
Static Prediction of Worst-case Data Cache Performance in the Absence of Base
Address Information

Diego Andrade, Basilio B. Fraguela and Ramón Doallo
University of A Coruña, Spain

{dcanosa,basilio,doallo}@udc.es

Abstract

While caches are essential to reduce execution time and
power consumption, they complicate the estimation of the
Worst-Case Execution Time (WCET), crucial for many Real-
Time Systems (RTS). Most research on static worst-case
cache behavior prediction has focused on hard RTS, which
need complete information on the access patterns and ad-
dresses of the data to guarantee the predicted WCET is a
safe upper bound of any execution time. Access patterns are
available in those codes that have a steady state of access
patterns after the first iteration of a loop (in the following
regular codes), however, the addresses of the data are not
always known at compile time for many reasons: stack
variables, dynamically allocated memory, modules compiled
separately, etc. Even when available, their usefulness to
predict cache behavior in systems with virtual memory
decreases in the presence of physically-indexed caches. In
this paper we present a model that predicts a reasonable
bound of the worst-case behavior of data caches during the
execution of regular codes without information on the base
address of the data structures. In 99.7% of our tests the
number of misses performed below the boundary predicted
by the model. This turns the model into a valuable tool,
particularly for non-RTS and soft RTS, which tolerate a
percentage of the runs exceeding their deadlines.

1. Introduction

Worst-Case Execution Time (WCET) estimation, needed
for the design of many Real-Time Systems (RTS), is com-
plex in the presence of caches. Thus the prediction of
its Worst-Case Memory Performance (WCMP) component
has been an object of research both in the presence of
instruction [1], [2] and data [3]–[6] caches, the latter being
more challenging, as several references may access the
same line, and the data access patterns are more irregular.
Hard RTS need these estimations to be completely accurate,
i.e., to assure that the prediction is a safe upper bound
of any potential execution time. This requires full infor-
mation on data addresses and worst-case access patterns,
being preferable to overestimate the WCMP when a tight

. This work was supported by supported by the Xunta de Galicia
under project INCITE08PXIB105161PR and the Ministry of Education and
Science of Spain, FEDER funds of the European Union (Project TIN2007-
67537-C03-02)

accurate value cannot be found. The analysis of regular
codes can provide accurate information about worst-case
access pattern but this analysis may be unable to determine
the exact data addresses accessed as the base addresses of
the data structures are often unavailable at compile-time.
There are several reasons why these base addresses may be
unknown and even change in different runs: stack variables,
dynamically allocated memory, modules compiled separately
or by just-in-time compilers, etc. Also, physically-indexed
caches decouple their behavior from the one predictable by
the analyzable virtual addresses.

This paper presents the first model to our knowledge
aimed at predicting a WCMP for regular codes without
information about the base addresses of the data structures.
It is an extension of the Probabilistic Miss Equations (PME)
analytical model [7], which provides good estimations of the
cache performance. PME predictions are based on average
probabilities of the alignment of data with respect to the
cache lines and overlapping of the footprints of the data
accessed in the cache. We have modified it to consider near
worst-case alignments and overlappings, but not pathological
worst-case alignments, i.e, those in which references with
the same access pattern fall systematically in the same cache
sets. Miss rates increase sharply in those situations to values
far from those observed normally, and programmers should
apply padding or extra buffering to avoid large performance
degradations. This strategy allows us to provide tight es-
timations, which are not absolute maxima in any possible
situation, but which reflect realistic WCMP in practice.
This way, out of 43200 simulations in our validation, only
0.03% behaved worse than our prediction. Thus our model is
particularly valuable for soft RTS [8] and non-RTS designers
interested in knowing a probable WCMP of their code when
data addresses are unknown at compile time. The rest of
this paper is organized as follows. Section 2 introduces
the PME model. The modifications we make to calculate
the WCMP are described in Section 3. Section 4 contains
the validation, Section 5 describes some related work and
Section 6 concludes the paper.

2. The PME model

The Probabilistic Miss Equations (PME) model [7] for
regular codes predicts the number of misses generated by
a code for any cache with a Less Recently Used (LRU)
replacement policy. Its inputs are the source code to analyze
and the cache configuration. The loops in the codes can
be nested in any arbitrary way, and references to memory

can be found in any nesting level. The indexing of the data
structures must be done using affine functions of the loop
indexes. Also, the number of iterations of each loop must be
known to perform the analysis. If it cannot be inferred from
the code, it can be obtained from an analysis of the input
data that can be provided by the user, obtained by means of
runtime profiling or provided using a compiler directive.

Although not covered in our examples, inlining, either
symbolic or actual, allows the model to support applications
consisting of several routines, as seen in [7]. Applications
with irregular access patterns, such as those arising from the
usage of pointers or indirections, can be made analyzable for
the model by locking the cache before such patterns arise
and unlocking it after them. This technique is commonly
used to enable cache predictability, particularly for enabling
a tight computation of the WCET [6]. Another popular
technique equally complementary of this model is software
cache partitioning [9], which divides the cache into disjoint
partitions, which are assigned to different concurrent tasks.
This facilitates the model of multitasking environments,
since the model can analyze the behavior of the program
executed by each task independently considering only its
cache partition.

The PME model studies the behavior of each static refer-
ence R in a code separately. Namely, it derives an equation
FRi for each reference R and each nesting level i that
contains R that predicts the number of misses generated by
R during the execution of that loop. The formulas are called
Probabilistic Miss Equations (PMEs) because are based on
estimations of probabilities that individual accesses result in
misses. We will now explain how PMEs are derived and
how the miss probabilities are estimated in turn.

2.1. Probabilistic miss equations

The PME FRi for static reference R at nesting level i
estimates the number of misses generated by R during the
execution of the loops as the sum of the number of dynamic
accesses generated by R multiplied by their probability of
resulting in a miss. To build this formula, the model classifies
these accesses according to their reuse distance, which is
measured in loop iterations and defines the code executed,
and thus the accesses that have taken place, since the last
previous access to the line that R is trying to reuse. The
reason is that the probability an access results in a miss
depends on the footprint on the cache of the data accessed
during its reuse distance. For example, a reuse distance for
an access of n iterations of loop i means that n iterations of
loop i are executed between two consecutive accesses to the
line affected by this access, and thus the accesses performed
during those iterations must be analyzed to estimate the
probability their footprint on the cache has replaced the line,
resulting then the second access into a miss. There will be
also first-time accesses in the loop, i.e, those that cannot
exploit any reuse inside it.

