
Parallel Definition of Tear Film Maps on Distributed-Memory Clusters for the
Support of Dry Eye Diagnosis
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Abstract

Background and Objectives: The analysis of the interference patterns on the tear film lipid layer is a useful clinical test

to diagnose dry eye syndrome. This task can be automated with a high degree of accuracy by means of the use of tear

film maps. However, the time required by the existing applications to generate them prevents a wider acceptance of

this method by medical experts. Multithreading has been previously successfully employed by the authors to accelerate

the tear film map definition on multicore single-node machines. In this work we propose a hybrid message-passing and

multithreading parallel approach that further accelerates the generation of tear film maps by exploiting the computational

capabilities of distributed-memory systems such as multicore clusters and supercomputers.

Methods: The algorithm for drawing tear film maps is parallelized using Message Passing Interface (MPI) for inter-node

communications and the multithreading support available in the C++11 standard for intra-node parallelization. The

original algorithm is modified to reduce the communications and increase the scalability.

Results: The hybrid method has been tested on 32 nodes of an Intel cluster (with two 12-core Haswell 2680v3 processors

per node) using 50 representative images. Results show that maximum runtime is reduced from almost two minutes

using the previous only-multithreaded approach to less than ten seconds using the hybrid method.

Conclusions: The hybrid MPI/multithreaded implementation can be used by medical experts to obtain tear film maps

in only a few seconds, which will significantly accelerate and facilitate the diagnosis of the dry eye syndrome.

Keywords: Dry Eye Syndrome, Tear Film Map, Parallel Programming, High Performance Computing, Message

Passing

1. Introduction

Dry eye syndrome is a chronic, multifactorial disease

of the tears and the ocular surface [1], with an increasing

prevalence in the last few years, reaching from 10 to 35%

of the general population [2]. It has a negative impact
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on several common tasks of daily living, such as driving

or working with computers. For this reason, it is recog-

nized as a growing public health problem which deserves

increased attention and resources [3].

The severity of dry eye is correlated to lipid layer thick-

ness [4], and one of the most common diagnostic tests con-

sists in analyzing the interference patterns observed in the

tear film lipid layer of the eye. Guillon designed an in-

strument for rapid assessment of the tear film thickness
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known as Tearscope Plus [5]. In order to facilitate the use

of this instrument, he also defined a grading scale com-

posed of five interference patterns, which in increasing or-

der of thickness are: open meshwork, closed meshwork,

wave, amorphous, and color fringe.

This method offers a valuable technique to evaluate

the quality and structure of the tear film in a non-invasive

way, but it is affected by the subjective interpretation of

the observer and by an adequate training [6]. These facts

support the use of a systematic, objective computerized

system for analysis and classification of interference pat-

terns. For this reason, an automatic version of this clinical

test was presented in [7], which includes the characteriza-

tion of the interference patterns by means of color and tex-

ture properties, and a optimization step to extract them

in real-time.

Due to the heterogeneity of the tear film lipid layer,

in which multiple patterns may be observed, the classi-

fication of a Tearscope image into one single category is

not always possible. Therefore, the definition of tear film

maps was proposed in [8] by means of a weighted voting

system based on distances and probabilities. An adapted

version of the classic seeded region algorithm was subse-

quently presented in [9] to improve tear film definition, not

only regarding its accuracy (from 80% to 90%), but also

in terms of processing time (from more than 60 minutes

to less than 10).

However, the time needed to define tear film maps may

prevent their clinical use. Parallel computing can be used

in order to reduce this runtime and increase their accep-

tance among medical experts. A multithreaded implemen-

tation that provides the same accuracy and further re-

duces the runtime to around 2 minutes was presented in

[10]. This work is a step forward to further accelerate the

tear film map definition using Message Passing Interface

(MPI) [11], reducing runtime to only a few seconds.

