
Hybrid CPU/GPU Acceleration of Detection of
2-SNP Epistatic Interactions in GWAS

Jorge González-Domı́nguez1, Bertil Schmidt1,
Jan Christian Kässens2, and Lars Wienbrandt2

1 Parallel and Distributed Architectures Group,
Johannes Gutenberg University - Mainz, Germany
Email: {j.gonzalez, bertil.schmidt}@uni-mainz.de

2 Department of Computer Science, Christian-Albrechts-University of Kiel
Email: {jka, lwi}@informatik.uni-kiel.de

Abstract. High-throughput genotyping technologies allow the collec-
tion of up to a few million genetic markers (such as SNPs) of an individual
within a few minutes of time. Detecting epistasis, such as 2-SNP inter-
actions, in Genome-Wide Association Studies is an important but time
consuming operation since statistical computations have to be performed
for each pair of measured markers. In this work we present EpistSearch,
a parallelized tool that, following the log-linear model approach, uses a
novel filter to determine the interactions between all SNP-pairs. Our tool
is parallelized using a hybrid combination of Pthreads and CUDA in or-
der to take advantage of CPU/GPU architectures. Experimental results
with simulated and real datasets show that EpistSearch outperforms pre-
vious approaches, either using GPUs or only CPU cores. For instance, an
exhaustive analysis of a real-world dataset with 500,000 SNPs and 5,000
individuals requires less than 42 minutes on a machine with 6 CPU cores
and a GTX Titan GPU.
Keywords: Bioinformatics, GWAS, Epistasis, Pthreads, CUDA

1 Introduction

High-throughput genotyping technologies allow the collection of hundreds of
thousands to a few million genetic markers, such as Single Nucleotide Polymor-
phisms (SNPs) of an individual within a few minutes of time. In Genome-Wide
Association Studies (GWAS) these genotypes are typically measured for several
thousand individuals and then linked to a given phenotype of each individual,
such as the presence (case) or absence (control) of an associated disease. In clas-
sical single-locus GWAS each genetic marker is then analyzed individually in
order to identify markers that are significantly different for cases and controls.
Unfortunately, this approach is generally not powerful enough to model com-
plex traits for which the detection of joint genetic effects (epistasis) needs to be
considered [1,2]. In 2-way statistical epistasis each pair of measured markers is
therefore tested in order to discover interactions between SNP-pairs that explain
the given phenotype.

Consequently, a number of algorithms and tools have been developed to ad-
dress the problem of detecting epistasis in recent years using one or several
statistical tests over all SNP-pairs [3]. The main goal of these approaches is to
find SNP-pairs whose joint values show a statistically significant difference com-
pared to the individual SNP values. One of the most popular approaches uses
statistical regression methods [4,5]. These tests are very precise but the pair-wise
analyses are very computationally-expensive. As an example, it is necessary to
apply the statistical tests to 125 billion pairs when analyzing a moderately-sized
dataset consisting of half million SNPs [6,7].

Many recent approaches are filtration-based; i.e. they firstly apply a compu-
tationally faster filter and subsequently perform the full statistical analysis only
to the SNP-pairs not discarded by the preliminary filter. SNPHarvester [8] uses
path algorithms to identify several groups of SNPs associated to the same disease.
Then, it applies the statistical method only to the pairs generated within each
group. SNPRuler [9] narrows the search space through a learning approach based
on predictive rule learning. BOOST [10] introduces the Kirkwood Superposition
Approximation (KSA) as preliminary filter. This last tool was taken as basis for
our work because it is currently widely used by biologists (see e.g. [11,12,13]).
Furthermore, it is faster than previous approaches not only for CPU but also for
GPU computation (GBOOST [14]).

