
Doctoral Thesis

Manycore Architectures and SIMD
Optimizations for High Performance

Computing

Marcos Horro Varela

2022

Manycore Architectures and SIMD
Optimizations for High Performance

Computing

Marcos Horro Varela
Doctoral Thesis

March 2022

PhD Advisors:

Gabriel Rodríguez Álvarez
Juan Touriño Domínguez

PhD Program in Information Technology Research

Dr. Gabriel Rodríguez Álvarez
Profesor Titular de Universidad
Dpto. de Ingeniería de
Computadores
Universidade da Coruña

Dr. Juan Touriño Domínguez
Catedrático de Universidad

Dpto. de Ingeniería de
Computadores

Universidade da Coruña

CERTIFICAN

Que la memoria titulada “Manycore Architectures and SIMD Optimizations for High
Performance Computing” constituye un trabajo original de investigación realizado
por D. Marcos Horro Varela bajo nuestra dirección en el marco del Programa de
Doctorado en Investigación en Tecnologías de la Información de la Universidade da
Coruña, y concluye la Tesis Doctoral que presenta para optar al grado de Doctor
con la Mención de Doctor Internacional.

En A Coruña, a 1 de marzo de 2022

Fdo.: Gabriel Rodríguez Álvarez
Director de la Tesis Doctoral

Fdo.: Juan Touriño Domínguez
Director de la Tesis Doctoral

Fdo.: Marcos Horro Varela
Autor de la Tesis Doctoral

A meus pais e a Marta.

Agradecementos

Non é doado condensar nun par de liñas todas as sensacións e sentimentos atopa-
dos despois dun arduo traballo de máis de catro anos, cunha pandemia mundial de
por medio. A investigación é, en moitas ocasións, un traballo individual, solitario
e frustrante, pero tamén curioso, interesante, satisfactorio, enriquecedor e que pode
ser compartido con milleiros de persoas en todo o mundo, non só no ámbito cientí-
fico. Experimentei todas as facianas emocionais nesta travesía, pero agora só podo
ter palabras de agradecemento a todas as persoas e institucións que apoiaron este
traballo e me permitiron completar esta Tese de forma satisfactoria.

Tiven a sorte de que Gabriel e Juan contactaran comigo en setembro do 2014.
Primeiro para completar o traballo de fin de grao, despois o do mestrado, e así
continuar ca Tese Doutoral. Agradecerlles infinitamente a súa confianza durante
estes anos, polos momentos nos que os resultados non acompañaban, e por todas
as facilidades laborais e académicas que me permitiron investigar aquelas materias
do meu interese. En especial a Gabriel, por ser o meu salvavidas tanto no persoal
como no laboral, gracias de verdade. Do mesmo xeito, agradecer a todos os meus
compañeiros dos laboratorios 0.2 e 1.2, con especial mención por estes anos a Toño,
Christian, Diego, Sergio, Santa Comba, Róber, Deibe, Ana, Pérez, Andión, Jorge,
e Nuria; sen vós o camiño sería aínda máis pesado. Tamén aos meus compañeiros
e amigos de grao e mestrado na Coruña, con mención a Feal, Rubén, Fran, Avelino
e Eloy. Estender o meu agradecemento e apoio institucional a todos os profesores

VII

VIII |

e membros do Grupo de Arquitectura de Computadores, ao Departamento de Enx-
eñaría de Computadores, á Facultade de Informática da Coruña e á Universidade
da Coruña. Simplemente grazas.

Gustaríame agradecer ao meu ex-profesor J. B. Búa por despertar a miña cu-
riosidade en canto ás matemáticas e á investigación cando aínda cursaba 3º da ESO.

The same way, I gratefully thank Dr. Louis-Noël Pouchet for hosting me and
advising me in one of my best experiences working abroad at the Colorado State
University, Fort Collins. It has been an honor working those three months with
you, and extending our collaborations further, merci beaucoup. Also thanks to my
mecedoras Lucía and Hassna for making my stay great in Fort Collins.

Agradecementos tamén ao resto de entidades financeiras deste traballo: ás re-
des estatais de investigación, ás redes europeas, á Xunta de Galicia, e ao Goberno
de España. Tamén agradecementos á empresa Inditex S.A. polo financiamento da
estadía nos EUA.

Se cheguei ata aquí é por meus pais, os meus piares vitais: nunca terei palabras
suficientes para agradecer o voso sacrificio por darme a mellor educación e por darme
todos os medios posibles para chegar a ser a persoa que son hoxe en día, gracias
infinitas. Gracias tamén ao meu irmán Jorge polo seu apoio incondicional, e a toda
a miña familia por crer en min. Gracias tamén á miña outra familia: gracias aos
meus amigos de Cambados por estar sempre aí, por facer que calquera sitio sexa
como estar na casa, con mención a Me, Clara, Emm, Xabi, Martin, Deivid, Johnny,
Agarunde, Piñe, Duri, Angelote e Vítor. Gracias aos meus amigos de Coruña, con
especial mención a Domingo, aos meus Javis e a Miwel.

A Marta, porque sen ti o que vén despois disto deixa de ter sentido, a ti por ser
o meu remanso nesta viaxe tan movida.

Non caben nestas liñas todas as palabras de agradecemento. Moitas gracias de
todo corazón.

A Coruña
Markos Horro

“La ciencia es un mito, sólo que es el mito más hermoso,
el único generalizable a toda la especie y

quizás el más digno de respetarse.”
–Antonio Escohotado

“En tanto en cuanto nos ‘dean’ lo que es nuestro,
discutiremos ese ‘conceto’ con el fin de discutirlo.”

–M. Manquiña

Resumo

Nos últimos cincuenta anos a arquitectura de computadores estivo marcada pola
capacidade de aumentar o número de transistores nos microchips segundo a Lei de
Moore. Esta corrente cambiou drasticamente na última década. O paralelismo xoga
un factor clave nos deseños modernos: dende un punto de vista hardware aumentan-
do o número de CPUs, e dende unha perspectiva software explotando as capacidades
arquitectónicas con especial énfase nas unidades vectoriais. Nesta Tese poñemos o
foco en dúas dimensións ortogonais: a análise e optimización do tráfico de coheren-
cia en arquitecturas manycore, e o desenvolvemento de optimizacións vectoriais. Na
primeira dimensión desenvolvemos técnicas estáticas e dinámicas para mellorar a
afinidade entre as CPUs e os datos naquelas arquitecturas que implementan redes
de interconexión en malla. A nosa proposta reduce a contención nesas mallas me-
llorando a localidade dos datos de acordo á distribución física dos compoñentes. Na
segunda dimensión desenvolvemos un compilador fonte-a-fonte para vectorizar códi-
gos con patróns de acceso a memoria irregulares. Presentamos dúas contribucións:
estratexias para recuperar de forma vectorial direccións de memoria non contiguas,
e a fusión de reducións independentes. Desenvolvemos un sistema SMT para a xera-
ción de alternativas de empaquetado de operandos aleatorios baseadas no conxunto
de instrucións da arquitectura subxacente, e unha ferramenta para a caracteriza-
ción de arquitecturas. A nosa avaliación mostra potenciais beneficios nestes códigos
irregulares aplicando as nosas propostas.

XI

Resumen

En los últimos cincuenta años la arquitectura de computadores estuvo condi-
cionada por la capacidad de aumentar el número de transistores en los microchips
siguiendo la Ley de More. Esta tendencia cambió drásticamente en la última dé-
cada. El paralelismo es ahora un factor clave en los diseños modernos: desde una
perspectiva hardware aumentando el número de CPUs, y desde un punto de vista
software explotando las capacidades arquitecturales con especial énfasis en las uni-
dades vectoriales. En esta Tesis ponemos el foco en dos dimensiones ortogonales: el
análisis y optimización del tráfico de coherencia caché en arquitecturas manycore, y
el desarrollo de optimizaciones vectoriales. Para la primera dimensión hemos desa-
rrollado técnicas estáticas y dinámicas para mejorar la afinidad entre las CPUs y
los datos en arquitecturas con redes de interconexión en malla. Nuestra propuesta
reduce la contención en las mallas mejorando la localidad de los datos siguiendo la
distribución física de los componentes. En la segunda dimensión hemos desarrolla-
do un compilador fuente-a-fuente para vectorizar códigos con patrones de acceso a
memoria irregulares. Presentamos dos contribuciones: estrategias para recuperar de
forma vectorial direcciones de memoria no contiguas, y la fusión de reducciones inde-
pendientes. Hemos desarrollado un sistema SMT para la generación de alternativas
de empaquetamiento de operandos aleatorios basadas en el conjunto de instruccio-
nes de la arquitectura subyacente, y una herramienta para la caracterización de
arquitecturas. Nuestra evaluación muestra potenciales beneficios en estos códigos
irregulares aplicando nuestras propuestas.

XIII

Abstract

For the past fifty years computer architecture has been driven by the ability
to etch more transistors onto a single die following the Moore’s Law. This trend
changed in the past decade. Parallelism is now a key factor in modern designs: from
the hardware side by scaling the number of cores, and from the software side by
exploiting the capabilities available in the architecture, emphasizing on the SIMD
units. In this Thesis we focus on two orthogonal dimensions: the analysis and opti-
mization of coherence traffic in modern manycores, and the development of SIMD
optimizations. For the first dimension we develop static and dynamic techniques for
enhancing core-to-data affinity for manycores featuring mesh interconnection net-
works. Our approach reduces the contention on these meshes by improving data
locality according to the physical layout. For the second dimension we develop a
source-to-source compiler for vectorizing codes presenting irregular access patterns.
We present two main contributions: strategies for gathering non-contiguous memory
addresses, and fusing independent reductions. We have developed an SMT-based
system to generate alternatives for packing random operands from memory based
on the host ISA, and a profiling framework for characterizing platforms. Our evalu-
ation shows promising speedups when applying these SIMD optimizations to those
codes.

XV

Preface

Parallelism has become more important in hardware development as the fre-
quency increase has reached its physical limit due to the power wall. Nowadays,
parallelism is present at different levels in high performance computing: from in-
struction decoding and execution (Instruction-Level parallelism, ILP) to the number
of interconnected nodes in a cluster or worldwide. From an architectural point of
view, parallelism is exhibited in the number of cores etched on a single die. How-
ever, increasing the degree of components interconnected brings forward scalability
complications. In addition, cores are, nowadays, extremely sophisticated by imple-
menting complex pipelines featuring wide vector length capabilities. In this way, the
present Thesis, “Manycore Architectures and SIMD Optimizations for High Perfor-
mance Computing”, addresses these two orthogonal dimensions by analyzing modern
manycore architectures and focusing on discovering potential design improvements
at two different levels of the architectural stack, and providing techniques for syn-
thesizing efficient platform-aware SIMD code.

Objectives and Work Methodology

The main objectives of this Thesis are listed below, including some key sub-goals.

1. Analysis and modeling of the Intel Xeon Phi x200 (Knights Landing, KNL).

XVII

XVIII | Preface

• Analysis and characterization of the core architecture, distributed cache
coherence directory and interconnection network.

• Implementation of the Knights Landing architectural model by extending
an architectural simulator (Tejas Simulator).

• Experimental assessment of the simulator accuracy by running different
workloads.

2. Optimizing coherence traffic in manycore architectures.

• Approach to discover the physical layout and location of components.

• Reverse engineering of hash address functions on KNL.

• Runtime- and compile-time-based approaches to optimize the coherence
traffic in the interconnection network.

• Evaluation of the static and dynamic approaches proposed.

3. Development of a profiling and performance analysis toolkit specifically de-
signed for experiments requiring the configuration of many parameters.

• Automatic compilation, execution and analysis given any set of programs
or benchmarks and parameters of interest, e.g., the size of a matrix, the
step in a loop, etc.

• Data mining techniques for extracting knowledge from experiments based
on the target dimensions, i.e., to quantify the influence of variables.

• Toolkit compatible with any type of application, designed for increasing
the productivity, quality, and repeatability of the experiments.

4. Synthesis of efficient x86 SIMD code for random vector packing and fusion of
reductions.

• Generation of random vector packing combinations using the instructions
available given a concrete ISA, based on an SMT model.

• Building of a cost model driven by the empirical performance based on the
micro-benchmarking of those combinations for each concrete platform.

• Development of a source-to-source compiler for synthesizing efficient vec-
tor code for each platform based on the individual characterization.

• Evaluation using different target applications.

Preface | XIX

Funding and Technical Means

The means that were used to carry out this Thesis have been the following:

• Working material, human and financial support primarily by the Computer
Architecture Group of the University of A Coruña, along with the Research
Fellowship funded by the Ministry of Education of Spain (FPU program, ref.
FPU16/00816).

• Access to bibliographical material through the library of the University of A
Coruña.

• Additional funding through the following research projects:

◦ Regional funding by the Galician Government (Xunta de Galicia) under
the Consolidation Program of Competitive Research Groups (Computer
Architecture Group, refs. ED431C 2017/04 and ED431C 2021/30) and
Network of Cloud and Big Data Technologies for HPC (ref. ED431D
R2016/045).

◦ State funding by the Ministry of Science and Innovation of Spain through
the projects “New Challenges in High Performance Computing: from
Architectures to Applications (II)” (ref. TIN2016-75845-P) and “Cur-
rent Challenges in HPC: Architectures, Software and Applications” (ref.
PID2019-104184RB-I00).

◦ European funding: project “Network for Sustainable Ultrascale Comput-
ing” (NESUS COST Action ref. IC1305).

◦ European Network on High Performance and Embedded Architecture
and Compilation (HiPEAC) competitive grant for attending the 13th
International Summer School on Advanced Computer Architecture and
Compilation for High Performance and Embedded Systems (ACACES
2017).

• Access to clusters, supercomputers and computing platforms:

◦ Pluton cluster (Computer Architecture Group, University of A Coruña)
featuring 30 nodes with 688 physical cores (1376 threads), including 3

XX | Preface

nodes with Cascade Lake architecture, 4.1 TiB of memory, and 2 many-
core accelerators Intel Xeon Phi (Knights Corner).

◦ Intel Xeon Phi x200 standalone machine (Computer Architecture Group,
University of A Coruña).

◦ Access to a private cluster within the Department of Computer Science
at Colorado State University, USA.

• A three-month research visit to Colorado State University. This visit was
funded by Inditex-University of A Coruña through a competitive grant under
the “inMotion Program”.

Structure of the Thesis

The Thesis is organized as follows:

1. Chapter 1 introduces the main challenges in current high performance com-
puting, presenting the main topics that will be investigated in the Thesis.

2. Chapter 2 explores modern manycore architectures and the effect of coherence
traffic in the interconnection network. We also perform reverse engineering for
obtaining the hash address functions used for distributing data across tiles.
Equipped with this information, we propose static and dynamic approaches
to leverage this data distribution by improving spatial locality in programs.
We conclude this chapter by assessing the solutions proposed, and describ-
ing the limitations of our approaches using different sets of benchmarks and
applications.

3. Chapter 3 continues the topic of the previous chapter by analyzing and mod-
eling a modern manycore architecture (Intel Xeon Phi x200 Knights Landing)
and its interconnection network. In this chapter we also describe the devel-
opment of an extension for the Tejas simulator (a cycle-accurate architectural
simulator) based on this model, assessing its accuracy against real hardware.

4. Chapter 4 presents MARTA, which stands for Multi-configuration Assembly
pRofiler and Toolkit for performance Analysis. This is a toolkit developed

Preface | XXI

for improving productivity and automating error-prone tasks when profiling
micro-benchmarks and/or regular applications based on tested-and-true good
practices. It also implements data mining and machine learning techniques for
analyzing and extracting knowledge from profiling data. We assess its perfor-
mance with five valuable case studies, and using it for running and profiling
benchmarks and applications.

5. Chapter 5 proposes novel data packing techniques for random memory ad-
dresses into the same vector register, as well as for the fusion of different
reductions. For this purpose, we have developed a novel SMT-based system
for generating random packing templates based on a given ISA. Leveraging this
information, we have built a cost model driven by the empirical performance
of those templates on each platform. This model is then used by MACVETH
(Multi-Architectural C-VEcTorizer for HPC applications), a novel source-to-
source compiler that is able to pack any random set of memory addresses in
order to vectorize a set of operations, including reductions. This compiler is
also able to pack and fuse independent reductions together. We conclude this
chapter assessing the quality and the use cases of our approach.

6. Chapter 6 concludes the Thesis discussing some final remarks, and proposing
additional research lines that are worth considering as future work.

Main Contributions

The main original and novel contributions of this Thesis are stated below:

• Development of an extension for the Tejas Simulator to explore the KNL ar-
chitecture or any other similar one featuring a distributed directory system.
This extension allows to analyze the coherence traffic over the interconnection
network [44, 46].

• Reverse engineering of the Intel Knights Landing architecture to discover its
physical layout. Based on this, we developed ways to optimize the coher-
ence traffic, the thread-to-core-affinity, and the scheduling of a set of tasks on

XXII | Preface

the mesh, leveraging the unique characteristics of a particular processor unit
stemming from process variations [45].

• Uncovering the pseudo-random mapping function of physical memory blocks
across the pieces of the distributed directory in KNL. Leveraging this knowl-
edge, candidate optimizations to improve memory latency through the opti-
mization of coherence traffic are studied. Although these optimizations do im-
prove memory throughput, ultimately this does not translate into performance
gains due to inherent overheads stemming from the computational complexity
of the mapping functions [68].

• Development of MARTA, a toolkit for profiling and performance analysis
meant to increase productivity [50, 52]. This toolkit is not a substitute for
any other well-known toolkits available, but its main and novel contribution is
the emphasis on the automation, improving productivity and quality of results.
In an orthogonal dimension, the toolkit also includes a module for performance
analysis, using data mining and machine learning techniques.

• Development of MRKVS (Mega-Random Kernel Vector SMT), an SMT-based
system for generating any random packing template given an ISA. From these
templates, we build a cost model for enabling random vector packing.

• Development of MACVETH (Multi-Architectural C-VEcTorizer for HPC ap-
plications) [51], a source-to-source compiler for synthesizing efficient SIMD
code on specific regions of code featuring patterns with irregular memory ac-
cesses. This compiler includes the cost model built with MRKVS, and heuris-
tics for vectorizing the fusion of independent reductions.

Developed Software

The software libraries and tools developed in this Thesis are publicly available:

• Tejas KNL. Custom implementation of the Intel Knights Landing architecture
on the Tejas Simulator. Available at https://github.com/UDC-GAC/tejas_
knl.

https://github.com/UDC-GAC/tejas_knl
https://github.com/UDC-GAC/tejas_knl

Preface | XXIII

• papi_wrapper: C macro-based library for simplifying the use of the PAPI
library. Available at https://github.com/UDC-GAC/papi_wrapper.

• MARTA: Multi-configuration Assembly pRofiler and Toolkit for performance
Analysis. Framework built for increasing productivity and quality of the ex-
periments requiring (micro-)benchmarking and post hoc performance analysis.
Available at https://github.com/UDC-GAC/MARTA.

• MRKVS: Mega-Random Kernel Vector SMT. Z3-based [23] system for gener-
ating combinations of instructions for packing random data on the same vector
register. Available at https://github.com/UDC-GAC/MRKVS.

• MACVETH: Multi-Architectural C-VEcTorizer for HPC applications. Source-
to-source C compiler for vectorizing irregular random memory accesses and
reductions. Available at https://github.com/UDC-GAC/MACVETH.

Publications from the Thesis

Journal publications

• S. Kommrusch, M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Opti-
mizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/
Home Agent Mappings. IEEE Access, 9:28930–28945, 2021. doi: 10.1109/
ACCESS.2021.3058280. JCR Q2 [68].

• M. Horro, G. Rodríguez, and J. Touriño. Simulating the Network Activity
of Modern Manycores. IEEE Access, 7:81195–81210, 2019. doi: 10.1109/
ACCESS.2019.2923855. JCR Q1 [46].

International conferences

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MARTA: Multi-
configuration Assembly pRofiler and Toolkit for performance Analysis. Sub-
mitted for publication. 2022 [52].

https://github.com/UDC-GAC/papi_wrapper
https://github.com/UDC-GAC/MARTA
https://github.com/UDC-GAC/MRKVS
https://github.com/UDC-GAC/MACVETH
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1109/ACCESS.2019.2923855
http://dx.doi.org/10.1109/ACCESS.2019.2923855

XXIV | Preface

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MACVETH: Multi-
Architectural C-VEcTorizer for HPC applications. Submitted for publication.
2022 [51].

• M. Horro, M. T. Kandemir, L.-N. Pouchet, G. Rodríguez, and J. Touriño.
Effect of Distributed Directories in Mesh Interconnects. In Proceedings of the
56th Annual Design Automation Conference (DAC), pages 51:1–6, Las Vegas,
NV, USA, 2019. doi: 10.1145/3316781.3317808. Core A. GII-GRIN-SCIE
Class 1 [45].

National conferences

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Toolkit para (Micro-)
Benchmarking y Análisis de Características de Rendimiento en Kernels. In
Actas XXXI Jornadas de Paralelismo (SARTECO), pages 303–312, Málaga,
Spain, 2021 [50].

Other minor publications

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Exploring SIMD
Instructions for Packing Random Vector Operands in Modern x86 CPUs.
In Proceedings of the 17th International Summer School on Advanced Com-
puter Architecture and Compilation for High-Performance Embedded Systems
(ACACES), pages 143–146, Fiuggi, Italy, 2021 [49].

• M. Horro, G. Rodríguez, J. Touriño, and M. T. Kandemir. Study of the Intel
Knights Landing (KNL) Memory System Tradeoffs. In Proceedings of the
13th International Summer School on Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES), pages
1–4, Fiuggi, Italy, 2017 [44].

http://dx.doi.org/10.1145/3316781.3317808

Contents

Preface XVII

Contents XXV

List of Tables XXXI

List of Figures XXXV

Listings XXXIX

List of Algorithms XLI

1. Introduction: Challenges in High Performance Computing 1

2. Effect of Distributed Directories and Optimization of Coherence Traf-
fic in Manycores 7

2.1 Introduction . 8

XXV

XXVI | Contents

2.2 Intel Knights Landing (KNL): Xeon Phi x200 . 10

2.2.1 Internal organization . 11

2.2.2 Memory system . 13

2.2.3 Cluster modes . 15

2.2.4 Memory modes. 15

2.3 Mapping the Knights Landing Processor . 15

2.4 Processor Affinity and Data Layout. 19

2.5 Experimental Results Varying Processor Affinities. 21

2.5.1 Effect of core-to-CHA affinity on memory latency. 22

2.5.2 Effect of thread-to-core affinity on coherence traffic . 22

2.5.3 Optimized thread-to-core scheduling . 24

2.6 Reverse Engineering the CHA Mapping. 27

2.7 Runtime Optimization . 34

2.7.1 Experimental results . 37

2.8 Compile-time Optimization . 40

2.8.1 Fixing physical addresses . 45

2.8.2 Experimental results . 46

2.9 Discussion and Related Work. 50

3. Simulating the Network Activity of Modern Manycore Architectures 55

3.1 Introduction . 56

3.2 Overview and Motivation. 57

Contents | XXVII

3.3 Tejas Simulator: Architecture and Extensibility. 59

3.3.1 Front-end: the emulator . 59

3.3.2 Back-end: the simulation engine . 61

3.4 Modeling KNL in Tejas . 64

3.4.1 Tiles and cores . 64

3.4.2 Memory system . 65

3.4.3 Interconnection network. 67

3.4.4 Other considerations . 68

3.5 Validation. 68

3.5.1 Experimental setup . 69

3.5.2 Results. 70

3.6 Case Study: Analysis of Coherence Traffic Optimizations 76

3.7 Related Work. 80

3.8 Conclusions and Future Work. 82

4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for per-
formance Analysis 85

4.1 Overview and Motivation. 86

4.2 MARTA: System’s Architecture . 88

4.2.1 Profiler . 88

4.2.2 Analyzer . 90

4.3 Measurement Methodology . 93

4.3.1 Machine configuration . 94

4.3.2 Repeating runs . 94

XXVIII | Contents

4.3.3 Measuring CPU performance. 95

4.4 Configuration . 96

4.4.1 Profiler . 96

4.4.2 Analyzer .101

4.5 Evaluation: Case Studies .102

4.5.1 Micro-benchmarking gather .103

4.5.2 Empirical throughput of FMA instructions .108

4.5.3 Influence of access pattern on memory bandwidth .112

4.5.4 Auto-vectorizing reductions .115

4.5.5 Cost model for loop permutation. .119

4.6 Related Work. .123

4.7 Discussion and Concluding Remarks .126

5. SIMD Optimizations: Random Vector Packing and Reduction Fu-
sion 129

5.1 Overview and Motivation. .130

5.2 Efficient Random Vector Packing .133

5.2.1 Instruction set: exploration space .134

5.2.2 Simplifying the search space .136

5.2.3 MRKVS: Mega-Random Kernel Vector SMT .140

5.2.4 Random vector packing templates: format .144

5.2.5 Generation and evaluation of the cost model. .145

5.3 MACVETH: Multi-Architectural C-VEcTorizer for HPC applications149

5.3.1 Compiler architecture: the LLVM Project .150

Contents | XXIX

5.3.2 High-level architecture of MACVETH .153

5.3.3 Front-end: the driver for parsing and rewriting .153

5.3.4 Middle-end: identifying and grouping reductions .158

5.3.5 Back-end: fusing reductions and synthesis of SIMD code166

5.3.6 Current limitations of the tool .172

5.4 Experimental Results .173

5.4.1 Synthetic patterns .175

5.4.2 Sparse matrices: SuiteSparse repository .181

5.5 Related Work. .192

5.6 Concluding Remarks and Discussion .194

6. Concluding Remarks and Future Work 197

6.1 Conclusions and Discussion .197

6.2 Future Work. .200

Bibliography 203

A. MARTA Configuration 223

A.1 CLI Options .223

A.2 C Macros/Directives .226

B. Random Vector Packing: Instructions 229

B.1 Load Instructions .229

B.2 Swizzle Instructions .230

XXX | Contents

C. MACVETH Configuration 231

C.1 CLI Options. .231

C.2 Pragma Options .233

C.3 Matrices Used. .234

D. Resumo Estendido en Galego 239

Alphabetical Index 251

List of Tables

2.1 Benchmarks used for the optimized thread-to-core scheduling experiments. . . 25

2.2 Applications in each mix of workloads. 26

2.3 Address-to-CHA mapping for the first 128 CHA values out of 256 million 28

2.4 CHA0 toggle frequency when toggling address bits a6 to a34. 31

2.5 For CHA0, bits 33 to 30 do not directly get XOR’ed with other bits, but are
part of a function that itself is XOR’ed with those bits. 31

2.6 CHA2 for the first 256 cache lines. 33

3.1 Tejas configuration for modeling tiles in the KNL architecture.. 65

3.2 Tejas configuration for modeling the KNL NoC. 68

3.3 Experimental setup for our KNL implementation. 69

3.4 Equivalence between the event to measure, the PAPI event, and the event
programmed in Tejas.. 70

3.5 PolyBench/C results for our model . 74

3.6 Parboil results for our model . 76

XXXI

XXXII | List of Tables

3.7 Events for the executions of the modified jacobi-1d stencil by thread 0 for
Tejas KNL. 77

4.1 Description of all available options within each kernel dictionary in the con-
figuration file for the Profiler. 97

4.2 Description of all available options within each finalize dictionary in the
configuration file for the Profiler. 97

4.3 Description of all available options within each configuration dictionary in
the configuration file for the Profiler. 97

4.4 Description of all available options within each compilation dictionary in the
configuration file for the Profiler. 98

4.5 Description of all available options within each d features dictionary in the
configuration file for the Profiler. 98

4.6 Description of all available options within each execution dictionary in the
configuration file for the Profiler. 99

4.7 Description of all available options within each output dictionary in the con-
figuration file for the Profiler. 99

4.8 Description of all available options within each kernel dictionary in the con-
figuration file for the Analyzer. .101

4.9 Description of all available options within each prepare data dictionary in
the configuration file for the Analyzer. .101

4.10 Description of all available options within each plot dictionary in the con-
figuration file for the Analyzer. .102

5.1 MACVETH configurations for the synthetic patterns. .176

5.2 Comparison of MACVETH configurations for the synthetic patterns in terms
of speedup in cycles. .177

5.3 Comparison of MACVETH configurations for the synthetic patterns in terms
of speedup in the reduction of the number of micro-operations retired.177

List of Tables | XXXIII

5.4 Comparison of MACVETH configurations for the synthetic patterns in terms
of increment of vector FLOPs issued over the auto-vectorized version.181

5.5 MACVETH configurations for the SuiteSparse matrices selected..182

5.6 Comparison of MACVETH configurations for the set of matrices in terms of
speedup in cycles. .183

5.7 Comparison of MACVETH configurations for the set of matrices in terms of
speedup in the reduction of the number of micro-operations retired.183

5.8 Comparison of MACVETH configuration for the set of matrices in terms of
increment of vector FLOPs issued over the auto-vectorized version.187

5.9 Speedups with MACVETH for the large matrices using the 4redux noorphan fuse

MACVETH configuration. .192

A.1 Macros included in MARTA. .226

B.1 Load instructions for the float data type considered in our model..229

B.2 Swizzle instructions for the float data type considered in our model.230

C.1 Sparse matrices used for the experiments from SuiteSparse..234

List of Figures

2.1 Traditional memory hierarchy updated with new emerging technologies. 11

2.2 High-level tile organization in KNL. 12

2.3 Intel KNL floorplan. Cache miss flow for Quadrant cluster mode. 14

2.4 Floorplan reconstructed from our model for KNL . 20

2.5 Effects of core-to-CHA and thread-to-core affinities. 23

2.6 Results of optimized scheduling strategies. 27

2.7 Reverse engineering hardware-friendly hash functions. 29

2.8 Reverse-engineered mapping function between memory blocks and CHAs. . . 32

2.9 Roofline plot for the matrix-vector multiplication using both single- and double-
precision arithmetic. 38

2.10 Sum of selected performance counters for all threads 39

2.11 Sets of regular subcomputations built for the Sparse Matrix-Vector Multipli-
cation of matrix FIDAP/ex7 in the SuiteSparse repository. 41

XXXV

XXXVI | List of Figures

2.12 Overhead, in mesh cycles, of accessing a block of data resident in the L2
cache of tile TB, and with coherence information resident in tile Td. 43

2.13 Performance counters for irregular and data-specific versions of the SpMV
operation . 48

2.14 Execution cycles of the coherence-aware schedule, normalized to those of
the sequential schedule. Note that the Y axis is truncated for readability. 48

2.15 Performance counters for selected matrices in the experimental setup. 49

2.16 Memory latency of the coherence-aware schedule normalized to the se-
quential schedule baseline for all the matrices in the experimental setup. 50

3.1 Floorplan of the Intel KNL and heatmap of the measured latency. 58

3.2 Translation process in Tejas from the binary instrumentation to the VISA. 60

3.3 Stages and main registers of the Out-of-Order pipeline in Tejas.. 62

3.4 Cache behavior in Tejas . 63

3.5 MESIF protocol implementation based on MESI.. 67

3.6 INS error metric for PolyBench/C benchmarks. 72

3.7 INS error metric for Parboil benchmarks . 75

3.8 Heatmap of the number of packets across the mesh for Tejas KNL 78

3.9 Breakdown of the different packet types across the NoC for Tejas KNL. 80

3.10 Density of collisions on the network for Tejas KNL. 81

4.1 High-level architecture of the MARTA toolkit. 89

4.2 Distribution plot regarding performance for gather experiments.106

4.3 Decision tree generated for the gather experiment. .107

4.4 Line plot generated by MARTA for the FMA throughput experiment.111

4.5 Simple predictor synthesized by MARTA. .112

List of Figures | XXXVII

4.6 Bandwidth obtained for different access patterns using a single thread.115

4.7 Multithreaded bandwidth per stream version.. .116

4.8 Stacked density graph for the auto-vectorization experiment using MARTA.. . .119

4.9 Decision tree obtained for the auto-vectorization experiment.120

4.10 Distribution plot for the loop permutation experiment.124

4.11 Decision tree built by MARTA for the -DLOOP 3D kernel for the loop permu-
tation experiment.. .124

4.12 Decision tree built by MARTA for the -DREDUCTION kernel for the loop per-
mutation experiment. .125

5.1 High-level picture of the inter-operation between the components presented
in the Thesis. .132

5.2 Functions and sets defined in the system. .139

5.3 Speedups (in cycles) obtained for Intel Cascade Lake.148

5.4 Speedups (in cycles) obtained for AMD Zen3. .148

5.5 Classic high-level diagram of the compiler architecture.151

5.6 High-level LLVM toolchain. .152

5.7 High-level diagram of MACVETH’s architecture. .154

5.8 MACVETH’s front-end components. .155

5.9 MACVETH’s middle-end components. .159

5.10 DAG generated from the example in Listing 5.6. .160

5.11 DAG generated from the reduction TACs in Listing 5.7b.161

5.12 DAG generated from the reduction TACs in Listing 5.8b.162

5.13 MACVETH’s back-end components.. .167

5.14 Graphic description of vectors’ content for the code in Listing 5.12b.170

XXXVIII | List of Figures

5.15 Graphic description of vectors’ content for the code in Listing 5.13b.171

5.16 Speedups obtained in cycles and in the reduction of the number of micro-
operations for the synthetic patterns for all MACVETH configurations.179

5.17 Percentage of scalar and vector FLOPs for the synthetic patterns with the
GCC auto-vectorized version and the 8redux fuse MACVETH configuration..180

5.18 Speedups obtained for the 4redux noorphan fuse configuration for the 150
matrices (under 62K NNZ) selected (Part I). .184

5.19 Speedups obtained for the 4redux noorphan fuse configuration for the 150
matrices (under 62K NNZ) selected (Part II). .185

5.20 Speedups obtained for the 4redux noorphan fuse configuration for the 150
matrices (under 62K NNZ) selected according to the NNZ values of the matrix
and the micro-operations reduction. .186

5.21 Percentage of scalar and vector FLOPs for the 150 matrices (under 62K
NNZ) selected with the GCC auto-vectorized version and the 4redux noorphan fuse

MACVETH configuration (Part I).. .188

5.22 Percentage of scalar and vector FLOPs for the 150 matrices (under 62K
NNZ) selected with the GCC auto-vectorized version and the 4redux noorphan fuse

MACVETH configuration (Part II). .189

5.23 Percentage of scalar and vector FLOPs for the 150 matrices (under 62K
NNZ) selected with the GCC auto-vectorized version and the 4redux noorphan fuse

MACVETH configuration (Part III).. .190

5.24 Results obtained for the 4redux noorphan fuse MACVETH configuration
for large sparse matrices (>1M NNZ).. .191

Listings

2.1 Scalar code for general matrix-vector multiplication parallelized using a static
block schedule.. 35

2.2 Manually vectorized code for general matrix-vector multiplication parallelized
using a static block schedule. 38

2.3 Classic irregular SpMV code. 46

4.1 Toy example of a benchmark using macros included in MARTA..100

4.2 Input C code for the gather experiment. .104

4.3 Assembly code generated for the gather experiment. .105

4.4 Configuration required for the FMA experiment.. .110

4.5 AVX triad kernel used for measuring memory bandwidth.113

4.6 Vectorizable reduction of N floating-point values. .117

4.7 Code for benchmarking a single vector-constant multiplication reduction.118

4.8 3-dimensional loop nest benefiting from loop permutation.121

4.9 Simplified input source code to explore loop permutation with MARTA.123

5.1 Ad hoc SIMD instructions to consider in our model.. .136

5.2 Python code used in the x86-sat system. .142

5.3 Example of the cascadelake avx2 float n4 0 0 0.mrt template.145

5.4 Candidates generated by MRKVS for packing three non-contiguous ele-
ments.. .147

5.5 Assembly code generated for the example in Listing 5.4.147

XXXIX

XL | Listings

5.6 TAC translation for D = (A + B) * C. .158

5.7 TAC translation for 4 reductions. .159

5.8 TAC translation for the SpMV code. .162

5.9 Example code where the grouping of orphan reduction nodes applies.166

5.10 Example of synthesis in MACVETH for 4 reductions on a float in SSE
(AVX2-compliant). .168

5.11 Example of synthesis in MACVETH for 8 reductions on a float in AVX2..168

5.12 Example of synthesis in MACVETH for the fusion of two independent re-
ductions of 4 elements each within the same vector. .170

5.13 Example of synthesis in MACVETH for the fusion of two independent re-
ductions of 8 elements each in two different vectors. .171

5.14 Classic SpMV kernel using CSR format. .173

5.15 Computations generated with the system developed by Augustine et al. for
the input matrix JGD Kocay/Trec5 from the SuiteSparse collection..174

5.16 Loop present in the synthetic codes generated.. .176

C.1 Pragmas required to indicate the regions of interest for MACVETH..233

List of Algorithms

2.1 Measures latencies for a (C,CH,MC) tuple 18

2.2 Static scheduling of SpMV operations 44

4.1 Approach for collecting data from executions in MARTA. 91

4.2 High-level approach of MARTA’s execute function. 92

5.1 High-level approach of the MRKVS system. 143

5.2 recursive search function used to generate the exploration space in
MRKVS. 144

5.3 translateStmtToTAC recursive function to translate statements into
TAC format. 157

5.4 Unrolling for a list of TACs. 158

5.5 Approach followed by MACVETH for packing reductions. 163

5.6 vectorize orphan redux function for vectorizing orphan reductions. . 165

XLI

“But what... is it good for?”

–Engineer at the Advanced
Computing Systems Division of

IBM commenting on the nascent
microchip in 1968

1
Introduction: Challenges in High

Performance Computing

“The complexity for minimum component costs has increased at a rate of roughly a
factor of two per year (...). Certainly over the short term this rate can be expected
to continue, if not to increase. Over the longer term, the rate of increase is a bit
more uncertain, although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number of components per
integrated circuit for minimum cost will be 65,000.”

– Gordon E. Moore [94]

It has been more than fifty five years, in April 1965, since Gordon Moore was
first asked to predict the evolution of semiconductors in the following years. He is
one of the “traitorous eight” who left Shockley Semiconductor Laboratory to found
Fairchild Semiconductors in 1957. There, just a couple of years later, Robert Noyce,
also co-founder, invented the planar integrated circuit. Moore, by observing elec-
tronics trends and the pace followed by semiconductor industry in the previous
years, predicted that the number of components on those integrated circuits would
double every year for the next decade. This “simple” forecast became prophecy. Just
three years later, in 1968, he co-founded with, again, Robert Noyce a new company

1

2 | Chapter 1. Introduction: Challenges in High Performance Computing

named NM Electronics, which was later renamed as Intel Corporation. Another
spin-off from Fairchild, Advanced Micro Devices (AMD), was also founded a year
later. That decade passed, and it was in 1975 when he revised again his prognosis
adjusting the increase rate to be doubling every two years, establishing what we
have studied and known as “Moore’s Law”, due to its accuracy. Nevertheless, this
prediction is commonly quoted to be doubling every eighteen months; but that was
never stated by Moore [54].

The extraordinary linearity in the prediction led to an incredible growth in in-
dustry, as manufacturing costs dropped rapidly. In such way, technology started to
reach the masses. From those 65,000 components in the seventies, we have reached
more than 2.6 trillion or 2.6×1012 (> 3×107×65, 000) transistors on a single die by
2021 [123]. Nevertheless, cramming more components onto integrated circuits was
not the only cause for this incredible growth.

Moore’s Law was stated from an economic perspective first, although soon was
correlated with performance as smaller transistors could switch at higher speeds,
i.e., clock frequencies could be increased without incurring timing errors. Nonethe-
less, frequencies have not increased at the same rate as transistors have shrunk.
Dennard’s scaling states, in a nutshell, that power density remains constant as tran-
sistors shrink. This statement was based on MOSFET design power equations, as
described and simplified in Equation 1.1, which establishes a relation between power
dissipated (P), switching gate frequency (F), drain voltage (Vdd) and dynamic ca-
pacitance (C), a factor depending on manufacturing process; being α the switching
activity factor.

P = αCFV 2
dd (1.1)

An important aspect of Dennard’s scaling is that as transistors got smaller the
voltage could be reduced, enabling chips to operate at higher frequencies, remaining
that power density constant in all chip area. But only these equations ignored two
certainly important and limiting factors: the minimal threshold voltage and the
leakage current. The first one establishes the minimum amount of potential needed
to have a transistor turned on without misfunction. The second one poses difficulties
for safe thermal dissipation, narrowing the budget of active transistors supported the

| 3

same interval of time. These inabilities or limitations establish what is commonly
referred to as the “power wall”.

It is debatable, and out of the scope of this Thesis, whether Moore’s Law has
withered or not, or how long it will hold, but it is clear that with Dennard’s scaling
breakdown trends in micro-architecture have changed. Frequency is no longer the
key factor in terms of performance improvements as recent advances in GPU per-
formance have demonstrated [28], motivating the development of new approaches
for reaching Exascale milestone, such as dark silicon or energy-aware solutions, het-
erogeneous, reconfigurable, and manycore architectures. These last ones are the
most promising candidates as they pack within the same processor an intercon-
nection network with a high number of independent processing units, enabling a
high degree of parallelism. Exascale computing [9] refers to the ability of executing
1018 floating-point operations within a second (FLOP/s). This is one of the most
ambitious short-term challenges in high performance computing. Even though it
has been reached under certain circumstances using distributed computing, by 2021
there are no listed supercomputers in the Top500 [125] reaching that performance.
This order of FLOP/s would enable better accuracy in complex scientific applica-
tions and tasks such as weather forecasting [9], which relies on a vast amount of
mutually dependent parameters; neural activity (The Human Brain Project [81]),
which requires to simulate billions of interconnected neurons; personalized medicine,
in order to classify pathologies based on medical history, current vital signs, etc.;
some applications in fluid dynamics that would need more accurate solutions than
current approximations for partial differential Navier-Stokes equations; and many
others. As such, it is a critical milestone for computer engineering to reach.

For these reasons, the first objective of this Thesis is the exploration of the
modern manycore architectures mentioned above. We target the Intel Xeon Phi
x200 Knights Landing architecture, nowadays discontinued even though its high-
level architectural legacy lives on the newer Intel Xeon Scalable generations. We
focused on the performance of its mesh interconnection network, as this architecture
was the first attempt by Intel to reach Exascale computing. The key idea beneath its
design was to provide an efficient mesh of interconnected AVX-512-capable cores,
organized in tiles, and equipped with a 3D-stacked high-bandwidth memory on-
package. In theory, these features should allow highly parallel applications to fully

4 | Chapter 1. Introduction: Challenges in High Performance Computing

exploit memory bandwidth, and take advantage of large vector widths to improve
the overall performance in terms of FLOPS/s. This architecture also presented a
distributed directory for keeping coherence within the tiles and cores in the mesh in
the form of a Cache/Home Agent (CHA). Memory addresses are distributed among
slices of this distributed directory according to a non-disclosed hash function, i.e.,
each tile holds a set of the memory addresses in the system. Accesses to memory
are supposed to present a UMA behavior, but, as we will detail later, after some
experiments we discovered significant deviations on these memory latencies. With
this knowledge we first built a model based on reverse engineering of the physical
layout for developing an extension for the Tejas Simulator in order to model the
behavior of the traffic in the interconnection network. Leveraging this information,
we also developed static and dynamic techniques for improving the core-to-CHA
affinities in the applications for reducing traffic contention and memory latencies
in the network. Our findings and methodology employed are described in detail in
Chapters 2 and 3.

With Knights Landing, Intel also introduced new instructions using up to 512-
bit width vectors with the AVX-512 instruction set. This new extension clearly
stated the intention to exploit Instruction- and Memory-Level Parallelism (ILP and
MLP, respectively) in high performance computing. Notwithstanding the potential
benefits for memory bandwidth, AVX-512 presented some limitations in Knights
Landing (and some subsequent generations) since it reduced drastically the CPU
frequency [24, 26] when running certain instructions of this SIMD ISA. In addition,
there are many variants of AVX-512, increasing the fragmentation in x86 archi-
tectures. Specifically, this fragmentation in the SIMD ISAs manifests the need of
synthesizing ad hoc code for each platform. But these are not the only limitations:
compilers according to their cost model could also decide not to use these vector
capabilities, or even the very nature of the codes might not be suitable for those
large vector widths without additional tuning. There are codes, such as Sparse
Matrix-Vector Multiplication (SpMV), which are important kernels in machine and
deep learning applications, presenting sparse and irregular accesses to memory (i.e.,
non-contiguous memory accesses). These access patterns prevent compilers, in most
cases, to perform any type of vectorization in the code. Accordingly, the second
objective of this Thesis is the development of SIMD optimizations by 1) proposing a
novel approach for packing those random vector operands, and 2) fusing operations

| 5

such as independent reductions, also present in irregular codes such as SpMV. We
propose an SMT-based system for automatically generate these packing candidates
based on the instructions available in the ISA. With these candidates, we can gen-
erate a cost model for each platform according to the best candidate based on its
performance. For automating the generation of these cost models we also devel-
oped a profiling and performance analysis toolkit, which is described in Chapter 4.
This toolkit was conceived for building these costs models empirically, but it can
be used for profiling any other kernel or application. All this toolchain leads to the
source-to-source compiler we have implemented for synthesizing efficient platform-
aware SIMD code. This compiler is fully detailed in Chapter 5, including the SIMD
optimizations described for the packing and fusion of operands and operations in a
vector fashion. Finally, conclusions and future work of the Thesis are described in
Chapter 6.

“When in doubt, use brute force.”

–Ken Thompson

2
Effect of Distributed Directories and
Optimization of Coherence Traffic in

Manycores

Chapter’s contents
2.1 Introduction . 8

2.2 Intel Knights Landing (KNL): Xeon Phi x200 10

2.3 Mapping the Knights Landing Processor . 15

2.4 Processor Affinity and Data Layout. 19

2.5 Experimental Results Varying Processor Affinities. 21

2.6 Reverse Engineering the CHA Mapping. 27

2.7 Runtime Optimization . 34

2.8 Compile-time Optimization . 40

2.9 Discussion and Related Work. 50

In this chapter we will review and study the most important aspects of modern
manycore architectures, focusing on the Intel Knights Landing architecture and its
distributed cache coherence directory, which play a key role in the optimization and

7

8 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

scaling of modern manycore architectures. We also propose and assess optimizations
for improving data locality by leveraging architectural details of the processor.

2.1 Introduction

Computer architecture has evolved quickly in the past century, from very simple
monolithic cores to thousands of interconnected processors in large clusters. Paral-
lelism plays an important role in this evolution, as manycore architectures are one
of the most promising candidates to reach the Exascale computing era. Manycore
architectures are an evolution of classic multicore architectures which increase the
number of interconnected cores. Coherence traffic was a limiting factor in classic
multicore architectures, as scaling the number of cores on a cache coherent system
caused a growth in the overhead associated with the cache coherence protocol, limit-
ing the ability of a program to extract increased performance from the system. This
was known as the “coherence wall” [70, 82]. Manycore architectures typically imple-
ment distributed cache directories to alleviate this limitation. This directory must
be accessed each time a core requests access to a memory block which is not already
locally available in the appropriate state (i.e., not invalid). This distributed design
increases the scalability of the coherence system by removing the bottlenecks that
a centralized directory would impose: the roundtrip from each core to the directory
and the volume of requests that the directory would process. Intel implemented
this distributed mechanism on its first manycore architecture Knights Landing [8].
This architecture organizes the processing units in a mesh of tiles, where each tile
features two cores, a shared L2 cache, and a portion of the distributed directory
named Caching/Home Agent (CHA). Each CHA holds a set of cache line addresses,
which are distributed among all CHAs using a built-in address hash. As such, cache
miss requests are bypassed directly out to the mesh to be serviced by a specific
CHA as determined by the address hash. However, this CHA has also a cost, and
quantifying the impact on performance is not trivial, as non-disclosed hash functions
are used for distributing data, hardening any programmatically optimization. For
these reasons, in this chapter we propose a reverse engineering process for obtaining
those hash functions, an analysis of the effect of core affinity on memory latency,
and different techniques for improving data locality on these architectures. More

2.1. Introduction | 9

specifically, in this chapter we describe the following contributions:

• We propose a mechanism to discover the physical layout of the logical compo-
nents (cores and CHAs) of a mesh interconnect-based processor, as well as the
mapping of memory blocks across CHAs and memory interfaces (Section 2.3).

• Leveraging the previous contribution, we analyze the impact of coherence traf-
fic in the memory latency of distributed directory architectures. Mechanisms
to optimize coherence traffic are proposed, improving core-to-CHA and thread-
to-core affinity (Section 2.4).

• We gather and analyze data generated by a large number of executions on a
KNL unit, and develop optimized strategies for scheduling a set of tasks across
the tiles in the mesh. We perform experiments to quantify the efectiveness of
our optimizations. Our results reveal that exploiting the multiple opportuni-
ties for locality in a mesh interconnect is essential to increase the potential
performance of future manycores (Section 2.5).

• With the information extracted in Section 2.3, the mapping of memory blocks
to CHAs is reverse engineered. Binary functions which compute a target CHA
from a physical memory address are exposed and shown to be pseudo-random
in nature (Section 2.6).

• Different optimization strategies to improve memory latency by leveraging the
mappings between memory and CHAs are designed. Approaches are proposed
based on both dynamic and static work scheduling (Sections 2.7 and 2.8).

• Experiments are performed to quantify the effectiveness of the proposed opti-
mizations. It is shown how the proposed schedulings improve memory latency
by exploiting CHA proximity. However, due to the pseudo-random nature of
the block-mapping functions the implementation of these schedulings affects
other performance-impacting factors, which may ultimately lead to perfor-
mance degradation (Sections 2.7.1 and 2.8.2).

The rest of the chapter is structured as follows: Section 2.2 delves deeper into
manycore architectures and the Intel KNL. Section 2.3 presents the reverse engineer-
ing process to map logical components of an MI-based architecture to its physical

10 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

layout. In Section 2.4 we describe the approach followed to optimize the coherence
traffic. Section 2.5 evaluates the potential advantages of the proposed approach,
and develops ways to exploit the architectural characteristics of a particular KNL
unit. Section 2.6 details the reverse engineering process that leads to the discovery
of the memory-to-CHA mapping. Sections 2.7 and 2.8 detail runtime- and compile-
time-based approaches, respectively, to optimize coherence traffic, and summarize
the results of the experimental evaluation phase. Finally, Section 2.9 discusses the
results obtained, the viability of the approaches presented, and related work.

2.2 Intel Knights Landing (KNL): Xeon Phi x200

The increasing demand of computational resources over the last decade has
shifted architectural paradigms. The relationship between energy consumption and
frequency, known as Dennard’s scaling, is not linear anymore [27]. The “multicore
crisis” in the past decade was partially a response to this problem. The idea behind
manycore processors is to comply with thermal limitations by integrating a higher
number of simpler, slower processors, capable of taking advantage of embarrass-
ingly parallel applications or to execute many smaller workloads at the same time.
Even though cores are simpler, they can communicate more efficiently since they are
integrated inside a single processor die and connected to a network-on-chip (NoC).

Manycore organizations present a challenge for the memory system. Since more
data-hungry cores coexist now inside a single die, the memory wall grows higher.
Modern architectures propose to use heterogeneous memory hierarchies, which com-
bine different memory technologies with their own characteristics and trade-offs.
Traditional memory hierarchies are augmented with these new technologies as shown
in Figure 2.1, contributing to reduce the gap between processor and memory speeds.

This work focuses on the Intel Xeon Phi x200 architecture, codenamed Knights
Landing (KNL), released in 2016 and discontinued in mid-2018. However, the dis-
tinguishing characteristics of its NoC live on the newer Intel developments for HPC,
namely the Xeon Scalable processors, whose third generation codenamed Ice Lake
was announced in 2020 [96]. Intel KNL is presented as a standalone x86 proces-
sor. In contrast, its predecessor, Knights Corner, was a co-processor which required

2.2. Intel Knights Landing (KNL): Xeon Phi x200 | 11

MAIN MEMORY
(DRAM)

MASS STORAGE
(Hard disk, flash)

High-bandwidth
DRAM (on-package)

Programmable
memories (NVMe)

Hybrid memory (3D
XPoint)

SPEED COST

CAPACITY

Traditional
Emerging

Programmable
memories (NVMe)

CACHE
(SRAM)

Figure 2.1: Traditional memory hierarchy updated with new emerging technolo-
gies.

a general purpose host processor. KNL is therefore not limited by the on-board
memory size or the PCIe bus bandwidth. Moreover, the use of the x86 ISA enables
KNL to execute different operating systems, legacy libraries, and general purpose
applications. As such, KNL is more versatile than its predecessor and than current
GPUs, which need applications to be rewritten following specific paradigms such as
CUDA [65].

The rest of this section discusses the main characteristics of the Intel KNL: its
internal organization, core architecture, on-die interconnect, memory system, and
cluster and memory modes.

2.2.1 Internal organization

KNL integrates up to 72 cores organized in a 2D mesh of 38 tiles. Each tile com-
prises two cores, two vector processing units (VPUs), an L2 cache (shared between
cores within the same tile, but private to the rest), and a portion of the distributed
directory named Caching/Home Agent (CHA), as shown in Figure 2.2. Each CHA
holds a set of cache line addresses, which are distributed among all tiles and their
respective CHAs using a built-in address hash. In this way, cache miss requests are

12 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Core Core

L2

CHA

VPU VPU

NoC

Figure 2.2: High-level tile organization in KNL.

bypassed directly out to the mesh to be serviced by a specific CHA as determined
by the address hash. Depending on the particular processor model, the number of
tiles enabled varies between 32, 34 and 36, featuring 64, 68 and 72 enabled cores, re-
spectively. When a tile is disabled, the cores and caches within are also deactivated.
However, the CHA and the logic for routing within the interconnection network re-
main active for all tiles, even those disabled. The CHA acts as the connection point
between a tile and the mesh . While the CHA box physically resides in the tile, it
is logically part of the on-die interconnect mesh.

Intel KNL cores are two-wide out-of-order derived from low-power Silvermont
cores, designed for Intel Atom processors but modified to make them suitable for
HPC [62]. They have been enhanced with AVX-512-capable VPUs. Furthermore,
each core has a private 32-KiB L1 data cache, backed up by a 1-MiB L2 shared
with the other core in the same tile but private to it. The CHA manages a portion
of the distributed cache directory, which stores the status and location of the most
up-to-date copy of a memory line, queried when an L2 miss occurs.

KNL features a 2D mesh NoC, replacing the ring topology used in Knights
Corner, as depicted in Figure 2.3, which corresponds to the Intel Mesh Interconnect
architecture. Messages traverse the mesh using a simple YX routing protocol: a
transaction always travels vertically first, until it hits its target row. Then, it begins
traveling horizontally until it reaches its destination. Each vertical hop takes 1 clock
cycle, while horizontal hops take 2 cycles. The mesh features 4 parallel networks or

2.2. Intel Knights Landing (KNL): Xeon Phi x200 | 13

rings, each customized for carrying different types of packets [58]:

• AD ring (address ring): carries tile read/write requests and memory controller
snoops to the CHA.

• BL ring (block ring): carries data transfers (two transfers for one cache line).

• AK ring (acknowledge ring): carries acknowledgements from memory con-
troller to CHA and from CHA to tile. It also carries snoop responses from
core to CHA.

• IV ring (invalidate ring): carries CHA snoop requests of tile caches (i.e., L2
cache misses).

2.2.2 Memory system

KNL integrates two different types of DRAM memories (see Figure 2.3). Up to
16 GiB of on-package 3D-stacked Multi-Channel DRAM (MCDRAM) provide high-
bandwidth accesses through eight independent interfaces. Besides, there are two
more DDR interfaces controlling three DRAM channels each, adding up to 192 GiB
of memory. A distributed cache coherence mechanism using Intel MESIF [40] is
employed. Each time a core requests a memory block that does not reside in the
local tile caches, the distributed directory is queried. A message is sent to the
appropriate CHA (message (1) in Figure 2.3). If the block already resides in one of
the L2 caches in the mesh in Forward state1, the CHA will forward the request to
the owner, which will send the data to the requestor in turn (messages (2) and (3) in
the figure). In other cases, the data must be fetched from the appropriate memory
interface. The data flow shown in the figure exemplifies one of the performance
hazards inherent to the KNL architecture: although the data for the requested
block lies in the forwarder tile F, just above the requestor R, the coherence data is
stored far away in tile C. As such, 18 cycles are required to transfer the data (10
vertical and 4 horizontal hops). But, if the directory information were stored either
in the requestor or in the forwarder, the round trip time of data packets would be
of only 2 cycles (2 vertical hops on the mesh).

1A cache containing a block in Forward state is in charge of serving said block upon a request.
The requestor acquires the block in Forward state, while the sender changes it to Shared.

14 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

MCDRAM 0 MCDRAM 1 MCDRAM 2 MCDRAM 3

MCDRAM 4 MCDRAM 5 MCDRAM 6 MCDRAM 7

3
 D

D
R
4
 C

H
A
N

N
E
LS

3
 D

D
R
4
 C

H
A
N

N
E
LS

F

R

C

1

2

3

Figure 2.3: Intel KNL floorplan. Each box represents a tile. Cache miss flow for
Quadrant cluster mode. R is the requestor, C is the holder, and F is the forwarder.

2.3. Mapping the Knights Landing Processor | 15

2.2.3 Cluster modes

The affinity between memory interfaces, CHAs and cores can be configured in
KNL through the so-called cluster modes:

• Quadrant: the mesh is virtually divided into four clusters. The memory blocks
managed by a CHA are guaranteed to be accessed through a memory interface
within the same quadrant. The hash functions which assign memory blocks
to CHAs and memory interfaces are not publicly disclosed. This mode is the
de-facto standard for KNL operation.

• Sub-NUMA cluster (SNC): all memory is divided into two or four contiguous
memory blocks, and each block is assigned to a cluster interleaving cache lines
among the memory channels in that cluster. The idea is to create different
NUMA nodes isolating traffic within them. It is recommended for MPI and
NUMA-aware applications only.