This paper is organized as follows: Section 2 explains

the background necessary to understand the rest of the

Figure 1: Workflow of the sequential algorithm.

manuscript, Section 3 presents the parallel approach pro-

posed in this research, Section 4 shows the experimental

results and discussion, Section 5 includes the related work

and, finally, Section 6 includes the conclusions.

2. Background: tear film mapping

The definition of tear film maps allows to detect mul-

tiple patterns per patient, and provides a complete and

useful information to support dry eye diagnosis. The al-

gorithm for tear film mapping used in this research was

proposed in [9], and is summarized in Figure 1.

Tearscope images include irrelevant parts of the eye

such as the pupil or the sclera. Thus, the first step consists

in locating the Region of Interest (ROI), in which the tear

film map is defined. It is a ring-shaped area automatically

located at the most illuminated part of the iris from which

the eyelashes, or shadows cast by them, have been removed

(see Figure 2).

Next, the ROI is analyzed at a local level using image

patches, i.e. small groups of nearby pixels. For each image

patch, a feature descriptor and its corresponding probabil-

ity vector are calculated. The features correspond to color

and texture properties, while the probabilities represent

the level of membership to each of the five categories pro-

posed by Guillon [5] and mentioned in Section 1.
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Figure 2: From left to right, ROIs and tear film maps represented

over two input images.

Based on this information, tear film maps are created

by applying an adapted version of the classic seeded re-

gion growing algorithm [12]. First, the seeds, i.e. the ini-

tial points of the regions, are automatically selected. The

non-overlapped patches inside the ROI are analyzed in the

terms previously explained and their maximum probabil-

ity (pmax) is compared with a threshold (α). The seeds are

the center of those patches which satisfy pmax > α, and

their corresponding regions are labelled as class i, where

pmax = p[i].

Then, the region growing is applied by analyzing the

neighborhood of each region in such a way that a neighbor

is added to a region if it satisfies δ < β, where δ is the so-

called homogeneity criterion, and β is the growing thresh-

old. Note that this criterion is defined as: δ = |p[i]−avg[i]|,

where i is the class of the region, p is the probability vec-

tor of the neighbor, and avg is the average probabilities

calculated over the region’s pixels.

Next, the regions obtained are post-processed in order

to eliminate the small areas that may correspond to false

positives or noise. Finally, a set of colors is used to rep-

resent the five interference patterns and to illustrate the

tear film map (see Figure 2).

2.1. Parallel implementation on multicore platforms

To make an efficient use of current multicore processors

the sequential applications has to be redesigned so that

they are executed using multiple threads. In [10] two mul-

tithreaded approaches to accelerate the definition of tear

film maps on multicore machines were implemented using

the multithreading support available in C++11 standard:

• On-demand approach (Figure 3). All the steps but

the region growing (the most computationally ex-

pensive) are sequential. The parallelism is included

in this step by distributing the initial seeds among

the threads and analyzing them in parallel. The dis-

tribution of seeds to threads can be performed stat-

ically or dynamically.

• Full approach (Figure 4). This proposal includes an

additional initial step that processes the whole input

image to calculate all the feature vectors and prob-

abilities of each point inside the ROI. Once finished

this first step, it behaves like the original sequential

version since the probabilities previously computed

are simply accessed to evaluate the homogeneity cri-

terion. The multithreaded parallelization is included

in the new additional step, as it is very computation-

ally demanding. As the descriptors and probabilities

are previously computed, the region growing step is

very fast in this implementation.

3. Parallel implementation on multicore clusters

A performance analysis of the sequential algorithm to

define tear film maps shows that the bottleneck is gathered

in one single step: the seeded region growing. In this sec-

tion we explain how to parallelize this step on distributed-

memory systems such as multicore clusters and supercom-

puters.

Multicore clusters can be defined as distributed-memory

systems that consist of several nodes interconnected through
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Figure 3: Workflow of the on-demand multithreaded algorithm. In

gray the parallel steps.

