Next, an estimation M of the memory required to process the input

Page 7 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

dataset is calculated as shown in Equation 1, with L being an estimate of the average
length of DNA reads, K the length of the k-mers, N the number of total reads, and C a
constant with a default value of 5.25 obtained as a result of an experimental tuning, but
such value is configurable by the user (see Section 3.4 of Additional file 1).

Taking into account such memory estimation, a certain number of splits is recom-
mended for each of the pipeline phases defined in SparkEC. Each phase will issue only
the k-mers that are expected to be aligned in each split. After processing the different
splits, the tool will aggregate the partial results that are generated, thus completing the
execution of the whole phase. As an example, Fig. 2 depicts the overall execution work-
flow of the SpreadCorrect phase using the split-based system, showing the join-like
Spark operations needed to aggregate partial results.

Finally, it is important to mention the limitations of our current implementation. On
the one hand, the maximum sequence length (L) is limited to 32,767 base pairs, inher-
ited from the CloudEC implementation. Longer sequences are omitted in SparkEC dur-
ing processing, whereas CloudEC just fails at runtime. On the other hand, L is estimated
in Equation 1 by taking a sample from the input dataset, so the memory estimation
(M) may not be optimal for those datasets where there is a large variability in sequence
length. Although the constant C can be set through configuration in order to tune the
split-based system in those scenarios, it would be great to provide a heuristic to help
determine a suitable value for such constant. However, the experimental results shown
later, which include datasets containing fixed- and variable-length sequences, will dem-
onstrate the effectiveness of the split-based system in its current form.

Two‑step k‑mers distribution

There is still a challenge to be considered when introducing the split-based system. Since
Spark distributes the RDDs into different partitions in order to assign tasks to the availa-
ble worker nodes to process them, it is necessary to prevent a potential collision between
the partitioning algorithm used by Spark and the distribution of k-mers into splits per-
formed by our tool. Such collision may arise due to the combination of the following
three facts: (1) as explained before, the RDD elements are distributed among the parti-
tions based on their hashcode; (2) the splits where a given data record belongs to are also
assigned based on their hashcode; and (3) the algorithm that determines the partition
where the RDD elements belong to using the hashcode is the same used to find out the
split where they should be computed (i.e., the modulus between the hashcode and the

(1)M = ((L− K) ∗ K) ∗ N ∗ C

Fig. 2 The split‑based system over SpreadCorrect

Page 8 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

number of either partitions or splits). Taking all these facts into account, in the event
that the number of partitions and the number of splits have a common divisor, some
workers would not perform any computation. For example, if both the number of parti-
tions and the number of splits are divisible by 2, only the first half of workers would have
workload assigned in the first split, and the second half only during the second split.

To overcome this issue, the split-based system distributes the k-mers in two steps: in
the first one, all the k-mers are distributed into P groups based on their hashcode, being
P greater than the number of splits (S) and co-prime with the number of partitions of the
input RDD. In the second step, data are redistributed into the different splits by comput-
ing the modulus between its group number and S. This way, two different kinds of splits
are created: the first (P − S) splits will be assigned a given workload, and the remaining
ones will have to handle only half of such workload. Therefore, the problem of having
idle workers is solved, although at the cost of introducing a small workload imbalance
between the splits.

The split-based system together with the two-step k-mers distribution has been exper-
imentally proven to allow SparkEC to be significantly faster than CloudEC, even in
scenarios where there was no enough memory to handle the datasets. This will be exper-
imentally shown in the Results and Discussion section, where SparkEC takes advantage
of this optimization specifically in those scenarios with heavy memory constraints (i.e.,
those using a low number of nodes).

Memory‑efficient data structures

Aligned with the previous optimization, we have also modified the representation of the
internal data structures used by CloudEC in order to make them more efficient in terms
of memory usage.