• All-to-all (A2A): data has no affinity at all. This is the most inefficient mode.
It should only be used when memory modules are unevenly distributed across
memory interfaces.

2.2.4 Memory modes

The MCDRAM memory may be configured into one of two modes: “Flat” mem-
ory, in which the address space is explicitly exposed as an independent NUMA do-
main and is available to the programmer; and “Cache” mode, in which MCDRAM
serves as a transparent memory-side cache. In this work we focus exclusively on the
MCDRAM subsystem, although all the proposed optimizations are directly exten-
sible to the DRAM subsystem, and on the Quadrant/Flat mode.

2.3 Mapping the Knights Landing Processor

When working in the Sub-NUMA cluster mode the correspondence between log-
ical and physical cores is explicit. Considering 64 cores, four different NUMA mem-

16 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

ory domains are created, and each core is associated to one of them: cores {0–15},
{16–31}, {32–47} and {48–63} belong to the four different logical clusters in the
mesh. This allows to carefully select the affinity for a team of processes executing
an MPI application, knowing that the memory allocated to a processor will be guar-
anteed to lie in the local interfaces to each cluster, as will the associated directory
information. It is not possible to exploit this paradigm using a multithreaded code
(e.g., OpenMP) without simulating the distributed memory nature of multiprocess
parallelism.

In the default Quadrant mode there is no indication regarding to the neighbor-
hood relationships between different logical core IDs. This makes it impossible to
reason about core affinities. Furthermore, even if we discovered core location and
bound a team of threads to neighboring cores, each time a cache block is not locally
available the requestor will need to query the associated CHA to discover the status
and location of the block. This coherence data may reside in any part of the mesh.
For this reason, it is not sufficient to know where each core is located in the physical
mesh; we would also need to know where each CHA is located in order to carefully
plan the memory accesses for each thread, as well as the block-to-CHA mapping.

We reverse engineered the physical layout of an Intel x200 7210 processor in
Quadrant mode, with 64 enabled cores, by profiling memory access latencies, build-
ing potential layout candidates, and iteratively discarding the ones which present
a larger squared error with respect to the observed behavior. For this purpose, we
systematically measured the access latency from each logical core ID to cache blocks
located in each of the 8 MCDRAM interfaces and each of the 38 CHAs in the mesh.
Note that, in Quadrant mode, blocks stored in a given MCDRAM interface can only
be indexed by CHAs located in its same quadrant. We created a routine which, given
a tuple (C,CH,MC) containing core, CHA and MCDRAM IDs, locates a cache
block stored in MC and indexed by CH, and measures the latency of accessing it
from C. This routine is detailed in Algorithm 2.1. We first initialize a sufficiently
large region of memory (buffer B) to ensure that it will contain instances of all
possible (CH,MC) associations. Given that the hash function assigning blocks to
CHAs and MCDRAM interfaces is reasonably uniform, this memory does not need
to be extremely large (a few 4-KiB memory pages are enough). Then, we test each
cache block looking for one which is indexed by CH and stored in MC. To do so,

2.3. Mapping the Knights Landing Processor | 17

we access each block and flush it from the cache N times in a loop. After the loop
ends, we check which MCDRAM and CHA pair has at least N accesses by using a
custom kernel module which leverages the uncore Model Specific Registers (MSR)2.
After we find a block associated to (CH,MC), we repeatedly access it again, but
this time we measure access latencies and compute the average.

In the manner described above, we find the average access latency for all the valid
(C,CH,MC) tuples in the mesh. Note that we only need to obtain the latency for
one out of each 2 cores, since cores in the same tile share the same CHA, and it is
inferrable from /proc/cpuinfo that cores (2x) and (2x+ 1) lie in the same tile. By
analyzing the missing (CH,MC) pairs, we discover the association of CHAs and
MCDRAMs to quadrants. In particular, we find that data in MCDRAM interfaces
(2y) and (2y+1) are indexed by CHAs z such that (z mod 4 = y), e.g., MCDRAMs
0 and 1 are associated to CHAs 0, 4 . . . 36; MCDRAMs 2 and 3 to CHAs 1, 5 . . . 37;
and so on.

Once these data are collected, we analyze them to determine where each pair
(C,CH) of core and CHA is located on the physical mesh, taking into account the
public KNL specifications. The floorplan includes 38 physical tiles, some of which
have their cores disabled depending on the processor model.3 Remember that, de-
spite having disabled cores, all tiles have fully functional CHAs and mesh intercon-
nects. The actual location of the tiles with disabled cores changes for each processor
unit, depending on process variations [89]. However, the CPUID instruction can be
used to discover the actual (C,CH) associations between cores and CHAs. It also
provides the list of CHAs which do not have enabled cores. Armed with this in-
formation, and with our measured core-to-CHA-to-MCDRAM latencies, we build a
squared error model for each candidate assignment of (C,CH) pairs to the physical
mesh. In our Intel x200 7210, only 32 tiles have active cores. As such, we have to
discover the actual location of these 32 tiles, plus the 6 disabled tiles. Taking into
account that we know the associations of (C,CH) pairs and quadrants, as detailed
above, there are 10! × 10! × 9! × 9! different combinations, as two quadrants have
10 tiles while the remaining two quadrants have only 9 tiles each. This information

2We employ the PERF_EVT_SEL_X_Y and ECLK_PMON_CTRX_LOW/HIGH registers to monitor CHAs
and MCDRAMs, respectively [57]. We measure events RxR_INSERTS.IRQ and RPQ.Inserts [58].

3The exact count is 6 tiles with disabled cores in Intel x200 7210 and 7230 series, 4 in the 7250
series, and 2 in the 7290 series.

18 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Algorithm 2.1: Measures latencies for a (C,CH,MC) tuple
Input: Core C, CHA CH and MCDRAM MC
Output: Average access latency from C to MC via CH

1 bind_to_core(C);
2 allocate_buffer(B);
3 for each cache block b in B do
4 n = 0;
5 start_cha_counters();
6 start_mcdram_counters();
7 while n < N do
8 access(b);
9 flush_cache_block(b);

10 n = n+ 1;
11 end
12 stop_mcdram_counters();
13 stop_cha_counters();
14 mcb = read_mcdram_counters();
15 if mcb == MC then
16 chab = read_cha_counters();
17 if chab == CH then
18 n = 0;
19 start = get_time();
20 while n < N do
21 access(b);
22 flush_cache_block(b);
23 n = n+ 1;
24 end
25 stop = get_time();
26 L = start− stop;
27 return L/N ;
28 end
29 return error;

allows us to reduce the possible combinations by a factor of 1021 with respect to the
original 38! possible candidates. To reduce even further the number of possibilities
we employ heuristics. First, we locate feasible candidates for the corner tiles, i.e.,
those contiguous to each MCDRAM interface. For this purpose, we identify the
minimum experimental memory latency L (117 cycles in our tests), and search for

2.4. Processor Affinity and Data Layout | 19

(C,CH,MC) tuples with an access latency of at most L plus a configurable error
margin. In this way, we reduce the possible combinations for the 8 corners to under
200. Next, for each of these candidates, we build mean squared error models for
placing the remaining tiles, and finally accept the one which shows the least squared
error.

The obtained results present a clear pattern in the location of both CHAs and
cores, as shown in Figure 2.4. The CHAs in each quadrant are sequentially arranged
in a vertical fashion. Cores are assigned sequentially to CHAs, skipping those tiles
with disabled cores. This technique allows to obtain the physical layout of any
individual KNL unit immediately, by just checking which CHAs have disabled cores
through CPUID instructions.

2.4 Processor Affinity and Data Layout

Once the mapping of the logical components of the processor onto the physical
floorplan is exposed, the next step is to take advantage of this information. There
are at least two orthogonal ways in which an application might exploit locality across
the mesh:

• Each thread should access data with coherence information stored in a nearby
CHA as much as possible. In this way, memory access latency will be improved
due to the shorter message trips across the network. Furthermore, restricting
coherence data to subsets of the tile will improve the network contention when
a large number of cores is active. We refer to this optimization as exploiting
core-to-CHA affinity.

• A core requesting data in a nearby L2 cache may not take advantage of this
proximity due to the coherence data being assigned to a distant CHA, as
illustrated in Figure. 2.3. However, once core-to-CHA affinity is improved,
applications will benefit from co-locating cooperating threads. We refer to
this optimization as thread-to-core affinity.

Mapping memory blocks and their associated CHAs and using them accordingly
requires important changes to the compilation chain and/or the source code of an

20 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

50,51
28

56,57
32

62,63
36

48,49
26

58,59
34

40,41
22

32,33
18

24,25
14

44,45
24

36,37
20

28,29
16

20,21
12

16,17
10

10,11
6

4,5
2

8

4

MCDRAM 0 MCDRAM 1 MCDRAM 2 MCDRAM 3

MCDRAM 4 MCDRAM 5 MCDRAM 6 MCDRAM 7

3
 D

D
R

4
 C

H
A

N
N

E
LS

3
 D

D
R

4
 C

H
A

N
N

E
LS

0,1
0

2,3
1

8,9
5

14,15
9

6,7
3

12,13
7

18,19
11

42,43
23

34,35
19

26,27
15

46,47
25

38,39
21

30,31
17

22,23
13

52,53
29

54,55
31

60,61
35

33

37

30

27

Figure 2.4: Result of our model. Each tile is formed by two cores (their IDs are
enclosed in a large box) and a CHA (its ID enclosed in a small box). Tiles with
blank boxes indicate that their cores are not active.

application. For any array in a computational kernel, we need to obtain a mapping
of the correspondence between the memory blocks in the array and the CHAs in
the mesh. Once that is done, work has to be scheduled across the available threads

2.5. Experimental Results Varying Processor Affinities | 21

according to the affinity between the core executing each thread and the CHAs.
There are two ways in which this can be accomplished: 1) dynamically, by running
an inspector/executor which finds the mapping between memory blocks and CHAs,
and schedules tasks accordingly; and 2) statically, by exposing information about
the memory system to the compiler.

On a first approach, we are interested only in showing that CHA proximity plays
an important role in the performance of multithreaded codes, and showcasing the
potential of optimizing mesh locality. For this purpose, we map the CHA locations
of all the memory blocks in the 16 GiB MCDRAM memory subsystem. For each
block, we note the associated CHA and MCDRAM interface, and store both in one
byte. This information takes up 256 MiB for the entire memory, and is incorpo-
rated into the runtime of each application. Upon execution, an inspector-executor
copies the data to be accessed by each core to memory locations indexed by CHAs
with high affinity to that core. This requires using arrays of indirections, and there-
fore this technique will likely bring performance advantages to irregular codes only.
Nevertheless, the aim of this work is to: 1) provide evidence of the impact of the
distributed directory; 2) highlight the importance of disclosing architectural fea-
tures for code optimization; and 3) serve as a basis to develop a compiler-based
optimization model. All our experimental codes will use arrays of indirections, even
when accessing memory sequentially, in order to fairly assess the impact in memory
performance of core-to-CHA and thread-to-core affinity.

2.5 Experimental Results Varying Processor Affinities

We applied the proposed approach to several commonplace computational ker-
nels to analyze how the location of coherence data affects system behavior. The
experiments were run on the Intel Xeon Phi x200 7210 mapped in Section 2.3, with
64 cores, 192 GiB of DDR, and 16 GiB of MCDRAM. Codes are compiled using ICC
18.0.3 with -O2 -xKNL. The system is configured in Quadrant/Flat mode, dividing
the address space into two different regions, one for DDR and one for MCDRAM.
The frequency is fixed to the base of 1.30 GHz to avoid thermal variations or CPU
throttling (e.g., DVFS). Our applications were configured to use MCDRAM exclu-
sively for data allocation through numactl. All our data arrays are allocated into 1

22 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

GiB hugepages. We ran three different sets of experiments. First, we analyze the
impact of the core-to-CHA affinity optimization using different affinity strengths
(Section 2.5.1). Next, we analyze the effect of the thread-to-core affinity optimiza-
tion in coherence traffic, using a modified 1D stencil (Section 2.5.2). Finally, we
broaden our scope to analyze the impact of optimized thread-to-core scheduling of
several different workloads (Section 2.5.3).

2.5.1 Effect of core-to-CHA affinity on memory latency

We first measure the potential of optimizing core-to-CHA affinity to reduce mem-
ory latency. For this purpose, we employ a scalar vector product kernel, due to its
high memory bandwidth requirements. We work with a total dataset of 128 MiB to
ensure that no reuse takes place through caches, and repeat the computation 100
times to average out performance differences across the full experiment.

Figure 2.5a illustrates how performance metrics evolve for all possible affinities
between cores and CHAs. The core-to-CHA affinity (X axis) indicates the maximum
distance in CPU cycles allowed from a core to the CHAs indexing the data it ac-
cesses. The figure shows a clear performance improvement from limiting the spread
of coherence traffic. The reduction in outstanding weighted cycles is of 7.2%, close
to the expected theoretical optimum. However, the derived speedup is only 3.1%.
The culprit is the increase in the number of µTLB misses, due to the pseudo-random
nature of the access to the data arrays enforced by the search for blocks associated
to local CHAs, and to the lack of hugepages support on the L1 TLB. Increasing the
neighborhood size reduces µTLB misses, as more memory blocks are usable by each
core. This also increases access latency, as more distant MCDRAM interfaces are
accessed causing an increase in the travel times of data and coherence packets. The
proportion of distant accesses eventually converges to approximately one fourth, as
2 out of the 8 MCDRAM interfaces are considered close to each core.

2.5.2 Effect of thread-to-core affinity on coherence traffic

A second optimization enabled by our architectural analysis is the exploitation
of thread-to-core affinity. We aim to improve the locality of the data across the

2.5. Experimental Results Varying Processor Affinities | 23

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
core-to-CHA affinity

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

0.0

0.2

0.4

0.6

0.8

1.0

cycles
outstanding

TLB misses
distant mem. access.

(a)

512K 1M 2M 4M 8M 16M 32M 64M 128M
Problem size

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

No
rm

al
ize

d
cy

cle
s

thread affinity
co-located scatter

(b)

Figure 2.5: Effects of core-to-CHA and thread-to-core affinities: 2.5a) execution
cycles, outstanding weighted cycles, µTLB misses, and accesses to distant mem-
ory interfaces for different core-to-CHA affinities. Results are normalized to the
maximum value for each series, except for accesses to distant memory interfaces,
which are normalized to the total number of memory accesses. µTLB misses and
distant accesses are referenced to the right axis; and 2.5b) execution cycles of
the best-performing core-to-CHA affinity for two different thread-to-core affinities:
“scatter” (thread i is assigned to OS core i), and “co-located” (adjacent threads
are placed in adjacent physical cores). Results are normalized to the execution
cycles of the non-optimized code with scatter thread placement. The left Y axes
are truncated to better reflect the differences in values.

24 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

L2 caches in the mesh to reduce coherence traffic. For this purpose, we modify
a jacobi-1d stencil so that neighboring cores swap their data at the end of each
timestep. Note that it is futile to try to exploit thread-to-core affinity without
enforcing the core-to-CHA affinity first, as a thread sharing a block of data will
need to traverse the mesh to query the appropriate CHA before finding out that the
block lay in a neighboring core.

The 1D stencil was run on 64 cores using 108 different configurations, including
several problem sizes, five different core-to-CHA affinities, and two thread-to-core
affinities: scatter and an ad hoc “co-located” affinity in which adjacent threads are
assigned to adjacent cores whenever possible. In total, more than 3,000 executions
of the stencil were run. Fig. 2.5b shows the normalized median execution cycles
after discarding outliers. As can be observed, the two optimizations target different
types of workloads. For applications with small datasets, in which reuse comes from
other cores in the mesh, adjusting thread-to-core affinity yields important benefits.
The figure clearly shows how this optimization loses effectivity when the memory
footprint reaches the total combined cache size (32 MiB in our Intel x200 7210
processor). On the other hand, applications with large datasets, which consume a
large volume of data directly from memory, benefit more from the memory latency
reduction provided by core-to-CHA affinity. This optimization also loses effectivity
as the footprint increases. In this case, the reason is the exponentially increasing
number of µTLB misses, as covered in Section 2.5.1.

2.5.3 Optimized thread-to-core scheduling

In the previous section we studied how changing the thread-to-core affinity im-
pacted performance for a particular workload. The data was always shared among
consecutive threads, and therefore a simple affinity could be devised ensuring that
threads sharing data were never more than two hops apart on the mesh. How-
ever, designing balanced affinities for more complex data sharing relationships in
64-threaded applications is a non-trivial problem, particularly given the irregular
structure of the mesh. Instead, we focus on how to optimally schedule smaller
workloads on the available cores.

In order to characterize the mesh behavior we executed different applications

2.5. Experimental Results Varying Processor Affinities | 25

Table 2.1: Benchmarks used in the experiments, characterized by the weighted
averages of cache accesses and misses, memory accesses, and floating-point
operations. Values are reported in millions per thread per second.

Benchmark Description D1 acc. D1 misses L2 misses MCDRAM FLOPS
rvec Vector reduction 14.88 10.24 8.42 8.34 190.25
rvv Vector-vector add & reduction 19.68 12.59 11.08 10.95 257.05

vecsearch Search for value in vector 11.42 8.96 8.39 8.32 284.88
jac-2d 2D Jacobi stencil 249.98 12.26 9.58 9.38 334.62

avv Vector-vector addition 124.45 9.66 11.40 11.29 635.02
jac-1d 1D Jacobi stencil 52.98 11.02 15.22 15.10 702.72

jac-1d-swap 1D Jacobi data swap after tstep 59.79 11.50 14.77 7.37 717.60

with footprints ranging from 512 KiB to 2 MiB per thread (4 times the allotted
cache space per core), running on 4, 8, 16 and 32 threads. We tested a total of 113
thread-to-core schedules, including 4-, 8-, 16- and 32-thread groups. For instance,
in the case of 4 threads, we tested the full set of 46 different contiguous 2-tile al-
locations, plus the default “scatter” affinity in ICC, plus several random ones to
act as control groups. Our benchmarks are the stencils and array kernels detailed
in Table 2.1. In total, more than 45,000 executions were performed. The results
were analyzed using k-means clustering to discover the factors that impact perfor-
mance. We gather information about architectural trends, particularized for our
processor unit: which cores are faster or slower, how the distance to the MCDRAM
interfaces affects benchmarks depending on bandwidth requirements, which types
of benchmarks benefit from core-to-CHA and thread-to-core affinity optimizations,
etc.

We validate the collected historical data by generating random mixes of appli-
cations and executing them using a schedule which exploits the architectural char-
acteristics discovered during the analysis phase. We randomly generate 6 different
workload mixes, each including 8 benchmarks of varying sizes, as detailed in Ta-
ble 2.2. We then execute each mix using three different configurations: 1) “fair”:
cores are assigned to each task proportionally to the size of their dataset, no core-
to-CHA-affinity is enforced, and the binding of threads to cores is managed by the
OS; 2) “load”: cores are distributed across the tasks by using the historical data
to estimate expected execution times, no core-to-CHA affinity is enforced, and the
binding of threads to cores is managed by the OS; and 3) “optimized”: the number
of cores per task is the same as in 2), but strong core-to-CHA affinity is enforced,

26 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Table 2.2: Applications in each mix of workloads.

mix apps

#1 jac-2d-512KiB, rvv-512KiB, jac-1d-8MiB, jac-2d-8MiB, rvec-8MiB, rvv-32MiB,
vecsearch-32MiB, avv-128MiB

#2 avv-512KiB, rvv-1MiB, vecsearch-1MiB, avv-2MiB, jac-1d-swap-4MiB, jac-1d-
swap-32MiB, jac-2d-128MiB

#3 vecsearch-512KiB, jac-2d-1MiB, vecsearch-1MiB, jac-2d-2MiB, avv-2MiB,
vecsearch-4MiB, rvec-8MiB, jac-2d-16MiB

#4 rvec-512KiB, rvv-512KiB, vecsearch-512KiB, avv-32MiB, jac-1d-4MiB, vecsearch-
4MiB, avv-32MiB, jac-2d-32MiB

#5 jac-1d-swap-1MiB, jac-2D-1MiB, rvec-2MiB, vecsearch-4MiB, avv-16MiB, jac-1d-
swap-16MiB, jac-2d-16MiB, jac-2d-32MiB

#6 jac-1d-swap-512KiB, avv-1MiB, avv-2MiB, rvv-2MiB, rvv-8MiB, avv-32MiB, rvv-
32MiB, jac-2d-64MiB

and an optimal thread-to-core binding is computed by consulting historical data.

Figure 2.6a shows the performance of our scheduling strategies. The improve-
ment obtained by the “load” scheduling depends on how well the computational load
of each mix is predicted by the footprint of its applications. For example, in mix #1
the initial “load” scheduling does not improve the execution time, as our resource
allocation binds threads of very small benchmarks to different hyperthreads of the
same core, to better exploit the available slack in the mix. The “optimized” schedul-
ing takes into account the characteristics of the mesh to achieve further improve-
ments. This effect is most noticeable in mix #5, in which the longest computation
corresponds to jac-1d-swap-16MiB, a benchmark which is particularly sensible to
the co-location of its computing threads. Aggregating all mixes, “load” scheduling
improves total execution times by 20.8%, and “optimized” increases that gain to
61.3%.

Figure 2.6b provides a more detailed view of different performance metrics for
the “optimized” schedules. The plot aggregates the sum of all metrics for all tasks
in each mix. Note that sometimes the total number of execution cycles increases
with respect to the original execution cycles. Yet, as shown in Fig. 2.6a, the total
execution time always improves. The reason is that the “optimized” scheduling
exploits the slacks of non-critical path tasks to better balance resource allocation.
Another interesting effect is the total increase in the number of MCDRAM accesses

2.6. Reverse Engineering the CHA Mapping | 27

1 2 3 4 5 6
mix

0.0

0.2

0.4

0.6

0.8

1.0

load optimized

(a)

1 2 3 4 5 6
mix

0

1

2

3

Cycles
D1 misses

L2 misses
MCDRAM acc.

(b)

Figure 2.6: Results of scheduling strategies: 2.6a) execution cycles of “load” and
“optimized” schedules normalized to “fair” values; and 2.6b) performance coun-
ters of “optimized” schedules aggregated over the sum of each mix and normal-
ized to the values in “fair” schedules.

for almost all mixes. This is caused by a benchmark with large dataset but short
comparative execution time, being allocated a reduced set of resources. This causes
the benchmark to become memory-bound, and its execution time to increase, but
keeping it out of the critical path of the mix. To avoid interference, these tasks are
allocated a set of MCDRAM interfaces which are not used by other high-bandwidth
demanding tasks. On the other side of the spectrum is mix #5, where the number
of MCDRAM accesses is greatly reduced by the co-location of the executing threads
and the increase in allocated cache resources.

2.6 Reverse Engineering the CHA Mapping

As we described in Section 2.2, KNL employs a built-in address hash to dis-
tribute all cache lines among CHAs in the mesh. In Section 2.3 we have already
described how to obtain empirically these correspondences block-to-CHA. Leverag-
ing this model, in this section we focus on building a closed-form function of the

28 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

mapping of cache lines or memory blocks to CHAs in order to enable new optimiza-
tion strategies for these mesh interconnect-based processors.

In hardware designs, pseudo-random mappings often make use of XOR gates,
such as with Cyclic Redundancy Codes (CRCs), Linear Feedback Shift Registers,
and other XOR hashes [69]. XOR mappings can be efficiently implemented in gates
relative to other forms of pseudo-random mapping binary addresses, such as modulo
arithmetic of the form x = (n1addr + n2) mod n3. Using the data obtained in
Section 2.3, Table 2.3 shows the CHA mapping for the first 128 cache lines out of
the 256 million mapped locations, i.e., the entire MCDRAM address space.

This section describes the analysis of this mapping data in order to generate
the closed forms of the mapping functions. Since full 64-byte cache lines are stored
when a CHA location is determined for the data, the address-to-CHA mapping does
not make use of address bits 5:0. In a first, coarse-grained analysis of the data, we
find that the CHA mapping depends only on address bits A34:6, which allows for
2536,870,912 distinct binary functions for each of the 6 CHA bits.

Table 2.3: Address-to-CHA mapping for the first 128 CHA values out of 256
million. To aid in visualizing, CHA0 and CHA1 are shown in a box and CHA37 is
shown in white over black .

Address bits 9:6
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Address 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
bits 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

12:10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
000 26 9 24 11 21 6 23 4 31 12 29 14 16 3 18 1
001 27 8 25 10 20 7 22 5 14 37 28 15 33 34 19 0
010 10 25 8 27 5 22 7 20 15 36 13 30 32 35 2 17
011 11 24 9 26 4 23 6 21 30 37 12 31 33 34 3 16
100 12 31 14 29 3 16 1 18 9 26 11 24 6 21 4 23
101 13 30 15 28 2 17 0 19 8 27 34 33 7 20 37 6
110 28 15 30 13 19 0 17 2 25 10 35 32 22 5 36 7
111 29 14 31 12 18 1 16 3 24 11 34 33 23 4 37 22

Given values for CHA from 0 to 37, 6 bits are needed to represent this number,
but given that 38 is not a power of 2, we did not expect to see a straightforward
XOR equation of address bits for each CHA bit. However, given the ease of com-
puting binary functions in hardware, we did expect and found that each bit for

2.6. Reverse Engineering the CHA Mapping | 29

the CHA value can be computed independently (again, as opposed to a scheme like
addr mod 38).

The process we follow to determine the equations for CHA bits is shown in
Figure 2.7. Our final process finds equations of the form CHAn = fg|h where
most of the bits are correctly predicted by the f function alone, g masks some
bits to 0, and h is OR’ed in to correct some bits to 1. Following the idea that
the function should be easily implementable in hardware, we first attempt to find
f = a1 ⊕ a2 ⊕ ... ⊕ an−1 ⊕ z(an, an+1, ...); that is, f is a function which XORs
certain address bits together with a binary function z which uses a small number of
identifiable address bits.

For instance, consider the toggle frequency for CHA0 when different bits of the

Gather estimate
of entire func-
tion truth table

Analyze incorrect
f = 1 cases, build
AND function

Toggle input bits to
find direct XOR
contributions

Is function
correct?

Solve remaining
binary function
of few variables

Analyze incorrect
fg = 0 cases,

build OR function

Is function
correct?

Is function
correct?

Function confirmed Function not found

no

yes no

no

yes

F
in
d
ba

se
fu
nc
ti
on

f

Find f to create fg

F
ind

h
to

create
f
g|h

Figure 2.7: Reverse engineering hardware-friendly hash functions.

30 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

address are toggled shown in Table 2.4. As can be seen, 99.93% of the time toggling
a6 or a8 changes the result of CHA0, whereas toggling a7 almost never affects its
value. It can be concluded that the mapping function for bit 0 must be of the
form CHA0 = a6 ⊕ a8 ⊕ ..., where “...” is yet to be determined. The fact that the
data is not 100% precise is attributable to measurement errors in the performance
counter-based mapping process.

The analysis of the toggle frequency finds that some of the bits A29:6 are directly
XOR’ed into CHA0, while some others do not appear at all. However, the study also
shows that bits A33:30 affect the function, but not in the same categorical way. The
toggle frequency is somewhere between 5% and 95%. In order to reverse engineer
the role of these bits in the function, the limited input binary function of A33:30 is
analyzed to detect which combinations of these bits toggle the result of the partial
XOR function built from A29:6, as shown in Table 2.5. This reverse engineering
process yields the functions CHA0 and CHA1 in Figure 2.8 for the 2 least significant
bits of the CHA.

Although the number of CHA locations (38) is not divisible by 4, we found
that CHA0−1 are each on for 50% of the addresses, and as seen in Figure 2.4 this
distributes data evenly among the 4 quadrants of the die. CHA1 = 1 indicates the
data is in the lower half of the die; CHA0 = 1 indicates the data is on the right
side of the die. Given that the lower quadrants have one fewer CHA as compared to
upper quadrants, this will cause an imbalance of up to 20% in the number of memory
blocks mapped to different CHAs, as described in more detail in Section 2.7.

The functions for CHA2−5 are more complex than those for CHA0−1, in order
to reasonably distribute data among the 38 CHA values. As shown in Figure 2.7,
finding the base function f , which matches most binary function values, sometimes
does not fully match the measured function values. In such cases, we search for
g functions to logically AND with f to set certain values to 0, and h functions to
logically OR with fg to set certain values to 1. As an example, we will describe the
process of determining the g function for CHA2 with reference to Table 2.6. The f
function includes a8 ⊕ a9 ⊕ a12 which results in regular blocks of 1’s and 0’s when
the address bits 13:6 are varied with a total of 128 1’s and 128 0’s in the set of 256
cache lines. However, the performance counter data implies that 6 of those 1’s are
actually 0’s. Note that in the binary representation of 0 through 37, bit 2 is high

2.6. Reverse Engineering the CHA Mapping | 31

Table 2.4: CHA0 toggle frequency when toggling address bits a6 to a34. In this
case, values greater than 0.98 or less than 0.02 indicate errors in the CHA pre-
dicted based on performance counters, and are interpreted as 1 and 0, respec-
tively.

Address CHA0 Equation Address CHA0 Equation
Bit Toggles Role Bit Toggles Role
a6 0.9993 XOR a21 0.0009 Ignore
a7 0.0001 Ignore a22 0.0011 Ignore
a8 0.9993 XOR a23 0.9989 XOR
a9 0.9994 XOR a24 0.0014 Ignore
a10 0.9994 XOR a25 0.0014 Ignore
a11 0.0002 Ignore a26 0.0013 Ignore
a12 0.0002 Ignore a27 0.9954 XOR
a13 0.0002 Ignore a28 0.0045 Ignore
a14 0.9994 XOR a29 0.0120 Ignore
a15 0.9994 XOR a30 0.9458 Function
a16 0.0004 Ignore a31 0.9444 Function
a17 0.9993 XOR a32 0.0555 Function
a18 0.9993 XOR a33 0.0546 Function
a19 0.0006 Ignore a34 0.0000 Ignore
a20 0.9993 XOR

Table 2.5: For CHA0, bits 33 to 30 do not directly get XOR’ed with other bits, but
are part of a function that itself is XOR’ed with those bits.

Address Bits Avg CHA0 when Address Bits Avg CHA0 when
33:30 direct XOR low 33:30 direct XOR low
0000 0.0019 1000 1.0
0001 0.0 1001 0.0014
0010 0.0 1010 0.0007
0011 1.0 1011 1.0
0100 1.0 1100 1.0
0101 0.0 1101 0.0
0110 0.0 1110 0.0005
0111 1.0 1111 0.9991

32 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

CHA0 =a6 ⊕ a8 ⊕ a9 ⊕ a10 ⊕ a14 ⊕ a15 ⊕ a17 ⊕ a18 ⊕ a20 ⊕ a23 ⊕ a27 ⊕ ((a30a31)|(a30a31(a32|a33)))
CHA1 =a6 ⊕ a7 ⊕ a8 ⊕ a12 ⊕ a16 ⊕ a17 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a28 ⊕ a30 ⊕ a33

CHA2 =fg, where:
f = a8 ⊕ a9 ⊕ a12 ⊕ a15 ⊕ a16 ⊕ a18 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a25 ⊕ a26 ⊕ a28 ⊕ a30(a31|a32|a33))
g = ((a11 ⊕ a16 ⊕ a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31)|(a10 ⊕ a15 ⊕ a16 ⊕ a20⊕
a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34))(a6 ⊕ a12 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a28⊕
a32 ⊕ a34)(a7 ⊕ a12 ⊕ a14 ⊕ a17 ⊕ a18 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29⊕
a32 ⊕ a34)(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a27⊕
a29 ⊕ a33 ⊕ a34)(a13 ⊕ a14 ⊕ a18 ⊕ a24 ⊕ a26 ⊕ a28 ⊕ a29 ⊕ a31 ⊕ a33 ⊕ a34)

CHA3 =fg|h, where:
f = a8 ⊕ a13 ⊕ a14 ⊕ a18 ⊕ a20 ⊕ a23 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a28 ⊕ (a30|a31|a32)(a32 ⊕ a33)

g = ((a11 ⊕ a16 ⊕ a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31)|(a10 ⊕ a15 ⊕ a16 ⊕ a20⊕
a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34))(a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22⊕
a23 ⊕ a24 ⊕ a25 ⊕ a27 ⊕ a31 ⊕ a32 ⊕ a33)(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26⊕
a27 ⊕ a29 ⊕ a33 ⊕ a34)

h = ((a11 ⊕ a16 ⊕ a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31)|(a10 ⊕ a15 ⊕ a16 ⊕ a20⊕
a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34))(a6 ⊕ a13 ⊕ a15 ⊕ a16 ⊕ a17 ⊕ a18⊕
a20 ⊕ a21 ⊕ a26 ⊕ a29 ⊕ a34)(a7 ⊕ a13 ⊕ a14 ⊕ a15 ⊕ a16 ⊕ a19 ⊕ a25 ⊕ a27 ⊕ a34)

(a8 ⊕ a15 ⊕ a17 ⊕ a18 ⊕ a19 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a30 ⊕ a31 ⊕ a32 ⊕ a34)(a9⊕
a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a29 ⊕ a33 ⊕ a34)(a12 ⊕ a14 ⊕ a15⊕
a16 ⊕ a17 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a31 ⊕ a32 ⊕ a33 ⊕ a34)

CHA4 =fg|gh, where:
f = a6 ⊕ a11 ⊕ a12 ⊕ a16 ⊕ a18 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a26 ⊕ a30 ⊕ a31 ⊕ a32

g = ((a11 ⊕ a16 ⊕ a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31)|(a10 ⊕ a15 ⊕ a16 ⊕ a20⊕
a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34))(a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22⊕
a23 ⊕ a24 ⊕ a25 ⊕ a27 ⊕ a31 ⊕ a32 ⊕ a33)(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26⊕
a27 ⊕ a29 ⊕ a33 ⊕ a34)

h = (a10 ⊕ a11 ⊕ a13 ⊕ a16 ⊕ a17 ⊕ a18 ⊕ a19 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a27 ⊕ a28 ⊕ a30⊕
a31 ⊕ a33 ⊕ a34)(a6 ⊕ a12 ⊕ a13 ⊕ a14 ⊕ a18 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a26⊕
a29 ⊕ a31 ⊕ a32 ⊕ a33)(a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a25 ⊕ a27⊕
a31 ⊕ a32 ⊕ a33)(a8 ⊕ a12 ⊕ a14 ⊕ a16 ⊕ a18 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a27 ⊕ a28 ⊕ a29⊕
a30 ⊕ a33)(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a29 ⊕ a33 ⊕ a34)

CHA5 =fg, where:
f = ((a10 ⊕ a15 ⊕ a16 ⊕ a20 ⊕ a22 ⊕ a25 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a30 ⊕ a34)|(a11 ⊕ a16⊕
a17 ⊕ a21 ⊕ a23 ⊕ a26 ⊕ a27 ⊕ a28 ⊕ a29 ⊕ a31))(a7 ⊕ a12 ⊕ a13 ⊕ a17 ⊕ a19 ⊕ a22⊕
a23 ⊕ a24 ⊕ a25 ⊕ a27 ⊕ a31 ⊕ a32 ⊕ a33)(a9 ⊕ a14 ⊕ a15 ⊕ a19 ⊕ a21 ⊕ a24 ⊕ a25 ⊕ a26⊕
a27 ⊕ a29 ⊕ a33 ⊕ a34)

g = (a6 ⊕ a12 ⊕ a13 ⊕ a14 ⊕ a18 ⊕ a20 ⊕ a21 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a26 ⊕ a29 ⊕ a31⊕
a32 ⊕ a33)(a8 ⊕ a12 ⊕ a14 ⊕ a16 ⊕ a18 ⊕ a19 ⊕ a22 ⊕ a23 ⊕ a24 ⊕ a27 ⊕ a28 ⊕ a29⊕
a30 ⊕ a33)

Figure 2.8: Reverse-engineered mapping function between memory blocks and
CHAs.

2.6. Reverse Engineering the CHA Mapping | 33

18/38 = 47% of the time, hence the simple 50/50 XOR equation from f needs to
be masked to 0 in some pseudo-random locations resulting on CHA2 = fg. Given
where the masking occurs in Table 2.6, we surmise the structure of the g function to
be ((a11⊕ ...)|(a10⊕ ...))(a6⊕ ...)(a7⊕ ...)(a9⊕ ...)(...) where “ ...” represents unknown
functions of higher order bits. By comparing fg to the known CHA locations with
partially completed g functions, we build up the complete mask functions detailed
in Figure 2.8.

Like CHA2, CHA5 uses a base f function and a mask-to-0 g function. Bits
CHA3 and CHA4 had a base f function, mask-to-0 g function, and mask-to-1 h

function. The h function was found by recognizing where the fg pattern itself
was not producing correct predictions. The process of determining the f function
by observing XOR toggle indications and solving the 4- or 5-bit binary function
remaining can be automated. In theory, given a rough constraint on the types of

Table 2.6: CHA2 for the first 256 cache lines. Given a base function which in-
cludes a8 ⊕ a9 ⊕ a12, the 6 boxed 0 positions show where a masking function is
used.

Address bits 9:6
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Address 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
bits 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

13:10 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0000 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0001 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0010 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0011 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0101 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0110 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
0111 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1000 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
1001 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
1010 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
1011 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
1100 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1
1101 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1110 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
1111 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1

34 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

functions to be considered, the process of finding the g and h functions could also be
semi-automated by searching for mispredictions of the f function to the true result.
Future architectures may vary the mapping structure, but the general approach
used here to reverse engineer XOR trees would be applicable to them. However,
involving a human to interpret binary results and build the final equations may
remain common for this type of task. Note that this approach allows for discovery
of partial equations without necessarily solving the full binary function.

After generating the closed forms, we find a small proportion of 0.03% discrep-
ancies when comparing the original mapping data to the CHAs predicted by the
generated closed-form functions. We validated the closed forms by re-running the
mapping micro-benchmarks for these divergent blocks, this time finding 100% agree-
ment with the generated closed forms. Consequently, we attribute the discrepancy
in the original mapping to transient and infrequent measurement errors in the Model
Specific Registers (MSRs).

2.7 Runtime Optimization

The inspector-executor scheduling presented in Section 2.5 is limited to irregular
codes. Transforming the data layout so that the data to be accessed by each tile
lie in memory blocks for which the coherence information was assigned to nearby
CHAs has an important overhead during the inspection phase. First, the input data
need to be physically copied to target memory blocks with the required coherence
properties. Then, the associated indirection arrays need to be recomputed. Lastly,
the resulting data are now spread across a much larger region of memory, in order to
find suitable memory blocks, and therefore cache locality is degraded and the number
of page faults increased. With the closed form of the mapping functions exposed in
Section 2.6, it is possible to apply this approach to general codes, instead of being
restricted to irregular computations. The basic idea is to encode the schedule of
tasks not on the indirection arrays, but to exploit the properties of the mapping
function.

Consider the general matrix-vector multiplication code depicted in Listing 2.1.
This is an interesting problem because of its simplicity, its transversality, and be-

2.7. Runtime Optimization | 35

1 #pragma omp parallel for
2 for (int i = 0; i < N; ++i)
3 for (int j = 0; j < N; ++j)
4 y[i] += B[i * N + j] * x[j];

Listing 2.1: Scalar code for general matrix-vector multiplication parallelized using
a static block schedule.

cause of the fact that it is memory-bound in modern processors. As such, it will
benefit from increasing the memory throughput. The dominant part of the memory
footprint of the computation is the access to matrix B, and therefore the following
analysis will be centered on trying to optimize its access.

Given the complexity of the mapping functions, it is implausible to dynamically
perform a very fine-grained scheduling of iterations to tiles that will actually have the
required coherence information in its local CHA. Besides, this would imbalance the
computation, as our mapping data shows that some CHAs manage up to 20% more
memory blocks than others. This is a consequence of two different factors. First,
the upper quadrants have 10 CHAs each, whereas the lower quadrants have only 9
CHAs. That will create some imbalance, given that the memory distribution over
quadrants is balanced, i.e., each quadrant manages exactly 4 GiB of memory. But
furthermore, distributing a power of 2 number of memory blocks over a non-power
of 2 number of CHAs creates an additional imbalance. The actual distribution of
memory to CHAs is as follows:

• Upper quadrants have 10 CHAs, 8 of them manage 416 MiB each, while the
remaining 2 (those with the highest IDs in each quadrant) manage 384 MiB
each.

• Lower quadrants have 9 CHAs, 8 of them manage 464 MiB each, while the
remaining one (that with the highest ID in each quadrant) manages 384 MiB.

Note that this does not vary across different Xeon Phi x200 models, as all units
have 38 enabled CHAs, independently of the number of active cores.

In order to alleviate this imbalance we focus instead on the quadrant granularity,
emulating the behavior of the sub-NUMA modes of the machine by ensuring that

36 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

each tile computes data with coherence information resident on its quadrant only.
In this fashion, each quadrant manages exactly 4 GiB of memory. The approach
followed for scheduling iterations in this fashion is described in the following.

The quadrant mapping benefits from a convenient feature of the address-to-CHA
functions. As noted in Section 2.6, and due to the physical placement of logical
CHAs on the NoC shown in Figure 2.4, bits CHA0 = c0 and CHA1 = c1 identify
the quadrant c1c0 in which the CHA is located. Consider the kth memory block
with address Ak aligned to a 256-byte boundary, i.e., k is a multiple of 4. Bits
Ak

5:0 express an offset inside the memory block, and therefore are not used in the
computation of the associated CHA. Because of the 256-byte alignment, Ak

7:6 = 00b.
The address of the next memory block, Ak+1 = Ak+64, will share its most significant
bits with Ak, i.e., Ak+1

63:8 = Ak
63:8, and Ak+1

7:6 = 01b. Since A6 participates in the
XOR computation in the equations for CHA1 and CHA0 in Figure 2.8, it can be
determined that the least significant bits of its associated CHA will be flipped, i.e., if
the associated quadrant for Ak is c1c0 then the associated quadrant for Ak+1 will be
c1 c0. Similarly, Ak+2

7:6 = 10b and its associated quadrant will be c1c0; and Ak+3
7:6 = 11b

and its associated quadrant is c0c1. This results in the convenient organization that
precisely 1 out of every 4 cache lines is in each physical quadrant, allowing parallel
access routines to evenly divide up work among physical processors.

In the proposed sub-NUMA schedule a processor located in quadrant c1c0 will
process only memory blocks with associated CHA in the same quadrant. After
processing a block at address A, the next address in the same quadrant could be
located at A+100b, A+101b, A+110b, or A+111b depending on A33:8. Determining
which of the 4 addresses is next in our quadrant mathematically requires to compute
the full CHA equations discovered in Section 2.6. However, these are complex so
these computations should be performed as little as possible. The actual offset
required to compute the next address in quadrant c1c0 has a fixed pattern for address
bits A12:8, which allows a 64-bit register to store the offsets for the next 32 cache lines.
In this way, processors stepping through memory can thus avoid full computation
of the mapping function 31 out of each 32 iterations.

2.7. Runtime Optimization | 37

2.7.1 Experimental results

In order to have full control over the executed instructions, the original code from
Listing 2.1 is manually vectorized using AVX-512 Intrinsics as shown in Listing 2.2.
In this way, opaque optimizations that may bias the comparison of different schedules
are avoided. This section focuses on single-precision floating-point arithmetic only,
but all obtained results are directly extrapolable to double precision.

Both the code in Listing 2.2 and the equivalent sub-NUMA schedule are executed
on an Intel x200 7210 running at the base frequency of 1.30 GHz, to avoid turbo-
related variations. The codes were compiled using ICC 19.1.1.217, with flags -Ofast
-xKNL -qopenmp. They are executed on 64 threads using KMP_AFFINITY=scatter.
Heap variables are stored into 1 GiB hugepages via hugectl –heap, and these
hugepages are guaranteed to be allocated in the MCDRAM address space using
numatcl -m 1. The experiments are run with N = 16384, which makes matrix B
take up 1 GiB of memory, that is, an entire hugepage.

The roofline model generated by Intel Advisor [95] for these codes is shown in
Figure 2.9. For these experiments, the hardware prefetcher was manually turned
off using Model Specific Registers (MSR) [93] in order to observe the raw effect
of the proposed coherence traffic optimizations without interference. As shown in
the figure, the sequential schedule achieves 50.7 GFLOPS for an arithmetic intensity
(AI) of 0.25, which is approximately 65% of the roofline for that AI, whereas the sub-
NUMA schedule achieves 54.7 GFLOPS for an AI of 0.22, or 81% of the roofline. The
GFLOPS have increased and the AI has decreased, due to the additional memory
traffic required to compute the sub-NUMA schedule, resulting in a large net increase
of the percentage of peak performance that is obtained. The figure shows how
executions with double-precision arithmetic achieve the same approximate results,
but dividing the number of raw GFLOPS by 2.

The improvement in raw performance measured by the roofline model, how-
ever, can be deceitful. Although the sub-NUMA schedule achieves a higher FLOP
count, it also executes additional instructions on non-consecutive memory blocks,
causing a degradation in cache behavior and ultimately execution time. In order
to more closely investigate the effect of the proposed optimization, selected perfor-
mance counters were measured for several different execution setups. The results

38 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

1 #pragma omp parallel for
2 for (int i = 0; i < N; ++i) {
3 __m512 bb, bx, accum;
4 accum0 = _mm512_setzero_ps();
5 for (int j = 0; j < N; j += 16) {
6 bb = _mm512_load_ps(&B[i * N + j]);
7 bx = _mm512_load_ps(&x[j]);
8 accum = _mm512_fmadd_ps(bb, bx, accum);
9 }
10 y[i] = _mm512_reduce_add_ps(accum);
11 }

Listing 2.2: Manually vectorized code for general matrix-vector multiplication
parallelized using a static block schedule.

Single-precision

Double-precision

Figure 2.9: Roofline plot for the matrix-vector multiplication using both single-
and double-precision arithmetic.

2.7. Runtime Optimization | 39

Cycles Insts Packed Scalar L1a L2m Mem. far Mem.
.0001

.001

.01

.1

1

6

No
rm

al
ize

d
va

lu
es

Sequential Sub-NUMA Vect. Sub-NUMA

Figure 2.10: Sum of selected performance counters for all threads. Logarithmic
scale is used for the Y axis. The figure shows the number of cycles, instructions
issued, packed SIMD instructions, scalar SIMD instructions, L1 data accesses,
L2 misses, MCDRAM “far” accesses to other quadrants in the NoC, and total
number of MCDRAM accesses. Values are normalized to those of the sequential
schedule.

are shown in Figure 2.10. In order to compute the sub-NUMA schedule, the number
of instructions to be executed almost triples, increasing by 188%. The largest share
of these are data L1 loads and stores, which grow by 145%. This increase, however,
is absorbed by the L2 cache, and the L2 misses remain virtually identical. There is
a very significant increase in the IPC of these codes, which goes from 18.6 in the
original version to 53.15 in the sub-NUMA schedule. The memory latency, approx-
imated by the OFFCORE_RESPONSE_0:OUTSTANDING performance counter, is slightly
decreased by 1.8%. All these variables compound for an almost zero net effect on
execution time: execution cycles are reduced by a modest 0.8%.

In order to try to decrease the schedule-related computations, a modified version
which employs vectorization operations for offset computation was developed. In
essence, the offsets for each 32 consecutive memory blocks are now computed using
AVX-512 arithmetic. This version, labeled as “Vect. sub-NUMA” in Figures 2.9
and 2.10 reduces the number of instructions by 37.8% with respect to the regular
sub-NUMA schedule. However, it worsens register pressure, increasing L1 accesses
by a further 26%. As a result, the GFLOPS decrease to 52.3, and so does the AI to
0.20, for a grand total of 82.4% of the peak performance.

40 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

As previously mentioned, these results were executed after disabling hardware
prefetching. The reason is that the sub-NUMA schedule does not access memory se-
quentially, and is at a tremendous disadvantage against the sequential schedule when
the prefetcher is enabled, which would absorb and eliminate any potential advantage
from the sub-NUMA schedule. In fact, when enabling the hardware prefetcher the
performance of the sequential schedule is improved by 1.2x, whereas it is detrimental
for sub-NUMA (i.e., its performance slightly decreases by approximately 5%) as it
features a pseudo-random access pattern that mimics the memory-to-CHA mapping
funtions.

2.8 Compile-time Optimization

As shown by the experiments in the previous section, improving the mesh local-
ity during runtime has an important impact on other execution metrics due to the
pseudo-random nature of the memory-to-CHA mapping functions and their compu-
tational complexity. A different way to exploit this knowledge is to optimize the
scheduling of completely static codes during the compilation stage.

Augustine et al. [7] proposed a data-specific code generation technique for the op-
timization of sparse-immutable codes, including artificial neural network inference.
In essence, this approach automatically builds sets of regular subcomputations by
mining for regular subregions in the irregular data structure. The resulting code
is specialized to the sparsity structure of the input matrix, but does not employ
indirection arrays, improving predictability and SIMD vectorizability. This section
focuses on the Sparse Matrix-Vector Multiplication (SpMV) as an immediate target
of this class of data-specific optimizations.

A graphical depiction of a small subset of operations performed by the SpMV
of matrix FIDAP/ex7, included in the SuiteSparse Matrix Collection [21] is offered
in Figure 2.11. For many sparse matrices, this code generation approach delivers
better performance than the generic, irregular alternative. Besides promoting vec-
torization, data-specific approaches encode the matrix structure implicitly in the
program source. This does not only reduce the number of memory accesses, but
collaterally stores the matrix structure in the first-level instruction cache, which is

2.8. Compile-time Optimization | 41

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

1

2

3

4

5 6

7

8

9

10

(a) Nonzero points in the upper left corner of the
matrix.

1 y[0] += A[0] * x[0];
2 y[1] += A[1:4] * x[1:4];
3 y[2] += A[5:9] * x[0:4];
4 y[3] += A[10:17] * x[1:8];
5 y[4] += A[18:25] * x[0:7];
6 y[4] += A[26] * x[8];
7 y[5] += A[27:32] * x[3:8];
8 y[6] += A[33:38] * x[3:8];
9 y[7] += A[39:44] * x[3:8];
10 y[8] += A[45:50] * x[3:8];

(b) Pseudo-code for a set of subcompu-
tations in an SpMV kernel.

Figure 2.11: Sets of regular subcomputations built for the Sparse Matrix-Vector
Multiplication of matrix FIDAP/ex7 in the SuiteSparse repository. Each identified
regular subcomputation is marked as a rectangle enclosing several nonzeros in
(a), and captured as an AVX-512 operation, as shown in the pseudo-code in (b).

classically underutilized for small irregular codes such as SpMV. The effect is sim-
ilar to extending the first-level data cache: matrix structure will be stored in the
instruction cache (since it is embedded in the code), whereas actual matrix values
will be stored in the data cache. The immediate disadvantage is that the code grows
proportionally to the matrix size. Still, for sufficiently regular sparse matrices the
combined size for structure and data values (the program footprint) will be small
enough as to benefit from this trade-off.

As opposed to the dynamic approach of Section 2.7, the static optimization
has no explicit execution overhead. As such, the schedule of each computation
can be carefully analyzed and planned in order to improve coherence traffic. Note
that, as opposed to the dynamic approach in which the mapping functions could
be applied on already-allocated memory, in this case memory allocation must be
statically known. The approach employed for this is detailed in Section 2.8.1. For
the remainder of this section it is assumed that the physical address associated to
each data block in the program is statically known.

Consider the generic SpMV statement s executed by the data-specific approach:

s : yi = Aj · xk

42 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Note that this statement does not include irregular indices, since the code has been
generated for a specific input matrix with a fixed sparsity structure, as exemplified
in Figure 2.11. Consequently, the compiler has static knowledge of all the memory
movements that will be required for executing each specific part of the code. At
a glance, the proposed compile-time approach computes an access cost for each
statement in the data-specific SpMV code for each tile in the processor, and then
schedules operations across the mesh following a greedy approach. Access costs are
dynamically updated during the scheduling process to reflect the updated placement
of each memory block in the private caches of each tile.

Consider a data block B with directory information associated to tile Td and
actual data accessed through tile TB. The actual source of data can either be the
private L2 cache of tile TB, if the associated tile is the forwarder for B; or TB can
be one of the tiles with an associated memory interface, which will serve B after
reading it from memory. Regardless of the actual coherence status of B, in order
to access the data the requestor tile will send a message to Td, which will forward
the request to TB, which in turn will send B back to the requestor. Figure 2.12
illustrates this situation. Note that Td and TB constitute the opposite corners of
a rectangle on the NoC which contains the tiles that can access B with minimum
latency. Tiles outside this rectangle incur extra latency, which can be computed as
2× (2×Dx +Dy), where Dx and Dy are the horizontal and vertical distances from
the tile to the rectangle, respectively.

Based on these access times, a scheduling system is developed, conceptually de-
scribed in Algorithm 2.2. Each tile in the NoC is visited in order, and for each of
them the subset of operations to be executed on that tile is selected in a greedy,
iterative fashion, choosing the one with the smallest data movement cost at each
iteration, until that tile reaches its balanced load. The upper bound of its computa-
tional complexity is O(S3): the algorithm essentially distributes all of the statements
in the program to the tiles in the mesh, which would present linear complexity on
S. However, the cost of the set of remaining statements has to be recomputed fre-
quently, due to the data movements derived from the assignment decisions in each
iteration of the inner loop. The cost τ of executing each statement s in tile t is
computed as:

τ(s, t) = τ(yi, t) + τ(Aj, t) + τ(xk, t)

2.8. Compile-time Optimization | 43

140

138

8

137

137

MCDRAM 0 MCDRAM 1 MCDRAM 2 MCDRAM 3

MCDRAM 4 MCDRAM 5 MCDRAM 6 MCDRAM 7

12 8

133

1338

3
 D

D
R
4
 C

H
A
N

N
E
LS

3
 D

D
R
4
 C

H
A
N

N
E
LS

00

8

8

10 22

10 66

66 66

66

44

44

44

44

44

44

44

44

22 22

22 22 22

00 00

00 0 00

000000

00 00 00
Td

TB

Figure 2.12: Overhead, in mesh cycles, of accessing a block of data resident in
the L2 cache of tile TB, and with coherence information resident in tile Td. All the
tiles inside the rectangle defined by Td and TB access data in 14 cycles with zero
associated overhead. In any communication, first the CHA at Td is queried. Then
the CHA sends a forward request to the source L2 cache at TB, which sends the
data back to the requestor. For any tile inside the 0-overhead rectangle, being
closer to the CHA means a shorter travel time for the query, and a larger one
for the response. These compensate one another, yielding zero net effect. For
tiles outside the rectangle, the overhead is compounded by the extra time that the
query needs to enter the rectangle, plus the extra time that the response needs
to arrive back at the requestor from inside a rectangle tile.

44 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Algorithm 2.2: Static scheduling of SpMV operations
Input: Set of SpMV statements S to schedule, Set of tiles T in the NoC
Output: Schedule Θ(S)→ T

1 Compute LT = total number of FLOPS in S;
2 Compute Lb = LT

#T FLOPS to be computed by each tile to balance load;
3 foreach tile t ∈ T do
4 while Load(t) < Lb do
5 Select s ∈ S : τ(s, t) ≤ τ(s′, t),∀s, s′ ∈ S;
6 Assign Θ(s) = t;
7 Update S = S − {s};
8 end
9 end

That is, the aggregated cost of accessing memory blocks yi, Aj, and xk from tile t.
For each individual memory block, its access cost is computed as:

τ(B, t) = λB + 2× (2×Dx(t, RB) +Dy(t, RB))

where:

• λB is a factor that depends on the latency to physically access B, including 12

cycles for accessing a private L2 in the NoC [62], and 117 cycles for accessing
an MCDRAM interface (according to our measurements in Section 2.3).

• Dx/y(t, RB) is the horizontal/vertical distance from the requestor tile t to the
rectangle defined by the tiles in its opposite corners TB and Td, containing the
data and the coherence information, respectively, as described in Figure 2.12.

The order in which each of the tiles is visited is carefully selected: those with
worst-case trip times are selected first. For instance, the upper-left tile in the NoC
has a worst-case round trip time of 32 cycles when accessing data with Td or TB on
the bottom-right tile. However, the round trip time from a central tile to any other
tile in the mesh is of at most 18 cycles.

Note that the schedules generated by this static optimization process are no
longer sub-NUMA, as opposed to the dynamic approach in Section 2.7. In this case,
there is no runtime constraint enforcing quick computation of the schedule, so the

2.8. Compile-time Optimization | 45

system can use the full fine-grained information about memory-to-CHA mapping to
decide whether accessing data on a different quadrant will be the best option from
a coherence traffic point of view.

Once all operations are scheduled, the code is generated specifically for each tile.
In order to reduce code sizes, affine compression may be applied to group similar
operations together on regular affine loops [108]. These do not employ indirection
arrays, being still fully vectorizable, while reducing the pressure on the instruction
cache.

2.8.1 Fixing physical addresses

One of the challenges of static scheduling with this class of pseudo-random func-
tions is that it is not possible to compute the associated CHA of a virtual address, as
the 34 least-significant bits of the address will be used. Even with 1 GiB hugepage
sizes, the maximum supported by the architecture, only 30 bits remain unchanged
during the virtual-to-physical address translation. This means that the code cannot
rely simply on page alignment, as can be done for cache optimization, and must
target specific physical pages.

In order to fix the physical pages that are assigned to a specific application, we
employ 1 GiB hugepages. Since the MCDRAM address space has only 16 GiB in
total, there will only be 16 possible pages that can be assigned to our application.
The assignment order varies slightly depending on the machine state upon launch.
To overcome this difficulty we employ a hybrid static/dynamic approach. During
the static analysis, the code generated assumes that specific 1 GiB hugepages will
be allocated to the different data structures in the program. These assumptions
are registered in static constant variables in the source code. During runtime, an
executor overallocates as many 1 GiB pages as possible. Then, it translates their
virtual addresses to physical addresses by reading the process pagemap in /proc.
Finally, it assigns the required hugepages to the data structures in the code by
comparing the allocated physical addresses to the static constant variables assumed
during the scheduling process, and frees the remaining, unused ones.

