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Abstract
Complete comprehension of loop codes is desirable for a variety of
program optimizations. Compilers perform static transforms and
analyses, such as loop tiling or memory partitioning, by construct-
ing and manipulating formal representations of the source code.
Runtime systems observe and characterize application behavior to
drive resource management and allocation, including dependence
detection and parallelization, or scheduling. However, the source
code of target applications is not always available to the compiler
or runtime system in an analyzable form. It becomes necessary to
find alternate ways to model application behavior.

This paper presents a novel mathematical framework to rebuild
loops from their memory access trace. An exploration engine tra-
verses a tree-like solution space, driven by the access strides in the
trace. It is guaranteed that the engine will find the minimal affine
nest capable of reproducing the observed sequence of accesses by
exploring this space in a brute force fashion, but most real traces
will not be tractable in this way. Methods for an efficient solu-
tion space traversal based on mathematical properties of the equa-
tion systems which model the solution space are proposed. The
experimental evaluation shows that these strategies achieve effi-
cient loop reconstruction, processing hundreds of gigabytes of trace
data in minutes. The proposed approach is capable of correctly and
minimally reconstructing 100% of the static control parts in Poly-
Bench/C applications. As a side effect, this achieves very high com-
pression rates of trace files. When used for dynamic access charac-
terization, it is capable of predicting over 99% of future memory
accesses.

1. Introduction
Affine codes represent an important class of problems in many
computing domains, such as supercomputing, embedded systems,
or multimedia applications. For the most part, these codes execute
large regular loops, with static control parts that depend only on the
loop index variable values through affine bounds and subscripts,
accessing and operating on large arrays of data. This is the type of
codes that is usually modeled and optimized using the polyhedral
approach [4, 9, 13, 16].

Many static and dynamic optimization techniques rely on the
knowledge of the application code to work. Unfortunately, the
source code is not always available to the optimizer. In embedded
systems for example it is common to find intellectual property
(IP) cores with well defined high level functionality, but whose
internals are opaque to the system designer and programmer. Even
when source code is available, programmers may use complex data
and control structures, including code obfuscation techniques, that
mask the underlying application logic and prevent static analysis
and optimization.

This paper presents an exploratory approach for automatically
reconstructing affine loops from a trace of their memory accesses.

The exploration engine traverses a tree-like space. Conceptually,
level k in this tree contains all possible loops with trip count equal
to k, from a 1-level nest iterating from 0 to (k − 1), to a k-
level nest with a single iteration per level. The system is based on
the observation that access strides must be constructed as linear
combinations of loop variables, and only adds a new level when no
other solution is feasible. The basic approach explores the entire
solution space for the trace in a brute force fashion. On top of it, an
exploration engine based on the mathematical properties of affine
loops guides the process to efficiently extract the reconstructed
code. Since the engine will eventually traverse the entire space, this
process is guaranteed to find the minimal canonical affine loop nest
that generates the exact input memory trace, if it exists, and given
enough time. The proposed approach builds a minimal equivalent
form using an n-level loop. The generated sequence of references is
the same as the original one, but it is not guaranteed that the number
of levels in the reconstructed loop will be the same as in the original
code. In particular, it is possible that the reconstructed code has
fewer levels. A mechanism for increasing the final number of levels
in a user-guided way is also proposed. The main contributions of
this work are:

• A mathematical framework for the extraction of an affine rep-
resentation of a given memory trace (Section 2). Stragies for
traversing the solution space towards a minimal representation
are provided, including a mechanism that can be used for dy-
namic prediction of future accesses during runtime. (Section 3).
These results show that: (i) the system can be used to recon-
struct large, complex traces, in acceptable time; and (ii) the pre-
diction mechanism anticipates over 99% of the accesses of a
linear memory reference instruction.

Potential applications of the framework include trace compression,
approximation of nearly affine traces, analysis of codes with com-
plex control or obfuscated codes, as well as online optimizations
such as dependence detection for automatic parallelization and
memory prefetching. These are discussed in depth in Section 4,
along with the related work.

2. Trace-based reconstruction
2.1 Mathematical formulation
The proposed reconstruction algorithm assumes that the trace con-
tains, at least, the memory address of the instruction issuing the
access, or a similar way to uniquely identify the instruction, and
the accessed location. In the general case, it is expected that a trace
file will contain the entire execution of the program, including mul-
tiple loop nests and non-loop sections. Detection of loop sections
in execution traces falls out of the scope of this paper, but has been
discussed in previous work [15, 19]. In this paper a reliable mecha-
nism to detect and extract loop sections in the trace is assumed. It is
also assumed that each source instruction accesses a single data ar-



ray in the code, and that the loops bounds and subscripts are affine.
Without loss of generality, these types of loops can be written as:

DO i1 = 0, u1(−→ı )
DO i2 = 0, u2(−→ı )