Figure 4: Workflow of the full multithreaded algorithm. In gray the

parallel steps.

Figure 5: Abstraction of a distributed-memory system with several

cores and one memory module per node.

a network, each of them with a memory module and sev-

eral CPU cores (see Figure 5). Parallel computing on this

kind of systems usually follows the Single Program Mul-

tiple Data style, i.e., it splits the workload into different

tasks that are executed on multiple CPUs so that all nodes

and cores collaborate to accelerate computation. The com-

putational capability of the cluster depends on factors such

as the number of nodes, the number of cores per node, the

network characteristics, the memory bandwidth, etc.

The most common programming model for high-performance

clusters systems is message-passing. MPI [11] is estab-

lished as a de-facto standard for message-passing as it

is based on the consensus of more than 40 participating

organizations, including vendors, researchers, software li-

brary developers, and users. MPI provides a portable,

efficient, and flexible standard for message-passing. Note

that it is only a definition of an interface, that has been

implemented by several developers for different architec-

tures. Nowadays there exists a plethora of implementa-

tions whose routines or functions can be directly called

from C, C++ and Fortran code.

A parallel MPI program consists of several processes

with associated local memory. In a pure MPI program

each process is linked to one core. In hybrid MPI and

multithreaded programs each process is usually mapped

to one node and it has several associated threads (often

the same number of threads as cores within the node).

If the tasks of different processes are completely indepen-

4



dent they do not need to exchange information. Otherwise,

data communication must be performed. The traditional

MPI communication style is two-sided, i.e. the source and

destination processes must be synchronized through send

and receive routines. MPI also provides collective routines

for communication patterns that involve a group of pro-

cesses. These collectives are usually very efficient as there

exist optimized versions for specific architectures [13, 14].

3.1. MPI-based tear film mapping

Our experimental evaluation in [10] showed that the

on-demand approach with dynamic distribution obtains

the best performance on multicore platforms, but also that

its scalability is limited (it never scales for more than 32

threads). Two reasons cause this limitation. On the one

hand, the parallelism consists in different threads simulta-

neously performing the region growing of different seeds,

but the time of the region growing depends on the region

size, and might be significantly variable. Consequently,

cores working over larger regions would work longer while

other have already finished, and thus the parallel capa-

bility of the system is not fully exploited. On the other

hand, all threads need to share a variable that identifies

the next region to analyze. Accesses to this variable are

synchronized using locks to avoid race conditions, which

leads to additional overhead. As the impact of these two

drawbacks increases with the number of total cores, we

discarded the on-demand version for a MPI extension.

In the full approach the scalability is higher as the com-

putation on each core is completely independent and the

workload is well balanced (the calculation cost for each

point is the same and we distribute the same number of

points to each core). The main drawback is that it ana-

lyzes all points inside the ROI, and some of them are not

necessary for the region definition, while the on-demand

approach only computes the feature descriptors and prob-

ability vectors associated to those pixels which are in the

neighborhood of the regions. It means that the sequential

Figure 6: Workflow of the pure MPI algorithm. In gray the parallel

steps.

time is higher compared to the on-demand version. Nev-

ertheless, the good scalability and the use of additional

parallel resources should overcome the overhead caused by

calculating the properties of unnecessary points. Thus, we

use this full approach as base for the MPI implementation.

Figure 6 illustrates the adaptation of the full approach

to be executed using several MPI processes. All the pro-

cesses simultaneously read the input image using the ef-

ficient parallel MPI I/O library. Thus, the input image

is replicated on the different local memories and directly

accessible to all processes. The second step consists in

the calculation of the ROI. As this step is extremely fast,

it is executed in sequential. Once the ROI is calculated,

its points are distributed among processes with the corre-

sponding collective routine (MPI Scatter) and each process

calculates in parallel the properties of its assigned points.

As the cost of the properties calculation is the same for ev-

ery point, they are distributed in a round-robin way that

ensures the same number of points per process.

