
A. Artifact description
A.1 Abstract
The present artifact supports the results presented in the
paper “Trace-based Affine Reconstruction of Codes”. We
provide a Python implementation of the reconstruction engine
described in the paper. The implementation requires Python
2.6 or higher and NumPy 1.8.1 or higher in order to run. The
reviewer is expected to load from disk/generate a memory
reference trace and run it through the extract() function,
which will construct an affine loop that generates the input
trace using the techniques introduced in the paper. In order
to save reviewing time, we have included a “trace library”
(generate_trace() function), allowing to synthetically
generate a trace equivalent to any PolyBench one but in
a much faster way than the time required to download,
decompress and read the trace from disk. In order to assess
the correction of the synthetically generated traces, the entire
set of PolyBench C/3.2 traces, pre-processed in the manner
described in the paper and ready to use as input for the engine,
is made available online for the reviewer to double-check
synthetic results at their discretion.

A.2 Description
A.2.1 Check-list (artifact meta information)
• Algorithm: we present a new algorithm to reconstruct affine

references from their memory traces. Its pseudo-code can be
found in the paper in Algorithms 1 and 2.

• Program: For validation, we use the publicly available Poly-
Bench C/3.2 benchmarks. Since the traces generated by Poly-
Bench need to be preprocessed as described in the paper before
being fed to the reconstruction engine, we recommend to down-
load the processed traces that we have made available. In order to
save time, it is also possible to synthetically generate the traces
using the provided facilities in the artifact code. The artifact also
includes an annotated version of the PolyBench/C 3.2 codes, con-
taining the correspondence between preprocessed/synthetically
generated traces and references in the code.

• Data set: we use memory traces from PolyBench/C 3.2 which
can be downloaded together with the artifact.

• Run-time environment: the provided code should be run with
a Python 2.x interpreter, specifically ≥ 2.6.6. It also needs
NumPy 1.8.1. iPython 2.x is required to inspect some examples
interactively, although the same examples can be read using a
web browser. No root access is needed to run the code.

• Hardware: the provided implementation is not optimized from
the memory point of view, and needs the entire trace to be loaded
into memory. A machine with 64GB of RAM is recommended
to run the largest experiments.

• Execution: in order to achieve the performance obtained in the
tests, the reviewer should not execute any other computationally
expensive task while validating the tool.

• Output: the output is given through the interpreter in text mode.

• Experiment workflow: an experiment consists of: 1) launching
the interpreter and loading the provided library; 2) loading or

generating the target trace; 3) running the extract() function
on the first-order differences of the trace.

A.2.2 How delivered
The present artifact is composed of a .tgz file and a set
of compressed traces that can be optionally used as input to
validate synthetic ones. Since these traces are very large, they
are not packed together with the executable and documen-
tation for the artifact. All the files and data can be down-
loaded from http://gac.udc.es/~grodriguez/
CGO2016-AE/.

The main downloadable file, a .tgz archive, contains the
following files:

• trace_ae.py: source code of the reconstruction en-
gine. It has been annotated with meaningful information
for the artifact evaluation process. It contains all the exe-
cutable parts of the artifact.

• Folder polybench-c-3.2: contains annotated Poly-
Bench source, to give insight about how the trace library
included in the Python file corresponds to memory refer-
ences in PolyBench codes. These can be used to generate
evaluation traces at the reviewers’ discretion.

• workflow.ipynb: iPython Notebook containing an
example session using the tool in an interactive way.

• workflow.html: same iPython Notebook in HTML
version.

• cholesky.4.trace.bz2: trace file used in the ex-
ample notebook.

A set of pre-processed input traces, suitable for validat-
ing synthetically generated ones, can be obtained from the
artifact home page. As detailed in the paper, these contain
isolated memory traces generated by single references in the
PolyBench codes. As their combined size exceeds 20GB, they
have not been packed inside the downloadable .tgz.

A.2.3 Hardware dependencies
A machine with 64GB of RAM is recommended in order to
process the largest trace examples. The performance numbers
in the paper were obtained on Intel Xeon E5-2660 Sandy
Bridge 2.20 Ghz nodes.