...
DO in = 0, un(−→ı )
V [f1(−→ı )] . . . [fm(−→ı )]

where {uj , 0 < j ≤ n} are affine functions that provide the upper
bounds of loop ij ; {fd(i1, . . . , in), 0 < d ≤ m} is the set of affine
functions that converts a given point in the iteration space of the
nest to a point in the data space of V ; and −→ı = {i1, . . . , in}T is
a column vector which encodes the state of each iteration variable.
The particular set of index values for the kth execution of access
V is denoted by −→ı k = {ik1 , . . . , ikn}T ; and the complete access
V [f1(−→ı )] . . . [fm(−→ı )] is abbreviated by V (−→ı ). Note that each
upper bounds function uj(−→ı ) can only depend on scoped variables
at the nesting level j, i.e., {i1, . . . , ij−1}. This is not explicitly
acknowledged to simplify notation. Iteration bounds are assumed
to be inclusive, i.e., 0 ≤ ij ≤ uj(−→ı ). Since fj is affine, the access
can be rewritten as:

V [f1(−→ı )] . . . [fm(−→ı )] = V [c0 + i1c1 + . . .+ incn] (1)

where V is the base address of the array, c0 is a constant stride, and
each {cj , 0 < j ≤ n} is the coefficient of the loop index ij , and
must account for the dimensionality of the original array1. This is
the canonical form into which the method proposed in this paper
reconstructs the loop.

During the execution of the loop nest, the instruction which im-
plements the access to V will orderly issue the addresses corre-
sponding to V (−→ı 1), V (−→ı 2), V (−→ı 3), etc. These addresses will be
registered in the trace file together with the instruction issuing them
and the size of the accessed data. This memory trace format can be
generated, for instance, by Intel Pin [18].

Consider two consecutive accesses, V (−→ı k) and V (−→ı k+1), and
assume that the loop index values in −→ı k = {ik1 , . . . , ikn} and
the upper bounds functions, u1(−→ı ), . . . , un(−→ı ) are known. The
values in −→ı k+1 can be calculated as follows:

1. An index ij will be reset to 0 if, and only if all of the following
hold:
• All innermore indices are resetting.
• Either ij has reached its maximum iteration count, or some

innermore index has a negative value for its maximum iter-
ation count when ij increases by one:

(ij = uj(−→ı k)) ∨
(
∃l, j < l ≤ n;ul(. . . , i

k
j + 1, . . .) < 0

)
2. An index ij will be increased by one if, and only if all of the

following hold:
• All innermore indices are resetting.
• ij has not reached its maximum iteration count, and all in-

nermore indices have non-negative values for their maxi-
mum iteration count when ij increases by one:

(ij < uj(−→ı k)) ∧
(
∀l, j < l ≤ n;ul(. . . , i

k
j + 1, . . .) ≥ 0

)
3. In any other case, ij will not change.

1 For instance, an access A[2 ∗ i][j] to an array A[N ][M ] can be rewritten
as A[(2 ∗ M) ∗ i + j], where ci = 2M accounts for both the constant
multiplying i in the original access (2), and the size of the fastest changing
dimension (M ).

These conditions are intuitive and a direct consequence of loop se-
mantics and application control flow. If any internal index (il, j <
l ≤ n) is not resetting, then control flow will not exit the loop
at level l, and therefore it will be impossible for ij to be modi-
fied. If all internal indices reset, then control flow will reach the
post-loop section of loop at level j, increasing ij by one unit. If
ikj = uj(−→ı k) then this increase will cause the index to be beyond
its maximum iteration count, and control flow will exit level j. If
there is an iteration (k + 1), then control flow must re-enter level
j later, executing the pre-loop instruction and assigning ij = 0.
If ikj < uj(−→ı k) but there is some inner level l such that its max-
imum iteration count takes a negative value when ij is increased
by one unit, then control flow will not enter level l, will not reach
V , and no memory access may be executed until ij resets to 0. In
any other case, the next access to V will be performed in iteration
−→ı k+1 = {ik1 . . . , ikj + 1, 0, . . . , 0}.
Definition 2.1. A set of indices built complying with these condi-
tions will be referred to as a set of sequential indices.

The instantaneous variation of loop index ij between iterations
k and (k+1), δkj = (ik+1

j −ikj ), can only take one of three possible
values:

1. ij does not change⇒ δkj = 0

2. ij is increased by one⇒ δkj = 1

3. ij is reset to 0⇒ δkj = −ikj
In the following, vector notation will be used for δ:

(−→ı k+1 −−→ı k) =


ik+1
1 − ik1
ik+1
2 − ik2

...
ik+1
n − ikn

 =


δk1
δk2
...
δkn

 =
−→
δ

k

Lemma 2.2. The stride between two consecutive accesses σk =
V (−→ı k+1) − V (−→ı k) is a linear combination of the coefficients of
the loop indices.