The classification is simplified by the regularity of the
access patterns analyzed by the model. First, the regularity
guarantees that the access pattern of R during each iteration

of a loop is the same, only displaced a constant distance in
each access. We call this distance SRi, the constant stride
of reference R with respect to loop i. Thus R exhibits the
same number of reuses with the same reuse distances within
each execution of the immediately inner loop at level i +
1 that contains R for each iteration of loop i. Only first-
time accesses to lines within loop i + 1 may have different
reuse distances in different iterations of loop i. This property
enables expressing FRi in terms of FR(i+1), the formula for
the immediately inner loop containing R. For this reason
the model always begins the analysis of each reference in
the innermost loop that contains it. FR(i+1) is a function of
the reuse distance for the first-time accesses of R to lines
during an execution of loop i + 1. Those reuse distances
correspond to iterations of outer or previous loops, and it
is FRi responsibility to provide them. If R belongs to loop
i but not to any internal loop, FR(i+1) simply stands for a
single access of the reference in one iteration of loop i. Here
the recursion of PMEs finishes and the value of FR(i+1) is
the probability this individual access results in a miss due
to the impact on the cache of the data accessed during the
reuse distance.

The second advantage of the regularity is that the itera-
tions of loop i can be classified in two categories: those that
lead R to access new sets of lines (SOLs) in the immediately
internal loop where it is found (or the reference itself if there
are no intermediate loops), and those in which R accesses
the same SOLs as in the preceding iteration, thus enabling
the potential exploitation of locality. By set of lines (SOL)
the PME model refers to the set of lines that R can access
during one iteration of a loop. For example, if a M × N C
array (stored by rows) is accessed by column by column ,
in the analysis of the inner loop each iteration references
one line, thus the SOL consists of a single line. In the
analysis of the outer loop that controls the column index
of the reference, each iteration of this loop is associated to
the access to the set of lines that hold the elements of a
column of the matrix. Considering that the array is stored
in row-major order, if N ≥ Ls, where Ls is the cache line
size measured in elements, which is the most usual situation,
each SOL will be made up of M different lines.

Concretely, the average number of iterations of loop i that
cannot exploit either spatial or temporal locality with respect
to previous iterations of that loop is

LRi = 1 +

⌊

Ni − 1

max{Ls/SRi, 1}

⌋

, (1)

Ls being the line size, Ni the number of iterations of the
loop, and SRi the stride of R with respect to loop i. When
loop i index variable does not index reference R, SRi = 0
and LRi = 1, since the iterations of the loop do not lead the
reference to access different data sets. In any other case, (1)
is equivalent to calculating the average number of different
lines accessed during Ni iterations with step SRi, each line
defining a SOL.

The preceding reasoning establishes that there are Ni −
LRi iterations of the loop that reuse the SOL accessed in the
previous iteration. As a result, in these iterations the reuse

for(j=0; j<M; j++) // Level 0
for(i=0; i<N; i++) // Level 1
a[j] = a[j] + b[j][i] * c[i]

Figure 1: Matrix-Vector product

distance for each first-time access to the SOL in the internal
loop i + 1 is one iteration of the loop at level i. But for
the other LRi iterations to new SOLs nothing can be said at
this point about their reuse distance. It may correspond to
iterations in outer loops not yet analyzed, or to loops that
precede the current one in the nesting level. For this reason,
FRi is a function of the unknown RegIn, the memory regions
accessed during the reuse distance for what in this loop are
first accesses. Thus the number of misses generated by R at
nesting level i is estimated by the PME [7]:

FRi(RegIn) = LRi · FR(i+1)(RegIn)+

(Ni − LRi) · FR(i+1)(RegRi(1))
(2)

where Ni is again the number of iterations of the loop at
nesting level i, and LRi is derived from (1). RegRi(j) stands
for the set of memory regions accessed during j iterations of
the loop in nesting level i that can interfere with the accesses
of R in the cache. This equation calculates the number of
misses as the sum of two values. The first one estimates
the number of misses of the first access in loop i to the
LRi different SOLs R accesses in the scope of this loop.
In this first access in this loop the reuse can only happen
with respect to outer or preceding loops. Thus the number
of misses generated in these iterations is obtained evaluating
FR(i+1), the PME for the immediately inner loop, passing
as parameter for the calculation of the miss probability of
its first accesses the value RegIn provided by those external
loops.

The second value corresponds to the Ni − LRi iterations
in which there can be reuse with respect to the accesses
in the previous iteration in this loop. The miss probability
for the first accesses in the evaluation of FR(i+1) for these
iterations depends on the memory regions accessed during
one iteration of loop i, the reuse distance.

At the end of the recursion, in the innermost loop
containing the reference, FR(i+1)(Reg) is substituted by
miss prob(Reg) the miss probability associated to region
Reg. Its calculation is covered in Section 2.2. In the topmost
nesting level in the code the PMEs are evaluated with an
RegIn whose miss probability is 1, which expresses the
impossibility of reuse of any previous access.

Equation (2) captures the behavior of references that do
not carry reuse with any other reference in the same loop
nest. The modeling of reuses between different references
in this model is explained in [7].

Example 2.1: The matrix-vector product code shown in
Fig. 1 will be used as a running example throughout the
paper. Let us consider the analysis of the behavior of
reference b[j][i]. Let us assume that matrix b is stored
in row-major order, M = N = 4 and the system has a
direct-mapped cache that can store 8 elements of the matrix
and each cache line can store 2 elements. First, we derive a

formula for the innermost loop for that reference FR1. Since
N1 = 4 and SR1 = 1, (1) yields LR1 = 2. The resulting
formula is,

FR1(RegIn) = 2 · FR2(RegIn) + (4 − 2) · FR2(RegR1(1))

that is, in two of the iterations of the innermost loop the
reference accesses new lines, since 4 elements distributed
on lines of two elements require two lines, while the other
two iterations reuse the line accessed in the inmediately
preceding iteration. The reuse distance for the first accesses
to lines is (yet) unknown, but the distance for the reuses is
one iteration of this loop. Let us now derive the PME FR0

for the outermost loop. Since here N0 = 4 and SR0 = 4,
then LR0 = 4 and

FR0(RegIn) = 4 · FR1(RegIn) + (4 − 4) · FR1(RegR0(1))

that is, the outermost loop generates accesses to 4 different
set of lines (SOLs). When the formulas are composed, the
final number of misses for reference b[j][i] is calculated as

FR0(RegIn) = 8·miss prob(RegIn)+8·miss prob(RegR1(1))

If this is the first access to b in the program, the first
accesses to lines in this code cannot exploit reuses thanks
to preceding accesses; thus miss prob(RegIn) = 1.0. The
other 8 accesses try to reuse the line accessed in the previous
iteration of loop 1, thus their miss probability depends
on RegR1(1), the memory regions accessed during such
iteration. next section �

2.2. Miss probability calculation

The PME model follows three steps to calculate the miss
probability associated to a given reuse distance: access pat-
tern identification, cache impact estimation and area vectors
union.

