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The performance of memory hierarchies, in which caches play an essential role, is critical in nowa-
days general-purpose and embedded computing systems because of the growing memory bottleneck
problem. Unfortunately, cache behavior is very unstable and difficult to predict. This is particularly
true in the presence of irregular access patterns, which exhibit little locality. Such patterns are very
common, for example, in applications in which pointers or compressed sparse matrices give place
to indirections. Nevertheless, cache behavior in the presence of irregular access patterns has not
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technique based on PMEs (probabilistic miss equations), previously developed by the authors, that
allows the automated analysis of the cache behavior for codes with irregular access patterns re-
sulting from indirections. The model generates very accurate predictions despite the irregularities
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acteristics that can automatically analyze this kind of codes. These properties enable this model to
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15071. A Coruña, Spain; email: dcanosa@udc.es, basilio@udc.es, doallo@udc.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1544-3566/2007/09-ART16 $5.00 DOI 10.1145/1275937.1275940 http://doi.acm.org/
10.1145/1275937.1275940

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 16, Publication date: September 2007.



Article 16 / 2 • D. Andrade et al.

1. INTRODUCTION

The importance of the role of the memory hierarchy in current general-purpose
and embedded systems grows in parallel to the impact of the memory bottleneck
problem. Unfortunately, cache behavior is unstable and depends on many pa-
rameters [Lam et al. 1991; Temam et al. 1994]. As a result, cache performance
is difficult to predict, analyze, and understand. Trace-driven simulations [Uhlig
and Mudge 1997] and profiling with built-in hardware counters [Ammons et al.
1997] can provide accurate estimations, but these approaches have relatively
high computing requirements, they are restricted to a given architecture, in the
case of the counters, and, most important, they give little insight on the rea-
sons for the observed behavior. Analytical models, on the other hand, can help
explain such behavior and be fast enough even to be used in a production com-
piler. In the past few years, accurate and automatable analytical models able
to analyze whole programs with regular access patterns have appeared [Ghosh
et al. 1999; Chatterjee et al. 2001; Vera and Xue 2002; Fraguela et al. 2003].
Nevertheless, none of the approaches to model the cache behavior of codes with
irregular access patterns because of indirections proposed so far [Fraguela et al.
1998; Ladner et al. 1999; Cascaval et al. 2000; Mitchell et al. 2001] is both au-
tomatable and reasonably accurate. This is despite the fact that the analysis of
the cache behavior in the presence of irregular access patterns is very impor-
tant, since many relevant applications exhibit them, and cache performance
usually drops in their presence as a result of their lack of locality.

In this paper, we extend the PME (probabilistic miss equations) model
[Fraguela et al. 2003], which was restricted to codes with regular access pat-
terns, so that it is now able to automatically analyze codes with indirections.
The ability of our model to analyze these codes in a totally automatic way has
enabled its integration in the XARK compiler [Arenaz et al. 2003], which is built
on top of the Polaris compiler framework [Blume et al. 1996]. Such integration
has been described in Andrade et al. [2007].

Our modeling considers indirections in which all the elements of the array ac-
cessed by means of the indirection have the same probability of being accessed,
i.e., where the irregular access is uniformly distributed on the referenced array.
This restriction eases the treatment of the problem in this first attempt to model
automatically the cache behavior of codes with indirections, while allowing to
represent the most important problems that irregular access patterns pose for
their modeling. We acknowledge, though, that most indirections in real pro-
grams do not follow an uniform distribution; thus we are currently extending
our model to consider other distributions. As a first step in this direction, we
present a simple extension that allows to model the behavior of indirections gen-
erated by banded matrices, which we validate successfully with matrices from
the Harwell–Boeing collection [Duff et al. 1992]. Still, our experiments show
that our current model accurately predicts the behavior of several codes when
matrices with nonuniform distributions are used. More interestingly, we have
performed a successful preliminary experiment driving compiler optimizations
that involve codes for which the model predictions for real nonuniform sparse
matrices must be considered as fair approximations, rather than as accurate
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estimations. The results point out that the model is good enough qualitatively
to drive optimizations in the presence of typical real matrices.

We will see that the modular nature of the PME model facilitates the exten-
sion, and that its probabilistic nature provides the right tools for the modeling
of codes with irregular access patterns. The validations reveal that the result-
ing model is both accurate and fast. A previous work in this line [Andrade et al.
2006] considered the extension of the model to analyze codes with irregular
access patterns because of conditional statements.

The rest of the paper is organized as follows. An overview of the PME model
and the scope of our extension is provided in the following section. Section 3
describes both the formulas that estimate the number of misses generated by
regular access patterns of the existing PME model, as well as the new ones we
introduce to support the modeling of irregular access patterns. Both kinds of
formulas depend on miss probabilities that represent the impact on the cache
of each given access pattern found in the code. Section 4 explains the procedure
followed by the model to estimate these probabilities. The extension is validated
in Section 5 using typical kernels that contain indirections. Section 6 discusses
related work. Finally, Section 7 is devoted to our conclusions.

2. THE PROBABILISTIC MISS EQUATIONS (PME) MODEL

The PME model [Fraguela et al. 2003] classifies misses in two groups. Compul-
sory or cold misses take place the first time a given memory line is accessed,
since lines are loaded in the cache on demand. Interference misses take place
when a line that has been accessed previously is not found in the cache in a new
access. This category includes all the conflict and capacity misses. An attempt
to reuse a line results in a miss with a probability that depends on the cache
footprint of the data accessed since the previous reference to the considered
line. Thus, the PME model estimates the number of misses generated by each
static reference found in a code by means of a formula, called probabilistic miss
equation, which includes the number of different lines it accesses (compulsory
misses), the number of line reuses it generates, and the interference probability
for such accesses (interference misses) during the execution of the program.

Normally, each given line can be reused with different reuse distances, that
is, different portions of code are executed in between different attempts to reuse
the line. In the case of references found in loop nests, which is the scope of the
PME model, each loop enclosing a reference gives place to a different reuse
distance, which can be measured in terms of loop iterations, that (possibly)
characterizes some of the reuses not captured by the inner loops. This way, our
model estimates the number of misses generated by a reference by exploring the
loops that enclose it from the innermost to the outermost one. In each loop the
model builds a partial PME that adds information about the reuses whose reuse
distance is associated with that loop. Specifically, each partial PME estimates
the number of accesses generated by the reference that cannot exploit reuse in
the considered loop, the number of accesses whose reuse distance is associated
with this loop, and the associated miss probability for such reuses. The PME
for each loop and static reference is expressed recursively in terms of the PME
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for the same reference in the immediately inner loop, so that it contains all the
information for the behavior of the reference within the loop. Thus, the PME
associated with the outermost loop in a nest takes into account all the reuses and
its evaluation yields the number of misses generated by the reference during
the execution of the loop nest.

In our extended model, PMEs continue to be built in this recursive way,
but besides the PMEs associated with regular access patterns introduced
in Fraguela et al. [2003], which we describe in Section 3.1 for completeness,
new kinds of PMEs associated with irregular access patterns are proposed in
Sections 3.2 and 3.3.

2.1 Miss Probability Estimation

Our model is probabilistic because PMEs estimate the probability that each
given access results in a miss in order to calculate the number of misses. In a
K -way set associative cache with LRU replacement policy, an attempt to reuse
a line results in a miss if K or more different lines accessed since the last
reference to the considered line are mapped to its cache set. As a result, the
probability of miss in a nonfirst access is equal to the probability that a cache
set has received K or more lines during the reuse distance, that is, the portion
of code executed since the immediately previous access to the line. The PME
model follows three steps to estimate the interference probability associated
with a reuse distance:

1. Access pattern identification: the access patterns followed by the references
involved in the reuse distance and the parameters that characterize them
are inferred from the references indexing functions and the shape of the
loops that enclose them. The PME model represents each pattern as a func-
tion whose output is a mathematical representation of the footprint of the
access pattern on the cache. There is one function per each typical access pat-
tern (sequential access, access with constant stride, etc.) and its arguments
provide the quantitative characterization of the access pattern.

2. Cache impact quantification: the functions identified in the preceding step
are evaluated, yielding vectors of probabilities that we call area vectors, that
represent how each access pattern has impacted on the cache.

3. Area vectors addition: once the area vectors for the different access patterns
have been estimated, they must be added in order to calculate a global area
vector that represents their total impact on the cache.

Section 4 explains how our model follows these steps. Once they are com-
pleted, the final interference probability is estimated as component 0 of the
global area vector associated with the analyzed reuse distance, since, as we
will see in Section 4.2, it contains the ratio of sets that received K or more lines
during the reuse distance, which is conversely the probability a given set has
received K or more lines.

2.2 Scope of Application

Figure 1 depicts the scope of application of our extended model. It shows a set
of normalized perfectly or nonperfectly nested loops in which the number of
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Fig. 1. Nested loops with structures accessed using indirections.

Table I. Notation Used

Cs Cache size
Ls Line size
K Associativity of the cache
DA # of dimensions of array A

DA j size of the j th dimension of array A

dA j cumulative size of the j th dimension of array A, dA j = ∏ j−1
k=1 DAk

αRj constant that multiplies either a loop index or a value read from an
index array in the j th subscript of reference R

δRj constant added either to a loop index or to a value read from an
index array in the j th subscript of reference R

Ni # of iterations of loop at nesting level i, whose index is Ii

SRi stride of reference R with respect to the loop at nesting level i, SRi = αRj · dA j ,
where j is the dimension of array A referenced by R indexed by Ii

LRi # of different sets of lines (SOLs) accessed by reference R during
the execution of the loop at nesting level i

LRi1 # of different sets of lines (SOLs) accessed by reference R during
the execution of one iteration of the loop at nesting level i

DRi # of different sets of lines (SOLs) that reference R can potentially
access during the execution of the loop at nesting level i

pRi probability each one of the DRi sets of lines (SOL) R can access is actually
accessed during a given iteration of the loop at nesting level i, pRi = LRi1/DRi

iterations of every loop must be the same in every execution of the loop. The
reference indexes are affine functions fi either of the loops control variables
Ii or of values read from arrays. We call index or indirection array the one
whose values are used to index another array, which we call the base array of
the indirection. Index arrays can be themselves indexed by other arrays, which
gives place to several levels of indirection. In the codes considered in this work
the probability that a component of the base array of an indirection is accessed
is uniformly distributed. This means they all have the same probability of being
accessed. An extension to consider the situation when the probability of access
is concentrated, still uniformly, on a band of the base array, is also presented.