Proof. Using Eq. (1), σk can be rewritten as:

σk = V + (c0+ c1i
k+1
1 + . . .+ cni

k+1
n ) −

V + (c0+ c1i
k
1 + . . .+ cni

k
n) =

= c1δ
k
1 + . . .+ cnδ

k
n =

= −→c −→δ k

2.2 Reconstruction algorithm
The proposed algorithm is essentially a guided exploration of the
potential solution space driven by the first-order differences of the
addresses accessed by a given instruction (the access strides). Each
node in this tree-like space represents a point in the iteration space
of the loop. Its root is a trivial loop that generates the first two
accesses in the trace. Children of a node in the tree are the in-
dices that can immediately follow the parent in the iteration space.
Starting from the root, an exploration engine begins incorporat-
ing one access to the reconstructed loop in each step, descending
one level into the tree, until it finds a solution for the entire trace
or determines that no affine loop is capable of generating the ob-
served sequence of accesses. Each step of the process is concep-
tually depicted in Figure 1. Starting from the kth iteration vector
−→ı k = {ik1 , . . . , ikn} there are (2n + 1) different vectors −→ı k+1

that are considered as candidates for the (k+ 1)th iteration vector.
If a solution exists, the algorithm builds the minimal nest capable
of generating the observed access trace2. This section models the



Figure 1. Solution space. For each reconstructed index −→ı k there
are (2n+1) possible values for−→ı k+1. The n alternatives on the left
side are obtained using an operation +(j,−→ı ) that increases index
ij by one, and resets to zero all innermore indices. The (n + 1)
alternatives on the right are obtained by applying an operation
f(j,−→ı ), which inserts a new loop at nesting level (j + 1).

problem, and develops exploration strategies to efficiently traverse
the solution space taking into account its mathematical characteris-
tics.

Let −→a = {a1, . . . , aN} = {V (−→ı 1), . . . , V (−→ı N )} be the ad-
dresses accessed by a single instruction, included in the execution
trace. Since the upper bounds functions are affine, each uj(−→ı ) can
be written as:

uj(−→ı ) = wj + uj,1i1 + . . .+ uj,(j−1)i(j−1) (2)

and therefore it is possible to build a matrix U ∈ Zn×n and a
column vector −→w ∈ Zn such that:

U =


−1 0 0 . . . 0
u2,1 −1 0 . . . 0
u3,1 u3,2 −1 . . . 0

...
...

...
. . .

...
un,1 un,2 un,3 . . . −1

 −→w =


w1

w2

...
wn

 (3)

Note that U is a lower triangular matrix, since no index ij can
depend on an innermore index; and that its main diagonal is equal
to −→−1 ∈ Zn. Using U and −→w , the condition for a given iteration
tuple−→ı to be valid under the loop constraints in the canonical loop
form can be written as:

U−→ı +−→w ≥ −→0 T
(4)

Let us assume that the algorithm has already identified a partial
solution Sk

n = {−→c , Ik,U,−→w }, which reconstructs the subtrace
{a1, . . . , ak} using n nested loops, whose components are defined
as follows:

• Vector −→c ∈ Zn of coefficients of loop indices.
• Matrix Ik = [−→ı 1| . . . |−→ı k] ∈ Zn×k of reconstructed indices.
• Matrix U ∈ Zn×n, bounds matrix as defined in Eq. (3).
• Vector −→w ∈ Zn, bounds vector as defined in Eq. (3).

2 For example, a 2-level loop with indices i, j might iterate sequentially over
all the elements in array A[N ][M ] if upper bounds are defined as ui = N ,
uj = M and the access is V [i ∗ M + j]. This can be rewritten as an
equivalent 1-level loop with index i, using ui = N ∗M and access V [i].

To be a valid solution, Sk
n has to meet the following require-

ments:

1. Each consecutive pair of indices −→ı k and −→ı k+1 must be se-
quential as per Definition 2.1.
Note that this condition is stronger than simply requiring that
the iteration indices stay inside the loop bounds, which could
be written extending Eq. (4) as:

UIk +−→w11×k ≥ 0n×k (5)

2. The observed strides are coherent with the reconstructed ones.
Using Lemma 2.2 this is written as:

−→c (−→ı k+1 −−→ı k) = −→c −→δ k
= σk

Upon processing access ak+1, the algorithm first calculates the
observed access stride:

σk = ak+1 − ak (6)

Afterwards, it builds a diophantine3 linear equation system based
on Lemma 2.2 to discover the potential indices −→ı k+1 which gen-
erate an access stride equal to the observed one:

−→c (−→ı k+1 −−→ı k) = σk ⇒ (−→c T−→c )−→δ k
= −→c Tσk (7)

where (−→c T−→c ) ∈ Zn×n is the system matrix, and −→δ k ∈ Zn is
the solution. There are two possible situations when solving this
system:

1. The system has one or more integer solutions. In this case, for
each solution −→δ k

, the new index −→ı k+1 = −→ı k +
−→
δ

k
is cal-

culated, and Ik+1 =
[
Ik|−→ı k+1

]
. U, −→w , and −→c remain un-

changed. Each of these solutions must be explored indepen-
dently.