The first step identifies what kind of access pattern follows
each reference during the reuse distance. When there are
several references that access the same memory regions, they
must be merged. The main types of access pattern found in
regular codes are the sequential access and the access to
regions of the same size separated by a constant stride.

The second step measures the impact of each access
pattern on the cache using a vector V of k + 1 probabilities
called area vector (AV), k being the associativity of the
cache. Its first element, V0, is the ratio of sets that received
k or more lines from the access, while Vs, 0 < s ≤ k is the
ratio of sets that received k−s lines. The AV associated with
each access pattern is calculated separately. The method to
derive the AV depends on the access pattern considered. For
example, the sequential access to n consecutive elements,
Regs(n), generates an interference area vector AVs:

AVs(k−⌊l⌋)
(n) = 1 − (l − ⌊l⌋)

AVs(k−⌊l⌋−1)
(n) = l − ⌊l⌋

AVsi
(n) = 0 0 ≤ i < k − ⌊l⌋ − 1, k − ⌊l⌋ < i ≤ k

(3)

where, k is the associativity of the cache and l is the
average number of lines the access places in each cache

set, calculated as l = max{k, ((n + Ls − 1)/Ls)/S}, the
maximum of k and the average number of lines mapped to
each set. This value is obtained dividing the average number
of lines affected by the access by S, the number of cache
sets, which is calculated as Cs/(Lsk), where Cs is the cache
size. The term Ls − 1 added to n stands for the average
extra elements brought to the cache in the first and last
lines accessed. Details of the methods to derive the AVs
corresponding to other access patterns can be found in [7].

The previous step of the calculation of the miss probability
associated to a reuse distance yields one AV per each one of
the memory regions accessed during that distance. The last
step of the calculation of the miss probability summarizes
the effects of these AVs merging them into a global one
through an union operation [7] based on the addition of
independent probabilities. Namely, the union (∪) of two AVs
VA and VB is calculated by:

(VA ∪ VB)0 =

k
∑

j=0

(

VAj

k−j
∑

i=0

VBi

)

(VA ∪ VB)i =

k
∑

j=i

VAj
VB(k+i−j)

0 < i ≤ k

(4)

The first component of the resulting AV, which is the ratio
of cache sets that received k or more lines during the reuse
distance, is conversely the probability a randomly chosen set
received k or more lines during the reuse distance. Since a
line is displaced from a LRU cache when k or more lines
fall in its set during its reuse distance, this is the probability
the reuse affected by that interference region results in a
miss.

Example 2.2: Let us now complete the analysis of the
behavior of reference b[j][i] in the code of Fig. 1
calculating miss prob(RegR1(1)), which was pending in
Example 2.1. In one iteration of the innermost loop there
is an access to one element of vector a, one element of
vector c and one element of matrix b. As we are calculating
the interference between the elements of b accessed in two
consecutive iterations of the innermost loop the element
of b accessed can not interfere with itself. However, the
accesses to a and c can, so they are both identified as two
sequential accesses to 1 element. Applying (3) the area
vectors that represents the impact of the access to a and c

on the considered cache (Cs = 8,Ls = 2,k = 1) are both
(0.25, 0.75). That is, 1 of 4 cache sets receive k = 1 or more
lines from that data structure and the 3 out of 4 remaining
cache sets receive 0 lines. The impact of both accesses is
then summarized using the union operation of (4) on the
corresponding area vectors, yielding the global area vector
(0.4375, 0.5625). Thus the miss probability associated to
RegR0(1) is 0.4375. Equation (4) computes the output AV
based on the independence of the probabilities that a cache
set receives the line from a or c: since each one of these
probabilities is 0.25, the probability any of them holds for
a randomly chosen cache set is 0.25 + 0.25− 0.25 · 0.25 =
0.4375. Also, the probability none of them hold, and thus
the set is empty if (1 − 0.25) · (1 − 0.25) = 0.5625 �

Case 1 b[0][0] b[0][1] b[0][2] b[0][3]

Case 2 b[0][0] b[0][1] b[0][2] b[0][3]

Figure 2: Lines accessed depending on the base address of matrix b

3. WCMP estimation

The PME model as described in Section 2 and [7]
estimates the average number of misses generated by a
code without any information on the addresses of the data
accessed. This way, it uses the average number of SOLs
accessed in its formulas, but not the worst case, which
depends on the alignment with cache lines of the data struc-
tures. Similarly, it calculates the area vector representing
the average impact, but not the worst one, on the cache
of the access patterns. Besides, its union of area vectors is
also based in independent average probabilities of overlap,
rather than nearly worst-case situations. We will consider
these aspects in turn to extend the PME model with the
ability to derive a WCMP estimation as it will be validated
in Section 4. Finally, we will discuss the theoretical accuracy
of our prediction.

3.1. Worst case number of different SOLs

Equation (1) calculates the number LRi of different SOLs
accessed by reference R in nesting level i. It assumes that the
address referenced by the first access in the loop is aligned
on cache line boundaries. When this is not the case and
0 < SRi < Ls, this formula underestimates the worst LRi

by one unit. The worst-case LRi is given by

LRi =

⌈

SRi(Ni − 1) + Ls

Ls

⌉

. (5)

which considers that the first element of the data structure
is placed at the end of a cache line. This maximizes the
number of lines affected.

Example 3.1: The analysis of reference b[j][i] in
loop 1 in Fig. 1 in Example 2.1, yielded a PME FR1 where
the number of different lines accessed, calculated using
(1) for N1 = 4 and SR1 = 1, was 2. Fig. 2 shows the
mapping of a row of b on the considered cache (Cs = 8,
Ls = 2, k = 1) considering different base addresses. The
lines accessed during the first execution of the innermost
loop are marked. Case 1 matches the prediction of (1) as 2
different lines are accessed. However, in case 2 the first row
of matrix b is spread on 3 lines, which is the worst case as
(5) computes �

3.2. Worst case cache impact estimation

In Section 2.2 the area vector (AV) representing the impact
on the cache of a sequential access to n elements was cal-
culated using (3), where l = max{k, ((n+Ls−1)/Ls)/S}
was the maximum of k and the average number of lines
placed in each set. The term Ls−1 added to n stood for the
average extra elements brought to the cache in the first and

a[0] c[0]Case 1

a[0] c[0]Case 2

Figure 3: Impact of region RegR1(1) on the cache depending on the base
address of a and c

last lines accessed. Nevertheless in the worst case the first
element of the access is at the end of a line, and the other
n−1 elements require bringing ⌈(n−1)/Ls⌉Ls elements to
the cache to access them. Thus in the worst case the number
of elements brought to the cache is Ls + ⌈(n − 1)/Ls⌉Ls,
instead of n+Ls−1. Consequently we make this replacement
in the computation of l.