46 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

2.8.2 Experimental results

We generate data-specific codes for more than 20 sparse matrices selected from
the range of matrices between 1 million and 10 million nonzeros in the SuiteSparse
repository. The upper bound is used for tractability purposes. The lower bound to
ensure sufficiently large operation. The selected matrices were the cluster centroids
resulting from running k -means on SuiteSparse and using regularity and size as the
target characteristics [7]. Each of the selected matrices was processed to extract
the data-specific operations required by its SpMV. Three different implementations
were generated for testing:

• The generic irregular version of Listing 2.3.

• A data-specific version with sequential schedule, as described by Augustine
et al. [7].

• A data-specific version containing exactly the same set of operations, but
scheduled in a coherence-aware fashion using Algorithm 2.2.

Codes are compiled using ICC 19.1.1.217 with -Ofast -xKNL -qopenmp. They
are executed on an Intel x200 7210, running at the base frequency of 1.30 GHz, to
avoid turbo-related variations, using 64 threads, one per core in the NoC. Ten repe-
titions were performed for each execution, and average values are reported for each
thread after discarding outliers (identified as values x such that |x− X̄| > 3σ(X)).
For the generic irregular version and the sequentially-scheduled data-specific one the
“scatter” thread placement is employed. For the coherence-aware version an ad hoc
assignment is employed, ensuring that each thread is executed on the appropriate

1 #pragma omp parallel for private(j)
2 for(i = 0; i < n; ++i) {
3 y[i] = 0;
4 for(j = pos[i]; j < pos[i+1]; ++j)
5 y[i] += A[j] * x[cols[j]];
6 }

Listing 2.3: Classic irregular SpMV code.

2.8. Compile-time Optimization | 47

statically scheduled tile. These codes are typically very large in size, explicitly con-
taining the full set of operations to be performed for multiplying a sparse matrix
by a given vector. Executable sizes vary between 39 and 206 MiB. As for dynamic
scheduling, hugectl –heap and numactl -m 1 are used to control the configuration
of hugepages and memory domains. The hardware prefetcher is enabled for all the
experiments in this section.

The data-specific versions were found to be 2.1x faster on average than the generic
irregular version. This is a clear indication that a manycore architecture with light,
vectorization-oriented processors is not well geared towards irregular codes, which
feature many control flow-related instructions such as induction variable increments
and branches. The data-specific versions perform, on aggregate, 4.7x less L1 ac-
cesses, but incur 1.2x more L1 data misses. The L1 instruction misses increase
by 39.9x. This increase is mostly absorbed by the L2 cache and the hardware
prefetcher, however, and overall the number of L2 misses is only 12.8% higher in the
data-specific versions. Furthermore, these additional misses are resolved locally by
the mesh, and the number of MCDRAM accesses decreases by 21.6%. In summary,
the memory behavior, which is potentially the weakest runtime aspect of a data-
specific version, is not significantly worsened. In exchange, the data-specific codes
execute 5.4x less instructions, including 2.3x less scalar operations and 859x more
vector operations. The biggest culprit in runtime difference is precisely the number
of executed instructions, and the number of stalls due to missing reservation stations
is 4.9x larger on irregular codes. Due to these intrinsic differences in the nature of
each implementation, we drop the irregular version of SpMV in the following exper-
iments, and focus on comparing only the sequential and coherence-aware schedules
of the data-specific implementations. Figure 2.13 shows these detailed results.

From a performance point of view, on aggregate the coherence-aware schedule
increases execution time by 3.2%. The detailed execution cycles obtained for the
SpMV of each matrix are shown in Figure 2.14. None of the matrices achieves a
performance improvement, the best one being 0.1% slower than the baseline. For
some matrices the operation is noticeably slower, the extreme case offering 10.3%
less performance.

In order to study in more detail the reasons for this performance degradation,
three selected matrices are closely examined. Selected performance counters for

48 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

Cycles D1a
D1m I1m L2m Mem Insts

Scalar ops
Vect o

ps
RS sta

lls

105

106

107

108

109 version
Irregular
Data-specific

Figure 2.13: Execution cycles, data L1 accesses, data L1 misses, instruction
L1 misses, L2 misses, MCDRAM accesses, executed instructions, scalar oper-
ations, vector operations, and stalls due to missing reservation stations (RS) for
irregular and data-specific versions of the SpMV operation. Note that the Y axis
is truncated for readability.

35
2

53
7

80
1

89
5

93
6

12
01

12
13

12
70

13
08

13
88

14
23

18
97

20
39

20
43

20
44

22
65

24
39

24
61

24
73

24
75

25
16

25
97

26
39

Matrix ID

0.90

0.95

1.00

1.05

1.10

1.15

No
rm

al
ize

d
cy

cle
s

Figure 2.14: Execution cycles of the coherence-aware schedule, normalized to
those of the sequential schedule. Note that the Y axis is truncated for readability.

2.8. Compile-time Optimization | 49

these matrices are detailed in Figure 2.15. On careful inspection the performance is
strongly correlated with the number of MCDRAM accesses incurred by each version
of the code (Pearson correlation coefficient R=0.91).

The conclusion to be inferred from these experiments is that, even with fully
static scheduling, CHA locality cannot be appropriately leveraged to improve per-
formance of data-specific sparse codes. The reason is that, due to the pseudo-random
nature of the assignment between memory blocks and CHAs, rescheduling the code
to promote the access of nearby CHAs to improve the cache coherence traffic pat-
terns necessarily impacts cache locality negatively for codes benefiting from sequen-
tial data access. Even though SpMV has a varying degree of randomness in the
access to the x vector, the matrix data in A can be accessed sequentially, and this
is a huge advantage of the sequential schedule, particularly taking into account the
hardware prefetcher. Despite the performance degradation, a careful analysis of the
performance counters evidences that the coherence-aware schedule broadly improves
memory latency, as shown in Figure 2.16, by 10% on aggregate. Average latency
goes from 0.77 cycles per access in the sequential schedule, to 0.70 cycles per access
in the coherence-aware schedule. The IPC is very slightly increased, going from
12.37 to 12.42.

7

8

9

1308 2473 2044
0

1

2

Matrix ID

No
rm

al
ize

d
va

lu
es

Cycles Inst L1a L1m L2m MCDRAM

Figure 2.15: Execution cycles, executed instructions, data L1 accesses, data L1
misses, L2 misses, and MCDRAM accesses of the coherence-aware schedule
for selected matrices in the experimental setup: the one with the best relative
performance (#1308), the one with the worst one (#2044), and the middle case
(#2473). Values are normalized to those of the sequential schedule.

50 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

35
2

53
7

80
1

89
5

93
6

12
01

12
13

12
70

13
08

13
88

14
23

18
97

20
39

20
43

20
44

22
65

24
39

24
61

24
73

24
75

25
16

25
97

26
39

Matrix ID

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
em

or
y

la
te

nc
y

(c
yc

le
s/

ac
ce

ss
)

Coherence-aware schedule Sequential schedule

Figure 2.16: Memory latency of the coherence-aware schedule normalized to
the sequential schedule baseline for all the matrices in the experimental setup.

2.9 Discussion and Related Work

When we initially explored the optimization of coherence traffic on the Knights
Landing NoC, we observed a clear effect on the application performance due to affin-
ity relationships between cores and CHAs. This work was based on a pre-computed
assignment of memory blocks to CHAs, as described in Section 2.3. The optimized
scheduling was performed dynamically in an inspector-executor fashion, which rep-
resents a very costly step that would negate any actual performance benefit in a
real setting. Furthermore, the rescheduling could only be applied to irregular codes.
Based on these promising results, we also extended this work by reverse engineering
the functions behind this mapping. We expected these functions to be useful to al-
leviate the overhead of the inspector-executor approach, in addition to being usable
by architecture-specific compilers that could perform low-level optimizations of co-
herence traffic. However, these expectations were toned down by the actual shape of
the mapping functions. Although the XOR-based functions are cheap to implement
in hardware and widely used for other non-regular mappings, such as the assignment
between memory blocks and LLC slices in Intel Core processors [29, 60, 83], they are
costly to compute in software. This cost can be overcome if the mapping presents
some kind of regularity that can be exploited by carefully optimizing the code and
schedules. For instance, Scolari et al. [116] propose to exploit the knowledge about

2.9. Discussion and Related Work | 51

the hash functions that map data to LLC slices in an Intel Sandy Bridge processor
to achieve performance isolation. This is possible since the hash functions which
govern this mapping only employ a simple XOR of selected bits from 17 to 32 of
an address, which means that blocks of 64 KiB of contiguous and aligned data will
be mapped to the same LLC slice. This approach is limited to processors having
a power of 2 number of cores, as otherwise the mapping functions become nonlin-
ear. This is the reason for the contrasting complexity of the equations presented in
Section 2.6, which require XOR and negations, dramatically broadening the search
space and making brute force approaches essentially infeasible. This complexity is
derived from the non-power of 2 number of tiles in the Xeon Phi x200, as shown
by McCalpin [88]. His works on Intel Xeon Scalable and Knights Landing [86, 89]
were developed completely independently of our research work.

When trying to exploit the mapping of coherence data to CHAs in the Xeon
Phi x200 architecture, the software complexity of the XOR-based hash functions,
together with their pseudo-random nature, in which sequences of four consecutive
memory blocks are guaranteed, by design, to be mapped to CHAs in different quad-
rants, makes it impossible to apply similar, regular schemes. The approaches pro-
posed in Sections 2.7 and 2.8 achieve to reduce contention on the processor network,
but ultimately do not achieve to improve execution performance due to the compu-
tational cost involved in the optimized scheduling.

Note that the approach followed in this chapter has focused on a particular Intel
Xeon Phi 7210 unit, but it is generalizable to any Xeon Phi 72xx. We have studied
other units, including 7250 and 7290, and found that the memory-to-CHA mapping
is identical, as is the physical placement of the CHAs on the network and the way
to distribute the logical core IDs over the set of enabled physical cores. This set,
however, is subject to fabrication process variations and changes for each specific
unit of the processor. This is also assessed in [86] simply by running the CPUID
instruction on each active logical processor to obtain that core’s x2APIC ID (any
cores that are disabled will result in missing x2APIC values in the list)4. The pro-
cess for mapping the logical components of the processor to their physical locations,
based on profiling the communication latency of different logical entities in the pro-
cessor, followed by a discrimination process based on mean squared error models, is

4x2APIC is the evolution of xAPIC, Intel’s family of interrupt controllers.

52 | Chapter 2. Effect of Distributed Directories and Optimization of Coherence
Traffic in Manycores

applicable to other processor designs. The process presented to reverse engineer the
binary functions for the memory-to-CHA mapping could be applied when searching
for hardware-friendly hash functions in general. The presented flow chart in Fig-
ure 2.7 may not work for a specific problem, but could provide useful information
which indicate adjustments to explore or rule out certain function forms. In the
same line, McCalpin [89] also presents a reverse engineering process for mapping the
CHAs in KNL by only requiring measuring the data traffic counters. This approach
is as accurate as ours, but it requires understanding and transforming the values of
the low-level uncore hardware counters.

For all these inconveniences from the high performance computing point of view,
the approach followed by Intel has many advantages in everyday computing. It
is implausible to write a code that systematically accesses only a particular set of
CHAs, making them into a bottleneck. Such a bottleneck can happen with regular
mappings, such as a modulo-based mapping that can suffer from systematic conflicts
for certain access patterns. Furthermore, it manages to distribute memory blocks
across the quadrants in the NoC in a fair fashion, ensuring that all of them have
to manage the same amount of information on aggregate. This is no simple task,
given the irregularity of the NoC, which features a non-power of two number of
tiles, unevenly distributed across quadrants. Still, the price to pay is an all-to-all
coherence traffic pattern which requires dedicated communication rings to handle.

Going forward, it would be desirable to improve this design, coupling the di-
rectory distribution that avoids bottlenecks in the NoC with a more regular and
predictable mapping of the memory blocks to enable programmers, particularly in
the high performance computing domain, to have full control over coherence traffic.
McCalpin [85, 86, 87, 88, 89] discusses address hashing in Intel Scalable and KNL
processors, analyzing the binary permutations in address bits and their physical lo-
cation in the mesh, i.e., their corresponding CHAs. His work focuses on cache line
distribution, rather than on the actual hash functions.

In recent years, a number of papers have explored the design of scalable NoCs to
support manycore architectures. Daya et al. [22] design a NoC based on an ordered
network and a snoopy coherence protocol, and show how congestion increases heavily
with the number of cores. Ferdman et al. [30] propose a scalable distributed directory
system to alleviate the power and performance problems of sparse and duplicate-tag

2.9. Discussion and Related Work | 53

directories, scaling up to 1,024 cores. Charles et al. [17] identify the importance of
the coherence traffic in manycore performance, and show how the memory modes
in the Intel KNL can be manipulated to achieve better performance. They neither
explore software optimizations to coherence traffic, nor the actual layout of the
KNL processor. Numerous other techniques to efficiently schedule applications on
NoCs have been developed. Kim et al. [64] focus on categorizing the memory access
behavior of threads and employing different policies for them. Xiao et al. [133]
parallelize applications by implementing careful load balancing between cores and
minimizing inter-core communications. Liu et al. [76] use a compiler-guided scheme
to minimize on-chip network traffic by reducing the distances of cores to data, but
without taking into account the effects of a distributed directory. Lu et al. [78]
propose a polyhedral model and associated optimizations to achieve data locality in
these topologies. In these works, no particular consideration is given to the effect of
distributed cache home agents on memory access latency, and therefore deploying
such approach on a KNL may be refined with placement and subsequent inter-core
communications further improved using the results we presented earlier.

Several papers have explored the performance of the KNL architecture, mainly
through the analysis of well-known benchmarks, machine learning applications, and
parallel workloads [8, 15, 18, 61]. None of these works undertake the analysis of the
locality characteristics of the KNL interconnect. Ramos and Hoefler [105] developed
a capability model of the cache performance and memory bandwidth of the KNL,
characterizing the impact of the different memory and cluster modes. However, this
work does not consider the impact of the distributed directory.

“Talk is cheap. Show me the code.”

–Linus Torvalds [126]

3
Simulating the Network Activity of

Modern Manycore Architectures

Chapter’s contents
3.1 Introduction . 56

3.2 Overview and Motivation. 57

3.3 Tejas Simulator: Architecture and Extensibility 59

3.4 Modeling KNL in Tejas . 64

3.5 Validation. 68

3.6 Case Study: Analysis of Coherence Traffic Optimizations 76

3.7 Related Work. 80

3.8 Conclusions and Future Work. 82

In Chapter 2 we studied modern manycore architectures, focusing on the Intel
Knights Landing, which features the Intel Mesh Interconnect (MI) architecture. This
is the latest interconnect designed by Intel for its HPC product lines, also recently
featured in Intel’s Xeon Scalable lines. Processors are organized in a rectangular
network-on-chip, connected to several different memory interfaces, and using a dis-
tributed directory to guarantee coherent memory accesses. As we studied in the

55

56 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

previous chapter, there is an impact on performance due to the coherence traffic
traversing the mesh interconnection network. In this context, simulation can help
to study this impact and make improvements accordingly.

3.1 Introduction

In this chapter we focus on the behavior of the MI in the KNL architecture, lever-
aging the knowledge of the physical layout discovered in the previous chapter. Since
the traffic on the NoC is completely opaque to the programmer, simulation tools are
needed to understand the performance trade-offs of code optimizations [82]. We have
designed and developed an extension to the Tejas memory system simulator [113] to
replicate and study the low-level data traffic of the processor network. The reliabil-
ity and accuracy of the proposed simulator is assessed using several state-of-the-art
sequential and parallel benchmarks, and a particular Intel MI-focused locality opti-
mization is proposed and studied using the simulator and a real KNL system. The
techniques and software developed in this work are potentially reusable for analyzing
MI-based processors, such as the Intel Xeon Scalable. Specifically, in this chapter
we present the following contributions:

• We incorporate a model of the memory accesses of the MI architecture into the
Tejas architectural simulator. This extension has been made publicly available
in [48] (Section 3.4).

• We validate the model by comparing the behavior of the simulated imple-
mentation against a real Intel Knights Landing processor using sequential and
parallel benchmarks (Section 3.5).

• We leverage and evaluate the coherence traffic optimizations presented in
Chapter 2 using our extension developed within the Tejas simulator (Sec-
tion 3.6).

The rest of the chapter is structured as follows: Section 3.2 motivates the work.
Section 3.3 introduces the Tejas simulator. Section 3.4 shows how to incorporate the
developed model into the simulator. Section 3.5 presents the experimental validation

3.2. Overview and Motivation | 57

of the model. In Section 3.6 we present a case study on optimizing the coherence
traffic of KNL taking into account the effect of the distributed cache directory.
Related work is discussed in Section 3.7, and Section 3.8 concludes the chapter with
our final remarks and future work.

3.2 Overview and Motivation

The design of the Intel Knights Landing [62] is carefully described in detail in
Section 2.2. It features a 2D mesh for the interconnection network as depicted again
and in Figure 3.1. As we have discussed in Chapter 2, the effect of coherence traf-
fic on that network requires a deep understanding of the NoC architecture. Then,
this knowledge can be translated into an architectural simulator in order to develop
and evaluate potential optimizations from both software and hardware perspectives.
Architectural simulators are useful and effective frameworks for analyzing different
configurations of hardware with a lower cost and effort in comparison to other solu-
tions such as FPGAs or ASICs (to the detriment of accuracy). Another advantage
of these tools is their programmability, the ease to create new modules or modify
existing parts of the simulator, in order to change or extend the functionality of the
framework. There are many simulators in the market, some of them implementing
more details in the pipeline, such as gem5 [11], meanwhile others are able to sim-
ulate up to thousands of cores, such as ZSim [111]. Finding a suitable solution for
modeling the NoC is not an easy task, but for this work we have selected Tejas [113],
a lightweight and easily extendable simulator. The key factor in our work to choose
this simulator among other solutions was the ability to simulate a NoC of cache
coherent interconnected cores.

For these reasons, in this chapter we extend the Tejas simulator by modeling the
Intel KNL architecture focusing on its interconnection network and memory system.
For assessing its performance, we employ the methodology presented and carefully
described in Section 2.4 of Chapter 2, which demonstrates the potential of using
an ad hoc data distribution that takes into account the distance between cores and
CHAs, i.e., the core-to-CHA affinity. In our model, by applying these techniques
we want to assess, in particular, the reduction in the network footprint, which is a
critical parameter for NoC performance [17, 76, 134]. In this way, leveraging the

58 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

149

145

145

138

135

143

140

140

138

135

137

137

137

MCDRAM 0 MCDRAM 1 MCDRAM 2 MCDRAM 3

MCDRAM 4 MCDRAM 5 MCDRAM 6 MCDRAM 7

117 122

OFF

OFF

124

124

125

125

129

129

127

131

131

132

128

130

133

133

133

137129

OFF

OFF

OFF

OFF3
 D

D
R
4
 C

H
A
N

N
E
LS

3
 D

D
R
4
 C

H
A
N

N
E
LS

Figure 3.1: Floorplan of the Intel KNL architecture. Each tile (box in the figure)
contains two cores and their local caches. In color, the heatmap of the mea-
sured access latency (in CPU cycles) from each tile in the mesh of an Intel Xeon
Phi x200 7210 to a single block of memory associated to MCDRAM #0 and its
adjacent CHA.

3.3. Tejas Simulator: Architecture and Extensibility | 59

knowledge from the Intel KNL architecture, the goal of this simulator extension
is to provide a reliable environment to evaluate and optimize the coherence traffic
generated in the NoC. In addition, this extension is intended to be applicable to
other modern MI architectures, including the latest Intel Xeon Scalable.

In the following sections we will discuss the extension developed for the simulator,
and the assessment against different benchmarks.

3.3 Tejas Simulator: Architecture and Extensibility

Tejas is an open source architectural simulator written in Java and C++ [113].
The simulation model is semi-event-driven: predictable activities follow an inter-
active cycle-level approach, such as advancing micro-operations in the pipeline,
whereas unpredictable tasks, such as load/store operations, follow an event-driven
approach based on priority queues. Tejas decodes binaries dynamically during their
execution in order to recreate the micro-operations that are used to feed simulation
components, such as processor pipelines. Tejas also employs the McPAT [75] and
Orion2 [63] power models in order to get statistics about energy consumption.

This framework has been validated against real hardware in terms of cycles,
reporting acceptable mean errors varying between 11.45% for serial workloads and
18.77% for parallel workloads [112]. The simulator can be seen as two separate
modules or layers: the emulator (front-end) and the simulation engine (back-end).
The front-end instruments the code being executed, ensuring full functionality. It
is ISA-dependent, and in our case the x86 implementation is used. The back-end
receives events from the front-end and simulates them in the configured architectural
model. The following subsections describe each of these components in more detail.

3.3.1 Front-end: the emulator

The emulator performs dynamic binary instrumentation in order to inspect the
instructions executed by the input program. Then, these instructions are translated
into virtual micro-operations recognizable by Tejas. This process is done in two
steps (see Figure 3.2):

60 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Input
Application

(x86)

Translator

VISA static

Fuse

VISA
dynamic

APP

EMULATOR

OPERATING SYSTEM

add	%rax,	(%rbx)

load	<(%reg1),?>,	%tmpreg1
int-alu	%reg0,	%tmpreg1,	%tmpreg1
store	<%tmpreg1,	(%reg1),?>

load	<(%reg1),0x1234>,	%tmpreg1
int-alu	%reg0,	%tmpreg1,	%tmpreg1
store	<%tmpreg1,	(%reg1),0x1234>

Packet <IP, value, target>

0x10, memread,
0x1234

Figure 3.2: Translation process in Tejas from the binary instrumentation to the
VISA.

1. Riscify process: converts CISC x86 instructions to a simplified ISA called
Virtual ISA (VISA). This process is done statically and does not include source
or target memory addresses.

2. Fuse process: dynamically fills the missing memory addresses of the VISA
instructions created in the previous step.

This module of Tejas is written in C++ using Pin [79] and, therefore, is basically
an instrumentation of the code that is being executed. What the emulator collects
is used to feed the simulation engine (the back-end), written in Java, which is in
charge of starting all the pipelines and processing elements, and collecting all the
statistics at the end of the execution. The communication between the emulator
and the simulation engine is done through a shared memory region.

The main limiting factor of the front-end is the translation between the real
micro-operations and the VISA. Some CISC micro-operations are translated into
functionally equivalent VISA instructions. An example are SSE instructions, which
are translated into equivalent scalar floating-point ones, even though the VISA does

3.3. Tejas Simulator: Architecture and Extensibility | 61

not implement SSE. In other cases, some instructions may be ignored. This is the
case for instructions such as AVX-512F (which are 512-bit vector instructions re-
leased with Knights Landing). This limitation is imposed due to the complexity of
CISC architectures and in order to keep the simulated pipelines simple. Tejas’ devel-
opers chose to focus on the most common x86 micro-operations, usually obtaining
a coverage of more than 99% of the dynamic binary instructions [113].

3.3.2 Back-end: the simulation engine

The simulation engine can be seen as a set of interconnected components, sending
and receiving messages through their ports. For the scope and interest of this work,
we will briefly review how cores, memory system and interconnection networks,
as well as their corresponding configuration parameters, are implemented in this
framework.

Cores

A Tejas core is a wrapper entity containing a pipeline and both data and instruc-
tion private caches. Two pipelines have been implemented in Tejas: Multi-issue in-
order and Out-of-Order (OoO or O3). We used the O3 implementation, depicted in
Figure 3.3. It consists of nine stages: instruction fetch, instruction decode, rename,
instruction window push, instruction select, execute, wake-up, write-back and com-
mit. The sizes of each functional unit and registers can be configured, allowing for
a wide variety of possibilities.

Memory system

The Tejas memory system is composed of a set of memory controllers and caches.
The memory hierarchy can be seen as an inverted tree of caches where its root is
the main memory. Regarding the software implementation, the cache coherence
directory inherits from the cache class. A centralized directory is implemented,
which is queried by last-level caches to discover the state and location of accessed
memory lines.

62 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

...

INS.
FETCH DECODE RENAME IW PUSH SELECT EXECUTE WAKE-UP WRITE-

BACK COMMIT

INSTRUCTION WINDOW

REORDER BUFFER (ROB)

LOAD STORE QUEUE (LSQ)

Figure 3.3: Stages and main registers of the Out-of-Order pipeline in Tejas.

The memory system is flexible, allowing to configure each cache as private or
shared among a set of cores. Thus, buffer sizes, cache lines, MSHR (Miss Status
Holding Registers), write mode and number of cache ports can be changed, opening
a wide range of possible configurations.

The flow of a simulated cache request is depicted in Figure 3.4. When the request
is received, it is first checked whether it is a hit or a miss. In the latter case, a new
entry is added to the MSHR, allowing to perform other tasks while miss requests
are handled by other parts of the mesh, either other caches or memory interfaces.
When a lower level response is received, the event is removed from the MSHR and
the response is processed: it can be a miss response to fulfill the missed request, a
write ACK in order to mark the line as dirty, or an evict ACK in order to mark
the line as invalid. When there is a miss in the last-level cache (LLC), the request
is forwarded to the centralized cache directory, which will point to the location
of the line, satisfying the request. The directory also handles coherence, using a
simplified version of the MESI protocol. For instance, when a line is in shared
state, the directory selects one of the sharers without taking into account priority
or proximity.

3.3. Tejas Simulator: Architecture and Extensibility | 63

access modifying
clean line

allocate line
using LRU

mark line
as dirty

mark line as
invalid

add to MSHR and
request/inform lower level remove event/s from MSHR

Lower Level Memory

request response response invalidate

miss
yes

hit

evicted*

 *if line is dirty, or if cache is coherent

request response invalidate

miss response
write ACK

evict ACK

no evicted line

Figure 3.4: Cache behavior in Tejas (extracted from [113]).

Network-on-chip

Tejas implements a generic NoC which can be configured in different manners.
It is a crucial component, since it connects all the different elements present in an
architecture. Many topologies (bus, ring, mesh, torus. . .) and routing algorithms
(west-first, simple-XY, north-last. . .) are available.

Both the shape and the low-level parameters of the NoC are highly customizable.
In the same manner, the dimensions and type of the topology, as well as the router
latencies and capacities can be modified. In Tejas, each router connects elements to
the network and different elements can be connected to the network using the same
interface.

Configuration

We have talked about the flexibility and highly customizable configuration of the
Tejas simulator, which is contained basically in two files:

64 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

• XML configuration file: it contains all the parameters relative to the emulator
and the simulator. Regarding the emulator, the region of interest (ROI) can
be configured, as well as paths to libraries. For the simulation engine, all
parameters referring to cores, caches, NoC type and routing algorithm, energy
values, etc. can be set.

• Topology file: it is a plain text file which contains the dimensions of the NoC,
as well as the organization of the different components.

3.4 Modeling KNL in Tejas

This section covers the approach we followed to implement the KNL architec-
tural model in Tejas. This approach can be extrapolated to other architectures
featuring Intel Mesh Interconnect such as Cascade Lake. We particularly focus on
the distinguishing features of the MI: the 2D structure with tiles integrating cores
and CHAs, employing a distributed directory for inter-tile coherence, and with dis-
tributed memory interfaces. The Tejas extension described in this section has been
made publicly available in [48].

Each of the following subsections focuses on one relevant aspect of the imple-
mentation, describing the modifications applied to the simulator using a high level
of abstraction.

3.4.1 Tiles and cores

A tile is essentially a wrapper of cores, VPUs, caches and the CHA (see Fig-
ure 2.2). We implement that abstraction as two cores, a private L1 instruction and
L1 data cache for each core, a shared L2 and a CHA (described in more detail in
Section 3.4.2) connected to the same router, and therefore sharing the same logical
position in the network. The detailed Tejas configuration for each tile is shown in
Table 3.1. We did not make any structural changes in the Tejas’ pipeline implemen-
tation, as in this study we were focusing on modeling the memory system and the
interconnection network.

3.4. Modeling KNL in Tejas | 65

Table 3.1: Tejas configuration for modeling tiles in the KNL architecture [62].

Tejas structure KNL parameters Details
Size 32 KiB 2 read ports

1 write portAssociativity 8-way
Write mode Write-backL1

Latency 4 cycles
Size 1 MiB
Associativity 16-way
Write mode Write-backL2

Latency 13 cycles
DTLB 256 entries 1-cycle access

4-cycle penaltyTLB iTLB 48 entries
ROB 72 entries
Memory
reservation
station

12 entriesPipeline
buffers

LSQ 12 entries (load buffers)
16 entries (store buffers)

ALU 1 cycle
Mult 4 cyclesInteger

unit Div 20 cycles

2 units
12-entry RS

ALU 2-3 cycles 2 VPUs per core
20-entry FPMult 6 cyclesFP

unit Div 25 cycles operation RS
Mode GSkew
BHR 12 bitsBranch

predictor Miss penatly 11-13 cycles

3.4.2 Memory system

The memory subsystem has suffered the most important modifications with re-
spect to the original version of Tejas. KNL introduces: 1) different memory domains,
2) a different cache coherence protocol (MESIF), and 3) a distributed cache direc-
tory (CHA). Therefore, in the simulator we must be able to control the access to the
different domains, modify the transitions between cache line states, and reimplement
the cache directory in a distributed fashion.

66 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Accessing different memory domains

In KNL, programs can choose from two different memories to allocate data when
in Flat mode: MCDRAM or DDR. Memory addresses above 0x3040000000 lie on
MCDRAM, while addresses below that are bound to the DDR system. However,
Tejas works with virtual memory addresses only, making it difficult to distinguish
between different memory domains.

Using configuration files, we provide the ranges of physical memory that cor-
respond to different memory domains. During emulation, we instrument memory
allocations and find the mapping between virtual and physical pages. The virtual-
to-physical page translation is passed to the simulation engine, in charge of the
architectural modeling. When an LLC miss occurs, the simulation engine will em-
ploy the appropriate memory controller to fulfill the request.

MESIF protocol

The main difference between MESI (included in Tejas) and MESIF is the inclu-
sion of an F (Forward) state. As mentioned in Section 2.2.2, a cache in F state will
be in charge of serving requests. The requestor will acquire the block in F state and
the sender will change to S (shared) state. This avoids all sharers of a cache line
responding in the interconnection network.

Figure 3.5 illustrates how the MESI state diagram is modified to include the
new F state. From the implementation point of view, this requires changes to the
CacheLine class in Tejas, which now stores the forwarder CHA in addition to all
sharers.

Caching/Home Agent (CHA)

The original Tejas implementation of a centralized tag directory requires it to be
placed in a fixed location in the mesh. Unlike Tejas, the MI architecture features a
distributed system in which each CHA holds a portion of the full directory. We have
implemented a CHA class as an extension of the Directory class, which is modified

3.4. Modeling KNL in Tejas | 67

Forward

Exclusive

Shared

Invalid

Modified

Remote
Write

Local
Write

Remote
Read

Local
Read

Figure 3.5: MESIF protocol implementation based on MESI.

to include cache lines in Forward state. This new component is replicated once per
tile. The LLC on each tile will send a miss request to its own CHA, which will
respond if the data is locally available or will forward the request to the appropriate
CHA for resolution. Each CHA holds up to 65,536 entries.

In order to accurately simulate the distribution of memory lines across CHAs,
we have used the block-to-CHA mapping uncovered in Section 2.3. We could have
also used the equations reverse engineered in Section 2.6, but we use instead the
pre-computed mapping to accelerate the simulation avoiding those computations.

3.4.3 Interconnection network

Although Tejas already implements a 2D mesh, it does not include a YX routing
option such as the one used by the MI. Our implementation is basically a modifica-
tion of the already included XY routing. All parameters are described in Table 3.2.
For Tejas we modeled the routers to have 4 ports, even though theoretically we
should also put the port from the tile to the router, i.e., the local connection [110],

68 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Table 3.2: Tejas configuration for modeling the KNL NoC.

Tejas structure KNL parameters
Topology 2D mesh
Number of ports 4
Buffer size (port) 4
Routing algorithm YX

2 cycles (x-direction)Latency 1 cycle (y-direction)

but that one is implicit in our implementation. The NoC in Tejas is a packet-
switched network. As such, we cannot specify the size of the flit FIFOs on each
port, only the number of maximum packets. In our simplification, we modeled the
routers to use 4-size packet FIFOs.

Furthermore, in Tejas the NoC decides which memory controller is chosen when
an LLC miss occurs. Our implementation delegates this decision to the CHA con-
taining the coherence information, as per Intel’s design.

3.4.4 Other considerations

Note that not all of the architectural aspects of KNL have a direct translation
to Tejas objects. For instance, Tejas employs a 9-stage pipeline, whereas KNL
cores feature 5-stage pipelines. Additionally, Tejas does not support vectorization
simulation.

These shortcomings can make the simulation of the cores’ behavior inaccurate,
but note that our main goal is the analysis of the traffic on the interconnect network
and the behavior of the memory system. As such, our simulator constitutes a very
powerful tool for the architectural and behavioral analysis of the MI.

3.5 Validation

We validated our KNL model in Tejas by comparing its behavior against a real
KNL system. We have chosen two benchmark suites: PolyBench/C [103] and Par-
boil [121]. Both of them include benchmarks from very different domains, such as

3.5. Validation | 69

linear algebra computations, image processing, physics simulations, dynamic pro-
gramming, or data analytics. These algorithms are widely used in both scientific
and industrial applications. The main difference between both suites is that Poly-
Bench/C benchmarks are polyhedral, originally single-threaded kernels, whereas
Parboil includes more complex multithreaded applications. Using this mix allows
us to analyze the accuracy of a single core working alone with the memory system,
and also how the results vary when the traffic density in the system increases as
more cores become active. This experimental design pursues a wide scope of the
validation process.

3.5.1 Experimental setup

Benchmarks were compiled using GNU GCC 4.8.5 with the -O1 optimization
flag. This ensures a good dynamic coverage of binary codes by Tejas, which is re-
duced when using more recent GCC versions or when enabling -O2. As mentioned
in previous sections, vectorization is disabled as AVX-512 is not supported by Tejas.
The -static flag is used to link system libraries statically and improve static cover-
age. We fixed the core frequency at 1.3 GHz, disabling DVFS in order to minimize
experimental variability. The most important KNL configuration parameters are
summarized in Table 3.3.

We have used the PAPI/C library for measuring hardware events in the real
machine, an Intel Xeon Phi x200 7210 processor. PolyBench/C integrates a set of
macros for easily handling the configuration of this library. We have extended these

Table 3.3: Experimental setup for our KNL implementation.

KNLParameters PolyBench/C Parboil
Number 1 64
Frequency 1.3 GHzCore
Cluster mode Quadrant
Type MCDRAM (16 GiB)
Mode FlatMemory
Page size 4 KiB
Version GNU GCC 4.8.5Compiler Flags -O1 -static -fopenmp

70 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Table 3.4: Equivalence between the event to measure, the PAPI event, and the
event programmed in Tejas.

Event (V) KNL PAPI (Vknl) Tejas simulator (Vtejas)
Cycles CPU_CLK_UNHALTED:THREAD_P Cycles taken
Instruction count INSTRUCTIONS_RETIRED Instructions executed

L1 data accesses (L1a) MEM_UOPS_RETIRED:ANY_LD
MEM_UOPS_RETIRED:ANY_ST Memory Requests

L1 data misses (L1m) MEM_UOPS_RETIRED:LD_DCU_MISS L1[core] Misses
L2 accesses (L2a) LLC_REFERENCES L2[tile] Accesses
L2 misses (L2m) LLC_MISSES L2[tile] Misses
MCDRAM responses (MC) OFFCORE_RESPONSE_0:MCDRAM

∑7
MC=0ResponsesMC

MCDRAM far (MCfar) OFFCORE_RESPONSE_0:MCDRAM_FAR
∑

MC 6∈Q(c)*
ResponsesMC

MCDRAM near (MCnear) OFFCORE_RESPONSE_0:MCDRAM_NEAR
∑

MC∈Q(c)*
ResponsesMC

* Q(c) returns the number of quadrant for a core c

macros to use PAPI/C in multithreaded applications [47], in order to conveniently
measure events in Parboil codes.

Table 3.4 summarizes the equivalence between the events we want to measure in
KNL and Tejas. Some Tejas events have been adapted to those measurable in KNL.
For instance, there are no PAPI events or IMC counters in KNL for measuring the
number of total MCDRAM accesses per se, its equivalence is the number MCDRAM
responses to L2 read misses.

In order to test the memory system modeled in Tejas, we have ensured that all
the benchmarks handle a workload that does not fit in the LLC, i.e., the footprint
of each benchmark must exceed 1 MiB for sequential workloads and 32 MiB for
parallel workloads. This guarantees that all components of the memory hierarchy
play a part in the compound behavior of the system.

3.5.2 Results

We present the results for each event using two different metrics. The first one,
shown below in Equation 3.1, is the relative error of the Tejas simulation with respect
to the performance counters read in the KNL system (which will be referred to as
REL). This metric has the disadvantage of not contextualizing the error in the
scope of the execution, as the error increases exponentially when the event count
tends to zero. For example, if a benchmark only makes a few hundred accesses to

3.5. Validation | 71

main memory, then a difference of tens of accesses will cause a large relative error,
but this may have almost no effect in the context of the full execution if the data
being read from memory is then heavily reused. In order to better contextualize
errors, we also provide the number of errors per memory instruction, as shown in
Equation 3.2 (which will be referred to as INS). This metric has advantages for
our purposes: it is zero-centered and it does not suffer exponential variations for
linear changes in its inputs. Both metrics become zero when the simulation exactly
matches the behavior of the real system, and they are positive when the simulation
overestimates a parameter and negative when it is underestimated. Note that both
metrics become the same for the L1a event (number of L1 data accesses).

∀ki ∈ Vknl, ti ∈ Vtejas
RELi = ti

ki
− 1 (3.1)

INSi = ti − ki
kL1a

(3.2)

In order to account for experimental variability we have executed each bench-
mark 10 times. The mean for each measured event is reported. Furthermore, when
analyzing the results of multithreaded workloads we report the mean values across
all cores.

PolyBench/C results

Figure 3.6 shows the number of errors per memory instruction (INS metric)
for the PolyBench/C codes. The maximum error found is 2.98 errors per each 100
memory instructions for the L2 accesses of the syr2k benchmark. For all events the
mean error values are at or below one error per each 500 memory accesses. These
results demonstrate that the simulated system is closely capturing the behavior of
the real system, and the largest source of inaccuracy is the behavior of the local
caches, which is known to be hard to simulate as it depends on other factors such
as the interference or noise caused by the operating system, opaque techniques like
hardware prefetching, etc.

Table 3.5 displays the results of Figure 3.6 (INS metric) in numerical form,
together with the relative error (REL metric). As can be seen, sporadic high relative

72 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

correlation

covariance

gemm

gemver

gesummv

symm

syr2k

syrk

trmm

2mm

3mm

atax

bicg

doitgen

mvt

cholesky

gramschmidt

adi

jacobi-1d

jacobi-2d

heat-3d

fdtd-2d

seidel-2d

MEAN

Event
L1a
L1m
L2a
L2m
MC
MCfar
MCnear

INS10-6 10-5 10-4 10-210-3

Figure 3.6: INS error metric for PolyBench/C benchmarks (logarithmic scale).

3.5. Validation | 73

error values are much lower when put in context by the number of total memory
accesses. For instance, the 30.57% relative error achieved for the number of L2
misses of trmm might seem high, but it only accounts for 300K misses out of 56.8M
total L2 accesses, i.e., the difference in global L2 miss rate is only 0.5%. High relative
errors usually occur for benchmarks with a memory footprint very close to the total
available cache space. The simulator tends to underestimate the number of misses
in this case, as it does not take into account the impact on cache occupancy of small
low-level routines, such as those being run by the operating system.

The results presented in this section do not include the values for execution cycles
and instruction count. The simulation of these events turns out to be very inaccurate
with respect to the real execution, achieving relative errors above 50%. This is to be
expected, since Tejas is not simulating the execution pipeline but translating CISC
instructions to the Tejas ISA (VISA), and this is not the focus of our simulation.

Nonetheless, what is remarkable in our work is the accuracy in terms of the mem-
ory system. Figure 3.6 illustrates the good results obtained for these benchmarks.
The maximum observed error is around 3.5% for L2a in a benchmark, however al-
most all measurement errors are below 0.1% using our metric. This means that
for every +1000 memory requests there is 1 incorrect at most, which is a very low
rate. As we can see, L1a error is negligible, as well as the L1m. However, the error
increases a bit for L2a and L2m, propagating the error to the MCDRAM accesses
either near and far (MC, MCnear and MCfar). Having said this, the errors obtained
are low and very acceptable. The main source of the increase in the error rate as we
go down the memory hierarchy is that the number of accesses decreases by an order
of magnitude in level L+ 1 with respect to level L. As such, the same difference in
absolute terms in L and L+ 1 becomes higher in relative terms for level L+ 1.

74 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Ta
bl

e
3.

5:
R

E
L

an
d

IN
S

er
ro

r
m

et
ric

s
fo

r
ea

ch
ev

en
ta

na
ly

ze
d

in
th

e
Po

ly
B

en
ch

/C
ke

rn
el

s.
Th

e
m

ea
n

ab
so

lu
te

va
lu

e
of

al
lb

en
ch

m
ar

ks
fo

re
ac

h
ev

en
ta

nd
m

et
ric

is
sh

ow
n

in
th

e
la

st
ro

w
.

L
1a

L
1m

L
2a

L
2m

M
C

M
C

fa
r

M
C

ne
ar

ke
rn

el
R

E
L

IN
S

R
E

L
IN

S
R

E
L

IN
S

R
E

L
IN

S
R

E
L

IN
S

R
E

L
IN

S
R

E
L

IN
S

co
rr

el
at

io
n

'
0

'
0

0.
00

09
0.

00
04

-0
.0

45
4

-0
.0

23
1

-0
.1

13
7

-0
.0

01
2

-0
.1

11
8

-0
.0

01
2

-0
.0

96
8

-0
.0

00
7

-0
.1

59
3

-0
.0

00
4

co
va

ri
an

ce
0.

02
01

0.
02

01
0.

01
21

0.
00

59
0.

00
51

0.
00

25
0.

03
58

0.
00

03
0.

02
96

0.
00

03
0.

04
32

0.
00

03
-0

.0
17

4
'

0
ge

m
m

'
0

'
0

0.
02

11
0.

00
05

0.
00

63
0.

00
02

0.
07

53
'

0
0.

07
03

'
0

0.
15

72
'

0
0.

03
89

'
0

ge
m

ve
r

'
0

'
0

0.
00

34
0.

00
03

-0
.0

38
4

-0
.0

03
5

-0
.1

09
5

-0
.0

01
8

-0
.0

81
2

-0
.0

01
3

-0
.0

65
9

-0
.0

00
8

-0
.1

49
7

-0
.0

00
6

ge
su

m
m

v
'

0
'

0
-0

.0
04

2
-0

.0
00

1
-0

.0
11

9
-0

.0
00

4
0.

02
41

0.
00

07
0.

02
43

0.
00

07
0.

04
34

0.
00

10
-0

.0
31

4
-0

.0
00

2
sy

m
m

'
0

'
0

0.
04

15
0.

01
14

-0
.0

04
9

-0
.0

01
4

0.
24

66
0.

00
35

0.
25

41
0.

00
36

0.
27

34
0.

00
29

0.
18

37
0.

00
07

sy
r2

k
'

0
'

0
-0

.1
89

0
-0

.0
22

4
-0

.2
37

0
-0

.0
29

8
0.

13
52

0.
00

19
0.

13
41

0.
00

19
0.

16
03

0.
00

17
0.

08
30

0.
00

03
sy

rk
'

0
'

0
0.

00
20

0.
00

04
-0

.0
01

7
-0

.0
00

3
-0

.2
33

1
-0

.0
01

3
-0

.2
35

3
-0

.0
01

3
-0

.2
14

2
-0

.0
00

9
-0

.2
65

7
-0

.0
00

4
tr

m
m

'
0

'
0

0.
00

13
0.

00
06

-0
.0

13
0

-0
.0

06
5

-0
.3

05
7

-0
.0

02
6

-0
.2

98
0

-0
.0

02
6

-0
.2

76
8

-0
.0

01
8

-0
.3

30
5

-0
.0

00
7

2m
m

'
0

'
0

-0
.0

56
6

-0
.0

01
7

-0
.0

59
8

-0
.0

01
8

0.
02

35
'

0
-0

.0
01

6
'

0
0.

03
94

'
0

-0
.0

20
1

'
0

3m
m

'
0

'
0

0.
00

29
0.

00
07

-0
.0

00
5

-0
.0

00
1

-0
.0

45
2

'
0

-0
.0

46
7

'
0

-0
.0

22
0

'
0

-0
.0

97
7

'
0

at
ax

-0
.0

00
1

-0
.0

00
1

0.
00

34
0.

00
01

-0
.0

19
1

-0
.0

00
3

0.
01

77
0.

00
03

0.
02

17
0.

00
03

0.
04

14
0.

00
05

-0
.0

44
1

-0
.0

00
2

bi
cg

-0
.0

00
1

-0
.0

00
1

0.
00

34
0.

00
01

-0
.0

13
8

-0
.0

00
2

0.
02

10
0.

00
03

0.
02

12
0.

00
03

0.
03

03
0.

00
04

-0
.0

04
2

'
0

do
it

ge
n

'
0

'
0

0.
02

07
0.

00
06

0.
00

53
0.

00
02

0.
00

25
'

0
0.

00
24

'
0

0.
01

85
'

0
-0

.0
46

9
'

0
m

vt
-0

.0
00

1
-0

.0
00

1
0.

00
46

0.
00

07
-0

.0
06

1
-0

.0
00

9
0.

14
63

0.
00

30
0.

14
76

0.
00

30
0.

14
19

0.
00

22
0.

06
13

0.
00

03
ch

ol
es

ky
'

0
'

0
-0

.0
15

9
-0

.0
00

5
-0

.0
01

0
'

0
0.

08
67

0.
00

12
0.

08
78

0.
00

13
0.

10
60

0.
00

11
0.

03
45

0.
00

01
gr

am
sc

hm
id

t
'

0
'

0
-0

.0
00

6
-0

.0
00

2
-0

.0
13

4
-0

.0
03

5
0.

26
82

0.
00

01
0.

15
40

'
0

0.
24

50
0.

00
01

0.
19

37
'

0
ad

i
'

0
'

0
-0

.0
63

4
-0

.0
04

0
-0

.0
04

1
-0

.0
00

5
0.

08
45

0.
00

30
0.

09
28

0.
00

32
0.

10
62

0.
00

28
0.

03
41

0.
00

03
ja

co
bi

-1
d

'
0

'
0

-0
.0

05
6

-0
.0

00
1

-0
.0

03
1

-0
.0

00
2

0.
16

70
0.

00
72

0.
16

51
0.

00
71

0.
19

42
0.

00
62

0.
10

32
0.

00
11

ja
co

bi
-2

d
'

0
'

0
-0

.0
05

9
-0

.0
00

1
-0

.0
04

2
-0

.0
00

2
0.

10
44

0.
00

37
-0

.0
12

8
-0

.0
00

4
0.

00
51

0.
00

01
-0

.0
65

3
-0

.0
00

6
he

at
-3

d
'

0
'

0
-0

.0
02

4
-0

.0
00

1
-0

.0
03

7
-0

.0
00

2
0.

03
00

0.
00

08
0.

01
78

0.
00

05
0.

03
30

0.
00

07
-0

.0
26

6
-0

.0
00

2
fd

td
-2

d
'

0
'

0
-0

.0
01

9
-0

.0
00

1
-0

.0
03

4
-0

.0
00

2
0.

07
42

0.
00

40
0.

07
56

0.
00

41
0.

09
19

0.
00

38
0.

01
58

0.
00

02
se

id
el

-2
d

'
0

'
0

-0
.0

18
6

-0
.0

00
2

-0
.0

09
4

-0
.0

00
1

0.
01

30
0.

00
01

-0
.0

51
9

-0
.0

00
6

-0
.0

35
0

-0
.0

00
3

-0
.1

00
0

-0
.0

00
3

M
E

A
N

0.
00

09
0.

00
09

0.
02

09
0.

00
22

0.
02

22
0.

00
33

0.
10

27
0.

00
16

0.
09

29
0.

00
15

0.
10

61
0.

00
12

0.
09

16
0.

00
03

3.5. Validation | 75

Parboil results

Among the different benchmarks included in the Parboil suite, we have selected
those with a significant number of accesses to main memory with respect to the num-
ber of instructions executed, in order to stress the simulator’s memory system and
interconnection network, as more data and coherence traffic is generated. Figure 3.7
shows the boxplots of the number of errors per memory instruction (INS metric) for
these benchmarks. Boxplots are used instead of static bars, as the benchmarks are
multithreaded and there is a different number of errors for each simulated core. Ta-
ble 3.6 shows the relative (REL) and normalized (INS) errors expressed as the mean
of all cores. In general, both metrics increase with respect to the single-threaded
PolyBench/C benchmarks. The reason is that the number of instructions, being

Benchmarks

stencil

spmv

lbm

INS

10-1

10-2

10-3

10-4

10-5

10-6

10-7

L1a L1m L2a L2m MC MCfar MCnear

Figure 3.7: INS error metric for Parboil benchmarks. Boxplots represent the
variability of the results obtained by each core (logarithmic scale).

76 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Table 3.6: REL and INS error metrics for each event analyzed in the Parboil
benchmarks expressed as the mean of all cores.

L1a L1m L2mkernel REL INS REL INS REL INS
stencil 0.1137 0.1137 -0.2747 -0.0905 -0.3679 -0.0593
spmv 0.1459 0.1459 -0.0010 ' 0 0.0584 0.0014
lbm 0.0178 0.0178 0.0016 ' 0 -0.0038 -0.0001

MC MCfar MCnearkernel REL INS REL INS REL INS
stencil 0.9477 0.0378 0.9501 0.0284 0.9479 0.0095
spmv 0.0687 0.0016 0.0696 0.0012 0.0693 0.0004
lbm -0.0003 ' 0 -0.0005 ' 0 0.0001 ' 0

divided across 64 threads, is now much smaller, and the errors introduced by the
emulation system represent a larger share of the total. Note how the most significant
distortion in the results corresponds to the number of L1 accesses, which is com-
pletely dependent on the way in which the emulator translates CISC instructions
into VISA in multithreaded codes. This in turn results in larger errors in L1 misses
and, therefore, L2 accesses. The memory hierarchy gradually “absorbs” these errors,
and results become more accurate as we descend towards slower memories.

3.6 Case Study: Analysis of Coherence Traffic Optimiza-

tions

In Chapter 2, Section 2.3 described how the location of the coherence data in the
mesh is of great importance for memory latency in this architecture. As depicted in
Figure 3.1, the time to access a memory line that resides in a nearby tile can be high
if the coherence data is stored in a farther one. We proposed different techniques in
Sections 2.7 and 2.8 to alleviate this effect based on the maximum distance between
cores and the coherence data. This optimization, however, shows a complex trade-
off between different factors such as the number of TLB misses, the reduction in
access latencies, and the contention on different areas of the mesh.

We modified a jacobi-1d stencil from the PolyBench/C suite so that cores i and
i+ 2 swap their data at the end of each timestep. The reason is to reuse data from

3.6. Case Study: Analysis of Coherence Traffic Optimizations | 77

adjacent threads in order to quantify the impact of the physical distance between a
requestor (core) and the responder (CHA). We used two different maximum core-to-
CHA distances, 16 and 0, so that all cores write to memory lines whose coherence
information resides in any tile in the mesh (maximum distance = 16) or in their
local tile (maximum distance = 0). We then ran the experiment using 64 threads
and two different mappings: scattered and co-located. The first one is a direct
thread-to-core mapping, i.e., thread i is assigned to core i. Since cores are cyclically
distributed among the quadrants (as previously described in Chapter 2 and shown
in Figure 2.4), cooperating threads will be scattered across the mesh. In the second
mapping we take advantage of the reverse-engineered floorplan in Figure 2.4 to
optimally co-locate cooperating threads in neighboring tiles.

We analyzed the behavior of the benchmark for both mappings and both core-to-
CHA distances (16 and 0), measuring different events with performance counters.
Results are shown in Table 3.7. As can be seen, setting the maximum core-to-
CHA distance to zero provides a performance benefit of 6.25%, and controlling the
location of threads using the co-located mapping increases this benefit further to
7.76%. However, simply controlling the location of threads on the mesh, but not
the core-to-CHA distance has a negligible effect. The counters offer no evidence of
any significant difference in cache misses or memory accesses which may account
for the performance difference between the configurations mentioned above. On the
contrary, the number of memory accesses increases for the fastest configurations
(those with zero core-to-CHA distance), due to the increase in TLB misses. We

Table 3.7: Selected events for the executions of the modified jacobi-1d stencil
by thread 0. The rows present two different maximum core-to-CHA distances (16
and 0 cycles). The columns show the counters being measured and the thread
mapping employed for each execution. Values are reported in millions.

cycles L1m L2mdistance scat co-loc scat co-loc scat co-loc
16 84.127 83.986 0.571 0.571 0.561 0.561
0 78.865 77.597 0.571 0.571 0.569 0.581

MC MCfar MCneardistance scat co-loc scat co-loc scat co-loc
16 0.019 0.016 0.014 0.013 0.005 0.004
0 0.053 0.043 0.023 0.016 0.022 0.026

78 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

m
a
x
.
d
is

ta
n
ce

 =
 1

6

scattered co-located

m
a
x
.
d
is

ta
n
ce

 =
 0

Figure 3.8: Heatmap of the number of packets across the mesh for two different
core-to-CHA distances and thread mapping. When the maximum distance is 16
cycles, a block assigned to a core can have its coherence data residing in any
tile across the mesh. On the other extreme, when the maximum distance is 0
cycles, the coherence data of the block must reside in its local tile. Darker shades
indicate higher traffic density.

need to analyze the low-level traffic of the mesh in order to understand the reasons
for the difference in performance.

The idea behind these optimizations is to eliminate the majority of the coherence
traffic through the mesh. If most of the blocks requested by a core have their
coherence data stored in the local CHA, the coherence traffic should be significantly
reduced. We employed our simulator to analyze the traffic passing through each
router, as shown in the heatmap of Figure 3.8. The total reduction in the number of
packets traveling through the network is 18.7% when optimizing both the location of
the coherence data (i.e., maximum core-to-CHA distance = 0) and the mapping of
the cooperating threads (co-located mapping). The reduction in total traffic might
be surprising, taking into account that the number of L2 misses increases very

3.6. Case Study: Analysis of Coherence Traffic Optimizations | 79

slightly. In order to understand the low-level behavior of the system, we studied
how the reduction in traffic is distributed across the four different types of packets:
query (requests for data directed to a CHA), forward (a request from a CHA to an L2
cache or MCDRAM interface to forward a block to another L2), data (a response to a
forward request containing the requested block), and eviction (a write-back message
from an L2 cache to an MCDRAM interface containing an evicted data block). Data
packets are not reduced, as we are not changing cache locality whatsoever. Query
data is reduced by 20.4% and forward data by 343%. Furthermore, the average
time from the generation of a query packet to the delivery of the corresponding data
packet is reduced from 76.84 to 50.87 cycles using both optimizations (maximum
distance 0 and co-located mapping), i.e., the number of hops performed by each
coherence packet is drastically reduced. Note that an L2 miss being resolved in
its local CHA will generate a query packet and a data packet in the local router,
but no forward packets. This explains the significant reduction in forward traffic as
compared to query traffic.

Figure 3.9 details the breakdown of the network traffic into each packet type.
The drastic reduction in the forward traffic is clear from the figure. It can be
observed how data traffic across different quadrants is almost nonexistent when
applying both optimizations. The eviction traffic in the central region of the mesh
is similarly reduced. The reason is that each tile works now with data residing in
the local MCDRAM interfaces of its quadrant, and therefore most eviction packets
will not cross inter-quadrant boundaries. As such, traffic density is higher towards
the center of each quadrant, instead of towards the central region of the mesh, as
it happens with no optimizations. This is a result of the YX routing protocol: a
drastic reduction in the number of collisions, i.e., situations in which a packet is
stalled while in transit to its destination because the next router in its path has
no available buffer space (4 buffers per port/router, see Table 3.2). Figure 3.10
shows the collision density on the NoC. Again, the collisions are mostly confined to
the center of each quadrant when applying the optimizations. The total number of
collisions shows a reduction of 76.1%. The number of collisions per hop is reduced
from 0.18 in the original code to just 0.05 in the optimized version.

80 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

m
a
x
.

d
is

ta
n
ce

 =
 1

6

scattered co-located

m
a
x
.

d
is

ta
n
ce

 =
 0

(a) Query traffic.

m
a
x
.

d
is

ta
n
ce

 =
 1

6

scattered co-located

(b) Forward traffic.
co-located

m
a
x
.
d
is

ta
n
ce

 =
 1

6
m

a
x
.
d
is

ta
n
ce

 =
 0

(c) Data traffic.

m
ax

. d
ist

an
ce

 =
 1

6

co-located

(d) Eviction traffic.

Figure 3.9: Breakdown of the different packet types across the NoC. Darker
shades indicate higher traffic density.

3.7 Related Work

Several papers have explored the performance of the Knights Landing archi-
tecture, mainly through the analysis of well-known benchmarks, machine learning
applications, and parallel workloads [15, 18, 35]. This type of works analyze the scal-
ability of the processor and provide the observed trends in terms of performance of
real workloads, which are then compared against the theoretical performance. Fur-
thermore, these works provide a reference when comparing this architecture with
others. Nevertheless, none of these works undertake the analysis of the particular
characteristics of the KNL interconnect.

3.7. Related Work | 81
m

a
x
.
d
is

ta
n
ce

 =
 1

6

scattered co-located

m
a
x
.
d
is

ta
n
ce

 =
 0

Figure 3.10: Density of collisions on the network. Darker shades indicate higher
number of collisions.