As for the hardware, our model considers set-associative caches of an ar-
bitrary size Cs, line size Ls and associativity K with LRU replacement policy,
which is the most common situation. Table I depicts these and other parameters
we will make reference to during the explanation of our model. For simplicity,
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in all our terms and formulas, sizes and strides are expressed in elements of
the array whose access is being analyzed rather than in bytes.

3. BUILDING PROBABILISTIC MISS EQUATIONS

As explained in Section 2, a partial PME FRi is built for each static reference R
in the code and loop at nesting level i that encloses such reference. This PME
estimates the number of misses that R generates during a complete execution
of this loop as a summatory of the number of accesses that enjoy each possible
reuse distance associated with this loop multiplied by the miss probability that
the memory regions accessed during that reuse distance generate. Of course,
every access that is the first one to a line in this loop, cannot result in reuses
of lines already accessed in the current execution of the loop; thus, their miss
probability cannot be associated to reuse distances within the loop. The miss
probabilities for those accesses correspond either to (a) reuse distances that are
associated with outer loops; or (b) reuse distances with respect to accesses to
the same data in previous loops in the same nesting level, when we consider
nonperfectly nested loops; or (c) when the loop is the outermost one (i = 0) and
there are no preceding loops that could give place to reuses, the miss probability
is simply one, since every first access to a line in this loop is, indeed, a first access
to the line, unable to exploit any reuse, which results in a compulsory miss.
Since PMEs are built beginning in the innermost loop and proceeding outward
and their evaluation depends on memory regions associated with reuses that
are calculated in outer or previous loops, the general expression of a PME is
FRi(RegIn), where RegIn stands for the memory regions accessed during the
reuse distance for what in this level of the nest happen to be first accesses.
The exception are the PMEs for outermost loops FR0 in which no reuse from
previous accesses is possible, for whose evaluation we use as RegIn a memory
region whose associated miss probability is one, so that the first-time accesses
to a line in the nest are predicted as misses. In general, we can define the
input parameter RegIn of a PME FRi as the memory region accessed since the
immediately previous access to any of the lines that R references in loop i in
the moment the execution of the loop begins.

The construction of FRi depends on whether the control variable for loop i,
Ii, is used in the indexes of index arrays found in the reference or not. If Ii

does not appear in R, or if it only appears in the indexes that do not depend
on indirections, the access pattern of R is regular with respect to loop i, so the
PME for this loop is built as in Fraguela et al. [2003]. This kind of PME is
explained in Section 3.1 below for the sake of completeness. If, on the contrary,
Ii participates in the indexing of an index array in R, thus giving place to an
indirection, the access pattern of R is irregular with respect to loop i. Modeling
the behavior of irregular access patterns requires new kinds of PMEs. We have
identified two kinds of irregular PMEs in the presence of accesses with an uni-
form distribution. Monotonic irregular access PMEs, explained in Section 3.2,
model the situation when the accesses generated by the indirection are ordered,
i.e., when the values read from the index array are monotonically increasing
or decreasing. When this condition does not hold or we simply do not have
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information about the indexing values, nonmonotonic irregular access PMEs
are to be applied (see Section 3.3). We now explain the three kinds of PMEs, in
turn.

3.1 Regular Access PME

If the variable Ii associated with loop i does not index any structure that is
used in the indexing of the base array A of the studied reference R, the access
pattern of R is regular with respect to loop i. Thus, the behavior of R in this
nesting level is modeled by the regular access PME, explained in Fraguela et al.
[2003]:

FRi(RegIn) = LRi · FR(i+1)(RegIn) + (Ni − LRi) · FR(i+1)(RegRi(1)) (1)

where Ni is the number of iterations of the loop at the nesting level i and LRi

is the number of iterations in which there is no possible reuse for the lines
referenced by R from the point of view of this loop. RegRi( j ) stands for the
memory region accessed during j iterations of the loop in the nesting level i
that can interfere with the accesses of R in the cache.

The formula calculates the total number of misses for reference R in nesting
level i as the sum of two values. The first one is the number of misses produced
by the LRi iterations in which the accesses of R cannot exploit reuse in this loop.
The miss probability for these iterations depends on reuse distances generated
in outer or preceding loops. Thus, the number of misses generated in these
iterations is obtained evaluating FR(i+1), the PME for the immediately inner
loop, passing as parameter for the calculation of the miss probability of its first
accesses the value RegIn provided by those external loops. The second value
corresponds to the iterations in which there can be reuse with respect to the
accesses in the previous iteration in this loop. The miss probability for the first
accesses in the evaluation of the PME for the immediately inner level depends,
in this case, on the memory regions accessed during one iteration of loop i.

When this formula is applied to the innermost loop containing reference R,
these LRi iterations correspond to lines, meaning that during one complete exe-
cution of the Ni iterations of the innermost loop, R really accesses LRi different
lines, the other accesses being thus reuses. When the loop analyzed is not the
innermost one, the iterations of the loop define sets of lines (SOLs) accessed by
R in the inner loops. For example, if a bidimensional M × N FORTRAN array
is accessed row by row (that is, the innermost loop of the access sweeps through
the N columns of a given row), in the analysis of the outer loop that controls the
row index of the reference, each iteration of this loop is associated to the access
to the set of lines that hold the elements of a row of the matrix. As FORTRAN
stores the arrays by columns, if M ≥ Ls, where Ls is the cache line size mea-
sured in elements, which is the most usual situation, each set of lines will be
made up of N different lines. In this case, LRi iterations of this outer loop give
place to accesses to new sets of lines (SOLs), while the other Ni − LRi iterations
generate reuses of the SOLs accessed in the previous iteration. In what follows,
we will talk in general about sets of lines (SOLs), in the understanding that in
the innermost loop each one of these sets consists of a single line.
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Fig. 2. Sparse matrix–vector product.

The number of iterations of loop i that cannot exploit either spatial or tem-
poral locality is given by

LRi = 1 +
⌊

Ni − 1
max{Ls/SRi, 1}

⌋
(2)

where Ls is the line size measured in elements of the array referenced by R
and SRi is the stride that reference R has with respect to loop i. This stride
is a constant, since either Ii does not index reference R or the index we are
considering is an affine function of Ii. In the former case, trivially SRi = 0. In
the latter case SRi = αR j dA j , where j is the dimension whose index depends
on Ii; αR j is the scalar that multiplies the loop variable in the affine function,
and dA j is the cumulative size1 of the j th dimension of the array A referenced
by R.

Example 1. We will use as ongoing example to illustrate the construction of
the different kinds of PMEs the sparse matrix–vector product code in Figure 2,
where the matrix is stored in CRS (compressed row storage) format [Barrett
et al. 1994]. As we can see, this storage gives place to irregular accesses on the
vector X by which the matrix is multiplied.

If we analyze the reference R = D(I) in the context of loop I, at nesting
level 0, we see that the variable that controls the loop indexes this reference
by means of the affine function 1 × I + 0. Thus, the regular access PME of
Eq. (1) can model the behavior of the reference in this loop. In order to apply it,
we must first calculate the number LR0 of different sets of lines this reference
accesses during the execution of this loop by means of Eq. (2). Since the number
of iterations of this loop is N0 = M and the stride SR0 of D(I) with respect
to loop I is 1, we get LR0 = 1 + �(M − 1)/Ls�, which matches our intuitive
calculation of the number of different lines that the reference accesses during
the M iterations of the loop. If we now replace this LR0 in Eq. (1) we get

FR0(RegIn) = (1 + �(M − 1)/Ls�)FR1(RegIn)
+ (M − (1 + �(M − 1)/Ls�))FR1(RegR0(1)) (3)

that is, the probability of miss in the first access to each one of the LR0 different
lines of D accessed in this loop depends on the impact on the cache of RegIn
regions accessed in outer or previous loops that could generate interferences

1Let A be an N -dimensional array of size DA1 × DA2 × . . . DAN . We define the cumulative size for
its j th dimension as dA j = ∏ j−1

i=1 DAi .
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with our attempt to reuse these lines of D, if such lines have been already
accessed at some point in the program. If our analyzer does not find a previous
access to these lines, it will evaluate the PME using as RegIn a region such that
it yields a 100% miss probability for these first accesses to the lines of D. The
probability of miss for the remaining M − LR0 accesses depends on the regions
accessed during one iteration of this loop, since the attempts to reuse each line
happen with a reuse distance of one iteration.

3.2 Monotonic Irregular Access PME

When the control variable for loop i, Ii, indexes an index array in an indirection,
the access pattern on the base array of our reference R is irregular with respect
to loop i. The reason is that the position accessed by R no longer depends directly
on Ii, but on the value read from the array that Ii indexes either directly or
through more levels of indirection.

The distribution of the values read from the index arrays on the dimension
of the base array they index determines the accesses, the reuses, and thus the
PME that models the reference–cache interaction. In our modeling, we assume
that this distribution is uniform, that is, all the elements of the base array have
the same probability of being accessed in each iteration of the considered loop.