Example 3.2: Reading a row of b, represented in Fig. 2,
involves accessing n = 4 consecutive elements, which ac-
cording to (3) yields the AV (0.625, 0.375). This calculation
is an average that overestimates the AV for Case 1, a best
case alignment where the area vector would be (0.5, 0.5),
and underestimates the AV for the worst case alignment in
Case 2, where the area vector is (0.75, 0.25). This worst
case AV is accurately computed with our modification �

3.3. Worst case area vectors union

Equation (4) yields an average estimation of the composed
impact on the cache of the input AVs, but the actual AV
could have a much larger first component depending on the
actual overlap of the footprints in the cache.

Example 3.3: In Example 2.2, we merged the AVs of
the memory regions that may interfere with the attempt
by reference b[j][i] to reuse the line it accesses in two
consecutive iterations of the innermost loop in Fig. 1. These
regions were an element of a and another one of c. The
value of each one of these AVs was (0.25, 0.75), since our
example cache has 4 sets and the access to one element
brings a single line to the cache, resulting in 25% of the
cache sets receiving one line and the other 75% receiving
no lines. We also explained how (4) computed the average
global area vector as (0.4375, 0.5625). This means that on
average 43.75% of the cache sets receive lines that conflict
with the reuses of b[j][i], the other 56.25% remaining
untouched. Fig. 3 shows two possible distributions of the
lines of a and c accessed between the first two iteration of
the innermost loop on the example cache, considering two
different base addresses combinations. In Case 1 both lines
are mapped to the same cache set, so the AV of their joint
impact on the cache is (0.25, 0.75), as only one of 4 sets
receive lines. The figure shows both elements simultaneously
in the cache to simplify the representation, but actually one
of the lines would replace the other one. However, Case 2
shows the worst case for the global impact in the cache, in
which the lines are mapped to different sets, resulting in an
AV (0.5, 0.5) �

The exact union of the area vectors corresponding to the
footprint of different regions can only be computed knowing
the addresses of the data structures, but they are often
not available. Besides, they can change between different

Case 1

Case 2

A

B

CA

B

C

A A B

B C C

Set 0 Set 1 Set 2 Set 3

Set 0 Set 1 Set 2 Set 3

}

}

k=2

k=2

Figure 4: Considering all the AVs at a time during the union operation

executions. We have developed a maxUnionAV algorithm
that combines the components of its input AVs in order to
estimate the worst-case resulting global AV. This will be
the AV with the largest possible leftmost component, the
portion of cache sets that have received k or more lines,
as it corresponds to the miss probability generated by the
interference of the regions summarized in the vector.

A first point of interest is that while the average union
of several AVs can be computed processing them two by
two applying (4), the calculation of the worst-case union
requires considering all the AVs simultaneously.

Example 3.4: Let us consider a 2-way cache (k = 2) with
four sets, and a reuse distance during which the interference
may come from three access patterns called A, B and C,
in which each one of them accesses two lines that are
mapped to different sets. Thus the three input AVs have
the value (0, 0.5, 0.5), meaning that two of the four sets
receive one line, the other two ones remaining empty. The
worst-case union of these AVs is the one that maps the lines
represented by these AVs to the 2-way cache sets so that
the highest possible number of sets are full, i.e., receive two
or more lines.This is equivalent to finding the global AV
with the highest possible value of its first component. Fig. 4
depicts two different mappings or distributions of the lines
associated to the input AVs on the example cache. Case 1
shows the mapping that a worst-case union operation would
obtain considering the AVs two by two: the way to fill as
many sets as possible only with lines from A and B is to
map the two lines of their access patterns to the same sets,
so that two sets are full. Then, when C were considered,
it would not make sense to map its two lines to the same
sets, as they are already full. Rather they would be mapped
to the other two sets. Since this mapping fills two sets and
puts one line in the other two, its corresponding global AV
is (0.5, 0.5, 0), whose associated miss probability is 0.5.
However, as Case 2 shows, the lines of the three access
patterns or regions can be combined to fill 3 sets, yielding
a global AV (0.75, 0, 0.25) with a miss probability of 0.75.
Notice that both mappigs fulfill the restriction that the AV
for each one of the input access patterns is (0, 0.5, 0.5): for
A, B and C taken individually, no set receives two or more
lines from the same region, half of the sets receive one line,
and the other half are not affected by that access �

Before describing formally our algorithm for worst-case
area vector union calculation, let us discuss its basics using
Fig. 5. The algorithm works on a matrix in which each row
is the AV of one of the memory regions accessed during the
considered reuse distance. Fig. 5 shows in Examples (a), (b)
and (c) the union process of three different matrices of AVs.

0 0.9 0.1

0.1 0.1 0.8

0.2 0.3 0.5

0.3 0 0

 (a.1)

0 0.7 0

0 0.1 0.6

0 0.3 0.4

0.7 0.3 0

(a.2)

(a.3)

0 0 0

0 0 0

0 0 0

(a.4)A

B

C

0.7 0.3 0

0 0.3 0.7

0.1 0.1 0.8

0.2 0.3 0.5

0.3 0 0

(b.1)

0 0.3 0.4

0 0.1 0.6

0 0.3 0.4

0.6 0 0

(b.2)

(b.3)

0 0 0.4

0 0.05 0.35

0 0.05 0.35

(b.4)A

B

C

0.65 0 0

(b.5)

0 0 0.35

0 0 0.35

0 0 0.35

(b.6)

0.65 0 0.35

(b.7)

 Example (a)

Example (b)

W

W

0 0.3 0.7

0.4 0.1 0.5

0 0.4 0.6

0 0 0

0

0

0

0.53

(c.2)A

B

C

W

0

0

0

0.4

(c.1)

0 0.15 0.45

0 0.1 0.5

0 0.15 0.45

0 0 0

(c.3)

0.53 0 0 0.47

(c.4)

Example (c)

0.30.40.3

0.3 0.3 0.05 0.35

0.4 0.13

Figure 5: Examples of worst-case area vector union.

Each matrix in the figure has three AVs called A, B and
C, whose worst possible joint AV W is to be computed.
This AV corresponds to the placement on the cache of the
lines represented in the input AVs that maximizes the ratio
W0 of cache sets that receive at least k lines, k being the
associativity of the cache.

The first step adds the ratios of sets that are filled
individually by each one of the input AVs, which are the
first column of the matrix. This policy assumes that two AVs
never fill the same set, thus maximizing the number, and thus
the ratio, of sets they fill when considered together. In Fig. 5-
(a) and (b), steps (a.1) and (b.1) yield an initial W0 = 0.3.
Example (c) obviates this step because the first column is
empty.