When using the original approach proposed by CloudEC, most of the communications
made between the pipeline phases are undertaken by encoding the data into plain text
(typically, transforming each of the fields to text and separating them with a tab char-
acter). In SparkEC, this data encoding has been replaced by using ad hoc classes that
have specific fields defined with the minimum memory usage required. As an example,
whereas CloudEC would use the textual representation of the identifier for each DNA
read, SparkEC relies on a single long value to store it. Although it may not seem to have
a huge impact, it is worth noting that the underlying correction algorithms are based on
applying multiple alignments to the data. So, the subsequences that are being aligned
have to keep track of the read where they were found, which means that there is a huge
number of read references stored in memory while this step is being executed.

Moreover, whenever Spark needs to perform a Shuffle (i.e., a redistribution of the data
across the workers), it first needs to serialize the data, which is a costly operation in
terms of CPU and disk usage. To improve data shuffling, SparkEC has been developed
to take advantage of the Kryo serialization library [31], which has been benchmarked
against the default Java serializers used by CloudEC, proving to have better performance
and being able to serialize data faster and in a more compressed way [32]. This improve-
ment, together with the aforementioned change in the representation of the data struc-
tures, is specially relevant in SparkEC since even though Kryo may also be used with

Page 9 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

CloudEC, the memory-bound approach taken by the Spark processing paradigm obtains
a higher benefit from memory optimizations.

Optimized encoding of DNA reads

Additional classes have also been introduced in SparkEC to optimize the encoding of the
most used data structures, such as the base sequences or the reads. In this context, by
read we refer to a tuple containing the bases, their qualities, an identifier, and additional
fields to allow the auxiliary tagging of the read throughout the pipeline phases.

To encode the reads, a Node class is proposed as a partial replacement of the Utils
class found in CloudEC. Unlike Utils, this new class, shown in Figure S4 of Additional
file 1, contains explicit fields to encode each one of the attributes of the reads, rather
than storing them in a Java HashMap that introduces memory overhead. To encode the
bases and qualities of the sequences, a more complex approach is taken. Whereas Clou-
dEC encodes the bases as text, we offer a generic interface called IDNASequence with
two different implementations: EagerDNASequence and LazyDNASequence (see Figure
S5 of Additional file 1). The first one stores the bases using an array of bytes and when-
ever a transformation is applied to the sequence, all the bases get recomputed. The sec-
ond one applies a shared-memory, lazy-based approach to the bases by not executing
the computations requested over them until the bases of the sequence are queried. This
can be specially relevant, since the correction algorithms usually generate a large num-
ber of k-mers for each read, so being able to store all the k-mers and the read where they
were generated from in the same location can save memory. However, our experimen-
tal results did not show a clear performance enhancement by using the shared-memory
approach, and so EagerDNASequence is the default implementation used by SparkEC.
This may be caused by the overhead introduced in the sequences to allow memory shar-
ing and the need to keep the data distributed across the workers, forcing LazyDNASe-
quence to replicate the entire reads and not only the k-mers.

Results and discussion
The experimental evaluation of SparkEC has been carried out comparatively with Clou-
dEC on a high-performance computing cluster, both in terms of execution time and scal-
ability. All the experiments have been conducted using the Big Data Evaluator (BDEv)
tool [33], which focuses on the benchmarking of Big Data processing frameworks and
the applications and workloads developed on top of them. BDEv has been configured
to use the YARN scheduler [34] provided with Hadoop to manage the computational
resources of the cluster nodes. Experiments using 5, 9 and 13 nodes have been executed
to analyze the scalability of both tools, where each cluster size n can be understood as
one master and n− 1 worker nodes. The main hardware characteristics shared by all the
cluster nodes are summarized in Table 1.

Datasets and software configuration

As shown in Table 2, six publicly available real datasets have been evaluated, named
after their accession numbers in the Sequence Read Archive (SRA) [35] at the National
Center for Biotechnology Information (NCBI) [36]. These input datasets provide a suf-
ficiently representative sample since they have been obtained from different sequencing

Page 10 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

platforms (see third column in the table), varying both the number of total sequences
from 5 to 26 million (see fourth column) and their length from 100 to several thousands
of base pairs in the case of D5 and D6 (the fifth column shows their average read length
and the last one the total number of bases).

