
Design of scalable Java

communication middleware for

multi-core systems

Sabela Ramos, Guillermo L. Taboada, Roberto R. Expósito,

Juan Touriño and Ramón Doallo

Computer Architecture Group, Dep. Electronics & Systems, University of A Coruña,
Campus de Elviña s/n, 15071 A Coruña (Spain)

Email: {sramos, taboada, rreye, juan, doallo}@udc.es

This paper presents smdev, a shared memory communication middleware for
multi-core systems. smdev provides a simple and powerful messaging API that
is able to exploit the underlying multi-core architecture replacing inter-process
and network-based communications by threads and shared memory transfers.
The performance evaluation of smdev on several multi-core systems has shown
noticeable improvements compared to other Java shared memory solutions,
reaching and even overcoming the performance of natively compiled libraries.
Thus, smdev has obtained start-up latencies around 0.76 µs and almost 90 Gbps
bandwidth for point-to-point communications, as well as high performance and
scalability both for collective operations and representative messaging kernels.
This fact has motivated the integration of smdev in F-MPJ, our message-passing

implementation in Java.

Keywords: Parallel Programming; Java Multi-threading; Shared Memory; Multi-core
Architectures; Message-Passing in Java (MPJ)

1. INTRODUCTION

Java is the leading programming language both in
academia and industry environments. Nowadays,
thanks to the continuous advances in the Java Virtual
Machine (JVM) technology and Just-In-Time (JIT)
compilation, it is able to generate native executable
code from the platform-independent bytecode, which
is reducing the gap with natively compiled languages
(e.g., C/C++) according to [1], enabling the use of
Java in performance-bounded scenarios as real-time
environments [2]. Furthermore, Java provides some
interesting characteristics for parallel programming [3]
such as built-in networking and multi-threading
support, automatic memory management, platform
independence, portability, security, object orientation,
an extensive API and a wide community of developers.
Java communication middleware, such as Java Mes-

sage Service (JMS) and Remote Method Invocation
(RMI), always resort to JVM sockets, which currently
have two implementations: the standard I/O sockets
(the counterpart of the widely available POSIX sock-
ets), and the New I/O (NIO) sockets, an implemen-
tation focused on the scalability of communications in
servers introduced in Java 1.4. However, programming
with sockets requires a significant effort due to their
low level API. Moreover, performance is generally lim-

ited as sockets rely on TCP/IP. In order to overcome
these limitations, parallel programmers generally de-
velop their codes using message-passing libraries, which
provide a higher level API, scalability and relatively
good performance. The most extended API in natively
compiled languages is MPI [4], whereas in Java it is
MPJ (Message-Passing in Java) [5]. Nevertheless, cur-
rent message-passing implementations generally do not
take full advantage of multi-threading for intra-process
transfers, and they resort to inter-process communi-
cation protocols and, in some cases, to network-based
communication protocols for data transfers within the
same node. This is even more critical with the current
increase in the number of cores per processor, which
demands scalable shared memory communication so-
lutions. The communication middleware presented in
this paper, smdev, provides a high-level message-passing
API while taking full advantage of these multi-core ar-
chitectures using multi-threading and shared memory
transfers.

Multi-threading allows to exploit shared memory
intra-process transfers, but thread programming in-
creases the development complexity due to the need
for thread control and management, task scheduling,
synchronization, access and maintenance of shared data
structures, and the presence of thread safety concerns.

The Computer Journal, Vol. 0, No. 0, 2012

2 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

Using the smdevmessaging API, the developer does not
have to deal with threads as it offers a simple API with a
high level of abstraction that supports handling threads
as message-passing processes. This ease of use has been
demonstrated in the straight integration of smdev in
F-MPJ [6], our Java message-passing implementation.
This integration supports the efficient execution of any
MPJ application on multi-core systems.
The structure of this paper is as follows: Section 2

introduces the related work. Section 3 describes the
design, implementation and operation of the developed
middleware. Section 4 presents the analysis of the
performance of smdev on two representative systems,
evaluated comparatively against MPI and thread-
based counterpart codes. Section 5 summarizes our
concluding remarks.

2. RELATED WORK

The continuous increase in the number of available cores
per processor emphasizes the need for scalable solutions
in parallel programming to exploit multi-core shared
memory architectures. Traditionally, the approach
followed in compiled languages, such as C/C++, is
the use of shared memory models like POSIX threads
(pthreads) or OpenMP. However, the code developed
with these approaches is limited to shared memory
systems. In order to overcome this limitation, several
tools that execute multi-threaded applications on
distributed memory architectures have been proposed
but, up to now, either their implementation is based
on software translations to MPI [7] or it relies
on Distributed Shared Memory (DSM) systems [8].
Another option is the use of a hybrid shared/distributed
memory programming model combining MPI for inter-
node communications and resort to a shared memory
model to take advantage of intra-node parallelism [9].
Additionally, new programming paradigms such as
PGAS (Partitioned Global Address Space) arise
for programming hybrid shared/distributed memory
systems, although generally their performance is lower
than MPI [10].
Java, thanks to its built-in multi-threading support,

is widely used for shared memory programming.
Nevertheless, its threading API generally requires low-
level programming skills. The concurrency framework,
included in the core of the language since Java 1.5,
simplifies the management of threads hiding part of the
complexity and providing a task-oriented programming
paradigm based on thread pools. However, the
task management targets the scheduling of a high
number of tasks instead of reducing the task start-
up time (the initialization overhead). Moreover, it
is limited to the execution in parallel of individual
tasks, so the developer has to resort to threads for high
performance computing parallel codes, where threads
cooperate to reduce the runtime of a workload. Finally,
codes developed using threads or tasks cannot run on

distributed memory environments, unless relying on a
Java DSM which generally involves portability issues
due to the use of modified JVMs. The Parallel Java
project [11] provides several abstractions over these
concurrency utilities, also implementing the message-
passing paradigm for distributed memory but providing
its own interface. There are also OpenMP-like Java
implementations such as JOMP [12] and JaMP [13].
Both systems are “pure” Java and thread-based, but
the second one also takes advantage of concurrency
utilities overcoming some efficiency problems of JOMP.
JaMP is part of Jackal [14], a software-based Java DSM
implementation, and its main drawback is the lack of
portability since it cannot run on standard JVMs.

MPI libraries, such as MPICH2 and OpenMPI, are
mostly optimized for distributed memory communi-
cations, although they are increasingly taking advan-
tage of multi-core shared memory systems. Thus, the
MPICH2 project includes several communication de-
vices for shared memory such as ssm, shm or sshm [15].
It also supports Nemesis [16], a communication middle-
ware which selects the best-fit communication device
for the underlying architecture. Nemesis also contains
its own highly optimized shared memory communica-
tion subsystem. OpenMPI includes optimized commu-
nications among processes via shared memory (sm Byte
Transfer Layer) [17] providing a management subsys-
tem which uses shared memory transfers when possi-
ble. Other MPI libraries (mainly proprietary ones) are
generally capable of selecting the most appropriate fab-
ric combination automatically, including shared mem-
ory optimizations.