As the development of epistasis tools has attracted extensive research in-
terests, even more recent work that try to improve precision using different
statistical methods has arisen. iLOCi [15] uses a statistical method based on the
difference of the dependency of controls and cases, but our preliminary bench-
marking demonstrated that it is much slower than BOOST. GWIS [16], which
presents a GPU implementation of a method based on ROC-curves, could not
be tested since merely a web interface is publicly available. Thus, these tools and
their statistical methods are not as commonly used by biologists as BOOST and
GBOOST. In this paper we present EpistSearch. In order to further improve the
speed of this approach our tool introduces a novel preliminary filter and takes
advantage of heterogeneous CPU/GPU architectures through inter-task hybrid
parallelism to perform fast epistasis search in GWAS datasets.

The rest of the paper is organized as follows. Section 2 describes the BOOST
method that is adapted by our tool. Our novel preliminary KSASA filter is
presented in Section 3. Section 4 describes our hybrid parallelization approach.
Runtime performance is evaluated and compared in Section 5 using both simu-
lated and real-world datasets. Section 6 concludes the paper.

2 Background

2.1 Contingency Tables

We work with datasets of biallelic genetic markers where major alleles are de-
noted with capital letters and minor alleles with lowercase letters. Therefore,
for each SNP there are three genotypes {AA,Aa,aa}, which are numerically rep-
resented as {0,1,2}. The number of SNPs and individuals are denoted as M

Table 1. Example of contingency table

Cases SNP2=0 SNP2=1 SNP2=2 Controls SNP2=0 SNP2=1 SNP2=2

SNP1=0 n000 n010 n020 SNP1=0 n001 n011 n021

SNP1=1 n100 n110 n120 SNP1=1 n101 n111 n121

SNP1=2 n200 n210 n220 SNP1=2 n201 n211 n221

and N , respectively. The individuals are categorized as cases (value 0) and con-
trols (value 1). The filters that select the SNP-pairs that present interaction use
a 3x3x2 contingency table per pair. As seen in the example of Table 1, each
cell ijk stores the count of individuals categorized as k (case or control) with
the value of the first SNP as i, and the second SNP as j. We can also fill the
contingency table with probabilities: πijk = nijk/N .

2.2 Log-Linear Models and the KSA Filter

The purpose of a 2-SNP statistical epistasis tool is to identify SNP-pairs whose
joint values are significantly different from the joint values expected from the in-
dividual SNP values. In [10] Wan et al. prove that the search for interaction with
regression models can be simplified using log-linear models. They define interac-
tion from the perspective of the log-linear models as the information contained
in the joint distribution but not in its lower-order factorization. This definition
led to measure interaction as L̂S − L̂H , where L̂S and L̂H represent the max-
imum log-likelihood of the saturated and the homogeneous association models,
respectively. It can be calculated from the values of the contingency table as:

N
∑
ijk

[
π̂ijk log

(
π̂ijk
p̂ijk

)]
where π̂ijk is the joint distribution obtained under the saturated model and
p̂ijk the distribution obtained under the homogeneous association model. They
establish that all pairs with log-linear measure higher than certain threshold T
present epistasis. Although this log-linear model is affordable, it still requires
a lot of computation as p̂ijk has to be computed through iterative methods.
This is the reason why BOOST applies a simpler filter based on the Kirkwood
Superposition Approximation (KSA). The authors proved the following upper
bound:

L̂S − L̂H ≤ L̂S − L̂KSA

L̂S − L̂KSA = N
∑
ijk

[
π̂ijk log

(
π̂ijk
p̂kijk

)]

p̂kijk =
1

η

πij.πi.kπ.jk
πi..π.j.π..k

η =
∑
ijk

πij.πi.kπ.jk
πi..π.j.π..k

The equations above show that the KSA value can be directly calculated from
the cells of the contingency table without iterative methods. Therefore, BOOST
and GBOOST accelerate their analyses using the KSA filter (L̂S− L̂KSA). From
now, we call the value of L̂S− L̂KSA for a specific SNP-pair its “KSA value”. As
the KSA value is an upper bound of the log-linear measure, these tools calculate
it for all SNP-pairs and discard those with a KSA value lower than T . Finally,
they only apply the log-linear filter to the remaining pairs. For simplicity, we
refer to [10] to find the proofs and further explanation of the KSA and log-linear
filters.