Other papers offer a more in-depth look at the KNL internals. Rho et al. [106]
study and compare the behavior of each of the offered cluster and memory modes by
analyzing the behavior of MPI workloads. They propose an approach to optimize
the scheduling at different granularities dynamically based on the characteristics of
each workload. McCalpin [85] studies the degradation in performance due to snoop
filter evictions, resulting from associativity conflicts in the snoop filters. These
conflicts are traced to interactions of data physical addresses with the hash function
distributing addresses across the agents. This degradation is also relevant for our
approach, as the simulator does not consider this issue. It can also be a source of
error when comparing to real hardware in our model, and it should be considered
for increasing the accuracy of the model.

Other works have proposed ways to discover architectural features, or to auto-
matically tune applications in modern, highly complex systems. Yotov et al. [137]
develop a set of micro-benchmarks specifically designed to measure memory hierar-
chy parameters, such as cache associativity, block size, capacity, or TLB parameters.

82 | Chapter 3. Simulating the Network Activity of Modern Manycore
Architectures

Wang et al. [128] identify the increase in complexity associated with modern compu-
tational systems, in particular the trend to include a very large number of different
architectural configurations. They argue that static discovery of optimal configu-
ration parameters is a fundamentally flawed approach, and propose a configuration
interface to allow users to specify performance constraints that should be satisfied at
runtime. Mishra et al. [92] propose to use an automatic learning system to manage
resources towards meeting specific latency and energy constraints. The resource allo-
cation is performed in two different steps: learning how allocation affects parameters
and controlling them during runtime.

Finally, there are many architectural simulators available nowadays. Some of
them have very detailed pipelines, such as gem5 [11], some others are able to sim-
ulate up to thousands of cores, such as ZSim [111], PrimeSim [34], Graphite [91],
McSimA+ [6] or Sniper [16]. In this work we have chosen to build upon the Tejas
simulator due to the convenient compromise between the pipeline detail, the scala-
bility of the simulation, and the low-level implementation of the distributed cache
directory for cache coherence. Furthermore, it is an actively developed software
project with a very responsive community.

3.8 Conclusions and Future Work

In this chapter we have analyzed in detail the Intel Mesh Interconnect archi-
tecture through the study of the Intel Knights Landing. Leveraging the knowledge
presented in Chapter 2, we have created an architectural model and implemented it
on the Tejas simulator, which enables an in-depth analysis of the behavior of this
highly complex NoC. We validated our KNL model in Tejas by comparing its be-
havior against a real KNL system using the PolyBench/C and Parboil benchmarks.
More specifically, we have validated the implementation of the memory system in
terms of mispredictions against the number of accesses and misses in the memory hi-
erarchy, including the MCDRAM. The results obtained present a good ratio for the
relative metric INS presented in Section 3.5.2, which indicates the number of errors
per memory instruction. For single-threaded PolyBench/C benchmarks we obtain
almost all measurement errors below 0.1%. For multithreaded Parboil benchmarks
the results are not that promising, mainly due to the bad translation from multi-

3.8. Conclusions and Future Work | 83

thread x86 directives to Tejas VISA, resulting in a larger error rate in L1 misses and
L2 accesses.

Finally, we have also presented a case study analyzing the low-level behavior
of the interconnection network. We modified a jacobi-1d stencil from the Poly-
Bench/C suite to exploit mesh locality. Based on the reverse engineered floorplan
described in Chapter 2, we ran multithreaded experiments using different affinities
for the threads: scattered and co-located. As expected, the co-located approach
reduces drastically the contention in the network.

This work can be extended by adapting the simulator to modern x86 manycore
architectures, such as the latest Intel Xeon Scalable (Cascade Lake and Ice Lake
architectures) and AMD EPYC (Zen3). This extension should also improve the
micro-architectural details, in order to fully support, for instance, vector instructions
(e.g., AVX2). In the same line, it would also be required to extend the Tejas VISA, in
order to improve the coverage of multithreaded applications, and reduce the errors
in the simulation. On the other hand, Tejas is quite limited in that regard as it
deliberately avoids considering all x86 instructions to keep the design simpler.

“Computers are good at following
instructions, but not at reading
your mind.”

–Donald Knuth

4
MARTA: Multi-configuration Assembly

pRofiler and Toolkit for performance
Analysis

Chapter’s contents
4.1 Overview and Motivation. 86

4.2 MARTA: System’s Architecture . 88

4.3 Measurement Methodology . 93

4.4 Configuration. 96

4.5 Evaluation: Case Studies .102

4.6 Related Work. .123

4.7 Discussion and Concluding Remarks. .126

In this Thesis we explore and develop SIMD optimizations, as it will be described
in Chapter 5. This type of optimizations is present in all modern compilers, guided
by cost models which determine the profitability of vectorizing certain regions of
code. The result of them depends not only on the code, but also on the architecture
and the flags used. Because of this, compiler performance benchmarking is an error-
prone, tedious and repetitive task. Configuring a new experimental environment

85

86 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

frequently requires writing new scripts or ad hoc programs in order to correctly and
properly instrument specific regions of code and hardware events. These artifacts
are normally neither reusable nor maintainable, since they are dependent on specific
problems and, in some cases, platforms. In order to avoid repeating efforts and help
building performance cost models, we have developed MARTA (Multi-configuration
Assembly pRofiler and Toolkit for performance Analysis). It is a fully customiz-
able toolkit that aims to increase productivity by generating benchmark templates,
compiling them, and monitoring the regions of interest (ROI) specified, as well as
performing static code analysis. MARTA’s approach may be applied to existing ker-
nels or applications, and it only requires to write a simple configuration file. MARTA
uses the PAPI/C library for instrumenting the code and accessing hardware counters
in the host platform. Furthermore, the toolkit integrates fine-grained directives for
instrumenting and monitoring small regions of code, enabling micro-benchmarking
analysis. In an orthogonal dimension, the system is able to run data analytics on
these performance measurements. For this purpose, the toolkit applies data mining
and machine learning or AI-based techniques for classification and regression, au-
tomatically extracting the features of the experimental setup which have the most
impact on performance, given a large set of experiments and dimensions to consider.
These post-processing tasks are valuable for deriving knowledge from experiments
and are not included in most profiling tools. In this chapter we also provide a set of
case studies to illustrate the ability of the solution to conveniently create a reliable
environmental setup for high performance computing experiments.

4.1 Overview and Motivation

Performance analysis is required in any discipline of computer engineering, for
both hardware and software effects. From real-time systems, where it is needed
to assess the latencies of instructions, to high performance computing, where codes
need to be highly optimized and tuned to the execution infrastructure to extract the
maximum possible throughput, profiling is crucial to characterize systems, either in
a holistic manner or at a fine-grain level [4, 56].

In order to assess the validity of an experiment, measurements are performed in
a platform under a set of conditions. For this reason, measuring events in a system

4.1. Overview and Motivation | 87

requires the setup of a controlled environment in order to ensure reproducibility and
repeatability for a set of experiments, e.g., setting the scaling governors of processors,
setting maximum frequencies of clocks, the memory page size used, core affinities,
etc. Additionally, passing arguments, macros and other variables to programs is
also an error-prone task, leading to false positives or other undesired and undefined
behaviors within the experimental chain. Checking and setting all these conditions
and parameters is usually a manual task.

Orthogonally, when profiling a specific region of code or application, there could
be different dimensions or parameters of interest for the user to consider and config-
ure, e.g., the number of rows and columns for a matrix-vector multiplication kernel,
data precision (32-bits vs 64-bits), number of iterations and step of a loop, access
stride, array padding, etc. Analyzing which of these dimensions has the most signif-
icant impact in terms of performance can be automated in a similar way, avoiding
manual and repetitive post-processing tasks.

We present a toolkit for automating the experimental setup configuration, com-
pilation, execution and collection of data (static and dynamic) for a region of code
or application. In addition, using data mining and machine learning or AI-based
techniques for classification such as decision trees and random forests, it generates
categories for analyzing the influence of parameters and input arguments in the
execution of a code. We make the following contributions:

• The design and implementation of MARTA, a framework that fully automates
experimental setup, compilation, execution and performance data collection
for a computational kernel or application. The system supports the analysis
of post-mortem execution data, the static analysis of binaries through LLVM-
MCA, and the automated inspection of compilation logs and optimization
reports.

• We automate the specialization of template codes and header files including
C/C++ macros for efficiently versioning micro-benchmarks, changing compile-
time and runtime features such as allocation strides or array padding, or en-
abling/disabling compiler optimizations such as dead code elimination or loop
jamming that interfere with the correct instrumentation of the region of inter-
est.

• We present case studies that illustrate the potential of MARTA in action,

88 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

showing how to quickly generate a space of program variants, run them, and
analyze the results. We use decision trees for building predictors and visualiz-
ing the sub-spaces of interest generated with the performance data collected.

The rest of the chapter is structured as follows: Section 4.2 describes the ar-
chitecture of the presented framework. Section 4.3 overviews key aspects of the
methodology for reproducibility. Section 4.4 explores the configuration parameters
available in the toolkit. Section 4.5 presents a set of case studies that exemplify
potential uses of the tool. Section 4.6 analyzes the state of the art of profiling
and monitoring tools. Finally, Section 4.7 discusses the strengths, capabilities and
limitations of the proposed approach.

4.2 MARTA: System’s Architecture

The proposed framework is composed of two main modules: the Profiler and the
Analyzer. The Profiler is in charge of the compilation, execution and collection of
data. The Analyzer inspects the data provided by the Profiler, applying data mining
and machine learning or AI-based techniques. Both modules are primarily written in
Python 3, C, and Makefile language. The framework works on any operating system,
but the compilation and execution facilities are designed specifically for POSIX-
compliant systems. MARTA can run on any architecture, the only limitation being
the naming of hardware events, specified through configuration files. The high-level
architecture of our approach is depicted in Figure 4.1. The two components of
the system, Profiler and Analyzer, are independent between them, and can operate
autonomously, as they only interface through CSV files containing profiling data. In
the rest of the section we describe both modules in detail.

4.2.1 Profiler

The Profiler module is designed for parsing the configuration files, compiling all
the binary versions specified in them, and running the generated binaries, collecting
execution data. The strength of this module lies in its ability to generate as many
different executable versions as necessary, as defined by the Cartesian product of

4.2. MARTA: System’s Architecture | 89

Front-end
Result

collection

Configuration

Source code

Compilation

Execution

PAPI library

Static
analysis

Profiler

Configuration

Filtering
Data mining

AI-based
Classification

Analyzer Decision
Tree

Categorization

Preprocessing

Processed
results

Norm.

Feature
Importance

Plots

Kernel
Density

Estimation
Grid

Search

LLVM-MCA

Figure 4.1: High-level architecture of the toolkit, composed of the Profiler and the
Analyzer modules, which operate independently.

90 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

the sets of different options in the configuration, e.g., compile-time options (e.g.,
whether to enable or disable particular optimizations), program inputs, or program
features (e.g., -D flags enabling different code paths). The generation of different
program versions, which is often a bottleneck in micro-architectural exploration, can
be done in parallel. In order to achieve maximum reliability, the Profiler integrates
with several different tested-and-true software packages such as the PolyBench/C
library [103], using their low-level configuration and measuring capabilities. The
upper part of Figure 4.1 details the design of this module. The Profiler receives two
inputs:

• Configuration file: a structured YAML file containing all parameters related
to compilation (e.g., -D flags, compilers and their flags, etc.), execution (e.g.,
threads to launch and their affinity, number of repetitions, maximum deviation
in measurements, etc.), and data collection (e.g., output format, dimensions
to include, static code analysis parameters, etc.). For convenience, some of
these parameters can be overwritten by using CLI arguments. The format
and contents of this file are further described in Section 4.4.1.

• Source code/application: typically a C/C++ program whose execution
prints in standard output values collected from hardware counters, as well as
the execution time and values reported by the Time Stamp Counter (TSC).
The system helps to produce this output format by including a set of functions
and macros at runtime.

In order to instrument binaries, MARTA follows the steps detailed in Algo-
rithm 4.1. The execute function used in that approach is disclosed in Algorithm 4.2.
The output generated by all the executions in the experimental setup is encoded into
a CSV file, which is passed as input to the Analyzer module.

4.2.2 Analyzer

The Analyzer integrated in the tool is meant for processing raw data, typically
the output of the Profiler, and mining knowledge from these data, primarily through
the use of scikit-learn [98]. It can also generate relational plots given a set of dimen-
sions of interest. The inputs to this module are:

4.2. MARTA: System’s Architecture | 91

Algorithm 4.1: MARTA generates different binary versions for collecting
the execution time, the TSC value and the PAPI events. Each version is
executed nexec times. Values that deviate farther than a user-specified
threshold from the mean are discarded as outliers.
Input: Executable binary, boolean discard_outliers, float threshold
Result: Dictionary of values

1 values = {};
2 for type in [TSC, time, PAPI_counters] do
3 data = [];
4 execute_preamble_commands();
5 for i← 0 to nexec do
6 data.append(execute(type, binary));
7 end
8 execute_finalize_commands();
9 if discard_outliers then

10 condition = (abs(data - data.mean()) <= threshold * data.std());
11 data = data.select(condition);
12 avg_value = sum(data) / data.size();
13 values[type] = avg_value;
14 end
15 return values;

• Configuration file: a structured YAML file specifying data wrangling pa-
rameters (including filtering, normalization and categorization) as well as clas-
sification and plotting parameters. For classification customization all param-
eters follow the same naming or API as in scikit-learn. A full description is
provided in Section 4.4.2.

• Input data: CSV file labeled according to the dimensions of interest described
in the configuration file. The Profiler output is fully compatible with this
description, but any CSV file can be used as input to this module.

The preprocessing stage is needed for the classification algorithms to only consider
the dimensions of interest, and to know the categories into which data will be clas-
sified. Preprocessing is performed as follows:

• Filtering: based on the dimensions of interest in the problem, e.g., select
columns containing a specific set of values, a range, a concrete value and

92 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

Algorithm 4.2: High-level approach of the execute function: warm up if
specified, and then instruments a number of times the specified region of
code.
Input: BenchmarkType type, Executable binary
Result: float

1 if hot_cache then
2 for i← 0 to warmup do
3 run_code(type, binary);
4 end
5 v0 = measure(type);
6 for i← 0 to steps do
7 run_code(type, binary);
8 end
9 v1 = measure(type);

10 return (v1-v0) / steps;

discard the rest, etc.

• Normalization: values of interest can be normalized using min-max or z-
score techniques.

• Categorization: dimensions of interest are typically continuous values, e.g.,
the performance in GFLOPS, or the average of the TSC values reported. The
system is able to discretize these values into a collection of bins or categories.
This can be configured statically, by describing the number of categories to cre-
ate in the interval using a constant step, or dynamically, using Kernel Density
Estimation (KDE) for guessing the optimal number of categories to generate,
as well as their boundaries. For the hyperparameter tuning in KDE grid search
is used, Silverman’s rule of thumb for normal distributions [118] and Improved
Sheather-Jones algorithm [13] for multimodal distributions.

The system randomly splits input data into training and testing subsets, follow-
ing the Pareto principle or 80/20 rule of thumb, for training classifiers. Currently,
the Analyzer implements a decision tree and a random forest classifier. The first
one is meant to classify target categories depending on the dimensions of interest
specified, and the second one to measure their importance. Adding other classifiers
such as SVM, k -means or k -neighbors is trivial thanks to scikit-learn’s homogeneous

4.3. Measurement Methodology | 93

API. The final output produced by the system is composed of the following optional
elements:

• Classification knowledge: the system outputs the generated classification
model as a decision tree. It also shows the accuracy and the confusion ma-
trix for the model. It is possible to employ dtreeviz [97] for improving the
visualization of the decision tree.

• Feature importance analysis: by applying a random forest classifier, the
system is able to extract the impurity-based feature importance. This is com-
puted as the total reduction of the criterion brought by that feature. The
system performs feature importance analysis using Mean Decrease Impurity
(MDI), which counts the times a feature is used to split a node, weighted by
the number of samples it splits.

• Plots: it is possible to configure the plotting of different types of graphs:
scatter plots, KDE plots, etc.

• Processed results: a CSV file, similar to the input, containing the results of
these processing steps.

4.3 Measurement Methodology

We briefly overview key features of our measurement methodology. As we partic-
ularly target small running times for regions of interest (i.e., micro-benchmarking),
we pay special attention to ensure reproducibility by implementing the following
principles: 1) the machine shall be configured in a state that can be reproduced
(e.g., fixed frequency, thread pinning to cores, aligned memory allocation); 2) each
experiment shall be repeated multiple times until a satisfactory confidence on each
measurement is reached; and 3) the measurement approach shall be as insensitive
to the execution context as possible. We highlight our solutions, inspired by good
practice in the field and in particular from the PolyBench/C [103] testing harness
system.

Note that conducting experiments correctly so that one can trust in the outcome
is a particularly difficult and error-prone process in computer science, due to the

94 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

immense variability induced by the execution context and the multiple ways to
implement a program that performs a given computation. Blackburn et al. [12]
present a framework which provides a high-level checklist for experimenters to use
for avoiding unsound claims and properly assess experimental evaluations. This
framework emphasizes the correlation of the scope of the evaluation and the scope
of a claim in order to make claims sound. In that sense, MARTA can only go as far
as automating tasks, but the user remains responsible for correctly setting up the
experiments. This includes which knob/s of the experimental setup are fixed or left
free such as disabling turbo boost.

4.3.1 Machine configuration

MARTA provides different knobs to control the system that will execute the pro-
grams. These include: 1) disabling turbo boost (via MSR); 2) fixing the CPU fre-
quency; 3) pinning threads to particular cores (using OpenMP environment variables
or the taskset command, and also using the system calls provided by the toolkit
directives); and 4) using an uninterrupted process scheduler (the FIFO scheduler).
Note that most of these knobs require administrator privileges on the host machine.
Turning on all these features would ensure that in between two experiments the
effects from the operating system’s decisions are mitigated: the frequency is fixed
for a concrete core (or set of cores) with the proper thread affinity set, allowing to
relate cycles to wall clock time easily and systematically for the whole experiment
duration. As an illustrative example, running a DGEMM computation may see a
variability of over 20% in terms of cycles between two runs of the exact same soft-
ware on our testing setup, while this variability reduces to less than 1% with the
setup fixed by MARTA.

4.3.2 Repeating runs

A possible approach to increase the confidence in the measured values is to
repeat the same experiment multiple times to characterize the variation between
runs, and determine whether this variation is acceptable. This is a central aspect
of reproducibility. MARTA lets the user determine what is the acceptable variabil-

4.3. Measurement Methodology | 95

ity threshold, which depends on the stability of the host machine and how it was
configured. It also depends on the data distribution: the variability between runs
should be, at least, an order of magnitude lesser than that of the effects that are to
be measured.

In MARTA, the default experimental setup is to re-run the same experiment X
times, remove the largest and smallest measures from the set (keeping X-2 samples),
compute the arithmetic mean of the X-2 samples, and compute the deviation be-
tween each sample and the arithmetic mean. If one sample exceeds a threshold T
then the whole experiment (the multiple runs of the same program) is discarded, and
needs to be repeated. In our tests, we found that X=5 and T=2% are reasonable
values for experimental validation (detailed in Section 4.5).

4.3.3 Measuring CPU performance

It is key to ensure that we measure events while understanding their sensitivity
to the experimental setup. For example, some hardware counters measure elapsed
time (e.g., CPU_CLK_UNHALTED.REF_P) while some others are insensitive to frequency
and measure elapsed active cycles (e.g., CPU_CLK_UNHALTED.THREAD_P). Accurately
measuring performance typically involves accurately measuring time. MARTA offers
both frequency-sensitive and frequency-independent measurements of time. The
number of hardware counters available may be in the hundreds. We preselected
in MARTA relevant counters for measuring time, but the user may include other
counters to collect data such as data traffic, branch utilization, etc.

Typically processors do not allow to measure more than a handful of counters in
the same run in an exact manner. Sampling of the counter value may be implemented
instead, and some pairs of counters simply cannot be measured at the same time. To
avoid any issue with PAPI counter multiplexing, MARTA performs one experiment
per counter to be monitored (exact value, no sampling), running the program with
only that counter and the timestamp counter being monitored. For each counter,
multiple runs are launched and variability is assessed as described above.

96 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

4.4 Configuration

Both the Profiler and the Analyzer require a configuration file to specify the tasks
that each of them must perform. These configuration files are simple, yet powerful.
For simplicity, these files are written in YAML, which allows to express hierarchical
relations with minimal syntax, being easy to read. The system performs sanity
checks over the configuration files giving the user feedback about the correctness
of parameters declared and/or missing. Sections 4.4.1 and 4.4.2 describe the most
relevant available parameters for the Profiler and the Analyzer, respectively.

4.4.1 Profiler

The configuration information for an application to be profiled is divided into
four categories, as a nested set of dictionaries:

1. Metadata, preamble and finalization: useful for describing commands
or predefined actions at the beginning and end of the experimental process.
This is useful for tasks such as tuning the processor or host platform, cleaning
temporary files, etc.

2. Configuration: describes the set of different options and argument values
to be used for generating different binary versions, e.g., compile-time options,
program inputs, and -D flags.

3. Compilation: lists the compilers to use for binary generation, as well as
specific flags for each of them.

4. Execution and output: defines the parameters relative to the execution pro-
cess, e.g., the number of executions for each binary version, hardware counters
to read, the threshold for outlier detection, etc.

Table 4.1 describes the main options for the Profiler, which are described within
the kernel dictionary. MARTA will generate predefined headers and Makefiles
within the path directory that are necessary for compilation. One of the main
advantages of this format is the ability to generate a vast set of combinations for the

4.4. Configuration | 97

Table 4.1: Description of all available options within each kernel dictionary in the
configuration file for the Profiler.

Name Description Type
name Name of the kernel or program. str
path Folder containing the sources. str
preamble Commands to execute before compilation: tuning CPUs,

allocating huge pages, etc.
str

finalize Tasks to execute after the experiments. See Table 4.2. dict
configuration Cartesian product of the list of parameters. This in-

cludes Makefile options, -D definitions, etc. See Ta-
ble 4.3.

dict

compilation Compiler configurations. See Table 4.4. dict
execution Execution parameters. See Table 4.6. dict
output Output options, such as name and format. See Table 4.7. dict

Table 4.2: Description of all available options within each finalize dictionary in
the configuration file for the Profiler.

Name Description Type
clean_tmp_files Clean temporal files. bool
clean_asm_files Clean assembly files generated. bool
clean_asm_files Clean binary files. bool
command Execute a command after the execution of the

set of experiments.
str

Table 4.3: Description of all available options within each configuration dictio-
nary in the configuration file for the Profiler.

Name Description Type
kernel_cfg Options passed to the Makefile. str list
d_features -D flags passed to the program. Each of them

can be described as in Table 4.5.
dict

flops Expression to compute the number of FLOPs.
This can be expressed dynamically using
d_features dictionaries.

str

98 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

Table 4.4: Description of all available options within each compilation dictionary
in the configuration file for the Profiler.

Name Description Type
enabled Enables/disables compilation. Useful for pre-generated

binaries.
bool

processes Number of processes to use for compilation. int
compiler_flags Dictionary of compilers with a list of specific flags for

each of them.
dict of
lists

main_src Main source file to be compiled. str
kernel_inlined If true, kernel definition within the main source file. If

false, kernel definition in kernel_src file.
bool

loop_type “asm” or “C”. Determines the language for MARTA in-
strumentation insertion.

str

asm_analysis • syntax: ASM syntax.

• count_ins: counts the number and type of ASM in-
structions in the ROI.

• static_analysis: performs code analysis using
LLVM-MCA.

dict

Table 4.5: Description of all available options within each d features dictionary
in the configuration file for the Profiler.

Name Description Type
type Type of expression: static, dynamic, or dependent. static

for list arguments, dynamic for iterators, e.g., itertools. If
dependent, then the value will be computed according to the
variable specified in the expression value (see below).

str

val_type Value of the expression: numeric, string. str
value Expression generating the list of values, e.g., [0,1,2,3],

itertools.product([0,1], [10,20]), etc.
Object

restrict If set, MARTA discards the inclusion of the feature if the condi-
tion is satisfied. This is useful to avoid the product of redundant
combinations; e.g., restrict: "N > 4" means that the variable
will only be considered if N is higher than 4.

str

4.4. Configuration | 99

Table 4.6: Description of all available options within each execution dictionary in
the configuration file for the Profiler.

Name Description Type
enabled Enables execution. bool
papi_counters List of PAPI counters to read. str list
time Measures execution time with gettimeofday. bool
tsc Measures TSC cycles using rdtsc. bool
nexec Repetitions per each configuration. int
threshold_outliers Threshold for outlier detection. int
mean_and_discard Computes average values after discarding outliers. bool
nsteps Number of iterations of the loop containing the

ROI if specified.
int

intel_turbo Enables or disables turbo boost on Intel processors
via MSR.

bool

max_freq Sets maximum CPU frequency via MSR. bool
cpu_affinity Logical CPU ID for pinning single-thread mea-

surements.
int

cache_flush Cache flush enabled for architectures supporting
CLFLUSH.

bool

Table 4.7: Description of all available options within each output dictionary in the
configuration file for the Profiler.

Name Description Type
name Name of output file. str
columns Outputs columns. If “all”, then all dimensions used in the config-

uration: compiler, d_features, kernel_config, papi_counters,
etc.

str

report Generates a log file with all information related to the experiment:
host machine, elapsed time, standard output, standard error, etc.

bool

100 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

1 #include "marta_wrapper.h"
2 void foo(int N, int M, float *restrict y,
3 float *restrict A, float *restrict x) {
4 for (int i = 0; i < N; ++i)
5 for (int j = 0; j < M; ++j)
6 y[i] += A[i*N + j] * x[i];
7 }
8 MARTA_BENCHMARK_BEGIN;
9 POLYBENCH_1D_ARRAY_DECL(y, float, N);
10 POLYBENCH_1D_ARRAY_DECL(A, float, N*M);
11 POLYBENCH_1D_ARRAY_DECL(x, float, N);
12 PROFILE_FUNCTION(foo(N,M,y,A,x));
13 MARTA_AVOID_DCE(y);
14 MARTA_BENCHMARK_END;

Listing 4.1: Toy example of a benchmark using macros included in MARTA. We
have used macros included in PolyBench/C for declaring variables, even though
this is not a requirement. The code implements a matrix-vector multiplication
kernel, which is executed 1,000 times in a loop for its instrumentation.

same kernel or program, as defined by the Cartesian product of, e.g., the compiler
flags, the input to the kernel, or the program features employed. Lists can be
specified in a pythonic manner, both dynamically (e.g., using iterators) or statically
(i.e., defining a concrete set of elements). Parameters are passed to the target binary
using -D preprocessor macros. Tables 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 list the possible
compilation, flags parametrization, execution and output options.

MARTA includes a set of tested directives or macros for writing new benchmarks
and/or profiling a function of interest in an already existing program. These direc-
tives are meant to avoid low-level details for starting, stopping and printing values
in hardware counters, avoid loop optimizations if the ROI is instrumented within a
loop, declare new variables, avoid dead code elimination (DCE) optimizations, flush
cache memories, or initialize data. These macros can be used as an independent
library as well, but their main goal is to integrate the instrumentation of the code
with the toolkit seamlessly. Table A.1 in Appendix A describes these predefined
directives, whose usage will be exemplified in different case studies in Section 4.5.
For completeness, Listing 4.1 illustrates how these macros can be used for writing a
new benchmark in a few lines. This benchmark is fully compliant with the system,

4.4. Configuration | 101

Table 4.8: Description of all available options within each kernel dictionary in the
configuration file for the Analyzer.

Name Description Type
input Input data in CSV format. str
output_path Output path. str
prepare_data Preprocessing configuration. See Table 4.9. dict
plot Plotting parameters. See Table 4.10. dict
classification Parameters for classification analyses, e.g., decision trees. dict
feat_importance Parameters for feature importance analyses, e.g., random

forests.
dict

requiring only the addition of a header and a set of directives.

4.4.2 Analyzer

Besides the CSV file containing the input data, the Analyzer also requires a con-
figuration file to specify the data wrangling, classification, feature evaluation, and
plotting tasks to perform. Table 4.8 details the list of parameters available to this
module. Table 4.9, within the prepare_data dictionary, details the configuration
parameters for the preprocessing stage. Currently, the system supports building de-

Table 4.9: Description of all available options within each prepare data dictionary
in the configuration file for the Analyzer.

Name Description Type
cols Columns or dimensions to consider. list
rows Values of rows to filter. dict
target Dimension of interest, e.g., FLOPS. str
norm Normalization of values for the target dimension: minmax or

zscore.
str

categories Dictionary containing meta-information for the categories:

• num: number of categories to generate statically.

• grid_search: uses KDE and performs grid search for band-
width and kernel parameters.

• mode: if normal, Silverman is used for KDE. If multimodal,
Improved Sheather-Jones is used.

dict

102 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

Table 4.10: Description of all available options within each plot dictionary in the
configuration file for the Analyzer.

Name Description Type
sort Dimension to use for sorting values. str
type Type of plot: relplot, scatterplot, lineplot or kdeplot. str
format Output format: png, pdf, eps, ps or svg. str
x_axis Dimension for the X axis. str
y_axis Dimension for the Y axis. str
hue Dimension to group by color. str
size Dimension to group by size. str
log_scale Applies logarithmic scale. bool

cision tree classifiers, for discriminating between categories of the target dimension
and the values of dimensions of interest; and random forest classifiers, for learning
about the importance of each feature in the dataset. It is straightforward to in-
corporate other classifiers and analyses to the framework, such as SVMs, k -means
clustering, etc.

The Analyzer can also generate different types of plots. The parameters for the
plotting step are described in Table 4.10. The configuration file allows the user
to set all available parameters in the scikit-learn library for both classifiers [114]
and [115].

4.5 Evaluation: Case Studies

In order to illustrate the performance and capabilities of the tool, this section
describes five different case studies. Each of them contains the motivation and
description of the space to explore, the advantages of using MARTA, and the use of
the tool in order to evaluate the case study. Note that all the plots in this section
have been automatically generated by the framework, directly using the output of
the Profiler, together with a configuration file as the input to the Analyzer.

4.5. Evaluation: Case Studies | 103

4.5.1 Micro-benchmarking gather

Packing random operands into a single vector using one instruction was not
possible until AVX2 with the addition of the gather instruction. This instruction
is decoded into many micro-operations, depending on the architecture. In addition,
the latency of a gather is not constant, depending on the type and form of the
operands [1]. In this case study we want to quantify the impact of the number of
elements and cache lines touched by this instruction when the cache is cold for an
Intel Xeon Silver 4216 (Cascade Lake) and an AMD Ryzen 9 5950X (Zen3).

Definition of the exploration space

Gather is a complex x86 macro-instruction introduced in AVX2 for loading ran-
dom data points given a starting address and a set of indices. This instruction has
been reported to deliver variable latencies [1], depending on the source and desti-
nation operands. Hofmann et al. [43] demonstrate the performance variability of
the gather instruction for the Intel Knights Corner and Intel Haswell architectures,
depending on the number of elements fetched by the gather instruction from a cache
line.

Differently, the present experiment explores the impact of the number of cache
lines touched by a gather instruction but considering a cold cache, i.e., when data
fills come from main memory. We actively avoid any cache prefetching impact, and
analyze the real cost of gathering random data elements from main memory.

MARTA in action

The source code employed to explore this search space using MARTA is detailed
in Listing 4.2. The DO_NOT_TOUCH(var) directives avoid any compiler optimization
on variable var, e.g., dead code elimination. The assembly code generated for this
input is shown in Listing 4.3. As it can be seen, the instrumentation overhead is
minimal. Similarly, any assembly code can be plugged directly into the input source
passed to MARTA for compilation and execution.

104 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

1 #include "marta_wrapper.h"
2 #include <immintrin.h>
3 void gather_kernel(float *restrict x) {
4 __m256i index = _mm256_set_epi32(IDX7, IDX6, IDX5, IDX4,
5 IDX3, IDX2, IDX1, IDX0);
6 __m256 tmp = _mm256_i32gather_ps(x, index, 4);
7 DO_NOT_TOUCH(tmp);
8 DO_NOT_TOUCH(index);
9 }
10 MARTA_BENCHMARK_BEGIN;
11 POLYBENCH_1D_ARRAY_DECL(x, float, N);
12 init_1darray(POLYBENCH_ARRAY(x));
13 MARTA_FLUSH_CACHE;
14 PROFILE_FUNCTION(gather_kernel(POLYBENCH_ARRAY(x) + OFFSET));
15 MARTA_AVOID_DCE(x);
16 MARTA_BENCHMARK_END;

Listing 4.2: Input C code for micro-benchmarking the gather FP instruction. The
configuration file for this benchmark will declare all possible values for the IDX#
variables.

As an example of our configuration, the possible list of values for the IDX#
variables for gathering 8 elements are:

• IDX0: [0]

• IDX1: [1, 8, 16]

• IDX2: [2, 9, 32]

• IDX3: [3, 10, 48]

• IDX4: [4, 11, 64]

• IDX5: [5, 12, 80]

• IDX6: [6, 13, 96]

• IDX7: [7, 14, 112]

The Cartesian product of these lists generates a space of more than 2K elements,
including all combinations of these gather instructions touching any number of cache

4.5. Evaluation: Case Studies | 105

1 ...
2 vmovaps ymm1, YMMWORD PTR [rsp]
3 vmovdqa ymm2, YMMWORD PTR .LC1[rip]
4 call polybench_start_timer@PLT
5 test eax, eax
6 begin_loop:
7 vmovaps ymm3, ymm1
8 vgatherdps ymm0, DWORD PTR [rax+ymm2*4], ymm3
9 add rax, 262144
10 cmp rbx, rax
11 jne begin_loop
12 call polybench_stop_timer@PLT
13 ...

Listing 4.3: Example of 256-bit-register assembly code generated for the gather
experiment: rax holds an offset to avoid data reuse, ymm2 is used to compute
the indices, and ymm3 holds the mask (e.g., when gathering less than 8 elements
using 256 bits).

lines from 1 to 8. The same reasoning is extended for the remaining gather experi-
ments, varying from 2 to 8 data points or elements. In total, we generate more than
3K combinations for each platform. The total execution time for all these experi-
ments is roughly three hours on each machine, including the compilation process.

Evaluation

Our analysis focuses on two factors: 1) the impact of the number of distinct
cache lines on the gather instruction, and 2) the difference in performance between
two of the latest Intel and AMD architectures. The target performance metric is
the TSC cycles, in order to be frequency agnostic.

MARTA generates categories based on the density distribution of the values
obtained. Figure 4.2 illustrates the resulting distribution plot, showing the different
centroids and the categories induced by MARTA according to the KDE approach.
The legend in this figure describes the categories generated for the TSC values. Even
though some of them are not visible in the figure due to their order of magnitude,
the system helps to locate them by displaying the peak centroids in the distribution.

106 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

50
.0

82
.6

10
0.0

11
8.3

9
15

8.7
1

20
4.1

7
25

0.0
30

0.0

tsc

0.00

0.01

0.02

0.03

0.04

0.05

De
ns

ity

tsc_cat
tsc-67.827-86.105
tsc-92.507-98.478
tsc-98.569-134.025
tsc-134.028-145.702
tsc-145.741-156.553
tsc-156.812-173.322
tsc-182.668-324.870

Figure 4.2: Distribution plot for gather with respect to its performance in terms
of TSC cycles (log scale). Vertical dashed lines mark the peak centroids of each
category found.

Based on this model, the system builds a decision tree as shown in Figure 4.3,
with an accuracy rate of ≈ 91%. The model uses the number of cache lines touched
by the instruction (N_CL), the vector width (vec_width, 0 for 128 bits and 1 for
256 bits), and the host platform (arch, 0 for AMD and 1 for Intel). The structure
very clearly gives the intuition that the degradation in performance is related to
the increase in the total number of cache lines touched by the gather instruction.
However, this simple model can also discover some other hidden architectural effects,
e.g., following the decision tree, our model is able to detect that the AMD Zen3
performs better when the number of cache lines touched is 4 when using 128-bit
width vectors. This behavior is not present in the Intel machine.

This decision tree also serves to investigate why the predictor missclassifies cer-
tain points. In this specific case, after manual exploration, we found out that most

4.5. Evaluation: Case Studies | 107

N_CL <= 4.5

100.0%
impur. 0.3

tsc-098.569-134.025

N_CL <= 3.5

85.6%
impur. 0.16

tsc-098.569-134.025
True

arch <= 0.5

14.4%
impur. 0.7

tsc-134.028-145.702

False

vec_width <= 0.5

62.0%
impur. 0.05

tsc-098.569-134.025

arch <= 0.5

23.6%
impur. 0.37

tsc-098.569-134.025

arch <= 0.5

1.3%
impur. 0.5

tsc-098.569-134.025

N_CL <= 1.5

60.7%
impur. 0.03

tsc-098.569-134.025

0.6%
impur. 0.0

tsc-067.827-086.105

0.7%
impur. 0.0

tsc-098.569-134.025

7.2%
impur. 0.21

tsc-098.569-134.025

53.4%
impur. 0.0

tsc-098.569-134.025

vec_width <= 0.5

11.8%
impur. 0.01

tsc-098.569-134.025

11.8%
impur. 0.5

tsc-098.569-134.025

0.0%
impur. 0.0

tsc-092.507-098.478

11.8%
impur. 0.0

tsc-098.569-134.025

N_CL <= 5.5

7.2%
impur. 0.55

tsc-098.569-134.025

N_CL <= 5.5

7.3%
impur. 0.59

tsc-134.028-145.702

5.5%
impur. 0.31

tsc-098.569-134.025

N_CL <= 6.5

1.7%
impur. 0.57

tsc-145.741-156.553

1.5%
impur. 0.47

tsc-145.741-156.553

0.2%
impur. 0.0

tsc-156.812-173.322

5.5%
impur. 0.41

tsc-134.028-145.702

N_CL <= 6.5

1.8%
impur. 0.5

tsc-156.812-173.322

1.5%
impur. 0.5

tsc-156.812-173.322

0.2%
impur. 0.14

tsc-156.812-173.322

Figure 4.3: Decision tree for predicting the performance of gather based on the
categories generated by the system. N CL is the number of cache lines touched by
the program, arch is 0 for AMD Zen3 and 1 for Intel Cascade Lake. vec width is
0 for 128-bit vectors, and 1 for 256-bit vectors. Nodes in lighter colors represent
a higher impurity degree, which is not desirable. Each node is labeled with its
assigned category.

108 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

errors are attributable to fuzzy categorical boundaries and natural measurement
noise.

In this case we focus on decision trees, as they allow to visualize a partitioning of
the space in a manner that is intuitively interpretable by the user. Other techniques
such as linear regression might provide lower RMSE, but they are also typically
much less intuitive and make knowledge transfer harder than, e.g., a small decision
tree as built by MARTA. On the other hand, the feature importance analysis (MDI)
reports a high difference between the number of cache lines touched, the architecture
and vector width: 0.78 against 0.18 and 0.04, respectively.

To conclude this case study and our post hoc analysis, we have demonstrated
that, under cold cache conditions, the performance of gather operations is clearly
dependent on the number of cache lines used. The degradation is remarkable when
increasing the number of cache lines touched by the instruction. On our Intel Cas-
cade Lake processor there is no influence on performance of the vector width or the
use of masks. There is, however, a noticeable and interesting difference when using
the 128-bit width version on our AMD Zen3 processor.

4.5.2 Empirical throughput of FMA instructions

Modern architectures include Fused Multiply-Add (FMA) units in their designs.
In this case study we want to empirically discover the throughput of the FMA
instruction for an Intel Cascade Lake and an AMD Zen3 processor.

Definition of the exploration space

FMA instructions perform fused multiply-add operations and were introduced
as extensions of the 128- and 256-bit SIMD instructions in x86. There were some
divergences between Intel’s and AMD’s implementation at the beginning, but mod-
ern architectures, starting from Haswell on Intel and Zen2 on AMD, implement the
FMA3 ISA. All instructions available in this ISA have the form of d = a×b+c, where
d must be the same register as either a, b or c. As such, there are different variants of
these same operations, for instance, vfmadd132ps and vfmadd213ps, which vary the

4.5. Evaluation: Case Studies | 109

operands chosen for the multiplication and the destination operand. These instruc-
tions have dedicated resources in the pipeline, typically FMA units. However, these
units share ports in the pipeline with other architectural units such as the division,
integer (e.g., ALU, jump, load effective address, etc.), or shift units. In this case
we want to get the actual throughput of any FMA instruction for a given platform,
regardless of data type, vector width, or interferences with any other instruction.

MARTA in action

This experiment requires micro-benchmarking, and MARTA includes a specific
configuration for this purpose. It also requires hot cache conditions in order to
get the maximum throughput of consecutive and independent FMA instructions.
We consider two or more FMA instructions to be independent iff there is no data
dependency among them. MARTA is able to automatically generate the C code
required for benchmarking a list of assembly instructions. It can also generate all
the possible permutations of the subsets of this instruction list. This is useful if our
experiment requires to consider all possible orderings of the instructions to measure.

For this purpose, we specify the list of assembly instructions to benchmark in a
configuration file, as described in Listing 4.4, or using the CLI (see full list of op-
tions in Appendix A.1), e.g., marta_profiler perf --asm "vfmadd213ps %xmm2,
%xmm1, %xmm0". MARTA is also in charge of unrolling these instructions, for repro-
ducibility reasons, and executing warm up iterations. All these parameters are also
configurable during runtime.

Extending the example in Listing 4.4, MARTA makes it straightforward to write
more benchmarks but changing the registers (i.e., vector width) and the data type
(ps suffix in the code). MARTA automates the generation of these combinations
according to the number of consecutive independent instructions we want to issue,
from only the first instruction up to all of them.

110 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

1 asm_body:
2 [
3 "vfmadd213ps %xmm11 , %xmm10 , %xmm0",
4 "vfmadd213ps %xmm11 , %xmm10 , %xmm1",
5 "vfmadd213ps %xmm11 , %xmm10 , %xmm2",
6 "vfmadd213ps %xmm11 , %xmm10 , %xmm3",
7 "vfmadd213ps %xmm11 , %xmm10 , %xmm4",
8 "vfmadd213ps %xmm11 , %xmm10 , %xmm5",
9 "vfmadd213ps %xmm11 , %xmm10 , %xmm6",
10 "vfmadd213ps %xmm11 , %xmm10 , %xmm7",
11 "vfmadd213ps %xmm11 , %xmm10 , %xmm8",
12 "vfmadd213ps %xmm11 , %xmm10 , %xmm9",
13]

Listing 4.4: Example of list of instructions to benchmark for getting the FMA
throughput in AT&T format, using 128-bit vectors for floating-point precision.

Evaluation

In this experiment we ran a set of benchmarks varying the following features: 1)
number of independent FMA instructions executed contiguously (from 1 to 10), 2)
vector width (128 bits, 256 bits and 512 bits, if available), and 3) data type (single
and double precision). A total of 60 benchmarks are generated. We ran these ex-
periments on three different machines: Intel Xeon Silver 4216 (Cascade Lake), Intel
Xeon Gold 5220R (Cascade Lake), and AMD Ryzen 9 5950X (Zen3). The results
are shown in Figure 4.4 in the form of a line plot, colored by the configuration (data
type and vector width), and with the line style according to the architecture used.
The figure clearly shows the saturation points for these architectures. Conducting
such experiment can validate, or even replace, manufacturer’s documentation on the
throughput of specific instructions.

We observe under which scenario both AMD and Intel machines allow 2 FMAs
to be executed in a single cycle, independently of their vector width. It requires
to have at least 8 independent FMAs in the loop body to achieve a throughput
of 2 FMAs per cycle, as otherwise the throughput is reduced. This experiment
highlights how one would fail to achieve a throughput of 2 FMAs per cycle with
only two independent FMAs in flight. We suspect this is related to the 4-cycle
latency of FMA instructions. For Intel machines using AVX-512, only one FMA can

4.5. Evaluation: Case Studies | 111

2 4 6 8 10
Number of FMA instructions issued

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Th
ro

ug
hp

ut
 (i

ns
tru

ct
io

ns
/c

yc
le

s)

float_128
float_256
float_512
double_128
double_256
double_512

arch
intel_cascadelake_gold
amd_zen3
intel_cascadelake_silver

Figure 4.4: Line plot generated by MARTA according to the number of indepen-
dent FMA instructions issued and the reciprocal throughput obtained, computed
as the number of instructions executed divided by the number of cycles. All lines
overlap, but the configurations using 512-bit vectors (float 512 and double 512).

be issued per cycle. This indicates most likely the availability of a single AVX-512
FPU.

MARTA can generate a decision tree-based predictor for all architectures, as
shown in Figure 4.5. This predictor, while naïve, is able to extract the importance
of the features, accurately categorizing all data points.

To conclude our case study, we observed that both AMD Zen3 and Intel Cascade
Lake have a maximum throughput of 2 FMAs per cycle using vectors of 128 and
256 bits, i.e., they can issue 2 FMAs in a single cycle, provided there are enough
independent instructions in flight. AMD Zen3 does not feature AVX-512, while our
Intel Cascade Lake processors feature a single AVX-512 FPU. From an architec-
tural point of view, this is typically done by fusing both 256-bit units when issuing
instructions using 512-bit vectors.

112 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

N_FMA <= 5.5

100.0%
impur. 0.46

THROUGHPUT-0.249-1.250

51.6%
impur. 0.0

THROUGHPUT-0.249-1.250

True

vec_width <= 384.0

48.4%
impur. 0.4

THROUGHPUT-1.453-2.000

False
35.2%

impur. 0.0
THROUGHPUT-1.453-2.000

13.3%
impur. 0.0

THROUGHPUT-0.249-1.250

Figure 4.5: Simple predictor synthesized by MARTA according to the number of
FMAs issued and the vector width of the instructions used.

4.5.3 Influence of access pattern on memory bandwidth

The performance of memory-bound benchmarks is limited by the main memory
bandwidth. This bandwidth is affected by several factors, not all of them intuitive.
Modern architectures are designed to efficiently access data in a streamlined fashion
by implementing mechanisms such as software and hardware prefetching. In this
section, we focus on the analysis of a triad operation on a double-precision floating-
point data type, studying the effect of changing the element access order.

Definition of the exploration space

Memory bandwidth is typically computed for contiguous memory addresses, as in
STREAM benchmark [84]. The classic triad kernel has the form of c(i) = a(i)∗ b(i).
In this case study, we are going to characterize the influence of the access functions
f , g, and h on the kernel c(f(i)) = a(g(i)) ∗ b(h(i)).

Intuitively, a purely streamlined access, i.e., f(i) = g(i) = h(i) = i, will deliver
the best possible bandwidth. But how is this peak bandwidth affected by strided
accesses, or even random accesses, in one or more streams, such as could occur for
example in Sparse Matrix-Vector Multiplication computations?

4.5. Evaluation: Case Studies | 113

1 __m256d regA1 = _mm256_load_pd(&a[data_a]);
2 __m256d regA2 = _mm256_load_pd(&a[data_a + 4]);
3 __m256d regB1 = _mm256_load_pd(&b[data_b]);
4 __m256d regB2 = _mm256_load_pd(&b[data_b + 4]);
5 __m256d regC1 = _mm256_mul_pd(regA1, regB1);
6 __m256d regC2 = _mm256_mul_pd(regA2, regB2);
7 _mm256_store_pd(&c[data_c], regC1);
8 _mm256_store_pd(&c[data_c+4], regC2);

Listing 4.5: AVX triad kernel used for measuring memory bandwidth.

MARTA in action

We manually write a tuned version of the STREAM benchmark implementing the
proposed triad operation directly using AVX Intrinsics, to avoid compiler optimiza-
tion interference in the measurements. The code is shown in Listing 4.5. The ac-
cessed elements of each array are determined by the access variables data_{a,b,c}.
The values of these variables are the ones that drive the study, and determine
whether the access to each stream is sequential, strided or random. We set up
the experiment so that all three streams and access variables are 64B-aligned all the
time (i.e., memory block aligned). This means that strided and random accesses
are not defined in terms of individual array elements, but of memory blocks. Once
a block is selected, its eight contiguous double-precision elements are accessed (for
a and b) or written (for c). We do this so that the total number of data accesses is
invariable across different access patterns. Similarly, the total number of cache hits
and misses will be invariable in the absence of prefetching, with the rare exception
of the same block being selected twice in close succession for the random access
experiments. The total number of iterations is equal to the total number of memory
blocks in each array, STREAM_BLOCKS. The processor used for evaluation is an Intel
Xeon Silver 4216 (Cascade Lake), and, for that reason, the size of each array is
defined to be 16 Mi elements, i.e., 128 MiB or at least four times the total LLC size
of 22 MiB, as recommended by the STREAM author. When accessing streams with
a stride S, the benchmark accesses each block of each array exactly once as follows.
During a first traversal, only blocks in positions B | B mod S = 0 are accessed. In
a second traversal, blocks in positions B | B mod S = 1 are selected. The process

114 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

continues until, in traversal S − 1, the last untouched blocks are accessed. This
avoids unwanted cache reuse with large access strides.

We write the following benchmark versions: one with all sequential accesses that
serves as a baseline; four strided versions, one with a stride on b only, one with
a stride on c only, one with a stride on b and a, and one with a stride on all
three streams; and four random versions in which rand() is used for each randomly
accessed stream, in the same fashion as the strided access.

Evaluation

We use MARTA to automatically run 630 different micro-benchmarks. Each of
the 9 different code versions described above is run using 1, 2, 4, 8 and 16 cores. Each
strided version is run with S values from 1 to 8 Ki. We build a decision tree that
tries to predict the achievable bandwidth by each access pattern given its stride and
number of execution threads. This is useful to bound the performance of different
classes of kernels, e.g., a Sparse Matrix-Vector Multiplication, which is similar to
a triad in which one of the streams is accessed randomly. The decision tree shows
remarkable impurity when classifying strided accesses. In order to study this, we
first focus on analyzing the results obtained for a single thread. These are shown in
Figure 4.6. The bandwidth achieved by fully sequential accesses is approximately
10 times smaller than the peak, at just 13.9 GB/s. Sequential and random accesses
are not affected by the STRIDE parameter, and appear in this figure as bounds to the
actual performance obtainable by the strided versions. The figure clearly shows how
the bandwidth drops with the stride: it drops sharply for S = {2, 4, 8, 16, 32, 64},
to an average of 9.2 GB/s for the case of strided b only. The clear reason in this
case is the ineffectiveness of the next line hardware prefetcher. There is another
sharp drop starting at S = 128, to an average of 4.1 GB/s, which is similar to the
performance of accesses using rand(). This is ultimately an artifact caused by the
single-threaded execution, as will be shown with multithreaded experiments.

We analyze the bandwidth evolution as the number of threads increases up to
the 16 physical cores available in the processor. We presume that the very low band-
width achieved for a single thread is caused by front-end stalls and, consequently,
trivially parallelizing the triad computation using OpenMP should greatly increase

4.5. Evaluation: Case Studies | 115

21 23 25 27 29 211 213

STRIDE

2

4

6

8

10

12

14

Ba
nd

wi
dt

h
GB

/s

c(i) = a(i) * b(i)
c(i) = a(i) * b(S*i)
c(i) = a(S*i) * b(S*i)
c(S*i) = a(S*i) * b(S*i)
c(S*i) = a(i) * b(i)
c(i) = a(i) * b(r)
c(i) = a(r) * b(r)
c(r) = a(r) * b(r)
c(r) = a(i) * b(i)

Figure 4.6: Bandwidth obtained for different access patterns using a single
thread. Accesses labeled as x[i] represent sequential accesses, x[S*i] rep-
resent strided accesses, and x[r] represent random accesses.

the available bandwidth. The results are shown in Figure 4.7. We can see a clear
increasing trend for all benchmark versions, except for those calling rand(). In this
case, using multiple threads to access memory is harmful for performance, achieving
a low peak bandwidth of only 0.4 GB/s for the version which accesses three random
streams through calls to rand(). This low performance is caused by the enormous
overhead introduced by the call to rand(), as these versions emit, on average, 5x
and 6x more memory loads and stores, respectively.

4.5.4 Auto-vectorizing reductions

Compilers are able to vectorize certain types of loops and code blocks [38]. Mod-
ern auto-vectorizers are able to detect and vectorize reductions, which are common
patterns in applications and kernels such as Sparse Matrix-Vector Multiplication. In

116 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

2 4 6 8 10 12 14 16
Execution threads

0

20

40

60

80

Ba
nd

wi
dt

h
GB

/s

c(i) = a(i) * b(i)
c(i) = a(i) * b(S*i)
c(i) = a(S*i) * b(S*i)
c(S*i) = a(S*i) * b(S*i)
c(S*i) = a(i) * b(i)
c(i) = a(i) * b(r)
c(i) = a(r) * b(r)
c(r) = a(r) * b(r)
c(r) = a(i) * b(i)

Figure 4.7: Multithreaded bandwidth per stream version. Accesses labeled as
x[i] represent sequential accesses, x[S*i] represent strided accesses, and
x[r] represent random accesses.

this case study, we assess whether the GCC and ICC compilers are able to vectorize
reductions of floats using -ffast-math optimization.

Definition of the exploration space

According to the user manual, GCC is able to vectorize floating-point reductions
using either the -ffast-math or the -fassociative-math flags [38]. This statement
is true for simple reduction loops, such as the one in Listing 4.6, which features the
simplest case in which the loop accesses contiguous array elements, with an initial
value and number of iterations known at compile time. Even when the number of
iterations is unknown at compile time, the compiler should be able to vectorize the
code using versioning and loop peeling.

4.5. Evaluation: Case Studies | 117

1 for (int i = 0; i < N; ++i) {
2 sum += x[i] * 42.0f;
3 }

Listing 4.6: Vectorizable reduction of N floating-point values.

However, and depending on the actual values and coding style for the loop step
and bounds, the compiler may fail to vectorize the reduction. The aim of this
experiment is to test under which conditions the compiler decides to not vectorize
the code, whether due to the cost model indicating non profitability or to a coding
style problem.

MARTA in action

For this experiment, the reduction is rewritten as shown in Listing 4.7. The
list of values for the parameters in the code, whose Cartesian product defines the
exploration space, is as follows:

• N: [1, 2, 3, 4, 5, 6, 7, 8, 12, 16, 20, 24, 28, 32, 40, 48, 56, 64, 72, 80, 88, 96,
104, 112, 120, 128]

• INIT_VAL: [1, 2, 3, 7]

• LOOP_STEP: [1, 2, 3, 5]

• ACC_STRIDE: [1, 2, 5, 10]

In addition to the parameter values themselves, we also explore how the auto-
vectorizer is affected by their being parametric or not, i.e., hardcoding the values
as constants in the source code as opposed to using variables. This creates four
additional binary conditions, i.e., 24 combinations. For completeness, this experi-
ment explores the behavior of ICC in addition to GCC. The full exploration space
includes a grand total of more than 53K cases: 2× 26× 43 × 24.

As described in Section 4.2, MARTA can perform static code analysis, but is
also capable of interpreting the optimization reports generated by the compiler in

118 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

1 void KERNEL(int n, int init_val, int loop_step, int index_factor,
2 DATA_TYPE POLYBENCH_1D(x, N, n)) {
3 DATA_TYPE sum = 0;
4 for (int i = INIT_VAL; i < N; i += LOOP_STEP) {
5 sum += x[ACC_STRIDE * i] * 42.0f;
6 }
7 DO_NOT_TOUCH(sum);
8 }

Listing 4.7: Input code to MARTA for benchmarking a single vector-constant
multiplication reduction. Each of the features included (N, INIT VAL, LOOP STEP

and ACC STRIDE) will be compiled as a variable if configured to be parametric, and
its value will not be known at compile time.

order to determine whether a particular loop has been vectorized. In addition to
the input sources, the configuration for this experiment only requires the YAML file
specifying all the features described above: whether the upper bound of the loop is
scalar or parametric, the list of compilers to be used and their flags, and the different
possible values for each variable.

Evaluation

As we stated in the description of the exploration space, we have run more
than 53K experiments, out of which ≈ 49% are vectorized, and ≈ 51% are not.
Figure 4.8 depicts the density graph for vectorized and non-vectorized cases, showing
the number of iterations of the loop in the X axis. As can be seen, the majority
of non-vectorized cases have low trip counts. The results of the experiments were
passed to the Analyzer to build the decision tree in Figure 4.9, which predicts
whether a loop will be vectorized or not. The resulting tree achieves an accuracy of
≈ 94% with only four depth levels. The tree essentially looks at trip count values,
and so loops with 11 iterations or less are usually not vectorized (with the exception
of loops where the access stride is either 1 or 2, and the loop step is known at
compile time). According to the model, all cases where the access stride is 1 or 2
are vectorized, while those where the loop step is parametric and the number of
iterations is lower than 60 are not.

4.5. Evaluation: Case Studies | 119

No vectorization

Vectorization

Figure 4.8: Stacked density graph of cases where loops are vectorized (diagonal
hatch pattern) and non-vectorized (plain pattern) with respect to the number of
iterations N ITER of each loop. N ITER is a derived parameter that MARTA com-
putes as N divided by LOOP STEP.

The feature importance analysis reports a 71% weight for the number of itera-
tions, and 12% and 10% for the access stride and parametric condition of the loop
step, respectively, which matches the model described above. To close this case
study, we conclude that the cost model for the vectorization is driven mostly by the
trip count of the loop, for both GCC and ICC.

4.5.5 Cost model for loop permutation

Interchanging the nesting order of a loop nest may improve locality. This tech-
nique is widely known and employed in all different compilers. Notwithstanding
the potential benefits of this loop transformation, the cost model of the compiler
may include other parameters preventing this optimization. In this case study, we

120 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

False

True

Figure 4.9: Decision tree to predict whether a loop will be vectorized. N ITER is
the number of iterations, LS PARAM indicates whether the loop step is parametric or
not, and ACC STRIDE is the access stride constant that multiplies the loop induction
variable in the array index. Each node is labeled with its assigned category.

4.5. Evaluation: Case Studies | 121

investigate the factors that lead to loop permutation being applied by GCC and
ICC.