Although there are several message-passing projects
in Java [3], Fast MPJ (F-MPJ) [6] and MPJ Express [18]
currently have the most active development. They both
include a modular design with a pluggable architecture
of communication devices which allows to combine the
portability of the “pure” Java communication devices
with high performance network support wrapping
native communication libraries through JNI (Java
Native Interface). Additionally, MPJ Express provides
shared memory support [19], whereas F-MPJ takes
advantage of the middleware presented in this paper,
smdev. Its buffer layer avoidance and the reduced
synchronization overhead improve significantly the
scalability of F-MPJ when communications involve
a large number of MPJ processes. In [20], the
MPJ Express shared memory device was found
to be the main bottleneck in the development of
a hybrid shared/distributed memory communication
middleware. Furthermore, F-MPJ also outperforms
MPJ Express for collective operations as it includes
a scalable collectives library tuned for multi-core
systems [21] which takes advantage of the reduced
overhead of shared memory smdev transfers.

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 3

3. SMDEV: SCALABLE JAVA COMMUNICA-

TIONS FOR SHARED MEMORY

This section presents the smdev communication
middleware: its API, implementation and integration
in F-MPJ.

3.1. smdev Message-Passing API

The smdev middleware provides a message-passing
API that conforms with the xxdev API [6] (see
Figure 1), which avoids data buffering by supporting
direct communication of any serializable object.
It is composed of basic operations such as point-

to-point communications, both blocking (send and
recv) and non-blocking (isend and irecv). It
also includes synchronous communications (ssend and
issend), functions to check incoming messages without
actually receiving them (probe and iprobe), and the
peek operation, that only receives a message that has
already arrived.

public abstract class Device {

static public Device newInstance (S t r i ng dev ice Impl) ;

public int [] i n i t (S t r i ng [] args) ;
public int id () ;
public void f i n i s h () ;

public void send (Object buf , int dst , int tag) ;
public Status recv (Object buf , int src , int tag) ;

public Request i send (Object buf , int dst , int tag) ;
public Request i r e c v (Object buf , int src , int tag ,

Status s t t s) ;

public void ssend (Object buf , int dst , int tag) ;
public Request i s s end (Object buf , int dst , int tag) ;

public Status probe (int src , int tag , int context) ;
public Status iprobe (int src , int tag , int context) ;
public Request peek () ;

}

FIGURE 1. API of the xxdev.Device class.

The use of a simple message-passing API supports
a direct migration to distributed memory systems,
thus benefiting from higher portability and ease of
use, avoiding the issues associated with multi-threading
programming.

3.2. smdev Implementation

The goal of smdev is to increase the scalability of Java
applications through the use of efficient communication
middleware for multi-core shared memory architectures.
Messaging libraries usually require the use of several
instances of the JVM per shared memory system, thus
incurring high communication overhead and memory
consumption (see upper graph in Figure 2), whereas

smdev runs several threads within a single JVM
instance (see bottom graph), thus taking advantage of
thread-based intra-process data transfers, as well as
lower memory consumption. Although the minimum
memory required by a JVM is system- and JVM
implementation-dependent, it is usually around a
hundred MBytes. Thus smdev saves this memory for
the second and consecutive cores communicating in a
system. Additionally, garbage collection represents a
higher overhead when using several JVMs, as they have
a more limited amount of memory than using a single
JVM, consequence of the fragmentation and multiple
JVMs memory consumption.

Core 0 Core 1 Core 0 Core 1

Processor 0 Processor 1

Shared Memory

Network Communication Layer

JVM 0

Core 0

JVM 0

Core 1

JVM 1 JVM 2 JVM 3

Core 0 Core 1

Processor 0 Processor 1

Shared Memory

Network Communication Layer

Thread 0 Thread 1 Thread 2 Thread 3

FIGURE 2. Java communications on a two-core dual
processor using distributed (top) and shared (bottom)
memory-oriented middleware.

The implementation of smdev over shared memory
required handling with JVM class loaders to maintain
shared structures (message queues) for the communi-
cation, involving also the optimization of the synchro-
nization among threads in the access to these shared
structures. The details of these implementation issues,
along with the presentation of the communication pro-
tocols, are discussed next.

3.2.1. Class Loading in smdev

The use of threads in smdev for running as message-
passing processes requires the isolation of the name
space for each running thread, configuring a distributed
memory space in which threads can exchange messages
through shared memory references. This management
relies on custom class loaders, a mechanism similar to
the one used in MPJ Express [19].
The purpose of the name space isolation is to

implement the abstraction of MPJ processes over

The Computer Journal, Vol. 0, No. 0, 2012

4 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

threads. While processes from different JVMs are
completely independent entities, threads within a
JVM are instances of the same application class,
sharing all static variables. Thus, the user classes
and the top-level smdev classes, as well as some
related to the device management, have to be isolated
to behave like independent processes. Nevertheless,
the communication through shared memory transfers
requires the access to several shared classes within the
device.

A JVM identifies each loaded class by its fully
qualified name and its class loader, so each loader
defines its own name space. Through creating each
thread with its custom class loader, all the non-shared
classes within a thread can be directly isolated. The
JVM uses a loader hierarchy in which the system class
loader is first invoked when trying to load a class. When
the system loader does not find a class, the next class
loader in the hierarchy, which is in our case the custom
class loader of the thread, is used. This mechanism
implies that the system class loader is going to load
every reachable class that, in consequence, is shared by
all threads. Thus, its classpath has to be bounded in
such a way that it only has access to shared packages
(runtime and smdev) that contain the implementation
of shared memory transfers among threads.

The class loading particularities of smdev also
affects communications. If the data type sent in a
message is a user object, which must agree with the
Serializable interface, there is a serialization/de-
serialization process involved. smdev could have
managed these communications using the Cloneable

interface instead, but there are more classes that
conform with the Serializable interface, and it is
also more flexible and presents less conflicts with
the class loader structure than Cloneable. Besides,
Serializable is a well-established constraint by
standard Java for input/output operations. Thus,
the object to be sent is serialized using the thread-
local class loader of the sender. However, if the de-
serialization is done by the JDK ObjectInputStream

class, which relies on the system class loader by default,
the JVM will consider that the de-serialized object
has a different class from the expected one and a
ClassNotFoundException will be thrown. To deal
with this issue, a custom class which overrides the
resolveClass method of ObjectInputStream is used,
making the local class loader of the invoking thread
load the class in the Class.forName method. This
technique requires the serialization to be run by the
sender thread and the de-serialization by the receiver
thread, a constraint that has to be taken into account
in the message transfer protocols when any of the
communicating threads can eventually complete the
communication.