3 KSA’s Superposition Approximation (KSASA)

Although the KSA filter does not need iterative methods, a relatively large
amount of numerical computations still have to be performed on each pair.
Thus, we have designed a novel simpler filter called KSA Superposition Ap-
proximation (KSASA). EpistSearch applies the KSASA filter (upper bound for
KSA) to all SNP-pairs, discarding all that have a value below the threshold, and
only calculating the KSA and log-linear values for the other. The pseudo-code
of EpistSearch is summarized in Algorithm 1.

foreach SNP-pair P do
v = KSASA V alue(P)
if v > T then

v = KSA V alue(P)
if v > T then

v = LogLinear V alue(P)
if v > T then

Print P in the output file as pair with epistasis
end

end

end

end

Algorithm 1: Pseudo-code of EpistSearch

In order to prove that KSASA is an upper bound for KSA, let E and O
denote the counts of expected (control) and observed (case) studies, then the
total variation distance and the total spread are:

δ(E,O) =
1

2

∑
x

|Ex −Ox| =
1

2

∑
ij

|πij1 − πij0|

Dspread(E,O) =
∑
x

(Ex −Ox)
2

=
∑
ij

(πij1 − πij0)
2

Following a similar approach as for the design of the log-linear and KSA
filters, we use the discrete Kullback-Leibler divergence as measure:

DKL(E,O) =
∑
x

Ex log

(
Ex

Ox

)
=
∑
ij

πij1 log

(
πij1
πij0

)

This Kullback-Leibler divergence between the empirical distributions of the
input classes is much faster to calculate than the KSA value. However, we need
to prove that it is an upper bound of the KSA value in order to be used as
prefilter:

L̂S − L̂H ≤ L̂S − L̂KSA ≤ N ∗DKL(E,O)

This inequality reduces to prove that the Kullback-Leibler divergence be-
tween the maximum likelihood estimate of the joint distribution obtained from
a homogeneous association model and the maximum likelihood estimate of the
joint distribution obtained from the Kirkwood superposition approximation is
bounded by the Kullback-Leibler divergence of the empirical distributions of the
input classes: ∑

ijk

[
π̂ijk log

(
π̂ijk
p̂kijk

)]
≤ c

∑
ij

πij1 log

(
πij1
πij0

)
Reducing the inequality further we obtain:∑

ijk

nijk

N

[
log

(
nijk

N

)
+ log (η)− log

(
nij.ni.kn.jk
ni..n.j.n..k

)]
≤

c
∑

ij

[
nij1
n..1

log

(
nij1
n..1

)
− nij0
n..0

log

(
nij0
n..0

)]
Since it can be shown that the last inequality holdsa, N · DKL(E,O) is a

valid upper bound that can be used as our KSASA prefilter.

4 Parallelization Approach

4.1 Optimization of the Calculation of Contingency Tables

A boolean representation of genotype data is employed in BOOST in order to
calculate the values of the 18 cells of the contingency tables in a fast manner.
EpistSearch optimizes this approach further by reducing the number of explicitly
calculated cells to only 8 (shown without “-” in the Table 2). When loading the
datasets, the sums of the AA and aa biallelic values are calculated per SNP. This
information is also provided to the filters and can then be used to calculate the
remaining cells of the table if necessary. As the sums are only calculated once
per SNP, this approach is faster than calculating the values of 10 additional cells
per SNP-pair.