Definition of the exploration space

Loop permutation is a classic loop optimization that reorders the iterations of
one or more loop nests in order to improve spatial locality. There are some obvious
cases where this technique will be profitable, e.g., favoring row-major accesses when
using 2-dimensional matrices. For instance, GCC will permute the loop shown in
Listing 4.8. Besides improving locality, this optimization may also enable vectoriza-
tion. Both GCC and ICC describe in their optimization reports (-qopt-info-loop
and -qopt-report-phase=loop, respectively) if this technique has been applied for
a particular loop nest. These data can be leveraged to build a cost model that tries
to predict when a compiler will permute a loop nest of interest. According to the
manual [39], GCC applies loop permutation to the loops depicted in Listing 4.8, by
interchanging the innermost loop with the j-loop.

Our experimental setup explores 2- and 3-dimensional loop nests that compute
either a multiply-and-add operation or a reduction, varying features such as the loop
nest depth, trip count, variable dimensions, and whether bounds are parametric or
constant.

MARTA in action

We build the exploration space based on the dimensionality and type of the loop
nest (CFG variable), the size of the loop nest (N, M and L), whether loop bounds are
parametric or not (LOOP_BOUND_PARAMETRIC), the dimension of the declared arrays

1 for (int i = 0; i < N; i++)
2 for (int j = 0; j < N; j++)
3 for (int k = 0; k < N; k++)
4 c[i][j] = c[i][j] + a[i][k]*b[k][j];

Listing 4.8: 3-dimensional loop nest benefiting from loop permutation [39].

122 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

(ARRAY_DIM), and which compiler is used and its flags. The selected values for all
these variables are enumerated below:

• CFG: [LOOP_2D, LOOP_3D, REDUCTION]

• N: [8, 16, 32]

• M: [8, 16, 32]

• L: [8, 16, 32]

• LOOP_BOUND_PARAMETRIC: [0, 1]

• ARRAY_DIM: [1, 2]

• COMPILER: [gcc, icc]

• COMPILER_FLAGS: [-O3, -Ofast]

The Cartesian product of these sets generates an exploration space of 34 × 24 =

1, 296 elements. Configuring MARTA for this task only requires writing the code to
profile, shown in Listing 4.9, and the configuration file with the parameters described
above. As in the previous experiment, MARTA will automatically parse configura-
tion reports and detect whether loop permutation is applied to a particular loop or
not. This information will be included in the CSV output from the Profiler, which
is then passed to the Analyzer.

Evaluation

From the performance point of view, all code versions benefit from the manual
application of this technique. For the LOOP_2D configuration none of the input cases
is optimized by GCC or ICC, as detailed in Figure 4.10. We build two different deci-
sion trees, illustrated in Figures 4.11 and 4.12. The first one models the influence of
dimensions for the 3-dimensional loop nest, and the second one for the 2-dimensional
reduction. Each of them have an accuracy of ≈ 99%. In both cases the compiler
of choice is the most impacting factor (weight of over 70% in the feature analysis
report).

4.6. Related Work | 123

1 #if defined(LOOP_2D)
2 for (int i = 0; i < _UB_N; i++)
3 for (int j = 0; j < _UB_M+; j++)
4 # if ARRAY_DIM == 2
5 A[i][j] += B[j][i] * C[j][i];
6 # else
7 A[i*_UB_N + j] += B[j*_UB_M + i] * C[j*_UB_M + i];
8 # endif
9 #elif defined(LOOP_3D)
10 for (int i = 0; i < _UB_N; i++)
11 for (int j = 0; j < _UB_M; j++)
12 for (int k = 0; k < _UB_L; k++)
13 # if ARRAY_DIM == 2
14 A[i][j] += B[i][k] * C[k][j];
15 # else
16 A[i*_UB_N + j] += B[i*_UB_N + k] * C[k*_UB_L + j];
17 # endif
18 #elif defined(REDUCTION)
19 DATA_TYPE sum = 0.0f;
20 for (int i = 0; i < _UB_N; i++)
21 for (int j = 0; j < _UB_N; j++)
22 # if ARRAY_DIM == 1
23 sum += A[j*_UB_N + i];
24 # else
25 sum += A[j][i];
26 # endif
27 #endif

Listing 4.9: Simplified input source code to explore loop permutation with
MARTA.

To conclude this case study, we can state that the cost model implemented
by GCC only applies permutation when using -ffast-math, 1-dimensional arrays
for 3-dimensional loop nests, and the loop upper bound is 32 or greater. As for
ICC, it mostly applies permutation in all cases, except for small trip counts and
1-dimensional arrays.

4.6 Related Work

Many different tools and approaches for profiling applications and architectures
have been developed, from open source to commercial solutions, most of them based

124 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

No permutation Permutation
0

50

100

150

200

Co
un

t

compiler = gcc-11

No permutation Permutation

compiler = icc

-DLOOP_2D -DLOOP_3D -DREDUCTION

Figure 4.10: Distribution plot for the number of cases where the compiler decides
to apply loop permutation, depending on the loop type (CFG) and the compiler. No
permutation is performed for LOOP 2D by any of the compilers.

Figure 4.11: Decision tree built by MARTA for the -DLOOP 3D kernel. GCC is
labeled as compiler 0, while ICC is labeled as compiler 1. compiler flags is 0
for -O3 and 1 for -Ofast.

on instrumentation using hardware counters. Accessing to the values contained in
those counters typically requires reading Model Specific Registers (MSR) or Per-
formance Monitor Counters (PMC). Profilers commonly use interfaces for accessing
these hardware counters, such as perf_events. The API of these interfaces is usu-
ally complex and low-level. Therefore, there are many different implementations

4.6. Related Work | 125

Figure 4.12: Decision tree built by MARTA for the -DREDUCTION kernel. GCC is
labeled as compiler 0, while ICC is labeled as compiler 1. compiler flags is 0
for -O3,and 1 for -Ofast.

depending on the operating system and platform. For Linux, libpfm4 was devel-
oped as an almost zero-overhead solution for accessing these counters, and it is used
in high-level interfaces such as PAPI. This library provides a flexible API for setting
and programming events on these hardware counters. This alternative is intrusive,
as the source code must be modified, but it provides accurate measurements (ex-
act values are possible, sampling the hardware counters is optional) with very low
overhead, as it also employs rdpmc, if possible, for reading performance counters.

There are different alternatives for monitoring and collecting execution data from
binaries such as perf, which is included in the Linux kernel, OProfile [74] or LIK-
WID [127], which also integrates a library for accessing hardware counters similar
to PAPI. These are low-level tools based on dynamic instrumentation and, there-
fore, do not require source codes to be recompiled. TAU [117], Extrae [14], Vam-
pir [67], Scalasca Trace Tools [36], HPCToolkit [4], and Intel oneAPI [56] (formerly
Intel Parallel Studio XE) provide sophisticated profiling environments, producing
detailed and complete trace execution analyses from binaries. This last one em-
ploys a top-down methodology [136], which is meant for spotting the bottlenecks
in the pipeline from a hierarchical point of view. Abel and Reineke [2] propose a
micro-benchmarking methodology based on measuring instruction latencies and re-

126 | Chapter 4. MARTA: Multi-configuration Assembly pRofiler and Toolkit for
performance Analysis

ciprocal throughput for x86 architectures. The scope of this approach is meant for
measuring instructions only, and not regions of code. Downs [25] presents another
micro-benchmarking methodology for the analysis of micro-architectural features
based on a set of synthesized benchmarks and a framework for building bench-
marks. This toolkit uses libpfc [10] (another library for reading PMU using rdpmc
instructions), and is limited to x86 architectures. timemory [80] is a modular C++
toolkit for performance analysis and logging. It provides a simple interface for in-
strumenting programs avoiding low level details of the instrumentation back-end
and supports different programming languages. kerncraft [42] is a loop kernel anal-
ysis and performance modeling tool, which provides a framework for data reuse and
cache analysis.

Our approach goes beyond the ones presented above by combining several of
their abovementioned features, improving productivity and reproducibility with a
simple interface for combining different parameters, which includes execution en-
vironment configuration. MARTA is lightweight and highly tunable, allowing to
easily create large sets of data to analyze. This enables the analysis of very large
exploration spaces for benchmarking via automated data mining techniques. We be-
lieve MARTA answers a need for users who drive their work based on experimental
data for relevant micro-benchmarks: MARTA automates the experimental setup to
ease reproducibility and portability on different machines/setups, and importantly,
facilitates the task of analyzing the data produced by building predictors for the
data from the input feature values.

4.7 Discussion and Concluding Remarks

We presented MARTA, a fully implemented, open source, and highly configurable
toolkit for performance analysis of programs. Productivity and reproducibility are
improved with automated benchmark template generation from a simple configura-
tion file, implementing a sound experimental setup exploiting hardware counters in
the host platform when available. MARTA also integrates fine-grained directives for
instrumenting and monitoring small regions of code, enabling micro-benchmarking
analysis. An important aspect of MARTA is to facilitate performance analysis and
debugging: the toolkit applies data mining and machine learning or AI-based tech-

4.7. Discussion and Concluding Remarks | 127

niques on the measurements, automatically extracting the features of the experimen-
tal setup which have the most impact on performance. These post-processing tasks
are valuable for deriving knowledge from experiments, and are often not included in
other profiling tools.

MARTA was conceived as a “push-button” system for profiling and performance
analysis, basing its reliability on tested-and-true libraries and software. MARTA
integrates the PolyBench/C library [103] for instrumenting codes using the PAPI
library. It also relies on PolyBench/C directives for declaring and initializing n-
dimensional arrays, as well as flushing the cache. The pyperf library is used for
setting the processor frequency (and the turbo boost in Intel architectures). Data
mining and machine learning algorithms primarily from scikit-learn are employed
for performance data analysis. For the preprocessing stage, the Analyzer employs
pandas, numpy and KDEpy Python libraries. Using this approach, MARTA benefits
from the extensibility provided by integrating tested open source components, yet
retains control over the profiling and performance analysis processes using a simple
configuration file.

MARTA currently supports and targets both single- and multi-thread/core pro-
filing tasks. Post-processing tasks have been optimized for data mining and basic
ML classification, regression and clustering. MARTA does not currently implement
deep learning algorithms as typically the small number of samples collected might
not be sufficient for this type of AI techniques. However, our systematic export of
data series to CSV format allows seamless integration with any other data mining
or deep learning framework.

“Low-level programming is good for
the programmer’s soul.”

–John Carmack

5
SIMD Optimizations: Random Vector

Packing and Reduction Fusion

Chapter’s contents
5.1 Overview and Motivation. .130

5.2 Efficient Random Vector Packing .133

5.3 MACVETH: Multi-Architectural C-VEcTorizer for HPC applications . .149

5.4 Experimental Results .173

5.5 Related Work. .192

5.6 Concluding Remarks and Discussion. .194

Modern optimizing compilers implement robust auto-vectorization techniques
targeting rich SIMD ISAs. However, the usual practice is to generate machine-
specific assembly code, which exploits the SIMD units of the target processor. In
our work we take a different approach, by developing a source-to-source compilation
framework targeting the automatic vectorization of specific loop regions. We imple-
ment vectorization using an Intrinsics-style approach to facilitate portability to a
variety of concrete SIMD ISAs. With the help of MARTA, presented in Chapter 4,
we develop machine-independent cost-driven algorithms to efficiently pack arbitrary
or random operands and operations into SIMD vectors. Specifically, we support:

129

130 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1) vector packing across multiple distinct loop nests to maximize vector occupancy,
in particular when loops have a very small trip count; and 2) grouping and fusing
reductions. We have therefore developed MACVETH, a novel source-to-source com-
piler implementing these SIMD optimizations. Experimental results are presented
for a large set of vectorizable loop shapes, and for several key deep learning infer-
ence programs, demonstrating the benefits of random vector packing for efficient
and portable vectorization of highly rectangular loops.

5.1 Overview and Motivation

Compilers’ auto-vectorizers synthesize machine-specific assembly code exploiting
SIMD units of a target processor. By default, most of these techniques are conserva-
tive, and they only apply if certain patterns are found in the code and a cost model
assesses their profitability. Each compiler has its own algorithm to compute this
cost in order to decide whether to vectorize a certain region of code or not. For in-
stance, GNU GCC and Clang/LLVM use both Loop-Level Vectorization (LLV) and
Superword-Level Parallelism (SLP) [38, 77, 99]. In the same way, both components
use a similar approach in order to assess whether vectorization is profitable or not:
unrolling loops using different vector factors, if possible, computing the cost of each
vector instruction, and comparing the total cost with the scalar or not vectorized
cost.

In an orthogonal dimension, the quality of SIMD code is affected by the knowl-
edge of the target architecture. Some information regarding the performance of
SIMD instructions, however, may be missing or non-disclosed by the manufacturer.
These data can be used to determine whether a vector operation is beneficial or not,
i.e., for building a cost model. There may be architectures using the same ISA and,
therefore, where vectorization can be applied using exactly the same instructions,
but, because of their micro-architectural designs, their performance might be com-
pletely different, leading to the synthesis of particular solutions for each case. The
only way to disclose these features is by characterizing each architecture through
micro-benchmarking. This process is tedious and complex since there are many ways
of implementing the same macro-instruction on CISC architectures such as x86.

5.1. Overview and Motivation | 131

In this chapter we take an aggressive approach to auto-vectorization, by de-
veloping MACVETH, which stands for Multi-Architectural C-VEcTorizer for HPC
applications. This is a Clang-based source-to-source compilation framework target-
ing the automatic vectorization of specific regions of code delimited by pragmas.
We implement vectorization using a SIMD-Intrinsics’ style approach, to facilitate
portability to a variety of concrete SIMD ISAs. We develop platform-aware cost-
driven algorithms to pack efficiently arbitrary operands and operations into SIMD
vectors. For this purpose, we have also developed MRKVS (Mega-Random Ker-
nel Vector SMT), a tool for generating candidate combinations of instructions to
efficiently pack random elements into vector registers given a concrete ISA and a
subset of instructions to consider. Equipped with this model, MACVETH supports
vector packing across multiple distinct loop nests to maximize vector occupancy,
in particular when loops have a very small trip count, targeting operations such as
reductions. These codes are typically found in deep and machine learning kernels
such as sparse tensor computations. Experimental results are presented for a large
set of vectorizable loop shapes, and for several key deep learning inference programs,
demonstrating the benefits of random vector packing for efficient and portable vec-
torization of these irregular codes.

The main contributions of the work presented in this chapter are described below:

• MRKVS: a novel SMT-based model and system for generating combinations of
instructions given an ISA to gather and pack random memory positions within
a vector register. The goal is to emulate the behavior of a gather instruction,
but with optimal performance. First, we define and explore a search space
for all the packing cases or equivalence classes defined by the number and
contiguity of elements to pack, data type and vector width. Then, for each of
these equivalence classes the system is able to generate up to a given number
of candidates based on the maximum number of instructions to use.

• A platform-specific cost model derived from the candidates generated by the
MRKVS system. This model is built by micro-benchmarking all these candi-
dates for each possible case using the MARTA framework (detailed in Chap-
ter 4), and selecting the most promising and profitable candidate for each
platform.

132 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

• MACVETH: a Clang AST-based source-to-source compiler for vectorizing
affine and irregular codes such as the Sparse Matrix-Vector Multiplication
(SpMV). This compiler is able to vectorize multiple reductions within the same
vector register, and to fuse independent reductions using the same vector op-
erations, and even across multiple vectors. This solution also includes the
platform-aware random packing combinations described above, for efficiently
packing random operands in the same vector.

The high-level picture of the toolchain proposed in this chapter is shown in
Figure 5.1. The only input to the system is a concrete C/C++ file with marked
regions to be considered for vectorization. The output is a SIMD version of that
code, if the cost model predicts its profitability; otherwise it just emits scalar code.
For simplicity, we focus on x86 architectures with AVX2 only, but the same approach
can be applied to other architectures and ISAs.

The rest of the chapter is structured as follows: Section 5.2 describes our ap-
proach for generating efficient SIMD code for random vector packing by introducing
MRKVS, the SMT-based system proposed for generating random packing combi-
nations. Section 5.3 describes MACVETH in detail, the source-to-source compiler
implementing the efficient random packing and the SIMD optimizations for reduc-
tions in sparse codes. In Section 5.4 we present a set of experiments to assess the
quality of the solutions and use cases of our compiler. Section 5.5 explores the state
of the art and the related work regarding compiler support for auto-vectorization

Input C MACVETH SIMD Code

MRKVS Packing
Cost Model

Random
Templates MARTA

Platform-aware cost model

Figure 5.1: High-level picture of the inter-operation between the components
presented in the Thesis.

5.2. Efficient Random Vector Packing | 133

and vectorizers. Finally, we end the chapter with final remarks and discussion in
Section 5.6.

5.2 Efficient Random Vector Packing

Gather is an x86 instruction introduced in AVX2 meant to pack a set of points or
memory addresses into a vector register in one macro-instruction. To be more pre-
cise, gather emits only one instruction, but it is decoded into many micro-operations
by the front-end of the core pipeline. The gather instruction receives as input a base
address, a scaling factor, and a vector of indices representing the offset between the
elements to gather (each index is scaled by the factor). Elements are loaded from
addresses starting at the base address and offset by each element in the index regis-
ter (which are also scaled by a certain factor). The gather instruction presents two
significant limitations: 1) the need to compute a vector of indices for describing the
positions of the elements to pack, and 2) the requirement of an initial address to
compute the offsets of the points to gather. In terms of performance, as described
in Section 4.5.1, gather’s latency depends on the number of cache lines that are
touched by the memory addresses, thus it depends on the memory latency of the
system when the cache is cold.

As mentioned before, gather is decoded into many micro-operations, a number
that varies depending on the architecture, e.g., in modern AMD architectures, such
as Zen2 and Zen3, it can be decoded into more than 30 micro-operations1, depending
on the vector width. This results in the number of retired instructions being higher
than that of issued instructions, which is not desirable for energy-aware applications,
for instance. As such, gather can be a good idiom for code-size-aware applications,
but it is not the best solution in terms of performance when it comes to throughput2.
Actually, even though gather instruction can save machine code bytes for the L1
instruction cache, it could take up more space in the µop-cache (or L0 cache) than
other solutions due to its decoding phase. The µop-cache is a specialized cache
for storing pre-decoded micro-operations [119], improving the performance in the

1According to values reported in https://uops.info/table.html ([1, 31]).
2Typically, throughput in CPU is measured as instructions per cycle, being the reciprocal

throughput cycles per instruction. This can be applied to an instruction, a set of instructions, etc.

https://uops.info/table.html

134 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

decoding phase. It is present in modern architectures and it has a significant impact
on performance [20], as it allows the decoder to idle when reusing micro-operations.

Efficient random vector packing means combining single instructions available
in the ISA to emulate the behavior of the gather instruction. As carefully detailed
above, this might be more code-size consuming, but reciprocal throughput can be
outperformed. Gather is a valid solution for any set of points starting at a base
address, regardless of their contiguity and strides. However, focusing on all the
possible combinations for packing N random memory points into a vector according
to their contiguity in memory opens opportunities to outperform gather’s latency
and throughput. This is the motivation for our novel model: create a system for
generating random vector packing candidates based on the instructions available in
the ISA.

Next, in Section 5.2.1 we describe the instructions included in the exploration
space, then we define a formal model to describe the equivalence classes for gener-
ating candidates in Section 5.2.2, we detail the SMT-based system for generating
these candidates MRKVS (Mega-Random Kernel Vector SMT) in Section 5.2.3, in
Section 5.2.4 we introduce a template-based format for using the candidates gener-
ated, and finally we evaluate the performance of these candidates against the gather
instruction in different platforms in Section 5.2.5.

5.2.1 Instruction set: exploration space

In order to provide alternative implementations to the gather instruction, we
must first define the set of instructions to consider. Modern vector ISA extensions
in x86, such as AVX2, implement load and swizzle instructions, among others. The
x86 SIMD extensions are very fragmented, as they have been evolving over the years
and the architectures must be backwards compatible. This causes some performance
issues in older architectures when mixing different SIMD ISAs in the codes, such as
SSE and AVX, since their encoding is different. Nowadays, modern architectures
solve this issue by VEX (Vector EXtensions) encoding all these vector instructions.
It is remarkable that non-VEX instructions (e.g., SSE movaps) are transformed into
prefix-VEX instructions (i.e., vmovaps) when using -mavx or more recent SIMD
flags.

5.2. Efficient Random Vector Packing | 135

Next, and for simplicity, we present the subset of Intrinsics that we consider for
modeling our approach, only using load and swizzle instructions for floating-point
data types, and using only up to AVX2 (we do not consider AVX-512). We also
describe the limitations of the Intrinsics and a small extension of the Intrinsics to
consider in our model. In this way, the union of these subsets defines the set of
instructions within the exploration space I.

Load instructions

These instructions bring data from memory to vector registers. Instructions of
this kind considered for our model are described in Table B.1 (Appendix B). Each
of the load instructions has only one possible output if they do not use any kind
of mask or indices, e.g., in Table B.1 the “movaps xmm, MEM” instruction loads 4
contiguous positions in memory starting at a given address, and therefore it has no
other possible output. The only exceptions are masked loads (_mm_maskload_ps()
and _mm256_maskload_ps()), which also use a mask for zeroing vector slots when
loading from memory.

Swizzle instructions

Swizzle instructions from Intel Intrinsics are meant to pack/unpack, shuffle, blend
and permute vector slots between vector registers. These instructions can only have
vector registers or immediate values as operands. Instructions of this kind considered
for our model are described in Table B.2. Typically, shuffle and permute are just
different names for the same type of operations: those which rearrange elements
according to a control value. Shuffle was the default naming until AVX, and permute
was used afterwards. Blend instructions, as the name suggests, are meant to fuse the
values of two different registers according to a control parameter. Extract operations
obtain concrete positions of a register, while insert operations place the content of
a vector slot into another. With all these operations we cover all the necessities for
packing memory positions into vector registers.

136 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 #ifndef _CUSTOM_SIMD_H
2 #define _CUSTOM_SIMD_H
3
4 #define _mv_insert_mem_ps(I, O, VAL, POS) \
5 __asm volatile("vinsertps %1,%2,%3,%0\n" \
6 : "+x"(O) \
7 : "i"(POS), "m"(VAL), "x"(I));
8
9 #define _mv_blend_mem_ps(O, A, M, I) \
10 __asm volatile("vblendps %1,%2,%3,%0\n" \
11 : "+x"(O) \
12 : "i"(I), "m"(M), "x"(A));
13
14 #endif // !_CUSTOM_SIMD_H

Listing 5.1: Ad hoc SIMD instructions to consider in our model.

Limitations of Intel Intrinsics

There are some Intrinsics that only allow register operands. Most of them have a
direct translation into assembly instructions, e.g., _mm_insert_ps(), which basically
inserts a value from one register into a concrete position of another. This generates a
vinsertps instruction (VEX-prefixed, insertps in original SSE). Nonetheless, this
instruction has xmm1, xmm2, xmm3/m32, imm8 as operands, thus allowing the third
operand to be a memory address. This is not part of the original Intel Intrinsics
API and can be useful for merging the load and the insert operations. An example
of a header file containing these new added instructions to the model is presented
in Listing 5.1. In this case we just define new macros to inline the assembler.

5.2.2 Simplifying the search space

Once we have chosen the set of instructions used by our model, we need to
establish rules and relations between them, as well as their semantics. First of all,
Equation 5.1 represents the content of the target vectors ~V , where their elements are
not contiguous in memory. Since we are targeting the x86 architecture, registers and
vectors in our notation are represented using a little-endian format. Any memory
address p plus one refers to the next memory address for elements of the same type,

5.2. Efficient Random Vector Packing | 137

i.e., pi−1 + 1 = pi. This concept is similar to pointer arithmetic.

~V := {vn−1, . . . , v0}
∃i > 0, vi, vi−1 ∈ V/vi 6= vi−1 + 1

(5.1)

Using a similar notation, we can define each of the load instructions as a function
that, for a given address p, returns a set of contiguous positions in memory using a
little-endian format, as in Equation 5.2.

f(p) := {vn−1 = f(p[n− 1]), ..., v0 = f(p[0])} (5.2)

This generic function is specialized according to the semantics of each Intrin-
sics regarding its documentation. For instance, _mm_loadu_ps(p) in our model is
formalized as in Equation 5.3.

loadu_ps(p) := {v3 = p[3], v2 = p[2], v1 = p[1], v0 = p[0]} (5.3)

Using the same type of specialization, the function for _mm_load_ss(p) is de-
scribed as in Equation 5.4.

load_ss(p) := {v3 = ∅, v2 = ∅, v1 = ∅, v0 = p[0]} (5.4)

Again, this is only another way of representing the behavior of the instructions
selected in the exploration space I (defined in Section 5.2.1) according to their
documentation. So, representing swizzle instructions in our approach can be done
as in Equation 5.5 for the _mm_shuffle_ps(a,b,m) instruction.

shuffle_ps(a, b,m) := {v3 = f(b,m[7 : 6]),

v2 = f(b,m[5 : 4]),

v1 = f(a,m[3 : 2]),

v0 = f(a,m[1 : 0])}
where

f(src, c) := src[31 + 32 ∗ c : 32 ∗ c]

(5.5)

138 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

However, in this case, since the output of this instruction depends on the value
of the mask m, we would need to compute all possible outputs for all possible mask
values (256 different values since the mask width is 8 bits), as in Equation 5.6.

shuffle_000_ps(a, b) := {v3 = b[0], v2 = b[0], v1 = a[0], v0 = a[0]}
shuffle_001_ps(a, b) := {v3 = b[0], v2 = b[0], v1 = a[0], v0 = a[1]}
...

shuffle_255_ps(a, b) := {v3 = b[3], v2 = b[3], v1 = a[3], v0 = a[3]}

(5.6)

This approach has an obvious drawback: the exploration space created by gener-
ating all possible combinations of the instructions grows exponentially and it quickly
becomes intractable. In fact, exploring all combinations of memory addresses and
their possible packing candidates for getting the optimal recipe is an NP-hard prob-
lem, so any purely brute force methodology is intractable. On the other hand, it is
possible to tackle this issue by properly defining the exploration space to traverse,
and applying heuristics to prune the set of candidates to combine in each step.

We have already defined the set of finite instructions I in our model. The
combinations of these instructions create the infinite space R, so we must define
the finite set of combinations to consider, R′ ⊂ R. The space R is infinite by
definition, as the combinations of instructions for a concrete set of memory addresses
are infinite, e.g., by repeating instructions, using load instructions that overlap with
other memory addresses in the target, etc. Therefore, this space is also intractable,
mostly redundant, and contains a vast majority of non-optimal candidates. Let
P ⊂ Zn be the intractable set of points in memory that can be packed into a vector
register. ~P ∈ P is defined as ~P := {pn−1, . . . , p0}, where pi represents a memory
address. We define S as the finite and tractable set of equivalence classes for the
vectors ~P ∈ P . In the same manner, we can define a surjective function f such that
for any of these vectors ~P , the output SP will be defined in the set SP ∈ S, i.e.,
f : P → S. On the other hand, for each of those equivalences SP ∈ S, we can define
an injective function with multiple outputs g that generates all possible assembly
output candidates in the finite space generated inR′ ⊂ R, i.e., g : S → R′. The idea
of these concatenated functions is graphically described in Figure 5.2, and attempts
to simplify the intractable infinite space onto a tractable finite equivalent.

5.2. Efficient Random Vector Packing | 139

[0,0,0,0]
[0,0,0,1]
[0,0,0,2]...
[11,9,4,1]...
[α,β,γ,δ]

P

A
B...
Z

S

ASM0

ASM1

ASM2

ASM3

ASM4

ASM5...
ASMm

R′f g

Figure 5.2: Functions and sets defined in the system. P is the intractable set
of combinations of memory points, S the set of equivalence classes for all of
them, and R′ the pruned or finite version of R, containing only a subset of all
possible solutions or candidates. This is just a simplification for packing 4 memory
addresses.

By definition ∀~P ∈ P , ∃f(~P) ∈ S, but most important ∃P ′ ⊆ P/∀~Pi ∈
P ′, f(~P0) = f(~P1) = . . . = f(~Pi) = Sl ∈ S, that could be rewritten as {~Pi ∈
P ′ ⊆ P : f(~Pi) ∼ Sl ∈ S}. So, in order to define f , we need to define first what is
going to be an equivalence in the system.

We define an equivalence class based on: 1) the contiguity between adjacent
elements ~D, 2) the vector width W , and 3) the data type T . In this way, we could
define [f(~Pi)] = Sl = { ~D,W, T}, having |~Pi| = n, ~D ∈ Zn−1, and dj ∈ ~D/dj =

pj+1 ⊕ pj, where the operator ⊕ for two points returns 1 if memory addresses are
contiguous and 0 otherwise. In order to illustrate this function, we show some
examples using all floats for 128-bit vector registers as follows:

• ~P = [A[40], A[30], A[10], A[0]], f(~P) = {{0, 0, 0}, 128, f loat}

• ~P = [A[41], A[30], A[10], A[0]], f(~P) = {{0, 0, 0}, 128, f loat}

• ~P = [A[41], A[30], A[1], A[0]], f(~P) = {{0, 0, 1}, 128, f loat}

• ~P = [A[4], A[3], A[1], A[0]], f(~P) = {{1, 0, 1}, 128, f loat}

140 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

• ~P = [A[132], A[131], A[129], A[128]], f(~P) = {{1, 0, 1}, 128, f loat}

The main goal of this definition is to extract the features of the elements to pack
by being memory agnostic and, at the same time, simplify the possible set of cases
to consider. Other features of the problems could be added to the definition, such as
the number of cache lines or the number of cache sets touched, but they would only
increase the size of the space S, and we want to keep it as simple as possible. In
this concrete case, this simplification is driven by the x86 ISA, since we can leverage
the existence of contiguous memory addresses for being more efficient by issuing
fewer instructions. Similarly, in our case, these features would not contribute to
the quality of the solutions, as we are only interested in minimizing the number of
instructions executed and their latency, and maximizing the throughput.

5.2.3 MRKVS: Mega-Random Kernel Vector SMT

We have defined a finite space of instructions to consider, represented by I, and
a finite and tractable set of equivalence classes S to target. Even though these
sets have a limited number of elements, brute force approaches become quickly
intractable when increasing the number of elements to pack. E.g., an enumeration-
based brute force approach could be suitable for packing up to four 32-bit random
memory positions, as the system would only use a small subset I ′ ⊂ I because
in this case 256-bit instructions are useless. But just increasing the number of
elements to pack to five makes the problem intractable in terms of execution time
due to the exponential explosion in the number of combinations. Therefore, brute
force approaches are not suitable for finding all cases in S regardless of the number
of elements to pack.

As described above, one of the issues when enumerating all the candidates in I is
the combinatorial explosion of the number of variants of a single instruction accord-
ing to its masks or control value, as shown in Equation 5.5. Instead of generating
and testing all these possible combinations, a smarter strategy would be to check
whether there is any value that for a combination of instructions is able to meet
the packing conditions, i.e., the packing of memory points into a vector register in

5.2. Efficient Random Vector Packing | 141

a certain order. To better illustrate this, consider the vector registers below:

a = {a3, a2, a1, a0}
b = {b3, b2, b1, b0}
c = {b1, b0, a1, a0}

Assuming that a and b are vectors of float type, and m is the control value, we
want to find the value m such that c = _mm_shuffle_ps(a,b,m). The most naïve
approach would be to try all possible candidates for the mask as in Equation 5.6
until we find a value that satisfies the equality. A better approach would be to devise
a system capable of analytically deriving whether the equality can be satisfied and,
in that case, providing the appropriate mask value. Determining whether a formula
can be satisfied or not is studied by Satisfiability Modulo Theories (SMT), which is
the problem that, roughly, generalizes the boolean satisfiability problem (SAT). We
say that a formula is satisfiable if there exists a set of values of its variables such
that the formula evaluates to true. A well-known implementation of SMT is the Z3
Theorem Prover [23].

Wegner developed x86-sat [131], a system for building an auto-generated formal
model of x86 Intrinsics by interpreting the pseudo-code in the official documentation,
and transforming it into a valid model for Z3. This tool is mainly written in Python,
and it can help assess the equivalence of two different ways of permuting values, i.e.,
to find the equivalence classes, or to find the values of some variables in a formula.
For illustrative purposes, Listing 5.2 shows the solution to the example described
above using this system.

x86-sat works as follows. A set of assertions or conditions describing the behavior
of each instruction according to the documentation are added to the solver using
the Z3 library (a custom parser is used to automate this process [130]). Next, the
check function (line 8 in Listing 5.2) tests if those conditions can be satisfied for
those variables or instructions and, in that case, the system also returns a model
containing the values required. This system avoids testing all different control value
combinations for a concrete instruction. The system is also interesting for performing
sanity checks given a set of instructions and the conditions to be satisfied, or even for
finding bugs in the documentation. In addition, this system can be easily extended
with any other desirable instruction by just using the same syntax as in the Intel

142 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 # after initializing the library and setting a and b values
2 # the system generates the functions with the same function
3 # signatures as in Intel Intrinsics API
4 a = _mm_set_ps(a3, a2 , a1, a0)
5 b = _mm_set_ps(b3, b2 , b1, b0)
6 c = _mm_set_ps(b1, b0 , a1, a0)
7 imm = Var("imm", "int")
8 condition , model = check(c == _mm_shuffle_ps(a, b, imm))
9 # RESULTS:
10 # condition = sat
11 # model = {‘imm ’: ‘0x00000044 ’}

Listing 5.2: Python code needed to compute the value of an immediate control
value using the x86-sat system for the previous example.

Intrinsics documentation.

In our approach we leverage the capabilities of the system developed by Wegner
for chaining different instructions and testing their satisfiability for each equivalence
class described in Section 5.2.2. The system searches the solution space as described
in Algorithm 5.1. Our approach follows a deep-first fashion, with a limited number
of levels, and where the level is determined by the number of chained instructions
used. In this approach the system takes as input an object PackClass Sl, which
corresponds to an equivalence class in Sl ∈ S. The algorithm is a modification of the
naïve brute force approach, where the explosion of new combinations is minimized
by applying heuristics to prune the set of new candidates, i.e., new instructions to
consider, and the use of the SMT system to parameterize and check the satisfiability
of the chain of instructions. The system has also a variable stop condition when the
number of candidates found has reached, at least, max_candidates.

As shown in Algorithm 5.1, the exploration starts choosing only the relevant load
instructions in our space I. It is not worth to consider only swizzle instructions at
this stage, as we have not loaded any memory address in any registers yet, so this
way we avoid the generation of this useless space. Next, for each of these first load
instructions, we generate recursively the exploration of the space considering also the
rest of instructions. Algorithm 5.2 illustrates the recursive exploration performed
in our approach. It first tests all possible candidate instructions, appending to a
list those ones that produce a candidate that satisfies the pack class. Those lists

5.2. Efficient Random Vector Packing | 143

Algorithm 5.1: High-level approach of the MRKVS system.
Input: Instructions I, PackClass Sl, int max_candidates
Result: Set of Candidates

1 candidates = {};
2 max_ins = compute_max_ins(Sl);
3 load_ins = prune_load_instructions(Sl, I);
4 for load in load_ins do
5 if check(load, Sl) then

// Base case: only a load required, no need to explore
6 candidates.append(load);
7 continue;
8 if new_candidate = recursive_search(load, I, Sl, max_ins) then
9 candidates.append(new_candidate);

10 if size(candidates) >= max_candidates then
11 break;
12 end
13 return candidates;

of instructions that do not satisfy the packing Sl are later explored using the same
approach, in a recursive manner. The system stops generating new candidates when
they exceed a threshold in the number of instructions used, making the problem
tractable without sacrificing any optimal candidate. We could argue that, as we
increase the number of instructions used, the opportunities for finding new optimal
or better candidates decrease. This statement is reasonable in our context as we
try to minimize the latency and the total number of instructions retired in order to
outperform the gather instruction.

It is remarkable that candidate instructions are pruned depending on their type
and number in each recursive step, in order to reduce the node explosion as we
create new levels in the exploration space. These pruning techniques are ad hoc and
dependent on the SA, i.e., the set I, which in our case is a small subset of the AVX2
ISA. Some of these techniques involve limiting the maximum number of instructions
of a type to consider in a combination, avoiding the repetition of costly instructions
(such as masked loads or blends) more than once for each candidate, or avoiding the
use of load instructions to load only one element more than twice.

144 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Algorithm 5.2: recursive_search function used to generate the explo-
ration space in MRKVS.
Input: Candidate C, Instructions I, PackClass Sl, int max_ins
Result: Set of Candidates

1 candidates = {};
2 new_level = {};
3 C ′ = {};
4 candidate_instructions = prune_instructions(Sl, I);
5 for new_instruction in candidate_instructions do
6 C ′ = chain(C, new_instruction);
7 if check(C ′, Sl) then
8 candidates.append(C ′);
9 else

10 new_level.append(C ′);
11 end
12 end
13 if size(C ′) + 1 > max_ins then
14 return candidates;
15 end
16 for candidate in new_level do
17 if C ′ = recursive_search(candidate, I, Sl, max_ins) then
18 candidates.append(C ′);
19 end
20 end
21 return candidates;

5.2.4 Random vector packing templates: format

In order to make these candidates portable to any memory address, we have
developed a template-based format to capture their semantics and be input agnostic.
In this way, any system can fill any of the candidates generated by MRKVS with the
desired input memory addresses or vector registers for packing the operands. These
templates are in MACVETH Random Template format (.mrt). This extension was
meant for the MACVETH compiler, presented in Section 5.3, which leverages these
templates to pack random operands filling the input values with the corresponding
memory addresses from the code. The syntax of the template is quite simple, where

5.2. Efficient Random Vector Packing | 145

each line can be expressed in an extended Backus-Naur form as:

〈syntax〉 |= 〈stmt〉 | 〈stmt〉 〈syntax〉
〈stmt〉 |= 〈reg〉 = 〈inst〉 | 〈inst〉 | λ
〈inst〉 |= signature(〈args〉)
〈args〉 |= 〈reg〉 | 〈mem〉 | {〈args〉}
〈mem〉 |= 〈index〉 : 〈offset〉 : MEM

〈reg〉 |= 〈name〉 : REG

〈index〉 |= {digit}
〈offset〉 |= [−]{digit}

For indexing these files, each candidate generated is stored in a file with the
named as: <arch>_<isa>_<data_type>_n<#values>_<contiguity>.mrt. As an
example, for Intel Cascade Lake with AVX2 using floats, for packing 4 elements
according to the contiguity pattern of all elements scattered (remember the notation
Sl = {(0, 0, 0), 128, f loat}), the system uses the template in Listing 5.3. MACVETH
replaces the values within the hashtags (#...#) with the corresponding values for
each case. For instance, the REG values are assigned to vector registers, whereas
the MEM placeholders are assigned to memory addresses deduced from the memory
positions to pack.

5.2.5 Generation and evaluation of the cost model

We have used MRKVS to generate random vector packing formulas for AVX2
with floats as data type. The model, as we have discussed before, can be easily

1 #r0:REG# = _mm_load_ss(�:0:MEM#)
2 _mv_insert_mem_ps(#r1:REG#, #r0:REG#, #1:0:MEM#, 0x0000001c)
3 _mv_insert_mem_ps(#r2:REG#, #r1:REG#, #2:0:MEM#, 0x00000068)
4 _mv_insert_mem_ps(#output:REG#, #r2:REG#, #3:0:MEM#, 0x00000030)

Listing 5.3: Example of the cascadelake avx2 float n4 0 0 0.mrt template.

146 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

extended to other ISAs and data types. The output of the SMT-based system is a
set of candidates for each equivalence class. As we have described in Section 5.2.2,
each equivalence class is defined, in our case, by the contiguity of the memory
addresses to pack, vector width and data type. An example of the possible output
of the system for AVX2, given the equivalence class for packing only three non-
contiguous elements Sl = {(0, 0), 128, f loat}, could be the candidates of Listing 5.4
(using the format described in Section 5.2.4), for a given pointer p and the unknown
indices IDX0, IDX1 and IDX2.

The compilation of these candidates using GCC 11.2.0 on two different archi-
tectures, Intel Xeon Silver 4216 (Cascade Lake) and AMD Ryzen 9 5950X (Zen3),
produces the assembly code in Listing 5.5. In the Zen3 processor both choices retire
the same number of micro-operations, and the cycles consumed are on average the
same. Regarding the Intel machine both candidates also have identical performance
in terms of cycles, but the number of micro-operations retired is lower for the first
candidate. These are the two metrics considered for building our cost model: in
the first place the number of execution cycles or cycles consumed, and in case of
identical performance (within an error margin due to measurement errors), the num-
ber of micro-operations retired. Results obtained in LLVM-MCA (see Section 4.1
and Figure 4.1) for these candidates confirm the values reported by our empirical
measurements. The recently released uiCA tool [3] also reports better reciprocal
throughput (i.e., cycles per instruction) for the first candidate.

Once we have chosen the best candidates for each platform and for each equiva-
lence class, in order to assess their quality, we compare their performance with that
of the equivalent gather instruction. We run these in the same Intel Xeon Silver
4216 and AMD Ryzen 9 5950X machines mentioned above, using AVX2 extensions.
The experiments were performed under hot cache conditions, as we are only in-
terested in the latency in cycles due to the instruction pipeline and the number
of micro-operations retired. Besides, running these experiments under cold cache
reports almost identical latencies for our approach and gather, as memory latency
dominates the execution of the block of instructions.

According to our measurements, for Intel Cascade Lake, most of the candidates
proposed by our automated system outperform gather in terms of number of exe-
cution cycles, as depicted in Figure 5.3a. However, for less than 15% of the cases,

5.2. Efficient Random Vector Packing | 147

1 // Candidate 0
2 __m128 r0, r1, output;
3 r0 = _mm_load_ss(&p[IDX0 + (0)]);
4 _mv_insert_mem_ps(r1, r0, p[IDX1 + (0)], 0x00000014);
5 _mv_insert_mem_ps(output, r1, p[IDX2 + (0)], 0x00000068);
6
7 // Candidate 1
8 __m128 r0, r1, output;
9 _mv_blend_mem_ps(r0, _mm_set_ps(0,0,0,0), p[IDX0 + (0)], 0x0000000b);
10 _mv_insert_mem_ps(r1, r0, p[IDX1 + (0)], 0x00000018);
11 _mv_insert_mem_ps(output, r1, p[IDX2 + (0)], 0x00000028);

Listing 5.4: Candidates generated by MRKVS for packing three non-contiguous
elements. Instructions with mv prefix are described in Listing 5.1.

1 ;; Candidate 0
2 vmovss xmm2, DWORD PTR [r12 + 0x40]
3 vinsertps xmm1, xmm2, DWORD PTR [rcx], 0x14
4 vinsertps xmm0, xmm1, DWORD PTR [rdx], 0x68
5
6 ;; Candidate 1
7 vblendps xmm1, xmm3, XMMWORD PTR [rsi], 0xb
8 vinsertps xmm2, xmm1, DWORD PTR [rcx], 0x18
9 vinsertps xmm0, xmm2, DWORD PTR [rdx], 0x28

Listing 5.5: Assembly code generated for the example in Listing 5.4.

gather outperforms by 10-15% the latency of our approach. In contrast, according
to LLVM-MCA (see Figure 5.3b) all candidates outperform the gather instruction.
Our cost model is driven by our measurements and, as such, it will use the gather in-
struction for those equivalence classes where there is no speedup from the candidates
generated.

For AMD Zen3 both our measurements and the LLVM-MCA tool report sig-
nificant speedups for the candidates proposed against their gather counterpart, as
depicted in Figures 5.4a and 5.4b. This is because: 1) the set of instructions used
for the candidates has, in general, a reciprocal throughput of less than 1 (and thus
more than one micro-instruction can be issued in the same cycle), and 2) the re-
ciprocal throughput for the gather instruction is far worse on AMD than on Intel:

148 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Equivalence class
1

2

3

4

5

6

7

8

M
ea

su
re

d
sp

ee
du

p
(in

 c
yc

le
s)

(a) Measured cycles: comparison between gather
and our approach.

Equivalence class
1

2

3

4

5

6

7

8

LL
VM

-M
CA

 sp
ee

du
p

(in
 c

yc
le

s)

(b) LLVM-MCA cycles: comparison between
gather and our approach.

Figure 5.3: Speedups (in cycles) obtained for Intel Cascade Lake. The baseline
(value 1.0) is the gather instruction.

Equivalence class1
2
3
4

6

8

10

12

M
ea

su
re

d
sp

ee
du

p
(in

 c
yc

le
s)

(a) Measured cycles: comparison between gather
and our approach.

Equivalence class1

2
2.25

2.5
2.75

3

LL
VM

-M
CA

 sp
ee

du
p

(in
 c

yc
le

s)

(b) LLVM-MCA cycles: comparison between
gather and our approach.

Figure 5.4: Speedups (in cycles) obtained for AMD Zen3. The baseline (value
1.0) is the gather instruction.

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 149

8 vs. 4 cycles/instruction for AMD and Intel, respectively3. Note that, as com-
mented at the beginning of the Section 5.2, the number of micro-operations retired
on AMD for each gather instruction, depending on the vector width, can be up to
40 micro-operations.

In order to recapitulate the contributions presented in this Section 5.2, to perform
random vector packing efficiently, first we have generated, using an SMT-based
system, a large set of candidates for each equivalence class from the exploration
search space I (see Section 5.2.1). We expressed these equivalence classes based on
the contiguity in memory of the elements to pack into the same vector register (see
Section 5.2.2). Next, we have chosen the best candidates for each platform based on
the performance measured in terms of cycles and micro-operations of the candidates
synthesized, and we have compared their latency against the gather instruction. We
consider the use of gather instead of our candidates if they do not show speedup
for their equivalence classes. In this way, we have built a platform-independent cost
model for each architecture.

5.3 MACVETH: Multi-Architectural C-VEcTorizer for HPC

applications

We have developed MACVETH (Multi-Architectural C-VEcTorizer for HPC ap-
plications), a source-to-source compiler to apply automatic vectorization based on
the cost models extracted in the previous section. The input to the compiler is a
C/C++ code, and the output a SIMD version of it. This SIMD code is generated
using an Intrinsics style. In this way, the code is portable among processors and
architectures with the same vector extensions, such as SSE or AVX2. MACVETH
integrates a built-in platform-aware cost model for synthesizing the best code for
each architecture. For instance, the cost model for packing random vector operands
is generated by running all the candidates described in Section 5.2.3 on each plat-
form and choosing the best one for each architecture. MACVETH also targets the
grouping and fusion of independent reductions, patterns that appear in codes such
as SpMV kernels, typically present in deep and machine learning applications. The

3According to values reported in https://uops.info/table.html ([1, 31]).

https://uops.info/table.html

150 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

main goal of the optimizations presented here is to maximize the vector occupancy
and increase the efficiency of the code.

In this section the MACVETH compiler and the SIMD optimizations imple-
mented are described in detail. Section 5.3.1 introduces the key architectural com-
ponents of compilers and the LLVM framework. Section 5.3.2 describes the high-
level details of the MACVETH architecture. Section 5.3.3 focuses on the design
and use of the front-end, Section 5.3.4 details the optimizations performed in the
middle-end, and Section 5.3.5 covers the generation of code and peephole optimiza-
tions in the back-end. Finally, Section 5.3.6 enumerates the current limitations of
the MACVETH compiler.

5.3.1 Compiler architecture: the LLVM Project

Typically, compilers translate high-level programming languages (e.g., C, C++)
to a lower level language (e.g., machine code) to generate executable programs.
They also perform transformations in the code in order to optimize the output by
applying many different techniques, such as vectorization, removing useless or un-
reachable code (dead code elimination, DCE), performing loop transformations, etc.
In our case, the approach is different as our compiler does not generate machine code
directly, but a custom SIMD version of the input code. These compilers are typically
known as transcompilers, transpilers or just source-to-source compilers. They have
different use cases: translating certain codes into other idioms or languages, replac-
ing patterns in the code with other templates, placing pragmas in specific regions
of the code, fixing bugs in the code, etc. As depicted in Figure 5.5, compilers have
three main parts:

• Front-end : this part is in charge of recognizing the correctness of a program,
identifying and reporting errors in a useful way. This is done by the lexer
and the parser. The output of the parser is, typically, an Abstract Syntax
Tree (AST) that holds the grammatical information of the program. Then,
the semantic analyzer performs type checking, and variable and function dec-
laration. The final output of the front-end is an Intermediate Representation
(IR) of the program, in order to shape the code for the following stages.

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 151

Source code Machine
code

Lexer

Parser

Semantic
analyzer

IR generator

Optimization
1

Optimization
n

Instruction
selection

Register
allocation

Instruction
scheduling

Peephole
optimization

...

Front-end Middle-end Back-end

IR IRAST

AST

token

Figure 5.5: Classic high-level diagram of the compiler architecture and its phases
for code generation.

• Middle-end : this component is meant to perform optimizations in the code.
Modern compilers organize optimizations in different passes, which can be
applied to the input IR varying the order and the number of times that they
are applied. The only condition for any pass is that it must preserve the
semantics of the code.

• Back-end : the main goal is to translate the IR into machine code (or the target
language). It decides the set of instructions or directives to synthesize for the
IR operations. The instruction selection block is usually viewed as a pattern
matching problem. The register allocation is in charge of synthesizing values
in registers analyzing their liveness within the program, and the instruction
scheduling attemps to optimize the order of the instructions to be issued (with-
out affecting the meaning of the program). Since different architectures have
their own hardware features, other optimizations can also be applied targeting
them. These are typically known as peephole optimizations.

As will be detailed in Section 5.3.2, the implementation of MACVETH is based
on LLVM [72], which is an umbrella project of several compiler, toolchain and low-
level technologies. LLVM was conceived and designed as a set of reusable and
modular libraries with well-defined interfaces. LLVM also integrates Clang, its na-
tive C/C++/C-Objective front-end, which provides powerful libraries for developing

152 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

and extending new tools. For instance, its library LibTooling is designed to help
write standalone tools using the Clang AST [53]. This AST is the most important
primitive in Clang to extend the logic in the front-end. Note that Clang is not
only the C-like front-end of LLVM, but it also provides a compiler driver, which
basically concatenates all the phases required to compile the source code using the
LLVM modules (e.g., LLVM optimizer passes, the static compiler, the linker, etc.).
Figure 5.6 illustrates a high-level toolchain for generating an executable program
from source code using the Clang driver. The Clang AST is an abstraction that
can be lowered to the LLVM IR to perform optimizations. The LLVM IR is a Static
Single Assignment (SSA) [109] based representation, which simplifies a vast number
of compiler optimizations. Continuing in the LLVM toolchain, the Selection DAG4,
which is the transition between the middle-end and the back-end, provides an ab-
straction for code representation in a way that is suitable for instruction selection
and instruction scheduling. In the last block, the LLVM Machine IR (MIR) is just
another IR for the machine code, which is then synthesized according to the target
platform (e.g., x86, AArch64, RISC-V, ARM, MIPS, PowerPC, etc.). In this way,
LLVM provides a complete and mature toolchain for parsing, analyzing, transform-
ing, and properly compiling source code. In our case we focus on the Clang front-end
and its principal IR, the Clang AST.

The Clang front-end also integrates a preprocessing stage in the lexer. This
enables the detection of new directives such as pragmas. These are useful when
focusing on very concrete sets of transformations in order to guide the compiler to
just consider a certain region of code. This technique is also employed by other
program interfaces such as the OpenMP API, where the user must indicate, using
pragmas, the loop or region of interest to parallelize. For our purpose, we will
leverage the capabilities provided by the Clang front-end, in order to detect and

4This is equivalent to the Register Transfer Language (RTL) in GCC.

Source code Clang AST
Machine

codeLLVM IR Selection
DAG LLVM MIR

Front-end Middle-end Back-end

Figure 5.6: High-level LLVM toolchain for the generation of machine code.

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 153

delimit the regions of code of our interest, and get a well-formed Clang AST to
analyze.

5.3.2 High-level architecture of MACVETH

MACVETH was designed and conceived to target sparse or irregular codes, e.g.,
SpMV kernels. These kernels are widely used machine and deep learning applica-
tions. Our approach relies on the Clang AST for parsing the input code. Instead of
lowering this abstraction to the LLVM IR, our compiler rewrites the original code
using, whenever it is profitable, SIMD directives in an Intrinsics style, thanks to the
Clang’s LibTooling library that supports rewriting the original source code. The
high-level picture of the system’s architecture is depicted in Figure 5.7. We log-
ically divide our source-to-source compiler architecture into front-end, middle-end
and back-end.

MACVETH handles different abstraction levels and IRs in order to facilitate
the vectorization process. The input is the Clang AST, which has already been
described. From there, MACVETH generates a Three-Address Code or TAC rep-
resentation (SSA form), which facilitates the creation of a Directed Acyclic Graph
(DAG). This structure is suitable for finding patterns in the code such as reductions.
In this way, DAG’s operations and operands are packed, when possible, in order to
generate vector operations. These are generated in the SIMD back-end according
to the heuristics and the architectural characteristics of the target platform. Then,
using the Clang framework, the front-end rewrites the original source code synthesiz-
ing the SIMD code generated in the back-end. The rest of subsections delve deeper
on each of the components of the architecture presented here.

5.3.3 Front-end: the driver for parsing and rewriting

The front-end in MACVETH is responsible for parsing the CLI input options
(listed in Appendix C.1), initializing all the Clang LibTooling structures required to
generate the AST, and interpreting the Clang AST and the input pragmas within the
code (see Appendix C.2 for more details of the syntax). In addition, as the front-end
is the part of the compiler that works with the Clang library, it is also responsible for

154 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

DAG

VectorIR

SIMDBackend

Node

C/C++ SIMD
codeC/C++ code

Clang AST MACVETH
Front-end

Random Vector
Packing

Templates

Back-end

Front-end and driver

Middle-end
Packing

Cost Model

Clang
Rewriter

Clang LibTooling

selects

uses

calls

Figure 5.7: High-level diagram of MACVETH’s architecture showing the different
IRs used by the system.

rewriting the new SIMD code from the original source input. Figure 5.8 illustrates
the most relevant components and the toolchain of MACVETH’s front-end.

Clang implements complex expressions in order to handle any form or type of
code. These expressions provide many possibilities when it comes to parsing the
code. Nonetheless, MACVETH simplifies the complexity of Clang’s expressions by
wrapping all categories into a small set of expressions. MVExpr is an abstract class
that can be specialized for any type we want to represent from the Clang AST, or
to generate other abstractions. Besides, the idea of this class is to provide a set of
non-standard transformations for the expressions, e.g., loop unrolling. Thus, MVExpr
objects are instantiated using a factory.

We have implemented the following specializations, which are enough in order
to represent any value referenced in the regions of interest:

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 155

C/C++ SIMD
codeC/C++ code Clang

AST

Front-end

Clang
Rewriter

Clang LibTooling

Middle-end Back-end

Main driver

MVExpr StmtWrapper TAC

Figure 5.8: MACVETH’s front-end components.

• MVExprArray: represents any n-dimensional expression in the code. It holds
information about the number of dimensions and name or value of the indices.
This class is very useful when performing unrolling, as it provides methods for
computing deltas between two indices of the same or different form; e.g., for
two positions in the array A with affine indices (i+1)∗4 and (i+1)∗2, ∀i ≥ 0

the difference (i+ 1) ∗ 4− (i+ 1) ∗ 2 > 1, so the positions referred with these
indices are not contiguous in memory.

• MVExprVar: regardless of the type of the variable, this abstraction basically
represents any DeclRefExpr from the Clang AST. DeclRefExpr expresses a
reference to a declared variable, function, enum, etc., encoding all the infor-
mation about how a declaration is referenced within an expression. In our
case, we oversimplify this complexity.

• MVExprFunc: this is a recursive abstraction that holds the name of the function
and the parameters it receives. Parameters are also MVExpr objects.

• MVExprLiteral: any number (integer, float, double), char, etc. value that
does not fit any of the other abstractions.

These MVExpr expressions belong to statements in the code. In MACVETH,
these statements are wrapped into StmtWrapper objects, including loops. This
facilitates the unrolling of loops and finding their location in the code, as we will
detail next. Statements may differ in number of operations, data handled, or even
types. This makes it difficult to handle them properly. The Three-Address Code
(TAC) representation is used to translate any statement (S) into an SSA-based IR.

156 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

There are different ways of representing this format, but in our case we use 4 tuples,
as described in Definition 1.

Definition 1. A TAC is a 4 tuple T=(a,b,c,⊕) that represents the assignment a =

b⊕ c. If the ⊕ operator is unary, then c is null, so a = ⊕b.

Any statement of a program is composed of a concatenation of operations, e.g.,
assignments (=) and binary operations (+, a function f , etc.), which are split into
TACs respecting their operational order. Thus, when any statement generates more
than one TAC, temporary registers are generated in SSA form. These assignments
are responsible for connecting TACs, and therefore represent the logical order of the
original statement. In essence, connections between TACs generate a tree structure.
In order to perform this translation, we have implemented a recursive process which
is listed in Algorithm 5.3. In the algorithm, we simplify the statements to be in
the form LHS = RHS (left- and right-hand side, respectively). For the minimum case
of an induction, i.e., the assignment p = q, the process is the same as for those
statements with unary operators, and the result would be T = (p, q, null,=).

Corollary 1. Any statement S whose TAC representation produces more than one
tuple can be represented as a set of interconnected TACs: S = {Ti}/aTn , bTn , cTn ∈
Tn/∀Ti ∈ S ⇒ ∃Tj/aTi = (bTj |cTj) ∨ aTj = (bTi |cTi).

The TAC representation is widely used in compilers. Its main advantage resides
in the simplicity of handling operations with the same number of operands. Besides,
this format is very easy to handle in programmatic terms.

