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Abstract. The increasing gap between the speed of the processor and
the memory makes the role played by the memory hierarchy essential in
the system performance. There are several methods for studying this be-
havior. Trace-driven simulation has been the most widely used by now.
Nevertheless, analytical modeling requires shorter computing times and
provides more information. In the last years a series of fast and reliable
strategies for the modeling of set-associative caches with LRU replace-
ment policy has been presented. However, none of them has considered
the modeling of codes with data-dependent conditionals. In this article
we present the extension of one of them in this sense.

1 Introduction

The memory hierarchy plays an essential role in bridging the increasing gap be-
tween the processor and the memory speed. The optimal usage of the memory
hierarchy is specially important in real-time systems and systems that require
low power and energy consumption. This way, although the research in this area
has traditionally focused on the optimization of codes executed in computers,
we consider that its relevance is even greater in the field of the embedded sys-
tems. Programmers use many methods in order to improve the performance of
the memory hierarchy during the execution of their codes. Unfortunately, the
only tool available for a long time to study this behavior has been trace-driven
simulation [1]. The main drawback of this method is the long computing time it
requires. Some architectures implement built-in hardware counters [2], but their
availability is limited to certain architectures. In addition, in both cases either
the code or a simulation needs to be executed in order to obtain data on the
memory hierarchy performance, and neither of them explains the observed be-
havior. Analytical models are faster than the previous methods and give us much
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more information. Many models of this kind have been proposed in the bibliog-
raphy [3–5]. The main drawbacks of these models are the lack of modularity and
the fact they can only model a limited set of program structures.

The model we propose in this paper is an extension of the probabilistic model
introduced in [3]. That work proposes a very modular model, what makes it
easily extensible. We have extended the set of code constructions it supports
with data-dependent conditionals, a program structure that no previous work in
this area has modeled. As a first step, we only consider conditions that follow
an uniform distribution, but we regard this extension very interesting as a first
step towards the study of whole real programs.

The model proposed in [3] builds automatically equations, referred as Prob-
abilistic Miss Equations (PMEs), that estimate the number of misses that a
given code generates. This method models the behavior of set-associate caches
with LRU replacement policy. It is applicable to perfectly nested loops and non-
perfectly nested loops with one loop per nesting level. It allows several references
per data structure and loops controlled by other loops. Loop nests with several
loops per level can also be analysed by this model, although certain conditions
need to be fulfilled in order to obtain accurate estimations.

This paper describes the extension of this model in order to consider codes
with data-dependent conditionals that follow an uniform distribution. Sect. 2
presents the main concepts in which our model is based. Then, Sect. 3 introduces
the area vector concept, which is used by our model to represent the impact of a
series of accesses to a data structure on the cache. The strategy to build formulas
that estimate the number of cache misses in codes containing data-dependent
conditionals is explained in Sect. 4, which is followed by a validation using a
simple code and trace-driven simulations in Sect. 5. Sect. 6 is a brief review of
the related works. Finally, Sect. 7 is devoted to the conclusions and future work.

2 Modeling Concepts

We consider a cache with a size of Cs words, a line size of Ls words, an a
associativity degree k, where we refer as word to the size of the elements of our
data structures. There are two situations that can generate a miss in the access
to a line. The first one is the first access to this line, which is known as an
intrinsic miss. Each one of the remaining accesses will result in a miss if k or
more different lines accessed since the last reference to that line are mapped to
the same cache set. These misses are known as interference misses. This way, the
probability an access results in an interference miss is equal to the probability
that k or more lines have been mapped to cache set of the accessed line since
the previous access to the line took place.

The misses generated by a reference can be estimated by means of a formula
that includes the number of different lines it accesses (intrinsic misses), the num-
ber of line reuses it generates, and the interference probability for such accesses
(interference misses). The calculation of this probability involves estimating the
memory region accessed between each two consecutive accesses to the same line,



and the mapping of this region on the cache. The miss probability will be equal
to the ratio of sets that receive k or more different lines.