4.2 Inter-Task Hybrid CPU-GPU Parallelism

Although a heterogeneous CPU-GPU architecture is the common platform for
GPU-based applications, the CPU usually performs tasks that are inherently
sequential or have a low computational intensity. Therefore, GPU applications

a Because of the page limitation the detailed proof is omitted in this paper

Table 2. Values of the contingency table explicitly calculated by EpistSearch

Cases SNP2=0 SNP2=1 SNP2=2 Controls SNP2=0 SNP2=1 SNP2=2

SNP1=0 n000 - n020 SNP1=0 n001 - n021

SNP1=1 - - - SNP1=1 - - -
SNP1=2 n200 - n220 SNP1=2 n201 - n221

usually waste most of the computational power of CPU multicores. For instance,
GBOOST [14] applies intra-task parallelism where the GPU computes the KSA
filter for all pairs and the CPU computes only the log-linear filter of the pairs
that were not discarded. As the percentage of pairs that pass the KSA filter
is usually very low, the CPU is often idle. On the contrary, EpistSearch applies
inter-task parallelism so that the CPU and GPU threads perform the whole com-
putation but for different SNP-pairs. This hybrid parallelism has already been
shown to be effective in biological sequence database search [17] and next gener-
ation sequencing read alignment [18]. Furthermore, the CPU computation is also
parallelized with the POSIX Threads Programming technology (Pthreads) [19]
to take advantage of CPU multicore platforms.

4.3 CUDA Implementation

We use the CUDA programming model [20] for the GPU implementation of
EpistSearch. A single kernel that performs the whole analysis of a set of SNP-
pairs is developed. The overall approach works as follows:

1. The whole information of the SNPs is transferred to the device memory
through pinned copies at the beginning of the execution.

2. The CUDA kernel that analyzes the interaction of a subset of pairs is
launched several times. In the kernel each thread creates the contingency
table of a number of SNP-pairs independently and performs the necessary
filters.

The execution finishes when all pairs have been processed. When assigning
the GPU resources to the different parts of the code, we gave the highest priority
to the KSASA filter, as it is executed for all SNP-pairs. Therefore, this filter is
implemented using registers and it does not directly accesses the device memory.

The current implementation of EpistSearch can only work with datasets that
fit into the device memory. The largest currently available WTCCC dataset con-
tains about 500,000 SNPs from 5,000 individuals. This can be stored in around
600MB of memory, which is available in almost any modern GPU. For example,
a Tesla K40 GPU, with 12GB of memory, would be able to analyze datasets with
more than 5 million SNPs from 25,000 individuals. This should be sufficient to
analyze most large-scale datasets in the near future.

Depending on the results of the KSASA filter, GPU threads that test pairs
discarded by this preliminary filter would be idle while other threads are perform-
ing the KSA and Log-Linear filters. For instance, in a scenario where the proba-
bility of a SNP-pair passing the KSASA filter is 0.01, 99% of threads would finish

their computation in the kernel after the KSASA filter, but they would have to
wait for the remaining 1%. As mentioned in Section 4.2, GBOOST addresses
this thread divergence problem by performing the calculation of the KSA and
log-linear values on the CPU. Although this approach eliminates CUDA thread
divergence, it significantly decreases performance if many SNP-pairs pass the
first filter. An alternative solution would be the division of the computation in
two different kernels: the first one for the generation of the contingency tables
and the KSASA filter (performed for all SNP-pairs), and the second kernel for
the KSA and log-linear filters. However, the overhead of copying the contingency
tables of pairs that pass the KSASA filter between kernels would cause a signif-
icant performance overhead. Therefore, EpistSearch maintains only one kernel
with all the computation but, in order to reduce thread divergence, each thread
evaluates 64 SNP-pairs every time the kernel is launched.

5 Performance Evaluation

The performance of EpistSearch has been evaluated by looking for interactions
between SNP-pairs in several simulated datasets and one real dataset. All the
experiments have been conducted on a system with a hex-core Intel Core i7
Sandy Bridge 3.20GHz CPU with 12MB cache, and two different NVIDIA Kepler
GPUs, whose specifications are shown in Table 3. The runtime of EpistSearch
is compared to BOOST and GBOOST using the same dataset and threshold.
Note that EpistSearch and (G)BOOST produce the same output for all the
experiments. Thus, the accuracy of EpistSearch and (G)BOOST is identical,
and therefore we just compare the runtime performance.