Regarding the configuration of both tools, scenarios with two different values for K
(K = 24 and K = 55) have been included since those are the most widely used values
according to similar studies in the literature. This parameter determines the length of
the k-mers that are used to make the alignments, and has direct implications in terms
of performance: the higher the value for this parameter, the lower the number of k-mers
generated, and thus less computation is done. Regarding software configuration, Table 3
shows the specific versions that have been used in all the experiments. The only specific
setting of Spark that was modified for the SparkEC executions was the configuration of
the Kryo serializer. At the same time, there was a fine tuning of the HDFS configuration
used by both tools for best performance: the replication factor (i.e., the number of repli-
cas to store each block) was set to 2, whereas the block size was set to 64 MB.

Table 1 Hardware characteristics of the cluster nodes

CPU model 2 x Intel Xeon E5‑2660 Sandy Bridge EP

CPU clock frequency 2.20 GHz

Turbo clock frequency 3 GHz

Cores per CPU 8

Threads per core 2

L1/L2/L3 cache 32 KB/256 KB/20 MB

RAM memory 64 GB DDR3 1600 MHz

Storage HDD 1 TB SATA3 7.2K rpm

Network interfaces InfiniBand FDR & Gigabit Ethernet

Table 2 Public datasets used in the experimental evaluation

a Average read length

Tag Accession number Instrument model #Reads Length #Bases

D1 SRR352384 Illumina Genome Analyzer II 26.0 M 152 bp 4.0 G

D2 SRR022866 Illumina Genome Analyzer II 12.8 M 152 bp 1.9 G

D3 SRR034509 Illumina Genome Analyzer II 10.3 M 202 bp 2.1 G

D4 SRR4291508 Illumina HiSeq 2000 25.2 M 100 bp 2.5 G

D5 SRR21018951 Oxford Nanopore MinION 6.6 M 285 bpa 1.9 G

D6 SRR2063079 PacBio RS II SMRT 5.1 M 361 bpa 1.8 G

Table 3 Software configuration used in the experiments

OS CentOS 7 (v7.7.1908)

JVM OpenJDK 1.8.0_242

Hadoop 2.9.2

Spark 2.3.4

HDFS block size 64 MB

HDFS replication factor 2

Page 11 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

Finally, all the results shown in this section represent the arithmetic average of a mini-
mum of 5 measurements for each experiment. The observed standard deviations were
not significant since all the experiments were run with the cluster nodes in a dedicated
manner (i.e., the hardware was never shared by other users’ jobs running on the cluster),
which makes the average value a suitable performance metric for this work.

Analysis of the results

Table 4 presents the experimental results of the SparkEC and CloudEC tools for each
dataset and k-mer length when using 5, 9 and 13 cluster nodes. Overall, these results

Table 4 Runtimes (in seconds) and corresponding speedups of SparkEC over CloudEC for all
datasets and k‑mer values

