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ABSTRACT

Nowadays the performance gap between processors and main memory
makes an efficient usage of the memory hierarchy necessary for good pro-
gram performance. Several techniques have been proposed for this purpose.
Nevertheless most of them consider only regular access patterns, while many
scientific and numerical applications give place to irregular patterns. A typical
case is that of indirect accesses due to the use of compressed storage formats
for sparse matrices. This paper describes an analytic approach to model both
regular and irregular access patterns. The application modeled is an optimized
sparse matrix-dense matrix product algorithm with several levels of blocking.
Our model can be directly applied to any memory hierarchy consisting of K-
way associative caches. Results are shown for several current microprocessor
architectures.

Keywords: Sparse matrix, irregular computation, cache performance, memory
hierarchy, probabilistic analytical model.

1 Introduction

Despite the fact that several hardware and software techniques have been developed

and successfully applied in order to improve the memory hierarchy behavior, mem-

ory accesses continue to be a bottleneck for system performance. This is particularly

true in the case of applications characterized by irregular access patterns, as they

limit the spatial and temporal locality that caches try to exploit. It is the case of

codes that deal with sparse matrices, whose compressed storage formats [1] generate

indirect accesses. Our interest in sparse codes is justified by the broad spectrum of

engineering and scientific computing applications where such codes arise.
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Project BE95-1564



Cache performance evaluation tools are required both to provide quantitative

predictions of miss ratio and information to guide cache optimization. The tra-

ditional approach has been the software simulation of the cache effect for every

memory access [2], which is very accurate but gives little insight into the reasons

for the cache behavior and requires very long computation times. Some modern

microprocessors overcome this problem by providing performance monitoring tools

such as built-in counters. Still they present the limitations of requiring program

compilation and execution and being restricted to a specific platform. A more

general approach is that of analytical models, which, in addition to requiring short

computation times, make more flexible the parametric study of the cache. Although

many models extract input parameters from address traces [3], [4], [5] and combine

them with cache definition parameters, more general purpose models have been de-

veloped taking as input the code to analyze [6], [7], [8]. Nevertheless these models

only consider dense algebra codes, with regular access patterns. There are very few

works related to the analytic modeling of sparse codes, and their scope is very lim-

ited compared to ours. For example, [9] is restricted to the partial modeling (only

taking into account self interferences) of the behavior of one vector in a very simple

code such as the sparse matrix-vector product, and only on direct-mapped caches.

Besides until now no attempts have been made to build a general framework for the

modeling of these kinds of codes.

On the other hand, several studies have been carried out on sparse algebra

kernels in order to improve their performance applying software techniques such

as blocking, loop unrolling, loop interchanging or software pipelining. This work

demonstrates the feasibility of modeling such types of complex algorithms that fit

hardware improvements of current high performance microprocessors. As an ex-

ample, an optimized version of the sparse matrix-dense matrix product described

in [10] is modeled. In this work we apply the probabilistic model for K-way asso-

ciative caches with LRU replacement introduced in [11], where only simple algebra

kernels such as sparse matrix-vector product and sparse matrix transposition were

considered. Optimum block sizes for the memory hierarchy of an arbitrary system

can be predicted by means of this model. A uniform distribution of the non zero

elements is considered, but the model proposed can be extended to different types

of distributions as we demonstrate in [12].

The algorithm to model is described in the next section. Basic model concepts

and an example of the modeling process are presented in Section 3. Section 4

validates the model and applies it in order to propose block sizes for obtaining

minimum execution times on several platforms. A brief study of the cache behavior

as a function of several paratemers is also carried out. Section 5 concludes the

paper.

2 Optimized Sparse Matrix-Dense Matrix Product

The algorithm modeled is displayed in Figure 1. It stores the sparse matrix using

the Compressed Row Storage (CRS) format [1], which uses three vectors: vector A

contains the sparse matrix non zero elements or entries, vector C stores the column



1 DO J2=1, H, BJ

2 LIMJ=J2+MIN(BJ, H-J2+1)-1

3 DO I=1, M+1
4 R2(I)=R(I)

5 ENDDO

6 DO K2=1, N, BK
7 LIMK=K2+MIN(BK, N-K2+1)

8 DO J=1, LIMJ-J2+1
9 DO K=1, LIMK-K2

10 WB(J,K)=B(K2+K-1,J2+J-1)
11 ENDDO

12 ENDDO

13 DO I=1, M
14 K=R2(I)

15 LK=R(I+1)

16 d1=D(I,J2)

17 d2=D(I,J2+1)

...
18 dbj=D(I,J2+BJ-1)

→֒

19 DO WHILE (K<LK AND C(K)<LIMK)

20 a=A(K)
21 ind=C(K)

22 d1=d1+a*WB(1,ind-j2+1)
23 d2=d2+a*WB(2,ind-j2+1)

...