The region growing step is not adequate for parallel
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computation using message-passing. We could distribute

the seeds among the processes, but the work of different

processes would not be independent. During the grow-

ing procedure of each seed the tear film map changes,

and these advances have influence on the growing of other

seeds. It means that the state of the tear film map should

be shared by all processes, which is extremely expensive

in MPI as it requires many communications and synchro-

nizations. Consequently, the region growing procedure is

performed by only one process. Nevertheless, the cost of

this step is significantly lower than the previous calcula-

tion of properties so its MPI parallelization is not critical

for performance. In order to perform the region growing

the responsible process requires the properties of all the

ROI points in its local memory. They are collected with

another MPI collective (MPI Gather). The convenience

of using collectives instead of point-to-point messages for

communications that involve several MPI processes was

addressed at the beginning of this section. Finally, the

same process also draws the output tear film map. This is

a sequential step because its computational cost is almost

negligible.

Remark that, besides adapting this approach to the

MPI features (replication of the input image, distribution

of the ROI among processes, gather of all properties before

the region growing, etc.), we have included an additional

optimization that is not present in the algorithm of the

previous full multithreaded implementation (Figure 4). In

the MPI approach only the points inside the ROI are dis-

tributed among processes. In the previous multithreaded

approach all points of the input image were taken into ac-

count for the data distribution and every thread had to

check whether the points belong to the ROI.

3.2. Hybrid MPI/multithreaded parallelization

There is a current trend to develop hybrid MPI and

multithreaded programs where each process is associated

to a group of cores (usually all the cores within one node of

the cluster) and it launches several threads to map its tasks

among the cores of the group. These hybrid applications

usually outperform only-MPI codes on multicore clusters

[15, 16]. We use the C++11 support for multithreading

to optimize our MPI implementation by launching several

threads on two steps of the algorithm:

• In a multicore cluster with N nodes and C cores per

node a pure MPI implementation would use N · C

processes for the parallel calculation of the proper-

ties of the pixels inside the ROI. A typical config-

uration for our hybrid approach execution creates

only N MPI processes (one per node), each one with

C threads that collaborate to calculate the prop-

erties of the points assigned to their parent pro-

cess. The benefit of the hybrid implementation is

that the number of processes is reduced but all the

cores of the system are exploited. Consequently,

less processes are involved in the collective routines

(MPI Scatter and MPI Gather) which improves com-

munication performance. Furthermore, the memory

overhead due to replicating the input image is also

reduced, as the threads can work over the same im-

age and thus only one copy per node and MPI pro-

cess is needed.

• Although the region growing step is much faster than

in the original sequential algorithm (thanks to the

precalculation of the feature descriptors and prob-

ability vectors), its computational cost is not com-

pletely negligible. MPI parallelization of the region

growing is not advisable as it would require many

messages to share the current state of the tear film

map (see Section 3.1). However, in our hybrid imple-

mentation the MPI process responsible of this step

launches several threads and each one performs the

growing of different seeds in parallel. Therefore, all

cores of one node collaborate in this step even when

using only one MPI process. As threads share the
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same memory space, modifications in the map per-

formed by one thread are directly accessible to the

others without any communication overhead. Re-

mark that the full implementation in [10] does not

include multithreaded parallelization of the region

growing, which is another novel optimization of this

work.

Algorithm 1 shows the hybrid algorithm that generates

the matrix of regions R that will be drawn. The MPI

collectives indicated in the previous subsection are present

in lines 1 and 5. The most computationally expensive

part (i.e. the calculation of the properties for the whole

ROI) is performed in parallel in lines 3 and 4. Then, the

rest of computation is completed only by process 0, but

several threads collaborate for the region growing step.

Different threads work over different points of the SSL

list as explained in Section 2 (lines from 10 to 28).