2. The system has no solution, in which case there are three
courses of action:

(a) Modify the boundary conditions imposed by U and −→w .

(b) Increase the dimensionality of the solution: compute Sk+1
n+1

modeling a loop with (n+ 1) nesting levels.

(c) Discard this branch.

Section 2.3 describes heuristic methods to guide the search
through the solution space to accelerate traversal.

2.2.1 Solving the linear diophantine system
Although the system in Eq. (7) has infinite solutions in the general
case, only a few are valid in the context of the affine loop recon-
struction, which makes it possible to develop ad hoc solving strate-
gies.

Lemma 2.3. There are at most n valid solutions to the system in
Eq. (7). These correspond to indices:

{−→ı k+1
l = +(l,−→ı k), 0 < l ≤ n}

Proof. If index −→ı k+1 must be sequential to index −→ı k as per
Definition 2.1, then there is a single degree of freedom for −→δ k

:

3 The system must be diophantine, as loop indices may only have integer
values.



the position δkl that is equal to 1.

δk1
...

δkl−1

δkl
δkl+1

...
δkn


=



0
...
0
1
−ikl+1

...
−ikn


(8)

Positions {ij , 0 < j < l} will not change between iterations k and
(k + 1), and therefore δkj = 0; while positions {ij , l < j ≤ n}
will be reset to 0, and therefore δkj = −ikj .

Taking this result into account, it is possible to find all valid
solutions of the system in linear time, O(n), by simply testing
the n valid indices −→ı k+1

l , calculating the predicted stride for each
combination as σ̂k

l = −→c −→δ k

l , and accepting those solutions that
generate a stride equal to the observed one, σ̂k

l = σk, obtained
using Eq. (6). These will be particular solutions of the subtrace
{a1, . . . , ak+1}, which can be explored to construct a solution for
the entire trace.

2.3 Exploration of the solution space
2.3.1 Branch priority
The proposed approach is capable of efficiently finding the relevant
solutions of the linear diophantine system for each address of the
trace, but will still produce a large number of potential solutions
that will be discarded when processing the remaining addresses
in the trace. In the general case the time for exploring the entire
solution space of a trace containing N addresses generated by n
loops would be O(nN ). Exploring all branches with no particular
order could take a very long time. To guide the traversal of the
solution space, consider the column vector −→γ k ∈ Zn defined as:

−→γ k = U−→ı k +−→w (9)

Lemma 2.4. Each element γk
j ∈ −→γ k indicates how many more

iterations of index ij are left before it resets under bounds U, −→w .

Proof. γk
j is equal to the value of the upper bound of the loop in ij ,

defined in Eq. (2), minus the current value of ij :

γk
j = U(j,:)

−→ı k+wj = wj +uj,1i1+ . . .+uj,(j−1)i(j−1)− ij =

= uj(−→ı )− ij
where U(j,:) denotes the jth row of matrix U. By construction
of the canonical loop form, the step of all loops is 1. Therefore,
γk
j is equal to the number of iterations of loop ij before ij >
uj(−→ı ).

This result suggests that, assuming that U and −→w are accurate,
the most plausible value for the next index is −→ı k+1

l = +(l,−→ı k),
where l is the position of the rightmost positive element of −→γ k.

The correctness of−→ı k+1
l can be assessed by comparing the pre-

dicted stride σ̂k
l with the observed σk. Note that using −→γ k as de-

scribed above guarantees consistency with the boundary conditions
in Eq. (4), which further improves the efficiency of the approach by
saving calculations.

2.3.2 Extracting loop bounds
So far it has been assumed that the boundary conditions, U and−→w ,
can be used to correctly predict −→ı k+1 from −→ı k. This is not true
in the general case, as initially the loop bounds are unknown, as

are the number of loops involved in the execution of the instruction
accessing V .

As before, assume that the algorithm has already identified a
partial solution Sk

n = {−→c , Ik,U,−→w }. Upon processing access
ak+1 the algorithm will try to explore the branch which increments
the index il corresponding to the rightmost positive element of−→γ k,
as described before. However, it might happen that the calculated
stride for the selected branch does not match the observed stride,
i.e., σ̂k

l 6= σk. A different loop index il′ will have to be selected
as described in Section 2.2.1, but the constructed Ik+1 will not
be valid in the context of the extracted loop bounds, U and −→w ,
because either−→ı k+1

l′ will not be sequential to−→ı k, or it will violate
boundary conditions. In this situation it is necessary to generate
new boundary conditions U′ and −→w ′. These can be found by
solving the system in Eq. (5):

U′Ik+1 +−→w ′11×(k+1) ≥ 0n×(k+1) (10)

If the system is inconsistent, then the generated iteration space is
not a polytope, and the solution is not valid. If the system has
solutions then it will be overdetermined in the general case. Matrix
U′ and vector −→w ′ are only partially unknown: the only rows that
may vary with respect to U and−→w are those corresponding to loop
indices {ij , l ≤ j ≤ n}, since outer variables cannot be affected by
inner, unscoped ones. As such, their first (l − 1) rows are known.
Besides, in order for the indices to be sequential, it is necessary
to build U′ and −→w ′ such that loop resets as predicted by −→γ are
consistent with loop resets observed in Ik+1.

