
Automatic Partitioning of Sequential
Applications Driven by Domain-Independent

Kernels ?

José M. Andión, Manuel Arenaz, and Juan Touriño

Computer Architecture Group
Department of Electronics and Systems

University of A Coruña, Spain
{jose.manuel.andion,manuel.arenaz,juan}@udc.es

Abstract. The automatic parallelization of sequential applications is a
great challenge for current compiler technology. The partitioning of a se-
quential application into parallel programs that can be executed concur-
rently on a given parallel architecture is a complex and time-consuming
undertaking. In addition, the programmer is often responsible for defin-
ing a good partitioning that takes into account the properties of both
the program and the architecture. This paper proposes a new fully au-
tomated partitioning algorithm driven by an intermediate representa-
tion of the sequential application in terms of the domain-independent
concept-level kernels (e.g., induction, reduction, recurrence) recognized
by the XARK compiler framework. Such kernel-centric view of the ap-
plication hides the complexity of the implementation details (e.g., proce-
dure calls, pointers, global variables, complex control flows) and provides
robustness against different codification styles. For illustrative purposes,
we use inter-procedural implementations of the Sobel edge filter and the
EQUAKE application of SPEC CPU2000.

1 Introduction

The automatic partitioning of sequential applications into parallel programs to
be executed concurrently on modern parallel architectures remains a great chal-
lenge for state-of-the-art parallelizing compilers. In general, this problem re-
quires the intervention of the developer by using domain-specific programming
languages that explicitly define a partition of the application. Unfortunately,
this partitioning process is complex and time-consuming as it requires in-depth
knowledge about both the application and the target parallel architecture, an
skill that is unfamiliar to most programmers. In recent years, the emergence
and widespread use of multicore and manycore architectures has exposed this
situation beyond the high performance computing community.
? This research was supported by the Ministry of Science and Innovation of Spain

and FEDER funds of the European Union (Project TIN2007-67537-C03) and by the
FPU Program of the Ministry of Education of Spain (Reference AP2008-01012).

The main contribution of this paper is two-fold. First, a new intermediate rep-
resentation (IR) of a sequential application in terms of the domain-independent
concept-level kernels (kernel-based IR, from now on) recognized by the XARK
compiler framework [5] is formally defined. XARK was shown to be effective
to characterize a significant amount of the regular and irregular computations
carried out in full-scale Fortran77 applications [4] from SPEC CPU2000, Perfect
benchmarks, Sparskit-II and PLTMG. In order to widen the scope of application
of XARK to other programming languages that use pointers, we have developed
a simple and fast algorithm to build the Gated Single Assignment (GSA) form on
top of the Static Single Assignment (SSA) form available in modern production
compilers [2]. In addition, the design of an interprocedural GSA form to support
automatic kernel recognition across procedure boundaries is work in progress.

The second contribution is a new automatic partitioning algorithm driven
by the kernel-based IR. The algorithm takes advantage of the multiple levels of
parallelism exposed in the kernel-based IR as well as of its robustness to different
codifications of the same kernel. In the literature, the automatic detection of
parallelism driven by domain-independent kernels [3, 7, 14, 16, 18] was shown to
be an effective approach for non-interprocedural codes only. In contrast, we will
use interprocedural C implementations of the Sobel edge filter and the EQUAKE
application from SPEC CPU2000 to illustrate the behavior of our automatic
partitioning approach.

The rest of the paper is organized as follows. Section 2 presents a formal
definition of the new kernel-based IR. Section 3 sketches our algorithm for au-
tomatic partitioning of sequential applications for multicore systems. Sections 4
and 5 describe the case studies. Section 6 discusses related work. And, finally,
Section 7 concludes the paper and presents future work.

2 Domain-Independent Kernel-Based IR

Parallelizing compilers typically use statement-based standard IRs (e.g., Data
Dependence Graph –DDG–, Control Flow Graph –CFG–, Dominator Tree –DT–)
that hinder discovering the parallelism available in sequential programs. In this
section we propose a new kernel-based IR that hides the complexity of the im-
plementation details, and exposes multiple levels of parallelism to the compiler.
Inspired by standard IRs, our new kernel-based IR (first outlined in [1]) consists
of a Kernel-based DDG (KDDG) and a Kernel-based CFG (KCFG).