24 dbj=dbj+a*W(BJ, ind-j2+1)
25 K=K+1

26 ENDDO

27 D(I,J2)=d1
28 D(I,J2+1)=d2

...

29 D(I,J2+BJ-1)=dbj

30 R2(I)=K
31 ENDDO

32 ENDDO
33 ENDDO

Fig. 1: A sparse matrix-dense matrix product with blocking at the memory and register levels.

of each entry, and vector R points to the location in vectors A and C where a new

row of the sparse matrix starts. This format forces a row-wise access of the sparse

matrix. The dense matrix is B, while D stores the product matrix.

In this code the outer loop on I (line 13) of the product traverses the rows of the

sparse matrix and matrix D (dimension I); then the loop on K (line 19) processes the

entries of a given row (so the K dimension is the one common to the sparse and the

dense matrices), and finally an inner loop, which has been completely unrolled due

to a register blocking, considers the columns of matrices B and D. This is what we

call the J dimension. In addition, this optimized version comprises one level of cache

blocking using a block of BK rows and BJ columns of the dense matrix. When the

processing of a new block begins, a transposed copy is stored in a temporal matrix

WB which is the one the inner loop uses. The reason is that matrix B is accessed

by rows in this loop, which does not favour the exploitation of locality, as matrices

are stored by columns in FORTRAN. The use of a transposed copy permits taking

advantage of both temporal and spatial locality. Vector R2 simplifies the access to

the subrows of the sparse matrix associated to a given block of B by pointing to the

location in vectors A and C where these subrows start.

Blocking at the register level is also considered to optimize the algorithm per-

formance; for this purpose techniques such as strip mining, loop interchanging, full

loop unrolling and the elimination of redundant load and store operations were ap-

plied. As mentioned above, these techniques have been applied to the inner loop,

taking the load and stores for matrix D out of the loop on K. This modification re-

quires BJ registers (d1, d2, . . . , dbj in Figure 1) to store these values. The resulting

algorithm has a twodimensional blocking for registers, resulting in fewer loads and

stores per arithmetic operation. Besides, the number of independent floating point

operations in the loop body is increased.



3 Analytic Model

For our modeling purposes we distinguish two kinds of misses: the intrinsic ones

take place the first time a memory block corresponding to a cache line is accessed.

The remaining misses affecting the same line are called interference misses, as they

are due to interferences with other lines that are placed in the same set. When

the interfering lines belong to the same program vector, we say that they are self

interferences, whereas when they belong to another vector, they are considered cross

interferences.

In our model and the platforms we have studied (see Section 4) the K-way cache

sets are managed following an LRU replacement policy (pseudo-LRU in real systems,

actually). In this case K or more different lines mapped to the set where a given line

resides must be accessed between two consecutive accesses to this line in order to

obtain an interference miss in the second access. The probability that an access to

a line results in an interference miss corresponds to the likelihood of having placed

at least K lines in its set since the last time it was accessed. We use the concept

of area vector to compute this probability, being SV = SV0
, SV1

, . . . , SVK
the area

vector corresponding to a given program vector V. The element in the i-th position

stands for the ratio of sets that have received K − i lines of this program vector

during the execution of a given portion of code. The exception is SV0
, which is the

ratio of sets that have received K or more lines. Different expressions have been

developed to calculate the area vectors associated to typical access patterns [11].

Next, we describe those ones that arise in our particular code in Figure 1.

3.1 Access Patterns Modeled

One of the most common patterns is the sequential access to n consecutive words,

whose area vector Ss(n) is

Ss(K−⌊l⌋)
(n) = 1 − (l − ⌊l⌋)

Ss(K−⌊l⌋−1)
(n) = l − ⌊l⌋

Ssi
(n) = 0 0 ≤ i < K − ⌊l⌋ − 1, K − ⌊l⌋ < i ≤ K

(1)

where l = max{K, (n + Ls − 1)/(LsNK)} is the maximum of K and the average

number of lines placed in each set. The term Ls + 1 added to n stands for the

average extra words brought to the cache in the first and last accessed lines.