Table 3. Specifications of the two GPUs used for the experimental evaluation

Name Number of SMs Number of cores Core frequency Memory size

GTX 650Ti 4 768 980MHz 2GB
GTX Titan 14 2688 875.5MHz 6GB

Our first evaluation uses only CPU cores and 6 different simulated datasets
generated with the genomeSIMLA tool [21]. All the datasets are based on the
same penetrance table (epi1 model in the supplementary material of [10]), but
vary in terms of the number of SNPs and individuals.

Table 4 shows the percentage of pairs that pass the KSASA and log-linear
filters for each dataset explored on the CPU. The percentage for the KSA fil-
ter is not included because it is always very similar to the reported log-linear
percentage. It can be seen that the KSASA filter discards much less SNP-pairs
than the KSA and log-linear filters. The percentages vary from 8.88% to 25.46%
(almost 3x) and from 0.0006% to 0.017% (more than 28x) in the KSASA and log-
linear filters, respectively. Thus, we can assert that the evaluation is performed
in very different scenarios. Figure 1 shows the execution times of BOOST and

Table 4. Percentage of pairs that pass the KSASA and log-linear filters in the CPU
experiments.

Num. Inds. → 800 1600 3200
Num. SNPs → 10K 40K 10K 40K 10K 40K

KSASA 18.84 15.95 12.17 8.88 25.46 14.27

log-linear 11× 10−4 6× 10−4 27× 10−4 8× 10−4 170× 10−4 19× 10−4

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

800 1,600 3,200

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

10K SNPs

(2.20)

(11.25)

(2.03)

(11.05)

(1.75)

(9.59)

BOOST
EpistSearch-1Th
EpistSearch-6Th

 0

 10

 20

 30

 40

 50

 60

800 1,600 3,200

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

40K SNPs

(2.29)

(10.92)

(2.07)

(10.90)

(1.79)

(10.07)

BOOST
EpistSearch-1Th
EpistSearch-6Th

Fig. 1. Execution times of BOOST and EpistSearch (with 1 and 6 threads) in the
CPU. Speedups compared to BOOST are shown in brackets.

EpistSearch when running only on the multicore CPU part of the test platform.
Additionally, it shows the speedups for each EpistSearch execution (in parenthe-
sis) compared to BOOST. As BOOST does not have support for parallelism it
can only exploit one of the cores. For EpistSearch we present results using only
one core and the whole hex-core processor. EpistSearch significantly outperforms
BOOST even when using only one core: it is more than 2x faster for all exper-
iments with 800 and 1600 individuals and more than 1.7x faster in any case.
Moreover, the Pthreads implementation achieves a speedup of around 5x for all
experiments when using the 6 cores (' 85% of parallel efficiency). Therefore,
EpistSearch finishes the analyses of the datasets between 9.5x and 11.3x faster
than BOOST on the studied hex-core machine.

The characteristics of the datasets used for the evaluation of the GPU-based
code are shown in Table 5. Due to the power of the GPUs, we use larger datasets.
Furthermore, the variability of the percentage of SNP-pairs that pass each filter
is even higher than in the CPU experiments: from 6.13% to 52.02% (8.5x) for
the KSASA filter and from 0.0006% to 0.4% (667x) for the log-linear filter.
Figures 2 and 3 compare the performance of GBOOST and EpistSearch working
with the GTX 650Ti and GTX Titan GPU, respectively. Regarding EpistSearch,
we provide the runtimes for GPU-only as well as for hybrid CPU/GPU execution.
The results indicate the following trends:

– EpistSearch is always faster than GBOOST, either using the 6 CPU cores or
not, and independently of the characteristics of the dataset and the GPU.