2.1 The Kernel-based Data Dependence Graph (KDDG)

XARK [5] builds a hierarchical representation that decomposes a sequential ap-
plication into a set of mutually dependent kernels that capture the behavior of
the computations carried out on scalar and non-scalar variables (e.g., arrays,
pointers). Such information is used to construct the KDDG as follows.

The KDDG is a graph < N,E > having a set of nodes N representing
the domain-independent kernels recognized by XARK, and a set of edges E

representing the data-dependence constraints among the kernels. The nodes and
edges of the KDDG are constructed as follows:

– Each node represents a kernel K(x1 . . . xn), which has a set of statements in
GSA form, s1...sn, that define the output variables of the kernel x1 . . . xn.
Each node is also labeled with the type of domain-independent kernel recog-
nized by XARK (see example types later in Sections 4 and 5; all the details
can be found in [5]). In addition, we define the header of K(x1 . . . xn) as the
statement sh (with h ∈ {1 . . . n}) that dominates all of the remaining state-
ments of the kernel. In a similar manner, we define the latch of K(x1 . . . xn)
as the statement sl (with l ∈ {1 . . . n}) that posdominates all of the remain-
ing statements of the kernel.

– Each edge K(x1 . . . xn)→ K(y1 . . . ym) represents a kernel-level dependence
that exposes a data dependence of the DDG that links statements of different
kernels. Note that the data-dependences in the DDG between statements of
the same kernel are not exposed to the compiler in the KDDG as they are
represented in the type of kernel recognized by XARK.

2.2 The Kernel-Based Control Flow Graph (KCFG)

In order to reduce the complexity of program analyses, statement-based standard
IRs group statements into basic blocks. Thus, we propose a two-phase KCFG
construction algorithm that groups the kernels of the KDDG into execution
scopes and that identifies kernel-level flow dependences among the edges of the
KDDG.

Computation of execution scopes (Algorithm 1, lines 5–23). Parallelizing
compilers typically focus on the loops of an application as they often con-
sume most of the execution time and, thus, optimizations that improve the
performance of loops can have a significant impact. The goal of the procedure
compute execution scopes() is to attach each kernel to the innermost loop
that contains its source code statements. Thus, the first step is to compute the
hierarchy of loops of the application. Next, the algorithm computes the set of
basic blocks that contain the statements in GSA form of the kernel K(x1 . . . xn),
excluding µ-statements associated to loop headers. Within this set, the algorithm
uses the DT to select the basic block bb dom that dominates the remaining basic
blocks of the set. As a result, K(x1 . . . xn) is attached to the innermost loop
that contains bb dom and that contains in its body all of the loop headers whose
indices address the output variable of the kernel. Finally, the loops that are not
attached any kernel are removed.

Detection of kernel-level flow dependences (Algorithm 1, lines 24–50). In
order to obtain a good partitioning of a sequential application, producer-consumer
relationships must be established at the kernel level. Let K1(x1 . . . xn) and
K2(y1 . . . ym) be two kernels with sets of statements sK1

1 . . . sK1
n and sK2

1 . . . sK2
m ,

Algorithm 1 Construction of the KCFG.
Input: KDDG, CFG, DT

1: procedure build KCFG

2: compute execution scopes()
3: detect flow dependences()

4: end procedure

5: procedure compute execution scopes

6: compute hierarchy of loops

7: foreach kernel K in the KDDG do
8: bb dom = basic block of CFG that contains a stmt of K (excluding µ-stmt)

9: foreach statement sK in K do
10: if sK is not a µ-statement then

11: bb sK = basic block of CFG that contains sK

12: if bb sK dominates bb dom then
13: bb dom = bb sK

14: end if

15: end if
16: end for

17: L = innermost enclosing loop of bb dom

18: if L includes loop indices that address the output variable of K then
19: K.execution scope = L

20: end if

21: end for
22: remove non-attached loops from hierarchy

23: end procedure

24: procedure detect flow dependences

25: foreach kernel-level dependence K1 → K2 of the KDDG do
26: L1 = execution scope(K1); L2 = execution scope(K2)