DO I0=1, N0
DO I1=1, N1
...

DO IZ=1, NZ
A(fA1(IA1), ..., fAdA(IAdA))

...

IF B(fB1(IB1), ..., fBdB(IBdB))

C(fC1(IC1), ..., fCdC(ICdC))

...

END DO

...

END DO

END DO

Fig. 1. Nested loops with data-dependent conditions

Figure 1 shows a nest of normalized loops that contains references inside
data-dependent conditionals. This is the type of structures we consider in our
extension. Our model considers references whose indexes are affine functions of
the type fA1(IA1) = αA1IA1 + δA1. The references can be found in any nesting
level, not just in the innermost one. The number of iterations of every loop
must be known at compile time and must be the same in every execution of the
loop. The reuse among different references to the same data structure can be
analyzed using our model only if those references are uniformly generated [6],
that is, they only differ in one or more of the added δ constants. This is by far the
most common situation in scientific codes. Uniformly generated references are
typically found in the same scope in a given nest, as they use the same variables
for their indexing. Thus, as a simplification, when there are references to the
same data structure in different scopes of the same nest, their potential reuse
is not considered. Still, if the references are found in different nests (which may
share outer level loops), reuse is estimated following a conservative approach.

As for the conditional structures, in this work we consider conditions whose
verification follows an uniform distribution, as stated in the introduction. This
means that in every evaluation of the condition there is a constant probability
p that it is fulfilled.

3 Area Vectors

Miss probabilities are calculated using area vectors. These vectors represent the
impact on the cache of the accesses to one or several data structures. Given a



data structure V, SV = SV0 , SV1 , . . . , SVk
is the area vector associated with the

access to V during a given period of the program execution. The i-th element,
i > 0, of this vector represents the ratio of sets that have received k − i lines
from the structure. As for SV0 , it is the ratio of sets that have received k or more
lines.

The two most common access patterns found in the kind of codes we intend to
model are the sequential access and the access described as “access to n groups of
t elements separated by a constant stride d”. The representation and calculation
of the impact on the cache of these and other access patterns by means of area
vectors has been solved in [3].

3.1 Area Vectors Addition

It is very common that references to more than one data structure take place
between two accesses to the same line of a data structure. This implies that a
mechanism is needed to add the area vectors associated with these structures in
order to calculate the global area vector.

Given two area vectors SU = (SU0 , SU1 , . . . , SUk
) and SV = (SV0 , SV1 , . . . , SVk

),

the addition of them, SU ∪ SV , is defined as

(SU ∪ SV )0 =
∑K

j=0

(

SUj

∑K−j

i=0
SVi

)

(SU ∪ SV )i =
∑K

j=i SUj
SV(K+i−j)

0 < i ≤ K .
(1)

This method is based in the addition of independent probabilities, which
means that it does not take into account the relative positions of the data struc-
tures in memory. If such positions are known, the overlapping coefficients of the
footprints associated with the accesses to these structures on the cache can be
estimated. The accuracy of the addition may be improved by using them to
scale or weight the area vectors [3]. This way, area vectors corresponding to data
structures that overlap more in the cache with the data structure affected by the
reference that is being analyzed, get higher weights than those ones that overlap
less or even do not overlap. The latter case would in fact turn the corresponding
area vector S into an empty one (Si = 0, 0 ≤ i < k and Sk = 1).

4 Probabilistic Miss Equations

Our method generates a Probabilistic Miss Equation (PME) for each reference
in each nesting level. Let Fi(R, S(RegInput), p) be the PME that estimates the
number of misses generated by reference R in nesting level i. It is a function
of S(RegInput), the area vector associated to the region that has been accessed
since the last access to a given line of the data structure that R references. If
the reference is inside a conditional sentence whose condition follows an uniform
distribution, p is the probability that the condition is true. The probability of
the conditionals can be obtained either by several means : profiling, input data
analysis, or previous knowledge of the application field.