3.2.2. Message Queues

Communications in smdev are implemented by shared
memory transfers. Thus, point-to-point communica-
tion operations delegate on a shared class which man-
ages shared message queues to handle pending com-
munication requests for sends and receives. Each
thread has two queues assigned, one for the in-
coming messages posted by senders (from now on,
UnexpectedRecvQueue) and the other one for pend-
ing receive requests posted by itself (from now on,
PostedRecvQueue). The access to each pair of queues
is synchronized to avoid inconsistency.
Each message queue consists of a linked list, which is

implemented over a combination of a fixed-size array
and a dynamic structure, where the first incoming
message is posted on the head of the list, the next one
is enqueued after that and so on. In a common working
situation, senders and receivers operate in parallel
and communications complete quite soon. Thus, the
expected number of pending requests is not large and
they usually fit in the static array. However, there
might be situations where pending requests exceed the
size of the static array. To manage them, the device
stores new messages in the dynamic structure. As the
static structure gets available room, new messages will
be stored in it, so that the dynamic structure only
stores new requests when the array is full. One of the
requirements of messaging libraries is that when two
pending requests have the same identification, messages
should be dequeued in FIFO ordering. Since our
pending requests in the static array are not necessarily
older than the requests in the dynamic structure, a
sequence number is included in each request to identify
which one should be dequeued.

3.2.3. Message Transfer Protocols

Sends and receives rely on the shared message queues
already described, using as message identification the
source identifier, a user tag and a context, which is
managed internally by the device. In order to cope
with duplicity of message identification, the sequence
number is also taken into account for retrieving pending
messages.
A thread sending a message to another thread first

has to check if there is already a matching receive
request in the destination PostedRecvQueue. If there
is a match, the sender copies the message in the
destination address and the request is marked as
completed. When there is no match, the sender inserts
the message request in the UnexpectedRecvQueue.
Depending on the communication protocol, the sender
will store the data in the queue or it will leave a
reference to it. This send request will be queued
until the destination posts a receive request for this
message. The reception operation works inversely. The
receiver checks its UnexpectedRecvQueue and, if there
is a matching message request, the data is copied
into the destination address and the communication

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 5

Sender Receiver
Shared Queues

search(id)
send_init

not_found

copy

recv_init
search(id)

found

copy

completed

(a) Small message, starting
with Send (Eager)

send_init search(id)

not_found

leave ref.

recv_init
search(id)

found

copy

completed

completed

Sender Receiver
Shared Queues

(b) Large message, starting
with Send (Rendez-vous)

Sender Receiver
Shared Queues

recv_init
search(id)

not_found

leave ref.

send_init

found

search(id)

completed
completed

copy

(c) Small or large message,
starting with Recv

Sender Receiver
Shared Queues

recv_init
search(id)

found

de−serialize

send_init search(id)

not_found

serialize

completed

(d) Serializable message

FIGURE 3. Communication protocols in smdev.

is completed. If there is no match, it enqueues a
receive request in the PostedRecvQueue, where it will
be queued until a matching message request is received.
The communication protocol establishes the manage-

ment of the request in the shared queues. Figure 3 in-
cludes the protocol operation for the different commu-
nication situations. For primitive types, we can distin-
guish between the eager and the rendez-vous protocol.
With an eager protocol (Figure 3(a)), the sender copies
the message data in the request buffer and assumes the
communication as completed. Then, another copy is
performed from the intermediate buffer to the receiver.
When the amount of data is large, the cost of this ex-
tra copy becomes a bottleneck and it is more convenient
the use of a rendez-vous protocol (Figure 3(b)), where
the sender leaves a reference to its own buffer. In this
case, the data is copied directly to the receiver buffer
when it is available, avoiding the extra copy (zero-copy
protocol). However, the sender cannot assume the com-
munication as completed until the receiver has copied
the data. The boundary of data size to choose be-
tween both protocols is established via a “Protocol Size
Limit” parameter, which is 64 KBytes by default. Nev-
ertheless, when the receiver initiates the communication
(Figure 3(c)), it has to leave a reference to its own buffer

(a) Send - Recv

(b) Recv - Send

FIGURE 4. Send/Recv operations in smdev.

in the request, allowing the sender to make a direct copy
in the receiver buffer and thus avoiding the extra copy.

When using a serializable message (Figure 3(d)), as
discussed before, the serialization has to be carried out
by the sender thread and the de-serialization has to be
run in the receiver thread. This makes unavoidable
to store the serialized data in the request buffer,
independently of the message size.
Figure 4 shows two threads communicating on two

scenarios, according to the thread which initiates the
communication. The numbers in each scenario indicate
the order in which the actions are taken. Message
requests are represented by ovals and the active one
is in dark. The “id” tag represents the identification
of the request and the small rectangle represents the
message data (if the border is continuous) or a buffer
(if the border is dotted). Requests that are posted by a
receiver thread have empty buffers, while requests which
are created by sender threads contain the message data.

Regarding the first scenario (Figure 4(a)), Thread
0 sends a message (step 1) before Thread 1 posts
the corresponding receive request. After checking the
PostedRecvQueue of the destination for a matching
request without success (step 2), the sender enqueues
the send request in the UnexpectedRecvQueue (step

The Computer Journal, Vol. 0, No. 0, 2012

6 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

TCP/IP

Ethernet

Java Sockets

niodev/iodev ibvdev

JNI

IBV

omxdev

Open−MX

InfiniBandMyrinet/Ethernet

JVM

MPJ Applications

F−MPJ Library

Java Threads

Shared Memory

smdev

physical layer

device layer

OS drivers

FIGURE 5. F-MPJ communication devices on shared memory and cluster networks.

3). When Thread 1 initiates the reception process
(step 4), it finds a matching request in the
UnexpectedRecvQueue (step 5) and copies the message
into the destination buffer (step 6).
Regarding the second scenario (Figure 4(b)), first

Thread 1 initiates the communication with a receive
operation (step 1) which does not have a matching
request in the UnexpectedRecvQueue (step 2), so it is
posted in the PostedRecvQueue (step 3). Next, the
sender (Thread 0) sends the message (step 4) and finds
the matching receive request in the PostedRecvQueue

(step 5). The communication completes by transferring
the message data into the destination buffer (steps 6
and 7).