– In cases where a high percentage of pairs present interaction the improvement
of performance achieved by EpistSearch is the most significant. For instance,
in the experiment with 40K SNPs and 25,600 individuals EpistSearch is more

Table 5. Percentage of pairs that pass the KSASA and log-linear filters in the GPU
experiments.

Num. Inds. → 6400 12800 25600
Num. SNPs → 40K 160K 40K 160K 40K 160K

KSASA 20.27 6.13 35.49 7.03 52.02 9.35

log-linear 110× 10−4 6× 10−4 800× 10−4 7× 10−4 4000× 10−4 12× 10−4

 0

 1

 2

 3

 4

 5

 6

 7

 8

6,400 12,800 25,600

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

40K SNPs

(1.42) (1.54)
(1.83) (1.96)

(2.94) (3.12)

GBOOST
EpistSearch

EpistSearch-6Th

 0

 10

 20

 30

 40

 50

 60

 70

6,400 12,800 25,600

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

160K SNPs

(1.54) (1.65)

(1.84) (1.95)

(2.07) (2.20)

GBOOST
EpistSearch

EpistSearch-6Th

Fig. 2. Execution times of GBOOST and EpistSearch (with and without 6 additional
CPU threads) on the GTX 650 Ti GPU. Speedups compared to GBOOST are shown
in brackets.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

6,400 12,800 25,600

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

40K SNPs

(1.48) (1.48)
(2.09) (2.13)

(5.27) (5.34)

GBOOST
EpistSearch

EpistSearch-6Th

 0

 5

 10

 15

 20

 25

6,400 12,800 25,600

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Number of Individuals

160K SNPs

(1.60) (1.62)

(1.82) (1.83)

(1.95) (1.96)

GBOOST
EpistSearch

EpistSearch-6Th

Fig. 3. Execution times of GBOOST and EpistSearch (with and without 6 additional
CPU threads) on the GTX Titan GPU. Speedups compared to GBOOST are shown
in brackets.

than 3x and 5x faster than GBOOST on the GTX 650 Ti and the GTX Titan
GPUs, respectively.

– The speedup obtained by our tool compared to GBOOST in the other cases
is always between 1.4x and 2.2x on both GPUs.

– EpistSearch runs between 2.8x and 3.2x faster on the GTX Titan than on
the GTX 650 Ti GPU, while the improvement of GBOOST is only between
1.7x and 3.0x. It means that EpistSearch shows better scalability on larger
number of SMs.

– The hybrid GPU/CPU combination consistently improves performance com-
pared to the GPU-only execution. However, the improvement is relatively
small (around 1.1x faster for the GTX 650 Ti GPU and 1.03x faster for the

GTX Titan GPUs) since the speedups of the GPU compared to the CPU
are relatively high (40x for GTX 650 Ti and 122x for GTX Titan).

Finally, we have also applied EpistSearch and GBOOST to analyze a real-
world dataset obtained from the WTCCC project. This datasets contains valu-
able information with cases of seven common human diseases: bipolar disorder,
coronary artery disease, “Crohn disease”, hypertension, rheumatoid arthritis,
type 1 diabetes and type 2 diabetes. The project provides information about
3,000 shared controls and 2,000 cases per disease. Table 6 compares the run-
time of EpistSearch, GBOOST and other two GPU-based tools (EpiGPU [22]
and SHEsisEPI [23]) when analyzing the bipolar disorder disease (500,000 SNPs
and 5,000 individuals) on different GPUs. Some results are obtained from the
publications of the corresponding authors. Besides the execution time, we also
show performance in terms of millions of evaluated SNP-pairs per second. Again,
EpistSearch is faster than GBOOST on all GPUs. Although results for EpiGPU
and SHEsisEPI must be treated carefully since the comparison is done over differ-
ent architectures, we can infer that they are significantly slower than EpistSearch
(as mentioned in Section 1, even slower than GBOOST).

Table 6. Performance comparison of different tools when looking for epistasis in a
dataset with 500,000 SNPs and 5,000 samples. Results obtained from the publications
of the corresponding authors are marked with (*).