Another useful expression is the one corresponding to an access to an n word

vector in which any cache line has the same probability Pl of being accessed. We

denote the area vector in this case as Sl(n, Pl)

Sli(n, Pl) = P (X = K − i), X ∈ B(n/(LsNK), Pl) m < i ≤ K
Slm(n, Pl) = P (X ≥ K − m), X ∈ B(n/(LsNK), Pl)
Sli(n, Pl) = 0 0 ≤ i < m

(2)

where m = max{0, K − ⌈n/(LsNK)⌉} and B(n,p) is the binomial distributiona. In

the case of k accesses of this type, the area vector is Sk
l (n, Pl) = Sl(n, 1− (1−Pl)

k).

aWe define the binomial distribution on a non integer number of elements n as
P (X = x), X ∈ B(n, p) = (P (X = x), X ∈ B(⌊n⌋, p))(1 − (n − ⌊n⌋)) + (P (X = x), X ∈
B(⌈n⌉, p))(n − ⌊n⌋)



3.2 Other Important Issues and Input Parameters

When calculating self interference area vectors we will need to compute the average

number of lines that compete with a given line in an n word vector. Function C(n)

calculates it as

C(n) =

{

0 if z ≤ 1
⌊z⌋/z(2z − ⌊z⌋ − 1) if z > 1

(z = n/(Ls · NK)) (3)

where z is the average number of lines of the vector mapped to a set.

As between consecutive accesses to a given line several program vectors may be

accessed, and some of them may be referenced different access patterns, a mecha-

nism is needed to add area vectors. Given two area vectors SU = (SU0
, SU1

, . . . , SUK
)

and SV = (SV0
, SV1

, . . . , SVK
), the union area vector SU ∪ SV that comprises the

accesses corresponding to both area vectors is defined as

(SU ∪ SV)0 =
∑K

j=0

(

SUj

∑K−j

i=0 SVi

)

(SU ∪ SV)i =
∑K

j=i SUj
SV(K+i−j)

0 < i ≤ K
(4)

From now on the symbol ∪ will be used to denote the vector union operation.

This method makes no assumptions on the relative positions of the program vectors

in memory, as it is based on the addition, as independent probabilities, of the area

ratios.

Table 1: Input parameters.
Cs Cache size in words
Ls Line size in words
K Associativity
Nk Number of cache sets (Cs/(Ls · K))
M Number of rows of the sparse matrix
N Number of columns of the sparse matrix
H Number of columns of the dense matrix
BJ Block size in the J dimension
BK Block size in the K dimension
NBJ Number of blocks in the J dimension (H/BJ)
NBK Number of blocks in the K dimension (N/BK)
Nnz Number of entries of the sparse matrix
β Average number of entries per row (Nnz/M)
pn Probability that a position in the sparse

matrix contains an entry
“

Nnz
M·N

”

r size of an integer/size of a floating point

Table 1 displays the main input parameters for our model. Word stands in our

model for the size of the data elements the algorithm handles. The size of a floating

point number has been chosen as word, but the model is totally scalable, as integers

are considered through the use of parameter r.

3.3 Modeling Cache Behavior of Algorithm Arrays

The modeling of the proposed code has been performed through the modeling of

the behavior of each one of the vectors and matrices involved. For each array, each



point where it is referenced is considered separately. As an example, and due to

space limitations, only the modeling of the behavior of matrix WB will be detailed

here, as it usually accounts for the greatest portion of the misses and its access

pattern is the most complex. We will first calculate the number of misses on this

matrix in the inner loop; later we will study matrix WB behaviour during the storage

in it of the transposed blocks of matrix B.

3.3.1 Misses on Matrix WB in the Inner Loop

The probability of a hit in an access to a given line of this matrix during the

processing of the j-th row is estimated as

Phit WB(j) =

j−1
∑

i=1

P (1 − P )i−1(1 − Sintf WB0
(i))

+ (1 − P )j−1(1 − Sintf WB0
(j))(1 − Sintf init WB0

)

(5)

where P = 1 − (1 − pn)Av(BJ,Ls) is the probability of accessing a line of matrix WB

during the processing of a subrow of the sparse matrix, being Av(a, b) the average

number of different groups of a consecutive elements into which we divide an ab-

stract infinite vector that fall in a group of b consecutive elements of that vector.