3.2.4. Synchronization

Synchronization is one of the main performance
bottlenecks in shared memory communications. In
smdev, synchronization among threads guarantees
thread safety, avoiding race conditions. There are two
types of scenarios in which synchronization is required.
On the one hand, situations where the number of
threads that are going to perform a well determined
task is known. This is the case of the initialization of
the device, where every thread has to register itself,
or when a thread is waiting for a message request to
be completed (it is known that only one thread has to
complete the operation). In these cases, the middleware
resorts to busy waits over atomic variables in order to
minimize the communication latency. The introduced
overhead of the busy wait is acceptable because these
are small tasks that are expected to be completed in
a short period of time. In this case, smdev trades
off latency for CPU consumption contributing to code
scalability. Besides, a busy wait avoids context switch
overheads and, as the number of scheduled threads is
expected to be lower or equal to the number of available
cores in a shared memory system, a blocking wait would
not report any benefit since there are no other threads
waiting for CPU resources.
On the other hand, there are scenarios where

the interactions among threads are more complex or
unpredictable. This is the case of the access to the
message queues. Each thread can read and insert

requests in its own reception queues, but every other
thread can also search and insert requests in these
queues when sending a message. Thus, in this scenario,
explicit synchronization with locks is needed to avoid
inconsistency in the shared queues. To reduce the
overhead and contention, a lock per each pair of queues
is used. Therefore, a thread trying to send or receive
only blocks the queues needed to perform the operation.
Both queues of each thread are blocked simultaneously
because a thread only makes insertions in a queue
if it has not found a matching request in the other
pairing queue, creating a dependence condition in the
consistency of the queues.

3.3. Integration of smdev in F-MPJ

The developed middleware has been integrated in
the F-MPJ library providing Java message-passing
applications with efficient support for shared memory
communications.
Figure 5 shows the communication support imple-

mented in F-MPJ, either on JVM threads (smdev),
sockets over TCP/IP stack (niodev and iodev), or
on native communication layers such as Open-MX
(omxdev) and InfiniBand Verbs (IBV) (ibvdev), which
are accessed through JNI. smdev is the only F-MPJ de-
vice that takes advantage of intra-process shared mem-
ory transfers for point-to-point communications.
The integration has been almost transparent to

the rest of F-MPJ layers thanks to the modular
structure of the device layer. The upper layers
of F-MPJ rely on the point-to-point xxdev API
primitives from the communication devices, thus all
the operations and algorithms from F-MPJ, such as
the collective operations library, can benefit from
the use of smdev without further knowledge of the
communication system. Besides the device module,
only a specific multi-core boot class had to be added.
This class, independent of the rest of the runtime
system, implements the scheduling of threads within
the custom class loaders (see Section 3.2.1).

3.3.1. Collective Operations in smdev

F-MPJ includes a collectives library with multi-
core-aware optimized algorithms [21] that runs on

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 7

top of the device layer, and therefore on smdev.
These algorithms include Minimum Spanning Tree,
BiDirectional Exchange, Bucket or Cyclic, Binomial
Trees and Flat Trees. smdev also provides, through an
extension of the xxdev API, its own implementation of
collectives without relying on point-to-point primitives.
The use of these custom algorithms allows to perform
only one call to smdev per collective. Moreover,
these operations optimize the use of the shared
queues by using less explicit synchronizations since
the communication pattern is already known. As an
example, in the Broadcast algorithm, the root thread
uses an atomic variable to indicate about the state of an
ongoing execution of a collective operation and directly
inserts a send request, which contains a reference to the
message, in each UnexpectedRecvQueue. The rest of
the threads, meanwhile, are waiting in another atomic
variable to be notified that they can safely receive
the message. Once the notification is received, they
lock their own queue to find the request and copy
the message directly from the reference left by the
root. In this case, the use of busy waits as notification
system establishes the order of operation, avoiding the
need to check the queues for already-arrived messages.
Similar algorithms have been implemented for the rest
of collective operations.

4. PERFORMANCE EVALUATION

The performance evaluation of smdev consists of a
micro-benchmarking of point-to-point and collective
operations, and an analysis of the impact of smdev on
representative parallel codes.

4.1. Experimental Configuration

The developed middleware has been evaluated on two
representative multi-core systems, a 16-core Intel-based
and a 48-core AMD-based. The first one (“Xeon E5”)
has 2 Intel Xeon E5-2670 8-core processors at 2.6
GHz [22] and 64 GBytes of RAM. The OS is Linux
CentOs with kernel 2.6.35, the GNU compilers are
v4.4.4 and the JVM is OpenJDK Runtime Environment
1.6.0 20 (IcedTea6 1.9.8).
Figure 6(a) presents the layout of the 8-core Xeon E5

processor, based on the Sandy-Bridge-E architecture,
where up to 16 threads can run simultaneously thanks
to hyperthreading. The eight cores in this processor
share the Level 3 cache, implemented as an Intel Smart
Cache, where each core can access the whole cache when
the rest of the cores are idle. Figure 6(b) shows the
interconnection layout in a dual-socket Intel Xeon E5-
2670 system where the processors and the memory are
linked by an Intel QuickPath Interconnect (QPI). This
NUMA system supports DDR3-1600 MHz memory.
The second system, a fat node from the DAS-

4 cluster [23], has 48 cores in 4 AMD Opteron
6172 processors (“Magny-Cours”), each one with 12

32KB L1 32KB L1 32KB L1 32KB L1

32KB L1 32KB L1 32KB L1 32KB L1

256KB L2 256KB L2 256KB L2 256KB L2

256KB L2256KB L2256KB L2256KB L2

20MB L3 Smart Cache

Core 0 Core 1 Core 2 Core 3

Core 4 Core 5 Core 6 Core 7

(a) Intel Xeon E5-2670 processor

(P)1(P)0

QPI

Processor 0 Processor 1

#0MemoryNUMA NUMA Memory #1

(b) Dual-socket Intel Xeon E5-2670 system

FIGURE 6. Intel Xeon E5-2670 system.

cores [24] [25] and 128 GBytes of RAM. The OS is
Linux CentOS with kernel 2.6.32, the GNU compilers
are v4.3.4 and the JVM is Sun JDK 1.6.0 05.

Figure 7(a) presents the layout of the 12-core Magny-
Cours processor, which is composed of two 6-core AMD
Opteron Istambul dies (the 6 cores share the Level 3
cache) interconnected by Hypertransport (HT) links.
Figure 7(b) shows the HT interconnections among the
different dies as well as the direct access of each die
to its memory region with DDR3-1333 MHz support.
Thin arrows represent half HT links (8 bits) while thick
ones represent full HT links (16 bits). As each 12-core
processor is a NUMA system with 2 NUMA regions, the
quad-socket system has eight NUMA regions.