Dataset K #Nodes CloudEC SparkEC Speedup

D1 24 5 29,862 11,951 2.5

9 13,697 4429 3.1

13 9150 2731 3.4

55 5 21,909 9693 2.3

9 10,135 2792 3.6

13 6216 1785 3.5

D2 24 5 13,307 5289 2.5

9 5351 1659 3.2

13 3309 971 3.4

55 5 8688 4035 2.2

9 3889 1250 3.1

13 2594 700 3.7

D3 24 5 11,609 4865 2.4

9 4831 1885 2.6

13 3167 1113 2.8

55 5 8502 4892 1.7

9 3679 1348 2.7

13 2616 756 3.5

D4 24 5 43,506 7473 5.8

9 20,383 2484 8.2

13 14,334 1511 9.5

55 5 21,723 3987 5.4

9 11,543 1146 10.1

13 7617 648 11.8

D5 24 5 26,959 8607 3.1

9 12,611 6486 1.9

13 7729 3927 2.0

55 5 14,374 3698 3.9

9 5827 2233 2.6

13 3577 1437 2.5

D6 24 5 31,146 3286 9.5

9 18,511 2047 9.0

13 11,232 942 11.9

55 5 17,806 2105 8.5

9 10,021 1180 8.5

13 6514 687 9.5

Page 12 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

evidence the significant performance gains that SparkEC provides over its Hadoop-
based counterpart for all the scenarios under evaluation, achieving an average
speedup of 4.9× . On the one hand, this average speedup is around 4.3× for Illumina
datasets (D1–D4), which contain short fixed-length reads (100–200 bp), reaching a
maximum value of 11.8× when correcting the D4 dataset on 13 nodes using K = 55
(see Fig. 3). This means that SparkEC can reduce correction times for this dataset
from more than 2 h when using CloudEC to just 10 min. On the other hand, the
results for long-read datasets (D5–D6), which contain variable-length reads, follow a
similar trend. In this case, the average speedup is even higher (6.1×), which validates
the implementation of our split-based system when there is some variability in the
length of the input reads. The maximum speedup is similar to that mentioned previ-
ously (11.9×), obtained when correcting the D6 dataset on 13 nodes using K = 24
(see Fig. 4). It is important to remark that all the results shown for CloudEC do not
include the time needed to preprocess the input datasets in order to transform them
into the custom format required by this tool. Therefore, if those times were to be
added to the CloudEC runtime, the benefits of using SparkEC would be even greater.
For illustrative purposes, the additional time needed to preprocess the D1 dataset is
around 2 min, a fact that should be taken into account only when using CloudEC,
whereas SparkEC avoids such preprocessing as previously explained, thus providing
an overall faster and simplified workflow for end users.

Fig. 3 Runtimes for CloudEC and SparkEC when correcting D4

Fig. 4 Runtimes for CloudEC and SparkEC when correcting D6

Page 13 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

It is also interesting to analyze the horizontal scalability provided by both tools, a fea-
ture which allows to further reduce the execution times by increasing the number of
workers. The scalability results are shown in Fig. 5, where the runtimes obtained for
each dataset and k-mer length are grouped together using an arithmetic average. As
can be observed, the scalability provided by CloudEC is not only kept by our tool, but
even enhanced. Whereas CloudEC is able to obtain an average runtime reduction of
69% when increasing the number of nodes from 5 to 13, SparkEC further increases such
runtime reduction to 75%. Thus, the average speedups obtained by our tool over Clou-
dEC range from a speedup of 4.0x when using 5 nodes up to 5.6x when using 13, repre-
senting a 40% boost.

Runtime breakdown

Finally, a further analysis of each individual pipeline phase has been undertaken to eval-
uate the results in more detail, excluding the preprocessing and postprocessing steps as
their impact on the total execution time is relatively low. For this assessment, the sce-
nario correcting the D2 dataset with K = 24 has been selected, comparing the runtimes
for each phase when using 5, 9 and 13 nodes. The obtained results are shown in Figs. 6, 7
and 8, respectively. As can be seen, SparkEC clearly outperforms CloudEC in all the

Fig. 5 Runtimes for all datasets and K values grouped by number of nodes

Fig. 6 Runtime breakdown by phase when correcting D2 on 5 nodes

Page 14 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

phases regardless the number of nodes. Furthermore, the performance improvements
provided by SparkEC are higher in those phases which are mostly compute-bound, as
it is the case of PinchCorrect, LargeKmerFilter and UniqueKmerFilter. The opposite
occurs in SpreadCorrect, since it is mostly an I/O-bound phase due to the large amount
of data being shuffled by both Spark and Hadoop, although SparkEC keeps being able
to provide significant speedups over CloudEC (up to 2.6x, see Fig. 8). This analysis also
ensures that SparkEC would keep surpassing CloudEC even in those executions where
some of the phases could be disabled, an advanced setting of both tools that can be con-
figured by the user.

Conclusion
As the amount of genomic data generated by NGS technologies continues to grow, so
does the need for more efficient ways of storing and processing them. To improve the
quality of downstream analyses, there exist many tools for error correction of such
sequencing data, where MSA-based algorithms represent a computational challenge
when correcting large datasets.