Each AV represents the impact on the cache of a memory
region by providing the ratio of sets that receive ≥ k
(component 0), k − 1 (component 1), and down to 0 lines
(component k) from the region, thus its components cover
the whole cache and their addition always yields 1. When
ratios of sets are assigned to positions in W , all the AVs
in the input matrix must be updated accordingly, subtracting
them from their components, as those ratios are fractions of
the cache that have been already processed by the algorithm.
Let us see it in detail in step (a.2) in Fig. 5-(a). We just
assigned 0.3 (or 30%) of the cache sets to W0 meaning
that they are filled, 0.1 from B0 and the other 0.2 from C0.
This 0.3 is thus a portion of the cache already processed
and must then be subtracted from each one of the rows
in the matrix. AV A did not participate in building W0

because A0 = 0. Thus the ratio 0.3 of sets filled by B
and C must correspond to/overlap with ratios of sets in A
that received 1 (A1 = 0.9) or 0 lines (A2 = 0.1). Our
algorithm overlaps/subtracts the ratios in the updates of the
matrix starting at the rightmost column in each row and
proceeding leftward. This maximizes the ratios of sets left
with the highest number of lines, which can then be later
combined with lines from other AVs to fill sets. In this

example, AV A becomes (0, 0.7, 0) when we subtract 0.3
starting from the right. Now, in AV B, 0.1 of the ratio 0.3
to subtract come actually from B0, so we first zero B0 and
then subtract the remaining 0.2 starting from the right. In
AV C, C0 is zeroed and the remaining 0.1 is subtracted
from the right. Step (b.2) performs the same processing in
the example of Fig. 5-(b).

The next step is to combine sets with k − 1 lines (ratios
in column 1) from an AV with sets with at least one line
from any other AV. Our algorithm explores in each turn
the overlapping of component 1 of each row of the matrix
with all the other rows. In Fig. 5-(a) step (a.3), 0.7 of the
cache sets have exactly one line from A, 0.1 one from B,
and 0.3 one from C. The worst-case combination achievable
assigns the ratios from B1 and C1 to disjoint sets, which
added can overlap with 0.4 of the sets from A1. This fills
those sets with two lines, which are then added to W0. The
remaining 0.7 − 0.4 = 0.3 ratio of sets with one line from
A cannot receive lines from other AVs, so they contribute
to W1. Fig. 5-(b) step (b.3) exemplifies this process with a
more challenging situation where A1 = 0.3, B1 = 0.1 and
C1 = 0.3. The worst combination must overlap A1 with
portions of B1 and C1 so that what is left of them after the
overlap with A1 has the largest possible value for both of
them. This will maximize their contribution to W0 when we
consider overlapping B with C. This is achieved in practice
by producing the B1 and C1 with the most similar (ideally
equal) value after the update. In this case this corresponds
to taking 0.05 from B1 and 0.25 from C1 to overlap with
A1. This leaves B1 = C1 = 0.05, to be combined in step
(b.5). Before that, step (b.4) subtracts from each AV the 0.3
processed in step (b.3). Just as in step (b.2), the portions
used in each row to generate overlappings that contribute
to W are subtracted from their column (0.3, 0.05 and 0.25
from A1, B1 and C1, respectively). The remaining ratio till
reaching 0.3 in each row is subtracted from the rightmost
column. The first two steps in Fig. 5-(c), (c.1) and (c.2),
exemplify this process for a 3-way cache (4 columns) where
a ratio 0.4 of sets with 2 lines from B overlap with 0.15
with one from A and 0.25 with one from C. This leaves
A1 = C1 = 0.15 after the update.

Once column 1 in the matrix is processed, the accurate
study of the worst combinations of the remaining columns
is extremely complex. For example a set that needs 3 lines
to be full could receive them from up to three different AVs.
Our algorithm calculates which is the leftmost component
Wq of W that could be updated with what is left in the
matrix by determining which is the leftmost nonzero in each
row in the matrix, since this indicates the maximum number
of lines the associated memory region can contribute to a
cache set. Then the number of lines represented by the AVs
in the matrix is calculated multiplying each ratio in column
j by k − j, the number of lines per set associated to that
column. Dividing this value by the number of lines k − q
associated to Wq gives an upper bound of their contribution
to Wq . This is done in step (c.3) in Fig. 5-(c). Finally, Wk

may have to be updated so that the addition of all the ratios
in W is 1, as in step (c.4).

1function maxUnionAV (V M[NV ×(k+1)]) {

2 W0 =
∑

V M∗0

3 Wj = 0, 0 < j ≤ k

4 if k = 1 {

5 W0 = min(W0, 1)

6 } else {

7 ovlRight2Left(V Mi∗, W0 − V Mi0), 0 ≤ i < NV

8 V M∗0 = 0

9 for i = 0 to NV − 1 {

10 ovlComb(W, i, V M)

11 }

12 Wj = min(Wj , 1), 0 ≤ j ≤ 1

13 q = max
(

0, k −
∑

NV −1

i=0
(k − min(j|V Mij 6= 0))

)

14 Wq = Wq + min
(

1 − (W0 + W1),
∑

k

j=2
V M∗j(k − j)/(k − q)

)

15 }

16 Wk = 1 −
∑

k−1

j=0
Wj

17 return W

18}

Figure 6: Worst-case area vector union algorithm

1procedure ovlRight2Left(v[l], t) {

2 rj = max(vj − max((t −
∑

l−1

z=j+1
vz), 0), 0), 0 ≤ j < l

3 v = r

4}

Figure 7: Helper routine that zeroes the rightmost (higher index) positions
of a vector v that add up t

Formal algorithm. Fig. 6 shows the pseudocode of the
worst-case area vector union algorithm. Array indexing is 0-
based. Notation M∗j means column j of matrix M ; similarly
Mi∗ means row i of matrix M . The vectors and arrays that
are input to a function are subindexed with their size and are
passed by reference. The input to the algorithm is a matrix
VM in which row i is the i-th of the NV AVs to combine.
Its output is the worst-case resulting AV W .

First the function adds component 0 of the input AVs into
W0 in line 2. As we explained in our comments on Fig. 5,
this is the worst miss ratio that the sets with k or more lines
from the input AVs can give place to combined. The rest of
W is then initialized with zeros.

If k = 1, we round down in line 5 W0 to 1 in case the
computation in line 2 yielded a higher value. Then W1 can
be calculated as 1 − W0 in line 19.

If k > 1, W0 can still grow combining for example sets
that receive k−1 lines from one AV, i.e, from column V M∗1,
with sets that receive 1 or more lines from a different AV.
This is examined in lines 9-15. Before that, the matrix must
be updated subtracting in each row or AV i the portion of W0

that comes from the other rows (W0−V Mi0) to account for
the fact that portion of the cache has already been processed.
As we reasoned when we walked through the examples in
Fig. 5, the update overlaps those sets already full from the
other AVs with the sets represented in the rigthmost part
of the considered AV i. This strategy leaves unprocessed
the ratios of sets with the largest numbers of lines, which
have better chances of generating full sets, and thus increase
the miss probability, when combined with ratios of other
AVs. This process takes place in line 7 using the helper
function ovlRight2Left shown in Fig. 7. Line 8 zeroes
the already processed column.