Superword-Level Parallelism (SLP) enables vectorization within a basic block of
code of single independent isomorphic statements [71], i.e., those statements that
contain the same operations. On the other hand, loops can be unrolled and de-
composed into independent single statements enabling SLP algorithms to vectorize
more code [107]. In that way, MACVETH also exploits this type of vectorization
across those basic blocks and loops. The loop unrolling approach in MACVETH is
also performed using the TAC format, following the iterative process shown in Al-
gorithm 5.4, and according to the parameters specified in the pragmas. MACVETH
uses pragmas to indicate the region of interest to consider, and also to configure
the options for unrolling the loop or loop nests (if needed): full unrolling, unrolling

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 157

Algorithm 5.3: translateStmtToTAC recursive function to translate
statements into TAC format.
Input: Statement S
Result: List of TAC T

1 T = [];
2 Res = getResultOrTempReg(S);
3 Lhs = getLHS(S);
4 Rhs = getRHS(S);
5 if isNonTerminal(Lhs) then
6 TACList = translateStmtToTAC(Lhs);
7 T.append(TACList);
8 Lhs = TACList.back().Res;
9 end

10 if isNonTerminal(Rhs) then
11 TACList = translateStmtToTAC(Rhs);
12 T.append(TACList);
13 Rhs = TACList.back().Res;
14 end
15 T.append(new TAC(Res, Lhs, Rhs, getOp(S)));
16 return T

according to a numerical factor, unroll-and-jam (for loop nests), etc. These options
are described in detail in Appendix C.1. This mechanism permits to generate a new
list of unrolled TACs keeping their identity, i.e., the execution order in the program.
MACVETH’s approach is to create new TAC objects when unrolling. Even though
this is costly in terms of memory, it enables the ability to handle them individually.
By doing this, another type of packing can be performed when grouping operations
and operands, apart from packing together unrolled expressions.

As an example, consider the statement D = (A + B) * C. Its equivalent TAC
representation in MACVETH is shown in Listing 5.6. As we can see, this statement
is decoded into three TACs, which are connected by temporary values. Similarly, a
set of concatenated reductions such as the one in Listing 5.7a is translated into the
TAC representation in Listing 5.7b.

The front-end in MACVETH also acts like a driver of the compiler and is respon-
sible for rewriting the code generated by the back-end (see Section 5.3.5). For this
purpose, the IRs described before also keep track of the SourceLocation, a class in

158 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Algorithm 5.4: Unrolling for a list of TACs.
Input: List of TAC T , int UnrollingFactor, LoopNests
Result: List of TAC T ′

1 T ′ = [];
2 Step = 0;
3 foreach LoopNests do
4 for Step++ < UnrollingFactor do
5 foreach TAC in T do
6 NewTAC = {};
7 foreach Expr in TAC do
8 NewExpr = unrollExpr(Step, LoopNests, Expr);
9 NewTAC = placeExprInTAC(NewExpr);

10 end
11 T ′.append(NewTAC);
12 end
13 end
14 end
15 return T ′;

1 t0 = A + B
2 t1 = t0 * C
3 D = t1;

Listing 5.6: TAC translation for D = (A + B) * C.

the Clang AST that holds a pointer to the original source location in the input file
of an expression or statement. In addition, LibTooling provides a Rewriter class,
which is able to insert, replace or remove lines in the original code.

5.3.4 Middle-end: identifying and grouping reductions

When it comes to scheduling the different TACs in the region of interest of our
program, we need a representation that can handle the dependencies between the
statements and some structures that store the information about the placement of
these statements in the execution. In our approach, we represent a forest of TACs
as a set of interconnected nodes, where each node can be a memory operation (load,

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 159

1 R += A;
2 R += B;
3 R += C;
4 R += D;

(a) Example of 4
reductions.

1 t0 = R + A;
2 R = t0;
3 t1 = R + B;
4 R = t1;
5 t2 = R + C;
6 R = t2;
7 t3 = R + D;
8 R = t3;

(b) TAC translation.

Listing 5.7: TAC translation for 4 reductions.

DAGNode

Middle-end
Packing

Cost Model

Back-end

Front-end

Figure 5.9: MACVETH’s middle-end components.

store) or any other type of operation (addition, multiplication, built-in function,
etc.). For this purpose we use a DAG [124], i.e., a graph G = (N,E), where
N = {n0, . . . , nn−1} represents the set of nodes, and E ⊆ {(e0, e1)|(e0, e1) ∈ N ×N :

e0 6= e1} is the set of ordered edges representing the data dependencies between the
nodes. In addition, this graph has no cycles, i.e., if a walk w = (e0, . . . , en−2) in G is
a finite sequence of edges ei ∈ E joining a sequence of nodes (n0, . . . , nn−1) ⊆ N ,
then @ w : e0 = en−2.

Figure 5.9 illustrates the main components interacting in the middle-end. The
DAG is built using structures implemented as Node objects. For each TAC a set
of three interconnected nodes is created, where there are two inputs and an opera-
tion/output node. Input nodes can be load nodes, from memory or literals, or they

160 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

A B

t0 C

D

+

×

Figure 5.10: DAG generated from the example in Listing 5.6.

could come from the result of other TAC, i.e., from another node holding a tem-
porary value. Operation/output nodes can be terminal or temporary. If the node
is terminal, it performs an operation and an assignment, otherwise just an opera-
tion whose output will be used by another operation node. These Node objects also
shelter other information related with the order in the original code and the depen-
dencies with other operations and operands. This information is important when
choosing the nodes that can be packed together, or when identifying reductions.
As such, we compute the Free Scheduling (FS) value, which represents the depth
of a node in the DAG. In this way, initially we can select and pack the operation
nodes performing the same operation (isomorphic statements) and with the same
FS value, as there can be no dependencies between them, but the reduction case is
different, as there are data dependencies.

As described before, in MACVETH the DAG will help to understand and identify
the patterns present in the code in order to pack operations and operands that can
be executed together in a vectorized fashion, or using a known set of operations
(e.g., reductions). From the previous examples, taking the TAC representation
in Listing 5.6, MACVETH builds the DAG in Figure 5.10. The input nodes are
depicted in blue, while the temporary ones are colored in black. As we explained
earlier, there is a simplification in the DAG for the assignment operator, as it is
depicted in the terminal D node (in red). The DAG does not generate an additional
node for the assignment, but the output node D holds that information within the
Node structure.

The reduction example in Listing 5.7b is synthesized as the DAG in Figure 5.11.
Multiple reductions on an element in the code generate a very recognizable shape

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 161

R A

t0

+

B

t1

+

C

t2

+

D

R

+

Figure 5.11: DAG generated from the reduction TACs in Listing 5.7b.

in the DAG: starting from the terminal output node (red node R at the bottom),
the left input operands are always the temporary values (operation nodes) which
are assigned to the original reduction R in the TACs, having a decreasing FS value,
i.e., FSR > FSt2 > FSt1 > FSt0. Following these features, we have implemented
an algorithm in MACVETH to identify the independent reductions on any arbi-
trary element or memory position. Continuing the reduction example, an SpMV
code could be as simple as in Listing 5.8a, generating the TAC representation in
Listing 5.8b. In this example, we have two independent reductions on two different
elements (y[0] and y[1]). The resulting DAG is depicted in Figure 5.12. As it can
be observed, there are two independent reduction trees without any type of connec-
tion between them. These patterns are identified as two independent reductions in
the code. On the other hand, nodes t0, t2, t4 and t6 in the figure can be packed
together in the same operation as they have the same FS value. MACVETH deals
with these situations in a best-effort manner, by trying to group and vectorize first
the reductions, as we will describe next, and using a greedy algorithm for packing
and consuming isomorphic nodes, and with the same FS value.

This last example is the typical scenario for any SpMV code. The size of the
target matrices can be very different, featuring from a few nonzero values to tens of
millions. For these reasons, it is important to MACVETH to properly identify the
independent reductions in the code.

162 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 y[0] += A[0] * x[2];
2 y[0] += A[1] * x[42];
3 y[1] += A[2] * x[11];
4 y[1] += A[3] * x[22];

(a) Example of SpMV code.

1 t0 = A[0] * x[2];
2 t1 = y[0] + t0;
3 y[0] = y[0] = t1;
4 t2 = A[1] * x[42];
5 t3 = y[0] + t2;
6 y[0] = y[0] = t3;
7 t4 = A[2] * x[11];
8 t5 = y[1] + t4;
9 y[1] = y[1] = t5;
10 t6 = A[3] * x[22];
11 t7 = y[1] + t6;
12 y[1] = y[1] = t7;

(b) TAC translation.

Listing 5.8: TAC translation for the SpMV code.

y[0] t0

t1

t2

y[0]

+

×
A[0] x[2] A[1] x[42]

y[1] t4

t5

t6

y[1]

+

A[2] x[11] A[3] x[22]

× × ×

+ +

Figure 5.12: DAG generated from the reduction TACs in Listing 5.8b.

Packing cost model: grouping reductions

After identifying all reductions in the code, MACVETH applies a best-effort
methodology for packing and consuming those reduction nodes in the code. The
compiler implements a bottom-up algorithm detailed in Algorithm 5.5. In order
to avoid the inspection of all nodes at the same time in large codes, the algorithm
works within a set or window of nodes in the DAG of size WindowSize. The main
goal of this algorithm is to pack together the largest possible number of reductions
in order to maximize vector occupancy. For that purpose, we first create a map
(ReductionsMap, line 7 in the algorithm) containing all the reduction nodes in the

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 163

Algorithm 5.5: Approach followed by MACVETH for packing reductions.
Input: DAG G, int WindowSize, int MaxPackingSize, int MinPackingSize
Result: List of SIMD instructions

1 unvisited_nodes = [];
2 SIMDList = [];
3 i = 0;
4 for W = G[i : i + WindowSize] do
5 i = i + WindowSize;
6 W = W + unvisited_nodes;
7 ReductionsMap = get_map_reductions(W);
8 NewPacking = [];
9 PackingSize = MaxPackingSize;

10 while PackingSize > MinPackingSize do
11 for Map in ReductionsMap do
12 if Map.size() < PackingSize then
13 continue;
14 end
15 NewPacking += Map[0:PackingSize];
16 Map.delete(0:PackingSize);
17 if (NewPacking.size() == MaxPackingSize) then
18 break;
19 end
20 end
21 if NewPacking.size() == 0 then
22 PackingSize /= 2;
23 continue;
24 end
25 SIMDList.append(synthesize(NewPacking));
26 NewPacking = [];
27 end
28 SIMDList.append(synthesize(NewPacking));
29 unvisited_nodes.append(get_unvisited_nodes(ReductionsMap));
30 end
31 unvisited_nodes = vectorize_orphan_redux(unvisited_nodes, SIMDList);

// Issues scalar code with the rest of orphan nodes
32 for Node in unvisited_nodes do
33 SIMDList.append(synthesize(Node));
34 end
35 return SIMDList;

164 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

window grouped by element. The next step is to consume the maximum number of
reductions on the same element according to the maximum size vector (MaxPack-
ingSize). For simplicity, in the following examples we are assuming floats (32 bits)
and a vector width of 256 bits. As such, MaxPackingSize is 8. The algorithm first
attempts to pack together at least 8 nodes corresponding to reductions on the same
element (line 15 in the algorithm). If we have, for instance, 9 reduction statements
on the same element, 8 will be packed together in this first pass, and the leftover
or orphan node will be considered to be packed with other orphan nodes (line 31);
and if not feasible it will be issued sequentially, in scalar form (lines 32–34). But
the algorithm also tries to group together independent reductions, if possible. If
there are 4 independent reduction statements on two different elements, they will
be packed together as well (4+4). The minimum number of elements to pack is also
specified by MinPackingSize. These parameters constitute the parametric restric-
tions for the algorithm, which will vary depending on the architecture, the ISA and
the data type. These values can also be modified by the user in the CLI (see op-
tion --min-redux-size in Appendix C.1). For modern architectures, such as Intel
Cascade Lake, with AVX2 using floats, we have empirically experienced no benefit
in packing less than 4 reductions on the same element (MinPackingSize), since the
number of instructions and data movements (load and swizzle instructions) intro-
duced compared to the equivalent scalar code has a detrimental impact.

There will also be cases where some or all reductions on an element cannot be
packed together since the number of candidate nodes is less than the MinPacking-
Size value. In this case, another search is done in a best-effort manner. The cost
model will try to group those isomorphic nodes whose store values are contiguous
memory addresses. The process is detailed in Algorithm 5.6. The idea is very sim-
ple: find those store values of the list of orphan reduction statements whose memory
addresses are contiguous in ascending order. If we find strides of 4 or more, then the
algorithm packs together these operations in a vectorized fashion, avoiding issuing
those statements as scalars. This option can also be disabled in the CLI (see option
--novec-orphan-redux in Appendix C.1). To better illustrate this use case consider
the code in Listing 5.9, which represents a small window in a larger code. There
are 5 reduction statements on y[0], only one on y[1] and y[2], and 2 on y[3].
The process described in Algorithm 5.5 will pack the first 4 reduction statements
on y[0], discarding the consideration of the last one. This will be appended to the

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 165

Algorithm 5.6: vectorize_orphan_redux function for vectorizing orphan
reductions.
Input: List of Nodes N , int MinPackingSize
Result: List of SIMD instructions

1 PrevMem = 0;
2 AlreadyMapped = [];
3 SIMDList = [];
4 for MainNode in N do
5 Nodes = [];
6 for NewNode in N do
7 NewMem = get_mem(NewNode);
8 if PrevMem + 1 == NewMem then
9 Nodes.append(NewNode);

10 end
11 end
12 if Nodes.size() >= MinPackingSize then
13 SIMDList.synthesize(Nodes);
14 end
15 end
16 return SIMDList;

unvisited_nodes list, as the algorithm only packs a number of reductions multiple
of 2. y[1] and y[2] will be appended to this list as well, and since there are only
2 reduction statements on y[3], the algorithm will not consider their packing, and
they will also be appended to the unvisited_nodes list. Following this reasoning, the
content of this list, after consuming all reduction nodes in DAG G (line 31 in the
algorithm), will be the reduction statements corresponding to {y[0], y[1], y[2],
y[3], y[3]} (lines 5–9 in Listing 5.9). With these nodes, the Algorithm 5.6 will pack
together the first four reduction statements ({y[0], y[1], y[2], y[3]}), since their
store values are contiguous in memory and their operations are isomorphic, which
makes these nodes suitable for vectorization. The last reduction on y[3] would be
issued as scalar (see lines 32–34 in Algorithm 5.5), if it cannot be packed with any
other nodes in the following windows.

166 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 y[0] += A[0];
2 y[0] += A[1];
3 y[0] += A[2];
4 y[0] += A[3];
5 y[0] += A[4];
6 y[1] += A[5];
7 y[2] += A[6];
8 y[3] += A[7];
9 y[3] += A[8];
10 ...

Listing 5.9: Example code where the grouping of orphan reduction nodes
applies.

5.3.5 Back-end: fusing reductions and synthesis of SIMD code

In order to tackle all different architectures when generating instructions, we
need a generic vector representation of the vector instructions we want to pack in
our program. For this purpose, we developed the abstraction layer VectorIR in
MACVETH, which basically packs together a set of nodes from the DAG into a
common structure which represents a vector operation. This vector representation
is linked to the target architecture and ISA, as the maximum number of elements in
a vector operation depends on the data type and the maximum vector width in the
architecture. Thus, each vector operation will also depend on two vector operands
which represent a set of nodes in the DAG. The formal representation of this IR is
described in Definition 2.

Definition 2. A vector operation is a 4-tuple V IR = (V OpR, V Op1, V Op2,⊕),
being C ⊆ DAG such that: 1) V OpR = V Op1 ⊕ V Op2, 2) V Opi ⊆ C, 3) |V Opi| ≤
ISAwidth, 4) V Op1 6= V Op2.

VectorIR is a generic way of representing vector operations for the different
architectures. Because of this, at this stage there is no fusing operations or any
other kind of target specific optimizations. The concrete back-end will be in charge
of doing this; for instance, an architecture featuring AVX could not have Fused
Multiply-Add (FMA) instructions.

The SIMDBackend in MACVETH is an abstraction that has to be implemented

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 167

VectorIR

SIMDBackend
Random Vector

Packing
Templates

Back-end
selects

uses

calls

Packing
Cost Model

Front-endMiddle-end

MRKVS

Figure 5.13: MACVETH’s back-end components.

for each concrete ISA, and is in charge of generating code from the operations in the
VectorIR. This toolchain is depicted in Figure 5.13. Therefore, this back-end first
performs the instruction selection and then the register allocation. For the reduction
case, the back-end has already embedded a set of formulas depending on the type
and number of elements to reduce in a vector fashion. These formulas depend on the
architecture and ISA. Assuming floats, for instance, for 4 reductions on an element
in Listing 5.10a, MACVETH synthesizes the SSE code in Listing 5.10b. Continuing
the example, for 8 reductions in Listing 5.11a, MACVETH synthesizes the AVX2
code in Listing 5.11b.

These are ad hoc implementations based on the best empirically found solutions,
trying to minimize the pipeline latency and the number of instructions generated.
The formulas implemented for performing reductions in MACVETH are intended for
SSE and up to AVX2. These are different depending on the data type, e.g., double
and float, since the number of elements in the register is different. In the same way,
for each new ISA to be supported in the system the same exploration should be
done. Newer x86 SIMD extensions such as AVX-512 introduce a new Intrinsics such
as _mm512_reduce_add_ps, which has the same functionality as described above but
for 512-bit registers, and is implemented by compilers as a sequence of other built-in
Intrinsics and instructions5.

5GCC implementation for this Intrinsics: https://github.com/gcc-mirror/gcc/blob/
9d7e19255c06e05ad791e9bf5aefc4783a12c4f9/gcc/config/i386/avx512fintrin.h#L15928.

https://github.com/gcc-mirror/gcc/blob/9d7e19255c06e05ad791e9bf5aefc4783a12c4f9/gcc/config/i386/avx512fintrin.h#L15928
https://github.com/gcc-mirror/gcc/blob/9d7e19255c06e05ad791e9bf5aefc4783a12c4f9/gcc/config/i386/avx512fintrin.h#L15928

168 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 tmp += y[0];
2 tmp += y[1];
3 tmp += y[2];
4 tmp += y[3];

(a) Reduction on tmp.

1 __vop0 = _mm_loadu_ps(&y[0]);
2 __mv_hi128 = _mm_movehl_ps(__vop0, __vop0);
3 __vop0 = _mm_add_ps(__vop0, __mv_hi128);
4 __mv_hi128 = _mm_shuffle_ps(__vop0, __vop0, 0b00000001);
5 __mv_lo128 = _mm_add_ps(__vop0, __mv_hi128);
6 tmp = tmp + __mv_lo128[0];

(b) MACVETH output.

Listing 5.10: Example of synthesis in MACVETH for 4 reductions on a float in
SSE (AVX2-compliant).

1 tmp += y[0];
2 tmp += y[1];
3 tmp += y[2];
4 tmp += y[3];
5 tmp += y[4];
6 tmp += y[5];
7 tmp += y[6];
8 tmp += y[7];

(a) Reduction on tmp.

1 __vop0 = _mm256_loadu_ps(&y[0]);
2 __mv_lo128 = _mm256_castps256_ps128(__vop0);
3 __mv_hi128 = _mm256_extractf128_ps(__vop0, 0x1);
4 __mv_lo128 = _mm_add_ps(__mv_lo128, __mv_hi128);
5 __mv_hi128 = _mm_movehl_ps(__mv_lo128, __mv_lo128);
6 __mv_lo128 = _mm_add_ps(__mv_lo128, __mv_hi128);
7 __mv_hi128 = _mm_shuffle_ps(__mv_lo128, __mv_lo128,
8 0b00000001);
9 __mv_lo128 = _mm_add_ps(__mv_lo128, __mv_hi128);
10 tmp = tmp + __mv_lo128[0];

(b) MACVETH output.

Listing 5.11: Example of synthesis in MACVETH for 8 reductions on a float in
AVX2.

Random vector packing templates

When the operands of an operation are not contiguous in memory, the packing
cost model selects the random vector packing template to use based on the already
pre-computed cost model described in Section 5.2. This model gets the reference
for the concrete template based on the architecture and the ISA, and the contiguity
of the elements to pack together. These template files are indexed by the grammar
specified in Section 5.2.4, and they correspond to the candidates generated by the
MRKVS system. With these templates, MACVETH fills their input values with the
corresponding memory addresses and registers from the code.

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 169

Fusing reductions

In the middle-end, the packing cost model tries to maximize the vector occupancy
for reductions. MACVETH considers two forms of fusing independent reductions:
using the same vector register (intra-register), and using multiple vector registers
(inter-register). For the first case, the back-end just performs a partial reduction on
the register to be reduced, as shown in Listing 5.12. In this case, the compiler uses
the same operations to simultaneously compute both independent reductions (tmp0
and tmp1). This idea is also graphically depicted in Figure 5.14. This example is for
vectors of 256 bits, but it would be the same for vectors of 128 bits, only changing
the instructions used and the number of steps. This approach has a limitation:
the number of values in each independent reduction must be the same, and the
values must be placed contiguously. This is why the packing cost model must pack,
typically, a multiple of 2 reductions together. Following the example, packing 5
reductions on tmp0 and 3 on tmp1 cannot be done with the approach proposed here.
However, MACVETH does not even consider this kind of patterns in the packing
cost model, since we have tested them empirically observing no benefit to their
vectorization.

The second case, fusing reductions in different vector registers, is shown in List-
ing 5.13 and graphically depicted in Figure 5.15. In this case, we leverage the hor-
izontal addition instruction in the ISA (vhaddps, in Intrinsics _mm256_hadd_ps())
for fusing the shuffling and addition at the same time of two vectors using a single
instruction (decoded into more micro-operations in the pipeline). This instruction
horizontally adds adjacent pairs of elements in both input operands, leaving the
most significant 128 bits and the least significant 128 bits of the output register
perfectly aligned to be added vector wise. The rest of the operation has already
been covered in the previous example, when reducing multiple values within the
same vector. In this example, for simplicity, we just illustrate the joint reduction
of two vectors, but this approach is extensible and was implemented in MACVETH
for up to four independent reductions in different vector registers (256 bits). The
main goal of both types of fusions is to maximize vector occupancy since reductions,
by nature, are not ‘strictly’ vectorizable.

170 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 tmp0 += y[0];
2 tmp0 += y[1];
3 tmp0 += y[2];
4 tmp0 += y[3];
5 tmp1 += y[4];
6 tmp1 += y[5];
7 tmp1 += y[6];
8 tmp1 += y[7];

(a) Two indepen-
dent reductions on
tmp0 and tmp1.

1 __vop0 = _mm256_loadu_ps(&y[0]);
2 __tmp0_256 = _mm256_permute_ps(__vop0, 0b00001110);
3 __tmp1_256 = _mm256_add_ps(__vop0, __tmp0_256);
4 __tmp2_256 = _mm256_shuffle_ps(__tmp1_256, __tmp1_256,
5 0b00000001);
6 __mv_lo256 = _mm256_add_ps(__tmp1_256, __tmp2_256);
7 tmp0 = tmp0 + __mv_lo256[0];
8 tmp1 = tmp1 + __mv_lo256[4];

(b) MACVETH output for the fusion of these reductions.

Listing 5.12: Example of synthesis in MACVETH for the fusion of two indepen-
dent reductions of 4 elements each within the same vector.

x x y[7] y[6] x x y[3] y[2]__tmp0_256

__tmp1_256 x x y[5]+y[7] y[4]+y[6] x x y[1]+y[3] y[0]+y[2]

__tmp2_256 x x x y[5]+y[7] x x y[1]+y[3] y[1]+y[3]x x

_mm256_permute_ps

_mm256_add_ps

_mm256_shuffle_ps

__mv_lo256 x x x
y[4]+y[6]
y[5]+y[7]

x x y[1]+y[3]
y[0]+y[2]

y[1]+y[3]
x x _mm256_add_ps

y[7] y[6] y[5] y[4] y[3] y[2] y[1] y[0]__vop0

7 6 5 4 3 2 1 0

Figure 5.14: Graphic description of vectors’ content for the code in Listing 5.12b.
Values marked with a cross (x) are not displayed as they do not contribute to the
final reduction. The position of the result of each reduction is in green.

5.3. MACVETH: Multi-Architectural C-VEcTorizer for HPC applications | 171

1 tmp0 += y[0];
2 tmp0 += y[1];
3 tmp0 += y[2];
4 tmp0 += y[3];
5 tmp0 += y[4];
6 tmp0 += y[5];
7 tmp0 += y[6];
8 tmp0 += y[7];
9 tmp1 += z[0];
10 tmp1 += z[1];
11 tmp1 += z[2];
12 tmp1 += z[3];
13 tmp1 += z[4];
14 tmp1 += z[5];
15 tmp1 += z[6];
16 tmp1 += z[7];

(a) Two indepen-
dent reductions on
tmp0 and tmp1.

1 __vop0 = _mm256_loadu_ps(&y[0]);
2 __vop2 = _mm256_loadu_ps(&z[0]);
3 __vop0 = _mm256_hadd_ps(__vop0, __vop2);
4 __mv_lo128 = _mm256_castps256_ps128(__vop0);
5 __mv_hi128 = _mm256_extractf128_ps(__vop0, 0x1);
6 __mv_lo128 = _mm_add_ps(__mv_lo128, __mv_hi128);
7 __mv_hi128 = _mm_shuffle_ps(__mv_lo128, __mv_lo128,
8 0b00110001);
9 __mv_lo128 = _mm_add_ps(__mv_lo128, __mv_hi128);

10 tmp0 = tmp0 + __mv_lo128[0];
11 tmp1 = tmp1 + __mv_lo128[2];

(b) MACVETH output for the fusion of these reductions.

Listing 5.13: Example of synthesis in MACVETH for the fusion of two indepen-
dent reductions of 8 elements each in two different vectors.

y[7] y[6] y[5] y[4] y[3] y[2] y[1] y[0]__vop0

7 6 5 4 3 2 1 0

z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]__vop2

__tmp1_256 z[5]+z[7] z[4]+z[6] y[5]+y[7] y[4]+y[6] z[1]+z[3] z[0]+z[2] y[1]+y[3] y[0]+y[2]

__mv_lo128 z[1]+z[3] z[0]+z[2] y[1]+y[3] y[0]+y[2]

z[5]+z[7] z[4]+z[6] y[5]+y[7] y[4]+y[6]__mv_hi128

x

x

__mv_lo128
z[1]+z[3]

z[5]+z[7]

z[0]+z[2]

z[4]+z[6]

y[1]+y[3]

y[5]+y[7]

y[0]+y[2]

y[4]+y[6]
x

z[5]+z[7]
z[1]+z[3]

z[5]+z[7]
y[5]+y[7]

y[1]+y[3]

y[5]+y[7]
__mv_hi128 x x x

z[5]+z[7] Σ(z) y[5]+y[7] Σ(y)x x x__mv_lo128

_mm256_hadd_ps

_mm256_castps256_ps128

_mm256_extractf128_ps

_mm_add_ps

_mm_shuffle_ps

_mm_add_ps

Figure 5.15: Graphic description of vectors’ content for the code in Listing 5.13b.
Values marked with a cross (x) are not displayed as they do not contribute to the
final reduction. The position of the result of each reduction is in green.

172 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Peephole optimizations: FMAs and dead code elimination

MACVETH also performs two types of peephole optimizations in the code: the
substitution of additions and multiplications by Fused Multiply-Add (FMA) instruc-
tions, and a simple dead code elimination (DCE) approach. FMAs are of the form
shown in Listing 5.6: D = (A + B) * C. We can fuse these two operations into a
single FMA if and only if the result of A + B is not consumed by any other statement
in the code. Not all architectures support this feature, and this is the reason why
this optimization is only considered in the back-end. MACVETH also inspects the
liveness of the variables it generates in order to remove them if they are not used
after the end of the region of interest.

5.3.6 Current limitations of the tool

MACVETH is meant to be built using LLVM library from version 11.x. It is
written using C++17 features, and it is recommended to be compiled using GNU
GCC from version 9.3.0. Currently it only fully supports Linux and UNIX-like
systems. Here is the list of restrictions and assumptions that the user must consider
when using MACVETH:

• Only C/C++ code is allowed, and it must be delimited by pragmas (see Ap-
pendix C.2).

• There is only support for x86 architectures featuring AVX2 SIMD extensions
(including FMA) or prior. There is no support for AVX-512 extensions yet.

• Pointers and indirections are not allowed in the code to be vectorized.

• Variable declarations are not allowed within the body of a loop or a region.
Only variable declarations within a for statement are allowed, e.g., for (int
i = ...).

• No conditional statements are allowed within the regions to be considered for
vectorization.

5.4. Experimental Results | 173

• All statements contained in the region of interest must adhere to the following
grammar in extended Backus-Naur Form:

〈syntax〉 |= 〈stmt〉 | 〈stmt〉〈syntax〉
〈stmt〉 |= 〈expr〉〈assign〉〈op〉; | 〈for_stmt〉 | λ

〈for_stmt〉 |= for(var = 〈expr〉; var 〈cond〉 〈expr〉; 〈incr_op〉){〈syntax〉}
〈op〉 |= 〈op〉 〈bin_op〉 〈op〉 | f(〈op〉, 〈op〉) | f(〈op〉) | 〈expr〉

〈incr_op〉 |= ++var | var++ | var〈assign〉digit
〈cond〉 |= < | <= | >= | >

〈bin_op〉 |= + | - | / | *
〈assign〉 |= = | += | -=
〈expr〉 |= array | digit | var

5.4 Experimental Results

In this section we describe the experiments performed to assess the performance
and correctness of the codes synthesized by MACVETH. This tool is targeted to-
wards irregular codes, such as SpMV computations. Sparse matrices are typically
represented using the Compressed Sparse Row (CSR) format, or other similar com-
pressed schemes, e.g., Coordinate List (COO), Compressed Sparse Column (CSC),
etc. These formats are designed to save space and computations by only storing
the positions of nonzero values of the matrix, but indirection arrays need to be used
to scan the nonzero elements. A common SpMV kernel using the CSR format is
illustrated in Listing 5.14.

1 for (int i = 0; i < N ; ++i) {
2 y[i] = 0.0;
3 for(j = row_ptr[i]; j < row_ptr[i + 1]; ++j)
4 y[i] += A[j] * x[cols[j]];
5 }

Listing 5.14: Classic SpMV kernel using CSR format.

174 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 void kernel_spmv_fragment_0(float *__restrict A, float *__restrict x,
2 float *__restrict y) {
3 register int i0;
4 for (i0 = 0; i0 <= 1; ++i0) {
5 y[0 * i0 + 1] += A[1 * i0 + 0] * x[1 * i0 + 0];
6 }
7 for (i0 = 0; i0 <= 2; ++i0) {
8 y[0 * i0 + 2] += A[1 * i0 + 2] * x[1 * i0 + 0];
9 }
10 for (i0 = 0; i0 <= 1; ++i0) {
11 y[0 * i0 + 3] += A[1 * i0 + 5] * x[1 * i0 + 1];
12 }
13 for (i0 = 0; i0 <= 1; ++i0) {
14 y[0 * i0 + 4] += A[1 * i0 + 7] * x[1 * i0 + 1];
15 }
16 y[5] += A[9] * x[1];
17 for (i0 = 0; i0 <= 1; ++i0) {
18 y[1 * i0 + 5] += A[1 * i0 + 10] * x[0 * i0 + 2];
19 }
20 }
21
22 void kernel_spmv(float *__restrict A, float *__restrict x,
23 float *__restrict y) {
24 kernel_spmv_fragment_0(A, x, y);
25 }

Listing 5.15: Computations generated with the system developed by Augustine
et al. [7] for the input matrix JGD Kocay/Trec5 from the SuiteSparse
collection [21].

In order to avoid the use of indirection arrays, Augustine et al. [7] developed a
system for automatically building sets of regular subcomputations by mining regular
subregions on the irregular data structure, i.e., on a sparse matrix. This approach
generates specialized code for each input sparse matrix improving the opportuni-
ties to generate vector code, such as in those included in the SuiteSparse collec-
tion [21]. An example of the output of this system for the input sparse matrix
JGD_Kocay/Trec5 is depicted in Listing 5.15. This type of codes features loops
with very small trip count and known upper bound, which can be fully unrolled.
It also presents regular subcomputations in the form of n-sized reductions that are
easily vectorizable (even for auto-vectorizers) and are eligible candidates to be fused
in MACVETH. On the other hand, the code also presents independent basic blocks

5.4. Experimental Results | 175

that can be grouped together using SLP-like techniques (as in line 16 of the listing).

We have designed a set of experiments to assess the correctness of the code syn-
thesized by the compiler, varying from tens to thousands of sets of reductions on
the same values. These experiments have been executed using MARTA (see Chap-
ter 4). We have also developed an extension of MARTA to integrate the MACVETH
compilation step, and the dumping of the output values in the resulting arrays for
both code versions: the original one and the MACVETH-vectorized version. This
dumping is performed using macros and functions available in PolyBench [103].
In this way, MARTA is able to check the correctness of MACVETH-generated
codes by comparing their outputs with those of the original codes. All the ex-
periments presented in this section passed this sanity check successfully. Both the
compilation and execution steps (including the MACVETH compilation) were com-
pletely automated, requiring only a very small configuration file for running these
tests. All the experiments were conducted on an Intel Xeon Scalable 4216 proces-
sor (Cascade Lake architecture) at a fixed frequency of 2.1 GHz. This architecture
features AVX-512, but in our case we limited the vectorization opportunities for
the MACVETH-generated codes to AVX2. All binaries were compiled with GNU
GCC 11.2.0 using -Ofast -march=native -mtune=native, as the SLP-like vector-
izer features improvements over previous versions by considering opportunities for
vectorizing across basic blocks of code and loops [37]. Each version of the program
has been executed 50 times, reporting the arithmetic mean of all measurements after
removing the largest and smallest ones, and discarding the outliers with an absolute
difference with the arithmetic mean greater than 3 times the standard deviation.

Next, Section 5.4.1 presents the analysis of the results obtained for the synthetic
patterns described there, and Section 5.4.2 presents the analysis of a subset of the
matrices built in the work by Augustine et al. [7].

5.4.1 Synthetic patterns

The synthetic patterns in the experimental set consist of different instances of the
parametric loop in Listing 5.16. The UB variable in the loop declaration represents
the upper bound, which is known at compile time, enabling the full unrolling of the
loop. In this way, each synthetic code contains #REDS

UB
loops, where #REDS is the

176 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 for (int i = 0; i < UB; ++i) {
2 y[Y_OFFSET] += A[i + A_OFFSET] * x[X_STRIDE * i + X_RANDOM_OFFSET];
3 }

Listing 5.16: Loop present in the synthetic codes generated.

Table 5.1: MACVETH configurations for the synthetic patterns.

Name --min-redux-size --nofuse
4redux 4 N.A.
8redux_fuse 8 Disabled
8redux_nofuse 8 Enabled

number of reductions considered for the code. The Y_OFFSET is incremental for each
loop generated in the code, so that each loop reduces on the same element. To this
extent, each loop represents UB reductions on y[Y_OFFSET]. The indices for the x
array are random across its domain. The access pattern for matrix A is sequential
regardless of the loop trip count. These computations resemble the SpMV codes
generated in [7], but they do not represent any real matrix.

We used different configurations for MACVETH, as disclosed in Table 5.1. In
this case, we consider two values for the minimum reduction size, 4 and 8, and the
option of enabling or disabling the fusion of independent reductions (we refer to
Sections 5.3.4 and 5.3.5 for more details). These values also determine the loop trip
count, i.e., for a minimum reduction size of 4 elements, the synthetic patterns to
compile all have 4 iterations. The same reasoning applies for a minimum reduction
size of 8 elements. Note that all these patterns are regular since all loops have
the same upper bound, and the packing algorithm produces zero orphans since
the operations involved in each reduction can be packed together. As such, the
consideration for vectorizing orphan reductions does not apply (see Section 5.3.4).
The 4redux configuration does not consider the inter-register fusion of independent
reductions, so the setup of this option does not affect the output of the synthesized
code. With this configuration we want to measure the impact of the intra-register
fusion of reductions. In the same way, the 8redux_fuse configuration measures the
impact of the inter-register fusion of reductions. The 8redux_nofuse configuration
does not apply inter-register fusion, and because of the nature of the input loops for

5.4. Experimental Results | 177

Table 5.2: Comparison of MACVETH configurations for the synthetic patterns in
terms of speedup in cycles. Blue values indicate the maximum speedup for each
metric, but for the standard deviation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_fuse 1.062 0.187 0.885 0.916 1.005 1.190 1.441
8redux_fuse 1.154 0.124 0.970 1.060 1.197 1.219 1.326
8redux_nofuse 0.937 0.319 0.228 0.803 0.988 1.114 1.335

Table 5.3: Comparison of MACVETH configurations for the synthetic patterns
in terms of speedup in the reduction of the number of micro-operations retired.
Blue values indicate the maximum speedup for each metric, but for the standard
deviation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_fuse 1.108 0.072 1.011 1.043 1.127 1.141 1.207
8redux_fuse 1.174 0.122 0.996 1.089 1.186 1.284 1.331
8redux_nofuse 0.990 0.017 0.967 0.975 0.996 1.001 1.016

this concrete configuration, it neither applies intra-register fusion.

We generated a sequence of codes varying from 8 to 4096 reductions, doubling
the number of reductions in each step. Tables 5.2 and 5.3 show descriptive statis-
tics for the speedups measured in terms of cycles and reduction of micro-operations,
respectively. The best mena and statistical dispersion (standard deviation and quar-
tiles) in both cycles and micro-operations retired is obtained for the 8redux_fuse
configuration (even though the best standard deviation in micro-operations is ob-
tained for 8redux_nofuse). On the other hand, the maximum speedup in cycles
is obtained for the 4redux configuration with a 44.1% speedup (value 1.441 in Ta-
ble 5.2). Regarding reduction of micro-operations, the 8redux_fuse configuration
obtains a maximum speedup of 33.1%. Both maximum speedups are obtained for
the pattern with 4096 reductions. This effect is more remarkable for the reductions
of 8 elements, where the speedup in cycles is on average 15.4% for the best config-
uration. In terms of micro-operations, there is a significant average speedup for all
the configurations but, again, 8redux_fuse configuration achieves the best overall
results, with a promising average speedup of 17.4%. Both the speedup in cycles and
in the reduction of the number of micro-operations retired greatly contribute to the
energy efficiency of the application.

178 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Figure 5.16 shows a barplot of the speedups obtained all MACVETH configura-
tions described in terms of cycles and reduction of micro-operations. It is remarkable
that in almost all cases there is a significant speedup for 4redux and 8redux_fuse,
except when the number of reductions to pack is very small (8 and 16 reductions).
These are cases where the compiler is able to vectorize these loops in a similar
manner as MACVETH. The potential benefits of our approach are visible when in-
creasing the number of independent reductions. Here the fusion of reductions plays
an important role, by decreasing the number of instructions retired. For instance,
this decrease and the number of reductions in the code have a Pearson correla-
tion coefficient of R=0.70 for the 8redux_fuse configuration (inter-register fusion
enabled).

Table 5.4 shows the descriptive metrics for all MACVETH configurations regard-
ing the increment of vector FLOPs compared with the GCC auto-vectorized version.
It is remarkable that GCC reports successful vectorization of all loops for all these
codes, adding more value to our results. The metric shown in Table 5.4 is computed
as described in Equation 5.7, where SCALAR corresponds to scalar FP instructions
retired, 128_PACKED to 128-bit FP instructions (4 floats), and 256_PACKED to
256-bit FP instructions (8 floats). The 4redux configuration shows, on average,
more than 5x increase in the vector FLOPs, the same as for 8redux_fuse. These
results are not correlated with the speedups in cycles, but they clearly indicate that
MACVETH synthesizes more efficient SIMD code (more SIMD packed instructions
than scalar instructions), as at the same time the number of micro-operations is
reduced (see Table 5.3). Even though the best configuration for this metric (by
an almost insignificant margin) is 4redux, Figure 5.17 illustrates the percentage of
scalar and vector FLOPs over the total FLOPs for the 8redux_fuse configuration,
which has the best speedups in cycles. These results show the trends observed in
Table 5.4, where we can see how the MACVETH version of the code issues more
vector FLOPs than the auto-vectorized version by GCC. In this figure we also in-
clude the metric in Equation 5.8, which computes the percentage of scalar FLOPs.
For all MACVETH configurations these values decrease significantly.

5.4. Experimental Results | 179

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

8

16

32

64

128

256

512

1024

2048

4096

Nu
m

be
r o

f r
ed

uc
tio

ns

Cycles Micro-operations

4redux 8redux_fuse 8redux_nofuse

Figure 5.16: Speedups obtained in cycles and in the reduction of the number of
micro-operations for the synthetic patterns for all MACVETH configurations.

180 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

8

16

32

64

128

256

512

1024

2048

4096

Nu
m

be
r o

f r
ed

uc
tio

ns

Scalar FLOPs 128b FLOPs 256b FLOPs

Auto-vec. MACVETH

Figure 5.17: Percentage of scalar and vector FLOPs for the synthetic patterns
with the GCC auto-vectorized version and the 8redux fuse MACVETH configura-
tion.

5.4. Experimental Results | 181

Table 5.4: Comparison of MACVETH configurations for the synthetic patterns
in terms of increment of vector FLOPs issued over the auto-vectorized version.
Blue values indicate the maximum increment for each metric, but for the standard
deviation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_fuse 5.099 0.556 4.000 4.907 5.220 5.441 5.895
4redux_nofuse 5.099 0.556 4.000 4.907 5.220 5.441 5.895
8redux_fuse 5.050 1.460 1.000 5.362 5.661 5.825 5.971
8redux_nofuse 1.197 0.189 0.971 1.117 1.171 1.238 1.750

V ectorFLOPs =
4 ∗ 128_PACKED + 8 ∗ 256_PACKED

SCALAR + 4 ∗ 128_PACKED + 8 ∗ 256_PACKED
(5.7)

ScalarFLOPs =
SCALAR

SCALAR + 4 ∗ 128_PACKED + 8 ∗ 256_PACKED
(5.8)

5.4.2 Sparse matrices: SuiteSparse repository

We chose a subset of 150 matrices presented in [7] for these experiments (full
list in Table C.1, Appendix C.3). The number of nonzero values (NNZ) for all
these matrices is under 62,000. For completeness, we also selected 12 large sparse
matrices from the collection with more than 1 million NNZ values. We used multiple
configurations for MACVETH, as described in Table 5.5. Some of them include the
option to consider for vectorization those orphan reductions which cannot be packed
together (when --novec-orphan-redux is ‘Disabled’, we refer to Section 5.3.4 for
further information and to Appendix C.1 for the compiler options).

Tables 5.6 and 5.7 show some descriptive statistics for all the configurations
presented. These values are computed over all the matrices for each MACVETH
configuration. In general, considering both cycles and micro-operations, we could
infer that the best configuration is 4redux_noorphan_fuse. In terms of cycles it gets
the best average for all the matrices (12.4% speedup), with a central tendency above
9%, and a maximum of almost 200% (or 3x). It is remarkable that all MACVETH

182 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Table 5.5: MACVETH configurations for the SuiteSparse matrices selected.

Name --min-redux-size --nofuse --novec-orphan-redux
4redux_noorphan_fuse 4 Disabled Enabled
4redux_noorphan_nofuse 4 Enabled Enabled
4redux_orphan_fuse 4 Disabled Disabled
4redux_orphan_nofuse 4 Enabled Disabled
8redux_noorphan_fuse 8 Disabled Enabled
8redux_noorphan_nofuse 8 Enabled Enabled
8redux_orphan_fuse 8 Disabled Disabled
8redux_orphan_nofuse 8 Enabled Disabled

configurations improve, on average, the performance in cycles. In terms of micro-
operations, the average reduction in almost all configurations is positive, varying
from−1.2% to 8.2%, being the 4redux_noorphan_fuse the best configuration again.
From these values we can also conclude that the fusion of independent reductions (see
Sections 5.3.4 and 5.3.5) provides benefits in terms of cycles and micro-operations
issued. However, our implementation for the vectorization of orphan reductions
does not provide any benefit on average, even though it achieves the best speedup
in cycles (440% or 5.4x for 4redux_orphan_fuse). We observed a degradation in
cache performance by increasing almost 2x and 1.25x on average the number of cache
misses in L2 and L3, respectively, on average, with regard to the same MACVETH
configuration without this optimization. Note that out approach is quite naïve and
does not consider the distance between the orphan reduction nodes, which could be
causing a detrimental effect in cache locality, thereby negating any potential benefit
of their vectorization. As evidenced in the results, relaxing the minimum size of
reductions to pack to 4 for this set of matrices performs better than restricting the
minimum size to 8. This is reasonable as these real sparse matrices present very
irregular patterns, and for most of them restricting the size of reductions to pack to
8 elements prevents the vectorization of many computations.

Figures 5.18 and 5.19 detail the speedups in both cycles and micro-operations
for the 4redux_noorphan_fuse configuration for each matrix in the experimental
set. 95 out of 150 matrices (63.3%) show positive speedup in cycles for MACVETH,
being the configuration with the best percentage. Only the speedup in cycles of
8 out of 150 matrices (5.3%) is below 0.7%, in 10% of the cases is between 0.7%

and 0.8%, in 9.3% is between 0.8% and 0.9%, and in 12% is between 0.9% and 1%.

5.4. Experimental Results | 183

Table 5.6: Comparison of MACVETH configurations for the set of matrices in
terms of speedup in cycles. Blue values indicate the maximum speedup for each
metric, but for the standard deviation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_noorphan_fuse 1.124 0.339 0.250 0.906 1.093 1.305 2.851
4redux_noorphan_nofuse 1.103 0.458 0.247 0.878 1.039 1.217 4.408
4redux_orphan_fuse 1.114 0.483 0.197 0.895 1.046 1.275 5.445
4redux_orphan_nofuse 1.103 0.435 0.265 0.811 1.058 1.271 4.056
8redux_noorphan_fuse 1.054 0.334 0.289 0.822 1.033 1.205 2.745
8redux_noorphan_nofuse 1.074 0.391 0.302 0.807 1.006 1.257 3.325
8redux_orphan_fuse 1.056 0.313 0.282 0.876 1.034 1.198 2.948
8redux_orphan_nofuse 1.031 0.412 0.202 0.820 0.976 1.205 4.515

Table 5.7: Comparison of MACVETH configurations for the set of matrices in
terms of speedup in the reduction of the number of micro-operations retired. Blue
values indicate the maximum speedup for each metric, but for the standard devi-
ation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_noorphan_fuse 1.082 0.194 0.711 0.981 1.034 1.133 1.926
4redux_noorphan_nofuse 1.054 0.170 0.711 0.966 1.019 1.100 1.689
4redux_orphan_fuse 1.070 0.191 0.792 0.945 1.026 1.120 1.908
4redux_orphan_nofuse 1.037 0.165 0.734 0.943 0.998 1.082 1.711
8redux_noorphan_fuse 1.055 0.154 0.715 0.973 1.014 1.122 1.671
8redux_noorphan_nofuse 1.034 0.143 0.716 0.964 1.009 1.087 1.652
8redux_orphan_fuse 1.020 0.157 0.799 0.922 0.981 1.074 1.660
8redux_orphan_nofuse 0.988 0.142 0.718 0.898 0.959 1.039 1.632

184 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

0.5 1.0 1.5 2.0 2.5
Speedup

p2p-Gnutella08
grid2
stufe

lp_maros
Stranke94

qh768
problem

GL6_D_10
circuit_2

farm
L

lp_capri
data

Erdos971
cavity08

cep1
n3c4-b4

ex4
model1
lp_agg3

ch7-6-b1
Hamrle2

cage3
ukerbe1_dual

odepb400
Trec6

ch5-5-b1
lp_25fv47

n3c4-b1
flower_7_1

GL6_D_8
lpi_galenet
lp_degen3

lpi_itest2
GD06_Java

oscil_dcop_36
fpga_dcop_08

GD01_Acap
n3c5-b5

rail_1357
G18

meg1
wheel_3_1

GD96_c
GlossGT

EX2
b_dyn

rdist3a
rel3

rajat03
Cities

shermanACa
n3c6-b2
Hamrle1

Trec5
bibd_9_5

football
mk11-b1

D_11
spaceShuttleEntry_2

bayer07
nos1

adder_trans_01
n4c5-b7
GD02_b

lpi_klein3
bcsstk34
Erdos972

cis-n4c6-b15
ch3-3-b2

b1_ss
G52

GD97_a
lp_fit1p
tub100

M
at

rix

Cycles Micro-operations

Figure 5.18: Speedups obtained for the 4redux noorphan fuse configuration for
the 150 matrices (under 62K NNZ) selected from [7]. Sorted in descending order
according to the speedup in cycles (Part I).

5.4. Experimental Results | 185

0.2 0.4 0.6 0.8 1.0 1.2 1.4
Speedup

sphere2
lp_adlittle

pde225
lesmis

bibd_15_3
GD98_c
lp_afiro

Trec8
lp_lotfi

diag
Trefethen_700

dw1024
S80PI_n1

freeFlyingRobot_12
iiasa

GL7d10
lp_etamacro

Trec4
pde900
p0033

lp_czprob
lp_gfrd_pnc

S40PI_n
LF10

Pd
shyy41

GD98_a
GD01_b

bfwa782
lp_kb2

n4c5-b3
Tina_DisCal

lp_greenbea
p0548

Tina_AskCog
lowThrust_1

GD02_a
bfwb62

cage4
dynamicSoaringProblem_8

bibd_49_3
tumorAntiAngiogenesis_8

bayer03
ch5-5-b3

lp_scagr7
fpga_dcop_18

flower_4_1
GD95_c

mesh1em6
email

Chem97ZtZ
d_dyn

lpi_bgprtr
lpi_ex73a

power
klein-b2

lpi_itest6
TF11

bfwa62
3elt_dual

Trec3
l9

celegans_metabolic
deter8

lp_bore3d
lp_vtp_base

spaceStation_3
nsic

lp_qap12
adder_dcop_01

hep-th
CSphd
b2_ss

adder_dcop_06
deter5

M
at

rix

Cycles Micro-operations

Figure 5.19: Speedups obtained for the 4redux noorphan fuse configuration for
the 150 matrices (under 62K NNZ) selected from [7]. Sorted in descending order
according to the speedup in cycles (Part II).

186 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

1 10 100 1000 10000 100000
NNZ

1.0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.0

3.0

Cy
cle

s s
pe

ed
up

0.8

1.0

1.2

1.4

1.6

1.8

M
icr

o-
op

er
at

io
ns

 re
du

ct
io

n

Figure 5.20: Speedups obtained for the 4redux noorphan fuse configuration for
the 150 matrices (under 62K NNZ) selected from [7] according to the NNZ values
of the matrix and the micro-operations reduction. Note that the color of the points
above the 1.0 threshold of cycles speedup tends to be darker, confirming the
correlation between that speedup and the reduction of micro-operations retired.

There is a moderate connection between the number of instructions retired and the
cycles consumed reflected in a Pearson correlation coefficient of R=0.52. This is
graphically depicted in Figure 5.20. It shows an insignificant correlation between
the number of NNZ values in the matrix and the speedup in cycles observed. 98 out
of 150 matrices decrease the number of micro-operations retired, and 77 out matrices
show positive speedup on both dimensions. In this way, obtaining speedups in these

5.4. Experimental Results | 187

Table 5.8: Comparison of MACVETH configurations for the set of matrices in
terms of increment of vector FLOPs issued over the auto-vectorized version. Blue
values indicate the maximum increment for each metric, but for the standard de-
viation (Std.), which shows the minimum.

Name Mean Std. Min. 25% 50% 75% Max.
4redux_noorphan_fuse 3.372 5.093 0.558 1.200 1.793 3.112 41.251
4redux_noorphan_nofuse 3.549 6.088 0.558 1.202 1.788 3.118 48.104
4redux_orphan_fuse 7.231 33.669 0.945 1.525 2.311 3.786 390.862
4redux_orphan_nofuse 7.228 33.669 0.945 1.519 2.286 3.785 390.823
8redux_noorphan_fuse 2.574 4.218 0.177 0.935 1.315 2.408 31.839
8redux_noorphan_nofuse 2.724 5.368 0.177 0.943 1.296 2.370 48.104
8redux_orphan_fuse 7.127 33.620 0.824 1.514 2.306 3.612 390.862
8redux_orphan_nofuse 7.108 33.620 0.824 1.512 2.247 3.568 390.823

two dimensions contribute to the energy efficiency of these kernels.

Table 5.8 shows the increment in the percentage of vector FLOPs over the auto-
vectorized version for all MACVETH configurations, using the formula of Equa-
tion 5.7. In this case, the best average is obtained for 4redux_orphan_fuse. The
vectorization of orphan reductions provides an increment in the vector FLOPs syn-
thesized. For the other configurations with this optimization enabled the results for
this metric are very similar. Focusing on the configuration with the most promising
speedups in cycles and micro-operations, Figures 5.21, 5.22 and 5.23 illustrate these
data graphically for 4redux_noorphan_fuse. The increment in scalar FLOPs (see
Equation 5.8) is also included. There are only 15 out of 150 matrices where there
is no increment in vector FLOPs but in the scalar FLOPs issued. Furthermore,
there are only 4 cases where no packed vector instructions are synthesized. We have
found no correlation (R=0.05) between the speedup in cycles and the increment of
vector FLOPs in the data presented here. On the other hand, the vectorization of
orphan reductions (4redux_orphan_fuse configuration), always reports an incre-
ment in vector FLOPs. This is a good sign, as the final goal of our approach is
to vectorize irregular codes, but we should also consider not vectorizing a region if
it is not profitable, i.e., MACVETH should include a more realistic cost model for
issuing vector code.

Figure 5.24 shows the results obtained for the 12 large sparse matrices (NNZ >
1 million) using the 4redux_noorphan_fuse MACVETH configuration. Table 5.9

188 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

LF10
lp_vtp_base

lesmis
Trec8

ch7-6-b1
farm

ch5-5-b1
data

cage3
klein-b2

mk11-b1
n3c4-b1

b1_ss
lowThrust_1

rajat03
lp_maros

shyy41
iiasa

Chem97ZtZ
Hamrle2

Cities
lpi_ex73a
lpi_klein3

ex4
bayer07

spaceStation_3
lp_etamacro

cavity08
bcsstk34

lp_degen3
pde225
dw1024
tub100
lp_fit1p
pde900
lp_kb2

bibd_15_3
spaceShuttleEntry_2

tumorAntiAngiogenesis_8
meg1

Stranke94
dynamicSoaringProblem_8

freeFlyingRobot_12
ch3-3-b2

Trefethen_700
rdist3a

bibd_49_3
rel3

odepb400
GD98_c

M
at

rix

Scalar FLOPs 128b FLOPs 256b FLOPs Auto-vec. MACVETH

Figure 5.21: Percentage of scalar and vector FLOPs for the 150 matrices (un-
der 62K NNZ) selected from [7] with the GCC auto-vectorized version and the
4redux noorphan fuse MACVETH configuration (Part I).

5.4. Experimental Results | 189

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

grid2
nos1

adder_trans_01
n4c5-b3
GD97_a

nsic
lp_bore3d

GD02_a
bfwb62
p0033

diag
lpi_galenet

sphere2
mesh1em6
GD06_Java

GD96_c
cis-n4c6-b15

lp_capri
cep1

fpga_dcop_08
CSphd

Tina_AskCog
lpi_itest6

Pd
lp_qap12

ukerbe1_dual
fpga_dcop_18

bayer03
model1

n3c6-b2
lp_czprob

lp_afiro
bibd_9_5

p0548
lp_25fv47
ch5-5-b3

cage4
oscil_dcop_36

lp_greenbea
Hamrle1
GD95_c

circuit_2
S40PI_n
lp_agg3

lpi_itest2
S80PI_n1

Tina_DisCal
l9

Trec6
wheel_3_1

M
at

rix

Scalar FLOPs 128b FLOPs 256b FLOPs Auto-vec. MACVETH

Figure 5.22: Percentage of scalar and vector FLOPs for the 150 matrices (un-
der 62K NNZ) selected from [7] with the GCC auto-vectorized version and the
4redux noorphan fuse MACVETH configuration (Part II).

190 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

Trec3
Trec4

GL7d10
GD01_Acap

deter5
3elt_dual
Erdos971

G52
Erdos972

power
D_11

p2p-Gnutella08
lp_lotfi

L
GL6_D_10

n3c5-b5
EX2

GL6_D_8
lpi_bgprtr
lp_adlittle

n4c5-b7
G18

TF11
lp_scagr7

stufe
hep-th

flower_4_1
football
qh768
email
d_dyn

lp_gfrd_pnc
deter8

GlossGT
n3c4-b4
bfwa62
GD02_b

celegans_metabolic
adder_dcop_01

b2_ss
bfwa782
GD01_b

adder_dcop_06
rail_1357
problem

flower_7_1
b_dyn

shermanACa
Trec5

GD98_a

M
at

rix

Scalar FLOPs 128b FLOPs 256b FLOPs Auto-vec. MACVETH

Figure 5.23: Percentage of scalar and vector FLOPs for the 150 matrices (un-
der 62K NNZ) selected from [7] with the GCC auto-vectorized version and the
4redux noorphan fuse MACVETH configuration (Part III).

5.4. Experimental Results | 191

0.0 0.5 1.0 1.5 2.0
Speeduproa

dN
et-

PA
hv

dc2Dub
cov

a2tw
oto

ne

web
-Notr

eD
am

ewi20
10

TS
OPF_

FS_
b3

9_c
30

am
azo

n0
31

2al2
01

0gy
ro_

k
cra

shb
asi

s

li

M
at

rix

Cycles Micro-operations

(a) Speedup in cycles and micro-operations.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage

Scalar FLOPs 128b FLOPs 256b FLOPs

Auto-vec. MACVETH

(b) Percentage of scalar and vector FLOPs.