Under the light of the results presented in this work, it is clear that our proposal rep-
resents an advance in the state of the art of MSA-based correction algorithms. SparkEC

Fig. 7 Runtime breakdown by phase when correcting D2 on 9 nodes

Fig. 8 Runtime breakdown by phase when correcting D2 on 13 nodes

Page 15 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

significantly outperforms its Hadoop-based counterpart in all the experiments, provid-
ing maximum speedups of around 12× both for short- and long-read datasets. Our tool
has also shown the ability to horizontally scale better than CloudEC and to perform well
in resource-constrained scenarios and when correcting long-read datasets with varia-
ble-length sequences. Furthermore, SparkEC not only reduces the correction times to
speed up subsequent biological research, but also simplifies its usage avoiding any pre-
processing of the input reads. These characteristics will definitely contribute to lower the
hardware requirements needed to apply MSA-based correctors after the DNA sequenc-
ing process, thus broadening the target scientists that can make use of these solutions.
The result of this work is freely available under the permissive GPLv3 license and can
be downloaded from the GitHub repository: https:// github. com/ UDC- GAC/ Spark EC.
Section 3 of Additional file 1 includes a user’s guide that provides detailed instructions
about downloading, executing and configuring SparkEC.

As future work, there are some minor enhancements to further boost the performance
of the tool. In the short term, the memory representation of some data structures may
be optimized, and the partitioning strategy could be improved to better handle scenarios
with a high number of splits. In the long term, where more memory could be available,
the split-based system may be revamped to process all the data simultaneously and thus
further reduce the execution time.

Availability and requirements
Project name: SparkEC.

Project home page: https:// github. com/ UDC- GAC/ Spark EC.
Operating system(s): Platform independent.
Programming language: Java.
Other requirements: JRE 1.8 or higher, Apache Spark 2.0 or higher, Apache Hadoop

2.8 or higher (needed for HDFS).
License: GNU GPLv3.
Any restrictions to use by non-academics: None.

Abbreviations
NGS Next generation sequencing
MSA Multiple sequence alignment
RDD Resilient distributed dataset
SFQ SimpleFastQ
HDFS Hadoop distributed file system
HSP Hadoop sequence parser
BDEv Big data evaluator
SRA Sequence read archive
NCBI National Center for Biotechnology Information

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s12859‑ 022‑ 05013‑1.

Additional file 1. Document including background information, additional figures related to the main text and a
detailed user’s guide for SparkEC.

Acknowledgements
Not applicable.

https://github.com/UDC-GAC/SparkEC
https://github.com/UDC-GAC/SparkEC
https://doi.org/10.1186/s12859-022-05013-1

Page 16 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

Author contributions
MM and RRE conceived the software and designed the distributed implementation. MM is responsible for implementing
the software. MM conducted the experiments and performed the data analysis. RRE and JT proposed and supervised
the project. MM drafted the manuscript with contributions from all authors. All authors read and approved the final
manuscript.

Funding
This work was funded by the Ministry of Science and Innovation of Spain (PID2019‑104184RB‑I00 / AEI / 10.13039 /
501100011033 and predoctoral grant PRE2020‑093218), and by Xunta de Galicia and FEDER funds of the European Union
(Centro de Investigación de Galicia accreditation 2019‑2022, ref. ED431G 2019/01; Consolidation Program of Competitive
Reference Groups, ref. ED431C 2021/30). The funding agencies did not participate in the design of the study and collec‑
tion, analysis, and interpretation of data and in writing the manuscript.

Data availability
The software, documentation and source code of SparkEC are publicly available at the GitHub repository: https:// github.
com/ UDC‑ GAC/ Spark EC. The real datasets analyzed during this study are also publicly available at the NCBI SRA reposi‑
tory (https:// www. ncbi. nlm. nih. gov/ sra) using the accession numbers: SRR352384, SRR022866, SRR034509, SRR4291508,
SRR21018951 and SRR2063079.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 21 July 2022 Accepted: 26 October 2022

References
 1. van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next‑generation sequencing technology. Trends Genet.