27: if (L1.parent == L2.parent) && (L1 precedes L2 in the hierarchy) then

28: mark K1 → K2 as flow dependence
29: else if K1.latch dominates K2.header then

30: mark K1 → K2 as flow dependence

31: else
32: mark = true

33: foreach sK2 ∈ K2 (excluding µ-stmt) do

34: dom stmt found = false

35: foreach sK1 ∈ K1 (excluding µ-stmt) do

36: BB1 = basic block(sK1); BB2 = basic block(sK2)
37: if (BB1 == BB2) && (sK1 precedes sK2) then

38: dom stmt found = true; break
39: else if (BB1 6= BB2) && (BB1 dominates BB2) then
40: dom stmt found = true; break
41: end if

42: end for
43: mark = mark && dom stmt found

44: end for
45: if mark == true then
46: mark K1 → K2 as flow dependence
47: end if
48: end if

49: end for

50: end procedure

respectively. We say that there is a kernel-level flow dependence, K1 á K2, if a
kernel-level dominance relationship exists. We say that K1 dominates K2 if and
only if ∀sK2 ∈ K2, ∃sK1 ∈ K1 such that one of the following conditions hold:

1. If sK1 and sK2 are located in the same basic block in the CFG, then sK1

precedes sK2 .
2. If sK1 and sK2 belong to different basic blocks BB1 and BB2, respectively,

then BB1 dominates BB2 in the DT.

Note that the computation of the kernel-level dominance relationship could be
very expensive in full-scale real applications as they usually consist of a large
set of kernels, each kernel being composed of a large set of statements. Thus, we
propose two more efficient approaches to establish this relationship between two
kernels K1 and K2, assuming that they are attached to the execution scopes of
loop L1 and L2, respectively.

1. If L1 and L2 are located at the same depth in the hierarchy of loops and L1

precedes L2 in the hierarchy, then a flow dependence K1 á K2 exists.
2. If L1 and L2 are the same execution scope or they are located at different

depths in the hierarchy of loops, then we take advantage of the header/latch
information of K1 and K2 (see KDDG construction in Section 2.1). Let
K1.header and K1.latch be the header and the latch statements of K1.
Analogously, let K2.header and K2.latch be the header and the latch of K2.
If K1.latch dominates K2.header, then K1 dominates K2 and, as a result, a
flow dependence K1 á K2 exists.

Algorithm 1 shows procedure detect flow dependences() to identify the
kernel-level flow dependences as described in this section. As will be shown
in the rest of the paper, this kernel-based IR (KDDG and KCFG) abstracts
the implementation details enabling the compiler to partition the sequential
application automatically.

3 Automatic Partitioning Algorithm

The automatic partition of a sequential application into a set of concurrent
programs requires in-depth knowledge about the code, but also about the target
parallel architecture. On the one hand, the kernel-based IR presented in Section 2
exposes multiple levels of parallelism that range from parallelizable individual
kernels (intra-kernel parallelism) up to a kernel-level dependence graph bounded
to execution scopes (inter-kernel parallelism). On the other hand, modern hard-
ware architectures also expose multiple levels of parallelism that can be described
as a graph. Thus, a multicore system may consist of a cluster of nodes with a
Gigabit Ethernet or Infiniband interconnection network. Each node may have
several multicore processors that commonly consists of 2-8 cores. Modern cores
are designed to exploit instruction level parallelism as well as SIMD-like vector
instructions such as Intel SSE or AMD 3DNow!. Such machine description of

Algorithm 2 Automatic partitioning.
Input: KCFG, ARCH

1: procedure sequential program partitioning

2: initialization()

3: search best partition([KCFG, 1, 0], ARCH)
4: end procedure

5: procedure initialization(KCFG)

6: mark kernels with low computational load as non-splittable

7: merge consecutive execution scopes with one flow dependence
8: end procedure

9: function search best partition([KG, Aspan depth, Adepth], ARCH)
10: depthKG = depth of the kernel-based subgraph KG

11: depthARCH = depth of ARCH starting in level Adepth

12: /* base case */
13: if Adepth > depthARCH then

14: return

15: end if
16: /* recursive case */

17: KG children = {}
18: if depthKG == depthARCH then

19: map kernels2arch([root nodes of KG, Aspan depth, Adepth], ARCH)