The formula is given by

Av(a, b) =

{

1 if a mod b = 0
(b + a − gcd(b, a mod b))/a otherwise

(6)

This way P (1 − P )i−1 in (5) is the probability that the last access to a line of

matrix WB has taken place during the processing of row j − i. On the other hand,

Sintf WB(i) is the area vector corresponding to the accesses to all of the vectors

involved in the processing of i subrows of the sparse matrix along their corresponding

i iterations of the loop on I. As explained in Section 3, its first element (Sintf WB0
)

gives the probability that a line accessed just before those processes take place suffers

an interference miss if it is rerefenced just after they have finished. This vector is

calculated adding with the ∪ operation the area vectors for these accesses:

• Sequential access to i elements of vectors R and R2 (Ss(i · r), see Section 3.1).

• Access to a portion of β · i+Ls−1 elements of vector A with an uniform access

probability per line (see Section 3.1)

pA = (pn · BK + (Ls − 1)(1 − Pshare A)(1 − (1 − pn)BK))/β (7)

where

Pshare A =
1

Ls

Ls−2
∑

i=0

i
∑

j=0

(

N − BK
j

)

pj
n(1 − pn)N−BK−j (8)

is the probability that the elements belonging to a group of BK consecutive

columns in two consecutive rows of the sparse matrix share a line in vector A.

The term 1− (1− pn)BK is used to take into account the probability that the

sublock is empty in a row, as in this case no access to vector A takes place.



• Idem for vector C, being the access probability per line

pC = (pn · BK · r + (Ls − r)(1 − Pshare C))/(β · r) (9)

where Pshare C is calculated using expression (8) replacing Ls by Ls/r because

vector C is made up of integers. For the same reason, the number of words on

which the access may take place is β · i · r + Ls − 1.

• If BJ ·BK > NK ·Ls self interferences may occur. The associated area vector

is estimated as the one corresponding to a vector of C(BJ ·BK)NK ·Ls words

with uniform access probability per line 1 − (1 − P )i (see Section 3.1).

• Finally, the area vector for the access to i subrows of BJ elements of matrix

D is calculated using a deterministic algorithm described in [13].

The last term in expression (5) stands for the probability of a hit in a line that

has not been accessed in the inner loop yet (probability (1 − P )j−1) , but that is

still resident in the cache after the copying of the present block of matrix B to WB.

This will happen if it has not been affected by interferences both in the iterations

of the loop on I and in the copying process (1 − Sintf init WB0
). The calculation of

this last probability is not included here due to space limitations.

The number of misses on matrix WB in this loop, Minner WB, is obtained as the

product of three terms: the average miss probability, the average number of lines

accessed when a column of this matrix is read, and the number of times that read

takes place (once per entry and block in the J dimension):

Minner WB =

(

1 −

∑m
j=1 Phit WB(j)

M

)

Av(Ls, BJ)NnzNBJ (10)

3.3.2 Misses on Matrix WB in the Copying

This value, Mcopy WB, is calculated as the product of the average number of misses

per copy process by the number of blocks, NBJNBK . This average is estimated as

Mcopy WB =
BJ
∑

j=1

BJ·BK
Ls
∑

i=1

A · Ss0(1) +

(

Ls

BJ
− A

)

Pmiss first(i, j) (11)

where A = max{0, Ls

BJ
− 1} is the average number of accesses after the first one to

a given line of matrix WB during an iteration of the loop on line 8. As the equation

shows, the miss probability for these accesses is that associated to an access to an

element of matrix B. The probability of a miss for the first access to line i during

iteration j of the loop, Pmiss first(i, j), is calculated as

Pmiss first(i, j) =Pacc(j − 1)(Sself(BJ, BK) ∪ Ss(BK))0

+ (1 − Pacc(j − 1))(1 − Phit WB(M)(1 − Pexp WB(i, j)))
(12)

where Pacc(j) is the probability of the line having been accessed in the j previous

iterations, which is min{1, (Ls + j−2)/BJ} but for j = 0, for which the probability



is null. The first access to a line results in a miss unless it is in the cache when the

copying begins (probability Phit WB(M)) and it has not been replaced during the

copy of the elements previously accessed, (1 − Pexp WB(i, j)). On the other hand,

if the line has been accessed in the previous iteration, only the accesses to BK

elements of matrix B located in two consecutive columns (whose area we approach

by a completely sequential access) and the accesses to a row of matrix WB can have

replaced the considered line. This self interference area vector (Sself(BJ, BK)) is

calculated using the deterministic algorithm mentioned above. As for Pexp WB(i, j),

it is estimated as the first element of the area vector resulting from the union of the

area vectors associated to the following patterns:

• i · Ls/BJ consecutive elements of the subcolumn of matrix B that is being

copied, Ss(i · Ls/BJ).