A.2.4 Software dependencies
The code requires a Python 2 interpreter to be executed,
specifically Python ≥ 2.6.6. It also requires NumPy 1.8.1. In
order to interactively inspect the iPython Notebook included
in the artifact as an usage example, iPython 2.x must also be
installed. Note that this usage example can be also accessed
(although in a non-interactive way) using any web browser.

A.2.5 Datasets
The more convenient way to test the tool is through syn-
thetically generated traces readily available by executing

1

http://gac.udc.es/~grodriguez/CGO2016-AE/
http://gac.udc.es/~grodriguez/CGO2016-AE/

the generate_trace() function included in the Python
code (see Section A.4). However, in order for the reviewer
to double-check the accuracy of the synthetic traces, original
traces generated by PolyBench C/3.2 executions are available
for download at the artifact home page. These are very large
and therefore not included in the packed artifact. Alterna-
tively, the reviewer may decide to locally generate their own
traces by running PolyBench codes. This is covered in more
detail in Section A.4.

A.3 Installation
Installation of the tool is straightforward. It is implemented as
a Python module, and therefore it is only necessary to extract
the .py file and load it into an interpreter using import.
Instructions are provided in Section A.4 to describe how to
use the tool through an interactive Python session.

A.4 Experiment workflow
This section describes how to use the tool in four different
use cases: manual reconstruction of synthetically generated
traces, usage of automatic test features included in the tool to
reconstruct synthetically generated traces, reconstruction of
pre-processed traces downloaded from the artifact page, and
local generation of custom traces by the reviewer. Note that
this section is also available as an iPython Notebook in files
workflow.ipynb and workflow.html, packed in the
artifact.

A.4.1 Reconstruction of synthetically generated traces
Besides the reconstruction engine, trace_ae.py includes
a trace library including all the PolyBench/C 3.2 memory
references. The generate_trace() function can be used
to synthetically generate a trace equivalent to any PolyBench
one in the following way:

>>> import numpy as np
>>> import trace_ae
>>> (a,c,d)=trace_ae.generate_trace(

test="cholesky",
access=4,
size="standard")

The previous command will generate a trace equivalent to
cholesky.4, with only two differences:

• The base address of the access (first referenced address)
is 0.

• The base stride (data size) is 1, instead of the size in bytes
of the base array data type.

As mentioned in the last paragraph of Section 3.4 in the
paper, these are not relevant for the reconstruction process.
The generate_trace() function returns four values:

• a: NumPy array containing the synthetic trace.
• c: NumPy array containing the first observed stride, used

to start the reconstruction process, and calculated as:

>>> c = np.array([a[1]-a[0]])

• d: NumPy array containing the first order differences of
trace a, calculated as:

>>> d = a[2:] - a[1:-1]

Once the synthetic trace is generated, the reconstruction
process is started by calling:

>>> trace_ae.extract(d, c, cut=3)

In the previous call, the parameter cut indicates the depth
threshold for the maximum solution size to try. Since the
simplest representation of the cholesky.4 reference is
a 3-level loop, using cut below 3 will not return a valid
reconstruction. This is a very fast process. Using cut above 3
will return a valid reconstruction, but it may not be a minimal
one from the structural point of view (i.e., it may use loops
of depth greater than 3). Besides, the number of explored
branches grows exponentially with loop depth, and therefore
it is not desirable to try a reconstruction with a depth greater
than strictly necessary. For this reason, in order to guarantee
a breadth-first traversal of the solution space, in our tests
extract() is called with incremental values of cut until
a solution is found (see Section A.4.2).

Upon completion, extract() returns the components
of the solution, if it has been found:

• Coefficients vector −→c .
• Iteration matrix I, containing a subset of the iteration

indices in the reconstruction.
• Bounds matrix U.
• Bounds vector −→w .

The Artifact Evaluation version also prints two values
necessary to assess the experiments carried out in the paper:

• Number of references which were predicted by −→γ versus
total number of references in the trace.

• Maximum memory usage for storing the solution elements
and backtracking stack during the reconstruction process.

Note that this manual way of reconstructing a synthetic
trace is not convenient for performance (runtime) measure-
ments, which are covered in Section A.4.2.