We have found that two classes of irregular access patterns arise depending
on whether the values of the considered index array are ordered or not. When
they are ordered, the sequence of accesses produced by the indirection can be
characterized as a monotonically increasing or decreasing function. In this case,
the reuses in the considered loop i can only take place with respect to the line
referenced in the immediately previous iteration. This way, the PME for regular
access patterns explained in the preceding section (Eq. 1) can be used in this
situation, the difference being that LRi, the number of iterations of this loop
that cannot exploit reuse, or conversely, the number of different sets of lines
(SOLs) that R accesses during the execution of the loop, cannot be estimated
as in the regular access pattern case. In a monotonic irregular access pattern,

LRi = DRi
(
1 − (1 − LRi1/DRi)Ni

)
(4)

where DRi is the number of different SOLs that R can potentially access during
the execution of the loop i and LRi1 is the number of SOLs accessed during one
iteration of loop i. The rationale for Eq. (4) is that if in each iteration of the loop
i, on average LRi1 different SOLs are accessed out of the DRi ones that R could
access, then each one of them has the same uniform probability pRi = LRi1/DRi

of being accessed in each iteration of the loop. Thus, the probability that a
SOL has been accessed at least once during the Ni iterations of the loop is
1 − (1 − pRi)Ni . Multiplying this probability by the number of SOLs yields the
average number LRi of different SOLs that are actually referenced. Thus, this
is the number of iterations of the loop in which no reuse is possible. Because
the values in the index array are monotonically increasing (or decreasing), the
other Ni − LRi iterations of the loop attempt to reuse the SOL accessed in
the immediately previous iteration, with a reuse distance of one iteration of
the loop, as PME (1) reflects.
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The number LRi1 of different SOLs accessed during one iteration of loop i
is trivially one in the innermost loop z that contains R. For any other loop i,
LRi1 is LRk , with k = min{v/i < v ≤ z ∧ DimInd(v) = DimInd(i)}, i.e., it is the
LR for the outermost loop k nested inside loop i such that its index variable Ik

indexes (indirectly) the same dimension of the base array A referenced by our
reference R as the variable Ii of the considered loop i. If no such loop exists,
then, again, LRi1 = 1. Another way to express it is that the number of differ-
ent SOLs accessed in one iteration of loop i is the number of SOLs accessed
during the complete execution of the outermost loop nested inside loop i that
indexes, indirectly, the same dimension of the affected base array as Ii. This
definition allows to handle correctly those cases in which, for example, the in-
direction for a given dimension in R depends on several loop index variables,
e.g., in A(B(I,J)) both I and J index indirectly the only dimension of vector A.
Another example for this situation is often found in the codes in which indi-
rections are generated by sparse matrices because of the formats used to store
them.

Example 2. If we analyze the sparse matrix–vector product code in
Figure 2, we see that vector X is accessed indirectly through C(J) in the inner-
most loop, whose index variable is precisely J. In that loop, trivially, LR11 = 1
for reference X(C(J)). If we analyze the outer loop on I, we can see that this
variable indexes R(I), which defines the values for J. As a result, the indexes
of both loops indirectly index the only dimension of vector X and, thus, for the
outermost loop 0, LR01 = LR1.

We complete our modeling for this access pattern with the expression of DRi:

DRi =
⌈

DA j dA j

max{SRi, Ls}
⌉

(5)

where SRi = αR j · dA j and dA j are defined as in the preceding section, and
DA j is the size or number of elements along the j th dimension of the array A
referenced by R. Let us remember that j is the dimension that is indexed, in
this case indirectly, by Ii. This also means that in this case the constant αR j is
multiplying the indirection indexed by Ii rather than the variable Ii itself.

Example 3. From the shape of the loops displayed in Figure 2, a compiler
can speculate that R stores the indices for the beginning of the data of each row
of the sparse matrix in A and C, which hold the nonzeros and their corresponding
columns, respectively. Another possibility to extract this information would be
to include a directive to the compiler in the code reporting which is the role
of each array in the storage of the sparse matrix. With this knowledge we can
also infer that the sparse matrix has M rows and we can speculate that the
values in C are ordered for each row. If this were the case we could conclude that
the values read in Figure 2 by C(J) are monotonically increasing during each
whole execution of the loop J, at nesting level 1. As a result, the access pattern
of X(C(J)) in this loop can be modeled by a monotonic irregular access PME.
This PME has the form of Eq. (1), with its LRi calculated according to Eq. (4).
The latter expression is a function of DR1, the number of different SOLs that R

ACM Transactions on Architecture and Code Optimization, Vol. 4, No. 3, Article 16, Publication date: September 2007.



Automatable Analytical Modeling of the Cache Behavior • Article 16 / 11

can potentially access during the execution of the loop J, and LR11 , the number
of SOLs accessed during each iteration of this loop.

Equation (5) allows to calculate DR1 knowing that (a) the indirection takes
place in the first dimension of the base array X ( j = 1), (b) the cumulative
size for the first dimension of any array is always one (dX1 = 1), (c) the stride
SR1 of our reference with respect to its indirection is one (SR1 = αR1 · dX1 =
1 · 1), and (d) the size of the first (and only) dimension of X is a value DX1 our
compiler extracts from the definition of the vector in the code. With these data,
we evaluate Eq. (5) as DR1 = �DX1/Ls	. This means that during each iteration
of the loop J, X(C(J)) could potentially access any of the �DX1/Ls	 lines that
constitute X.

Both in our general explanation about the calculation of LRi1 and in our
preceding example, we explained that trivially, in the innermost loop that con-
tains a reference R with an indirection, LRi1 = 1, which is the case for X(C(J))
in loop J.

With these two pieces of data, we can evaluate Eq. (4):

LR1 = �DX1/Ls	
(

1 −
(

1 − 1
�DX1/Ls	

)N1
)

(6)

This expression assumes that each one of the �DX1/Ls	 lines of X has the same
uniform probability of being accessed during each one of the N1 iterations of
loop J. As a result, after the N1 iterations, each line has a probability 1 − (1 −
1/�DX1/Ls	)N1 of having been accessed at least once. Thus, multiplying this
probability by the number of lines, we get the number of different lines that
were actually accessed on average. As for the average number of iterations of
this loop N1, since it sweeps along the elements of a row of the sparse matrix,
its value is Ni = Nnz/M , where Nnz is the number of nonzeros in the sparse
matrix and M its number of rows. The number of nonzeros can be assumed
from the size declared for the arrays A and C, or be part of a directive to the
compiler or be extracted from a profiling of the input data.

Once we have calculated the number LR1 of different SOLs accessed in each
execution of the loop (with each SOL consisting of a single line in this case),
we can replace it in Eq. (1). This equation will consider the LR1 first accesses
to a different line with a miss probability that depends on reuses that take
place with respect to accesses outside the loop, while the remaining N1 − LR1
accesses necessarily try to reuse the line accessed in the immediately preceding
iteration. As a result, the miss probability for them is associated to the regions
accessed during one iteration of this loop.

3.3 Nonmonotonic Irregular Access PME

When the indexing values are not monotonic, or we have no information about
their ordering, the last access of a reference to a given line, or, in general,
set of lines (SOL), in the considered nesting level i may have happened an
indeterminate number of iterations ago. The number of loop iterations between
two accesses of the reference to the same SOL is not a fixed value, since every
SOL can be accessed with a given probability in each iteration of the loop. Thus,
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a probabilistic approach must be followed to estimate the number of misses
taking into account that each potential reuse distance happens now with a
different probability.

In the presence of uniform probabilities, each one of the DRi different SOLs
that R can potentially access during each execution of the loop has the same
probability pRi = LRi1/DRi of being accessed in a given iteration, no matter
whether the accesses are monotonic or not. Also, every SOL has this probability
of access in each one of the Ni iterations of the loop. As a result, the number
of misses generated by a nonmonotonic irregular access pattern during the
execution of loop i can be estimated by means of a summatory in which each
term estimates the number of misses that the accesses of R can generate in the
j th iteration of the loop:

FRi(RegIn) =
Ni∑
j=1

W MRi(RegIn, j ) (7)

where W MRi(RegIn, j ) yields the weighted number of misses generated in the
j th potential access of R to the SOLs it defines in loop i. In this expression,
RegIn stands for the region accessed since the last reference to the SOLs that
R accesses in this loop when the execution of this loop begins, as usual. This
number of misses is calculated as

WMRi(RegIn, j ) = (1 − pRi) j−1 · FR(i+1)(RegIn ∪ RegRi( j − 1))

+
j−1∑
h=1

pRi · (1 − pRi)h−1 · FR(i+1)(RegRi(h)) (8)

where pRi = LRi1/DRi, as explained in the previous section, yields the proba-
bility that a given SOL of the base array that R can potentially access during
the execution of loop i is indeed accessed during one iteration of that loop.

The first term in Eq. (8) considers the case that the SOL has not been accessed
in any of the previous j −1 iterations. This happens with a probability which is
(1 − pRi) j−1 given that pRi is the probability of access in each iteration. In this
case, the RegIn region that could generate interference with the new access to
the line when the execution of the loop begins must be added to the RegRi( j −1)
regions accessed during these j − 1 previous iterations of the loop in order to
account for the complete interference region. This addition is represented by
means of the ∪ operator. The second term weights the probability that the last
access took place in each one of the j − 1 previous iterations of loop i. The
probability that the last access to a given SOL was exactly h iterations before
the current iteration is pRi(1 − pRi)h−1, that is, the probability there was an
access to the SOL h iterations ago, but there were no accesses to it during the
last h − 1 iterations. In this case, the regions that can generate interferences
with the attempt to reuse the SOL in the current iteration are those accessed
during those h intermediate iterations, RegRi(h).

Example 4. When the reference X(C(J)) in our example code of Figure 2 is
analyzed in the context of the outer loop I at nesting level 0, the values read from
the indirection are no longer guaranteed to be ordered throughout the execution
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of the loop. That is, the values read from C during a single iteration of the loop
I correspond to the column indexes of the elements of a single row, which we
can assume that have been stored in a given order; but when the whole loop I
is taken into account, the values read from C are not ordered among different
iterations of loop I. As a result, the nonmonotonic irregular access PME of
Eq. (7) characterizes the access to X in this loop. In that formula, the number of
iterations of the loop is N0 = M , in our case, and W MR0(RegIn, j ) is calculated
following Eq. (8). In order to evaluate the latter formula, we must calculate pR0,
that is, the individual probability each SOL of X is accessed in each iteration of
loop I. As we have explained, this value is derived as pR0 = LR01/DR0, where
LR01 is the number of different SOLs our reference accesses, on average, in each
iteration of the loop and DR0 is the number of different SOLs it could actually
access. In example 2, we explained and calculated that for this reference LR01 =
LR1, and the value of LR1 was estimated in Eq. (6) in example 3. Regarding
DR0, it is calculated, according to Eq. (5). As we explained in example 2, while
the variable I that controls the loop we are analyzing does not appear in the
expression of our reference X(C(J)), this variable indexes R(I), which defines
the values for J. This way, I indexes indirectly the indirection we are analyzing
in the first (and only) dimension of array X and Eq. (5) can be evaluated using the
same parameters used in example 3, which results in DR0 = DR1 = �DX1/Ls	.
That is, any of the �DX1/Ls	 lines of X can be accessed during the execution of
loop I, where we remind the reader that DX1 is the length of vector X and Ls is
the number of elements of vector X a cache line can hold.