Figure 7 visually summarizes the parallel behaviour

of the hybrid approach. Our implementation is flexible

enough to work with different numbers of processes and

threads. The configuration is indicated through command

line. Anyway, according to the experimental results (see

Section 4), the use of one process per node is always the

best configuration especially thanks to the reduction of

the communication overhead and the increase of the par-

allelism in the region growing.

4. Results

In order to evaluate the performance of our hybrid

parallel tear film map implementation runtime tests were

performed on 32 nodes of the Finis Terrae 2 supercom-

puter [17] at the Galicia Supercomputing Center (CESGA).

Each node contains two 12-core Haswell 2680v3 processors

(24 cores per node) and 128 GB of memory. They are con-

nected through an InfiniBand FDR network with 56 Gbps

of theoretical effective bandwidth. All the experiments

were built with the Intel MPI and ICC compilers version

16.0.3 and the -O3 optimizations.

Regarding the images, the experimentation was per-

formed with the VOPTICAL R dataset [18] which con-

tains 50 images of the preocular tear film with a resolu-

tion of 1024 × 768 pixels. All the images were manually

annotated by experts who delimited those regions asso-

ciated with the five interference patterns. Note that the

time needed to generate tear film maps is variable since

the region-growing runtime depends on the region sizes.

Furthermore, the runtime also depends on the ROI size,

as all pixels outside the ROI are not processed.

The experimental evaluation started by comparing the

output images provided by each implementation. We con-

clude that there is no significant difference in the accuracy

of the different versions, in comparison with the experts’

annotations. Therefore, from now on we will only focus on

performance in terms of runtime.

Table 1 shows the runtime of our hybrid parallel imple-

mentation for varying number of nodes. One process and

24 threads per node are used in all cases in order to com-

pletely exploit the computational capability of each node.

Intermediate configurations (more processes per node and

less threads per process) are discarded because preliminary

evaluations proved that they are less efficient as more pro-

cesses are involved in the reduction of the feature descrip-

tors and probability vectors of the whole ROI. Three values

are shown for each scenario: the average, maximum and

minimum execution time of the 50 images of the dataset.

The results for the best only multithreaded approach pre-

sented in [10] (on-demand version) using the 24 cores of

one node are also included for comparison purposes.

The main conclusion that can be obtained is that the

hybrid parallel implementation significantly accelerates the

generation of tear film maps compared to the previous mul-

tithreaded approaches. For instance, the average runtime

is reduced from 50 seconds using the best multithreaded

version to only 5 seconds with the hybrid implementation

on the 32 nodes (8.42 times faster). This effect is even
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Algorithm 1: Pseudo-code of the hybrid parallel algorithm.

Data: matrix of points in the region of interest ROI, growing threshold β, MPI rank myRank, thread id myId

Result: matrix of regions R

1 MPI Scatter(ROI) to all processes

2 initialize matrix of probabilities p := 0

3 for each point t ∈ ROI in parallel all processes and threads do

4 p[t] := calculateProperties(t)

end

5 MPI Gather(p) to process 0

6 if myRank == 0 then

7 if myId == 0 then

8 initialize list of seeds L := selectSeeds(ROI)

end

9 initialize matrix of regions R := 0 and sequentially sorted list SSL := φ

10 for each seed s ∈ L in parallel all threads of process 0 do

11 i := getLabel(s)

12 R[s] := i

13 for each neighbor n ∈ getNeighbors(s) do

14 δ = |p[i]− avg[i]|

15 add(SSL, n, i, δ))

end

end

16 while notEmpty(SSL) in parallel all threads of process 0 do

17 y := pushFirst(SSL)

18 N = getLabeledNeighbors(y) and removeBoundaryNeighbors(N)

19 if sameLabel(N) then

20 i := getLabel(N)

21 δ := getDelta(y)

22 if δ < β then

23 R[y] := i

24 update(avg[i])

25 for each neighbor n ∈ getNoLabeledNeighbors(y) do

26 δ = |p[n]− avg[i]|

27 add(SSL, n, i, δ))

end

end

else

28 R[y] := −1

end

end

end
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Figure 7: Workflow of the hybrid MPI/multithreaded algorithm. In gray the parallel steps.