First, −→w ′ is calculated. The first (l − 1) positions are already
known and are the same as those in −→w . To calculate the remaining
positions {w′j , l ≤ j ≤ n} ∈ −→w ′, consider the reduced system:

U′(j,:)−→ı z + w′j ≥ 0⇒
j∑

r=1

u′j,ri
z
r + w′j ≥ 0 (11)

where U′(j,:) is currently unknown, and −→ı z ∈ Ik+1 is arbitrarily
selected. In order to calculate w′j it is possible to take advantage of
the properties of the canonical loop form, by choosing an −→ı z such
that:

−→ı z =
[
0, . . . , 0, izj , . . . , i

z
n

]T
Since every loop index must start at 0 and by the sequential con-
struction of the columns of Ik+1, such an iz is guaranteed to exist.
Replacing it in the previous equation and taking into account that
the main diagonal of U′ must be equal to −→−1 ∈ Zn:

j∑
r=1

u′j,ri
z
r + w′j ≥ 0⇒ u′j,ji

z
j + w′j ≥ 0⇒ w′j ≥ izj

Lemma 2.5. In order to guarantee that the bounds conditions in
Eq. (5) hold, −→ı z must be chosen out of all the possible candidates
such that izj is maximum, and w′j must be equal to izj .

Proof. If w′j was not selected to be equal to some izj , then Ik+1

would not be sequential as per Definition 2.1 under the boundary
conditions established by−→w ′. Now, assume that an−→ı z′ is selected
such that iz

′
j is not maximum, izj > iz

′
j . Then:

U(j,:)
−→ı z + w′j = −izj + iz

′
j < 0

The constructed −→w ′ would not be consistent with some of the
entries in Ik+1.

Corollary 2.6. In Eq. (11), it is only necessary to calculate the
valuew′l, as other elements of−→w will remain unchanged. Moreover,



w′l will only change if (∀j, 0 < j < l, ik+1
j = 0) and, in that case,

w′l = ik+1
l .

−→w ′ =
[
w1, . . . , wl−1,w

′
l, wl+1, . . . , wl

]T
Proof. If {w′j , l < j ≤ n} can be calculated exclusively selecting
vectors in the shape of −→ı z as per Lemma 2.5, then index −→ı k+1

l =
+(l,−→ı k) is not a feasible selection for −→ı z when calculating w′j ,
since ik+1

l > 0 by definition of the + operation. Therefore, w′j
will be equal to the one calculated for the previous step of the
algorithm using Ik. Using the same reasoning, if (∃j, 0 < j <
l, ik+1

j 6= 0), index−→ı k+1
l is not a feasible selection for calculating

w′l. Otherwise, and by definition of the + operation and index
sequentiality, ik+1

l = izl will be maximum.

Using this result, the calculation of −→w ′ becomes O(1). Once
−→w ′ is calculated, the unknown rows {U′(j,:), l ≤ j ≤ n} can be
calculated by reducing the original system in Eq. (10) to (n− l+1)
equation systems of the form:

U′(j,:)i
z + w′j1

1×n = 01×n

where iz ∈ Zn×n is a full rank matrix of columns extracted
from Ik+1. As established in Lemma 2.5, it is necessary to choose
iz = {−→ı z

1, . . . ,−→ı z
n} such that each of its columns represents an

iteration where index ij is maximum for a specific combination of
indices (i0, . . . , ij−1). Note that the inequality in Eq. (10) has been
changed to ensure that γj = uj(−→ı ) = 0 will hold for each of the
selected iterations, guaranteeing index consistency.

In order to efficiently solve these systems, two optimizations
can be considered. First, since U′ must be a lower triangular matrix
with known main diagonal, the previous system can be reduced to:

U′(j,1:j)i
z
(1:j,1:j−1) + w′j1

1×(j−1) = 01×(j−1) (12)

where U′(j,1:j) ∈ Z1×j denotes the first j entries of the jth row of
U′, and iz(1:j,1:j−1) ∈ Zj×(j−1) denotes the first (j − 1) entries in
the first j rows of matrix iz . Only (j−1) indexes are needed, as that
is the number of unknowns in the jth row of U′. Second, note that
any full rank matrix can be extracted from Ik+1 to build iz as long
as the selected columns are iterations where index ij is maximum.
By taking advantage of the canonical loop form, this means that
it is always possible to build iz as a triangular matrix, and solve
the system in linear time O(j). By applying both optimizations the
calculation of U′ becomes O(n2).