The performance of smdev has been evaluated com-
paratively against two representative MPI implemen-
tations which provide efficient communication proto-
cols for distributed and shared memory systems for na-
tively compiled languages (C/C++, Fortran). The im-
plementations selected for this evaluation are MPICH2
1.4 and OpenMPI v1.4.3 on the Xeon E5, and Open-
MPI v1.4.2 on the Magny-Cours. MPICH2 results have
been omitted for clarity purposes since OpenMPI ob-
tains better performance on the Magny-Cours. In order
to present a fair comparison with smdev, these imple-
mentations have been benchmarked using their shared
memory communication devices: sm BTL in OpenMPI
and Nemesis in MPICH2.

The Computer Journal, Vol. 0, No. 0, 2012

8 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

6MB L3

512KB L2

64KB L1 64KB L1

512KB L2

64KB L1

512KB L2

64KB L1

512KB L2

64KB L1

512KB L2

64KB L1

512KB L2

Core 0 Core 1 Core 5Core 4Core 3Core 2

6MB L3

64KB L1

512KB L2 512KB L2

64KB L1

512KB L2

64KB L1

512KB L2

64KB L1 64KB L1

512KB L2

64KB L1

512KB L2

1/2 HT

Core 6 Core 7 Core 8 Core 9 Core 10 Core 11

HT

Die 1

Die 0

(a) AMD Opteron 6172 processor

P0

P3

Die 1

Die 1

Die 0

Die 0

Die 1

P1

P2

Die 0

Die 0

Die 1
1/2 HT

1/2 HT
1/2 HT

1/2 HT

#0NUMA
Memory

#2NUMA
Memory

#4NUMA
Memory

#6NUMA
Memory

#1NUMA
Memory

#3NUMA
Memory

#5NUMA
Memory

#7NUMA
Memory

(b) Quad-socket Magny-Cours AMD Opteron 6172 system

FIGURE 7. Magny-Cours AMD Opteron 6172 system.

4.2. Point-to-point Micro-benchmarking

The performance of point-to-point communications
has been evaluated using a representative micro-
benchmarking suite, the Intel MPI Benchmarks [26],
and our internal implementation of its Java counterpart.
Figures 8 and 9 show point-to-point performance

results obtained on the Xeon E5 and Magny-Cours
systems, respectively. The metric shown is the half
of the round-trip time of a pingpong test for short
messages (up to 1 KByte), and the bandwidth for
messages larger than 1 KByte. The transferred data
are byte arrays, avoiding Java serialization overhead, in
order to present a fair comparison with MPI. Moreover,
for point-to-point operations, F-MPJ point-to-point
routines are direct and thin wrappers over smdev

primitives, showing therefore quite similar performance.
To analyze the impact of the memory hierarchy

on smdev performance, we have implemented the
affinity support in Java allowing pinning a thread
to a particular core. This support is based on
the pthread setaffinity np system call invoked by
each thread through JNI. MPI libraries also support
pinning control. The impact of thread allocation on

performance is analyzed in this section for point-to-
point transfers.
Figure 8 shows the performance of point-to-point

communications between two cores on Xeon E5. The
results have been obtained for transfer operations
within a processor (“intra-processor”) and between
two cores from different processors (“inter-processor”).
Since the 8 cores in each processor only share L3 cache,
the specific core mapping within a processor has no
impact on performance.

Message size (Bytes)

Point-to-point Communication Performance (Xeon E5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

4 16 64 256 1K

L
at

en
cy

 (
µs

)

1K 4K 16K 64K 256K 1M 4M 16M 64M
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

B
an

d
w

id
th

 (
G

b
p

s)

 smdev, intra-processor
 smdev, inter-processor

 MPICH2, intra-processor
 MPICH2, inter-processor

 OpenMPI, intra-processor
 OpenMPI, inter-processor

FIGURE 8. smdev performance on the Xeon E5.

Intra-processor transfers show lower small-message
latency than inter-processor ones. This is consistent
with the benchmarking configuration, where no cache
invalidation is performed and small messages fit in the
L1 cache. Although smdev doubles the latency obtained
by MPI for very small messages, regarding bandwidth
results, for messages ≥ 1 KByte, smdev clearly
outperforms MPI, achieving the best performance
for intra-processor communications, especially when
messages are around the L1 (32 KBytes) or L2 (256
KBytes) cache size. As the message size increases
and it does not fit in the L2 cache, the performance
gap between intra-processor and inter-processor smdev
transfers reduces, which evidences the impact of the
memory hierarchy on shared memory performance.
It also evidences that inter-processor large-message
transfers in smdev benefit more than intra-processor
from L3 cache, since the bandwidth of the former
falls from 4 MBytes on and the latter from 2 MBytes
on. Moreover, the zero-copy protocol implemented
in smdev outperforms the one-copy protocol of MPI
(both MPICH2 and OpenMPI), and even smdev inter-
processor transfers outperform MPI intra-processor
ones.
Figure 9 presents pingpong results on the Magny-

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 9

Cours, communicating either two cores within a 6-core
die (“intra-die” communication), two cores from the
same 12-core processor but from different dies (“inter-
die, intra-proc.”), cores from two dies from different
processors directly connected with half HT (“inter-
proc, direct”), or two cores from two dies not directly
connected (“inter-proc, indirect”). As in the Xeon E5
system, the specific core mapping within a processor
has no impact on performance. Two libraries have been
evaluated on these four scenarios, smdev and OpenMPI.

Message size (Bytes)

Point-to-point Communication Performance (Magny-Cours)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

4 16 64 256 1K

L
at

en
cy

 (
µs

)

1K 4K 16K 64K 256K 1M 4M 16M 64M
 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54

B
an

d
w

id
th

 (
G

b
p

s)

 smdev, intra-die
 smdev, inter-die,intra-proc.

 smdev, inter-proc,direct
 smdev, inter-proc,indirect

 OpenMPI, intra-die
 OpenMPI, inter-die,intra-proc.

 OpenMPI, inter-proc,direct
 OpenMPI, inter-proc,indirect

FIGURE 9. smdev performance on the Magny-Cours.

As it can be observed, the lowest latency results
are obtained for intra-die transfers, although the start-
up latencies are relatively high, at least compared to
the latencies measured on the Xeon E5. Thus, MPI
latencies are around 1 µs and smdev values around 1.5-
2 µs. However, this superior performance of MPI for
short messages contrasts with the higher performance of
smdev for messages larger than 2 KBytes, where smdev
clearly outperforms MPI thanks to the use of a zero-
copy protocol. In fact, smdev achieves up to 42 Gbps
bandwidth whereas MPI hardly reaches 10 Gbps. These
results are significantly lower than the ones obtained on
Xeon E5 and also the peak of bandwidth is obtained
for 256 KBytes, while in Xeon E5 the peak is for
32 KBytes, taking advantage of the messages fitting
in the L1 cache. This difference is due to the lower
computational power of a Magny-Cours core, which is
approximately half of the performance of a Xeon E5
core. This fact impacts severely on the performance
of the communication middleware, not only for small
messages, where the communication overhead is more
computational-bounded than any other factor, but also
for large-message bandwidth, showing around half of
the Xeon E5 performance. Additionally, these results
are also influenced by the performance of the memory,

which has DDR3-1600 MHz support in Xeon E5 and
DDR3-1333 MHz in Magny-Cours.