Table 1: Runtime (in seconds) of the hybrid parallel implementa-

tion. The results are the average, maximum and minimum runtime

obtained from the analysis of 50 images. We present results for dif-

ferent number of nodes using one process and 24 threads per node,

and compared to the best multithreaded version (on-demand) with

24 threads.

Version Nodes Avg Max Min

Hybrid full

1 151.21 252.43 73.06

2 74.74 128.39 37.05

4 42.39 68.25 21.90

8 19.94 33.59 9.21

16 11.23 18.13 5.79

32 5.96 9.43 3.32

On-demand 1 50.20 117.93 12.59

more significant for the most computationally demanding

image, where the acceleration is up to 12.50 (time reduc-

tion from almost two minutes to less than 10 seconds).

Figures 8 and 9 provide an insight of the speedups when

comparing the hybrid implementation to the two differ-

ent multithreaded ones. These speedups are calculated as:

speedup = Tmult

Thyb
, where Tmult and Thyb are the execution

times of the multithreaded and hybrid approaches, respec-

tively. Besides the performance gain over the on-demand

approach, these figures show that the scalability of the

MPI code itself is very high. The average and maximum

speedups of the hybrid implementation on 32 nodes over

its base version (multithreaded full) are 25.37 and 26.76,

respectively, which means parallel efficiency around 80%.

Furthermore, the original sequential implementation (one

process and one thread) presented in [9] needed up to half

hour to complete the tear film map of the most computa-

tionally demanding image and now, with the hybrid full

version, the map is obtained in only a few seconds. This

proves the adequacy of parallel computation for the accel-

eration of this problem.
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Figure 8: Average speedup of the hybrid parallel implementation

using up to 32 nodes (one process and 24 threads per node) over the

multithreaded full and on-demand versions with 24 threads.
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Figure 9: Speedup of the hybrid parallel implementation using 32

nodes (one process and 24 threads per node) over the multithreaded

full and on-demand versions with 24 threads. Average speedups, as

well as the values for the slowest and fastest images are presented.

On average, the use of four nodes is enough to outper-

form the best multithreaded version. However, even only

two nodes are enough to decrease the runtime of 7 images

(14%). This percentage increases to 72% and 100% for

four and eight nodes, respectively. The reason why some

images benefit more from the hybrid implementation is the

variable ROI size. As explained in Section 3.1, the hybrid

approach computes all the points of the ROI in a previ-

ous step to region growing, while not all of them are later

explored. The higher the number of points of the ROI

not explored in the region growing phase, the higher the

overhead of the previous step and more nodes are neces-

sary to overcome this overhead. This behavior is reflected

in Figure 10. It shows that the hybrid implementation

spends most of time in the additional step that computes

all the points of the ROI, and this step is the main focus of

the parallelization. Nevertheless, the region growing is the

heaviest step of the multithreaded on-demand approach.

5. Related work

To the best of our knowledge, no other attempts have

been made so far, in the literature or commercially, to

provide automatic assessments of the tear film lipid layer

patterns using Tearscope images. Other clinical instru-

ments have been considered to automatically analyze the

interference phenomena, such as the Doane’s interferome-

ter which was used to detect tear film breakup regions by

means of a texture-based segmentation method [19], and

to develop an automated grading system to categorize in-

terferometry images based on color and texture properties

[20]. Additionally, other diagnostic tests commonly used

have been automated, including the breakup time (BUT)

test [21, 22] and the non-invasive breakup time (NIBUT)

test [23, 24].