2.3.3 Extracting the coefficients of loop indices
Once again, assume that the algorithm has found a partial solu-
tion Sk

n = {−→c , Ik,U,−→w }. If no valid {−→ı k+1
l = +(l,−→ı k), 0 <

l ≤ n} can be built using the methods described in Sections 2.3.1
and 2.3.2 it may be caused by a loop index increasing in access
(k+1) which had not appeared before. This can cause σk to be un-
representable either as a linear combination of the currently known
coefficients in −→c , or as a set of sequential indices Ik+1. Assuming
that the first k accesses have been correctly recognized, it is possi-
ble to generate a valid partial solution Sk+1

n+1 from Sk
n by enlarging

the dimensionality of the current solution components. There are
(n + 1) potential solutions that need to be explored, as shown in
the right half of Figure 1, one for each insertion position of the
newly discovered index. The most common situation, particularly
for large values of k, is that newly discovered loops are outer than
the previously known ones. In any case, given an insertion point
(p, 0 ≤ p ≤ n) for the new loop index ip, the set of indices

Ik+1 ∈ Z(n+1)×(k+1) is generated as follows:

Ik+1 =

 Ik(1:p,:) −→ı k+1
01×k

Ik(p+1:n,:)


where a 0 in position p has been added to each index −→ı ∈ Ik, and
a new column −→ı k+1 = f(p,−→ı k) has been added to the matrix.
The coefficient c′p associated to the new loop index can be derived
from Eq. (7):

−→c (−→ı k+1 −−→ı k) = σk ⇒

[
c1, . . . , cp, c

′
p, cp+1, . . . , cn

]


0
...
0
1
−ikp

...
−ikn


= σk ⇒

c′p = σk +

n∑
r=p+1

ikrcr

After calculating the new−→c , U and−→w are updated as described
in Section 2.3.2 to reflect any new information available. If no
solution is found for the boundary conditions then this branch is
discarded.

Note that there must be a practical limit to the maximum accept-
able solution size, as in the general case any trace {a1, . . . , aN}
can be generated using at most N affine nested loops. For this rea-
son, the solution space should be traversed in a breadth-first fash-
ion, to ensure that a minimal solution, in terms of number of gen-
erated nested loops, is reached.

2.3.4 Starting the exploration
In the previous sections it has been discussed how to constructively
build a solution for the subtrace {a1, . . . , ak+1} assuming that the
solution for {a1, . . . , ak} is known. The first partial solution S2

1 for
{a1, a2} is built as:

• −→c =
[
σ1
]

• I2 =
[−→ı 1|−→ı 2

]
= [0, 1]

• U = [−1] • −→w = [1]

It can be proven that this represents the only feasible solution
for the subtrace {a1, a2}. The exploration engine can then begin
working, gradually increasing the size of the partial solution, until
it reaches a solution for the entire trace−→a , or it discards the root of
the solution space, S2

1 , in which case −→a cannot be generated by an
affine loop.

2.4 Algorithm
Algorithm 1 presents the pseudocode of the Extract() func-
tion which implements the proposed approach. The recursive so-
lution is not practical for a real implementation, but clearly illus-
trates the idea. The function that calculates new loop insertions
described in Section 2.3.3 has been encapsulated into a Grow()
function, shown in Algorithm 2. The extraction starts by calling
Extract() with the initial S2

1 defined in the previous section. In
the worst case, when no access can be predicted using −→γ , the al-
gorithm uses the brute force approach (O(nN )). In the best case
every access is predicted by −→γ (O(N)).

Note that this reconstruction method does not regenerate the
constant term c0 in Eq. (1), and assumes the base address of the
access to be V ′ = a1. This is not a problem for any practical
application of the extracted loop information, as the set of accessed



points is identical to that of the original, potentially non-canonical
loop.

Algorithm 1: Pseudocode of Extract()
Input: the execution trace, −→a , and a partial solution

S = {−→c , I,U,−→w }
Output: a global solution or None if no solution found

1 k = #columns of I;
2 while k < len(−→a )− 1 do
3 σ = ak+1 − ak;

// Try to use −→γ (§2.3.1)
4 calculate −→γ = U−→ı k +−→w ;
5 calculate predicted stride σ̂l = −→c

−→
δ l;

6 if σ̂l = σ then
7 I = [I|+ (l,−→ı k)];
8 k = k+1;
9 continue;

10 end
// Brute force approach (§2.2.1)

11 for x=n down to 1 do
12 calculate σ̂x = −→c −→δ x;
13 if σ̂x = σ then
14 I′ = [I|+ (x,−→ı k)];
15 {U′,−→w ′} = update bounds; // §2.3.2
16 if {−→c , I′,U′,−→w ′} is linear then
17 S′ = Extract({−→c , I′,U′,−→w ′},−→a );
18 if S′ 6= None then return S′;
19 end
20 end
21 end

// Add loop (§2.3.3)
22 for x=0 to n do
23 S′ = Extract(Grow(S, x),−→a );
24 if S′ 6= None then return S′;
25 end
26 return None;
27 end

