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MPIGeneNet: Parallel Calculation of Gene
Co-Expression Networks on Multicore

Clusters
Jorge González-Domı́nguez∗ and Marı́a J. Martı́n

Abstract—In this work we present MPIGeneNet, a parallel tool that applies Pearson’s correlation and Random Matrix Theory to
construct gene co-expression networks. It is based on the state-of-the-art sequential tool RMTGeneNet, which provides networks
with high robustness and sensitivity at the expenses of relatively long runtimes for large scale input datasets. MPIGeneNet
returns the same results as RMTGeneNet but improves the memory management, reduces the I/O cost, and accelerates the two
most computationally demanding steps of co-expression network construction by exploiting the compute capabilities of common
multicore CPU clusters. Our performance evaluation on two different systems using three typical input datasets shows that
MPIGeneNet is significantly faster than RMTGeneNet. As an example, our tool is up to 175.41 times faster on a cluster with eight
nodes, each one containing two 12-core Intel Haswell processors. Source code of MPIGeneNet, as well as a reference manual,
are available at https://sourceforge.net/projects/mpigenenet/.

Index Terms—Genetics, Gene Co-Expression Networks, Random Matrix Theory, High Performance Computing, MPI, Multi-
threading.
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1 INTRODUCTION

THE use of expression data, with values for differ-
ent genes and samples, to construct co-expression

networks has been proved very useful in biological
analyses [1]. These networks can be used to illus-
trate the complex interactions that can be present
among multiple genes, where the nodes and edges
represent genes and interesting correlations, respec-
tively. There exist several methods to construct co-
expression networks. Most of them start by creating
a so-called correlation or similarity matrix, i.e., a two-
dimensional triangular matrix where each value is the
similarity coefficient of one gene pair. Some exam-
ples of measures used in this step are Pearson’s [2],
Spearman [3], Theil-Sen [4] or Kendall [5] correla-
tions. Those correlation values higher than a certain
threshold represent an interaction between the two
genes of the pair. Several techniques can be used to
identify the correct threshold according to the values
of the similarity matrix, e.g., permutation testing [6],
linear regression [7], spectral graph theory [8], Fisher’s
tests [9], machine learning [10] or null models [2].

RMTGeneNet [11] is a cutting-edge tool to construct
gene co-expression networks, which uses Pearson’s
correlation to generate a similarity matrix and cal-
culates a Random Matrix Theory (RMT) threshold
to discard non biologically relevant interactions. The
main strength of this tool is the high sensitivity and
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robustness of its resulting networks, which makes it
a good choice for interesting biological studies [12],
[13], [14], [15]. However, its main drawback is its
relatively high runtime for input datasets consisting
of thousands of genes, which prevents the widely
adoption of this method by the scientific community.

In this paper we present MPIGeneNet, an applica-
tion that is able to accelerate the construction of co-
expression networks on modern multicore clusters by
applying parallel computing to both the calculation of
the Pearson’s correlation matrix and the identification
of the RMT threshold. It means that MPIGeneNet is
able to obtain the same robust and sensitive networks
as RMTGeneNet but in significantly shorter time. It
uses a hybrid approach that combines Message Pass-
ing Interface (MPI) processes and threads. Each MPI
process launches multiple threads to efficiently ex-
ploit the cores available on each node and to reduce
the memory requirements. Moreover, the one-sided
asynchronous communications included in MPI 3 are
used to overlap communication and computation and
increase the scalability on several nodes.

The rest of the paper is organized as follows. Sec-
tion 2 presents previous works related to the paral-
lelization of the procedure to construct co-expression
networks. Section 3 describes the parallel implemen-
tation of the different parts of MPIGeneNet. Section 4
provides the experimental evaluation in terms of run-
time and scalability. Finally, concluding remarks are
presented in Section 5.
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2 RELATED WORK

As previously mentioned, MPIGeneNet follows the
same approach as RMTGeneNet [11] to construct the
co-expression matrices, i.e., calculation of the Pear-
son’s correlation matrix and posterior filtering with
an RMT threshold. Besides genetics, RMT has also
been satisfactorily applied to other fields such as
finance [16], neuroscience [17], sensor networks [18] or
superconductors [19]. Up to our knowledge, although
there exist previous efforts to accelerate the calcula-
tion of the RMT threshold on multicore clusters [20]
and GPUs [21], these works only focus on the par-
allelization of the eigenvalues calculation, obtain low
speedups and are not publicly available.