Loop 9-11 in Fig. 6 considers in its turn the overlapping
of V Mi1 for each AV in V M with all the other AVs in

1procedure ovlComb(W, i, V M[NV ×(k+1)]) {

2 t = V Mi1

3 M′ = M = V M(0..i−1,i+1..NV −1)∗

4 for j = k − 1 to 1 step −1 {

5 if

∑

M∗j < t {

6 t = t −
∑

M∗j

7 M∗j = 0

8 } else {

9 let V =
{

v ∈ RNV −1
∣

∣

(

0 ≤ vi ≤ Mij , 0 ≤ i ≤ (NV − 2)
)

∧
(
∑

NV −2

i=0
vi = t

)}

10 t = 0

11 M∗j = M∗j − v, v ∈ V ∧ ∄v′ ∈ V |max(M∗j − v′) < max(M∗j − v)

12 break

13 }

14 }

15 W0 = W0 + (V Mi1 − t)

16 W1 = W1 + t

17 ovlRight2Left(Mi∗, V Mi1 −
∑

(M′
i∗ − Mi∗)), 0 ≤ i ≤ (NV − 2)

18 V Mi1 = 0

19 V M(0..i−1,i+1..NV −1)∗ = M

20}

Figure 8: Optimal worst-case overlapping of a ratio V Mi1 with the ratios
of other NV − 1 area vectors stored in matrix V M

the matrix using routine ovlComb. The routine, shown in
Fig. 8, first makes a temporary working copy t of V Mi1,
and M and M ′ of all the rows of V M but i. These are
the rows that can provide ratios of sets with lines which
overlapped with V Mi1, which holds k − 1 lines, will give
place to full sets and thus miss probability. Loop 4-14
analyzes the overlap of what is left of V Mi1 (t) with the
components in column j of all the other rows. The loop
begins in column k − 1 since the sets in column k have 0
lines and cannot thus contribute any line. It stops in column
1 because column 0 has already been fully processed. The
descending order of the loop tries to use sets with the
minimum number of lines needed to fill the sets represented
by V Mi1, and maximize the ratio of sets with as much as
lines as possible available after this processing to generate
miss ratio. When the addition of all the ratios in a column
is smaller than t, t is updated subtracting their value to
indicate that that portion of cache has already been filled
and processed, and the column is zeroed. Otherwise the loop
finishes zeroing t and subtracting from the current column
M∗j an amount of ratio equal to t. We have found that
the distribution of this ratio among the rows in this column
that maximizes the miss probability is the one in which
the resulting M∗j has the minimum maximum value. This
achieves the best possible balance among the components
of the vector, which maximizes the potential overlap among
them. This computation is represented first defining in line 9
the set V of the vectors of NV − 1 elements such that each
element vi is 0 ≤ vi ≤ Mij and whose addition equals t.
Then column j is updated subtracting from it the vector from
V such that the output column has the smallest maximum
value, and the loop is broken.

After the loop, what is left yet in t cannot be overlapped
with lines from other AVs and thus contributes to W1.
The other V Mi1 − t has been overlapped successfully and
contributes to W0. Line 17 adjusts M making the right to
left overlap in each row i for the fraction of V Mi1 that was
overlapped with components from area vectors from other

rows in the main loop. Finally V Mi1 is zeroed and V M is
updated from M .

Back in Fig. 6, the fraction of sets calculated for W0

and W1 are prevented from being greater than 1 in line 12.
At this point V M can contain components that can be
overlapped in columns j > 2. There is an explosion of
combinations of components of different AVs to analyze
when more than one extra line is needed to fill a set.
Thus we take the conservative approach we detailed in our
explanation of Fig. 5-(c) : line 13 calculates which is the
leftmost component Wq of W to which the overlap of
components from different rows of V M can contribute and
line 14 updates it with a worst-case combination of those
ratios.

Finally, although all the sets with at least one line have
already been combined, it is possible that empty sets are
available to contibute to Wk, thus it is adjusted in line 16
so that the addition of all the elements in W is 1.

3.4. Model accuracy

A totally safe WCMP prediction in the absence of data
address information requires taking a totally pessimistic
approach. For example, when several references exhibit
the same access pattern in a loop, their accesses fall sys-
tematically in the same cache sets if their base addresses
are aligned with respect to the cache. If the number of
conflicting references is > k (the associativity of the cache),
the miss probability for the attempts to reuse their lines, even
in the innermost loop, is necessarily 1. We can quantify
this error statistically. The probability of underpredicting
the WCMP in a code where n data structures have the
same access pattern in the innermost loop is equal to the
probability that more than k of them are aligned with
respect to the cache. The probability an address belongs to a
particular cache set is 1/S, S being the number of cache sets.
So the probability that a base address combination fulfills
this condition is S · P (x > k), where x is the number of
data structures aligned in the same cache set, which belongs
to a binomial of n elements with probability 1/S each.

4. Validation results

We have validated the WCMP predictions of our model
comparing them with the results of trace-driven simulations.
The programs used were: the product of two dense matrices
(DMXDM); the average, sum and difference of the values
stored in two arrays (ST); a 1D stencil calculation (STEN-
CIL); the sum of all the values in a matrix (CNT); a matrix
transposition (TRANS), and the calculation of the first N
fibonacci numbers (FIBONACCI). These programs are used
in similar works in the bibliography [3], [6].

Tests were performed for each program considering differ-
ent data sizes and cache configurations. The cache configu-
rations were the 80 possible combinations of the cache sizes
16KB−32KB−64KB−128KB−256KB, the line sizes
16B−32B−64B−128B and the associativities 1−2−4−8.
The data structure sizes were all the combinations consid-
ering in each dimension sizes of 500 − 1000 − 1500. For

each combination of data sizes and cache configuration,
10 simulations were performed using different random base
addresses for each data structure. The maximum miss rate
obtained was compared with the one predicted by the model,
which was applied automatically. The model prediction was
typically obtained in less than one second.