20: else
21: /* discard intermediate levels in ARCH */

22: KG children += [KG, 1, Adepth + 1]

23: /* span KG across multiple levels of ARCH */
24: for span = 1, depthARCH −Adepth − 1 do

25: KG children += [root nodes of KG, span, Adepth]

26: end for
27: end if

28: KG children += [subgraphs of KG with splittable root nodes, 1, Adepth + 1]
29: foreach [KG child, As, Ad] in KG children do

30: search best partition([KG child, As, Ad], ARCH)

31: end for
32: KG best child = KG child with minimun cost estimation

33: return KG best child

34: end function

35: procedure map kernels2arch([KG roots, Aspan depth, Adepth], ARCH)

36: #P = number of cores in Aspan depth levels from Adepth of ARCH
37: #K = number of nodes in KG roots

38: if #K == #P then
39: create a task for each root node in KG roots

40: else if #K < #P then
41: split root nodes in KG roots to create P tasks
42: else

43: merge root nodes in KG roots to create P tasks

44: end if
45: end procedure

the parallel architecture may be specified by the user or obtained automatically
(e.g., Servet [12]).

Algorithm 2 presents the pseudocode of an automatic partitioning strategy
driven by our kernel-based IR (KDDG and KCFG) that targets a multicore
system with multiple levels of parallelism (ARCH). The algorithm starts with
a call to procedure initialization() that marks the kernels of the KCFG with
low computational load as non-splittable (see line 6). Non-splittable kernels are
good candidates to exploit SIMD-like vector instructions if the operations are
supported by the processor. Otherwise, they will be executed sequentally. As
for now, we assume that the computational load of a kernel is supplied by the
programmer. In the future, we will incorporate a cost estimation model that
will take into account the number of sentences of a kernel, the number of loop
iterations, the cost of each operator, etc. Finally, the initialization stage attempts
to reduce the complexity of the KCFG by clustering. Thus, consecutive execution
scopes connected with one kernel-level flow dependence are merged into a unique
execution scope (line 7).

The core of the automatic partitioning strategy is the recursive function
search best partitioning(). This function makes a top-down traversal of the
KCFG looking for sets of splittable kernels to be mapped to each level of the
hierarchy ARCH of the multicore system. For this purpose, we define the depth
of a subgraph of the KCFG as the maximum number of splittable kernels in all
the paths of the subgraph. Analogously, the depth of a subgraph of ARCH is
the maximum number of levels of processing elements in all the paths of the
subgraph. In addition, we define the span depth of a subgraph of the KCFG (see
parameter Aspan depth) as the number of levels in ARCH that are devoted to map
the root kernels of the subgraph. The basic idea is to compute the cost of every
splittable kernel mapped to each combination of one or several levels of ARCH.
The best partitioning will be that of minimal cost. Note that the algorithm
considers mapping one kernel to several levels of ARCH (i.e., Aspan depth > 1),
as well as forcing splittable kernels to be executed sequentally if there are more
levels of parallelism in the KCFG than in ARCH.

The first invocation of search best partitioning() starts with KG being
the whole KCFG, Aspan depth = 1 and the highest coarse-grain level of ARCH
(supposed to be Adepth = 0). In the recursive case, two possibilities are dis-
tinguished. First, if the number of non-mapped levels in KG is the same as in
ARCH (i.e., if the condition depthKG == depthARCH in line 18 is fulfilled),
then the root kernels of KG are mapped to the level Adepth of ARCH by exe-
cuting map kernels2arch(). Next, the algorithm builds the set KG children
of subgraphs of KG whose root nodes are splittable kernels. For each subgraph
in KG children, the best partitioning with Aspan depth = 1 is computed through
recursive calls to search best partitioning() (lines 28–31). Finally, the best
partitioning in KG is selected upon that of the child KG best child with mini-
mum cost (line 32).

The recursive case of search best partitioning() distinguishes a second
possibility. The idea is to evaluate the cost of both discarding the assignment of

computational load to a given architecture level (lines 21–22), and spanning the
computational load into several levels of the computer architecture (lines 23–26).
These possibilities will be evaluated by adding to KG children the corresponding
subgraphs of KG with Aspan depth from 1 up to depthARCH −Adepth − 1.