The loops are examined from the innermost one to the outermost one in
order to calculate the number of misses generated by each reference. In each
level a formula is generated depending on whether the variable associated to the
current loop indexes or not any of the references found in the condition(s) of
the conditional sentence. If the loop variable is not used in the indexes of any
of these variables, then a Condition Independent Reference Formula (CIRF) is
applied. Otherwise, a Condition Dependent Reference Formula (CDRF) is built.

4.1 Condition Independent Reference Formulas

This kind of formulas has already been described in [3]. It assumes that, if the
analyzed reference reuses a given line in the current loop, the last access to
that line took place in the previous iteration of the considered loop. The reuse
in the loop may take place either because of temporal reuse (the loop variable
does not index the reference) or spatial reuse (the loop variable indexes the
reference and its stride is smaller than the line size). Let Ni be the number of
iterations in the loop of the nesting level i, and LRi be the number of iterations
in which there is no possible reuse for the lines referenced by R, then we can
define Fi(R, S(RegInput), p) as

Fi(R, S(RegInput), p) =LRiFi+1(R, S(RegInput), p)+

(Ni − LRi)Fi+1(R, S(Reg(A, i, 1)), p) ,
(2)

where Reg(A, i, j) stands for the memory region accessed during j iterations
of the loop in the nesting level i that can interfere with data structure A.
S(Reg(A, i, j)) represents the area vector associated to that region.

The formula reflects the fact that for the LRi iterations in which there can
be no reuse in this loop, the miss probability depends on the accesses and refer-
ence patterns in the outer loops. In the remaining iterations, this probability is
calculated as a function of the accessed regions during the portion of program
executed between those reuses, this is, during one iteration of loop i.

The indexes of the reference R are affine functions of the variables of the
loops that enclose it. As a result, R follows a constant stride SRi along the
iterations of loop i. This value is calculated as SRi = αAj

dAj
, where j is the

dimension whose index depends on Ii, the variable of the loop; αAj
is the scalar

that multiplies the loop variable in the affine function, and dAj
is the size of the

j-th dimension. If Ii does not index reference R, then SRi = 0. This way, LRi

can be calculated as,

LRi = 1 +

⌊

Ni − 1

max{Ls/SRi, 1}

⌋

. (3)

The formula calculates the number of accesses of R that can not exploit
either spatial or temporal locality, which is equivalent to estimating the number
of different lines that are accessed during Ni iterations with stride SRi.



4.2 Condition Dependent Reference Formulas

The second kind of formulas is applied when Ii, the variable associated to the
current loop, is used in the indexes of the references found in the condition
of a conditional sentence that controls the execution of the reference R whose
behavior we are analyzing. In this case, the last access of R to a given line may
have happened an indeterminate number of iterations ago, depending on the
probability p that the condition is fulfilled and thus R is executed.

Weighted Reuse When a reference is located inside a data-dependent condi-
tional sentence whose outcome changes for the different iterations of a given loop,
it is not possible to estimate accurately the number of iterations of the loop be-
tween two accesses to the same line by the reference. The reason is that accesses
only take place with a given probability. Thus, a probabilistic approach must be
followed to estimate this value, which is the reuse distance in the loop. This way,
the probability that the last access has happened 1,2. . . iterations ago must be
weighted. We define the weighted reuse for the j-th consecutive access to a given
line during the execution of the loop in nesting level i, WR(pi, RegInput, i, j, p)
with this purpose. In this expression, pi stands for the probability the line is
accessed by the considered reference during one iteration of the loop, and RegIn-
put, stands for the region accessed since the last reference to the line when the
loop execution begins, just as in the previous formulas. The weighted reuse is
calculated as

WR(pi, S(RegInput), i, j, p) =(1 − pi)
j−1Fi+1(R, S(RegInput) ∪ S(Reg(A, i, j − 1)), p)+

j−1
∑

k=1

pi(1 − pi)
k−1Fi+1(R, S(Reg(A, i, k − 1)), p) .