Acceleration of the co-expression networks con-
struction on high performance computing systems has
already been addressed, but all available tools apply
approaches to discard non relevant gene interactions
that are more simple than the RMT filter and they do
not obtain networks with the same level of robustness
and sensitivity. Concretely, both TINGe [22] and its
Xeon Phi-based counterpart [23] use Mutual Informa-
tion as score measure for the similarity matrix, while
permutation testing for thresholding.

Finally, some works only provide a parallel imple-
mentation of the first step (calculation of the corre-
lation matrices), assuming that it will be the most
computationally demanding phase. However, as will
be shown in Section 4, calculation of a good filtering
threshold might also require long runtime. Some ex-
amples are FastGCN [24] and CUDA-MI [25] for GPUs,
LightPCC [26] for several Intel Xeon Phi coprocessors
and MPICorMat [27] for multicore clusters. This last
tool can be seen as a basis for MPIGeneNet as its
functionality is included our tool. However, it has
been significantly optimized using MPI 3 one-sided
communication routines and extended with a parallel
calculation of the RMT threshold.

3 IMPLEMENTATION

MPIGeneNet receives as input a file with the expres-
sion values for each gene and each sample. These
expression data are stored in a n × m matrix (ex-
pression matrix), being n the number of genes and
m the number of samples. The input file, as well as
other configuration parameters, are specified in the
command line. An explanation of all the arguments,
as well as installation instructions, are included in the
reference manual available with the tool. MPIGeneNet
consists of three stages:

1) Construction of a two-dimensional matrix that
includes the Pearson’s correlation value for all
gene pairs (similarity matrix).

2) Calculation of the RMT threshold.
3) Generation of the co-expression network by dis-

carding those edges of the similarity matrix with
correlation values lower than the threshold.

Instead of following the same approach as RMT-
GeneNet, which provides one different module for
each step and requires three systems calls from the
user, MPIGeneNet integrates the whole functionality
in one program. This makes the tool easier to work
with (the users only have to launch the application
once) and avoids writing/reading from intermediate
files among the modules. The first two stages are
accelerated with a two-level parallelization. On the
one hand, the workload is distributed among several
MPI processes, which can work on different nodes
of a compute cluster connected trough a network.
MPI is established as a de-facto standard to develop
programs for distributed-memory systems, and pro-
vides a portable, efficient, and flexible approach for
message-passing. On the other hand, each process can
launch several threads to exploit the computational
capabilities of all the cores within each node. This hy-
brid parallel approach has been satisfactorily applied
to other bioinformatics problems such as the removal
of duplicate DNA sequences [28] or to multiple se-
quence alignment [29]. Remark that our implementa-
tion is flexible enough to allow the users to specify
the desired number of MPI processes and threads.
We discarded the parallelization of the last step as
its impact in the runtime is almost negligible (less
than 0.3% of the total runtime for all our sequential
experiments).

Moreover, before addressing the parallelization, our
work started by optimizing memory accesses on the
three steps so that MPIGeneNet is significantly faster
than the RMTGeneNet even running on one single
core.

3.1 Parallel Construction of Pearson’s Correlation
Matrix

MPIGeneNet starts with all MPI processes reading in
parallel the input file and saving their own copy
of the initial expression matrix. Although this data
replication leads to memory overhead, it is sometimes
present in parallel computing to optimize perfor-
mance by avoiding communication [30], [31]. In order
to limit the memory overhead, MPIGeneNet does not
create one MPI process per core (each one with its own
copy of the expression matrices). Instead, each process
is related to a group of cores and launches several
OpenMP threads that are able to access shared mem-
ory, use the same copy of the matrix and collaborate
to calculate the correlation of the gene pairs assigned
to their parent process.

Regarding the workload distribution, as the Pear-
son’s correlation must be calculated for all gene pairs,
the workload of this step can be represented with a
2D matrix, where both axis x and y include all genes.
Each point in the 2D subspace represents one gene
pair. As correlation is a symmetric measure, only half
of the matrix must be calculated. Concretely n×(n−1)
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Algorithm 1: Pseudo-code of the hybrid parallel
algorithm on each process to construct the partial
correlation matrix.