This example helps us also to illustrate the meaning and usage of the Re-
gIn input for the PMEs. The PME FR0 for reference R =X(C(J)) we have just
built is based on Eq. (7). In its development in Eq. (8), we can see how, as al-
ways, this PME is expressed in terms of the PME for the same reference in
the inmediately inner loop. In our case, this PME is FR1, built in example 3,
which models the behavior of the accesses to X during the product by a row of
the sparse matrix. The evaluations of FR(i+1) in FRi receive as RegIn the set
of regions accessed during the reuse distance associated to that evaluation. In
our example, attending to Eq. (8), FR0 evaluates FR1 through W MR0(RegIn, j )
with two kinds of reuse distances. The input for the first appearance of FR1 in
this expression depends on the RegIn for FR0 itself, because it is not associated
to reuses within the loop. Rather, it corresponds to the first accesses to lines of
X during the execution of the loop, which will result in cold misses. The model
predicts this correctly because (a) RegIn for outer loops with no preceding ac-
cesses is a region with an associated miss probability 1 and (b) as we can see the
model propagates this region down to the PME FR1 for the innermost loop for
the evaluation of the misses generated in the very first accesses to these lines.

The remaining evaluations of FR1 in Eq. (8) correspond to reuses within
loop 0 with a reuse distance of exactly h iterations of this loop each. Such
evaluations are multiplied by the probability this situation actually takes place
in order to predict correctly the number of misses they generate. Their RegIn
is RegR0(h), i.e., the interference region generated during those h iterations in
which a line of X has not been accessed. In our example, this corresponds to
the acesses that take place during the product of h rows of our sparse matrix
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by the vector. The RegIn of FR1 determines the miss probability for the first
accesses to the lines of X during an isolated iteration of the innermost loop.
Assigning this value to RegIn ensures such probability depends, in fact, on
the cache footprint of the accesses performed since the inmediately preceding
access to those lines, which took place exactly h iterations of the loop on I ago.

The calculation of regions of interference and the quatitative evaluation of
PMEs are considered in Section 4.

3.4 PME for Uniform Band Distribution

Until now, we have considered the case in which all the elements of the base ar-
ray have the same probability of being accessed, but our model can be extended
to cover situations in which the distribution is not uniform. For example, a very
common source of indirections are accesses generated by sparse matrices that
are stored in some compressed format like CRS [Barrett et al. 1994]. One of
the most usual situations, by far, is that such matrices are banded,2 so it is
valuable to extend our model to consider irregular accesses that are restricted
to a limited band or area of the base array, even if the probability of access
is still uniform inside such band. In this case, the formulas described in the
Sections 3.1, 3.2, and 3.3 can be used making two small changes to adapt them
to this new situation:

� when PMEs for the indirect accesses generated by the column indices of a
banded matrix are built, the term DA j in Eq. (5) must be replaced by the
size of the band of the studied matrix, since the accesses are not uniformly
distributed on the whole j th dimension of the base array, but only of the
region associated with the band B of the matrix.

� since the nonzeros are only distributed along B rows in each column and B
columns in each row, when the probability of reuse of a group of SOLs with
respect to the preceding iterations is considered in Eq. (7), the upper bound
of the summatory is not Ni, the size of the sparse matrix along the considered
dimension that gives place to the attempts of reuse, but B, since only along
B rows/columns can be the same SOL of the base array be reused.

Example 5. The model derived for matrices with an uniform distribution
for our example code in Figure 2 is applicable to banded matrices except in
two points. First, in the calculation of DR0 and DR1 for reference X(C(J)), we
must substitute the value of DX1 with the band size. In the expression FR0 that
characterizes the behavior of this reference in the outer loop at nesting level 0
(the one indexed by I), which has the shape of Eq. (7), the upper bound of the
summatory must also no longer be M, the total number of rows of the sparse
matrix, but its band size B, since only along the processing of B different rows
of the input matrix can we exploit reuse of a given line of the base array X of
this reference. The size of the band would have to be provided by a directive to
the compiler or be extracted by an analysis of the input data.

2A is banded with bandwidth B = 2p + 1 if all the nonzeros are contained within the first p super
and first p subdiagonals (Aij = 0, |i − j | > p).
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Fig. 3. Calculation of RegRi(n), the set of regions that can interfere with the attempts of reuse of
reference R generated during n iterations of the loop at nesting level i.

4. ESTIMATION OF MISS PROBABILITIES

The formulas described in the preceding section collect the number of accesses
that can exploit each potential reuse distance as well as the set of memory
regions that have been accessed during such reuse distance. This way, during
the construction of each partial PME, the first stage of the process to estimate
miss probabilities introduced in Section 2.1, access pattern identification, is
performed. These memory regions, or, conversely, the access patterns that ref-
erence them, generate a miss probability for the attempts to reuse lines by the
analyzed reference R that is calculated by means of the last two steps of the
procedure described in Section 2.1 when the evaluation of its PME recursively
reaches the innermost loop i that contains the reference. In this loop, the PME
recurrence finishes defining FR(i+1)(RegIn) as the miss probability that the im-
pact on the cache of the memory region(s) RegIn generate on the reuses of
reference R. To estimate this probability the different access patterns collected
in RegIn are mapped in the cache impact quantification step to area vectors,
which are vectors of probabilities. Finally, these vectors are added to generate
a global area vector in the area vectors addition step. The global area vector
gathers the combined effect on the cache of the accesses to all of the regions in
RegIn and its component 0 is the miss probability we are estimating, as Sec-
tion 2.1 explains. We now describe, in more detail, the three steps of the miss
probability estimation process.

4.1 Access Pattern Identification

Every PME FRi requires the estimation of the set of regions RegRi(n) accessed
during n iterations of the considered loop that can interfere with the reuses of
R. Figure 3 shows the pseudocode for its calculation: the access pattern of the
references to each array A found within the loop is identified, in turn, and added
to the set of regions accessed. The memory region associated to the same array
R accesses is marked, because its cache impact quantification step is different,
as we will see in the next section.

Figure 4 shows the two steps involved in the identification of the access
pattern that references follow during a reuse distance consisting of n iterations
of the loop at nesting level h. First, for each reference R the indexes of each
dimension and the number of iterations of each loop during this reuse distance
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Fig. 4. Identification of the access pattern followed by the references during a reuse distance.

are examined. The output of this analysis is a DA-tuple RR(h, n), where DA is
the number of dimensions of the array A referenced by R. Each element of this
tuple consists, in its turn, of a 3-tuple RR j (h, n) = (M j , Sj , Pj ), where the M j

is the number of different points accessed along dimension j , Sj the constant
stride between two consecutive points, and Pj the probability each one of these
points is actually accessed by R. The algorithm followed to calculate the 3-
tuple associated to dimension j of reference R during n iterations of the loop
at nesting level h is the following:

� if no indirections are involved in the indexing of the dimension, its index
is an affine function αR j Ii + δR j of some loop index Ii. In this case, the
set of points accessed in this dimension by R can be represented as the tuple
(Itersi(h, n), SRi, 1), where Itersi(h, n) is the number of different values that Ii

takes during n iterations of the loop in nesting level h. This value is calculated
as

Itersi(h, n) =
⎧⎨
⎩

1 if i < h
n if i = h
Ni if i > h

� if the indexing of dimension j depends on an indirection, that is, the index
has a shape αR j B( f (Ii))+δR j , we assume that the accesses may be spread
uniformly on the affected dimension of the array. Since our indirection is
multiplied by some constant αR j (usually one), there are �DA j /αR j � differ-
ent points in the dimension that can be actually accessed (e.g., reference
A(2*B(I)) can only access the even elements of array A). Each point has an
uniform probability 1/�DA j /αR j � of being the one accessed because of each
given value read from the index array. As a result, if Nindexi(h, n) different
values have been read from the index array B during n iterations of the loop
at nesting level h, the average probability each that each one of the points
that R can access in the j th dimension of its base array has been accessed
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at least once is 1 − (1 − 1/�DA j /αR j �)Nindexi (h,n). Thus

RR j (h, n) =
(⌊

DA j

αR j

⌋
, SRi, 1 −

(
1 − 1

�DA j /αR j �
)Nindexi (h,n)

)
(9)

As for Nindexi(h, n), it can be calculated from the analysis of the access pat-
tern for the index array of the reference we are considering: once RR(h, n)
has been calculated for the reference that reads the indexing array B, it is
straightforward that the number of different points the reference has ac-
cessed is

∏DB
k=1 Mk Pk , i.e., the product of the number of different points it

may access in each dimension multiplied by the probability such access ac-
tually takes place.

Once the DA-tuple RR(h, n) that represents the region of array A accessed by
R during n iterations of the loop at nesting level h has been calculated, some
simplifications may be applied between pairs of 3-tuples RR j (h, n) that describe
the access pattern in different dimensions of the array:

((1, Sj , Pj ), (Mk , Sk , Pk)) = (Mk , Sk , Pj · Pk)
((M j , Sj , Pj ), (Mk , M j · Sj , Pk)) = (M j · Mk , Sj , Pj · Pk)

After these simplifications, a single 3-tuple (M , S, P ) that describes the region
accessed by the reference is typically obtained.

The notation described above suffices for the representation of memory re-
gions in codes in which there is a single reference per data structure. In codes
in which several references access the same data structure, the regions they ac-
cess will often overlap or be adjacent, so we have developed simple algorithms to
merge the descriptors for overlapping or adjacent regions. This way, lines that
are accessed by different references are not taken into account several times as
source of interferences. In order to perform this merging, one more parameter
is used to describe the region affected by a given reference R: the position Q R

with respect to the beginning of the array of the first element it contains. The
merging algorithm is applied in function merge in Figure 3 and it is not shown
here because of space limitations.