2014;30(9):418–26.
 2. Alic AS, Ruzafa D, Dopazo J, Blanquer I. Objective review of de novo stand‑alone error correction methods for NGS

data. WIREs Comput Mol Sci. 2016;6(2):111–46.
 3. Heydari M, Miclotte G, Demeester P, Van de Peer Y, Fostier J. Evaluation of the impact of Illumina error correction

tools on de novo genome assembly. BMC Bioinform. 2017;18(1):374.
 4. Chung W, Ho J, Lin C, Lee DT. CloudEC: a MapReduce‑based algorithm for correcting errors in NGS data. [Online].

https:// github. com/ CSCLa bTW/ Cloud EC. Accessed 15 Sept 2022.
 5. Lämmel R. Google’s MapReduce programming model‑Revisited. Sci Comput Program. 2008;70(1):1–30.
 6. Manikandan SG, Ravi S. Big data analysis using apache hadoop. In: Proceedings international conference on it

convergence and security (ICITCS 2014), 2014;1–4 . Beijing, China.
 7. Chung W, Ho J, Lin C, Lee DT. CloudEC: a MapReduce‑based algorithm for correcting errors in next‑generation

sequencing Big Data. In: Proceedings IEEE international conference on big data (IEEE BigData 2017), 2017;2836–
2842. Boston, MA, USA.

 8. Zaharia M, Xin RS, Wendell P, Das T, Armbrust M, Dave A. Apache spark: a unified engine for big data processing.
Commun ACM. 2016;59(11):56–65.

 9. Yang X, Chockalingam SP, Aluru S. A survey of error‑correction methods for next‑generation sequencing. Brief
Bioinform. 2013;14(1):56–66.

 10. Edgar RC, Batzoglou S. Multiple sequence alignment. Curr Opin Struct Biol. 2006;16(3):368–73.
 11. Abu‑Doleh A, Çatalyürek Ü V. Spaler: spark and GraphX based de novo genome assembler. In: Proceedings IEEE

international conference on big data (IEEE BigData 2015), 2015;1013–1018 . Santa Clara, CA, USA.
 12. Abuín JM, Pichel JC, Pena TF, Amigo J. BigBWA: approaching the burrows‑wheeler aligner to big data technologies.

Bioinformatics. 2015;31(24):4003–5.
 13. Abuín JM, Pichel JC, Pena TF, Amigo J. SparkBWA: speeding up the alignment of high‑throughput DNA sequencing

data. PLoS ONE. 2016;11(5):1–21.
 14. Expósito RR, Veiga J, González‑Domínguez J, Touriño J. MarDRe: efficient MapReduce‑based removal of duplicate

DNA reads in the cloud. Bioinformatics. 2017;33(17):2762–4.
 15. Expósito RR, González‑Domínguez J, Touriño J. HSRA: hadoop‑based spliced read aligner for RNA sequencing data.

PLoS ONE. 2018;13(7):1–25.
 16. Yousefi Hadadian Nejad M, Goudarzi M, Motahari SA. IMOS: improved meta‑aligner and Minimap2 on spark. BMC

Bioinform. 2019;20(1):51.
 17. Yang X, Dorman KS, Aluru S. Reptile: representative tiling for short read error correction. Bioinformatics.

2010;26(20):2526–33.
 18. Heo Y, Ramachandran A, Hwu W‑M, Ma J, Chen D. BLESS 2: accurate, memory‑efficient and fast error correction

method. Bioinformatics. 2016;32(15):2369–71.

https://github.com/UDC-GAC/SparkEC
https://github.com/UDC-GAC/SparkEC
https://www.ncbi.nlm.nih.gov/sra
https://github.com/CSCLabTW/CloudEC

Page 17 of 17Expósito et al. BMC Bioinformatics (2022) 23:464

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 19. Liu Y, Schröder J, Schmidt B. Musket: a multistage k‑mer spectrum‑based error corrector for illumina sequence data.
Bioinformatics. 2013;29(3):308–15.

 20. Expósito RR, González‑Domínguez J, Touriño J. SMusket: spark‑based DNA error correction on distributed‑memory
systems. Futur Gener Comput Syst. 2020;111:698–713.