(4)

The first term considers the case that the line has not been accessed during
any of the previous j − 1 iterations. In this case, the RegInput region that could
generate interference with the new access to the line when the execution of the
loop begins must be added to the regions accessed during these j − 1 previous
iterations of the loop in order to estimate the complete interference region. The
second term weights the probability that the last access took place in each of
the j − 1 previous iterations of the considered loop.

Given a loop with n iterations, we define the total weighted reuse in its n
iterations, TWR(pi, S(RegInput), i, n, p), as1 the addition of the weighted reuse
for every one of them:

TWR(pi, S(RegInput), i, n, p) =

n
∑

j=1

WR(pi, S(RegInput), i, j, p) . (5)

1 If n is not an integer value, it is estimated as TWR(pi, S(RegInput), i, n, p) = (n −
bnc)TWR(pi, S(RegInput), i, dne, p)+(1−(n−bnc))TWR(pi, S(RegInput), i, bnc, p)



Line Access Probability The fact that every access takes place only with
probability p complicates the calculation of the probability that a given line is
accessed during each iteration of the considered loop. This probability depends
not only on the access pattern to the line in this nesting level, but also in the
inner ones. This way, access probabilities are calculated starting in the innermost
loop and analyzing the nest outwards, just as the PMEs.

In the CIRF formula we had defined LRi as the number of loop iterations
where there is no possible reuse. Now we define GRi as the number of iterations
that can potentially reuse the lines accessed in those LRi iterations. The product
of both terms must be equal to the number of iterations of the loop, thus GRi =
Ni/LRi. We represent the probability that a line is accessed during one iteration
of the loop in nesting level i as pi. If the loop variable for the level i + 1 is not
used in the indexes of the references found in the condition, then pi = pi+1.
Otherwise, pi = 1 − (1 − pi+1)

GRi+1 . In the innermost loop pi = p.

Formulation Once the previous concepts have been established, the final for-
mula that estimates the number of misses of a conditional dependent reference
R (CDRF) in nesting level i is,

Fi(R, S(RegInput), p) = LRiTWR(pi, S(RegInput), i, GRi, p) . (6)

4.3 Calculation of the Number of Misses

In the innermost level that contains the reference R, Fi+1(R, S(RegInput), p),
the number of misses caused by the reference in the immediately inner level
is S0(RegInput), this is, the first element in the area vector associated to the
region RegInput. If the reference is inside a conditional sentence, this value is
multiplied by p, as the reference only happens with probability p.

Once the formulas for the outermost level are calculated, the number of
misses is estimated as F0(R, S(RegInputtotal), p), where RegInputtotal is the total
region, this is, the region that covers the whole cache. The miss probability
associated with this region is one.

5 Model Validation

We have validated our model by applying it manually to the simple codes shown
in Figs. 2 and 3. They are, respectively, a synthetic kernel and an optimized
matrix product. These codes consist of a nest of loops that contain references
inside a conditional sentence. We are using FORTRAN in the examples we model,
but there is no problem in modeling codes with other languages. The analytical
model only depends on the access patterns, not on the language that generates
them.

A tool to apply automatically our modeling strategy is currently under con-
struction.



DO I = 1,M

X = A(I)

DO J = 1,N

Y = B(J)

IF (B(J).GT.K) THEN

C(J) = X+Y

ENDIF

ENDDO

ENDDO

Fig. 2. Synthetic kernel code

DO I=1,M

DO J=1,P

T=0

DO K=1,N

IF (A(I,K).NEQ.0) THEN

T=T+A(I,K)*B(K,J)

ENDIF

ENDDO

C(I,J)=C(I,J)+T

ENDDO

ENDDO

Fig. 3. Optimized matrix product)

5.1 Synthetic Kernel Modeling

Without loss of generality, we assume a compiler that maps scalar variables to
registers and which tries to reuse the memory values recently read in processor
registers. Under these conditions, the code in Fig. 2 contains three references
to memory. If the compiler followed a different policy to generate the code, we
would just model the access pattern generated by the references it produces. The
model in [3] can estimate the behavior of the references A(I) and B(J), which
take place in every iteration of their enclosing loops. Notice that the second access
to B(J) would reuse the value which was previously loaded in order to check the
condition found in the code. This way, C(J) is the only access to memory that
takes place under the control of a conditional, which has an uniform probability
p of being fulfilled, and thus we will focus our explanation on the modeling of
its behavior.