As Section 2.1 explains, rather than this description of the memory region
accessed, the output of the access pattern identification step is a function that
characterizes the access pattern whose output is the area vector associated to
it. Depending on the values of S and P in a tuple R, four kinds of access pattern
functions can be identified (see Figure 4b):

1. When P = 1, the access pattern is regular, so it is already covered in Fraguela
et al. [2003]. Depending on the value of S we distinguish:
a. If S = 1, it is an access to M consecutive elements. We denote the function

that calculates the area vector associated to a region of M consecutive
elements as Regs(M ).

b. Otherwise, it is an access to a set of M regions of one element separated
by a constant stride S. Such access pattern is represented by the function
Regr(M , 1, S).
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2. When P < 1, the access pattern is irregular, as each point involved in the
pattern has only a certain probability of being actually accessed. As a result,
we define probabilistic counterparts for Regs and Regr:
a. If S = 1, it is an access to M consecutive elements in which each element

is accessed with a probability P . The function that calculates the area
vector for this access is Regsp(M , P ).

b. Otherwise, the access affects M different points separated by a con-
stant stride S, which each element is accessed with a probability P . The
area vector associated to this access pattern is estimated by function
Regrp(M , 1, S, P ).

The most general function in this classification is Regrp, all the other ones
being specializations of this one. Similarly Regs functions are specializations for
S = 1 of their Regr counterparts and the area vector functions that depend on a
probability of access P yield the same output as their regular counterparts for
P = 1. Still, we find this classification useful because regular access patterns
enable simpler and faster algorithms for the calculation of their associated
area vector than irregular access patterns, and the same happens with the
Regs functions with respect to their Regr counterparts with input stride one.

Example 6. In our example 1 in Section 3.1, the PME FR0 that models
the behavior of the reference D(I) in the loop at nesting level 0 in the sparse
matrix–vector product code of Figure 2, that is, the outermost loop of the loop
nest, was built in Eq. (3). One of the terms of this PME evaluates the PME FR1
for this reference in the immediately inner loop passing as RegIn parameter
RegR0(1), i.e., the set of memory regions accessed during one iteration of this
loop that may generate interferences with the reuses of this reference. Let us
identify these regions:

� In each iteration of loop I, a whole execution of the loop J takes place. As
we reasoned in Example 3, the average number of iterations of this loop is
N1 = Nnz/M , where Nnz is the number of nonzeros in the sparse matrix
and M is its number of rows. Reference A(J) is indexed by the variable that
controls this loop, so it sweeps along N1 different elements with stride 1 with
probability one. Thus, its RR1(0, 1) = (N1, 1, 1), whose area vector can be
estimated by Regs(N1)

� Reference C(J) follows exactly the same access pattern; thus, it also accesses
a region (N1, 1, 1), whose associated area vector is estimated by Regs(N1).

� Reference X(C(J)) is indexed by the variable of the loop indirectly, through
a read from vector C. This way, applying Eq. (9), its RR1(0, 1) is estimated as
(DX1, 1, 1 − (1 − 1/DX1)N1 ). The simplest function that can estimate the area
vector for this access pattern is Regsp(DX1, 1 − (1 − 1/DX1)N1 ).

� During one iteration of loop I, reference D(I)also accesses a single element
of vector D; thus, its RR1(0, 1) = (1, 1, 1), whose area vector is given by
Regsself(1). The reason for the “self” subindex in the function is that a self-
interference area vector will be calculated for this access rather than a cross-
interference area vector, as D(I) is the very reference whose behavior we
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are studying. Section 4.2 explains the difference between both kinds of area
vectors.

Finally, although the access pattern functions have been presented based
on the values of a single tuple, it is not always possible to reduce the region
accessed in an array to a single tuple. All the cases of this kind we have found in
the codes we have analyzed had the form R = ((M1, 1, P1), (M2, S2, P2)), which
can be represented by function Regrp(M2, M1, S2, P1 · P2), as they are an access
to M2 separate groups of M1 consecutive elements each that are separated by
a constant stride S2, having each individual element of the region a probability
P1 · P2 of being accessed.

4.2 Cache Impact Quantification

The functions identified in the previous step are evaluated in order to yield
vectors of probabilities called area vectors that represent the impact on the
cache of the access they represent. The area vector V associated with a given
set of accesses on a cache with associativity K consists of K + 1 probabilities
V0, V1, . . . , VK . The PME model considers two kinds of area vectors:
� Cross-interference area vectors represent the impact on the cache of the con-

sidered access pattern as viewed by lines not involved in the access. In
these vectors, Vi, i > 0 is the ratio of sets that hold K − i lines of the ac-
cessed region and V0 is the ratio of sets that hold K or more lines. These
ratios are also conversely the probabilities. For example V0, is the prob-
ability that a set in the cache has received K or more lines accessed by
the pattern, V1 is the probability a cache set has received K − 1 lines, and
so on.

� Self-interference area vectors represent the impact of the footprint on the
probability of reuse for the lines it involves. In these vectors, V0 is the prob-
ability that a line of the footprint is competing in its cache set with other K
or more lines of the footprint. For i > 0, Vi is the probability a line of the
footprint shares its cache set with other K − i lines of the access.

Example 7. Let us consider a two-way associative cache with four sets and
a reference that has just accessed seven consecutive lines. As a result, three of
the four sets contain two of the lines referenced, while the other set contains
just one line. The cross-interference area vector generated by this access is
(3/4, 1/4, 0), as 3 out of the 4 sets have received two or more lines from the
access; only one set received a single line and no sets received zero lines. These
ratios are conversely the probabilities a randomly chosen set has two or more,
one, or zero lines in it, respectively.

The self-interference area vector for this access is (0, 6/7, 1/7). The first com-
ponent is zero, as none of the lines involved in the access has to compete for
its cache set with other two or more other lines from the footprint. The second
component is the ratio of lines of the footprint that share their cache set with
exactly one line (6 out of 7). Finally, according to the third component, only one
of the seven lines of the footprint does not share its set with any other line of
the footprint. These ratios are conversely the probabilities a randomly chosen
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line of the footprint has to compete in its set with two or more, one, or no lines,
respectively.

The evaluation of access pattern functions for regular access patterns has
already been covered in Fraguela et al. [2003]. As we saw in the preceding
step, the two most important irregular access patterns found in the presence of
uniform probabilities of access are the access to a group of consecutive elements
in which each element has an uniform probability of begin accessed (Regsp)
and the access to several groups of elements of this kind that are separated
by a constant stride (Regrp). The mapping of both patterns into area vectors is
described in [Andrade et al. 2006]. For the sake of completeness, we will explain
the quantification into cross-interference area vector of the first access pattern,
which is simpler. For the second one, a high-level description of the algorithm
to estimate its cross-interference area vector is provided; further details can be
found in Andrade et al. [2006]. The calculation of self-interference area vectors
follows very similar steps.

4.2.1 Sequential Access with Uniform Probability of Access per Element.
Function Regsp(n, p) yields the cross-interference area vector AVsp(n, p) asso-
ciated with an access to n consecutive elements in which each one of them has
an uniform probability p of being referenced. In order to map an access pattern
into an area vector, the parameters of the cache must be taken into account.
From the point of view of the PME model, a cache is fully characterized by its
total cache size Cs, its line size Ls, and its associativity K . In order to simplify
our explanation, both Cs and Ls are measured not in bytes, but in elements
or words of the access we are considering. Given these input parameters, the
K + 1 elements of the area vector AVsp(n, p) (see Section 2.1 for an explanation
of the meaning of each term within an area vector) are calculated as

AVspi
(n, p) = P (X = K − i) m < i ≤ K

AVspm
(n, p) = P (X ≥ K − m)

AVspi
(n, p) = 0 0 ≤ i < m

where X ∈ B(n/Csk, 1 − (1 − p)Ls ), being B(n, p) the binomial distribution,3

Csk = Cs/K is the cache size devoted to each level of associativity, and m =
max{0, K − �n/Csk	}. The formula is based on the fact that, on average, there
are n/Csk lines of the footprint associated to each cache set. Since this is a
consecutive memory region, the maximum number of lines a cache set can
receive is �n/Csk	, so the area vector elements AVspi

(n, p) for 0 ≤ i < m must
be zero. Also, because of the uniform distribution of the accesses, we know that
the number of cache lines per set belongs to a binomial B(n/Csk, 1 − (1 − p)Ls ).
The probability of access per line of this binomial is easy to calculate, since each
individual element in a cache line has a probability p of being accessed, and a
line holds Ls elements, then the probability that at least one of the elements
of the line receives a reference is 1 − (1 − p)Ls . Since position i, i > 0, in the
area vector represents the ratio of sets that receive K − i lines in the access, its

3We define the binomial distribution on a noninteger number of elements n as P (X = x), X ∈
B(n, p) = (P (X = x), X ∈ B(�n�, p))(1 − (n − �n�)) + (P (X = x), X ∈ B(�n	, p))(n − �n�).
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value will be the probability the variable associated to this binomial takes the
value K − i. The lowest element in the area vector with nonzero probability, m,
is the probability the number of lines accessed is K − m or more.

4.2.2 Access to Groups of Elements Separated by a Constant Stride with
Uniform Probability of Access per Element. Function Regrp(Nr, Tr, Lr, p) esti-
mates the cross-interference area vector associated with an access to Nr regions
of Tr consecutive elements each and separated by a constant stride of Lr ele-
ments, in which each individual element has a probability p of being referenced.
The area vector for such region is calculated in two phases:

� In a first phase, the region potentially affected by the references is consid-
ered. This region allows to measure the impact of the access on the cache by
calculating the number of lines that are mapped to each cache set.

� Since accesses really accur with a given probability p, a second phase is
needed where the different combinations of accesses are weighted with the
probability that they happen.

A detailed explanation of how both phases are carried out in our model can
be found in Andrade et al. [2006].