The goal of procedure map kernels2arch() (lines 35–45) is to analyze the
set of splittable kernels KG roots in order to create as many tasks as needed
to fill-in the cores of Aspan depth levels of the computer architecture ARCH,
starting in level Adepth. The estimation of the cost of an application partition is
a complex problem and will be addressed in future work. It depends on several
factors such as the computational load of the kernels, the computational capacity
of the processing elements, the amount of data that needs to be transferred, the
synchronization between cores, etc.

Overall, the strategy outlined in this section enables the automatic partition
of full-scale applications. The kernel-based IR (KDDG and KCFG) naturally
reflects the structure of the source code and, thus, avoids the violation of the
data dependences specified by the programmer. In the following sections we will
show the behavior of this algorithm with the Sobel edge filter and the EQUAKE
application of SPEC CPU 2000.

4 Case Study 1: Sobel Edge Filter

The Sobel edge filter is a well-known algorithm widely used in image process-
ing and computer vision. This algorithm detects the edges of an image, that is,
those pixels whose intensity is very different from the intensity of the neighbor
pixels. For each pixel, the algorithm computes the gradient value that provides
the largest increase from light to dark. For illustrative purposes, consider the
interprocedural implementation shown in Figure 1. For each pixel of the origi-
nal image (see loops in lines 19–20), the procedure gradient aprox computes a
convolution of the 3 × 3 matrix GX and the intensity of the pixel and its eight
neighbors (lines 29–30). A similar convolution with the 3 × 3 matrix GY is also
computed (lines 31–32). Finally, the sum of the absolute values of the two con-
volutions is truncated to the interval [0, 255] (lines 35–36) before being stored
in the output filtered image (lines 38–39). Note that, in order to compute the
convolutions, the image boundaries are not processed (lines 24–27).

Figure 2 shows the kernel-based IR of the Sobel application, shaded nodes
being the splittable kernels and thick solid lines being the kernel-level flow de-
pendences. The types of kernels appearing in the IR are: nc/inv for initial-
ization of variables to constant values (see K(sumY23) in LOOP2); nc/lin for
linear inductions (K(Y2,92) in LOOP1); nc/subs for unpredictable values at
compile-time (e.g., subscripted subscripts, pointer dereferences) (see K(SUM77)
in LOOP2); nc/reduc for scalar reductions (K(sumY9,10,70,95) in LOOP4); and
nc/assig/lin:lin for the initialization of a 2D array variable using a linear access
pattern in both dimensions (K(@edgeImage data101,128,129) in LOOP2).

The automatic partitioning algorithm presented in Section 3 proceeds as fol-
lows. The splittable kernels (shaded nodes) are K(sumY9,10,70,95),

1 void gradient_aprox (long ∗sum , unsigned char ∗∗ data ,
2 int cols , int Y , int X , int G [3] [3])
3 {
4 int I , J ;
5 for (I=−1; I<=1; I++)
6 for (J=−1; J<=1; J++)
7 (∗ sum) = (∗ sum) +
8 (int) ((∗ ((∗ data) + X + I + (Y + J)∗ cols)) ∗ G [I+1] [J+1]) ;
9 }

10
11 int main (void)
12 {
13 int originalImage_rows , originalImage_cols ,
14 int edgeImage_rows , edgeImage_cols ;
15 unsigned char∗ originalImage_data , edgeImage_data ;
16 int X , Y , I , J , GX [3] [3] , GY [3] [3] ;
17 long sumX , sumY , SUM ;
18
19 for (Y=0; Y<=(originalImage_rows −1); Y++) {
20 for (X=0; X<=(originalImage_cols −1); X++) {
21 sumX = 0 ;
22 sumY = 0 ;
23
24 i f (Y==0 | | Y==originalImage_rows −1)
25 SUM = 0 ;
26 else i f (X==0 | | X==originalImage_cols −1)
27 SUM = 0 ;
28 else {
29 gradient_aprox (&sumX , originalImage_data ,
30 originalImage_cols , Y , X , GX) ;
31 gradient_aprox (&sumY , originalImage_data ,
32 originalImage_cols , Y , X , GY) ;
33 SUM = abs (sumX) + abs (sumY) ;
34 }
35 i f (SUM >255) SUM=255;
36 i f (SUM <0) SUM=0;
37
38 ∗(edgeImage_data + X + Y∗ originalImage_cols) =
39 255 − (unsigned char) (SUM) ;
40 }
41 }
42 }

Fig. 1. Source code of the Sobel application.