The modeling begins in the innermost loop, in level 1. This loop variable
indexes the reference involved in the condition, so the CDRF is to be used. Let
SR1 = 1, LR1 = 1+b(N−1)/Lsc, GR1 ' Ls, p1 = p,then we obtain the following
formula,

F1(R, S(RegInput), p) = (1 + b(N − 1)/Lsc) TWR(p, S(RegInput), 1, Ls, p) .
(7)



As this loop is in the innermost level, F2(R, RegInput, p) = pS0(RegInput).
The calculation of TWR (5) from WR (4) requires to estimate the memory
regions accessed during i iterations of this loop that may generate interference
with C, the data structure affected by the reference we are analyzing:

S(Reg(C, 1, i)) = Ss(i) ∪ Ssauto(i) . (8)

The first term corresponds to the sequential access to i consecutive elements
of B, and the second term stands for the autointerference produced by the access
to i consecutive elements of C. The autointerference is the interference that the
accesses to a given data structure may generate on other accesses to that same
structure. It is calculated in a slightly different way to that of cross interferences,
which are the interferences due to the accesses to other data structures. The
reason is that accesses to a given line do not generate interferences on that very
same line, but they can of course generate interference with other lines of the
same data structure.

In the next outer level, level 0, the loop index does not index the reference
used in the conditional, thus the CIRF is applied. Its formulation for LR0 = 1
is,

F0(R, S(RegInput), p) = F1(R, S(RegInput), p)+

(M − 1)F1(R, S(Reg(C, 0, 1)), p) .
(9)

In this case Reg(C, 0, 1), the region accessed during one iteration of the in
loop level 0 that may affect data structure C in the cache is

S(Reg(C, 0, 1)) = Ss(1) ∪ Ss(N) ∪ Ssauto(N) . (10)

The first term is associated to one element in A and the second one stands
for the access to N consecutive element of B. Finally, the third term corresponds
to the autointerference produced by the access to N consecutive elements of C.

As we have reached the outermost level, the number of misses generated by
the reference may be estimated as F0(R, S(RegInputtotal), p), where RegInputtotal
is the region that covers all the cache and so S0(RegInputtotal) = 1.

5.2 Optimized Product Modeling

The second code used in the validation is shown in Fig. 3. This kernel multiplies
a matrix with a uniform distribution of zero entries by another matrix B. As an
optimization, when the element of A to be used in the current product is 0, the
operation is not performed. This way two arithmetic operations and one data
load are avoided.

This code comprises three different references. Considering the assumptions
described in the previous example, the behavior of references C(I,J) and A(I,K)



could be modeled following [3]. Thus we will devote our explanation to the
analysis of B(K,J).

In the innermost level, level 2, the loop variable indexes the reference of
the condition, so the CDRF formula must be applied. As SR2 = 1, LR2 =
1 + b(N − 1)/Lsc, GR2 ' Ls and p2 = p, then the formulation is

F2(R, S(RegInput), p) = (1 + b(N − 1)/Lsc) TWR(p, S(RegInput), 2, Ls, p) .
(11)

This loop is in the innermost level. Thus, F3(R, RegInput, p) = pS0(RegInput).
In this case the calculation of WR (4) requires

S(Reg(B, 2, i)) = Slauto (i, pline) ∪ Sr(i, 1, M) . (12)

The first term represents the autointerference of B, which is due to the access
to i consecutive elements with a uniform probability of access per cache line
of B of pline. The second term corresponds to the access to i elements of A that
belong to different columns, each column having a size of M elements. In general,
Sr(g, s, d) calculates the area vector associated to the access to g groups of size
s separated by d elements.

