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Abstract

This paper examines four different strategies for implementing the parallel Conjugate Gradient
(CG) method using Unified Parallel C (UPC), a Partitioned Global Address Space (PGAS) lan-
guage. The paper focuses on analyzing how they impact communication and overall performance.
Firstly, traditional 1D and 2D distributions of the matrix involved in CG computations are con-
sidered. Then, a new 2D version of the CG method with asymmetric workload, based on leaving
some threads idle during part of the computation to reduce communication, is proposed. The
strategies are independent of sparse storage schemes. They are evaluated on a Intel Xeon-based
cluster through a set of matrices that exhibit distinct sparse patterns, demonstrating that our
proposed strategy outperforms the others.

Conjugate Gradient, UPC, Performance Optimization

1 Introduction

The Conjugate Gradient (CG) method and its variants are at the core of a number of applications.
Basically, the algorithm requires a matrix-vector multiplication, together with vector updates and
dot products.a Of particular interest is how to achieve an efficient implementation of the matrix-
vector multiplication involving a sparse matrix (SpMV), since it requires irregular memory access and
communication besides being the costliest part of the algorithm in terms of floating point operations.
For this reason, CG has long been used for performance measurements, e.g. in the NAS Parallel
Benchmarks [1]. Notably, most of the previous works in this area have focused on minimizing memory
access time within SpMV using different storage formats [2, 3, 4]. In contrast, only few works have
studied the optimization of the CG method as a whole [5, 6]. We examine four different strategies
(each one with its own data distribution) for implementing the parallel CG method in its entirety, and
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aFor practical purposes, the algorithm is often used with preconditioners but this is not in the scope of this paper.

1



how they can play a role in reducing communication and affecting performance. These strategies can
be used with any storage format, which makes our work complementary to attempts of minimizing
memory access time through such formats.

We implement those strategies using UPC [7, 8], a Partitioned Global Address Space (PGAS)
language that has been shown to outperform MPI in some cases [9, 10] and continues to be improved
under the Dynamic Exascale Global Address Space (DEGAS) Project [11]. PGAS provides a data
and execution model that can improve productivity and performance on highly parallel, multi-core
architectures. One of the reasons is that it provides one-sided communication through put and get
operations; therefore, it circumvents memory limitations that may be found in MPI. Although there
are UPC implementations of the CG NAS benchmark [9, 12], to the best of our knowledge they have
not attempted to reduce the overall communication overhead in the method.

The rest of the paper is organized as follows. In Sections 2 and 3 we discuss different strategies for
implementing the parallel CG method. These implementations are evaluated in Section 4, using a set
of matrices with distinct sparse patterns. Lastly, we summarize our findings in Section 5.

2 Parallel Conjugate Gradient

1 v = 0 w = b ; x = b

2 rnorm = wTw (DOT)

3 while
(
i < MAX ITER) ‖ (rnorm > rtol)

)
do

4 y = Ax (SpMV)

5 α = rnorm/(x
T y) (DOT)

6 v = v + αx (AXPY)
7 w = w − αy (AXPY)
8 rprev = rnorm
9 rnorm = wTw (DOT)

10 β = rnorm/rprev
11 s = w − βx (AXPY)

12 end

Algorithm 1: Idealized pseudo-code for the CG method.

If A is an n×n sparse symmetric positive-definite matrix and v and b vectors, the CG method can
theoretically reach a solution v for the system Av = b in n iterations. Algorithm 1 shows the basic
steps of the CG method. It starts with a random initial guess of the solution v. Then, it performs a
loop where a new approximate solution v is obtained in each iteration until the maximum number of
iterations MAX ITER is reached or the residual rnorm is small enough (which indicates that v has
satisfied the convergence criterion). MAX ITER and the tolerance for the residual (rtol) are specified
by the user. In order to calculate the approximate solution and corresponding residual, one SpMV,
two dot products (DOT) and three vector updates (AXPY) are performed per iteration.

The SpMV complexity is bounded by O(n× nz), being nz the maximum number of non-zero ele-
ments per row, whereas the DOT and AXPY complexities are O(n). Therefore, most of the computing
time is spent within SpMV. Parallel implementations of the CG method distribute the matrix and the
vectors among threads. Typically, these (sub)vectors have the same distribution so that the DOT and
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Figure 1: SpMV with a distribution of A by rows.