Message size (Bytes)

Point-to-point Sockets Communication Performance (Xeon E5)

 0

 5

 10

 15

 20

 25

 30

 35

 40

4 16 64 256 1K

L
at

en
cy

 (
µs

)

1K 4K 16K 64K 256K 1M 4M 16M
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

B
an

d
w

id
th

 (
G

b
p

s)

 smdev
 F-MPJ (niodev)

Native Sockets on TCP/IP
Java Sockets on TCP/IP

FIGURE 10. Sockets performance on the Xeon E5.

Message size (Bytes)

Point-to-point Sockets Communication Performance (Magny-Cours)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

4 16 64 256 1K

L
at

en
cy

 (
µs

)

1K 4K 16K 64K 256K 1M 4M 16M
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

B
an

d
w

id
th

 (
G

b
p

s)

 smdev
 F-MPJ (niodev)

Native Sockets on TCP/IP
Java Sockets on TCP/IP

FIGURE 11. Sockets performance on the Magny-Cours.

As most Java communication middleware (e.g., JMS
and RMI) is based on sockets, smdev performance
has been evaluated comparatively against sockets using
the NetPIPE benchmark suite [27] [28] on Xeon E5
(Figure 10) and Magny-Cours (Figure 11). NetPIPE
implementations in Java and C (native) sockets perform
a pingpong test similar to the one implemented for
message-passing benchmarking, so their results are
directly comparable with the results obtained with
smdev and the NIO-socket communication device from
F-MPJ (niodev). This benchmarking has been
carried out with the default JVM/OS mapping policy,
scheduling the threads in the intra-processor and intra-
die configurations. As it comes from the figures, sockets
show significantly poorer shared memory performance
than smdev as they rely on the TCP/IP loopback
interface, suffering from significant latency overheads
and bandwidth limitations due to the use of several
communication layers. Finally, the Java NIO-socket
device presents the poorest performance since it is based
on TCP/IP and also its non-blocking communication
support imposes a high overhead.

The Computer Journal, Vol. 0, No. 0, 2012

10 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1K 4K 16K 64K 256K 1M 4M 16M 64M

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
b

p
s)

Message Size (Bytes)

Broadcast Performance (8 Cores, Xeon E5)
 F−MPJ (smdev bcast)

 F−MPJ (MST over smdev)
 MPICH2

 OpenMPI

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

1K 4K 16K 64K 256K 1M 4M 16M 64M

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
b

p
s)

Message Size (Bytes)

Broadcast Performance (16 Cores, Xeon E5)
 F−MPJ (smdev bcast)

 F−MPJ (MST over smdev)
 MPICH2

 OpenMPI

FIGURE 12. Broadcast performance on 8 and 16 cores
(Xeon E5).

4.3. Collective Operations Micro-

benchmarking

The performance of collective operations has a signifi-
cant impact on applications scalability. The aggregated
bandwidth for the broadcast, a representative collective
of data movement, has been measured on 8 and 16 cores
on the Xeon E5 (Figure 12), and communicating 8 and
48 cores on the Magny-Cours testbed (Figure 13). Two
algorithms have been used for smdev: the broadcast de-
vice implementation, presented in Section 3.3.1, and the
Minimum Spanning Tree (MST) from the F-MPJ col-
lectives library [21]. The metric used, the aggregated
bandwidth, has been selected as it takes into account
the global amount of transferred data.
The results from Figures 12 and 13 show that the

F-MPJ broadcasts generally obtain higher bandwidth
than the MPI implementations thanks to relying on a
zero-copy communication protocol, as for point-to-point
transfers. Regarding F-MPJ collective algorithms,
the smdev internal implementation of the broadcast
shows the highest bandwidth, except for 48 cores on
Magny-Cours, in which the contention in the access
to the shared queues causes a performance decrease.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

1K 4K 16K 64K 256K 1M 4M 16M 64M

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
b

p
s)

Message Size (Bytes)

Broadcast Performance (8 Cores, Magny−Cours)
 F−MPJ (smdev bcast)

 F−MPJ (MST over smdev)
 OpenMPI

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

1K 4K 16K 64K 256K 1M 4M 16M 64M

A
g

g
re

g
at

ed
 B

an
d

w
id

th
 (

G
b

p
s)

Message Size (Bytes)

Broadcast Performance (48 Cores, Magny−Cours)
 F−MPJ (smdev bcast)

 F−MPJ (MST over smdev)
 OpenMPI

FIGURE 13. Broadcast performance on 8 and 48 cores
(Magny-Cours).

In fact, the broadcast of messages up to 1 MByte
obtains lower aggregated bandwidth on 48 cores than
on 8 cores of the Magny-Cours, showing a decrease
in the scalability of this collective implementation.
The MST algorithm balances the load among the
cores involved in the communication, which is a more
scalable approach as it increases performance with the
number of cores. However, this algorithm relies on
several synchronizations that introduce an important
performance penalty. The smdev internal algorithm
also shows poorer performance for messages up to 32
KBytes on 16 cores of the Xeon E5 system. However,
the F-MPJ library supports the selection of collective
algorithms at runtime, thus the best algorithm is
selected depending on message size and number of cores.
As in point-to-point transfers, the performance of the
smdev internal algorithm drops on Xeon E5 when the
message cannot be fully stored in the L3 cache (from 2
MBytes). Due to the lower computational power and
memory performance of the Magny-Cours, the achieved
bandwidth is significantly lower than on Xeon E5.

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 11

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
p

ee
d

u
p

Number of Cores

CG Class C (Xeon E5)
 F−MPJ (smdev)
 F−MPJ (niodev)

 MPICH2
 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16

S
p

ee
d

u
p

Number of Cores

FT Class C (Xeon E5)
 F−MPJ (smdev)
 F−MPJ (niodev)

 MPICH2
 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

1 2 4 8 16

S
p

ee
d

u
p

Number of Cores

IS Class C (Xeon E5)
 F−MPJ (smdev)
 F−MPJ (niodev)

 MPICH2
 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16

S
p

ee
d

u
p

Number of Cores

MG Class C (Xeon E5)
 F−MPJ (smdev)
 F−MPJ (niodev)

 MPICH2
 OpenMPI
 OpenMP

 Java threads

FIGURE 14. NAS parallel benchmarks performance (Xeon E5).