K(sumX7,8,48,93) and K(@edgeImage data101,128,129). Thus, initialization()
marksK(sumY9,10,70,95) andK(sumX7,8,48,93) as not splittable because they are
attached to execution scopes of 3 iterations only (see lines 5–6 in Figure 1). As a
result, both kernels will be executed sequentally or accelerated with SIMD-like
vector instructions.

Next, search best partitioning() is invoked with KG being the whole
KCFG with root node K(@edgeImage data101,128,129), with Aspan depth = 1 and
Adepth = 0. For illustrative purposes, two multicore systems are considered. First,
ARCH1 is an homogeneous multicore processor. As KGdepth = ARCHdepth = 1,
the kernel nc/assig/lin:lin is parallelized by distributing the iteration space
among the cores. Second, ARCH2 is a cluster of homogeneous multicore nodes.
As KGdepth < ARCHdepth, the algorithm will evaluate the cost of parallelizing
the kernel either on level 0 or on level 1 of ARCH2. It will also evaluate the

Fig. 2. Kernel-based Intermediate Representation of the Sobel application.

Fig. 3. Kernel-based IR of an excerpt of the EQUAKE application.

cost of spanning the kernel across levels 0 and 1 of ARCH2. The best mapping
according to a cost estimation model will be selected.

5 Case Study 2: EQUAKE

One of the benchmarks that are part of the SPEC CPU2000 suite is EQUAKE.
This application computes a simulation of seismic waves in large, highly het-
erogeneous valleys. EQUAKE is able to recover the time history of the ground
motion caused by a seismic event in any place of a valley. An unstructured mesh
is used to locally resolve wavelengths with a finite element method. As a result,
EQUAKE reports the displacements at both the hypocenter and epicenter of the
earthquake for a predetermined number of simulation timesteps.

Figure 3 shows the kernel-based IR of an excerpt of the most time-consuming
parts of EQUAKE. For the sake of clarity, the kernel notation omits the version
numbers of the GSA variables. In addition, the kernels of read-only variables,

temporary scalar variables and loop indices are not depicted. The EQUAKE ap-
plication can be viewed as two separated phases. In the first phase, a simulation
traverses the set of finite elements in order to compute the global simulation
variables. In each iteration, the individual contribution is computed and stored
in the element matrices represented by kernels K(Me) and K(Ce) attached to
LOOP2 and LOOP3. These values are later assembled in kernels K(M) and
K(C) that compute irregular array reductions (nc/reduc/subs:inv), which are
attached to the outer LOOP1. In the second phase, a time integration loop com-
putes the displacement (3D array disp) using the values corresponding to the
two previous timesteps and involving several procedure calls at run-time. Note
that the kernel K(disp) in LOOP5 hides a procedure call to smvp(), which con-
sumes more than 70% of the total execution time. The kernels K(M) and K(C)
computed during the simulation phase are used as input data in the time integra-
tion phase. Once the displacement (K(disp) in loops from LOOP4 to LOOP8)
has been computed, each iteration finishes by calculating the velocity (K(vel)
in LOOP9).

The automatic partitioning algorithm starts with a search of the kernels with
a low computational load. Thus, initialization() marks K(Me) and K(Ce)
in LOOP2 and LOOP3 as not splittable because arrays Ce and Me have only
12 elements. The remaining kernels work with arrays of ARCHnodes elements,
which is unknown at compile time and is supposed to be a large value (in fact,
ARCHnodes is the number of nodes of the finite element mesh). Next, initial-
ization() merges execution scopes from LOOP4 up to LOOP9 because they are
connected with one kernel-level flow dependence only.