Algorithm 2: Pseudocode of Grow() (§2.3.3)
Input: the partial solution S = {−→c , I,U,−→w }, and the insertion

point x
Output: modified partial solution with a new loop in position x, or

None if the insertion point generates a nonlinear solution
// Insert a new row and column in U

1 U =

 U(1:x,1:x) 0x×1 U(1:x,x+1:n)

0 . . . 0 −1 0 . . . 0

U(x+1:n,1:x) 0(n−x)×1 U(x+1:n,x+1:n)

;

// Insert a new element in −→w
2 −→w =

[−→w (1:x)|0|−→w (x+1:n)

]
;

// Insert new index into I

3 I =

 I(1:x,:)
0 . . . 0 f(x,−→ı k)

I(x+1:n,:)

;

4 update bounds U and −→w ;
5 −→c = [−→c (1:x)|cx|−→c (x+1:n)];
6 if {−→c , I,U,−→w } is not linear then return None;
7 return {−→c , I,U,−→w };

3. Experimental Evaluation
The proposed algorithm has been implemented in Python and used
to extract codes for different affine kernels. Each execution was
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Figure 2. Reconstruction times (upper axis) and trace sizes (lower
axis) for the PolyBench/C benchmarks, ordered by trace size. Axes
are logarithmic. Since the subtraces of a kernel are independent
they can be reconstructed in parallel, achieving an average speedup
of 5.6x.

performed on an Intel Xeon E5-2660 Sandy Bridge 2.20 Ghz node,
with 64 GB of RAM. The reconstruction algorithm was run with
traces generated by the PolyBench/C 3.2 suite [20]. It includes 30
applications from domains such as linear algebra, stencil codes and
data mining, out of which 28 were selected. The target was the
traces generated by the kernels4of these applications. These were
split into the subtraces generated by their different instructions and
stored in memory before being processed. The “standard” problem
size was used, generating traces ranging from 6 million references
for jacobi-1D (150 MB in disk) to 12.9 billion references for
3mm (270 GB).

Figure 2 shows trace sizes and processing times. These largely
depend on the number of reconstructed loops, as well as on which
of the loops iterate the most. The most efficient reconstruction
is achieved for jacobi-1D, a stencil computation which only
accesses small 1-dimensional arrays. Two loops generate all traces,
but the outer one iterates only once per each 10.000 iterations
of the inner one. As a result, the reconstruction process can be
largely streamlined: the trace contains blocks of 10.000 elements
separated by the same stride, which can be recognized in a single
step using −→γ as a predictor. Its 6 million accesses are sequentially
processed in 0.2 seconds. On the opposite end, dynprog, which
emits 858 million references, is the one processed at the slowest
rate. It features a 4-level loop nest where the largest block of single-
strided accesses contains only 48 references. As such, the number
of decision steps taken by the algorithm is much larger. While
in the slowest case the engine is capable of processing 180.000

4 These are the parts marked with scop pragmas in PolyBench/C and
represent the vast majority of the accesses issued by the entire program.



Trace % Trace % Trace % Trace %
3mm 0.02 trmm 0.00 fdtd-2d 0.01 atax 25.00
2mm 0.04 lu 0.11 grams. 0.58 bicg 25.00
syr2k 0.02 adi 0.01 chol. 0.58 mvt 12.50
syrk 0.05 doit. 0.58 gemv. 21.43 reg d. 2.07

gemm 0.05 dynp. 0.00 seidel 0.00 durbin 100
symm 0.13 fdtd-a. 24.21 jac-2D 0.00 trisolv 100
covar. 0.37 lud. 0.66 gesum. 25.01 jac-1D 100

Table 1. Percentage of trace reconstructed after 48h without −→γ
prediction.

Trace % Trace % Trace % Trace %
3mm 99.85 trmm 99.97 fdtd-2d 98.00 atax 74.96
2mm 99.84 lu 99.71 grams. 99.61 bicg 74.96
syr2k 99.85 adi 98.00 chol. 99.99 mvt 87.46
syrk 99.83 doit. 98.83 gemv. 78.53 reg d. 99.78

gemm 99.83 dynp. 99.98 seidel 95.00 durbin 99.88
symm 99.80 fdtd-a. 75.62 jac-2D 95.00 trisolv 99.89
covar. 99.70 lud. 99.99 gesum. 74.95 jac-1D 99.00

Table 2. Percentage of trace accesses predicted by −→γ .

references/second, in the fastest one this goes up to 30 million
(167x faster).

A second set of experiments was run deactivating −→γ predic-
tion. The engine must explore all potentially correct branches as
indicated in Section 2.2.1. All subtraces were processed in par-
allel. The recognition was run for 48 hours, at which point un-
reconstructed subtraces were considered intractable for practical
purposes. Table 1 summarizes the results. For most codes only the
smallest subtraces were recognized, accounting for less than 1% of
the total trace. fdtd-apml, gemver, gesummv, atax, bicg,
and mvt contain large single-strided subtraces, which are recog-
nized as a single block. durbin and trisolv have subtraces of
8 million references, each of which is reconstructed in 47 hours.
jacobi-1d has subtraces of 1 million references.