• j − 1 subcolumns of BK elements of B corresponding to the previous copied

subcolumns. It is calculated using the deterministic algorithm.

• Sl(⌊(i ·Ls−1)/(NKLs)⌋NKLs, P (j)), which is the self interference area vector

for the lines of WB with index smaller than i.

• Sl(⌊(BJ · BK − i · Ls)/(NKLs)⌋NKLs, P (j − 1)), which stands for the self

interferences with the lines of the matrix with index greater than i.

4 Validation and Application

The code shown in Figure 1 was rewritten replacing the references to memory

by functions that calculate the position to be accessed and write it to a trace

file. Later this trace file was fed to the dineroIII cache simulator, integrated into

the WARTS toolset [14]. Table 2 displays the prediction deviation ∆ for several

combinations of the input parameters obtained from the execution on synthetic

matrices. For each combination several simulations were made changing the data

structures starting addresses. In the table σ is the average deviation of the number

of misses measured in the simulations. The average error obtained in the trial set

was under 1.9%, and the maximum error was under 15%. The errors have never

given place to deviations in the prediction of the miss ratio above 1.5%. The largest

deviations were obtained for the combinations in which σ is large or BJ and BK

are not dividers of H and N respectively and there are few blocks in any of these

dimensions. The latter is the case for the deviations over 10% in Table 2: the use

of blocks of size 2100 in a dimension with 5000 elements gives place to two blocks

with 2100 elements and another one with only 800, instead of the three completely

equal blocks of 2100 elements the model considers to simplify the problem. This

leads to an overestimation of the number of misses.

In order to prove the usefulness of the model we have used it to derive the

optimum block sizes for the execution of this code on several platforms. We have

taken into account parameters such as the cache size, line size, associativity and

miss penalty of each cache level. The policy followed to compare the different blocks



Table 2: Deviation of the model for optimized sparse matrix-dense matrix product : r=1; Order

M = N , Nnz and H in thousands and Cs in Kwords. σ is the average deviation of the number of

misses measured in the simulations; ∆ is the deviation of the model prediction with respect to the

average number of measured misses.
Order Nnz pn H BJ BK Cs Ls K σ ∆

1.5 125 0.055 1.5 25 500 8 4 1 0.55% 2.76%
1.5 125 0.055 1.5 25 500 8 4 2 0.30% 3.89%
1.5 125 0.055 1.5 25 500 8 4 4 0.26% 4.13%
1.5 125 0.055 1.5 25 500 16 4 2 0.46% 0.15%
1.5 125 0.055 1.5 25 500 16 4 4 1.09% -2.09%

5 500 0.020 0.1 10 500 2 4 2 0.20% 2.57%
5 500 0.020 0.1 10 500 4 8 2 0.45% 2.36%
5 500 0.020 0.1 10 1000 4 8 2 0.25% 3.13%
5 500 0.020 0.1 24 2100 16 8 1 0.30% 12.79%
5 500 0.020 0.1 28 2100 16 8 1 0.12% 14.50%
5 500 0.020 0.1 24 2100 16 8 2 0.08% 8.45%
5 500 0.020 0.1 28 2100 16 8 2 0.10% 10.11%

10 100 0.001 10 20 1000 16 4 1 0.16% 2.39%
10 100 0.001 10 20 1000 16 4 2 0.02% 2.45%
10 100 0.001 10 10 1000 16 4 2 0.15% 1.36%
10 100 0.001 10 10 1000 16 4 4 0.08% 1.20%
10 100 0.001 10 20 1000 32 4 1 0.34% 1.87%
10 100 0.001 10 20 1000 32 4 4 0.07% 0.69%

consisted in calculating the cost of the block as

Cost(BJ, BK) =

NLevels
∑

i=1

Costi · M(BJ, BK, Csi
, Lsi

, Ki) (13)

where NLevels is the number of cache levels in the considered system; Csi
, Lsi

, and

Ki are the cache size, line size and associativity of level i, and Costi provides the

relative cost of a miss at this level. M(BJ, BK, Cs, Ls, K) is the number of misses

predicted by the model for this block and cache. The parameters describing the

matrices involved have been removed to simplify the expression.