The kernel-based IR of Figure 3 represents the computation of one iteration of
the time integration loop. Thus, the behavior of search best partitioning()
is as follows. First, we consider the multicore processor ARCH1. As
KGdepth > ARCHdepth, the algorithm will explore different possibilities of map-
ping the splittable kernels to processor cores. When K(vel) is split to create a
set of tasks, each task is devoted to compute a subarray of vel in LOOP9.
Thus, in order to minimize communication and synchronization, they must also
be assigned the computation of the corresponding subarrays of disp in exe-
cution scopes from LOOP4 to LOOP8. As a result, the tasks work in parallel
with memory locations that do not overlap. Finally, note that kernel K(disp)
in LOOP5 with an irregular access pattern needs to be transformed using an
inspector-executor approach to avoid communication and synchronization be-
tween the cores. With a computer architecture with more levels of parallelism
like ARCH2, the algorithm will also evaluate the cost of splitting K(disp) in
the inner LOOP10 simultaneously in order to minimize communication among
nodes.

6 Related Work

Automatic partitioning of sequential applications is an important problem in
many areas of computer science, rasing from maximizing performance for net-

work processors up to compute-assisted design. There has been extensive re-
search in partitioning multiple concurrent programs, called processes or tasks,
among multiple processing elements [19, 8, 6, 13, 9–11, 15]. These approaches
mainly focus on clustering and scheduling as they assume the sequential ap-
plication is split into multiple concurrent programs by the compiler or the pro-
grammer, often using a domain-specific programming language.

Automatic partitioning of single sequential programs [20, 21, 17] is driven
by an intermediate representation that captures the semantics of the program,
typically, at the statement level and at the procedure level. Such intermediate
representation consists of a program dependence graph (PDG) annotated with
information about both the program and the target parallel architecture. The
main limitation of PDG-centric approaches is that variations in the programming
style may have a great impact on the quality of the partitioning. In contrast, our
domain-independent kernel-centric approach hinges on the recognition engine of
the XARK compiler framework, which hides the complexity of the implementa-
tion details to the partitioning algorithm.

7 Conclusions and Future Work

In this work we have formally defined a new compiler IR built on top of the
domain-independent concept-level kernels recognized by the XARK compiler
framework. We have also sketched a new partitioning algorithm for sequential
applications based on the new kernel-based IR. We have illustrated the behavior
of the approach with two interprocedural implementations of the Sobel edge
filter and the EQUAKE application of SPEC CPU2000.

As future work we will define a cost model in order to estimate the cost of
a partition considering factors as loop iterations, operation costs, synchroniza-
tion costs, volume of data transferred among processors, etc. We will evaluate
our approach with representative interprocedural implementations of well-known
benchmarks.

References

1. Andión, J.M., Arenaz, M., Touriño, J.: A New Intermediate Representation for
GCC based on the XARK Compiler Framework. In: Proceedings of 2nd Interna-
tional Workshop on GCC Research Opportunities (GROW) (in conjunction with
the 5th International Conference on High-Performance Embedded Architectures
and Compilers (HiPEAC)), pp. 89–100. Pisa, Italy (2010)

2. Arenaz, M., Amoedo, P., Touriño, J.: Efficiently Building the Gated Single As-
signment Form in Codes with Pointers in Modern Optimizing Compilers. In: Pro-
ceedings of 14th International Euro-Par Conference (Euro-Par), Lecture Notes in
Computer Science 5168:360–369. Las Palmas de Gran Canaria, Spain (2008)

3. Arenaz, M., Touriño, J., Doallo, R.: Compiler Support for Parallel Code Generation
through Kernel Recognition. In: Proceedings of 18th International Parallel and
Distributed Processing Symposium (IPDPS). Santa Fe, NM (2004)

4. Arenaz, M., Touriño, J., Doallo, R.: Program Behavior Characterization Through
Advanced Kernel Recognition. In: Proceedings of 13th International Euro-Par Con-
ference (Euro-Par), Lecture Notes in Computer Science 4641:237–247. Rennes,
France (2007)

5. Arenaz, M., Touriño, J., Doallo, R.: XARK: An eXtensible framework for Auto-
matic Recognition of computational Kernels. ACM Trans. Program. Lang. Syst.
30(6) (2008)