1 Read input expression matrix M
2 Calculate myIniRow and myLastRow
3 Create MPI Window S for the whole correlation

matrix and accessible to all processes
4 Initialize matrix of private scores myS := 1
5 Initialize iterator iter := 0
6 #pragma omp parallel for schedule(dynamic)
7 for each row i from myIniRow to myLastRow do
8 for each column j from 0 to i− 1 do
9 myS[iter] := CalcPearson(i, j) # GSL routine

10 iter++
end

11 iter++ # Score for diagonal elements is 1.0
end

12 for each process p do
13 Put myS in the correct position in the S that

belongs to p
end

pairs. MPIGeneNet divides the gene pairs among the
processes so that they simultaneously work over dif-
ferent pairs. Pairs are assigned by blocks of rows (the
whole row to the same process) with variable number
of rows per block to balance the number of pairs
assigned to each process. We refer to the MPICor-
Mat [27] publication for further information about the
workload distribution and the hybrid MPI/OpenMP
implementation of this step.

An additional feature included in MPIGeneNet over
MPICorMat is an efficient gather of the resulting sim-
ilarity matrix in all processes using the support for
Remote Memory Access (RMA) one-sided communi-
cations included in MPI since its 3.0 version. These
kind of routines have been proved more efficient than
traditional two-sided communication on several sce-
narios, thanks to avoiding synchronizations between
source and destination processes [32], [33]. Concretely,
we employ a push approach where:

1) Each process creates a MPI window with enough
size to store the whole correlation matrix previ-
ously to the computation.

2) Once one process finishes its partial computa-
tion, it copies its fragment of correlation matrix
in the correct position in each window.

This method generates a total of p2 calls to the MPI
function Put, does not require any synchronization
and allows to overlap communication with computa-
tion (the destination processes can continue with the
calculation of their partial similarity matrices while
receiving other fragments).

Algorithm 1 summarizes the MPIGeneNet parallel
approach to calculate the correlation matrix.

Algorithm 2: Pseudo-code of the hybrid parallel
algorithm on each process to calculate the RMT
threshold.

1 Input: Correlation scores matrix S; First threshold to
check iniThres; Threshold stride st; Process id myId;
Number of processes NP

2 Create MPI Window end with one integer accessible
to all processes

3 Initialize end := 0
4 myThres := iniThres−myId× st
5 if myId == 0 then
6 Create MPI Window RMT with one float

accessible to all processes
end

7 repeat
8 Build cut matrix C with the points of S higher

than myThres
9 E := CalcEigenv(C) # Multithreaded MKL routine

10 if (E fulfills Chi-square test) & (end == 0) then
11 Put myThres in RMT
12 for each process p do
13 # Inform to p that the threshold was found
14 Put 1 in window end that belongs to p

end
end
else

15 myThres := myThres− st×NP
end

until end == 1

3.2 Parallel Calculation of the RMT Threshold
In order to filter non-relevant gene interactions
from the correlation matrix, MPIGeneNet calculates
a threshold using RMT and parallel computing as
illustrated in Algorithm 2. According to RMT, the
Nearest Neighbour Spacing Distribution (NNSD) of
eigenvalues in real symmetric matrices follows Gaus-
sian Orthogonal Ensemble (GOE) statistics if there
exists correlation between nearest-neighbour eigen-
values, while it follows Poisson statistics if there is no
correlation. Therefore, MPIGeneNet selects as thresh-
old the point of the NNSD transition from Poisson
to Gaussian, as it represents the point where real
correlation exists for our genes. We refer to [34] for
more information about RMT and its adequacy to
select biologically relevant interactions.

To determine this point of transition MPIGeneNet it-
erates through successively smaller correlation thresh-
olds. In each iteration it creates the so-called cut ma-
trix (Line 8), with only those values of the correlation
matrix higher than the analyzed threshold, and calcu-
lates the eigenvalues of such cut matrix (Line 9). Once
these eigenvalues are calculated, they are provided
as input to a Chi-square test (Line 10) that indicates
whether the transition point has been reached and,
thus, the threshold has been found. The eigenvalues
calculation is the main performance bottleneck of each
iteration and it is performed using the ssyev routine
available in the MKL library [35]. The initial threshold
and the stride employed for each iteration (iniThres



4

and st in Algorithm 2) are specified by the user
through command line.