 21. Savel D, LaFramboise T, Grama A, Koyutürk M. Pluribus‑exploring the limits of error correction using a suffix tree.
IEEE/ACM Trans Comput Biol Bioinf. 2017;14(6):1378–88.

 22. Schröder J, Schröder H, Puglisi SJ, Sinha R, Schmidt B. SHREC: a short‑read error correction method. Bioinformatics.
2009;25(17):2157–63.

 23. Heydari M, Miclotte G, Van de Peer Y, Fostier J. Illumina error correction near highly repetitive DNA regions improves
de novo genome assembly. BMC Bioinform. 2019;20(1):298.

 24. Kallenborn F, Hildebrandt A, Schmidt B. Care: context‑aware sequencing read error correction. Bioinformatics.
2021;37(7):889–95.

 25. Gnerre S, MacCallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ. High‑quality draft assemblies of mammalian
genomes from massively parallel sequence data. Proc Natl Acad Sci. 2011;108(4):1513–8.

 26. Chen C, Chang Y, Chung W, Lee D, Ho J. CloudRS: an error correction algorithm of high‑throughput sequencing
data based on scalable framework. In: Proceedings IEEE international conference on big data (IEEE BigData 2013),
2013;717–722. Santa Clara, CA, USA.

 27. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauly M. Resilient distributed datasets: a fault‑tolerant abstrac‑
tion for in‑memory cluster computing. In: Proceedings 9th USENIX symposium on networked systems design and
implementation (NSDI’12), 2012;15–28. San Jose, CA, USA.

 28. Geetha J, Harshit NG. Implementation and performance comparison of partitioning techniques in Apache Spark.
In: Proceedings 10th international conference on computing, communication and networking technologies
(ICCCNT’19), 2019;1–5. Kanpur, India.

 29. Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed file system. In: Proceedings IEEE 26th symposium
on mass storage systems and technologies (MSST’10), 2010;1–10. Incline Village, NV, USA.

 30. Expósito RR, Mosquera LL, González‑Domínguez J. Hadoop sequence parser library. [Online]. https:// github. com/
UDC‑ GAC/ hsp. Accessed 15 Sept 2022.

 31. Kryo serialization framework for Java. [Online]. https:// github. com/ Esote ricSo ftware/ kryo. Accessed 15 Sept 2022.
 32. Smith E. Benchmarking JVM serializers. [Online]. https:// github. com/ eishay/ jvm‑ seria lizers/ wiki. Accessed 15 Sept

2022.
 33. Veiga J, Enes J, Expósito RR, Touriño J. BDEv 3.0: energy efficiency and microarchitectural characterization of big data

processing frameworks. Futur Gener Comput Syst. 2018;86:565–81.
 34. Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans R. Apache hadoop YARN: yet another resource

negotiator. In: Proceedings 4th annual symposium on cloud computing (SCC’13), 2013;1–16. Santa Clara, CA, USA.
 35. Leinonen R, Sugawara H, Shumway M. The sequence read archive. Nucleic Acids Res. 2010;39(1):19–21.
 36. NCBI: National Center for Biotechnology Information. [Online]. https:// www. ncbi. nlm. nih. gov. Accessed 15 Sept

2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/UDC-GAC/hsp
https://github.com/UDC-GAC/hsp
https://github.com/EsotericSoftware/kryo
https://github.com/eishay/jvm-serializers/wiki
https://www.ncbi.nlm.nih.gov

	SparkEC: speeding up alignment-based DNA error correction tools
	Abstract
	Background:
	Results:
	Conclusion:

	Background
	Related work
	Big data and parallel correctors

	Implementation
	CloudEC architecture
	Replacement of the data processing paradigm
	Input preprocessing
	Split-based system
	Two-step k-mers distribution

	Memory-efficient data structures
	Optimized encoding of DNA reads

	Results and discussion
	Datasets and software configuration
	Analysis of the results
	Runtime breakdown

	Conclusion
	Availability and requirements
	Acknowledgements
	References