Figure 5.24: Results obtained for the 4redux noorphan fuse MACVETH configu-
ration for large sparse matrices (>1M NNZ) sorted by speedup in terms of cycles.
Both figures share the same y-label.

also presents the numerical results of Figure 5.24a. We show this configuration as
it provides the best positive speedups. The compilation process of these matrices
has been very time consuming, not only for MACVETH but also for GCC. In our
machine (Intel Xeon Silver 4216), the compilation of these matrices in parallel and
for each MACVETH configuration took more than 14 hours, while the execution
took only several minutes. The main overhead of MACVETH’s compilation is the
generation and parsing of the Clang AST. Anyway, the results obtained outperform
in 10 out of 12 cases the auto-vectorized version by GCC for this concrete configu-
ration. Speedups are significant in both cycles and in the reduction of the number
of micro-operations, as depicted in Figure 5.24a. We achieve the best results for the
li matrix in terms of cycles (speedup of 120.7%), and for the crashbasis matrix in
terms of micro-operations (reduction of 102.7%). The correlation coefficient for these
two dimensions is almost 1, but the sample in this case is not very significant (12
matrices). Figure 5.24b also shows an increment in the percentage of vector FLOPs
for all the matrices, while they all decrease the number of micro-operations retired.

192 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

Table 5.9: Speedups for large matrices using the 4redux noorphan fuse

MACVETH configuration sorted by NNZ values.

Matrix NNZ Cycles micro-operations
gyro_k 1,021,159 1.621 1.799
Dubcova2 1,030,225 1.110 1.125
twotone 1,206,265 1.135 1.132
wi2010 1,209,404 1.219 0.724
li 1,215,181 2.207 1.547
al2010 1,230,482 1.550 1.055
hvdc2 1,339,638 0.902 1.595
web-NotreDame 1,497,134 1.166 1.216
crashbasis 1,750,416 1.847 2.027
roadNet-PA 3,083,796 0.835 1.035
TSOPF_FS_b39_c30 3,121,160 1.227 1.351
amazon0312 3,200,440 1.484 1.187

In this case, we have not found any real correlation between these dimensions or
others. These results are in general very promising, and they show the potential
benefits of our approach for large working sets. Note that these codes feature many
irregular and different patterns, and our approach is able to vectorize all of them
since we have implemented custom ad hoc vector packing techniques for random
memory positions. We are able to pack together independent reductions within the
same vector register, and fuse these computations maximizing vector occupancy.
Again, for these matrices, the vectorization of orphan reductions has a detrimental
impact on performance due to the same cache locality reasons described previously
for the smaller matrices.

As a final and important note, the experiments shown in this section assess the
correctness of the approach proposed, including all the different configurations for
MACVETH. All experiments were fully automated using MARTA, only requiring
semi-manual post-processing tasks for generating graphs and tables.

5.5 Related Work

Vectorization is key for exploiting hardware capabilities in modern architectures,
improving the IPC, and for energy efficient-aware applications. For these reasons,

5.5. Related Work | 193

any compiler features auto-vectorization capabilities that typically target and exploit
both blocks of instructions (SLP) [71] and loops (LLV). Mendis and Amarasinghe
[90] propose an improvement to SLP vectorizers using an ILP-based (Integer Linear
Programming) framework for packing elements in a pairwise optimal manner, but
at an impractical cost in compilation time. Porpodas et al. [100, 101, 102] introduce
several optimizations to the SLP vectorizer in LLVM, including the vectorization
of arbitrarily long chains of commutative operations, and an algorithm capable of
adjusting the vector width at an instruction granularity.

Regarding x86 architectures, the most popular open source compilers are GNU
GCC [38] and Clang/LLVM [72]. Intel and AMD currently have their own in-house
Clang/LLVM-based compilers (ICC [59] and AOCC [5] respectively), inheriting,
at least, all auto-vectorization capabilities available in LLVM. They are meant to
optimize code in their own architectures by rewriting the auto-vectorization cost
models, among other optimizations (most of them are not open source). Pohl et al.
[99] study the overestimation of these cost models implemented by GCC and Clang.
Their findings show an overestimation in the speedup, resulting in mispredictions
and a weak to medium correlation between predicted and actual performance gain.
They propose a novel cost model based on a code IR with refined memory access
pattern features.

Other works also target specific vectorization optimizations. Chen et al. [19]
present VeGen, a vectorizer targeting Lane Level Parallelism, which captures the
model of parallelism on SIMD and non-SIMD vector instructions. Non-SIMD in-
structions violate the two fundamental SIMD principles: element-wise operations,
and being isomorphic across all lines. In this way, this vectorizer is able to find oppor-
tunities for these instructions in the codes without requiring ad hoc formulas in the
peephole optimization stage of the compiler’s back-end. Kjolstad et al. [66] present
the Tensor Algebra Compiler (TACO), a framework for generating optimized kernels
according to the computations to perform. Willsey et al. [132] present a library that
exploits the equality saturation technique using e-graphs6 for implementing rewrite-
driven compiler optimizations and program synthesizers [129, 135]. The equality
saturation (which can be seen as a specialization of the general SMT solvers) was
first explored by the Peggy tool [122], by transforming the optimizations in the form

6An e-graph holds equivalence relations according to the semantics of the language.

194 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

of equality analysis into a common IR that encodes multiple optimized versions of
the input program. Then, the heuristics choose the best candidate among the vari-
ous programs represented [120]. Franchetti et al. [33] developed a framework using a
mathematical formalism (the Operator Language, OL) for capturing computational
algorithms and program transformations, in order to synthesize optimized code for
each kernel for many target platforms. The ROSE compiler [104] provides a frame-
work for building tools, similar to LLVM, for analysis and code transformations.
Currently, as a new project of the LLVM framework, it was released MLIR [73], a
new alternative for reducing the cost of building domain specific compilers, which
aids in connecting existing compilers together.

There are also C++-centric template-based works in order to generate vector
code. The Vector Class Library [32] provides a C++ library for writing SIMD code
neither using Intrinsics nor assembly. The support is limited to x86 architectures
and it uses Intel Intrinsics directives beneath. Eigen [41] is a C++ template library
for linear algebra: matrices, vectors, numerical solvers and related algorithms. The
Intel oneAPI Math Kernel Library [55] was designed for Intel processors to optimize
math kernels, including BLAS routines such as vector-vector, vector-matrix and
matrix-matrix multiplications, Fast Fourier Transforms (FFT), etc.

5.6 Concluding Remarks and Discussion

In this chapter we have presented two different SIMD optimizations for x86 archi-
tectures: random vector packing and fusion of reductions (intra- and inter-vector).
The first one emulates the behavior and output of a gather instruction, but using
other instructions available in the ISA. We have represented the exploration space
for packing random operands, defining equivalence classes to describe all the possible
cases to consider. Using and extending the Intel Intrinsics SIMD directives, we have
developed MRKVS, an SMT-based system for generating and validating possible
candidates for packing random operands according to the equivalence classes de-
fined. The system is able to generate multiple candidates for each equivalence class.
In this way we can build a cost model for each platform based on the performance
of each candidate for each class. Our experiments show the potential benefits of
our solutions compared to the gather instruction in both modern Intel and AMD

5.6. Concluding Remarks and Discussion | 195

processors.

Irregular structures such as sparse matrices typically use formats (e.g., CSR) that
are accessed through indirection arrays. Computations using these formats are not
easily vectorizable. Augustine et al. [7] developed a system for mining regular sub-
computations from irregular data structures, leading to specialized codes that avoid
any type of indirection and improve the opportunities to generate vector code. We
have developed MACVETH, a source-to-source compiler targeting the vectorization
of irregular patterns such as reductions in SpMV codes. It includes in its cost model
the random vector packing system we have developed. MACVETH performs the fu-
sion of independent reductions within the same and also in different vector registers,
leveraging the opportunities to maximize vector occupancy when performing these
operations. We have conducted an exhaustive evaluation of our model for SpMV
codes using synthetic patterns, and also for 150 sparse matrices from the SuiteS-
parse repository [21]. Our experiments show promising results for the optimizations
presented in this chapter, improving the auto-vectorized code synthesized by the lat-
est version of GCC. On the other hand, some promising optimizations, such as the
vectorization of orphan reduction nodes, do not seem to perform as expected, and
further investigation is required. We found that in most cases this optimization is
negatively affecting cache locality, causing a degradation in L2 and last-level caches.
This issue could be addressed by considering in the cost model the cache distance of
the points to vectorize. We have also explored the performance on 12 large matrices
(with between 1M and 3M NNZ values), but it would be necessary to increase the
number of matrices in the analysis. Still, the results shown are solid, showing sig-
nificant speedups in cycles (up to 120.7%). As a final note, the results presented in
this chapter contribute to the energy efficiency of the application as we are reducing
the number of micro-operations and thus energy consumption. Furthermore, our
approach shows a significant speedup in terms of cycles, increasing the performance
per watt of the system. Nevertheless, further measurements on energy consumption
should be performed to assess the real impact on energy efficiency.

The MRKVS system presented in this chapter can be extended to any ISA. It is
only required to provide the semantics of the instructions to consider. For a better
performance, it would also be necessary to provide new heuristics adapted to the
desired ISA, in order to better prune the exploration space. MRKVS leverages the

196 | Chapter 5. SIMD Optimizations: Random Vector Packing and Reduction
Fusion

capabilities of the Z3 SMT solver to generate a set of valid candidates for packing
operands in vectors. Other alternatives could be used instead of Z3, for instance, the
recent egg library [132] (already described in Section 5.5), but we have not explored
any other implementations as performance was not our major concern. MACVETH
is a promising specific source-to-source compiler in an early stage. Its cost model
can be extended to other modern x86 ISAs, such as AVX-512. According to the
architecture described in this chapter, this compiler can be easily adapted to other
modern ISAs such as ARMNeon, only requiring a new back-end (and probably minor
modifications to the middle-end). The major advantage of MACVETH being a
source-to-source compiler is the portability between architectures. At the same time,
the compiler is platform-aware, generating specialized code for each architecture. In
that case, for a better performance, the compiler should target explicitly the desired
platform. Besides, since the output is also C code, the user (an expert user) can
inspect it and even perform its own modifications. The main disadvantage of not
generating machine code is the additional compilation time required to generate
an executable binary. MACVETH currently supports multiple options in order
to let the user choose the best configuration for each case. It would be a good
feature to include different cost models that could automatically configure the best
combination of parameters of the compiler for a given code. Currently MACVETH
only implements a very simple heuristic to discard vectorization if the cost of packing
the operands and operations is higher than just issuing scalar code.

“There is nothing permanent except
change.”

–Heraclitus

6
Concluding Remarks and Future Work

In this chapter, we summarize the main contributions proposed in this Thesis,
as well as potential future research lines.

6.1 Conclusions and Discussion

Current trends in high performance computing exhibit parallelism at different
levels: from instruction decoding and execution (Instruction-Level Parallelism, ILP)
to the number of interconnected nodes in a cluster or worldwide. From an archi-
tectural perspective, parallelism is exhibited in the number of cores etched on a
single die. This increment in the degree of components interconnected brings for-
ward structural scalability complications. In addition, the design of modern cores
are, nowadays, extremely sophisticated by implementing complex pipelines featur-
ing wide vector length capabilities. For these reasons, in this Thesis we addressed
these two orthogonal dimensions by analyzing modern manycore architectures and
focusing on discovering potential design improvements, and providing techniques for
synthesizing efficient platform-aware SIMD code.

In the first part of the Thesis we investigated the interconnection networks
present in modern manycore architectures, and the performance impact of the traf-
fic generated by the distributed cache coherence directories. We focused on the
Intel Mesh Interconnect, first introduced in the Xeon Phi x200 Knights Landing,

197

198 | Chapter 6. Concluding Remarks and Future Work

and later featured in the subsequent Xeon Scalable generations. When we initially
explored coherence traffic on the Knights Landing NoC, we observed a clear effect
on application performance due to affinity relationships between cores and their
cache directories (or CHAs), i.e., we observed a NUMA behavior. For this reason,
we mapped the block-to-CHA correspondence for each cache line to physical parts
of the NoC, depending on their physical address, in order to disclose the physical
mapping of coherence data for memory blocks. Leveraging this mapping, we de-
veloped a dynamic scheduling in an inspector-executor fashion to characterize and
optimize the impact of the core-to-CHA affinity. Based on these promising results,
we extended this work by reverse engineering the functions responsible for this map-
ping. At this stage, we expected these functions to be useful in order to alleviate
the runtime overhead of our inspector-executor approach, in addition to being us-
able by architecture-specific compilers that could perform low-level optimizations
of coherence traffic. However, these expectations were toned down by the actual
shape of the mapping functions. Although the XOR-based functions are cheap to
implement in hardware and widely used for other non-regular mappings, such as the
assignment between memory blocks and LLC slices in Intel Core processors, they
are costly to compute in software. This cost could be overcome if the mapping pre-
sented some kind of regularity that could be exploited by carefully optimizing the
code and scheduling, but that was not the case for KNL as the number of tiles was
not a power of 2, producing nonlinear mapping functions. Our evaluation assessed
the importance of data affinity for systems featuring distributed cache directories,
and the significant performance impact of the coherence traffic. With manycore
architectures firmly considered as the future of computer architecture, it would be
desirable to improve these designs, coupling the directory distribution that avoids
bottlenecks in the NoC with a more regular and predictable mapping of the memory
blocks to enable programmers, particularly in the high performance computing do-
main, to have full control over coherence traffic. The approach followed in this part
of the Thesis focused on the Intel Xeon Phi 7210, but it is potentially applicable to
Xeon Scalable processors, which feature the same interconnection network.

Along the same lines, we built a model of the KNL architecture on Tejas, a state-
of-the-art cycle-accurate architectural simulator. With this model, we were able to
perform in-depth analysis of the behavior of the complex interconnection network.
First we validated our model against real hardware, considering the instruction

6.1. Conclusions and Discussion | 199

limitations of the simulator (as Tejas does not support the full x86 ISA). Then, we
also presented a case study analyzing the low-level behavior of the interconnection
network for the previously proposed optimizations taking advantage of the physical
location of cores and cache block holders, i.e., core-to-CHA distance, and also the
thread mapping for parallel applications. Our evaluation confirmed the reduction
of coherence traffic in the network and the reduction of collisions when tuning our
applications to consider data affinity.

In an orthogonal dimension, the second part of the Thesis investigated SIMD op-
timizations for computations using irregular data structures such as sparse matrices.
We focused on two concrete types of optimizations: the packing of random operands
into the same vector register, and the fusion of independent reductions. For this part
of the work we needed a framework for automating a high volume of experiments, in
order to compile them using different configurations, profiling those programs using
many different hardware counters, and gathering and analyzing all these data. For
these reasons, we developed MARTA (Multi-configuration Assembly pRofiler and
Toolkit for performance Analysis), a toolkit designed to increase the productivity of
this type of micro-benchmarking that requires the configuration of many different
parameters. MARTA, besides profiling, is also meant to extract knowledge from
the generated data by applying data mining and machine learning techniques. In
this way, MARTA is able to profile and characterize the performance according to
an input set of dimensions of interest. We assessed MARTA with different cases of
study as a good alternative for any type of profiling experiment, although it was
originally conceived for building the cost models for our SIMD optimizations.

The first optimization we targeted was the efficient packing of random operands
in vector registers for x86 architectures. The goal was to generate an efficient imple-
mentation of the gather macro-instruction (decoded into multiple micro-operations)
using other single instructions from a concrete ISA. We first defined an exploration
space according to the pool of valid instructions to use, and equivalence classes ac-
cording to the contiguity and data type of the memory addresses to pack. With this
information, we built MRKVS (Mega-Random Kernel Vector SMT), an SMT-based
model for generating sets of instructions or candidates for each equivalence class.
Using MARTA in each target architecture we built a platform-aware cost model.
The candidates used for the equivalence classes defined depend on the target archi-

200 | Chapter 6. Concluding Remarks and Future Work

tecture. We assessed the performance of the candidates generated by the system
against the latency and throughput of the equivalent gather instruction. For most
cases these new candidates outperform gather by a wide margin.

Since we wanted to vectorize computations on irregular data structures, such
as SpMV codes, we developed MACVETH (Multi-Architectural C-VEcTorizer for
HPC applications), a source-to-source compiler based on Clang which includes the
packing of random vector operands, as described above, and also the fusion of inde-
pendent reductions. For that purpose we developed different algorithms for packing
independent reductions within a program, synthesizing efficient SIMD code. We
also integrated a strategy to vectorize those reduction operations which cannot be
packed together by the algorithm (named orphan reductions). We evaluated the
performance of our approach using different patterns and loop shapes. The results
are promising, discovering potential optimization paths, and confirming the benefits
of vectorizing those regions of code even when using irregular data structures in
memory.

6.2 Future Work

Potential future work topics are discussed next:

• The Intel KNL architecture was discontinued, but its NoC legacy lives on the
newer Intel Xeon Scalable processors, which also implement distributed cache
directories in the form of snoop filters (the equivalent to the CHA in KNL)
within a 2D mesh interconnection network. Our approach to improve data
locality presented in Chapter 2 could be translated to these new architectures.
Findings from McCalpin [88] reveal a layout similar to the KNL.

• Following the same research lines, a new extension for the Xeon Scalable pro-
cessors could be implemented in Tejas, by modifying our existing model. In
any case, having a model in software can help propose hypothesis about the
theoretical performance of an application, and assess its reliability in a real
platform, as we have described in Chapter 3.

• MARTA (Chapter 4) is a novel yet powerful tool. The profiling component

6.2. Future Work | 201

could be improved by further automating the generation of benchmark tem-
plates. New options could be added to the front-end for better parsing the
configuration file, or for allowing a more flexible format. The Analyzer mod-
ule can be improved by relaxing the configuration parameters required for the
analysis. The system could iteratively choose the best combinations, avoiding
user intervention. In the same way, the system could also support other types
of analyzers and algorithms such as calibration analysis (using isotonic or lo-
gistic regression), which could be interesting to complement the knowledge
extracted from a decision tree classifier.

• MACVETH (Chapter 5) was developed as a source-to-source compiler, tar-
geting x86 architectures for random vector packing and fusion of reductions.
We have assessed the performance optimizations implemented against a va-
riety of irregular codes obtaining promising results, but further evaluation is
required including other architectures (e.g., AMD, ARM) and new SIMD ex-
tensions in addition to AVX2 (e.g., AVX-512). In the same way, some of
the potential optimizations included in the compiler, such as the vectoriza-
tion of orphan reductions, have not contributed to the speedup as expected.
This was a promising candidate to improve performance, but it caused certain
degradation for the piecewise-regular SpMV codes used in our experiments.
The reason for this behavior is the distance between these orphan reductions,
which causes locality degradation and a consequent decrease in cache perfor-
mance. It would be a nice research topic to determine the maximum distance
allowed depending on the host platform to efficiently vectorize these nodes. As
such, MACVETH could be improved by automatically determining the best
configuration parameters for each platform by building a more sophisticated
and platform-aware cost model.

Bibliography

[1] A. Abel and J. Reineke. uops.info: Characterizing Latency, Throughput, and
Port Usage of Instructions on Intel Microarchitectures. In Proceedings of the
24th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), pages 673–686, Providence, RI,
USA, 2019. doi: 10.1145/3297858.3304062. (pages: 103, 133, and 149)

[2] A. Abel and J. Reineke. nanoBench: A Low-Overhead Tool for Running Mi-
crobenchmarks on x86 Systems. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages
34–46, Boston, MA, USA (Virtual), 2020. doi: 10.1109/ISPASS48437.2020.
00014. (page: 125)

[3] A. Abel and J. Reineke. A Parametric Microarchitecture Model for Accurate
Basic Block Throughput Prediction on Recent Intel CPUs. arXiv: 2107.14210,
2022. (page: 146)

[4] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-
Crummey, and N. R. Tallent. HPCToolkit: Tools for Performance Analysis of
Optimized Parallel Programs. Concurrency and Computation: Practice and
Experience, 22(6):685–701, 2010. doi: 10.1002/cpe.1553. (pages: 86, 125)

[5] Advanced Micro Devices, Inc. (AMD), AOCC User Guide, 2021. URL

203

http://dx.doi.org/10.1145/3297858.3304062
http://dx.doi.org/10.1109/ISPASS48437.2020.00014
http://dx.doi.org/10.1109/ISPASS48437.2020.00014
https://arxiv.org/abs/2107.14210
http://dx.doi.org/10.1002/cpe.1553

204 | Bibliography

https://developer.amd.com/wp-content/resources/57222_AOCC_UG_
Rev_3.2.pdf. [Accessed: 01-03-2022]. (page: 193)

[6] J. H. Ahn, S. Li, S. O, and N. P. Jouppi. McSimA+: A Manycore Simulator
with Application-Level Simulation and Detailed Microarchitecture Modeling.
In Proceedings of the IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 74–85, Austin, TX, USA, 2013.
doi: 10.1109/ISPASS.2013.6557148. (page: 82)

[7] T. Augustine, J. Sarma, L.-N. Pouchet, and G. Rodríguez. Generating
Piecewise-Regular Code from Irregular Structures. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI), pages 625–639, Phoenix, AZ, USA, 2019. doi: 10.1145/
3314221.3314615. (pages: 40, 46, 174, 175, 176, 181, 184, 185, 186, 188, 189,
190, and 195)

[8] A. Azad and A. Buluç. A Work-Efficient Parallel Sparse Matrix-Sparse Vector
Multiplication Algorithm. In Proceedings of the 31st IEEE International Par-
allel and Distributed Processing Symposium (IPDPS), pages 688–697, Orlando,
FL, USA, 2017. doi: 10.1109/IPDPS.2017.76. (pages: 8, 53)

[9] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,
P. Franzon, W. Harrod, K. Hill, J. Hiller, et al. Exascale Computing Study:
Technology Challenges in Achieving Exascale Systems. Technical Report TR-
2008-13, Defense Advanced Research Projects Agency Information Processing
Techniques Office (DARPA IPTO), 2008. URL http://www.cse.nd.edu/
Reports/2008/TR-2008-13.pdf. (page: 3)

[10] O. Bilaniuk. libpfc, https://github.com/obilaniu/libpfc, [Accessed: 01-
03-2022]. (page: 126)

[11] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
ACM SIGARCH Computer Architecture News, 39(2):1–7, 2011. doi: 10.1145/
2024716.2024718. (pages: 57, 82)

https://developer.amd.com/wp-content/resources/57222_AOCC_UG_Rev_3.2.pdf
https://developer.amd.com/wp-content/resources/57222_AOCC_UG_Rev_3.2.pdf
http://dx.doi.org/10.1109/ISPASS.2013.6557148
http://dx.doi.org/10.1145/3314221.3314615
http://dx.doi.org/10.1145/3314221.3314615
http://dx.doi.org/10.1109/IPDPS.2017.76
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
https://github.com/obilaniu/libpfc
http://dx.doi.org/10.1145/2024716.2024718
http://dx.doi.org/10.1145/2024716.2024718

Bibliography | 205

[12] S. M. Blackburn, A. Diwan, M. Hauswirth, P. F. Sweeney, J. N. Ama-
ral, T. Brecht, L. Bulej, C. Click, L. Eeckhout, S. Fischmeister, D. Framp-
ton, L. J. Hendren, M. Hind, A. L. Hosking, R. E. Jones, T. Kalibera,
N. Keynes, N. Nystrom, and A. Zeller. The Truth, the Whole Truth, and
Nothing but the Truth: A Pragmatic Guide to Assessing Empirical Evalu-
ations. ACM Transactions on Programming Languages and Systems, 38(4):
1–20, 2016. doi: 10.1145/2983574. (page: 94)

[13] Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel Density Estimation Via
Diffusion. The Annals of Statistics, 38(5):2916–2957, 2010. doi: 10.1214/10-
AOS799. (page: 92)

[14] BSC Performance Tools. Extrae, https://tools.bsc.es/extrae, [Accessed:
01-03-2022]. (page: 125)

[15] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, M. Jones, A. Klein, P. Michaleas, L. Milechin,
J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, and A. Reuther. Bench-
marking Data Analysis and Machine Learning Applications on the Intel KNL
Many-Core Processor. In Proceedings of the IEEE High Performance Ex-
treme Computing Conference (HPEC), pages 1–6, Waltham, MA, USA, 2017.
doi: 10.1109/HPEC.2017.8091067. (pages: 53, 80)

[16] T. E. Carlson, W. Heirman, and L. Eeckhout. Sniper: Exploring the Level
of Abstraction for Scalable and Accurate Parallel Multi-Core Simulation. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 52:1–12, Seattle, WA, USA,
2011. doi: 10.1145/2063384.2063454. (page: 82)

[17] S. Charles, C. Patil, U. Ogras, and P. Mishra. Exploration of Mem-
ory and Cluster Modes in Directory-Based Many-Core CMPs. In Proceed-
ings of the 12th IEEE/ACM International Symposium on Networks-on-Chip
(NOCS), pages 2:1–8, Torino, Italy, 2018. doi: 10.1109/NOCS.2018.8512154.
(pages: 53, 57)

[18] L. Chen, B. Peng, B. Zhang, T. Liu, Y. Zou, L. Jiang, R. Henschel, C. Stewart,
Z. Zhang, E. McCallum, Z. Tom, J. Omer, and J. Qiu. Benchmarking Harp-

http://dx.doi.org/10.1145/2983574
http://dx.doi.org/10.1214/10-AOS799
http://dx.doi.org/10.1214/10-AOS799
https://tools.bsc.es/extrae
http://dx.doi.org/10.1109/HPEC.2017.8091067
http://dx.doi.org/10.1145/2063384.2063454
http://dx.doi.org/10.1109/NOCS.2018.8512154

206 | Bibliography

DAAL: High Performance Hadoop on KNL Clusters. In Proceedings of the
10th IEEE International Conference on Cloud Computing (CLOUD), pages
82–89, Honolulu, HI, USA, 2017. doi: 10.1109/CLOUD.2017.19. (pages: 53,
80)

[19] Y. Chen, C. Mendis, M. Carbin, and S. Amarasinghe. VeGen: A Vector-
izer Generator for SIMD and Beyond. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), pages 902––914, Virtual, 2021.
doi: 10.1145/3445814.3446692. (page: 193)

[20] Chips and Cheese. How Zen 2’s Op Cache Affects Performance,
https://chipsandcheese.com/2021/07/03/how-zen-2s-op-cache-
affects-performance/, [Accessed: 01-03-2022]. (page: 134)

[21] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 38:1–25, 2011. doi: 10.1145/
2049662.2049663. (pages: 40, 174, 195, and 234)

[22] B. Daya, C.-H. Chen, S. Subramanian, W.-C. Kwon, S. Park, T. Krishna,
J. Holt, A. Chandrakasan, and L.-S. Peh. SCORPIO: A 36-Core Research Chip
Demonstrating Snoopy Coherence on a Scalable Mesh NoC with In-Network
Ordering. In Proceedings of the ACM/IEEE 41st International Symposium on
Computer Architecture (ISCA), pages 25–36, Minneapolis, MN, USA, 2014.
doi: 10.1109/ISCA.2014.6853232. (page: 52)

[23] L. De Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proceedings of
the 14th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), pages 337–340, Budapest, Hungary,
2008. doi: 10.1007/978-3-540-78800-3_24. (pages: xxiii, 141, and 248)

[24] T. Downs. avx-turbo, https://github.com/travisdowns/avx-turbo, [Ac-
cessed: 01-03-2022]. (page: 4)

[25] T. Downs. uarch-bench, https://github.com/travisdowns/uarch-bench,
[Accessed: 01-03-2022]. (page: 126)

http://dx.doi.org/10.1109/CLOUD.2017.19
http://dx.doi.org/10.1145/3445814.3446692
https://chipsandcheese.com/2021/07/03/how-zen-2s-op-cache-affects-performance/
https://chipsandcheese.com/2021/07/03/how-zen-2s-op-cache-affects-performance/
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1145/2049662.2049663
http://dx.doi.org/10.1109/ISCA.2014.6853232
http://dx.doi.org/10.1007/978-3-540-78800-3_24
https://github.com/travisdowns/avx-turbo
https://github.com/travisdowns/uarch-bench

Bibliography | 207

[26] T. Downs. Gathering Intel on Intel AVX-512 Transitions, https://
travisdowns.github.io/blog/2020/01/17/avxfreq1.html, [Accessed: 01-
03-2022]. (page: 4)

[27] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.
Dark Silicon and the End of Multicore Scaling. In Proceedings of the
ACM/IEEE 38th International Symposium on Computer Architecture (ISCA),
pages 365–376, San Jose, CA, USA, 2011. doi: 10.1145/2000064.2000108.
(page: 10)

[28] ExtremeTech. There’s No Such Thing as “Huang’s Law,” Despite Nvidia’s
AI Lead, https://www.extremetech.com/computing/315277-theres-no-
such-thing-as-huangs-law. (page: 3)

[29] A. Farshin, A. Roozbeh, G. Maguire, and D. Kostić. Make the Most out
of Last Level Cache in Intel Processors. In Proceedings of the 14th EuroSys
Conference, pages 8:1–17, Dresden, Germany, 2019. doi: 10.1145/3302424.
3303977. (page: 50)

[30] M. Ferdman, P. Lotfi-Kamran, K. Balet, and B. Falsafi. Cuckoo Directory: A
Scalable Directory for Many-Core Systems. In Proceedings of the 17th Inter-
national Conference on High-Performance Computer Architecture (HPCA),
pages 169–180, San Antonio, TX, USA, 2011. doi: 10.1109/HPCA.2011.
5749726. (page: 52)

[31] A. Fog. 4. Instruction Tables. Lists of Instruction Latencies, Throughputs
and Micro-Operation Breakdowns for Intel, AMD, and VIA CPUs, https:
//www.agner.org/optimize/instruction_tables.pdf, [Accessed: 01-03-
2022]. (pages: 133, 149)

[32] A. Fog. Vector Class Library, https://github.com/vectorclass/version2,
[Accessed: 01-03-2022]. (page: 194)

[33] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura. SPIRAL: Extreme
Performance Portability. Proceedings of the IEEE, 106(11):1935–1968, 2018.
doi: 10.1109/JPROC.2018.2873289. (page: 194)

https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
https://travisdowns.github.io/blog/2020/01/17/avxfreq1.html
http://dx.doi.org/10.1145/2000064.2000108
https://www.extremetech.com/computing/315277-theres-no-such-thing-as-huangs-law
https://www.extremetech.com/computing/315277-theres-no-such-thing-as-huangs-law
http://dx.doi.org/10.1145/3302424.3303977
http://dx.doi.org/10.1145/3302424.3303977
http://dx.doi.org/10.1109/HPCA.2011.5749726
http://dx.doi.org/10.1109/HPCA.2011.5749726
https://www.agner.org/optimize/instruction_tables.pdf
https://www.agner.org/optimize/instruction_tables.pdf
https://github.com/vectorclass/version2
http://dx.doi.org/10.1109/JPROC.2018.2873289

208 | Bibliography

[34] Y. Fu and D. Wentzlaff. PriME: A Parallel and Distributed Simulator for
Thousand-Core Chips. In Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 116–125,
Monterey, CA, USA, 2014. doi: 10.1109/ISPASS.2014.6844467. (page: 82)

[35] N. Gawande, J. Landwehr, J. Daily, N. Tallent, A. Vishnu, and D. Kerbyson.
Scaling Deep Learning Workloads: NVIDIA DGX-1/Pascal and Intel Knights
Landing. In Proceedings of the IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pages 399–408, Orlando, FL,
USA, 2017. doi: 10.1109/IPDPSW.2017.36. (page: 80)

[36] M. Geimer, F. Wolf, B. J. Wylie, E. Ábrahám, D. Becker, and B. Mohr.
The Scalasca Performance Toolset Architecture. Concurrency and Computa-
tion: Practice and Experience, 22(6):702–719, 2010. doi: 10.1002/cpe.1556.
(page: 125)

[37] GNU GCC. GCC 11 Release Series Changes, New Features, and Fixes, https:
//gcc.gnu.org/gcc-11/changes.html, [Accessed: 01-03-2022]. (page: 175)

[38] GNU GCC. Auto-Vectorization in GCC: Using the Vectorizer, https://gcc.
gnu.org/projects/tree-ssa/vectorization.html, [Accessed: 01-03-2022].
(pages: 115, 116, 130, and 193)

[39] GNU GCC. 3.11 Options That Control Optimization, https://gcc.
gnu.org/onlinedocs/gcc/Optimize-Options.html, [Accessed: 01-03-2022].
(page: 121)

[40] J. Goodman and H. Hum. MESIF: A Two-Hop Cache Coherency Protocol
for Point-to-Point Interconnects. Technical Report, University of Auckland,
New Zealand, 2009. URL https://www.cs.auckland.ac.nz/~goodman/
TechnicalReports/MESIF-2009.pdf. (page: 13)

[41] G. Guennebaud and B. Jacob. Eigen: A C++ Linear Algebra Library, http:
//eigen.tuxfamily.org, [Accessed: 01-03-2022]. (page: 194)

[42] J. Hammer, J. Eitzinger, G. Hager, and G. Wellein. Kerncraft: A Tool for
Analytic Performance Modeling of Loop Kernels. In Proceedings of the 10th

http://dx.doi.org/10.1109/ISPASS.2014.6844467
http://dx.doi.org/10.1109/IPDPSW.2017.36
http://dx.doi.org/10.1002/cpe.1556
https://gcc.gnu.org/gcc-11/changes.html
https://gcc.gnu.org/gcc-11/changes.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/projects/tree-ssa/vectorization.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
https://www.cs.auckland.ac.nz/~goodman/TechnicalReports/MESIF-2009.pdf
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org

Bibliography | 209

International Workshop on Parallel Tools for High Performance Computing,
pages 1–22, 2016. doi: 10.1007/978-3-319-56702-0_1. (page: 126)

[43] J. Hofmann, J. Treibig, G. Hager, and G. Wellein. Comparing the Performance
of Different x86 SIMD Instruction Sets for a Medical Imaging Application
on Modern Multi- and Manycore Chips. In Proceedings of the Workshop on
Programming Models for SIMD/Vector Processing (WPMVP), pages 57–64,
Orlando, Florida, USA, 2014. doi: 10.1145/2568058.2568068. (page: 103)

[44] M. Horro, G. Rodríguez, J. Touriño, and M. T. Kandemir. Study of the Intel
Knights Landing (KNL) Memory System Tradeoffs. In Proceedings of the
13th International Summer School on Advanced Computer Architecture and
Compilation for High-Performance and Embedded Systems (ACACES), pages
1–4, Fiuggi, Italy, 2017. (pages: xxi, xxiv, 245, and 249)

[45] M. Horro, M. T. Kandemir, L.-N. Pouchet, G. Rodríguez, and J. Touriño.
Effect of Distributed Directories in Mesh Interconnects. In Proceedings of the
56th Annual Design Automation Conference (DAC), pages 51:1–6, Las Vegas,
NV, USA, 2019. doi: 10.1145/3316781.3317808. (pages: xxii, xxiv, 245,
and 249)

[46] M. Horro, G. Rodríguez, and J. Touriño. Simulating the Network Activity
of Modern Manycores. IEEE Access, 7:81195–81210, 2019. doi: 10.1109/
ACCESS.2019.2923855. (pages: xxi, xxiii, 245, and 248)

[47] M. Horro, G. Rodríguez, and J. Touriño. papi_wrapper. https://github.
com/UDC-GAC/papi_wrapper, 2019. (page: 70)

[48] M. Horro, G. Rodríguez, and J. Touriño. Tejas KNL Simulator. https:
//github.com/UDC-GAC/tejas_knl, 2019. (pages: 56, 64)

[49] M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Exploring SIMD
Instructions for Packing Random Vector Operands in Modern x86 CPUs.
In Proceedings of the 17th International Summer School on Advanced Com-
puter Architecture and Compilation for High-Performance Embedded Systems
(ACACES), pages 143–146, Fiuggi, Italy, 2021. (pages: xxiv, 249)

http://dx.doi.org/10.1007/978-3-319-56702-0_1
http://dx.doi.org/10.1145/2568058.2568068
http://dx.doi.org/10.1145/3316781.3317808
http://dx.doi.org/10.1109/ACCESS.2019.2923855
http://dx.doi.org/10.1109/ACCESS.2019.2923855
https://github.com/UDC-GAC/papi_wrapper
https://github.com/UDC-GAC/papi_wrapper
https://github.com/UDC-GAC/tejas_knl
https://github.com/UDC-GAC/tejas_knl

210 | Bibliography

[50] M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Toolkit para (Micro-)
Benchmarking y Análisis de Características de Rendimiento en Kernels. In Ac-
tas XXXI Jornadas Paralelismo (SARTECO), pages 303–312, Málaga, Spain,
2021. (pages: xxii, xxiv, 245, and 249)

[51] M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MACVETH: Multi-
Architectural C-VEcTorizer for HPC applications. Submitted for publication,
2022. (pages: xxii, xxiv, 246, and 248)

[52] M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MARTA: Multi-
configuration Assembly pRofiler and Toolkit for performance Analysis. Sub-
mitted for publication, 2022. (pages: xxii, xxiii, 245, and 248)

[53] M.-Y. Hsu. LLVM Techniques, Tips, and Best Practices Clang and Middle-
End Libraries. Packt Publishing Limited, 2021. (page: 152)

[54] Intel Corporation. Excerpts from a Conversation with Gordon Moore:
Moore’s Law. http://large.stanford.edu/courses/2012/ph250/lee1/
docs/Excepts_A_Conversation_with_Gordon_Moore.pdf, . [Accessed: 01-
03-2022]. (page: 2)

[55] Intel Corporation. Intel® oneAPI Math Kernel Library, https:
//www.intel.com/content/www/us/en/develop/documentation/oneapi-
programming-guide/top/api-based-programming/intel-oneapi-math-
kernel-library-onemkl.html, [Accessed: 01-03-2022]. (page: 194)

[56] Intel Corporation. Intel® oneAPI Toolkits, https://software.intel.com/
content/www/us/en/develop/tools/oneapi.html#gs.1ptgr0, [Accessed:
01-03-2022]. (pages: 86, 125)

[57] Intel Corporation, Intel® Xeon® Phi™ Processor Performance Mon-
itoring Reference Manual—Volume 1: Registers (Rev. 002), 2017.
URL https://www.intel.com/content/dam/develop/external/us/en/
documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-
monitoring-reference-manual-vol1-mar2017.pdf. [Accessed: 01-03-
2022]. (page: 17)

http://large.stanford.edu/courses/2012/ph250/lee1/docs/Excepts_A_Conversation_with_Gordon_Moore.pdf
http://large.stanford.edu/courses/2012/ph250/lee1/docs/Excepts_A_Conversation_with_Gordon_Moore.pdf
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top/api-based-programming/intel-oneapi-math-kernel-library-onemkl.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.1ptgr0
https://software.intel.com/content/www/us/en/develop/tools/oneapi.html#gs.1ptgr0
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol1-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol1-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol1-mar2017.pdf

Bibliography | 211

[58] Intel Corporation, Intel® Xeon® Phi™ Processor Performance Monitoring
Reference Manual—Volume 2: Events, 2017. URL https://www.intel.com/
content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-
phi-e2-84-a2-processor-performance-monitoring-reference-manual-
vol2-mar2017.pdf. [Accessed: 01-03-2022]. (pages: 13, 17)

[59] Intel Corporation, Intel® oneAPI DPC++/C++ Compiler Developer Guide
and Reference, 2021. URL https://www.intel.com/content/dam/develop/
external/us/en/documents/oneapi_dpcpp_cpp_compiler_2021.4.pdf.
[Accessed: 01-03-2022]. (page: 193)

[60] G. Irazoqui, T. Eisenbarth, and B. Sunar. Systematic Reverse Engineering of
Cache Slice Selection in Intel Processors. In Proceedings of the Euromicro Con-
ference on Digital System Design (DSD), pages 629–636, Madeira, Portugal,
2015. doi: 10.1109/DSD.2015.56. (page: 50)

[61] M. Jacquelin, W. De Jong, and E. Bylaska. Towards Highly Scalable Ab
Initio Molecular Dynamics (AIMD) Simulations on the Intel Knights Land-
ing Manycore Processor. In Proceedings of the IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 234–243, Orlando, FL,
USA, 2017. doi: 10.1109/IPDPS.2017.26. (page: 53)

[62] J. Jeffers, J. Reinders, and A. Sodani. Intel® Xeon® Phi™ Processor High
Performance Programming: Knights Landing Edition. Morgan Kaufman,
2016. (pages: 12, 44, 57, and 65)

[63] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: A Fast and
Accurate NoC Power and Area Model for Early-Stage Design Space Explo-
ration. In Proceedings of the Conference on Design, Automation and Test
in Europe (DATE), pages 423–428, Nice, France, 2009. doi: 10.1109/DATE.
2009.5090700. (page: 59)

[64] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread Clus-
ter Memory Scheduling: Exploiting Differences in Memory Access Behav-
ior. In 43rd IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pages 65–76, Atlanta, GA, USA, 2010. doi: 10.1109/MICRO.2010.51.
(page: 53)

https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol2-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol2-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol2-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/intel-c2-ae-xeon-phi-e2-84-a2-processor-performance-monitoring-reference-manual-vol2-mar2017.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi_dpcpp_cpp_compiler_2021.4.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/oneapi_dpcpp_cpp_compiler_2021.4.pdf
http://dx.doi.org/10.1109/DSD.2015.56
http://dx.doi.org/10.1109/IPDPS.2017.26
http://dx.doi.org/10.1109/DATE.2009.5090700
http://dx.doi.org/10.1109/DATE.2009.5090700
http://dx.doi.org/10.1109/MICRO.2010.51

212 | Bibliography

[65] D. Kirk. NVIDIA CUDA Software and GPU Parallel Computing Architec-
ture. In Proceedings of the 6th International Symposium on Memory Manage-
ment (ISMM), pages 103–104, Montreal, QC, Canada, 2007. doi: 10.1145/
1296907.1296909. (page: 11)

[66] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe. The Tensor
Algebra Compiler. Proceedings of the ACM on Programming Languages, 1
(OOPSLA):77:1–29, 2017. doi: 10.1145/3133901. (page: 193)

[67] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler, M. S.
Müller, and W. E. Nagel. The Vampir Performance Analysis Tool-Set. In
Proceedings of the 2nd International Workshop on Parallel Tools for High Per-
formance Computing, pages 139–155. 2008. doi: 10.1007/978-3-540-68564-
7_9. (page: 125)

[68] S. Kommrusch, M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Opti-
mizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/
Home Agent Mappings. IEEE Access, 9:28930–28945, 2021. doi: 10.1109/
ACCESS.2021.3058280. (pages: xxii, xxiii, 245, and 248)

[69] H. Krawczyk. LFSR-based Hashing and Authentication. In Proceedings of the
14th Annual International Cryptology Conference (CRYPTO), pages 129–139,
Santa Barbara, CA, USA, 1994. doi: 10.1007/3-540-48658-5_15. (page: 28)

[70] R. Kumar, T. G. Mattson, G. Pokam, and R. Van Der Wijngaart. Multipro-
cessor System-on-Chip: Hardware Design and Tool Integration, chapter The
Case for Message Passing on Many-Core Chips, pages 115–123. Springer, 2011.
doi: 10.1007/978-1-4419-6460-1_5. (page: 8)

[71] S. Larsen and S. Amarasinghe. Exploiting Superword Level Parallelism with
Multimedia Instruction Sets. In Proceedings of the 21st ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
pages 145–156, Vancouver, BC, Canada, 2000. doi: 10.1145/349299.349320.
(pages: 156, 193)

[72] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong Pro-
gram Analysis and Transformation. In Proceedings of the IEEE/ACM Interna-

http://dx.doi.org/10.1145/1296907.1296909
http://dx.doi.org/10.1145/1296907.1296909
http://dx.doi.org/10.1145/3133901
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1007/978-3-540-68564-7_9
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1007/3-540-48658-5_15
http://dx.doi.org/10.1007/978-1-4419-6460-1_5
http://dx.doi.org/10.1145/349299.349320

Bibliography | 213

tional Symposium on Code Generation and Optimization (CGO), pages 75–88,
San Jose, CA, USA, 2004. doi: 10.1109/CGO.2004.1281665. (pages: 151, 193)

[73] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko. MLIR: Scaling Com-
piler Infrastructure for Domain Specific Computation. In Proceedings of the
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 2–14, Virtual, 2021. doi: 10.1109/CGO51591.2021.9370308.
(page: 194)

[74] J. Levon. OProfile, https://oprofile.sourceforge.io/news/, [Accessed:
01-03-2022]. (page: 125)

[75] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi. McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures. In Proceedings of the
42nd IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 469–480, New York, NY, USA, 2009. doi: 10.1145/1669112.1669172.
(page: 59)

[76] J. Liu, J. Kotra, W. Ding, and M. Kandemir. Network Footprint Reduc-
tion Through Data Access and Computation Placement in NoC-based Many-
cores. In Proceedings of the 52nd Annual Design Automation Conference
(DAC), pages 181:1–6, San Francisco, CA, USA, 2015. doi: 10.1145/2744769.
2744876. (pages: 53, 57)

[77] LLVM. Auto-Vectorization in LLVM, https://llvm.org/docs/
Vectorizers.html, [Accessed: 01-03-2022]. (page: 130)

[78] Q. Lu, C. Alias, U. Bondhugula, T. Henretty, S. Krishnamoorthy, J. Ramanu-
jam, A. Rountev, P. Sadayappan, Y. Chen, H. Lin, and T.-F. Ngai. Data
Layout Transformations for Enhancing Data Locality on NUCA Chip Mul-
tiprocessors. In Proceedings of the 18th IEEE International Conference on
Parallel Architectures and Compilation Techniques (PACT), pages 348–357,
Raleigh, NC, USA, 2009. doi: 10.1109/PACT.2009.36. (page: 53)

[79] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building Customized Program Analysis

http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1109/CGO51591.2021.9370308
https://oprofile.sourceforge.io/news/
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/2744769.2744876
http://dx.doi.org/10.1145/2744769.2744876
https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html
http://dx.doi.org/10.1109/PACT.2009.36

214 | Bibliography

Tools with Dynamic Instrumentation. ACM SIGPLAN Notices, 40(6):190–
200, 2005. doi: 10.1145/1064978.1065034. (page: 60)

[80] J. R. Madsen, M. G. Awan, H. Brunie, J. Deslippe, R. Gayatri, L. Oliker,
Y. Wang, C. Yang, and S. Williams. Timemory: Modular Performance Anal-
ysis for HPC. In Proceedings of the International Supercomputing Conference
(ISC), pages 434–452, Frankfurt, Germany, 2020. doi: 10.1007/978-3-030-
50743-5_22. (page: 126)

[81] H. Markram. The Human Brain Project. Scientific American, 306(6):50–55,
2012. doi: 10.1038/scientificamerican0612-50. (pages: 3, 240)

[82] T. Mattson. The Future of Many Core Computing: A Tale of Two Proces-
sors, https://cseweb.ucsd.edu/classes/fa12/cse291-c/talks/SCC-80-
core-cern.pdf. (pages: 8, 56)

[83] C. Maurice, N. Le Scouarnec, C. Neumann, O. Heen, and A. Francillon.
Reverse Engineering Intel Last-Level Cache Complex Addressing Using Per-
formance Counters. In Proceedings of the 18th International Symposium on
Research in Attacks, Intrusions, and Defenses (RAID), pages 48–65, Kyoto,
Japan, 2015. doi: 10.1007/978-3-319-26362-5_3. (page: 50)

[84] J. D. McCalpin. Memory Bandwidth and Machine Balance in Current High
Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter, pages 19–25, 1995. (page: 112)

[85] J. D. McCalpin. HPL and DGEMM Performance Variability on the Xeon
Platinum 8160 Processor. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC), pages
18:1–13, 2018. doi: 10.1109/SC.2018.00021. (pages: 52, 81)

[86] J. D. McCalpin. Observations on Core Numbering and “Core ID’s” in Intel
Processors. Technical Report TR-2020-01, Texas Advanced Computing Center
(TACC), The University of Texas at Austin, 2020. doi: 10.26153/tsw/10858.
(pages: 51, 52)

[87] J. D. McCalpin. Mapping Addresses to L3/CHA Slices in Intel Processors.

http://dx.doi.org/10.1145/1064978.1065034
http://dx.doi.org/10.1007/978-3-030-50743-5_22
http://dx.doi.org/10.1007/978-3-030-50743-5_22
http://dx.doi.org/10.1038/scientificamerican0612-50
https://cseweb.ucsd.edu/classes/fa12/cse291-c/talks/SCC-80-core-cern.pdf
https://cseweb.ucsd.edu/classes/fa12/cse291-c/talks/SCC-80-core-cern.pdf
http://dx.doi.org/10.1007/978-3-319-26362-5_3
http://dx.doi.org/10.1109/SC.2018.00021
http://dx.doi.org/10.26153/tsw/10858

Bibliography | 215

Technical Report TR-2021-03, Texas Advanced Computing Center (TACC),
The University of Texas at Austin, 2021. doi: 10.26153/tsw/14539. (page: 52)

[88] J. D. McCalpin. Mapping Core and L3 Slice Numbering to Die Locations
in Intel Xeon Scalable Processors. Technical Report TR-2021-02, Texas Ad-
vanced Computing Center (TACC), The University of Texas at Austin, 2021.
doi: 10.26153/tsw/11256. (pages: 51, 52, 200, and 246)

[89] J. D. McCalpin. Mapping Core, CHA, and Memory Controller Numbers
to Die Locations in Intel Xeon Phi x200 ("Knights Landing", "KNL") Pro-
cessors. Technical Report TR-2021-01, Texas Advanced Computing Center
(TACC), The University of Texas at Austin, 2021. doi: 10.26153/tsw/13120.
(pages: 17, 51, and 52)

[90] C. Mendis and S. Amarasinghe. goSLP: Globally Optimized Superword Level
Parallelism Framework. Proceedings of the ACM Programming Languages., 2
(OOPSLA):110:1–28, 2018. doi: 10.1145/3276480. (page: 193)

[91] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio,
J. Eastep, and A. Agarwal. Graphite: A Distributed Parallel Simulator for
Multicores. In Proceedings of the 16th IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pages 1–12, Bangalore, India,
2010. doi: 10.1109/HPCA.2010.5416635. (page: 82)

[92] N. Mishra, C. Imes, J. Lafferty, and H. Hoffman. CALOREE: Learning Control
for Predictable Latency and Low Energy. In Proceedings of the 23rd ACM In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 184–198, Williamsburg, VA, USA,
2018. doi: 10.1145/3296957.3173184. (page: 82)

[93] M. A. H. Monil, S. Lee, J. S. Vetter, and A. D. Malony. Understanding the
Impact of Memory Access Patterns in Intel Processors. In Proceedings of
the Workshop on Memory Centric High Performance Computing (MCHPC),
pages 52–61, 2020. doi: 10.1109/MCHPC51950.2020.00012. (page: 37)

[94] G. E. Moore. Cramming More Components onto Integrated Circuits. Elec-
tronics Magazine, 38(8):114–118, 1965. doi: 10.1109/N-SSC.2006.4785860.
(page: 1)

http://dx.doi.org/10.26153/tsw/14539
http://dx.doi.org/10.26153/tsw/11256
http://dx.doi.org/10.26153/tsw/13120
http://dx.doi.org/10.1145/3276480
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://dx.doi.org/10.1145/3296957.3173184
http://dx.doi.org/10.1109/MCHPC51950.2020.00012
http://dx.doi.org/10.1109/N-SSC.2006.4785860

216 | Bibliography

[95] K. O’Leary, I. Gazizov, A. Shinsel, R. Belenov, Z. Matveev, and D. Petunin.
Intel Advisor Roofline Analysis. https://www.codeproject.com/articles/
1169323/intel-advisor-roofline-analysis. [Accessed: 01-03-2022].
(page: 37)

[96] I. E. Papazian. New 3rd Gen Intel® Xeon® Scalable Processor (Codename:
Ice Lake-SP). In Proceedings of the IEEE Hot Chips Symposium (HCS), pages
1–22, Los Alamitos, CA, USA, 2020. doi: 10.1109/HCS49909.2020.9220434.
(page: 10)

[97] T. Par, T. Lapusan, and P. Grover. dtreeviz : Decision Tree Visualization,
https://github.com/parrt/dtreeviz, [Accessed: 01-03-2022]. (page: 93)

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research, 12:
2825–2830, 2011. (page: 90)

[99] A. Pohl, B. Cosenza, and B. Juurlink. Portable Cost Modeling for Auto-
Vectorizers. In Proceedings of the 27th International Symposium on Model-
ing, Analysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS), pages 359–369, Rennes, France, 2019. doi: 10.1109/MASCOTS.
2019.00046. (pages: 130, 193)

[100] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. Look-Ahead SLP: Auto-
Vectorization in the Presence of Commutative Operations. In Proceedings of
the IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO), pages 163–174, Vienna, Austria, 2018. doi: 10.1145/3168807.
(page: 193)

[101] V. Porpodas, R. C. O. Rocha, and L. F. W. Góes. VW-SLP: Auto-
Vectorization with Adaptive Vector Width. In Proceedings of the 27th In-
ternational Conference on Parallel Architectures and Compilation Techniques
(PACT), pages 12:1–15, Limassol, Cyprus, 2018. doi: 10.1145/3243176.
3243189. (page: 193)

https://www.codeproject.com/articles/1169323/intel-advisor-roofline-analysis
https://www.codeproject.com/articles/1169323/intel-advisor-roofline-analysis
http://dx.doi.org/10.1109/HCS49909.2020.9220434
https://github.com/parrt/dtreeviz
http://dx.doi.org/10.1109/MASCOTS.2019.00046
http://dx.doi.org/10.1109/MASCOTS.2019.00046
http://dx.doi.org/10.1145/3168807
http://dx.doi.org/10.1145/3243176.3243189
http://dx.doi.org/10.1145/3243176.3243189

Bibliography | 217

[102] V. Porpodas, R. C. O. Rocha, E. Brevnov, L. F. W. Góes, and T. Matt-
son. Super-Node SLP: Optimized Vectorization for Code Sequences Contain-
ing Operators and Their Inverse Elements. In Proceedings of the IEEE/ACM
International Symposium on Code Generation and Optimization (CGO), pages
206–216, Washington, DC, USA, 2019. doi: 10.1109/CGO.2019.8661192.
(page: 193)

[103] L.-N. Pouchet. PolyBench: The Polyhedral Benchmark Suite. https://
sourceforge.net/projects/polybench/. [Accessed: 01-03-2022]. (pages: 68,
90, 93, 127, and 175)

[104] D. Quinlan and C. Liao. The ROSE Source-to-Source Compiler In-
frastructure. In Proceedings of the Cetus Users and Compiler Infras-
tructure Workshop (in conjunction with PACT), pages 1–3, Galveston Is-
land, TX, USA, 2011. URL https://engineering.purdue.edu/Cetus/
cetusworkshop/papers/4-1.pdf. (page: 194)

[105] S. Ramos and T. Hoefler. Capability Models for Manycore Memory Systems:
A Case-Study with Xeon Phi KNL. In Proceedings of the IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 297–306, Or-
lando, FL, USA, 2017. doi: 10.1109/IPDPS.2017.30. (page: 53)

[106] S. Rho, G. Park, J.-S. Kim, S. Kim, and D. Nam. A Study on Optimal
Scheduling Using High-Bandwidth Memory of Knights Landing Processor. In
Proceedings of the 2nd IEEE International Workshops on Foundations and
Applications of Self* Systems (FAS*W), pages 289–294, Tucson, AZ, USA,
2017. doi: 10.1109/FAS-W.2017.161. (page: 81)

[107] R. C. O. Rocha, V. Porpodas, P. Petoumenos, L. F. W. Góes, Z. Wang,
M. Cole, and H. Leather. Vectorization-Aware Loop Unrolling with Seed For-
warding. In Proceedings of the 29th International Conference on Compiler
Construction (CC), pages 1–13, San Diego, CA, USA, 2020. doi: 10.1145/
3377555.3377890. (page: 156)

[108] G. Rodríguez, M. Kandemir, and J. Touriño. Affine Modeling of Program
Traces. IEEE Transactions on Computers, 68(2):294–300, 2019. doi: 10.
1109/TC.2018.2853747. (page: 45)

http://dx.doi.org/10.1109/CGO.2019.8661192
https://sourceforge.net/projects/polybench/
https://sourceforge.net/projects/polybench/
https://engineering.purdue.edu/Cetus/cetusworkshop/papers/4-1.pdf
https://engineering.purdue.edu/Cetus/cetusworkshop/papers/4-1.pdf
http://dx.doi.org/10.1109/IPDPS.2017.30
http://dx.doi.org/10.1109/FAS-W.2017.161
http://dx.doi.org/10.1145/3377555.3377890
http://dx.doi.org/10.1145/3377555.3377890
http://dx.doi.org/10.1109/TC.2018.2853747
http://dx.doi.org/10.1109/TC.2018.2853747

218 | Bibliography

[109] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global Value Numbers
and Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL), pages
12–27, San Diego, CA, USA, 1988. doi: 10.1145/73560.73562. (page: 152)

[110] P. Salihundam, S. Jain, T. Jacob, S. Kumar, V. Erraguntla, Y. Hoskote,
S. Vangal, G. Ruhl, P. Kundu, and N. Borkar. A 2Tb/s 6×4 Mesh Net-
work with DVFS and 2.3Tb/s/W Router in 45nm CMOS. In Proceedings
of the Symposium on VLSI Circuits, pages 79–80, Honolulu, HI, USA, 2010.
doi: 10.1109/VLSIC.2010.5560277. (page: 67)

[111] D. Sanchez and C. Kozyrakis. ZSim: Fast and Accurate Microarchitectural
Simulation of Thousand-Core Systems. ACM SIGARCH Computer Architec-
ture News, 41(3):475–486, 2013. doi: 10.1145/2508148.2485963. (pages: 57,
82)

[112] S. R. Sarangi, R. Kalayappan, P. Kallurkar, and S. Goel. Tejas Simulator:
Validation against Hardware. arXiv: 1501.07420v1, 2015. (page: 59)

[113] S. R. Sarangi, R. Kalayappan, P. Kallurkar, S. Goel, and E. Peter. Tejas:
A Java Based Versatile Micro-Architectural Simulator. In Proceedings of the
25th International Workshop on Power And Timing Modeling, Optimization
and Simulation (PATMOS), pages 47–54, Salvador, Brazil, 2015. doi: 10.
1109/PATMOS.2015.7347586. (pages: 56, 57, 59, 61, and 63)

[114] scikit-learn. DecisionTreeClassifier, https://scikit-learn.org/
stable/modules/generated/sklearn.tree.DecisionTreeClassifier.
html#sklearn.tree.DecisionTreeClassifier, [Accessed: 01-03-2022].
(page: 102)

[115] scikit-learn. RandomForestClassifier, https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.RandomForestClassifier.html,
[Accessed: 01-03-2022]. (page: 102)

[116] A. Scolari, D. Bartolini, and M. Santambrogio. A Software Cache Partitioning
System for Hash-Based Caches. ACM Transactions on Architecture and Code
Optimization, 13(4):1–24, 2016. doi: 10.1145/3018113. (page: 50)

http://dx.doi.org/10.1145/73560.73562
http://dx.doi.org/10.1109/VLSIC.2010.5560277
http://dx.doi.org/10.1145/2508148.2485963
https://arxiv.org/abs/1501.07420v1
http://dx.doi.org/10.1109/PATMOS.2015.7347586
http://dx.doi.org/10.1109/PATMOS.2015.7347586
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
http://dx.doi.org/10.1145/3018113

Bibliography | 219

[117] S. S. Shende and A. D. Malony. The Tau Parallel Performance System. The
International Journal of High Performance Computing Applications, 20(2):
287–311, 2006. doi: 10.1177/1094342006064482. (page: 125)

[118] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chap-
man & Hall/CRC, 1986. doi: 10.1002/bimj.4710300745. (page: 92)

[119] B. Solomon, A. Mendelson, D. Orenstien, Y. Almog, and R. Ronen. Micro-
Operation Cache: A Power Aware Frontend for Variable Instruction Length
ISA. In Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED), pages 4–9, Huntington Beach, CA, USA, 2001. doi: 10.
1109/LPE.2001.945363. (page: 133)

[120] M. Stepp, R. Tate, and S. Lerner. Equality-Based Translation Validator for
LLVM. In Proceedings of the 23rd International Conference on Computer
Aided Verification (CAV), pages 737–742, Snowbird, UT, USA, 2011. doi: 10.
1007/978-3-642-22110-1_59. (page: 194)

[121] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari,
G. D. Liu, and W.-m. W. Hwu. Parboil: A Revised Benchmark Suite for Sci-
entific and Commercial Throughput Computing. Technical Report IMPACT-
12-01, University of Illinois at Urbana-Champaign, IL, USA, 2012. (page: 68)

[122] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner. Equality Saturation: A New Ap-
proach to Optimization. In Proceedings of the 36th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pages 264–276,
Savannah, GA, USA, 2009. doi: 10.1145/1480881.1480915. (page: 193)

[123] TechXplore. Trillion-Transistor Chip Breaks Speed Record, https:
//techxplore.com/news/2020-11-trillion-transistor-chip.html.
(page: 2)

[124] K. Thulasiraman and M. N. S. Swamy. Graphs: Theory and Algorithms. John
Wiley & Sons, 1992. doi: 10.1002/9781118033104. (page: 159)

[125] TOP500.org. TOP500 - November 2021, https://www.top500.org/lists/
top500/list/2021/11/. (page: 3)

http://dx.doi.org/10.1177/1094342006064482
http://dx.doi.org/10.1002/bimj.4710300745
http://dx.doi.org/10.1109/LPE.2001.945363
http://dx.doi.org/10.1109/LPE.2001.945363
http://dx.doi.org/10.1007/978-3-642-22110-1_59
http://dx.doi.org/10.1007/978-3-642-22110-1_59
http://dx.doi.org/10.1145/1480881.1480915
https://techxplore.com/news/2020-11-trillion-transistor-chip.html
https://techxplore.com/news/2020-11-trillion-transistor-chip.html
http://dx.doi.org/10.1002/9781118033104
https://www.top500.org/lists/top500/list/2021/11/
https://www.top500.org/lists/top500/list/2021/11/

220 | Bibliography

[126] L. Torvalds. Re: SCO: "thread creation is about a thousand times faster than
on native Linux". https://lkml.org/lkml/2000/8/25/132, 2000. (page: 55)

[127] J. Treibig, G. Hager, and G. Wellein. LIKWID: A Lightweight Performance-
Oriented Tool Suite for x86 Multicore Environments. In Proceedings of the
39th International Conference on Parallel Processing Workshops (ICPPW),
pages 207–216, San Diego, CA, USA, 2010. doi: 10.1109/ICPPW.2010.38.
(page: 125)

[128] S. Wang, C. Li, H. Hoffman, S. Lu, W. Sentosa, and A. Kistijantoro. Un-
derstanding and Auto-Adjusting Performance-Sensitive Configurations. In
Proceedings of the 23rd ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), pages
154–168, Williamsburg, VA, USA, 2018. doi: 10.1145/3173162.3173206.
(page: 82)

[129] Y. R. Wang, S. Hutchison, J. Leang, B. Howe, and D. Suciu. SPORES: Sum-
Product Optimization via Relational Equality Saturation for Large Scale Lin-
ear Algebra. Proceedings of the VLDB Endowment, 13(12):1919–1932, 2020.
doi: 10.14778/3407790.3407799. (page: 193)

[130] Z. Wegner. SPRDPL: Simple Python Recursive-Descent
Parsing Library, https://github.com/zwegner/sprdpl/tree/
bf971e4ff5832fe2a1fd34deca57ba60a3687a73, [Accessed: 01-03-2022].
(page: 141)

[131] Z. Wegner. x86-sat, https://github.com/zwegner/x86-sat, [Accessed: 01-
03-2022]. (page: 141)

[132] M. Willsey, C. Nandi, Y. R. Wang, O. Flatt, Z. Tatlock, and P. Panchekha.
egg: Fast and Extensible Equality Saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):23:1–29, 2021. doi: 10.1145/3434304.
(pages: 193, 196)

[133] Y. Xiao, Y. Xue, S. Nazarian, and P. Bogdan. A Load Balancing In-
spired Optimization Framework for Exascale Multicore Systems: A Com-
plex Networks Approach. In Proceedings of the International Conference on

https://lkml.org/lkml/2000/8/25/132
http://dx.doi.org/10.1109/ICPPW.2010.38
http://dx.doi.org/10.1145/3173162.3173206
http://dx.doi.org/10.14778/3407790.3407799
https://github.com/zwegner/sprdpl/tree/bf971e4ff5832fe2a1fd34deca57ba60a3687a73
https://github.com/zwegner/sprdpl/tree/bf971e4ff5832fe2a1fd34deca57ba60a3687a73
https://github.com/zwegner/x86-sat
http://dx.doi.org/10.1145/3434304

Bibliography | 221

Computer-Aided Design (ICCAD), pages 217–224, Irvine, CA, USA, 2017.
doi: 10.1109/ICCAD.2017.8203781. (page: 53)

[134] L. Yang, W. Liu, P. Chen, N. Guan, and M. Li. Task Mapping on SMAT
NoC: Contention Matters, not the Distance. In Proceedings of the 54th Annual
Design Automation Conference (DAC), pages 88:1–6, Austin, TX, USA, 2017.
doi: 10.1145/3061639.3062323. (page: 57)

[135] Y. Yang, P. M. Phothilimtha, Y. R. Wang, M. Willsey, S. Roy, and J. Pienaar.
Equality Saturation for Tensor Graph Superoptimization. arXiv: 2101.01332,
2021. (page: 193)

[136] A. Yasin. A Top-Down Method for Performance Analysis and Counters Archi-
tecture. In Proceedings of the IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), pages 35–44, Monterey, CA, USA,
2014. doi: 10.1109/ISPASS.2014.6844459. (page: 125)

[137] K. Yotov, K. Pingali, and P. Stodghill. Automatic Measurement of Memory
Hierarchy Parameters. In Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS), pages 181–192,
Banff, AB, Canada, 2005. doi: 10.1145/1071690.1064233. (page: 81)

http://dx.doi.org/10.1109/ICCAD.2017.8203781
http://dx.doi.org/10.1145/3061639.3062323
https://arxiv.org/abs/2101.01332
http://dx.doi.org/10.1109/ISPASS.2014.6844459
http://dx.doi.org/10.1145/1071690.1064233

A
MARTA Configuration

A.1 CLI Options

MARTA integrates two main drivers, the marta_profiler (Profiler module) and
the marta_analyzer (Analyzer module). The first one presents the following CLI:

usage: marta_profiler [-h] [--version] {project,po,profile,perf} ...