Table 1 summarizes the results obtained. The first column
identifies the code; the second column is the number of con-
figurations tested for each code. The third column contains
the statistics about the WCMP prediction. ErrorConf% is the
percentage of configurations where the model mispredicted
the WCMP, as the miss rate of at least one of their ten
simulations was larger than the predicted one. ErrorSim%
is the percentage of individual simulations that behaved
worse than the prediction. The remaining statistics focus on
the results obtained in the configurations where the worst-
case prediction was successful. Avg(∆MR%) is the average
difference between the worst-case miss rate predicted and
the one simulated. The miss rate is always expressed as
a percentage. Avg(MR%) contains the average worst-case
miss rate obtained by the simulator. Min(∆MR%) and
Max(∆MR%) reflect the minimum and maximum value
respectively of the discrepancy between the worst-case miss
rate predicted and the one simulated. Finally, (∆MR > 5%)
and (∆MR > 10%) are the percentage of configurations
where this discrepancy was larger than 5% and 10%, respec-
tively. The fourth column shows the minimum, maximum
and average time (Min(M), Max(M), Avg(M)) needed to
apply the model on each code, in milliseconds. This time
does not include the time required by the compiler to extract
the input information of the model from the source code to
analyze, since this time is highly dependable on the compiler
infrastructure where the model is integrated. The maximum
time necessary for the whole analysis, including the compiler
time, was 108 milliseconds. These times were measured in
a system based on an AMD Athlon at 1.2 Ghz.

The prediction is valid in an extremely high percentage
of the cases, 99.7%, for which the worst-case miss rate
observed is on average only 0.38% below the predicted one.
Also, actually only 0.03% of the simulations yields a worse
miss rate than the prediction.

Section 3.4 explained that the probability our model fails
in its WCMP estimation was quantified as S · P (x >
k), x ∈ B(n, 1/S), S being the number of cache sets.
That is, S times the probability that the base addresses of
more than k of the n data structures are mapped to the
same cache set. We validated this expression with the ST
program because it is the one with the largest ErrorConf%
and ErrorSim% errors in Table 1. The reason is that it is
the program with the largest number, five, of data structures
whose accesses follow the same pattern. In order to test
the accuracy of our estimation of the theoretical percentage
of errors, we run 10000 simulations changing randomly the
base addresses of the data structures per each one of the 240
configurations considered. The average difference between
the theoretical percentage of errors and the ErrorSim%
measured per configuration was just 0.02%.

Fig. 9 compares the worst miss rate obtained by the

Table 1: Validation results

Code
of

Validation statistic
Modeling

confs. time (in ms)

DMXDM 2160
ErrorConf% = 0.04%; ErrorSim% = 0.004%; Avg(∆MR%) = 0.23%; Avg(MR%) = 6.05% Min(M) =1; Max(M) = 9

Min(∆MR%) = 0.0%; Max(∆MR%) = 6.63%; (∆MR > 5%) = 0.41%; (∆MR > 10%) = 0.0% Avg(M) = 5

ST 240
ErrorConf% = 3.33%; ErrorSim% = 0.33%; Avg(∆MR%) = 1.78%; Avg(MR%) = 12.99% Min(M) = 0; Max(M) = 5

Min(∆MR%) = 0.06%; Max(∆MR%) = 38.44%; (∆MR > 5%) = 3.33%; (∆MR > 10%) = 3.33% Avg(M) = 8

STENCIL 240
ErrorConf% = 1.25%; ErrorSim% = 0.125%; Avg(∆MR%) = 0.48%; Avg(MR%) = 6.32% Min(M) = 0; Max(M) = 3

Min(∆MR%) = 0.0%; Max(∆MR%) = 48.96%; (∆MR > 5%) = 0.83%; (∆MR > 10%) = 0.83% Avg(M) = 1

CNT 720
ErrorConf% = 0.0%; ErrorSim% = 0%; Avg(∆MR%) = 0.19%; Avg(MR%) = 11.71% Min(M) = 0; Max(M) = 4

Min(∆MR%) = 0.06%; Max(∆MR%) = 1.02%; (∆MR > 5%) = 0.0%; (∆MR > 10%) = 0.0% Avg(M) = 1

TRANS 720
ErrorConf% = 0.64%; ErrorSim% = 0.14%; Avg(∆MR%) = 0.63%; Avg(MR%) = 31.15% Min(M) = 0; Max(M) = 68

Min(∆MR%) = 0.0%; Max(∆MR%) = 10.11%; (∆MR > 5%) = 3.20%; (∆MR > 10%) = 0.16% Avg(M) = 13

FIBONACCI 240
ErrorConf% = 0.0%; ErrorSim% = 0%; Avg(∆MR%) = 0.15%; Avg(MR%) = 11.76% Min(M) = 0; Max(M) = 3

Min(∆MR%) = 0.06%; Max(∆MR%) = 0.93%; (∆MR > 5%) = 0.0%; (∆MR > 10%) = 0.0% Avg(M) = 1

1%

3%

5%

7%

Cache size
Ls=32B,k=2

M
is

s
 r

a
te

 16KB
 32KB

 64KB

 128KB
16B 32B 64B128B

1%

3%

5%

7%

10%

12%

Line size
Cs=32KB,k=2

1 2 4 8

1%

3%

5%

7%

Associativity
Cs=32KB,Ls=32B

PME model

Worst simulation

Figure 9: Worst-case miss rate prediction accuracy considering different
cache configurations for the DMXDM program

simulation and the one predicted by the model for the
product of two 500 × 500 matrices. Considering the bar
diagrams from left to right, in the first one the cache size
is varied while the line size and associativity are fixed to
32 bytes and 2, respectively. The second diagram considers
a 2-way cache of 32 KBytes, changing its line size. The
third one, considers a cache of 32 KBytes and a line size of
32 bytes, with a varying associativity. The diagrams show
that the model provides a tight estimation of the worst-case
miss rate. The first experiment in the third graph caused
a small error in the worst-case prediction. In this program
two matrices follow the same access pattern in the innermost
loop so an alignment of their base addresses with respect to
the cache can cause an error in the prediction.

Fig. 10 shows the evolution of the worst miss rate obtained
in the simulations (left graph) and the difference between
that value and the one predicted by the model (right graph)
for the product of two 1000 × 1000 matrices. Considering
associativity 2, the cache and line sizes were varied. The
model calculated always a tight and correct value for the
worst-case miss rate. The biggest discrepancies between
the simulation and the prediction happened in small caches
with large lines, which is actually an uncommon situation
in practice. In these cases the cache has fewer sets, and
consequently the alignment of the data structures has a
bigger influence in the total number of misses. The model
considers a large overlapping in these caches between the
data structures, but this is not matched by any of the 10
simulations performed for each configuration. However the

16B32B64B128B

16KB
32KB

64KB
128KB

256KB

3%

6%

9%

12%

15%

Line sizeCache size

M
is

s
 r

a
te

16B32B64B128B

16KB
32KB

64KB
128KB

256KB

1%

2%

Line SizeCache size

∆
 m

is
s
 r

a
te

Figure 10: Evolution of the worst miss rate measured and the difference
with respect to the worst miss rate predicted by the model as the cache and
line size change in the DMXDM program

smallest errors are obtained with big caches with small lines,
in which the large number of cache sets makes miss rate less
dependent of the alignment between data structures, and the
prediction is tighter.