AXPY operations are performed without remote accesses. The next subsections examine the adequacy
of UPC for the most common implementations of the CG method presented in previous works, with
focus on the following aspects:

• How the distribution of the matrix determines the distribution of the vectors.

• The remote accesses that are necessary due to the distribution of the vectors.

• The influence these remote accesses have on the performance of a parallel CG method imple-
mented in UPC.

2.1 One-Dimensional Distributions

Figure 1 sketches the product Ax = y in a block distribution by rows (for clarity, we do not use any
specific storage format for A). Each thread performs a multiplication of its local rows by the whole
vector x and the (sub)result is kept in the positions of y that correspond to the rows of A.

The vector y is distributed in the same way as the rows of A to avoid remote accesses when saving
the results of the SpMV. As previously noted, all other vectors will have the same distribution to
avoid remote accesses in DOT and AXPY. This implies remote accesses to x prior to SpMV. In the
worst-case scenario (i.e. a dense matrix), all threads need to replicate the whole vector x, and this is
usually performed through gather and broadcast collectives (with a synchronization between them).
However, for most sparse matrices each thread only needs a subset of the elements of the vector. These
elements are copied with one-sided communications instead of the gather and broadcast of the whole
vector, thus reducing the volume of communications.

The main drawback of this approach is that all threads perform the copies of the subset of x at
the same time. When the number of threads increases, the communication time increases due to two
factors. On the one hand, the vector x is distributed among more threads, so each thread performs
more copies of fewer elements each. In UPC, this is less efficient than fewer copies of more elements.
On the other hand, more threads perform remote copies at the same time. This implies more messages
sharing the network resources, which usually decreases the efficiency of the copies.

Additionally, for a large number of threads the efficiency of the DOT products decreases: the
increase of the overhead due to the reduction of the subresults among all threads is more significant
than the decrease of time since each thread performs fewer products.

Figure 2 sketches the product Ax = y when A is distributed by columns. In this case the vectors
follow the same distribution as the columns of the matrix to avoid remote accesses to the vector x
within SpMV. As a result, each thread generates an entire vector of length n, although this vector
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Figure 2: SpMV with a distribution of A by columns.

Figure 3: SpMV with a 2D distribution of A.

is only a partial sum that needs to be added to the partial results of the other threads. After this
addition (usually performed through an array-based reduction) and one synchronization, each thread
takes the corresponding values of y for subsequent calculations in CG with one-sided copies, similarly
to the copy of the necessary parts of x as illustrated in Figure 1. Consequently, the column-based
approach is always less efficient than the row-based one, as it adds the overhead of the array-based
reduction.

2.2 Two-Dimensional Distribution

A two-dimensional approach that reduces communication on distributed memory machines was pre-
sented in [5]. Figure 3 illustrates this approach when the processes are arranged in a P ×Q grid. As
in the row-based approach, each thread copies to private memory some elements of vector x. However,
in this case the P threads that belong to the same column of the grid take the same elements of x.
Now, the Q threads within the same row perform independent calculations by columns, working only
with its subset of x. After ensuring (through synchronization) that all grid rows have reduced their
partial results, all threads take the elements of y necessary to parallelize the other pieces of the CG
method among all threads.

This 2D approach requires remote accesses for both x and y, but it has been shown [5] to obtain
better performance than the 1D algorithms thanks to a reduction in communications. The reason
is that both the initial replication of x and the final reduction of y involve fewer threads and fewer
elements.
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3 Two-Dimensional Conjugate Gradient with Asymmetric Work-
load

As discussed in the previous section, a 2D SpMV can help to reduce the time spent at the remote
copies of x. However, it adds three sources of overhead compared to the row-based approach:

• The reduction of the subsets of y among the threads within the same row of the grid.

• The synchronization of all threads after this reduction.

• The redistribution of y so that the DOT and AXPY routines can be parallelized among all
threads.

In an attempt to avoid the last two drawbacks, a new algorithm is proposed. Figure 4 illustrates
it: the main difference from Figure 3 is that there is no redistribution of the vector y. Once the
subsets are reduced, SpMV finishes with the data of y only distributed among the P threads that
belong to the first column of the grid. Therefore, after the product, all the DOT and AXPY routines
are only parallelized among these threads of the first column, the other threads remaining idle. The
main advantage of this approach is the avoidance of the synchronization and redistribution among all
threads at the end of the SpMV. Additionally, only P threads are involved in the final reduction within
the DOT products, so the overhead is less significant. Last but not least, as all vectors follow the same
distribution, x is only shared among P threads. Consequently, there are fewer blocks of larger size and
thus the copies of the elements of vector x at the beginning of the SpMV are more efficient.