Productivity-aware framework for micro-architectural profiling and performance
characterization

optional arguments:
-h, --help shows this help message and exits
--version shows program’s version number and exits

subcommands:
{project,po,profile,perf}

additional help
project (po) project help
profile (perf) profile help

The marta_profiler driver features two main group of functionalities, project
and profile. The first one is meant to help write new projects and benchmarks,
providing default templates and configuration files. Its options are:

223

224 | Appendices

usage: marta_profiler project [-h] [-n NAME] [-u] [-c CHECK_CONFIG_FILE]
[-dump]

project subcommand is meant to help with the configuration and generation of
new MARTA-compliant projects.

optional arguments:
-h, --help shows this help message and exits
-n NAME, --name NAME name of the new project
-u, --microbenchmark sets new project as micro-benchmark
-c CHECK_CONFIG_FILE, --check-config-file CHECK_CONFIG_FILE

quits if there is an error checking the configuration
file

-dump, --dump-config-file
dumps a sample configuration file with all necessary
files for the profiler to work properly

The profile functionalities, as the name suggests, provide all options relative
to micro-benchmarking:

usage: marta_profiler profile [-h] [-o OUTPUT] [-r] [-d]
[-log {debug,info,warning,error,critical}]
[-nsteps ITERATIONS] [-nexec EXECUTIONS]
[-x] [-q] [-v] [-s SUMMARY [SUMMARY ...]]
input

MARTA requires an input file with the configuration parameters, but some of
them can be overwritten at runtime, as described below.

optional arguments:
-h, --help shows this help message and exits

required named arguments:
input input configuration file

optional named arguments:
-o OUTPUT, --output OUTPUT

output results file name
-r, --report output report file name, with data regarding the

Appendices | 225

machine, compilation flags, warnings, and errors
-d, --debug verbose debugging messages
-log {debug,info,warning,error,critical}, --loglevel {debug,info,warning,

error,critical}
log level

-nsteps ITERATIONS, --iterations ITERATIONS
number of iterations

-nexec EXECUTIONS, --executions EXECUTIONS
number of executions

-x, --no-quit-on-error
quits if there is an error during compilation or
execution of the kernel

-q, --quiet quiet execution
-v, --version displays version and quits
-s SUMMARY [SUMMARY ...], --summary SUMMARY [SUMMARY ...]

prints a summary at the end with the given dimensions
of interest

The marta_analyzer driver provides an interface with the Analyzer module.
The list of options available are:

usage: marta_analyzer [-h] [-q] [-v] [-dump] [input]

wrapper for analyzing data given a csv file

optional arguments:
-h, --help shows this help message and exits

required named arguments:
input input configuration file

optional named arguments:
-q, --quiet quiet execution
-v, --version displays version and quits
-dump, --dump-config-file

dumps a sample configuration file with all necessary
files for analyzer to work properly

226 | Appendices

A.2 C Macros/Directives

Table A.1: Description of the macros included in the headers of MARTA. Some
of them use functions and directives included in the PolyBench/C libraries, which
are also integrated in the system.

Macro Pseudo-code Description
MARTA_BENCHMARK
_BEGIN

int main(int argc, char **argv) {
cpu_set_t mask;
CPU_ZERO(&mask);
CPU_SET(MARTA_CPU_AFFINITY, &mask);
int result = sched_setaffinity(0,

sizeof(mask),
&mask);

Sets benchmark’s
start. It also sets
CPU affinity for
the execution using
Linux system calls.

MARTA_BENCHMARK
_END

return 0;
}

Sets the end of the
main function in
the program.

MARTA_FLUSH_CACHE

for (int i = 0; i < s; i += 64) {
asm volatile("clflush (%0)\n\t" ::

"r"(&p[i]) :
"memory");

}

Performs clflush
of size s at memory
address p. Flush is
performed at cache
line level, typically
64 bytes.

Appendices | 227

PROFILE_
FUNCTION(X)

polybench_start_instruments;
#if TSTEPS>1
__asm volatile("mov $"(TSTEPS)", %%ecx" :::

"ecx");
__asm volatile("begin_loop:");
#endif
X;
#if TSTEPS>1
__asm volatile("sub $1, %%ecx\n\t"

"jne begin_loop");
#endif
polybench_stop_instruments;
polybench_print_instruments;

Instruments func-
tion X in a loop
with TSTEPS it-
erations without
performing any
loop optimization.
This is useful for
collecting stable
measurements,
even though it
causes a hot cache
effect for small
functions without
saturating caches.
It avoids the loop
if TSTEPS is not
greater than 1.

CLOBBER_MEM

asm volatile("" : : : "memory");

Acts as a read-
/write barrier.
Useful for micro-
benchmarking,
avoiding the reuse
of values in register
and bringing values
from memory.

DO_NOT_TOUCH(X)

asm volatile("" : "+x"(var) : :);

Useful to avoid any
compiler optimiza-
tion on a variable
X materialized in a
register.

B
Random Vector Packing: Instructions

B.1 Load Instructions

Table B.1: Load instructions for the float data type considered in our model.

Instruction Mnemonics Description
_mm_load_ss() movss xmm, MEM Loads 32 bits in the

LSB of the register.
_mm_load_ps() movaps xmm, MEM Loads 4 32-bit con-

tiguous elements
(aligned).

_mm_loadu_ps() movups xmm, MEM Loads 4 32-bit con-
tiguous elements
(unaligned).

_mm256_load_ps() vmovaps ymm, MEM Loads 8 32-bit con-
tiguous elements
(aligned).

_mm256_loadu_ps() vmovups ymm, MEM Loads 8 32-bit con-
tiguous elements
(unaligned).

_mm_maskload_ps() vmaskmovps xmm, xmm, MEM Loads 4 32-bit con-
tiguous elements,
zeroing those whose
value in the mask
is zero.

_mm256_maskload_ps() vmaskmovps ymm, ymm, MEM Loads 8 32-bit con-
tiguous elements,
zeroing those whose
value in the mask
is zero.

229

230 | Appendices

B.2 Swizzle Instructions

Table B.2: Swizzle instructions for the float data type considered in our model.

Instruction Mnemonics Description
_mm_shuffle_ps() shufps xmm, xmm, xmm, imm8 Shuffles 4 elements.
_mm256_shuffle_ps() vshufps ymm, ymm, ymm, imm8 Shuffles 8 elements

within 128-bit
lanes.

_mm_blend_ps() blendps xmm, xmm, imm8 Blends 4 elements.
_mm256_blend_ps() vblendps ymm, ymm, ymm,

imm8
Blends 8 elements.

_mm_extract_ps() extractps r32, xmm, imm8 Extracts 32 bits
from a 128-bit
register.

_mm256_extractf128_ps() vextractf128 xmm, ymm, imm8 Extract 32 bits
from a 256-bit
register.

_mm_insert_ps() insertps xmm, xmm, imm8 Inserts a position
from one register
into another.

_mm256_insertf128_ps() vinsertf128 ymm, ymm, xmm,
imm8

Inserts a complete
128-bit lane into
another register.

_mm_permute_ps() vpermilps xmm, xmm, imm8 Permutes within a
128-bit register.

_mm256_permute_ps() vpermilps ymm, ymm, imm8 Permutes within
a 256-bit regis-
ter (not crossing
128-bit lanes).

_mm256_permute2f128_ps() vperm2f128 ymm, ymm, ymm,
imm8

Permutes within
128-bit lanes.

_mm_permutevar_ps() vpermilps xmm, xmm, xmm Permutes within a
register.

_mm256_permutevar_ps() vpermilps ymm, ymm, ymm Permutes within
128-bit lanes.

_mm256_permutevar8x32_ps() vpermps ymm, ymm, ymm Permutes 8 ele-
ments (crossing
lanes).

C
MACVETH Configuration

C.1 CLI Options

MACVETH requires an input file to compile, but it also accepts the set of options
listed next:

usage: macveth [options] <source0> [...<sourceN>]

options:
generic options:

--help - Displays available options (--help-hidden
for more)

--help-list - Displays list of available options
(--help-list-hidden for more)

--version - Displays the version of this program

MACVETH options:
--debug-file=<string> - Output file to print the debug

information
--debug-mv - Prints debug information
--fma - Support for FMA instructions
--format-fallback-style=<string> - The name of the predefined style used as

a fallback in case clang-format is
invoked with -format-style=file, but cannot

231

232 | Appendices

find the .clang-format file to use. Use
-format-fallback-style=none to skip
formatting

--format-style=<string> - Coding style, currently supports:
LLVM, GNU, Google, Chromium,
Microsoft, Mozilla, WebKit.
Use -format-style=file to load style
configuration from .clang-format file
located in one of the parent directories
of the source file (or current directory
for stdin). Use -format-style="{key: value,
...}" to set specific parameters, e.g.:

-format-style="{BasedOnStyle: llvm,
IndentWidth: 8}"

--func=<string> - Target function to vectorize
--march=<value> - Target architecture

=cascadelake - Intel Cascade Lake (2019) architecture
=znver3 - AMD Zen3 (2020) architecture: AVX2
=amd - AMD architecture not specified
=intel - Intel architecture not specified

--min-redux-size=<int> - Advanced option: minimum number of
reductions to pack together

--misa=<value> - Target ISA
=native - Detects ISA of the architecture
=sse - SSE ISA
=avx - AVX ISA
=avx2 - AVX2 ISA

--no-format - MACVETH by default reformats code as
clang-format does, using LLVM style. If
this option is enabled, then no
reformatting is applied

--no-headers - If set, does *not* include header files
--no-svml - Disables Intrinsics SVML
--nofma - Disables FMA optimizations
--nofuse - Disables the fusion of reductions
--novec-orphan-redux - Disables the vectorization of orphan

reductions
-o=<string> - Output file to write the code, otherwise

it will just print in the standard output
--redux-win-size=<int> - Advanced option: size of window of

reductions to consider

Appendices | 233

--scatter - Supports AVX-512 scatter instructions
--simd-info=<string> - Report with all the SIMD information

C.2 Pragma Options

In order to control the unrolling of the loops, MACVETH provides different
directives or options for the pragmas. A region of interest for MACVETH might
include basic blocks or affine loops. The syntax should be as described in Listing C.1.
The available options for the pragmas are:

• unroll [var0 val0] [...[varN valN]]: explicitly tells the compiler the un-
roll factor of each dimension of the nested loop/s. valN can be either a positive
integer or full. This is the default option so it does not have to be explicit,
with a factor of 4 if the upper bound is not known at compile time, and full
unrolling otherwise.

• nounroll: avoids unrolling the code within the region. This may be useful if
we have an irregular code and we just want to vectorize it. This has the same
behavior as unrolling with factor 1.

• unroll_and_jam: performs unroll-and-jam for loop nests within the region of
interest (if possible). Currently this is only implemented for those loop nests
where the loop bounds are known, i.e., for performing full unroll-and-jam.

• scalar|nosimd: does not generate SIMD code; useful, for instance, for only
unrolling the code.

1 #pragma macveth <options>
2 // Region of interest
3 #pragma endmacveth
4 ...
5 #pragma macveth <options>
6 // Another region of interest
7 #pragma endmacveth

Listing C.1: Pragmas required to indicate the regions of interest for MACVETH.

234 | Appendices

C.3 Matrices Used

Table C.1: Full description of the sparse matrices from SuiteSparse [21] used for
the experiments (sorted by NNZ).

Name Group Columns Rows NNZ
Trec3 JGD_Kocay 2 1 1
Trec4 JGD_Kocay 3 2 3
GL7d10 JGD_GL7d 60 1 8
Trec5 JGD_Kocay 7 3 12
b1_ss Grund 7 7 15
ch3-3-b2 JGD_Homology 18 6 18
rel3 JGD_Relat 5 12 18
cage3 vanHeukelum 5 5 19
lpi_galenet LPnetlib 14 8 22
lpi_itest2 LPnetlib 13 9 26
lpi_itest6 LPnetlib 17 11 29
n3c4-b1 JGD_Homology 6 15 30
n3c4-b4 JGD_Homology 15 6 30
Tina_AskCog Pajek 11 11 36
GD01_b Pajek 18 18 37
Trec6 JGD_Kocay 15 6 40
farm Meszaros 17 7 41
Tina_DisCal Pajek 11 11 41
cage4 vanHeukelum 9 9 49
GD98_a Pajek 38 38 50
klein-b2 JGD_Homology 30 20 60
lpi_bgprtr LPnetlib 40 20 70
wheel_3_1 JGD_Margulies 25 21 74
LF10 Oberwolfach 18 18 82
problem Meszaros 46 12 86
GD02_a Pajek 23 23 87
Stranke94 Pajek 10 10 90
Hamrle1 Hamrle 32 32 98
lp_afiro LPnetlib 51 27 102
p0033 Meszaros 48 15 113
football Pajek 35 35 118
GlossGT Pajek 72 72 122
d_dyn Grund 87 87 230
GD02_b Pajek 80 80 232

Appendices | 235

GD96_c Pajek 65 65 250
GD95_c Pajek 62 62 287
mesh1em6 Pothen 48 48 306
lp_kb2 LPnetlib 68 43 313
GD97_a Pajek 84 84 332
GD98_c Pajek 112 112 336
bfwb62 Bai 62 62 342
flower_4_1 JGD_Margulies 129 121 386
tub100 Bai 100 100 396
odepb400 Bai 400 400 399
ch5-5-b1 JGD_Homology 25 200 400
lp_adlittle LPnetlib 138 56 424
sphere2 Pothen 66 66 450
bfwa62 Bai 62 62 450
lpi_ex73a LPnetlib 211 193 457
lp_scagr7 LPnetlib 185 129 465
lesmis Newman 77 77 508
Trec8 JGD_Kocay 84 23 549
GD01_Acap Pajek 953 953 645
cis-n4c6-b15 JGD_Homology 920 60 960
lp_vtp_base LPnetlib 346 198 1051
pde225 Bai 225 225 1065
lp_lotfi LPnetlib 366 153 1136
flower_7_1 JGD_Margulies 393 463 1178
football Newman 115 115 1226
ch7-6-b1 JGD_Homology 42 630 1260
bibd_9_5 JGD_BIBD 126 36 1260
n3c5-b5 JGD_Homology 252 210 1260
Cities Pajek 46 55 1342
n3c6-b2 JGD_Homology 105 455 1365
bibd_15_3 JGD_BIBD 455 105 1365
lp_bore3d LPnetlib 334 233 1448
oscil_dcop_36 Sandia 430 430 1544
TF11 JGD_Forest 236 216 1607
CSphd Pajek 1882 1882 1740
p0548 Meszaros 724 176 1887
lp_capri LPnetlib 482 271 1896
mk11-b1 JGD_Homology 55 990 1980
GL6_D_10 JGD_GL6 341 163 2053
ch5-5-b3 JGD_Homology 600 600 2400
lp_gfrd_pnc LPnetlib 1160 616 2445

236 | Appendices

lp_etamacro LPnetlib 816 400 2537
Erdos971 Pajek 472 472 2628
qh768 Bai 768 768 2934
D_11 JGD_SL6 461 169 2952
model1 Meszaros 798 362 3028
nsic Meszaros 897 465 3449
L AG-Monien 956 956 3640
stufe AG-Monien 1036 1036 3736
b2_ss Grund 1089 1089 3895
celegans_metabolic Arenas 453 453 4065
b_dyn Grund 1089 1089 4144
pde900 Bai 900 900 4380
l9 Meszaros 1483 244 4659
lp_agg3 LPnetlib 758 516 4756
tumorAntiAngiogenesis_8 VDOL 490 490 4776
spaceStation_3 VDOL 467 467 5103
S40PI_n Rommes 2182 2182 5341
n4c5-b3 JGD_Homology 455 1350 5400
fpga_dcop_08 Sandia 1220 1220 5888
fpga_dcop_18 Sandia 1220 1220 5892
lowThrust_1 VDOL 584 582 6133
GL6_D_8 JGD_GL6 637 544 6153
ukerbe1_dual AG-Monien 1866 1866 7076
iiasa Meszaros 3639 669 7317
Chem97ZtZ Bates 2541 2541 7361
bfwa782 Bai 782 782 7514
GD06_Java Pajek 1538 1538 8032
diag AG-Monien 2559 2559 8184
cep1 Meszaros 4769 1521 8233
EX2 JGD_SPG 560 560 8736
rail_1357 Oberwolfach 1357 1357 8985
G18 Gset 800 800 9388
lp_fit1p LPnetlib 1677 627 9868
S80PI_n1 Rommes 4028 4028 9927
dw1024 Bai 2048 2048 10114
lp_maros LPnetlib 1966 846 10137
lp_25fv47 LPnetlib 1876 821 10705
lp_czprob LPnetlib 3562 929 10708
email Arenas 1133 1133 10902
adder_dcop_01 Sandia 1813 1813 11156
adder_dcop_06 Sandia 1813 1813 11224

Appendices | 237

G52 Gset 1000 1000 11832
Trefethen_700 JGD_Trefethen 700 700 12654
grid2 AG-Monien 3296 3296 12864
Pd MathWorks 8081 8081 13036
lpi_klein3 LPnetlib 1082 994 13101
power Newman 4941 4941 13188
Erdos972 Pajek 5488 5488 14170
adder_trans_01 Sandia 1814 1814 14579
shyy41 Shyy 4720 4720 20042
p2p-Gnutella08 SNAP 6301 6301 20777
bayer07 Grund 3268 3268 20963
circuit_2 Bomhof 4510 4510 21199
bcsstk34 Boeing 588 588 21418
Hamrle2 Hamrle 5952 5952 22162
deter8 Meszaros 10905 3831 22299
spaceShuttleEntry_2 VDOL 1428 1428 24073
shermanACa Shen 3432 3432 25220
lp_degen3 LPnetlib 2604 1503 25432
3elt_dual AG-Monien 9000 9000 26556
n4c5-b7 JGD_Homology 4735 3635 29080
bayer03 Grund 6747 6747 29195
cavity08 DRIVCAV 1182 1182 29675
deter5 Meszaros 14529 5103 29715
data DIMACS10 2851 2851 30186
lp_greenbea LPnetlib 5598 2392 31070
hep-th Newman 8361 8361 31502
ex4 FIDAP 1601 1601 31849
rajat03 Rajat 7602 7602 32653
dynamicSoaringProblem_8 VDOL 3543 3543 38136
lp_qap12 LPnetlib 8856 3192 38304
freeFlyingRobot_12 VDOL 5578 5578 41940
bibd_49_3 JGD_BIBD 18424 1176 55272
meg1 Grund 2904 2904 58142
rdist3a Zitney 2398 2398 61896
gyro_k Oberwolfach 17361 17361 1021159
Dubcova2 UTEP 65025 65025 1030225
twotone ATandT 120750 120750 1206265
wi2010 DIMACS10 253096 253096 1209404
li Li 22695 22695 1215181
al2010 DIMACS10 252266 252266 1230482
hvdc2 HVDC 189860 189860 1339638

238 | Appendices

web-NotreDame SNAP 325729 325729 1497134
crashbasis QLi 160000 160000 1750416
roadNet-PA SNAP 1090920 1090920 3083796
TSOPF_FS_b39_c30 TSOPF 120216 120216 3121160
amazon0312 SNAP 400727 400727 3200440

D
Resumo Estendido en Galego

Historicamente, o desenvolvemento do hardware seguiu a coñecida Lei de Moore,
que establecía que o número de compoñentes presentes nos circuítos integrados du-
plicaríase cada dous anos. Esta lei formulouse dende un punto de vista económico,
pero pronto correlacionouse co desempeño dos computadores debido a que os tran-
sistores máis pequenos eran capaces de operar a frecuencias máis altas. Con todo,
nas últimas décadas as frecuencias dos procesadores non se incrementaron ao mesmo
ritmo ao que se reduciu o tamaño dos transistores. A lei do escalado de Dennard es-
tablece, grosso modo, que a densidade enerxética pode manterse constante ao reducir
o tamaño dos transistores (baseados na tecnoloxía MOSFET). Un aspecto impor-
tante desta lei era que a redución no tamaño dos transistores permitía reducir a
voltaxe e, así, os transistores poderían operar a frecuencias máis altas sen incremen-
tar a densidade enerxética. O problema deste escalado é que ignorou dous factores
limitantes: a voltaxe umbral e a corrente de fuga. A primeira establece a potencia
mínima que require un transistor para operar correctamente. A segunda complica a
disipación térmica dos chips, limitando o número de transistores que poden operar
simultaneamente no chip sen deteriorarse fisicamente. Estas limitacións establecen
o que se coñece hoxe en día como o "muro enerxético" (power wall).

Desta maneira, é discutíbel se a Lei de Moore segue vixente ou non, ou canto
vai aguantar, pero está claro que a ruptura no escalado de Dennard condicionou
as tendencias no desenvolvemento das microarquitecturas. A frecuencia xa non
é o factor clave en canto ao rendemento, motivando o desenvolvemento de novas

239

240 | Appendices

aproximacións para acadar a computación a exascala, tales como o dark silicon, ar-
quitecturas heteroxéneas, reconfigurables e manycores. Estas últimas fan referencia
a aqueles procesadores que empaquetan un gran número de núcleos no mesmo chip
sobre unha rede de interconexión. A computación a exascala refírese á habilidade
de executar 1018 operacións en punto flotante nun segundo (FLOPS/s). É un dos
retos a curto prazo máis ambiciosos para a computación de altas prestacións. A
data 2021 aínda non hai listado no Top500 ningún supercomputador que alcance tal
rendemento, aínda que conseguiuse chegar á exascala baixo certas condicións em-
pregando computación distribuída. Esta magnitude de FLOPS/s permitiría unha
mellor precisión en aplicacións e tarefas científicas complexas como a predición mete-
orolóxica, que depende dun vasto número de parámetros mutuamente dependentes;
a simulación neuronal (The Human Brain Project [81]), que require simular billóns
de neuronas interconectadas; a medicina personalizada para clasificar patoloxías
baseadas en historiais médicos; aplicacións de dinámica de fluidos que requiren solu-
cións máis precisas que as actuais aproximacións para a resolución das ecuacións
diferenciais parciais de Navier-Stokes; e moitas outras. Deste xeito, este reto é moi
importante para a enxeñaría de computadores.

Por estes motivos, o paralelismo gañou protagonismo no desenvolvemento do
hardware. Ademais, o paralelismo preséntase de varias formas na computación de
altas prestacións: dende a decodificación e execución de instrucións (paralelismo
a nivel de instrución, ILP), ao número de nodos interconectados nun cluster ou a
nivel global. Dende un punto de vista arquitectónico, o paralelismo exhíbese no
número de núcleos gravados nunha placa. Con todo, este incremento no número de
elementos interconectados complica a escalabilidade dos sistemas. Ademais, hoxe
en día os núcleos dos procesadores son extremadamente sofisticados xa que imple-
mentan complexas arquitecturas segmentadas con amplos anchos de banda para
as unidades vectoriais. Deste xeito, a presente Tese, “Manycore Architectures and
SIMD Optimizations for High Performance Computing”, aborda estas dúas dimen-
sións ortogonais analizando arquitecturas manycore modernas e poñendo énfase no
descubrimento de potenciais melloras de deseño en dous diferentes niveis da xerar-
quía arquitectónica, e desenvolvendo técnicas para a xeración de código vectorial
eficiente dependente da plataforma.

Na primeira parte desta Tese investigamos as redes de interconexión (NoCs) pre-

Appendices | 241

sentes nas arquitecturas manycore modernas e o impacto do tráfico xerado polos di-
rectorios de coherencia caché distribuídos no desempeño destas arquitecturas. Pux-
emos o foco na Intel Mesh Interconnect introducida inicialmente no Xeon Phi x200
Knights Landing (KNL) e continuada nas subseguintes xeracións de Xeon Scalable.
Cando comezamos a analizar o tráfico de coherencia na NoC do Knights Landing
observamos un claro efecto no desempeño das aplicacións debido á afinidade entre
os núcleos e os seus directorios caché (ou CHAs), é dicir, observamos un compor-
tamento NUMA. Por esta razón, xeramos un mapa de correspondencia entre cada
liña caché e o CHA asociado para revelar o mapeo físico en función do enderezo
de memoria. Con este mapeo, desenvolvemos un algoritmo inspector-executor para
caracterizar e optimizar o impacto da afinidade núcleo-a-CHA. Obtivemos resul-
tados prometedores de modo que estendemos este traballo mediante a realización
de enxeñaría inversa para recuperar as funcións encargadas de distribuír as liñas
caché entre os diferentes CHAs. A idea de recuperar estas funcións era aliviar a
sobrecarga introducida polo algoritmo inspector-executor en tempo de execución,
de forma que tamén puidésemos realizar optimizacións en tempo de compilación.
Con todo, a forma destas funcións de mapeo baseadas en portas XOR son pouco
custosas de implementar en hardware, pero non en software. Este custo podería
mitigarse se este mapeo presentase algún tipo de regularidade que se puidese ex-
plotar optimizando o código e a súa planificación, pero este non era o caso para o
KNL dado que o número de tiles non era potencia de 2, o cal producía funcións de
mapeo non lineais. A nosa avaliación demostra a importancia da afinidade dos datos
en sistemas que integran directorios caché distribuídos, e a importancia e impacto
do tráfico de coherencia caché. Tendo en conta que as arquitecturas manycore son
consideradas como o futuro da arquitectura de computadores, é desexábel mellorar
estes deseños evitando estes escollos na NoC empregando para este obxectivo un
mapeo máis regular e predicible dos bloques de memoria para permitir aos progra-
madores, particularmente no dominio da computación de altas prestacións, ter un
maior control sobre o tráfico de coherencia. A aproximación seguida nesta parte
da Tese puxo especial énfase no Intel Xeon Phi 7210, pero tamén é potencialmente
aplicable aos procesadores Xeon Scalable xa que empregan a mesma tecnoloxía na
NoC.

Nas mesmas liñas de traballo, construímos un modelo da arquitectura KNL en
Tejas, que é un simulador arquitectónico cunha precisión a nivel de ciclo. Con este

242 | Appendices

modelo, fomos capaces de realizar unha análise do comportamento da complexa rede
de interconexión. Primeiro validamos o noso modelo fronte ao hardware, atendendo
ás limitacións na tradución das instrucións do simulador (Tejas non soporta todo
o conxunto de instrucións x86). Tamén presentamos un caso de estudo analizando
o comportamento de baixo nivel da rede de interconexión e das optimizacións de-
scritas anteriormente para mellorar a localidade e afinidade entre datos e unidades
de procesamento, así como o mapeo dos fíos de execución en aplicacións paralelas.
A nosa avaliación confirma a redución do tráfico de coherencia na rede e a redución
no número de colisións.

Nunha dimensión ortogonal, na segunda parte da Tese investigamos diferentes
optimizacións vectoriais para computacións que empregan estruturas de datos ir-
regulares como as matrices dispersas. Puxemos énfase en dous tipos concretos de
optimizacións: o empaquetado de posicións de memoria aleatorias no mesmo rex-
istro vectorial e a fusión de reducións independentes. Para esta parte do traballo
precisamos dunha ferramenta para a automatización dun gran volume de experi-
mentos, dado que tiñamos que compilar os códigos con diferentes configuracións de
parámetros, avaliar o rendemento empregando contadores hardware e analizar estes
valores. Deste xeito desenvolvemos MARTA (Multi-configuration Assembly pRofiler
and Toolkit for performance Analysis), unha ferramenta deseñada para mellorar a
produtividade para este tipo de experimentos que requiren micro-benchmarking em-
pregando diferentes configuracións con múltiples parámetros. MARTA, ademais de
caracterizar, tamén permite extraer coñecemento dos datos xerados empregando téc-
nicas de data mining emachine learning. MARTA permite caracterizar o desempeño
de acordo a unha serie de dimensións de interese. Así avaliamos o rendemento de
MARTA en varios casos de uso como outra alternativa para calquera experimento de
caracterización do desempeño, aínda que orixinalmente foi deseñada para construír
os modelos de custo das optimizacións vectoriais.

A primeira optimización foi o empaquetado de posicións de memoria aleatorias
en rexistros vectoriais para arquitecturas x86. O obxectivo principal era xerar imple-
mentacións eficientes que empregasen instrucións dun conxunto concreto. Primeiro
definimos un espazo de exploración atendendo ao conxunto de instrucións a em-
pregar e unhas clases de equivalencia de acordo á contigüidade e tipo de datos das
posicións de memoria a empaquetar. Con esta información construímos MRKVS

Appendices | 243

(Mega-Random Kernel Vector SMT), un sistema baseado en Satisfiability Modulo
Theories (SMT) para xerar conxuntos de instrucións ou candidatos para cada clase
de equivalencia. Facendo uso de MARTA, para cada plataforma xeramos un mod-
elo de custo individual. Os candidatos empregados para as clases de equivalencia
definidas dependen da arquitectura obxectivo. Avaliamos o desempeño dos can-
didatos xerados polo sistema fronte á instrución gather equivalente obtendo, para a
maioría dos casos, amplas marxes de mellora en diferentes arquitecturas.

Por último, desenvolvemos MACVETH (Multi-Architectural C-VEcTorizer for
HPC applications), un compilador fonte-a-fonte baseado en Clang que inclúe o em-
paquetado de posicións aleatorias de memoria en rexistros vectoriais e a fusión de
reducións independentes. Para este propósito desenvolvemos diferentes algoritmos
para o empaquetado de reducións independentes nun programa, sintetizando código
vectorial eficiente. Tamén integramos unha estratexia para vectorizar aquelas op-
eracións de redución que non poden ser empaquetadas xuntas (denominadas como
reducións orfas). Avaliamos o desempeño da nosa aproximación empregando difer-
entes patróns e formas de bucles. Os resultados son prometedores e confirman
potenciais liñas de optimización en códigos que presentan patróns irregulares.

Obxectivos e Metodoloxı́a de Traballo

Os obxectivos principais desta Tese descríbense a continuación, incluíndo os sub-
obxectivos clave.

1. Análise e modelaxe do procesador Intel Xeon Phi x200 (Knights Landing,
KNL).

• Análise e caracterización da arquitectura do núcleo, o directorio caché
distribuído e a rede de interconexión.

• Implementación do modelo arquitectónico do Intel Knights Landing como
unha extensión no simulador Tejas.

• Validación experimental da precisión do simulador executando diferentes
aplicacións.

244 | Appendices

2. Optimización do tráfico de coherencia caché en arquitecturas manycore.

• Aproximación para descubrir a disposición física dos compoñentes.

• Enxeñaría inversa das funcións hash de memoria na arquitectura KNL.

• Aproximacións en tempo de execución e compilación para optimizar o
tráfico de coherencia caché na rede de interconexión.

• Avaliación das aproximacións estática e dinámica propostas.

3. Desenvolvemento dunha ferramenta de profiling e análise do rendemento de-
señada especificamente para experimentos que requiren a configuración de
moitos parámetros.

• Automatización da compilación, execución e análise dado calquera pro-
grama ou benchmark e os parámetros de interese, e.g., o tamaño da ma-
triz, o incremento nun bucle, etc.

• Técnicas de minería de datos para extraer coñecemento a partir dos ex-
perimentos e as dimensións de interese, i.e., cuantificar a influencia das
variables.

• Ferramenta compatible con calquera tipo de aplicación, deseñada para
mellorar a produtividade, calidade e reproducibilidade dos experimentos.

4. Síntese de código vectorial x86 eficiente para o empaquetado de posicións de
memoria aleatorias en rexistros vectoriais e a fusión de reducións.

• Xeración de combinacións de empaquetado de datos aleatorios en rex-
istros vectoriais empregando as instrucións dispoñíbeis dado un conxunto
concreto (ISA) e baseado nun modelo SMT.

• Construción dun modelo de custo baseado no rendemento empírico destas
combinacións para cada plataforma concreta.

• Desenvolvemento dun compilador fonte-a-fonte para a síntese de código
vectorial eficiente baseado na caracterización individual de cada plataforma.

• Avaliación empregando diferentes aplicacións.

Appendices | 245

Contribucións Principais

As contribucións orixinais derivadas desta Tese descríbense a continuación:

• Desenvolvemento dunha extensión para o simulador Tejas para a exploración
da arquitectura KNL ou outras similares que empreguen un sistema distribuído
de coherencia caché. Esta extensión permite a análise do tráfico de coherencia
caché nas redes de interconexión [44, 46].

• Enxeñaría inversa da arquitectura Intel Knights Landing para revelar a disposi-
ción física dos compoñentes. Baseadas neste modelo, desenvolvemos diferentes
técnicas de optimización do tráfico de coherencia caché, a afinidade thread-to-
core e a planificación de diferentes tarefas na rede, aproveitando as caracterís-
ticas únicas dun procesador concreto derivadas das variacións nos procesos
litográficos [45].

• Revelación da función pseudo-aleatoria de mapeo dos enderezos físicos dos
bloques de memoria sobre os compoñentes do directorio distribuído no KNL.
Aproveitando esta información, estudamos diferentes optimizacións para mel-
lorar as latencias de memoria mediante a optimización do tráfico de coherencia
caché. Estas melloras no rendemento da memoria non se traducen directa-
mente en melloras globais no rendemento debido ás inherentes sobrecargas
derivadas da complexidade computacional no mapeo das funcións [68].

• Desenvolvemento de MARTA (Multi-configuration Assembly pRofiler and Toolkit
for performance Analysis), unha ferramenta de profiling e análise do rende-
mento deseñada para incrementar a produtividade [50, 52]. Esta ferramenta
non é unha substituta de ningunha outra ferramenta, pero a súa maior e orix-
inal contribución é a énfase na automatización, mellorando a produtividade e
calidade dos resultados. Nunha dimensión ortogonal, esta ferramenta inclúe
un módulo para a análise do rendemento empregando técnicas de minería de
datos e aprendizaxe máquina.

• Desenvolvemento de MRKVS (Mega-Random Kernel Vector SMT), un sis-
tema baseado en SMT para a xeración de modelos de empaquetado de datos
aleatorios dado un conxunto de instrucións (ISA). A partir destes modelos,

246 | Appendices

construímos un modelo de custo que habilita o empaquetado de datos aleato-
rios en rexistros vectoriais.

• Desenvolvemento de MACVETH (Multi-Architectural C-VEcTorizer for HPC
applications) [51], un compilador fonte-a-fonte C para a síntese de código vec-
torial eficiente dadas unhas rexións de interese no programa que conteñan
patróns de acceso a memoria irregulares. Este compilador inclúe o modelo de
custo construído con MRKVS, ademais de heurísticas para a vectorización e
fusión de reducións independentes.

Traballo Futuro

A continuación describimos unha serie de potenciais liñas de traballo futuras:

• A arquitectura de Intel KNL abandonouse, pero a súa rede interconexión está
presente nos novos procesadores Intel Xeon Scalable, que tamén integran di-
rectorios caché distribuídos empregando snoop filters (equivalentes aos CHA
no KNL) e posúen unha malla 2D de interconexión. A nosa aproximación
para mellorar a localidade dos datos poderíase trasladar a estas novas arqui-
tecturas. As investigacións de McCalpin [88] revelan unha disposición similar
destas arquitecturas á dos procesadores Intel KNL.

• Seguindo a mesma liña de investigación, e partindo do noso modelo para o
KNL, poderíase implementar unha nova extensión para os procesadores Intel
Xeon Scalable no simulador Tejas.

• MARTA é unha ferramenta nova e, polo tanto, require un desenvolvemento
continuo, propoñendo novas melloras e extensións. Deberíanse integrar novas
opcións no front-end para interpretar mellor o ficheiro de configuración e/ou
facer o formato máis flexíbel. O compoñente de análise podería automatizar
tarefas para a selección de hiperparámetros nos algoritmos de minería de datos,
evitando a intervención innecesaria do usuario. Do mesmo xeito, o sistema
podería soportar outros tipos de análises e algoritmos, como as análises de
calibrado (empregando regresión isotónica, por exemplo). Este tipo de análises
é interesante para complementar o coñecemento extraído da árbore de decisión.

Appendices | 247

• MACVETH concibiuse como un compilador fonte-a-fonte para arquitecturas
x86 que implementa o empaquetado de posicións de memoria aleatorias en
rexistros vectoriais e a fusión de reducións. Avaliamos o desempeño destas
optimizacións empregando unha ampla variedade de códigos irregulares ob-
tendo resultados prometedores, pero requírese unha avaliación máis exhaus-
tiva empregando outras arquitecturas (e.g., AMD, ARM) e outras extensións
vectoriais máis recentes a maiores de AVX2. Do mesmo xeito, algunhas das
optimizacións vectoriais incluídas neste compilador, como a vectorización de
reducións orfas, non contribúen á mellora do rendemento da forma esper-
ada. Esta optimización era teoricamente prometedora, pero nos códigos SpMV
probados nos experimentos causaba certa degradación. A razón para este com-
portamento é a distancia en memoria entre esas reducións, que causa unha
degradación na localidade caché e, consecuentemente, no desempeño xeral.
Como futura liña de investigación, sería interesante determinar a distancia
máxima permitida en cada plataforma para empaquetar de forma eficiente
eses nodos. Así, MACVETH podería implementar mecanismos máis intelix-
entes para determinar de maneira automática este tipo de parámetros para
cada plataforma.

Software Desenvolvido

As bibliotecas e ferramentas desenvolvidas nesta Tese están dispoñíbeis de forma
pública:

• Tejas KNL. Implementación do modelo arquitectónico de Intel Knights Land-
ing no simulador Tejas. Dispoñíbel en https://github.com/UDC-GAC/tejas_
knl.

• papi_wrapper: Biblioteca baseada en macros C para simplificar o uso da bib-
lioteca PAPI. Dispoñíbel en https://github.com/UDC-GAC/papi_wrapper.

• MARTA: Multi-configuration Assembly pRofiler and Toolkit for performance
Analysis. Ferramenta desenvolvida para incrementar a produtividade e cal-
idade dos experimentos que requiren micro-benchmarking e análise post hoc
do rendemento. Dispoñíbel en https://github.com/UDC-GAC/MARTA.

https://github.com/UDC-GAC/tejas_knl
https://github.com/UDC-GAC/tejas_knl
https://github.com/UDC-GAC/papi_wrapper
https://github.com/UDC-GAC/MARTA

248 | Appendices

• MRKVS: Mega-Random Kernel Vector SMT. Sistema baseado en Z3 [23] para
a xeración de combinacións de instrucións para o empaquetado de datos aleato-
rios no mesmo rexistro vectorial. Dispoñíbel en https://github.com/UDC-
GAC/MRKVS.

• MACVETH: Multi-Architectural C-VEcTorizer for HPC applications. Compi-
lador en C fonte-a-fonte para a vectorización de reducións e accesos aleatorios
a memoria. Dispoñíbel en https://github.com/UDC-GAC/MACVETH.

Publicacións derivadas da Tese

Publicacións en revistas internacionais

• S. Kommrusch, M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Opti-
mizing Coherence Traffic in Manycore Processors Using Closed-Form Caching/
Home Agent Mappings. IEEE Access, 9:28930–28945, 2021. doi: 10.1109/
ACCESS.2021.3058280. JCR Q2 [68].

• M. Horro, G. Rodríguez, and J. Touriño. Simulating the Network Activity
of Modern Manycores. IEEE Access, 7:81195–81210, 2019. doi: 10.1109/
ACCESS.2019.2923855. JCR Q1 [46].

Conferencias internacionais

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MARTA: Multi-
configuration Assembly pRofiler and Toolkit for performance Analysis. Envi-
ado para publicación. 2022 [52].

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. MACVETH: Multi-
Architectural C-VEcTorizer for HPC applications. Enviado para publicación.
2022 [51].

• M. Horro, M. T. Kandemir, L.-N. Pouchet, G. Rodríguez, and J. Touriño.
Effect of Distributed Directories in Mesh Interconnects. Proceedings of the 56th

https://github.com/UDC-GAC/MRKVS
https://github.com/UDC-GAC/MRKVS
https://github.com/UDC-GAC/MACVETH
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1109/ACCESS.2021.3058280
http://dx.doi.org/10.1109/ACCESS.2019.2923855
http://dx.doi.org/10.1109/ACCESS.2019.2923855

Index | 249

Annual Design Automation Conference (DAC), páxinas 51:1–6, Las Vegas,
NV, EE.UU., 2019. doi: 10.1145/3316781.3317808. Core A. GII-GRIN-
SCIE Clase 1 [45].

Conferencias nacionais

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Toolkit para (Micro-)
Benchmarking y Análisis de Características de Rendimiento en Kernels. Ac-
tas XXXI Jornadas de Paralelismo (SARTECO), páxinas 303–312, Málaga,
España, 2021 [50].

Outras publicacións

• M. Horro, L.-N. Pouchet, G. Rodríguez, and J. Touriño. Exploring SIMD In-
structions for Packing Random Vector Operands in Modern x86 CPUs. Pro-
ceedings of the 17th International Summer School on Advanced Computer Ar-
chitecture and Compilation for High-Performance Embedded Systems (ACACES),
páxinas 143–146, Fiuggi, Italia, 2021 [49].

• M. Horro, G. Rodríguez, J. Touriño, and M. T. Kandemir. Study of the Intel
Knights Landing (KNL) Memory System Tradeoffs. Proceedings of the 13th
International Summer School on Advanced Computer Architecture and Compi-
lation for High-Performance and Embedded Systems (ACACES), páxinas 1–4,
Fiuggi, Italia, 2017 [44].

http://dx.doi.org/10.1145/3316781.3317808

Alphabetical Index

Symbols
µop-cache 133
k-means 92
k-neighbors 92
2D mesh 11, 12, 57

A
A2A see all-to-all mode
Abstract Syntax Tree 150
acknowledge ring 13
AD see address ring
address ring 13
Advanced Micro Devices see AMD
AK see acknowledge ring
all-to-all mode 15
AMD 2

EPYC 83
Zen2 108, 133
Zen3 83, 103, 110, 133, 147

AST see Abstract Syntax Tree
AVX-512 4, 37

AVX2 103, 133, 134

B
BL see block ring
block ring 13

C
Cache memory mode 15
Caching/Home Agent 4, 8, 11, 12, 16,

66
CHA see Caching/Home Agent
CISC 60
Clang 151

AST 152
driver 152
front-end 152
LibTooling 152

coherence wall 8
Compressed Sparse Row 173
core-to-CHA affinity 57
CSR see Compressed Sparse Row

251

252 | Index

D
DAG see Directed Acyclic Graph
DCE see dead code elimination
dead code elimination 100, 103, 150,

172
Dennard’s scaling 2, 10
Directed Acyclic Graph 153, 159
DVFS see Dynamic Voltage and

Frequency Scaling
Dynamic Voltage and Frequency

Scaling 69

E
Exascale computing 3, 8

F
FIFO scheduler 94
Flat memory mode 15
FMA see Fused Multiply-Add
Free Scheduling 160
FS see Free Scheduling
Fused Multiply-Add 108

G
gather 103, 133

I
ILP see Instruction-Level Parallelism,

see Integer Linear Programming
Improved Sheather-Jones algorithm 92
Instruction-Level Parallelism 4, 197
instructions per cycle 49
Integer Linear Programming 193
Intel

Ice Lake 10
Knights Corner 10
Knights Landing 10, 56, 69, 80
Xeon Phi 3
Xeon Scalable 3, 55
Atom 12
Cascade Lake 83, 103, 110
Haswell 108
Ice Lake 83
Silvermont 12

Intermediate Representation 150
invalidate ring 13
IPC see instructions per cycle
IR see Intermediate Representation
IV see invalidate ring

K
KDE see Kernel Density Estimation
Kernel Density Estimation 92, 105
KNL see Intel Knights Landing

L
Lane Level Parallelism 193
liveness analysis 151
LLV see Loop-Level Vectorization
LLVM 151

IR 152
MIR 152

Loop-Level Vectorization 130

M
MCDRAM see Multi-Channel DRAM
MDI see Mean Decrease Impurity
Mean Decrease Impurity 93

Index | 253

memory wall 10
Memory-Level Parallelism 4
memory-to-CHA 40
Mesh Interconnect 12, 55, 82
MESI 62
MI see Mesh Interconnect
Miss Status Holding Registers 62
MLP see Memory-Level Parallelism
Model Specific Registers 124
Moore’s Law 1
MOSFET 2

drain voltage 2
dynamic capacitance 2
power dissipated 2
switching gate frequency 2

MSHR see Miss Status Holding
Registers

MSR see Model Specific Registers
Multi-Channel DRAM 13, 16
multicore crisis 10

N
network-on-chip 10, 12, 42, 55, 63
NoC see network-on-chip

P
Parboil 68
Pareto principle 92
Peggy tool 193
Performance Monitor Counters 124
PMC see Performance Monitor

Counters
PolyBench 68, 175
power wall 3

Q
Quadrant mode 15, 16

R
Register Transfer Language 152
RTL see Register Transfer Language

S
Satisfiability Modulo Theories 5, 141
Selection DAG 152
Silverman’s rule of thumb 92
SLP see Superword-Level Parallelism
SMT see Satisfiability Modulo Theories
SNC see Sub-NUMA cluster mode
Sparse Matrix-Vector Multiplication

115, 149, 173
SpMV see Sparse Matrix-Vector

Multiplication
SSA see Static Single Assignment
Static Single Assignment 152, 155
Sub-NUMA cluster mode 15
SuiteSparse 46
Superword-Level Parallelism 130, 156
Support Vector Machines 92
SVM see Support Vector Machines

T
TAC see Three-Address Code
Tejas simulator 56
The Human Brain Project 3
Three-Address Code 153, 155
TLB see Translation Lookaside Buffer
Top500 3
Translation Lookaside Buffer

254 | Index

data 65

instruction 65

Turbo Boost 94

U
unroll-and-jam 233

V
Vector Processing Unit 11
Virtual ISA 60
VISA see Virtual ISA
VPU see Vector Processing Unit

Y
YX routing 12

	Preface
	Contents
	List of Tables
	List of Figures
	Listings
	List of Algorithms
	1 Introduction: Challenges in High Performance Computing
	2 Effect of Distributed Directories and Optimization of Coherence Traffic in Manycores
	2.1 Introduction
	2.2 Intel Knights Landing (KNL): Xeon Phi x200
	2.2.1 Internal organization
	2.2.2 Memory system
	2.2.3 Cluster modes
	2.2.4 Memory modes

	2.3 Mapping the Knights Landing Processor
	2.4 Processor Affinity and Data Layout
	2.5 Experimental Results Varying Processor Affinities
	2.5.1 Effect of core-to-CHA affinity on memory latency
	2.5.2 Effect of thread-to-core affinity on coherence traffic
	2.5.3 Optimized thread-to-core scheduling

	2.6 Reverse Engineering the CHA Mapping
	2.7 Runtime Optimization
	2.7.1 Experimental results

	2.8 Compile-time Optimization
	2.8.1 Fixing physical addresses
	2.8.2 Experimental results

	2.9 Discussion and Related Work

	3 Simulating the Network Activity of Modern Manycore Architectures
	3.1 Introduction
	3.2 Overview and Motivation
	3.3 Tejas Simulator: Architecture and Extensibility
	3.3.1 Front-end: the emulator
	3.3.2 Back-end: the simulation engine

	3.4 Modeling KNL in Tejas
	3.4.1 Tiles and cores
	3.4.2 Memory system
	3.4.3 Interconnection network
	3.4.4 Other considerations

	3.5 Validation
	3.5.1 Experimental setup
	3.5.2 Results

	3.6 Case Study: Analysis of Coherence Traffic Optimizations
	3.7 Related Work
	3.8 Conclusions and Future Work

	4 MARTA: Multi-configuration Assembly pRofiler and Toolkit for performance Analysis
	4.1 Overview and Motivation
	4.2 MARTA: System's Architecture
	4.2.1 Profiler
	4.2.2 Analyzer

	4.3 Measurement Methodology
	4.3.1 Machine configuration
	4.3.2 Repeating runs
	4.3.3 Measuring CPU performance

	4.4 Configuration
	4.4.1 Profiler
	4.4.2 Analyzer

	4.5 Evaluation: Case Studies
	4.5.1 Micro-benchmarking gather
	4.5.2 Empirical throughput of FMA instructions
	4.5.3 Influence of access pattern on memory bandwidth
	4.5.4 Auto-vectorizing reductions
	4.5.5 Cost model for loop permutation

	4.6 Related Work
	4.7 Discussion and Concluding Remarks

	5 SIMD Optimizations: Random Vector Packing and Reduction Fusion
	5.1 Overview and Motivation
	5.2 Efficient Random Vector Packing
	5.2.1 Instruction set: exploration space
	5.2.2 Simplifying the search space
	5.2.3 MRKVS: Mega-Random Kernel Vector SMT
	5.2.4 Random vector packing templates: format
	5.2.5 Generation and evaluation of the cost model

	5.3 MACVETH: Multi-Architectural C-VEcTorizer for HPC applications
	5.3.1 Compiler architecture: the LLVM Project
	5.3.2 High-level architecture of MACVETH
	5.3.3 Front-end: the driver for parsing and rewriting
	5.3.4 Middle-end: identifying and grouping reductions
	5.3.5 Back-end: fusing reductions and synthesis of SIMD code
	5.3.6 Current limitations of the tool

	5.4 Experimental Results
	5.4.1 Synthetic patterns
	5.4.2 Sparse matrices: SuiteSparse repository

	5.5 Related Work
	5.6 Concluding Remarks and Discussion

	6 Concluding Remarks and Future Work
	6.1 Conclusions and Discussion
	6.2 Future Work

	Bibliography
	A MARTA Configuration
	A.1 CLI Options
	A.2 C Macros/Directives

	B Random Vector Packing: Instructions
	B.1 Load Instructions
	B.2 Swizzle Instructions

	C MACVETH Configuration
	C.1 CLI Options
	C.2 Pragma Options
	C.3 Matrices Used

	D Resumo Estendido en Galego
	Alphabetical Index