4.3 Area Vectors Addition

The preceding step generates an area vector per data structure accessed dur-
ing a reuse distance. Each component of one of these area vectors V yields the
probability a given cache set will hold K or more (V0), or K − 1 (V1), etc., lines
because of the accesses to the corresponding data structure that can interfere
with the reuses of the reference whose behavior is being analyzed. In this fi-
nal step of the process these area vectors are added in order to get a global
interference area vector that represents the total impact on the cache of all the
accesses that take place during the considered reuse distance. The component
0 of this global area vector is the miss probability we are trying to estimate.
Given two area vectors VA and VB, their addition, represented by the operator
∪, is calculated as

(VA ∪ VB)0 =
K∑

j=0

(
VA j

K − j∑
i=0

VBi

)

(VA ∪ VB)i =
K∑

j=i

VA j VB(K +i− j ) 0 < i ≤ K

(10)

This method is based on the addition as independent probabilities of the
area ratios, which means that it does not take into account the relative po-
sitions of the program data structures in memory. This approach allows our
model to provide reasonable estimations in many situations in which the base
addresses of the data structures are not known at compile time (e.g., physically
addressed caches, dynamically allocated data structures, . . . ), something that,
as far as we know, no other model supports. When those base addresses are
known at compile time, each area vector is scaled before its addition by means
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of a coefficient that represents the amount of overlapping between the region
it represents and the data structure associated to the reference whose PME is
being calculated in the cache. [See Fraguela et al. [2003] for more details.]

Example 8. Now that all the steps of the model have been introduced, we
are in a position to make a final example that illustrates it quantitatively.
Namely, we will compute the number of misses of reference R = D(I) during
the execution of the code in Figure 2. Our example cache will be a two-way asso-
ciative cache (K = 2) with capacity for a total of 512 array elements (Cs = 512),
each line being able to hold four elements (Ls = 4). The code will operate on a
1000 × 1000 sparse matrix with Nnz = 10, 000 nonzeros. Equation (3), devel-
oped in example 1 in Section 3.1, estimates the number of misses generated by
this reference. If we substitute M = 1000 and Ls = 4 in this equation we get

FR0(RegIn) = 250 · FR1(RegIn) + 750 · FR1(RegR0(1))

We see that out of the 1000 accesses generated by this reference, 250 are first-
time accesses to new lines, so their miss probability depends on reuse distances
external to this loop, that is, on RegIn. The other 750 accesses reuse the line
accessed in the previous iteration, so their miss probability depends on the
RegR0(1) regions accessed during one iteration of the loop.

Loop 0 is the innermost loop that contains this reference. Thus, the evalu-
ation of FR1 for both kinds of accesses consists in computing the global area
vector associated to its input region and taking its first component. This compo-
nent is the miss probability that this region generates on the reuse attempts of
R that depend on this evaluation of the PME. Regarding the 250 potential cold
misses, their RegIn for FR1 is the same as for FR0. Let us remember that RegIn
for FRi is defined as the set of memory regions accessed since the immediately
previous access to the lines accessed by R in loop i that could interfere with the
potential reuse that can take place when these lines are accessed for the first
time during the execution of this loop. As level 0 is the outermost loop of the
code, and the code does not include any previous nest, such reuse is impossible.
As a result, RegIn for FR0 is any memory region such that the first component
of its area vector is 1, which implies, that all first-time accesses to lines within
the loop result in cold misses. For example, we could use RegIn = Regs(Cs), a
sequential access to as many elements as the cache can hold. The area vector
for this region is (1,0,0), so FR1(RegIn) = 1.

As for the 750 potential reuses, the RegIn for their evaluation of FR1 is
RegR0(1), as their attempt of reuse has a reuse distance of one iteration. The
expression of this set of regions was developed in example 6 in Section 4.1:

RegR0(1) = Regs(N1) ∪ Regs(N1) ∪ Regsp(DX1, 1 − (1 − 1/DX1)N1 ) ∪ Regsself (1)

where the four regions correspond to the accesses of references A(J), C(J),
X(C(J)) and D(I) itself, respectively, just in the same order they were analyzed
in example 6. The average number of iterations of loop 1, N1 can be estimated
as Nnz/M , the average number of nonzeros in a row of the sparse matrix. As
for the size of vector X, DX1, it is 1000 in our example. Substituting these values
in the expressions above, the computation of the corresponding area vectors
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Fig. 5. Sparse matrix–dense matrix product with IKJ order.

yields:

Regs(10) = (0, 0.0508, 0.9492) Regsself (1) = (0, 0, 1)
Regsp(1000, 0.00996) = (0.0006, 0.0378, 0.9616)

Let us remember that in all these vectors the first value is the probability the
access pattern puts two or more lines in the cache set in which our reference
D(I) will try to reuse a line, the second value is the probability they contribute
just one line, and the third value is the probability they do not generate accesses
to any line that interferes with the reuse. As a result, the addition of the three
probabilities must always yield 1. The calculation of the area vector for Regs
and Regsself has been made according to Fraguela et al. [2003]. Anyway it is
straightforward that an access to a single element cannot interfere with the
attempts to reuse that same line. Thus, it is intuitive that Regsself(1) = (0, 0, 1).
As for the area vector calculation for Regsp, it is reviewed in Section 4.2.1. The
addition of the four area vectors applying Eq. (10) yields the global area vector
(0.0068, 0.1267, 0.8665). This way, FR1(RegR0(1)) = 0.0068, that is, the miss
probability for each one of the 750 attempts at reuse of this reference is 0.68%.

Altogether, PME FR0 estimates that during the execution of this code refer-
ence D(I) will generate a total of 250 × 1 = 250 cold misses and 750 × 0.0068 =
5.1 interference misses resulting in a total of 255.1 misses, on average.

5. VALIDATION

Our validation relies on five kernels of increasing complexity that contain in-
directions derived from the manipulation of sparse matrices stored in the CRS
(compressed row storage) format [Barrett et al. 1994]. The first code is the
sparse matrix–vector product (SPMXV) shown in Figure 2. The next three codes
are the sparse matrix–dense matrix product (SPMXDM) with the three differ-
ent loop orderings this operation allows: IJK, JIK, and IKJ, where the first index
is the one for the outermost loop and the last index the one for the innermost loop
in the nest. In the three orderings, I indexes the rows of the sparse matrix, K its
columns, and J the columns of the dense matrix. As an example, the IKJ loop
ordering is shown in Figure 5. Finally, Figure 6 shows a sparse matrix trans-
position (TRANSPOSE) where both the original and the transposed matrix are
stored using the CRS format. This code is particularly complex, as it contains
four loop nests, there are accesses with several levels of indirection in loop 4 and
it involves much more data structures than the other examples (six). Besides,
some structures appear in several loop nests, so there may be reuses between
the access to a line in one loop nest and another access in another loop nest.
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Fig. 6. Transposition of a sparse matrix.

Table II. Overall Model Validation Dataa

Code MRSim MRMod �MR max(�MR) �R
MR

SPMXV 9.64% 9.45% 0.92% 3.99% 10.53%
SPMXDMIKJ 48.95% 47.92% 1.41% 11.48% 3.62%
SPMXDMIJK 22.20% 21.42% 0.79% 3.56% 3.41%
SPMXDMJIK 11.68% 11.28% 0.70% 6.65% 8.46%
TRANSPOSE 18.98% 19.22% 1.60% 11.72% 11.61%

aAverage measured (MRSim) and predicted (MRMod) miss rates, average value �MR of the absolute dif-
ference between the predicted and the measured miss rate in each experiment, maximum value of this
difference max(�MR), and average value of the relative error of the prediction �R

MR, obtained for the bench-
marks performing more than 10,000 tests for different cache configurations, data structures sizes, and
sparse matrix densities.

5.1 Validation with Synthetic Matrices

The integration of our model [Andrade et al. 2007] in the XARK compiler
[Arenaz et al. 2003] has allowed us to apply it automatically to the valida-
tion kernels. The miss rate predicted by the model was compared with the
results of trace-driven simulations using synthetic matrices with an uniform
distribution of their nonzero elements. Over 10,000 tests were performed for
each code, changing the sizes and starting addresses of the different arrays,
the cache configuration, and the density of the sparse matrix. Table II gives
an idea of the accuracy of the model. Columns MRSim and MRMod contain the
average values of the miss rate simulated and the miss rate predicted in the
set of experiments, respectively. Column �MR contains the average value of
the absolute value �MR of the difference between the predicted and the mea-
sured miss rates for each experiment. We use absolute values, so that negative
errors are not compensated with positive errors. Column max(�MR) contains
the largest value of �MR observed in the set of experiments. The metric �R

MR
stands for the relative error of our prediction: it is the absolute value of the
difference between the miss rate measured by the simulation and the miss rate
predicted by the model (�MR) divided by the miss rate measured by the simula-
tion and expressed as a percentage, that is, �R

MR = �MR/MRSim × 100. The last
column of the table contains �R

MR, the average value of the�R
MR observed in each
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Table III. Validation Data and Times for the Sparse Matrix–Vector Product Code for
Several Cache Configurations, Matrix Sizes and Sparse Matrix Density

M N α Cs Ls K MRSim MRMod �MR Tmod
1000 1000 4.00 8K 32 1 30.11 30.00 0.11 0.015
1500 1100 12.12 32K 32 2 18.17 18.34 0.17 0.021
1600 1500 8.33 32K 64 4 8.44 8.60 0.15 0.010
1300 1400 13.74 64K 128 1 5.21 5.31 0.10 0.012
1700 1500 9.80 64K 64 2 8.67 8.82 0.15 0.032
1100 1000 22.73 128K 128 2 4.21 4.42 0.21 0.021

750 750 7.00 512K 128 8 4.23 5.13 0.90 0.014
5500 5500 0.28 1024K 64 8 8.77 8.86 0.09 0.035
3000 3000 1.19 2048K 128 4 4.26 5.64 1.38 0.033
1000 1200 16.67 128K 128 1 10.82 4.87 5.96 0.025

Table IV. Validation Data and Times for the Sparse Matrix–Dense Matrix Product IKJ
Code for Several Cache Configurations, Matrix Sizes and Sparse Matrix Density

M N α H Cs Ls K MRSim MRMod �MR Tmod
900 900 22.22 500 32K 64 1 89.27 88.27 1.00 0.019
500 500 3.20 600 64K 64 4 81.97 81.61 0.36 0.011
700 700 31.43 500 64K 64 8 29.66 23.30 6.36 0.015

1100 1100 14.55 500 128K 64 8 30.76 29.88 0.88 0.027
1000 1000 15.00 750 128K 64 4 31.18 29.59 1.58 0.038

700 700 27.14 500 256K 64 2 21.25 20.71 0.54 0.019
1000 1000 24.00 500 512K 64 2 23.18 22.45 0.73 0.023

700 700 2.86 500 1024K 32 2 32.89 32.56 0.33 0.027
1000 1000 1.58 1000 2048K 64 4 38.10 36.13 1.97 0.052

600 600 30.00 500 32K 32 8 76.68 65.20 11.48 0.032

one of the experiments. We see that both the average absolute and the relative
errors of the model are, in general, very good.