Figure 4: SpMV with a 2D distribution of A and asymmetric workload.

The main drawback of this algorithm is that the DOT and AXPY routines are parallelized only
among P threads. Therefore, resources remain unused. However, as discussed in Section 2, the
complexity of SpMV is typically higher than DOT or AXPY. In terms of performance, the decrease
of the communication overhead within the SpMV is much more significant than the time lost by not
using all threads for DOT and AXPY.

4 Experimental Evaluation

The details of Carver, the cluster installed at the National Energy Research Scientific Computing
Center (NERSC) that was used for evaluating the algorithms discussed in the previous sections, are
shown in Table 1. For this experimental evaluation we have selected four matrices, with different
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Table 1: Characteristics of the computer platforms used in the tests.

System Carver

Processor Intel Xeon 5550X Nehalem
Clock rate 2.67 GHz
Peak performance per core 10.8 Gflops
Cores per node 8
Total number of nodes 1,120
Total number of cores 8,960
L1 cache 16 KB (private)
L2 cache 256 KB (private)
L3 cache 8 MB (shared per processor)
Memory per node 64GB
Interconnect 4X QDR InfiniBand
UPC Compiler Berkeley UPC
MPI Compiler Intel MPI

Table 2: Snapshot of the sparse matrices used in the evaluation. n is the number of rows and columns
and nnz the number of non-zero elements.

cant consph pdb1HYS crankseg
n=62.5K n=83.3K n=36.4K n=52.8K
nnz=4.0M nnz=6.0M nnz=4.3M nnz=10.6M

sparsity patterns, from the University of Florida Matrix Collection [13]. The sparsity pattern and
characteristics of the matrices are shown in Table 2. As these matrices are symmetric, the Florida
Matrix Collection file only contains the upper half, but all the non-zero values of both halves are
stored in memory. Note that the four algorithms discussed in the previous sections are mathematically
equivalent. Therefore, the execution time per iteration is enough to compare the performance of the
different approaches. All the experiments used between 5,000 and 50,000 iterations (depending on the
matrix) and one UPC thread per core. All graphs show the average execution time per iteration.

Performance results for all matrices are shown in Figure 5. The execution times per iteration are
shown for 128 and 256 threads. As the thread grid topology has a great influence on the performance,
the tests for the 2D versions were repeated with different configurations and the graphs show the best
experimental results. On the one hand, the more rows are used, the more remote copies with fewer
elements each are performed at the same time to copy the bulk of x at the beginning of the SpMV
(similarly to the 1D distribution by rows). On the other hand, the more columns are specified, the
more threads are involved in each reduction at the end of the SpMV, as in the 1D distribution by
columns.
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Figure 5: Comparison of the performance of the four CG implementations using different sparse
matrices and numbers of threads.

The main conclusions obtained from Figure 5 is that the 2D version with asymmetric workload
obtains the best performance in all scenarios and only the 2D-asymmetric version scales from 128
to 256 threads for all matrices (although its scalability is quite limited for consph and pdb1HYS).
Furthermore, the 1D distribution by columns always leads to the worst performance, which confirms
that the reductions among all threads involve significant overheads. Although the 1D distribution by
rows is faster the column one, the 2D approaches outperform them for all the experiments.

5 Conclusions

In this paper we examined four different strategies for implementing the parallel CG method in UPC,
studying the impact of their data distribution on performance: two 1D approaches (with the matrix
distributed by rows and by columns), a traditional 2D algorithm and a novel 2D approach where some
threads are idle during some computations to reduce communication. While most previous works
focused only on the improvement of the parallel SpMV, the new approach aimed at reducing the
communication overhead between the SpMV, DOT and AXPY kernels.
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We tested the four approaches on a cluster with Intel Xeon processors using four sparse matrices
with distinct sparsity patterns obtained from real problems. We have shown that our proposed new
strategy outperforms the others in all scenarios. In the road to the Exascale era, machines with a
larger amount of nodes and cores will be developed, so new algorithms that reduce the communication
overheads must be designed. The novel 2D approach for the CG method presented in this paper is
one step in the development of algorithms with asymmetric workload to reduce communications.
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