The usability of the engine as an online predictor was also eval-
uated. Table 2 shows the percentage of predicted accesses. For
most applications, −→γ predicted above 95% of the issued refer-
ences. Exceptions are, again, fdtd-apml, gemver, gesummv,
atax, bicg, and mvt. Note how their numbers are almost com-
plementary to those in Table 1. The reason is that most unpredicted
accesses were issued by single-strided references. These are not
handled by −→γ since it cannot operate before −→w is calculated, and
this will never happen for 1-level loops, which generate the types
of traces that are tractable by the algorithm without −→γ guidance.
However, these references are trivially predicted by single-stride
prefetching techniques [21]. A simple heuristic for predicting this
type of references is to consider that when−→γ is not yet operational,
by default the outermost discovered loop will iterate. The use of this
heuristic increases prediction rate above 99% for all codes.

Regarding memory requirements, the exploration engine needs
to store, at least, −→c , −→w , U, and selected indices of I5. In addition
to these, some memory is consumed by backtracking points used to
efficiently implement the recursivity in Algorithm 1. Total memory
requirements for subtraces in our experimental set-up vary between
48 bytes and 60 KB.

4. Related Work and Applications
Not many works, to the best of the authors’ knowledge, have
explored the reconstruction of loop codes from memory access

5 These are used when recalculating −→w and U (see §2.3.2). It is not neces-
sary to store the entire matrix I if memory requirements are to be optimized.

traces. Most of them have done it as a means to pursue a particular
optimization. This section organizes related work according to their
ultimate goal, also discussing potential applications of the proposed
exploration engine.

[8] characterized program behavior using polynomial piecewise
periodic and linear interpolations separated into adjacent program
phases to reduce function complexity. The model can be recursively
applied, interpreting coefficients of the periodic interpolation as
traces in themselves. [7] introduced polyhedra to graphically rep-
resent the program memory behavior (including cache misses) and
facilitate its understanding. [14] proposed a method for trace pre-
diction and compression based on representing memory traces as
sequences of nested loops with affine bounds and subscripts. It uses
a stack of terms. When a new term is pushed, it searches for a triplet
of terms that can be rewritten as a loop.

On the topic of trace compression, [17] proposed whole pro-
gram paths (WPP), a compressed directed acyclic path trace format.
[22] developed a compaction technique for WPPs by eliminating
redundant path traces and organizing trace information according
to a dynamic call graph. [5] proposed VPC, a family of four com-
pression algorithms that employ value predictors to compress ex-
tended program traces. These include PCs, contents of registers, or
values on a bus.

One potential use of the exploration engine is cache prefetch-
ing. To improve on the one block lookahead scheme [21], [2] use a
prediction table and lookahead program counter to preload regular
accesses which correctly predict the stride of the innermost loop.
[11] propose a prefetcher capable of supporting up to four distinct
strides. In contrast, our approach is capable of supporting an un-
limited amount of strides, as well as variable trip counts. However,
hardware prefetching using loop reconstruction requires memories
to store at least the values of U and −→w for each loop, as well as −→c
for each access instruction. The size of these memories depends on
the maximum nesting level supported.

Trace-based code reconstruction is also useful for automatic
parallelization. [10] use dynamic data dependence graphs derived
from sequential execution traces to identify vectorization opportu-
nities. [12] proposed a dynamic mechanism for detecting data de-
pendences using interpolated linear functions to approximate ob-
served memory accesses to guide speculative parallelization. Sim-
ilar systems can be constructed using the proposed exploration en-
gine, capable of analyzing dependences without the need for com-
piler support.

Some authors have approached the problem of designing ad
hoc memory hierarchies for embedded applications. [6] proposed
a compiler-based methodology to derive optimal memory regions
and associated data allocation. [1] use a trace-based method that an-
alyzes the access histogram to determine which memory regions to
allocate to scratchpad memory [3]. Our trace-based reconstruction
approach can be employed to design custom memory hierarchies
without access to the source code. This is particularly interesting
for IP cores, commonly included in embedded devices. It can also
be employed to drive scratchpad allocation managers.

5. Concluding Remarks
This work has explored the reconstruction of affine loop codes
from their memory traces, focusing on one instruction at a time.
This problem has applications in trace compression, memory man-
agement and design, dynamic parallelization, or program analysis.
The problem has been formulated as the exploration of a tree-like
solution space, in which each node represents a point in the itera-
tion space of the loop. The mathematical relationship amongst the
nodes has been established, and the system of equations that gov-
erns the trace-based reconstruction of the code has been defined.
Afterwards, methods for efficient traversal of this solution space



have been proposed. Experimental evaluation has shown good per-
formance and accuracy in reconstructing affine codes, and signifi-
cant overheads when processing nonlinearities. Furthermore, it has
been shown that the problem is not tractable without the proposed
optimizations.
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