Tables III, IV, and V show some random representative validation results for
the sparse matrix–vector product, the sparse matrix–dense matrix product with
IKJ loop ordering, and the sparse matrix transposition codes, respectively, dis-
playing a wide range of possible validation parameters and the result obtained.

In the three tables, the first two columns, M and N , show the number of rows
and columns of the sparse matrix involved in the code, respectively. Column α

is the density or percentage of positions in the sparse matrix with nonzeros. In
Table IV, column H shows the number of columns of the dense matrix involved
in the product. The cache configuration is given in the three tables by Cs, the
cache size in bytes, Ls, the line size in bytes, and K , the degree of associativity
of the cache. Larger cache lines and associativities tend to be associated with
larger caches, in general, in the tables, as this is the most common situation. For
each combination of the input problem parameters and cache configurations,
the tables display the miss rate MRSim measured by the simulations, the miss
rate MRMod predicted by our model, and �MR, the absolute value of the differ-
ence between them. These three values are expressed as percentages between
0 and 100. The last entry in every table contains the data for the experiment
that generated the largest �MR.
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Table V. Validation Data and Times for the Matrix Transposition Code, for Several Cache
Configurations, Matrix Sizes, and Sparse Matrix Density

M N α Cs Ls K MRSim MRMod �MR Tmod

600 600 35.00 16K 32 2 32.49 32.91 0.43 0.029
700 700 34.29 32K 32 1 28.02 26.14 1.89 0.025

3000 2000 2.50 64K 32 2 27.00 29.86 2.86 0.031
5000 2000 3.00 64K 128 1 26.53 27.47 0.93 0.027
1000 1000 15.00 128K 128 1 17.77 19.21 1.44 0.035

800 800 57.50 256K 64 4 5.35 5.17 0.18 0.034
500 500 46.80 512K 128 8 2.18 3.00 0.82 0.037

2900 2900 0.47 1024K 64 1 7.91 10.29 2.38 0.043
500 500 15.75 2048K 64 4 3.08 4.36 1.28 0.042

5000 1000 9.00 128K 64 4 11.50 23.22 11.72 0.023

Table VI. Validation Data and Times for the Sparse Matrix–Vector Product Code for Several
Cache Configurations and Different Harwell–Boeing Matrices with Uniform Band Distribution

Matrix
Name Size B α Cs Ls K MRSim MRPred �MR Tmod

jpwh991 991 155 0.61 64K 64 4 9.37 8.84 0.53 0.014
jpwh991 991 155 0.61 32K 32 2 18.77 17.72 1.05 0.013
jpwh991 991 155 0.61 32K 64 1 10.29 9.84 0.45 0.012
bcsstk05 153 20 10.35 32K 64 1 9.57 9.11 0.46 0.009
bcsstk05 153 20 10.35 256K 16 4 35.04 34.13 0.91 0.009
bcsstk05 153 20 10.35 256K 32 2 17.54 17.07 0.48 0.009
bcsstm10 1086 71 1.87 32K 64 1 9.12 9.29 0.17 0.013
bcsstm10 1086 71 1.87 256K 16 4 34.66 33.91 0.74 0.017
bcsstm10 1086 71 1.87 1024K 64 4 8.67 8.48 0.19 0.015
jpwh991 991 155 0.61 8K 16 1 43.79 40.45 3.33 0.013

Finally, the last column in the three tables, Tmod, reflects the corresponding
modeling times in seconds in a 2.08 GHz AMD K7 processor-based system,
respectively. Modeling times, which were always below 1s, are several orders of
magnitude shorter than trace-driven simulation for the sparse matrix–dense
matrix products, and noticeably shorter, in the case of the other codes.

5.2 Validation with Real Banded Matrices

In order to validate our model for uniform banded matrices we used the sparse
matrix–vector product code shown in Figure 2, the sparse matrix–dense matrix
product in Figure 5, and the sparse matrix transposition in Figure 6 and we
applied them to real matrices from the Harwell–Boeing collection [Duff et al.
1992] rather than to synthetic matrices. The results of some randomly chosen
validation experiments are shown in Tables VI and VII for the first two codes
considered, respectively. In both tables the first columns contain the name of
the matrix used in every test, followed by the characteristics of the matrix,
such as, the number of rows and columns size (we used square matrices), the
band size B, and, in the case of sparse matrix–dense matrix product code, the
number of columns H of the dense matrix. α is the percentage of positions in
the sparse matrix with nonzeros. The used cache configuration Cs, Ls, and K ,
follows. Again, for each experiment, we show both the measured MRSim and the
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Table VII. Validation Data and Times for the Sparse Matrix–Dense Matrix Product IKJ
Code for Several Cache Configurations and Different Harwell–Boeing Matrices with

Uniform Band Distribution

Matrix
Name Size B α H Cs Ls K MRSim MRPred �MR Tmod

jpwh991 991 155 0.61 200 32K 64 1 93.08 93.06 0.02 0.011
jpwh991 991 155 0.61 153 16K 32 2 88.61 88.27 0.33 0.010
jpwh991 991 155 0.61 1086 32K 32 4 97.30 98.52 1.21 0.017
jpwh991 991 155 0.61 350 64K 64 4 91.26 92.10 0.83 0.011
bcsstk05 153 20 10.35 153 32K 32 4 16.49 16.84 0.35 0.009
bcsstk05 153 20 10.35 153 16K 32 2 45.34 43.30 2.04 0.009
bcsstm10 1086 71 1.87 153 16K 64 4 74.22 74.32 0.10 0.010
bcsstm10 1086 71 1.87 153 32K 128 1 63.73 62.59 1.13 0.011
bcsstm10 1086 71 1.87 153 512K 64 4 0.70 0.65 0.05 0.014
bcsstm10 1086 71 1.87 200 1024K 64 8 0.68 0.55 0.13 0.058
bcsstk05 153 20 10.35 350 32K 64 1 72.96 61.30 11.67 0.011

predicted MRMod miss rates and the absolute value of the difference between
them, �MR. Many different experiments were performed using different cache
configurations; the results shown in these tables are only a small representative
subset of these tests. The last entry in every table contains, again, the data for
the experiment that generated the largest �MR.

For the sparse matrix–vector product code, we performed 510 different tests
changing the used matrix, the cache configuration, and the base address of the
data structures involved in the code, obtaining an average value for the �MR of
0.66% and a maximum value of 3.33%; the average value of the relative error
�R

MR was 3.96%.
For the sparse matrix–dense matrix product code, we performed 5100 dif-

ferent tests, changing the same parameters as for the sparse matrix–vector
product code as well as the number H of columns of the dense matrix involved
in the code. We obtained an average value for �MR of 2.55% and a maximum
value of 11.67%. The average value of the relative error �R

MR was 6.60%.
Finally, we performed the same set of 510 tests for sparse matrix transpo-

sition as for sparse matrix–vector product. In this case, the average �MR was
1.78% and its maximum was 7.30%, being the average value of the relative
error �R

MR 11.35%.
Again, these validation results obtained using a wide range of parameter

combinations, and which are very similar to the ones obtained for the model
with a completely uniform distribution displayed in Table II, make us think
that our model is a good estimator of the behavior of a code with irregular
access patterns under the assumed conditions.

Finally, as in the previous tests, the last column in Tables VI and VII, Tmod,
represents the time consumed by our model. The model is several orders of
magnitude faster than the simulation.

5.3 Discussion

The model worked well for the sparse matrix–vector product of Figure 2 both
for matrices, with an uniform distribution of the nonzeros entries, and for real
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Fig. 7. �MR as a function of the sparse matrix density and the cache configuration in different
codes. Cache configurations are expressed as Cs,Ls,K , where Cs is the cache size in bytes, Ls is the
line size in bytes, and K is the associativity.

banded matrices. The results were somewhat worse for the sparse matrix–
dense matrix product code in Figure 5 for both kinds of matrices, although the
model was still very accurate, in general. Predicting the reuse for the reference
B(C(K),J) that generates irregular accesses in this code is possibly more com-
plex than for the references subject to irregular access patterns in the other
codes. The reason is that in this case each value of the indirection controls
a whole set of tightly coupled accesses of B(C(K),J) to different lines with a
regular stride for J = 1, . . . , H, while in the other codes each individual in-
direction only controls the access to one line. It is good to see that in such a
complex situation to predict, the predictions of the model are still good. The
behavior of the model for the sparse matrix–dense matrix products in which
the inner loop is K is similar to the one observed for the sparse matrix–vector
product, as we see in Table II. Finally, the transposition of a sparse matrix
in Figure 6 turned out to be the most difficult code to predict, as it is not a
perfectly nested loop, like the previous examples, and it displays several levels
of indirection in its fourth loop. Still, the predictions of the model were very
reasonable.

The tendencies of the accuracy of the model with respect to the parameters
of the caches and the density of the sparse matrix are displayed in Figure 7,
in which we have used cache configurations that are similar or equal to real
level 1 and 2 caches of current computers. The most important conclusion
is that, in general, higher densities lead to more accurate predictions. That
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Fig. 8. Miss rate measured and predicted following different strategies as a function of the matrix
density for the sparse matrix–dense matrix product (IKJ), where M = N = H = 500 in a cache of
64 KB with a line size of 64 bytes and associativity degree 4.

is an expected result, since the lower density, the more irregular the ac-
cesses. Also, notice that this higher irregularity leads to higher miss rates (as
an example, see experiment in Figure 8), which dilute the larger values of
�MR.