4.4. Scalability of smdev on Parallel Codes

The impact of smdev on the scalability of parallel codes
has been analyzed with the NAS Parallel Benchmarks
(NPB) [29] [30], which have been selected for their
representativeness in the evaluation of languages,
libraries and middleware for scientific computing. The
NPB implementations for MPI, OpenMP, Java threads
and MPJ (NPB-MPJ) [31] have been used for this
evaluation. Regarding NPB-MPJ codes, they have been
executed both with smdev and the NIO-sockets support
(niodev) in order to analyze the actual impact of
smdev compared to sockets, the default communication
solution in Java. Four NPB kernels have been selected:
CG (Conjugate Gradient), FT (Fourier Transform), IS
(Integer Sort) and MG (Multi-Grid), measuring the
performance with the class C data size. Furthermore,
these kernels have been executed using 1, 2, 4, 8
and 16 cores (also 32 for Magny-Cours, not 48 as
the kernels only work for a number of cores power
of two). Performance is shown in terms of speedup
in Figures 14 and 15. With the aim of providing
a reference of absolute performance, Table 1 includes
performance in terms of MOPS for Java and native
(C/Fortran) implementations on a single core. These
results show that CG and IS obtain similar performance
for both native and Java implementations, but there are
important differences in MG and FT due to the JVM
start-up overhead combined with the higher maturity of

TABLE 1. MOPS of NPB codes on a single CPU core.
CG FT IS MG

Xeon E5 Native 381.8 1179.9 59.0 1741.2
Java 379.8 695.3 52.6 1219.3

Magny- Native 201.3 711.4 58.6 847.6
Cours Java 168.1 461.9 45.0 548.2

the native codes, which are more refined than the Java
version.

Regarding the reported speedups, smdev is the
most scalable solution in Xeon E5, and one of the
best performers, together with MPI and OpenMP, in
the Magny-Cours system. Regarding FT and MG,
which showed the greatest performance gap among
Java and native implementations using a single core,
smdev generally obtains significant improvements in
scalability. OpenMP obtains its worse results in FT and
MG, where messaging implementations (MPI and F-
MPJ) exploit the collective operations present in these
kernels. Java threads and F-MPJ over Java NIO-sockets
generally obtain the poorest results.

5. CONCLUSIONS

This paper has presented smdev, a shared memory
Java communication middleware, which provides a
simple messaging API that abstracts from thread

The Computer Journal, Vol. 0, No. 0, 2012

12 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

 2

 4

 6

 8

 10

 12

 14

 16

1 2 4 8 16 32

S
p

ee
d

u
p

Number of Cores

CG Class C (Magny−Cours)
 F−MPJ (smdev)
 F−MPJ (niodev)

 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

1 2 4 8 16 32

S
p

ee
d

u
p

Number of Cores

FT Class C (Magny−Cours)
 F−MPJ (smdev)
 F−MPJ (niodev)

 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

 12

 14

1 2 4 8 16 32

S
p

ee
d

u
p

Number of Cores

IS Class C (Magny−Cours)
 F−MPJ (smdev)
 F−MPJ (niodev)

 OpenMPI
 OpenMP

 Java threads

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 4 8 16 32

S
p

ee
d

u
p

Number of Cores

MG Class C (Magny−Cours)
 F−MPJ (smdev)
 F−MPJ (niodev)

 OpenMPI
 OpenMP

 Java threads

FIGURE 15. NAS parallel benchmaks performance (Magny-Cours).

programming while taking advantage of the inherent
parallelism of multi-core processors. This middleware
has been successfully integrated in our Java message-
passing implementation, F-MPJ. Thus, any MPJ
application running on distributed memory systems can
also run efficiently on shared memory systems thanks to
relying on smdev.

The performance evaluation carried out on two
representative shared memory systems, a 16-core Intel-
based and a 48-core AMD-based, has shown: (1) point-
to-point start-up latencies as low as 0.76 µs, 13 times
higher performance than Java sockets latency on shared
memory (10 µs); (2) point-to-point bandwidths higher
than 90 Gbps, around 6 times more performance than
Java sockets bandwidth on shared memory (around
15 Gbps); (3) point-to-point performance results only
around 1 µs worse than MPI for small messages, but
significantly better for medium and large messages
(from 2 KBytes on); (4) smdev presents higher
performance and scalability for collective operations
than MPI; (5) the use of smdev in representative
message-passing kernels (NPB) has generally achieved
the highest speedups, which definitely contributes
to bridge the performance gap between Java HPC
applications and natively compiled codes; (6) smdev

improves Java communications performance both on
Intel- and AMD-based systems, taking advantage
of their particular characteristics: small and fast

caches in the Intel-based testbed, and generally
scaling performance on the 48-core AMD-based system.
Therefore, smdev is key for high performance Java
applications on shared memory multi-core systems.

FUNDING

This work was supported by the Ministry of Science and
Innovation of Spain [Project TIN2010-16735].

ACKNOWLEDGEMENTS

We gratefully thank the Advanced School for Comput-
ing and Imaging (ASCI) and VU University Amsterdam
for providing access to the DAS-4 cluster.

REFERENCES

[1] Shafi, A., Carpenter, B., Baker, M., and Hussain, A.
(2009) A Comparative Study of Java and C Perfor-
mance in two Large-scale Parallel Applications. Con-
currency and Computation: Practice and Experience,
21 (15), 1882–1906.

[2] Kim, M., and Wellings, A. (2011) Multiprocessors
and Asynchronous Event Handling in the Real-Time
Specifications for Java. The Computer Journal, 54 (8),
1308–1324.

[3] Taboada, G. L., Ramos, S., Expósito, R. R., Touriño,
J., and Doallo, R. (2012) Java in the High Performance
Computing Arena: Research, Practice and Experience.
Science of Computing Programming, (in press).

The Computer Journal, Vol. 0, No. 0, 2012

Design of scalable Java communication middleware for multi-core systems 13

[4] Snir, M., Otto, S. W., Walker, D. W., Dongarra, J.,
and Huss-Lederman, S. (1995) MPI: The Complete
Reference. MIT Press.

[5] Baker, M. and Carpenter, B. (2000) MPJ: A Proposed
Java Message Passing API and Environment for High
Performance Computing. Proc. 2nd Intl. Workshop
on Java for Parallel and Distributed Computing
(JPDC’00), Cancun, Mexico, pp. 552–559.

[6] Taboada, G. L., Touriño, J., and Doallo, R. (2012) F-
MPJ: Scalable Java Message-passing Communications
on Parallel Systems. Journal of Supercomputing,
60(1), 117–140.