In the next level, level 1, the loop variable indexes the reference in the con-
dition, so the CIRF formula is to be applied. Let LR1 = P , the formulation
is

F1(R, S(RegInput), p) = PF2(R, S(RegInput), p) . (13)

Also p1 = 1− (1− p)Ls . In the outermost level the loop variable indexes the
reference of the condition. As a result, the CDRF formula is to be applied again.
Being SR0 = 0, LR0 = 1, GR0 = M and p0 = p1, the formulation is

F0(R, S(RegInput), p) = TWR(p0, S(RegInput), 0, M, p) . (14)

We need to know the value of the accessed regions Reg(B, 0, i) to compute
WR:

S(Reg(B, 0, i)) = Slauto(P ∗ N, pline) ∪ Sr(N, i, M) ∪ Sr(P, i, M) . (15)

The first term is associated to the autointerference of B, which is the access
to P ∗N consecutive elements with an uniform probability of access to each line
of pline. The second term represents the access to i consecutive elements from
each one of the N columns of matrix A, which have a size of M elements each.
The third term represents the access to i consecutive elements from each one of
the P columns in C, which also have size M .



Table 1. Validation data for the code in Fig. 2 for several cache configurations and
different problem sizes and condition probabilities

M N p Cs Ls K ∆MR ∆NM σ Tsimulation Texecution Tmodeling

50000 47500 0.2 65536 16 2 0.372 5.067 5.515 141 60 0.005

50000 47500 0.6 65536 16 8 0.001 0.021 0 262 74 0.004

50000 47500 0.2 8192 32 4 0.004 0.094 0 138 50 0.005

50000 47500 0.4 16384 8 2 0.015 0.086 0 182 68 0.005

50000 47500 0.8 16384 8 2 0.001 0.012 0 255 67 0.004

22000 14500 0.4 32768 16 4 0.001 7.010 7.375 28 7 0.003

22000 14500 0.2 16384 8 4 0.239 1.260 0.144 21 6 0.005

22000 14500 0.9 16384 8 16 0.005 0.041 0 50 7 0.003

22000 14500 0.4 8192 8 1 0.067 0.381 0 65 7 0.004

22000 14500 0.4 8192 32 2 0.007 0.165 0 22 8 0.004

22000 14500 0.7 8192 32 8 0.007 0.206 0 31 7 0.004

18000 22000 0.2 32768 16 2 0.574 8.051 8.326 23 7 0.004

18000 22000 0.6 32768 16 4 0.341 4.489 3.963 40 10 0.005

18000 22000 0.1 16384 8 2 0.076 0.431 0.383 22 6 0.004

18000 22000 0.8 16384 8 8 0 0 0 52 8 0.004

18000 22000 0.3 4096 32 4 0.141 0.417 0 95 8 0.004

14500 19500 0.7 65536 8 8 0 0.032 0 32 7 0.005

14500 19500 0.2 16384 4 2 0.252 0.790 0.766 20 5 0.005

14500 19500 0.3 8192 4 1 0.124 0.366 0 20 6 0.004

14500 19500 0.8 8192 4 4 0.009 0.032 0 43 6 0.004

1750 1750 0.4 8192 4 8 0 0.108 0 1 1 0.003

1750 1750 0.7 8192 8 4 0 0.230 0 0 0 0.003

950 1150 0.4 1024 4 8 0.349 1.046 0 0 0 0.001

950 1150 0.2 4096 8 16 0 0.389 0 0 0 0.001

850 1200 0.6 1024 16 4 0 0 0 0 0 0

5.3 Validation Results

Our validation is based on the comparison of the predictions of the model with
the results of trace-driven simulations. Different cache configurations, problem
sizes and probabilities for the conditionals were used in our experiments.

Table 1 and Table 2 show the validations results for the codes in Figs. 2
and 3, respectively. The first three columns contain the problem size as well as
the probability p that the condition is fulfilled. Then the cache configuration is
given by Cs, the cache size, Ls, the line size, and the degree of associativity of
the cache, K. The sizes are measured in elements of the arrays used in the codes.