There exist previous parallel algorithms based on re-

gion growing that solve biomedical problems. Some ex-

amples of multithreaded approaches are [25] and [26] to

analyze teeth and abdominal images, respectively. Up to
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Figure 10: Average performance breakdown of the hybrid parallel implementation using up 32 nodes (one process and 24 threads per node)

and the multithreaded on-demand version with 24 threads.

our knowledge, the only region growing based applications

that can be executed on distributed-memory systems are

[27] and [28]. The first one accelerates the detection of

retinal blood vessels using the parallel library of Matlab,

but its scalability is quite limited (only two times faster

using 14 processes). The last reference is focused on brain

images and needs GPUs installed in the nodes of the clus-

ter to be fully optimized. Therefore, this work is the first

one focused on the use of multicore clusters to improve the

analysis of the interference patterns on the tear film lipid

layer.

6. Conclusions

Dry eye syndrome is a public health problem, and one

of the most common conditions seen by eye care special-

ists. Tear film maps can be employed as part of a clin-

ical routine to diagnose dry eye since they illustrate the

spatial distribution of the patterns over the whole tear

film and provide useful information to practitioners. Our

previous work [10] presented an automatic multithreaded

method to draw tear film maps from an image of the tear

film lipid layer with high accuracy and runtime of a few

minutes on shared-memory systems with 16 and 64 cores.

However, medical experts demand applications with real

time response (a few seconds) in order to provide a faster

diagnosis for their patients.

In this work we have presented a hybrid parallel imple-

mentation of the tear film map definition in order to ful-

fill the practitioners runtime requirements without loosing

accuracy. The main workload (calculation of the feature

descriptors and probability vectors of the ROI points) is

distributed among several MPI processes. A second level

of parallelization, with several threads per process, allows

to reduce the memory overhead and the performance im-

pact of the MPI communication collective routines. Fur-

thermore, although the region growing must be performed

by only one MPI process, the use of several threads also

accelerates this step.

The experimental evaluation was performed on 32 nodes

of an Intel cluster with 24 cores per node. A dataset with

50 tear film images was used in the evaluation. The exper-

imental results using one process per node and 24 threads

per process (the best configuration) show that the imple-

mentation provides high scalability. The average speedup
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on 32 nodes compared to its base only multithreaded ver-

sion is 25.37, with parallel efficiency around 80%. Com-

pared to the best only multithreaded approach presented

in [10], the execution on 32 nodes is on average 8.42 times

faster. Remark that in the worst case the hybrid imple-

mentation on 32 nodes only takes 9.43 seconds while the

best multithreaded approach needs around two minutes

(speedup of 12.50).

Finally, a web-based system for dry eye assessment

(iDEAS) was presented in [29]. iDEAS is a framework

for eye care specialists to collaboratively work using image-

based services in a distributed environment, which includes

two automatic services: tear film classification and tear

film map definition. Using this novel hybrid parallel imple-

mentation and a multicore cluster as server of the iDEAS

web framework [29], several medical experts can automat-

ically obtain the tear film maps on a few seconds.
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[3] B. Miljanović, R. Dana, D. A. Sullivan, D. A. Schaumberg,

Impact of dry eye syndrome on vision-related quality of life,

American Journal of Ophthalmology 143 (3) (2007) 409–415.

[4] G. N. Foulks, The correlation between the tear film lipid layer

and dry eye disease, Survey of Ophthalmology 52 (4) (2007)

369–374.

[5] J.-P. Guillon, Non-invasive Tearscope Plus routine for contact

lens fitting, Contact Lens and Anterior Eye 21 (Suppl 1) (1998)

S31–S40.

[6] J. J. Nichols, K. K. Nichols, B. Puent, M. Saracino, G. L.

Mitchell, Evaluation of tear film interference patterns and mea-

sures of tear break-up time, Optometry & Vision Science 79 (6)

(2002) 363–369.

[7] B. Remeseiro, V. Bolón-Canedo, D. Peteiro-Barral, A. Alonso-
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