5. Related work

Several previous works have used analytical methods
to calculate the WCMP in the presence of caches. The
modeling of instruction-caches [1], [10] has had a lot of
success, even recently in multicore systems with shared L2
instruction caches [2]. There are also many works devoted
to the study of data caches. White et al. [3] bounds, using an
static analysis, the worst-case performance of set-associative
instruction caches and direct-mapped data-caches. The anal-
ysis of data caches needs to determine the base addresses
of the involved data structures. Relative address information
is used in conjunction with control-flow information by an
address calculator to obtain this information. The analysis
classifies the accesses in one of four categories: always
miss, always hit, first miss and first hit. The validation is
performed considering only one cache configuration. In most
programs, the prediction of the worst-case predicted is equal
to the value observed. However, in some programs similar
to ours like the dense matrix product (DMXDM) it gets an
overestimation of 10% for big data sizes. A version of our
ST program presents also an overestimation of 17%.

Lundqvist and Stenström [4] distinguish between data

structures that exhibit a predictable cache behavior, which
is automatically and accurately determined, and those with
an unpredictable cache behavior, which bypass the cache.
Only memory references, whose address reference can be
determined statically, are considered to be predictable. The
predictability of a reference is determined considering the
storage type (global, stack or heap) and the access type
(scalar, regular, irregular or input data dependent). They dot
not present any result.

Ramaprasad and Mueller [11] use the cache miss equa-
tions (CMEs) [12], which need the data addresses for their
predictions, as a basis for the WCMP estimation. Non-
perfectly nested and non-rectangular loops are covered using
loop transformations like the forced loop fusion which
involves the insertion of loop index-dependent conditionals
in the code. Loop index-dependent conditionals are modeled
using an extra analysis stage. The validation shows almost
perfect predictions of the WCMP but only two (direct-
mapped) cache configurations are considered.

Vera et al. [6] use also the data address-dependent
cache miss equations (CMEs) to predict the WCMP in a
multitasking environment. This work combines the static
analysis, provided by the CMEs, with cache partitioning,
for eliminating intertask interferences, and cache locking,
to make predictable the cache behavior of those pieces of
code outside the scope of application of the CMEs. Good
predictions of the WCMP are achieved for codes that use the
cache locking in order to improve the WCMP predictability.

6. Conclusions

This paper extends an existing model [7] to estimate the
WCMP of regular codes in the presence of data caches at
compile time. The main novelty of this work with respect to
previous ones in this area is that our approach is the only one
that requires no information about the base addresses of the
data structures; only the cache configuration and the source
code are needed. This ability is very interesting, since base
addresses are sometimes unavailable at compile time, and
they can change between different executions. This extends
the scope of applicability to many situations other models
cannot consider such as the usage of dynamically allocated
memory, physically-indexed caches, etc. The model yields
not only the number of misses generated, but also a formula
for each reference and each nesting level which includes an
estimation of the worst-case miss probabilities.

An extensive validation using trace driven simulations for
a large number of different data sizes and cache config-
urations shows that this approach yields accurate and tight
values of the WCMP. The main source of error of the WCMP
calculation using this model is the lack of information
about the base addresses of the data structures. Rarely, only
in 0.03% of our 43200 simulations, concentrated in less
than 0.3% of the problem-cache configurations, this led to
underestimating the WCMP. As for tightness, the average
difference between the worst-case miss rate predicted and
measured was just 0.38%.

In the future, we plan to integrate our model prediction
of the WCMP in an existing WCET tool such as [13]. We

also intend to extend the WCMP model to cover irregular
computations. Finally, we will consider the possibility of
using as an optional additional input the base addresses of
the data structures involved in the code, whenever they are
available, in order to provide a safer WCMP calculation.

References

[1] C. Healy, R. Arnold, F. Mueller, D. Whalley, and M. Harmon,
“Bounding pipeline and instruction cache performance,” IEEE
Trans. Computers, vol. 48, no. 1, pp. 53–70, 1999.

[2] J. Yan and W. Zhang, “Wcet analysis for multi-core pro-
cessors with shared l2 instruction caches,” in IEEE Real
Time Technology and Applications Symposium, vol. 0. Los
Alamitos, CA, USA: IEEE Computer Society, 2008, pp. 80–
89.

[3] R. White, C. Healy, D. Whalley, F. Mueller, and M. Harmon,
“Timing analysis for data caches and set-associative caches,”
in IEEE Real Time Technology and Applications Symposium,
1997, pp. 192–202.

[4] T. Lundqvist and P. Stenström, “A method to improve the
estimated worst-case performance of data caching,” in IEEE
International Conference on Embedded and Real-Time Com-
puting Systems and Applications, 1999, pp. 255–262.

[5] H. Ramaprasad and F. Mueller, “Bounding preemption delay
within data cache reference patterns for real-time tasks,” in
IEEE Real Time Technology and Applications Symposium,
2006, pp. 71–80.

[6] X. Vera, B. Lisper, and J. Xue, “Data cache locking for tight
timing calculations,” ACM Trans. Embedded Comput. Syst.,
vol. 7, no. 1, 2007.

[7] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Probabilistic
Miss Equations: Evaluating Memory Hierarchy Performance,”
IEEE Transactions on Computers, vol. 52, no. 3, pp. 321–336,
March 2003.

[8] S. Manolache, P. Eles, and Z. Peng, “Optimization of soft
real-time systems with deadline miss ratio constraints,” in
IEEE Real-Time and Embedded Technology and Applications
Symposium, 2004, pp. 562–570.

[9] F. Mueller, “Compiler support for software-based cache par-
titioning,” in LCTES ’95: Proceedings of the ACM SIGPLAN
1995 workshop on Languages, compilers, & tools for real-
time systems. New York, NY, USA: ACM, 1995, pp. 125–
133.

[10] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm, “Cache
behavior prediction by abstract interpretation,” in SAS ’96:
Proc. Third Intl. Symp. on Static Analysis. Springer-Verlag,
1996, pp. 52–66.

[11] H. Ramaprasad and F. Mueller, “Bounding worst-case data
cache behavior by analytically deriving cache reference pat-
terns,” in IEEE Real-Time and Embedded Technology and
Applications Symposium, 2005, pp. 148–157.

[12] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equa-
tions: A Compiler Framework for Analyzing and Tuning
Memory Behavior,” ACM Trans. on Programming Languages
and Systems, vol. 21, no. 4, pp. 702–745, July 1999.

[13] J. Engblom and A. Ermedahl, “Modeling complex flows
for worst-case execution time analysis,” in IEEE Real-Time
Systems Symposium, 2000, pp. 163–174.