Tool Architecture Time Speed (106 tests per second)

EpistSearch GTX Titan + 6 Intel Core i7 42 m 49.81
EpistSearch GTX Titan 43 m 49.04
GBOOST GTX Titan 1 h 01 m 34.23

EpistSearch GTX 650Ti + 6 Intel Core i7 1 h 48 m 19.29
EpistSearch GTX 650Ti 1 h 57 m 17.81
GBOOST GTX 650Ti 2 h 41 m 12.97
GBOOST* GTX 285 2 h 43 m 12.81
EpiGPU* GTX 580 2 h 55 m 11.90

SHEsisEPI* GTX 285 27 h 1.29

6 Conclusions

We have presented EpistSearch, a tool to search for epistasis between SNP-pairs
in a fast manner taking advantage of CPU and GPU parallelism. The results
produced by this tool can help to find genetic expressions for multiple common
human diseases. Similar to BOOST and its GPU variant (GBOOST), which are
currently two of the fastest and most popular available tools, EpistSearch is based
on a definition of interaction via logistic regression models. Although our tool
outputs the same list of pairs with epistasis than BOOST for all the experiments
included in this paper (thus, providing the same accuracy), EpistSearch has been
optimized by calculating less elements of the contingency tables and by applying

a novel preliminary filter. Therefore, EpistSearch uses a three-stage approach
where only the simplest (but less precise) filter is applied to all the SNP-pairs.
The most precise and most computationally expensive filters are only applied
to the pairs that were not discarded by the preliminary test. In addition, an
inter-task hybrid CPU-GPU parallelism has been implemented using Pthreads
and CUDA in order to concurrently work on both multicore CPUs and GPUs.

We have also compared the performance of EpistSearch to BOOST and
GBOOST on a hex-core modern machine with two available GPUs using sim-
ulated and real datasets. This experimental evaluation shows that EpistSearch
is consistently faster in all the experiments, even though the characteristics of
the input datasets are very different. For CPU computation, our tool obtains a
speedup higher than 2x compared to BOOST using the same resources (only one
CPU core) and it is able to accelerate the computation up to 11.3x by exploiting
the 6 cores of the machine. Moreover, depending on the characteristics of the
dataset of SNPs, EpistSearch obtains a speedup of more than 3x and 5x on a
GTX 650 Ti and a GTX Titan GPU, respectively.

As future work, we will extend EpistSearch so it can work with a larger
number of SNPs, even if they do not fit in the GPU memory. Furthermore, we
will develop a multiGPU version.

References

1. Maher, B.: Personal Genomes: the Case of the Missing Heritability. Nature
456(7218) (2008) 18–21

2. Moore, J.H., Asselbergs, F.W., Williams, S.M.: Bioinformatics Challenges for
Genome-Wide Association Studies. Bioinformatics 26(4) (2010) 445–455

3. Cordell, H.J.: Detecting Gene-Gene Interactions that Underlie Human Diseases.
Nature Reviews Genetics 10(6) (2009) 392–404

4. Zhao, J., Jin, L.: Test for Interaction Between Two Unlinked Loci. The American
Journal of Human Genetics 78(1) (2006) 15–27

5. Purcell, S., et al: PLINK: a Tool Set for Whole-Genome Association and
Population-Based Linkage Anlyses. The American Journal of Human Genetics
81(3) (2007) 559–575

6. Wellcome Trust Case Control Consortium. http://www.wtccc.org.uk/ (Last visit:
January 2014)

7. Consortium, T.W.T.C.C.: Genome-Wide Association Study of 14,000 Cases of
Seven Common Diseases and 3,000 Shared Controls. Nature 447(7145) (2007)
661–678

8. Yang, C., He, Z., Wan, X., Yang, Q., Xue, H., Yu, W.: SNPHarvester: a Filtering-
Based Approach for Detecting Epistatic Interaction in Genome-Wide Association
Studies. Bioinformatics 25(4) (2009) 504–511