The algorithm is parallelized using a hybrid ap-
proach that combines MPI and the multithreaded
MKL library. As the computation within different
iterations is independent, the workload of this second
stage is distributed by assigning different iterations to
each MPI process in a round-robin way. This cyclic
distribution is suitable for two reasons:

• We do not know in advance the number of it-
erations that will be necessary to find the RMT
threshold.

• The work necessary to calculate the eigenvalues
increases with lower thresholds (i.e., it becomes
more expensive after each iteration).

Each MPI process works over its own copy of the
similarity matrix (gathered at the end of the first step,
as explained in the previous subsection), which is
a good approach in order to avoid communications
during the RMT iterations. An alternative to reduce
memory requirements would be to use a distributed
correlation matrix (each process has the same frag-
ment as at the end of the first step). However, this ver-
sion has been discarded as it would be very inefficient
in terms of performance. Communications would be
required in each iteration of the loop presented in
Algorithm 2, as processes need the whole similarity
matrix to calculate the eigenvalues for each threshold.
This would lead to a non-affordable communication
runtime overhead. Instead, the correlation matrix is
replicated on each MPI process and the memory
overhead is alleviated in MPIGeneNet by making use
of the multithreading support of the MKL library.

Once one process finds the threshold that passes
the Chi-square tests, it must send its value to Process
0, the only one in charge of the next step: discarding
those edges of the similarity matrix with correlation
values lower than the threshold. It must also indicate
to all other processes that the goal has been achieved
and they do not need to continue searching. This
finalization procedure is also optimized using the
RMA support provided by MPI. At the beginning
of this step every process initializes with value 0
its own variable end, accessible to all process as a
MPI Window (Lines 2-3). Similarly, Process 0 creates
a shared variable RMT to save the threshold (Line 6).
As soon as one process finds the threshold, it assigns
the proper value to RMT (Line 11), and updates
the end variables of all processes with value 1 (Line
14). Thus, each process only has to check its own
variable end at the beginning of each iteration to know
whether it has to finalize.

4 EXPERIMENTAL EVALUATION

The experimental evaluation of MPIGeneNet has been
performed in terms of execution time, as our tool

TABLE 1
Characteristics of the clusters used in the

experimental evaluation.

C1 C2
Nodes 4 8

CPU type Intel Sandy Bridge Intel Haswell
CPUs per node 2 2
Cores per CPU 8 12

Clock frequency 2.20GHz 2.50GHz
Memory per node 64GB 128GB

Network InfiniBand FDR
MPI Compiler OpenMPI 1.7.2

OpenMP support 3.0
MKL version 11.3
GSL version 1.13 1.16

provides the same co-expression networks as RMT-
GeneNet, whose robustness and sensitivity has already
been proved in [11]. This section provides a speed
comparison of these two tools on two different mul-
ticore clusters. The first one consists of four nodes
containing two eight-core Intel Xeon E5-2660 Sandy
Bridge-EP processors each (i.e., 16 cores per node
and 64 in total). The second system provides a total
of 192 cores grouped into eight nodes. In this case
each node consists of 24 cores (two Intel Haswell
2680 processors with 12 cores each). Both clusters are
connected through an InfiniBand FDR network. More
details about the hardware and software employed
in each cluster can be seen in Table 1. A preliminary
evaluation tested different configurations of processes
and threads per node when executing MPIGeneNet.
All the results shown in this section are obtained for
the best ones:

• Two MPI processes per node (one per processor)
on the Sandy-Bridge system, with eight threads
per process.

• Four MPI processes per node, and six threads
per process on the cluster based on Intel Haswell
processors.