[7] Basumallik, A., Min, S.-J., and Eigenmann, R.
(2007) Programming Distributed Memory Systems
using OpenMP. Proc. 12th Intl. Workshop on High-
Level Parallel Programming Models and Supportive
Environments (HIPS’07), Long Beach, CA, USA, p.
181 (8 pages).

[8] Millot, D., Muller, A., Parrot, C., and Silber-
Chaussumier, F. (2008) STEP: A Distributed OpenMP
for Coarse-Grain Parallelism Tool. Proc. 4th Intl.
Workshop on OpenMP (IWOMP’08), West Lafayette,
IN, USA, pp. 83–99.

[9] Wu, X., and Taylor, V. (2012) Performance Charac-
teristics of Hybrid MPI/OpenMP Implementations of
NAS Parallel Benchmarks SP and BT on Large-Scale
Multicore Clusters. The Computer Journal, 55 (2),
154–167.

[10] Mallón, D. A., Taboada, G. L., Teijeiro, C., Touriño,
J., Fraguela, B. B., Gómez, A., Doallo, R., and
Mouriño, J. C. (2009) Performance Evaluation of
MPI, UPC and OpenMP on Multicore Architectures.
Proc. 16th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’09), Espoo, Finland, pp. 174–184.

[11] Kaminsky, A. (2007) Parallel Java: A Unified API
for Shared Memory and Cluster Parallel Programming
in 100% Java. Proc. 9th Intl. Workshop on Java
and Components for Parallelism, Distribution and
Concurrency (IWJacPDC’07), Long Beach, CA, USA,
p. 231 (8 pages).

[12] Bull, J., Westhead, M., and Obdržálek, J. (2000)
Towards OpenMP for Java. Proc. 2nd European
Workshop on OpenMP (EWOMP’00), Edinburgh, UK,
pp. 98–105.

[13] Klemm, M., Bezold, M., Veldema, R., and Philippsen,
M. (2007) JaMP: An Implementation of OpenMP for
a Java DSM. Concurrency and Computation: Practice
and Experience, 19 (18), 2333–2352.

[14] Veldema, R., Hofman, R. F. H., Bhoedjang, R.
A. F., and Bal, H. E. (2003) Run-time Optimizations
for a Java DSM Implementation. Concurrency and
Computation: Practice and Experience, 15 (3-5), 299–
316.

[15] Ekman, P. and Mucci, P. (2005) Design Considerations
for Shared Memory MPI Implementations on Linux
NUMA Systems: An MPICH/MPICH2 Case Study.
Advanced Micro Devices, (16 pages).

[16] Buntinas, D., Mercier, G., and Gropp, W. (2007) Imple-
mentation and Evaluation of Shared-Memory Commu-
nication and Synchronization Operations in MPICH2
using the Nemesis Communication Subsystem. Paral-
lel Computing, 33 (9), 634–644.

[17] The OpenMPI Project. OpenMPI Shared Memory
Communications. http://www.open-mpi.org/faq/

?category=sm [Last visited: March 2012].

[18] Shafi, A., Carpenter, B., and Baker, M. (2009) Nested
Parallelism for Multi-core HPC Systems using Java.
Journal of Parallel and Distributed Computing, 69 (6),
532–545.

[19] Shafi, A., Manzoor, J., Hameed, K., Carpenter, B.,
and Baker, M. (2010) Multicore-enabling the MPJ
Express Messaging Library. Proc. 8th Intl. Conf.
on Principles and Practice of Programming in Java
(PPPJ’10), Vienna, Austria, pp. 49–58.

[20] Ramos, S., Taboada, G. L., Touriño, J., and Doallo,
R. (2011) Scalable Java Communication Middleware
for Hybrid Shared/Distributed Memory Architectures.
Proc. 13th IEEE Intl. Conf. on High Performance
Computing and Communications (HPCC’11), Banff,
Alberta, Canada, pp. 221–228.

[21] Taboada, G. L., Ramos, S., Touriño, J., and Doallo,
R. (2011) Design of Efficient Java Message-Passing
Collectives on Multi-core Clusters. The Journal of
Supercomputing, 55 (2), 126–154.

[22] IntelR© XeonR© E5 Series . http://newsroom.intel.

com/community/intel_newsroom/blog/2011/11/15/

intel-reveals-details-of-next-generation-high-

performance-computing-platforms [Last visited:
March 2012].

[23] DAS-4. Accelerators and Special Compute Nodes.
http://www.cs.vu.nl/das4/special.shtml [Last vis-
ited: March 2012].

[24] AMD Opteron
TM

Processor Solutions. http://prod

ucts.amd.com/en-us/OpteronCPUDetail.aspx?id=

644 [Last visited: March 2012].

[25] Magny-Cours and Direct Connect Architecture 2.0.
http://developer.amd.com/documentation/articl

es/pages/Magny-Cours-Direct-Connect-Architec

ture-2.0.aspx [Last visited: March 2012].

[26] Saini, S., Ciotti, R., Gunney, B. T. N., Spelce, T. E.,
Koniges, A., Dossa, D., Adamidis, P., Rabenseifner, R.,
Tiyyagura, S. R., and Mueller, M. (2008) Performance
Evaluation of Supercomputers using HPCC and IMB
Benchmarks. Journal of Computer and System
Sciences, 74 (6), 965–982.

[27] Turner, D., Oline, A., Xuehua, C., and Benjegerdes,
T. (2003) Integrating New Capabilities into NetPIPE.
Proc. 10th European PVM/MPI Users’ Group Meeting
(EuroPVM/MPI’03), Venice, Italy, pp. 37–44.

[28] NetPIPE. A Network Protocol Independent Perfor-
mance Evaluator. http://www.scl.ameslab.gov/

netpipe/ [Last visited: March 2012].

[29] Bailey, D.H. et al (1991) The NAS Parallel Benchmarks
Summary and Preliminary Results. Proc. 1991
ACM/IEEE Intl. Conf. on Supercomputing (SC’91),
Albuquerque, NM, USA, pp. 158–165.

[30] NAS Parallel Benchmarks. http://www.nas.nasa.

gov/publications/npb.html [Last visited: March
2012].

[31] Mallón, D. A., Taboada, G. L., Touriño, J., and
Doallo, R. (2009) NPB-MPJ: NAS Parallel Benchmarks
Implementation for Message-Passing in Java. Proc.
17th Euromicro Intl. Conf. on Parallel, Distributed

The Computer Journal, Vol. 0, No. 0, 2012

14 S. Ramos G. L. Taboada R. R. Expósito J. Touriño R. Doallo

and Network-Based Processing (PDP’09), Weimar,
Germany, pp. 181–190.

The Computer Journal, Vol. 0, No. 0, 2012