The platforms used to carry out our study were the following ones: a DEC

433au Personal Workstation, which is based on a 433MHz 21164 Alpha processor;

a SGI Origin 200 server with R10000 processors at 180 MHz and a SUN Ultra 1

using a 167 MHz UltraSPARC-I processor. We think they represent a wide range of

present-day architectures in order to validate our experiments. The results obtained

for several matrices are shown in Table 3. The trial set for BJ (block size in the

J dimension) was 8, 10, 12, 16 and 20, while the values tested for BK (block size

in the K dimension) were 50, 100, 200, 250, 500, 1000, 1250, 2500 and 5000 (these

last ones only when applicable). The table displays the difference between the

execution times obtained using the block proposed by the model, that is, the one

that minimizes Cost(BJ, BK), and the optimum block, that is, the block that leads

to the minimum execution time. This difference is expressed as a percentage of the

time obtained for the optimum block.

The model was initially designed for write-back caches, considering the same cost

and behavior for read and write misses. A variation has been developed to adapt it



Table 3: Deviation in the execution time using the block proposed by the model as a percentage

of the optimum execution time: M and N in thousands, H = 1000.
Matrix System

M N pn 433au Origin 200 Ultra 1
1 1 0.05 0.00% 11.46% 0.00%
1 1 0.10 0.00% 10.64% 0.00%

2.5 2.5 0.08 2.10% 3.28% 0.19%
2.5 2.5 0.16 0.00% 2.75% 0.00%

5 2.5 0.01 6.83% 0.00% 1.96%
5 5 0.04 0.00% 0.00% 9.98%

to write-through non-allocating caches, as the first level caches of the 21164 and the

UltraSPARC I processors follow this policy. It has consisted in considering any write

on this caches as a miss, but giving it a weight proportional to the time required

to solve it. Besides the write accesses to these caches produce no interference area

vectors, as the affected data are not placed in the cache.

We see that the worst estimations have taken place for the case of the Origin

server using a small matrix of order 1000. Although the percentage difference is

noticeable, the execution time of the block proposed by the model is only less

than 0.1 seconds larger than the optimum time for pn = 0.05 and 0.18 seconds for

pn = 0.1. Anyway, we have used the perfex utility of the operating system in

order to access the internal counters available in the R10000, which can provide

information such as the number of data misses in each of the two levels of the

hierarchy. The number of misses reported is not close to that predicted by the model,

which is not surprising, since there are several effects not considered by it: the

sharing of the second level cache with the code; the access patterns are not exactly

those expected due to the use of intermediate variables and compiler optimizations,

and the measurement of data misses that the model does not take into account such

as those that take place when the sparse matrix is read from disk. Besides the CPU

is always shared with other processes, which causes misses in the context switches.

Anyway, we expect the most important patterns to be those reflected in the model,

being our purpose not to give an accurate quantitative estimation of the real number

of misses, but better give a fair idea of the evolution of the cache behavior with

respect to the variations in the model input parameters, using the predicted number

of misses as an indication of this behavior. The measurements obtained using the

processor counters show that this goal has been achieved, as there is almost always a

proportionality between the number of real misses measured in each cache level and

the number of misses the model predicts. This fact is highlighted in Figure 2. The

block size proposed by the model is really more effective than the optimum block

size from the point of view of the memory hierarchy. What happens is that the

total execution time depends on more factors: the block proposed by the model fits

better in the caches, as it is smaller than the optimum block, but its use has more

overhead, as it requires more iterations in the loops that control the blocks. On the

other hand, we are talking about modern superscalar processors capable of issuing

multiple instructions and hiding memory latencies in several ways, which makes the



number of misses only a rough approximation of the program performance.
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Fig. 2: Measured and predicted number of misses in the first level data cache of the R10000

processor during the product of a 5000x5000 sparse matrix with pn = 0.004 and pn = 0.04 using

H = 1000 for different blocks.