As for the time required to compute its predictions, the model takes more time
when the size of the problem (size of the involved data structures) is bigger, as
expected, and when the cache associativity is higher. The reason for the latter
behavior is that the complexity of the algorithm for calculating the area vector
for some patterns depends directly on this argument. Still, modeling times are
always below 1 s. In general, we can say that our model provides quite accurate
estimations with a very low computing cost.

The sparse matrix–dense matrix product with IJK loop ordering is used in
Figure 8 to compare the miss rate obtained by a trace-driven simulation, the
miss rate predicted by the PME model, an upper bound of the prediction ob-
tained by a simplified version of our model that considers all the irregular ac-
cesses as misses, and a lower bound obtained by ignoring the irregular accesses
that appear in the code. The sizes of the data structures involved in the code
and the cache configuration were kept constant while the density of the sparse
matrix took values between 1 and 100%. The figure reflects that the PME model
estimates the miss rate accurately, while simplified versions provide very poor
estimations. This justifies the interest of our model.

Finally, we have also inquired into what happens when the model is applied
to matrices with a nonuniform distribution of the entries. In order to quantify
this behavior, we run experiments on 320 randomly chosen matrices from the
Harwell–Boeing [Duff et al. 1992] and NEP [Bai et al. 1996] collections, using
10 different cache configurations for each one with sizes ranging from 16 KB to
2 MB, thus yielding a total of 3200 experiments per analyzed kernel. Figure 9
summarizes the results of these experiments classifying our experiments in
four buckets according to the �MR achieved: below 2.5%, between 2.5 and 5%,
between 5 and 10%, and larger than 10%. We see that SPMXV, SPMXDM with
JIK loop ordering and TRANSPOSE yield reasonable estimations in the vast
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Fig. 9. Percentage of the number of experiments in which the �MR is below 2.5%, between 2.5 and
5%, between 5 and 10%, or larger than 10% when real matrices with a nonuniform distribution of
the entries are used.

majority of the cases, while SPMXDM with the IKJ and IJK orderings is less
reliable. When irregular accesses are not uniformly distributed, they tend to be
grouped in clusters, which increases the locality. Thus, in these cases, our model
can still help understand the behavior of the cache, but the miss rate it predicts
must be considered an upper bound rather than an accurate estimation, unless
it is adjusted, as we did for the case of the banded matrices. In the following
section, we will see that while the estimations of the model for real matrices
with nonuniform distributions of the entries may be sometimes quantitatively
inaccurate, its predictions are still valid to drive compiler optimizations in codes
that use these real matrices.

5.4 Driving Compiler Optimizations

Analytical models can be used to provide insights about the cache memory be-
havior of codes and can guide optimizations in a compiler or interactive tool
based on their predictions. Namely, decisions can be taken based on a cost
function that considers the relative costs of the misses in each memory level
as well as the CPU cycles. Memory stall time can be estimated by applying the
model to the different levels of the memory hierarchy of the computer simulta-
neously and multiplying the number of misses estimated for each level by its
miss penalty. The cycles spent in the CPU can be estimated using CPU models,
such as Delphi [Cascaval 2000], which can apply heuristics to account for the
properties of current high ILP superscalars. Several papers in the bibliogra-
phy illustrate the success of this approach for different optimizations, such as
padding [Vera et al. 2005] or tiling [Vera et al. 2003; Fraguela et al. 2005], in
codes with regular access patterns.

As a simple experiment aimed to prove that our model can be used to opti-
mize codes with irregular access patterns because of indirections, we used its
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Table VIII. Memory Hierarchy Parameters in the Architectures Used (Sizes in
Bytes), Miss Weights W in CPU Cycles

L1 Parameters L2 Parameters L3 Parameters
Architecture (Cs1 , Ls1 , K1, W1) (Cs2 , Ls2 , K2, W2) (Cs3 , Ls3 , K3, W3)
Itanium 2 (16K,64,4,8) (256K,128,8,24) (6MB,128,24,120)
PowerPC 7447A (32K,32,8,9) (512K,64,8,150) —

predictions to decide which was the best loop ordering for the sparse matrix–
dense matrix product using the parameters of two very different architectures
and memory hierarchies: those of an Itanium 2 at 1.5GHz and a PowerPC 7447A
at 1.5GHz. Table VIII shows the configuration of their memory hierarchies us-
ing the well-kown notation Cs, Ls, and K , using bytes to measure sizes. A new
parameter W , the cost in CPU cycles of a miss in the considered memory hier-
archy level, is also taken into account. Notice that the first-level cache of the
Itanium 2 does not store floating-point data; so it is only used for the study of
the behavior of the references to arrays of integers. Also, the PowerPC does not
have a third-level cache.

Our model predicted the same behavior in both architectures for every sparse
matrix: the JIK ordering would be the one that would give place to the best
performance, while IKJ would be the ordering that would generate more misses
in all the levels of the memory hierarchy, thus yielding the worst performance.
This matches the global results displayed in Table II. The predictions were
first validated executing the three versions of the sparse matrix–dense matrix
product code for synthetic sparse matrices with an uniform distribution of the
entries of sizes N × N that were multiplied by a N × N dense matrix, with
N = i × 500 for i = 1, 2, 3, 4, 5, and 6, and a percentage of nonzeros in the sparse
matrix from 1 to 19% in steps of 2%. The codes were compiled using g77 3.4.3
with level of optimization -O3. The execution times systematically reflected the
predictions of the model: the JIK version always outperformed the IJK version,
and the IKJ code was always the slowest one. We also run a test multiplying
each one of the 320 real matrices used in the preceding section by a dense
matrix with 1500 columns using the three loop orderings in both machines. In
the Itanium 2, the JIK ordering was the best one for 307 of the matrices, IJK for
ten, and IKJ for just three of them; in the PowerPC, the JIK ordering was the
fastest one in all, but one of the cases, in which IJK outperformed it. As we see,
the quantitative inaccuracy that the model exhibits sometimes when predicting
the cache behavior for matrices with nonuniform distributions does not preclude
it from being successful when driving optimizations on codes that operate with
these matrices. Finally, Table IX displays the average execution time for the
three loop orderings in the two sets of experiments for both architectures in
order to give an idea of the enormous impact of the optimization guided by our
model.

6. RELATED WORK

While several automatable analytical models that accurately predict the cache
behavior of codes with regular access patterns have been proposed [Chatterjee
et al. 2001; Ghosh et al. 1999; Fraguela et al. 2003; Vera and Xue 2002], this is
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Table IX. Average Execution Time (s) for the Sparse Matrix–Dense Matrix
Product as a Functions of the Loop Ordering for the Experiments Using Synthetic

Matrices with a Uniform Distribution of the Entries and Real Matrices with a
Nonuniform Distribution of the Entries

Synthetic Uniform Matrices Real Nonuniform Matrices
Loop ordering Loop ordering

Architecture IKJ JIK IJK IKJ JIK IJK
Itanium 2 172.264 41.016 142.389 4.814 2.078 2.115
PowerPC 7447A 338.538 29.256 54.272 12.585 1.990 3.688

not the case for codes with irregular access patterns, because of the difficulty to
model them. The frameworks developed hitherto that study the memory hier-
archy behavior of these codes either lack a systematic strategy to enable their
automatic application within a compiler or cannot provide accurate or absolute
performance predictions. This way, Ladner et al. [1999] builds an ad-hoc model
restricted to direct-mapped caches that does not provide a general approach
to model the interaction in the cache between different interleaved access pat-
terns. Associativity and general access pattern interaction are addressed in our
probabilistic model [Fraguela et al. 1998], but it was still a nonautomatable ap-
proach. Cascaval’s indirect accesses model [Cascaval et al. 2000] is integrated
in a compiler framework, but it is a simple heuristic that estimates the number
of cache lines accessed rather than the real number of misses. For example, it
does not take into account the distribution of the irregular accesses and it does
not account for conflict misses, since it assumes a fully associative cache. As a
result it suffers from limited accuracy in many situations. The modal model of
memory [Mitchell et al. 2001] requires not only static analysis but also runtime
experimentation (potentially thousands of experiments) in order to generate
performance formulas. Such formulas can guide code transformation decisions
by means of relative performance predictions, but they cannot predict code per-
formance in terms of miss rates or execution time. The validation uses two very
simple codes and no information is given on how long it takes to generate the
corresponding predictions. Accurate miss rates for fully associative caches can
be predicted by Zhong et al. [2003] from a reuse distance characterization ob-
tained from two runs of a given code using input data sets of different sizes. The
generality of this approach allows to apply it to programs with complex access
patterns and, in their experiments, the predictions approach the behavior of
limited associativity caches reasonably, although this is not guaranteed. Other
limitations of this approach are that the cache line size is not part of the model
and it does not take into account cold misses. Finally, Andrade et al. [2006]
models irregular access patterns generated by references whose execution is
controlled by data-dependent conditionals, but it cannot handle indirections,
which is the aim of our work in this paper. Also, that model is less automatable
than the one proposed here. The reason is that in the case of the indirections,
we can infer the uniform probabilities from the sizes of the data structures.
This is in contrast with the data-dependent conditionals, which always require
external information to know the probability they are fulfilled.
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7. CONCLUSIONS

This paper presents the first automatable approach we are aware of that allows
the accurate analytical modeling of the cache behavior of codes with irregular
access patterns because of the use of indirections. Our strategy extends the
PME model to consider indirections in which the accesses are uniformly dis-
tributed on the dereferenced array, or on a subsection of it. When this condition
holds, the predictions of our model are very accurate, as our validation with
codes of varying complexity shows. When irregular accesses are not uniformly
distributed, the predictions of our model are still very reasonable for some codes,
while in other codes they must be taken as a qualitative characterization, rather
than as a quantitative estimation. We have illustrated the applicability of our
work by means of a simple example of optimization guided by the model that
has been successful both for synthetic matrices with an uniform distribution of
the entries and for real matrices that do not hold this condition. Still, we are
currently working on approaches to take into account nonuniform distributions
of the entries to provide more accurate estimations. A first step in this direction
is our recent paper [Andrade et al. 2007], which analyzes the access patterns
derived from the processing of banded matrices.
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