Two metrics have been used in order to study the accuracy of the model. One
of them, ∆MR, is based on the miss rate (MR). It stands for the absolute value
of the difference between the predicted and the measured miss rate. We also use
∆NM , which expresses the error in the prediction of the number of misses as
a percentage of the number of misses measured by the trace-driven simulation.
The tables also include σ, the typical deviation of the number of misses measured



Table 2. Validation data for the code in Fig. 3 for several cache configurations and
different problem sizes and condition probabilities

M N P p Cs Ls K ∆MR ∆NM σ Tsimulation Texecution Tmodeling

1700 1600 1250 0.2 32768 16 2 0.010 0.039 0.037 331 162 0.035

1700 1600 1250 0.4 16384 32 2 0 0 0 372 197 0.041

1700 1600 1250 0.6 16384 32 16 0 0 0 1047 210 0.214

1700 1600 1250 0.2 8192 8 4 0.017 0.018 0 342 162 0.023

1700 1600 1250 0.8 8192 8 4 0 0 0 715 199 0.023

1000 850 900 0.3 8192 8 4 0.007 0.038 0.019 83 40 0.016

1000 850 900 0.8 4096 4 8 0.033 0.047 0 206 45 0.017

1000 850 900 0.2 4096 4 1 0.068 0.085 0.015 64 36 0.013

1000 850 900 0.3 4096 8 1 0.054 0.074 0.004 70 40 0.013

1000 850 900 0.7 4096 8 2 0.017 0.026 0 122 46 0.014

900 850 900 0.1 65536 8 1 0.065 0.525 0.006 48 29 0.020

900 850 900 0.9 65536 8 8 0.015 0.233 0 107 38 0.024

900 850 900 0.2 16384 32 2 0.055 0.064 0 63 32 0.026

900 850 900 0.8 16384 32 2 0.036 0.064 0 104 39 0.024

750 750 1000 0.4 32768 4 2 0.040 0.260 0 56 31 0.019

750 750 1000 0.2 16384 8 4 0.114 0.633 0.568 57 26 0.016

750 750 1000 0.4 8192 16 1 0.147 0.210 0.005 56 32 0.020

750 750 1000 0.8 8192 16 16 0.064 0.109 0 180 32 0.054

200 250 150 0.8 16384 4 2 0.114 0.810 0.020 1 0 0

200 250 150 0.3 4096 4 8 0.113 0.759 0 1 0 0

200 250 150 0.8 2048 4 2 0.348 1.257 0.468 1 0 0

200 250 150 0.1 1024 8 4 0.139 0.143 0 1 0 0.01

100 350 90 0.8 4096 4 8 0.077 0.547 0 1 0 0

100 350 90 0.8 1024 4 8 0.077 0.111 0 1 0 0.01

100 350 90 0.4 2048 8 4 0.141 0.176 0 0 0 0.01

expressed as a percentage of the average number of misses measured. For every
combination of a cache configuration and a data input, 25 different simulations
have been made, using different base addresses for the data structures in each
of those simulations. The usage of the overlapping coefficients helps adapt the
model prediction to the variability of the cache behavior that is due to the
different relative positions of the data structures.

The model provides a good estimation of the caches behavior, as the tables
show. The prediction error is smaller or almost equal than the typical deviation
introduced by the own variability of the number of misses of the code. We can
observe that when the cache works well, this is, when it is large enough to hold
the program data structures, the typical deviation is much greater and so the
error in the prediction is greater too, although it is smaller or similar than the
typical deviation.

Although the model only considers one cache at a time, it is straightforward
to predict the behavior of a whole memory hierachy using it. The model can be
applied separately to each level of the hierarchy and then combine these partial



results to obtain a good prediction of the behavior of the whole memory system.
Some of our experiments in [3] prove this.