A.4.2 Automatic reconstruction using system tests
In order to avoid the manual process of constructing a
synthetic trace through generate_trace(), the Python
code includes three convenience functions:

• To run the reconstruction on a single reference of a
benchmark, run:

>>> trace_ae.system_tests(
test="cholesky",
access=4,

2

size="standard",
timing=True,
debug=True)

This call will generate and reconstruct reference choles-
ky.4. It will show the time for the reconstruction process
and, after it ends, will check that running the generated
loop rebuilds the exact memory trace used as input. Note
that the reconstruction process will first try to reconstruct
the trace using cut=1, then cut=2 and finally cut=3
before it suceeds. Reported time includes all three calls
to extract(). Also note that the debugging process is
very costly: reconstructing the original trace from U, −→w
and −→c and checking that it is exactly equal to the original
one takes longer than the reconstruction process itself
(although, admittedly, this process is not as optimized as
the reconstruction which is the subject of the paper).

• To run the reconstruction of all the references of a bench-
mark, run:

>>> trace_ae.all_accesses(
test="cholesky",
size="standard",
timing=True,
debug=True)

This call invokes system_tests() for each reference
belonging to benchmark cholesky in the trace library .
Reconstruction times are reported per reference.

• To run the full system tests, reconstructing all references
of all PolyBench benchmarks, run:

>>> trace_ae.all_tests(
size="standard",
timing=True,
debug=True)

Note that this is a very lengthy process (it may take
24-48h, depending on the hardware used for the tests).
Alternatively, the reviewer may use size="small" to
generate PolyBench traces equivalent to those obtained
when compiling PolyBench using -DSMALL_DATASET.
This process will only take a few minutes, and is enough
for assessing the reconstruction from the qualitative point
of view.

A.4.3 Reconstruction of downloaded traces
The reconstruction process for downloaded traces is straight-
forward:

1. Download the chosen trace from the artifact home page.

2. Uncompress it using bunzip2.

3. Read the trace into memory using the following command:

>>> (a,c,d) = trace_ae.read_trace(
"cholesky.4.trace")

Where read_trace() expects a full or relative path to
the trace file. The function returns a, c and d with the
same meanings as when generating the trace synthetically
using generate_trace().

4. Start the reconstruction process as before:

>>> trace_ae.extract(d, c, cut=3)

The solution must be structurally equal to the one obtained
using synthetic traces. The only differences should reside in
the base address, and in −→c which will be multiplied in this
case by the data size of the base array.

A.4.4 Local generation of custom traces by the
reviewer

The reviewer may easily generate a single reference trace
from the PolyBench sources packed with the artifact:

1. Choose a benchmark and reference, e.g., cholesky.4.

2. Edit the source code of the cholesky benchmark,
found in polybench-c-3.2/linear-algebra/
kernels/cholesky/cholesky.c.

3. In the scop section of the code, look for the access
annotated with the number 4. In particular, cholesky.4
appears in line 82:

x = x - A[j][k] * A[i][k];
// 4 -> A[j][k] (read)

4. Insert a printf() immediately after the reference in
the code:

printf("4 %lx\n", &A[j][k]);

5. Run the code and store the output of the printf() into
a file cholesky.4.trace.

6. Use the reconstruction engine to process the generated
trace.

A.5 Evaluation and expected result
There are four evaluation dimensions that the reviewer should
take into account:

1. Qualitative evaluation: the reconstruction process should
return U, −→w and −→c such that they reconstruct the exact
affine input trace.

2. Performance evaluation: the reconstruction process should
finish in a time that conforms to the findings in the paper.

3. Evaluation as a predictor: the reconstruction process
should predict the number of accesses shown in Table 2
in the paper.

4. Memory consumption: Section 4 gives the lower and
upper bounds on memory consumption. The code in
trace_ae.py automatically measures this consump-
tion for each invocation of extract().

3

	Artifact description
	Abstract
	Description
	Check-list (artifact meta information)
	How delivered
	Hardware dependencies
	Software dependencies
	Datasets

	Installation
	Experiment workflow
	Reconstruction of synthetically generated traces
	Automatic reconstruction using system tests
	Reconstruction of downloaded traces
	Local generation of custom traces by the reviewer

	Evaluation and expected result