Three datasets downloaded from the GEO Dataset
Browser available at the NCBI website [36] were used
for evaluation. The main characteristics that have
impact on the execution time consumed by the tool
are the number of genes, the number of samples and
the value of the RMT threshold. On the one hand, the
runtime to construct the correlation matrix increases
quadratically with the number of genes and linearly
with the number of samples (see Algorithm 1). On
the other hand, the value of the RMT threshold is
the main influence on the second step runtime as it
determines the number of iterations to be performed
(see Algorithm 2). These characteristics for the three
employed datasets are shown in Table 2.

Tables 3 and 4 show the runtimes of the original
RMTGeneNet and our hybrid MPI/Threads imple-
mentation on both systems. These runtimes include
in all cases the time to read/write the input/output.
The first conclusion that can be obtained is that the
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TABLE 2
Characteristics of the datasets used in the

experimental evaluation.

Name Genes Samples RMT Threshold
GDS5037 41,000 108 0.846100
GDS3795 54,675 200 0.835100
GDS3244 61,170 160 0.959000

TABLE 3
Runtimes of MPIGeneNet using up to four nodes
containing two Intel Xeon E5-2660 Sandy Bridge

processors each (using two MPI processes per node
and 8 threads per process). The original runtimes of
the sequential RMTGeneNet tool are also included for

comparison purposes.

Dataset RMTGeneNet MPIGeneNet
1 core 1 node 4 nodes

GDS5037 2h 29m 8s 1h 18m 50s 11m 24s 3m 42s
GDS3795 6h 21m 50s 3h 45m 17s 28m 17s 8m 36s
GDS3244 5h 7m 14s 2h 23m 43s 12m 43s 3m 47s

modifications to the memory accesses in the sequen-
tial code significantly improve the performance of
MPIGeneNet even for sequential computation: our tool
running on a single core is on average more that two
times faster than RMTGeneNet. Furthermore, the use
of our hybrid parallelization approach on a multicore
cluster significantly reduces runtimes for the selected
datasets. On average, MPIGeneNet is 55.31 times faster
than RMTGeneNet using the four nodes of the first
cluster. In fact, the speedup is up to 81.21 for the
largest dataset (GDS3244). On the eight nodes of the
Haswell-based cluster the average speedup increases
to 117.02, while the runtime of this GDS3244 dataset
is significantly reduced from more than five hours
using RMTGeneNet to around one minute (speedup
of 175.41).

Remark that this article does not include a compari-
son to other available parallel tools such as TINGe [22]
because it would not be fair, as the method to deter-
mine their threshold in the second step is more simple
than RMT and it does not provide co-expression
networks with the same level of sensitivity and ro-
bustness as MPIGeneNet.

4.1 Scalability analysis

It has been already shown that the speedup obtained
by MPIGeneNet over RMTGeneNet is significant in all
scenarios. However, the magnitude of the acceleration
varies depending on the input dataset. This section
provides a further analysis of the results obtained
in the largest cluster (eight nodes and 192 cores) in
order to provide an insight about the behavior of
the different MPIGeneNet steps explained in Section 3.
Concretely, Figure 1 shows the speedup for varying
number of nodes of the whole application (left top
graph) and the three steps separately. The baseline

TABLE 4
Runtimes of MPIGeneNet using up to eight nodes

containing two Intel Haswell 2680 processors each
(using four MPI processes per node and 6 threads per

process). The original runtimes of the sequential
RMTGeneNet tool are also included for comparison

purposes.

Dataset RMTGeneNet MPIGeneNet
1 core 1 node 8 nodes

GDS5037 1h 39m 17s 44m 50s 5m 22s 1m 14s
GDS3795 4h 45m 26s 2h 24m 17s 13m 15s 2m 58s
GDS3244 3h 36m 36s 1h 27m 47s 5m 17s 1m 14s

is the RMTGeneNet runtime. Additionally, graphs of
Figure 2 illustrate the impact of each MPIGeneNet
step on the total runtime for one and eight nodes.
The following conclusions can be obtained from these
results:

• The highest speedups are obtained for the con-
struction of the correlation matrices, and they
are quite constant for the three different input
datasets.