The three last columns in Tables 1 and 2 show the simulation, source code
execution, and modeling times (in seconds) measured in a 800 MHz Pentium
III system for our two example codes, respectively. As we see, modeling times
are several orders of magnitude shorter than trace-driven simulation and even
execution times. The modelling time does not include the time required to build
the formulas for the example codes. This will be made automatically by the tool
we are currently developing. According to our experience in [3], the overhead of
such tool is negligible.

6 Related Work

There are a number of previous works that also try to study and improve the
behavior of the memory hierarchy by means of analytical models based on the
structure of the code. Among those works we find [7], which is restricted to
the modeling of direct-mapped caches and that lacks an automatic implementa-
tion. Later, [8] and [9] overcame some of these limitation. Cache Miss Equations
(CMEs) are constructed in [8], which are lineal systems of Diophantine equa-
tions, where each solution corresponds to a potential miss cache. One of its main
limitations is its high computional cost. The computing times required by [9]
are much shorter, and similar to those ones of our model, however, the error is
larger than that of our model. Both models in [8] and [9] share the limitation
that they are only suitable for regular access patterns found in perfectly nested
loops, and they do not take into account the possible reuses in structures that
have been accessed in previous loops. This is a very important subject, as most
misses in numerical codes are inter-nest [10], which implies that optimizations
should consider several nests.

More recently, [4] and [5] allow the analysis of not perfectly nested loops and
consider the reuse between loops in different nests. The former is based on Pres-
burger formulas and provides very accurate estimations for small kernels but it
can only handle modest levels of associativity (for example its validation only
considers degrees of associativity one and two), and it is very time-consuming, in
fact, running a simulation is much faster than solving the equations this model
generates, which reduces its applicability. As for the latter, it is based on the
extension of [11] in order to quantify the reuse, and it applies the CMEs of [8]
in order to estimate the number of misses. The time it requires to solve the
CMEs is reduced considerably by applying statistical techniques that allow to
provide a prediction within a confidence interval. This model can analyze com-
plete programs, imposing the conditions that the accesses follow regular patterns
and that the codes do not contain input data dependent constructions, neither
in the loop conditions nor in the conditional sentences. The model precision is
similar to that of ours in most of the cases, however its computing times are
longer.



Unlike our model, all these approaches require knowing the base addresses of
the data structures. This restricts their scope of application, as these addresses
are not available in many situations (physicallly-addressed caches, dynamically
allocated data structures, . . . ). Besides, none of them can model codes with data
dependent conditions. Indeed, it is the probabilistic nature of our model what
allows us to consider this broad scope of codes.

7 Conclusions and Future Work

An extension to the model in [3] has been presented which allows the analysis
of codes with data dependent conditional sentences whose conditions follow an
uniform distribution. No other model in the bibliography can estimate the cache
behavior of this kind of codes. A validation using simple codes has proved the
model estimation to be very accurate despite the very short time required to
compute it.

Our model is very suitable to guide the optimization process of a compiler
and to help programmers understand the behavior of their codes. In the field
of embedded systems the study of the behavior of the memory hierarchy is not
only relevant in order to reduce the execution times and the energy and power
consumption, but also to calculate the WCET (Worst Case Execution Time).
Studying the application of our model to this latter usage is part of our future
work.

We are currently working in an automatic implementation that applies our
model automatically and transparently to the programmer on a great variety
of codes. We plan to use the Polaris [12] compiler framework as platform for
this purpose, although the model can be coupled with any other front-end and
used to model codes written in any programming language. We believe that the
probabilistic model proposed here is suitable for the modeling of other kinds of
codes, like those that contain irregular access patterns due to the use of indi-
rections and pointers. These codes have been largely ignored in all the previous
bibliography despite being common in scientific and engineering applications.
Some problems related to the modeling of this kind of codes that we anticipate
include getting the distribution of the accesses, mapping the real distribution to
one that can be modeled. The more irregular the distribution is, the bigger the
mathematical complexity of the associated model so we should try to minimize
the corresponding modeling time. All of these problems are to be solved first
manually. Then a way to characterize each step and develop a method to apply
it automatically is to be found.
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