9. Wan, X., Yang, C., Yang, Q., Xue, H., Tang, N.L., Yu, W.: Predictive Rule In-
ference for epistatic Interaction Detection in Genome-Wide Association Studies.
Bioinformatics 26(1) (2010) 30–37

10. Wan, X., Yang, C., Yang, Q., Xue, H., Tang, N.L., Yu, W.: BOOST: A Fast Ap-
proach to Detecting Gene-Gene Interactions in Genome-Wide Case-Control Stud-
ies. The American Journal of Human Genetics 87(3) (2010) 325–340

11. Bi, J., Gelernter, J., Sun, J., Kranzler, H.R.: Comparing the Utility of Homo-
geneous Subtypes of Cocaine Use and Related Behaviors with DSM-IV Cocaine
Dependence as Traits for Genetic Association Analysis. American Journal of Med-
ical Genetics 165(2) (2014) 148–156

12. Chu, M., et al: A Genome-Wide Gene-Gene Interaction Analysis Identifies an
Epistatic Gene Pair for Lung Cancer Susceptibility in Han Chinese. Cancinogenesis
32(3) (2014) 572–577

13. Milne, R.L., et al: A Large-Scale Assessment of Two-Way SNP Interactions in
Breast Cancer Susceptibility Using 46,450 Cases and 42,461 Controls from the
Breast Cancer Association Consortium. Human Molecular Genetics 23(7) (2014)
1934–1946

14. Yung, L.S., Yang, C., Wan, X., Yu, W.: GBOOST: A GPU-Based Tool for Detect-
ing Gene-Gene Interactions in Genome-Wide Case Control Studies. Bioinformatics
27(9) (2011) 1309–1310

15. Piriyapongsa, J., Ngamphiw, C., Intarapanich, A., Kulawonganunchai, S., Assawa-
makin, A., Bootchai, C., Shaw, P.J., Tongsima, S.: iLOCi: a SNP Interaction Pri-
orization Technique for Detecting Epistasis in Genome-Wide Association Studies.
BMC Genomics 13(Supl 7) (2012)

16. Goudey, B., Rawlinson, D., Wang, Q., Shi, F., Ferra, H., Campbell, R.M., Stern, L.,
Inouye, M.T., Ong, C.S., Kowalczyk, A.: GWIS - Model-Free, Fast and Exhaustive
Search for Epistatic Interactions in Case-Control GWAS. BMC Genomics 14(Supl
3) (2012)

17. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: Accelerating Smith-
Waterman Protein Database Search by Coupling CPU and GPU SIMD Instruc-
tions. BMC Bioinformatics 14(177) (2013)

18. Liu, Y., Schmidt, B.: CUSHAW2-GPU: Empowering Faster Gapped Short-Read
Alignment Using GPU Computing. IEEE Design & Test of Computers (in press)

19. POSIX Threads Programming. https://computing.llnl.gov/tutorials/

pthreads/ (Last visit: January 2014)
20. NVIDIA Developer CUDA Zone. https://developer.nvidia.com/category/

zone/cuda-zone (Last visit: January 2014)
21. genomeSIMLA Webpage. http://chgr.mc.vanderbilt.edu/genomeSIMLA/

genomeSIMLA/Introduction.html (Last visit: January 2014)
22. Hemani, G., Theocharidis, A., Wei, W., Haley, C.: EpiGPU: Exhaustive Pairwise

Epistasis Scans Parallelized on Customer Level Graphic Cards. Bioinformatics
27(11) (2011) 1462–1465

23. Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., Shi, Y.: SHEsisEpi, a GPU-
Enhanced Genome-Wide SNP-SNP Interaction Scanning Algorithm, Efficiently
Reveals the Risk Genetic Epistasis in Bipolar Disorder. Cell Research 20(7) (2010)
854–857