• The parallel implementation of the second step
does not obtain so high speedups (although the
acceleration is still significant), and the highest
values are obtained for the GDS3244 dataset, i.e.,
the one with less RMT iterations (see Table 2). The
main reason for this lower speedup is the poor
multithreaded support provided by the current
version of the MKL ssyev routine, especially
for lower thresholds that have a high number
of non-zero elements on the cut matrix. This
is of high importance because, as mentioned in
Section 3.2, the calculation of the eigenvalues of
the cut matrix requires most of the time for each
iteration. For instance, the time due to calls to this
MKL routine on the smallest dataset GDS5037
on the Haswell based system is only reduced
from around 1,300 seconds with one thread to 475
seconds using 6 threads (speedup of 2.74). Never-
theless, this widely used library is continuously
updated, and MPIGeneNet could benefit from a
better multithreaded support of future versions
without any code modification.

• The performance improvement in the phase of
extraction of MPIGeneNet over RMTGeneNet re-
mains constant with the number of nodes. This
step is not parallelized and the acceleration is
due to more efficient memory accesses and I/O
management.

• As expected from the previous conclusions, the
whole MPIGeneNet speedups are higher for those
datasets where the search of the RMT threshold
has low influence on the runtime (i.e., where the
threshold is high and not many iterations are
necessary).

• The percentage of time spent creating the cor-
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Fig. 1. Speedup of MPIGeneNet with varying number of cores and nodes using up to eight nodes containing
two Intel Haswell 2680 processors each (when whole nodes are used, MPIGeneNet is configured with 4 MPI
processes per node and 6 threads per process) over RMTGeneNet. The graphs represent the speedups of the
whole algorithm (upper left) as well the three steps separately.

relation matrix decreases with the number of
nodes thanks to the efficient parallelization of this
step. Consequently, the percentage of time to find
the RMT threshold increases with the number of
nodes.

5 CONCLUSION

The construction of regulatory networks from gene
expression data is an important problem in bioinfor-
matics and systems biology as these networks can
help to understand the complex interactions that oc-
cur among genes. Nowadays, there exist several ap-
proaches to construct these networks, using different
correlation measures and posterior filters. Each tool
has advantages and drawbacks and is usually suitable
for certain type of datasets. In this paper we focus
on using Pearsons correlation and RMT filters, which
has been proved to be especially efficient at keeping
the robustness and sensitiveness of the generated
networks at expenses of a long runtime (several hours
for a moderately-size dataset with tens of thousands
genes and hundreds of samples). To accelerate the ex-
ecution time we present MPIGeneNet, the first parallel
tool that can exploit the computationally capabilities

of multicore clusters to accelerate the construction of
co-expression networks based on RMT thresholds.

Our tool follows a hybrid two-level parallelization.
First, it includes a MPI implementation that divides
the workload among MPI processes. It is optimized
by using efficient RMA one-sided communications
available in MPI since its version 3.0, as well as
communication avoiding techniques that replicate the
expression and correlation matrices. The memory
overhead due to data replication is minimized thanks
to the second level of parallelism, where each MPI
process launches several threads sharing memory.
Moreover, MPIGeneNet relies on the widely employed
GSL and MKL libraries to perform mathematical func-
tions. These libraries are in continuous evolution, so
MPIGeneNet will benefit from future library updates
without requiring any modification in its code.

The experimental evaluation on several scenarios
(two clusters and three input datasets) proved that
MPIGeneNet obtains the same co-expression matrices
as RMTGeneNet (a sequential counterpart), but it is
faster. First, on average MPIGeneNet needs half of
time to construct the network even using the same
resources as RMTGeneNet (one core). Furthermore, the
runtime can be significantly reduced when running on
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Fig. 2. Runtime breakdown of the different parts of MPIGeneNet running on one core and eight nodes containing
two Intel Haswell 2680 processors each (4 MPI processes per node and 6 threads per process).

several nodes of the clusters. Although the magnitude
of the acceleration depends on the characteristics of
the dataset (concretely, on the number of iterations
needed to find the RMT threshold), on average MPI-
GeneNet is 117.02 faster than RMTGeneNet on a cluster
with eight nodes that contains 24 cores each (with a
maximum speedup of 175.41).

Source code of MPIGeneNet, as well
as a reference manual, are available at
https://sourceforge.net/projects/mpigenenet/.
As future work we plan to include parallel
implementations different than Pearson’s and
RMT into MPIGeneNet, and analyze the advantages
and drawbacks of each approach in terms of both
accuracy and performance.
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