6. Ball, M., Cifuentes, C., Bairagi, D.: Partitioning of Code for a Massively Parallel
Machine. In: Proceedings of the 13th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pp. 225–236. Washington, DC
(2004)

7. Callahan, D.: Recognizing and Parallelizing Bounded Recurrences. In: Proceedings
of 4th International Workshop on Languages and Compilers for Parallel Computing
(LCPC), Lecture Notes in Computer Science 589:169–185. Santa Clara, CA (1991)

8. Choudhary, A.N., Narahari, B., Nicol, D.M., Simha, R.: Optimal Processor Assign-
ment for a Class of Pipelined Computations. IEEE Trans. Parallel Distrib. Syst.
5(4):439–445 (1994)

9. Dai, J., Huang, B., Li, L., Harrison, L.: Automatically Partitioning Packet Pro-
cessing Applications for Pipelined Architectures. In: Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation (PLDI),
pp. 237–248. Chicago, IL (2005)

10. Ennals, R., Sharp, R., Mycroft, A.: Task Partitioning for Multi-Core Network Pro-
cessors. In: Proceedings of 14th International Conference on Compiler Construction
(CC), Lecture Notes in Computer Science 3443:76–90. Edinburgh, UK (2005)

11. Girkar, M., Polychronopoulos, C.D.: Partitioning Programs for Parallel Execution.
In: Proceedings of 2nd International Conference on Supercomputing (ICS), pp.
216–229. Saint-Malo, France (1988)

12. González-Domı́nguez, J., Taboada, G.L., Fraguela, B.B., Mart́ın, M.J., Touriño,
J.: Servet: A Benchmark Suite for Autotuning on Multicore Clusters. In: Proceed-
ings of 24th IEEE International Parallel and Distributed Processing Symposium
(IPDPS). Atlanta, GA (2010)

13. Li, L., Huang, B., Dai, J., Harrison, L.: Automatic Multithreading and Multipro-
cessing of C Programs for IXP. In: Proceedings of the ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming (PPOPP), pp. 132–141.
Chicago, IL (2005)

14. Lin, Y., Padua, D.A.: On the Automatic Parallelization of Sparse and Irregular
Fortran Programs. In: Proceedings of 4th International Workshop on Languages,
Compilers, and Run-Time Systems for Scalable Computers (LCR), Lecture Notes
in Computer Science, 1511:41–56. Pittsburgh, PA (1998)

15. Liu, L., Li, X.F., Chen, M., Ju, R.D.: A Throughput-Driven Task Creation and
Mapping for Network Processors. In: Proceedings of International Conference on
High-Performance Embedded Architectures and Compilers (HiPEAC), pp. 227–
241. Ghent, Belgium (2007)

16. Pinter, S.S., Pinter, R.Y.: Program Optimization and Parallelization Using Idioms.
ACM Trans. Program. Lang. Syst. 16(3):305–327 (1994)

17. Rul, S., Vandierendonck, H., De Bosschere, K.: Towards Automatic Program Parti-
tioning. In: Proceedings of the 6th ACM Conference on Computing Frontiers (CF),
pp. 89–98. New York, NY (2009)

18. Setoain, J., Tenllado, C., Gómez, J.I., Arenaz, M., Prieto, M., Touriño, J.: Towards
Automatic Code Generation for GPU Architectures. In: Proceedings of 9th Inter-

national Workshop on State-of-the-Art in Scientific Computing on GPUs (PARA).
Trondheim, Norway (2008)

19. Subhlok, J., Vondran, G.: Optimal Mapping of Sequences of Data Parallel Tasks.
In: Proceedings of the ACM SIGPLAN on Principles and Practice of Parallel Pro-
gramming (PPOPP), pp. 134–143. Santa Barbara, CA (1995)

20. Subramanian, R., Pande, S.: A Framework for Performance-based Program Parti-
tioning. In book “Progress in Computer Research”, Nova Science Publishers, Inc.,
pp. 151–169. Commack, NY (2001)

21. Vahid, F.: Partitioning Sequential Programs for CAD using a Three-Step Ap-
proach. ACM Trans. Design Autom. Electr. Syst. 7(3):413–429 (2002)