Similar reasons can be given for the deviation observed in Table 3 for the largest

matrix in the Ultra 1 system. Besides in this case we have the drawback that in the

first level data cache each line is divided into two sub-blocks and our model does

not support sub-block placement. The model could be easily extended in order to

support this feature. Nevertheless we think subblock placement has not reached a

wide implementation in current caches by now.

The maximum BJ value in our trials has been 20 because there must be BJ

free floating point registers in order to implement the register blocking and the

FORTRAN compiler of the 433au personal workstation uses up to 19 registers for

this purpose. The optimum block sizes have almost always used the maximum

value of BJ in the three machines tested. This makes sense, since it leads to the

minimum number of blocks in the J dimension. The number of accesses is reduced

and the exploitation of the spatial locality is favoured. Access to matrix WB in the

inner loop takes place sequentially in this dimension, whose components are stored

in consecutive memory positions. Nevertheless there have been strong variations

in the optimum values of BK for the different architectures and matrices, which

has moved us to make a study of the influence of different parameters on the cache

behavior.

In Figures 3 to 5 we have tested the cache behavior during the product of a

5000x5000 sparse matrix as a function of BK keeping BJ constant and equal to

20. Each one of the three figures focuses on different degrees of associativity, line

and cache sizes, respectively. Typical values of second level caches have been chosen

for the cache parameters. In the following, cache behavior is explained based only

on matrix WB, as it usually accounts for the greatest amount of misses, as said in



Section 3.3.
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Fig. 3: Number of misses during the product of a

5000x5000 sparse matrix for different degrees of

associativity on a 128Kw cache with a line size

of 16 words; pn = 0.004 and pn = 0.04 using

H = 1000.
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Fig. 4: Number of misses during the product of a

5000x5000 sparse matrix for different line sizes

on a direct-mapped 128Kw cache; pn = 0.004

and pn = 0.04 using H = 1000.

Figure 3 shows that small values of pn favour the use of large blocks no matter

the size of the cache sets because all of the block sizes considered fit in the cache and

there are few cross interferences due to the small number of entries. Nevertheless as

pn grows the optimum block decreases its size because of the increase in the number

of cross interferences. Besides, as expected, the smaller the value of K the smaller

the optimum block, as the interferences effect is greater.

Line size (Ls) influence on the number of cache misses is shown in Figure 4.

The references inside the inner loop are basically 20 read accesses to consecutive

memory positions, so for typical second level cache line sizes, the larger the line the

better. Only for extremely large line sizes (≥ 256) an increase in the number of

misses arises, due to their negative effect on the interference probability. On the

other hand, the optimum block size experiences little variations with Ls. Although

it is not shown in the graph, the increase of the associativity gives place to an

increase of the optimum block size with the line size, as it balances the interference

growth that takes place with larger line sizes. It must be taken into account that

the increase of the line size can lead to a longer execution time despite the reduction

in the number of misses because of the longer miss time.

The behavior of the optimum block size as a function of the cache size is scalable

for the two different values of pn in Figure 5. For Cs ≥ 128Kw any block fits in

the cache, so the largest block is the best for large caches. Nevertheless we see

the effect observed in Figure 3 of reducing the optimum block size as pn grows

because of the increase in the cross interference probability. The behavior of the

only second level cache considered in Figure 5 for which some blocks do not fit, that

is, the 64Kw cache, limits the optimum block size to be the largest below Cs in the

case of pn = 0.004 in order to avoid self interferences and exploit the cache. As pn

grows this limit is reduced because of the added effect of self and cross interferences.
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Fig. 5: Number of misses during the product of a 5000x5000 sparse matrix for different cache sizes

on a 2-way associative cache with a line of 16 words; pn = 0.004 and pn = 0.04 using H = 1000.

The shape of the curve for the 64Kw cache and the matrix with pn = 0.04 shows

clearly the relative importance of cross and self interferences: these latter are much

more important.

5 Conclusions

A cache behavior model developed by our group has been applied in a systematic

way to a remarkably complex code in comparison with those in the previous lit-

erature. The model has demonstrated its usability for proposing code parameters,

such as block sizes, that lead to minimum execution times on real platforms.

The model was first validated by simulations showing a good degree of accu-

racy. Later it was used to derive optimum block sizes for different architectures

and matrices taking into account the different cache levels of each system. The

blocks proposed by the model were almost always the optimum ones or provided

very similar results. Finally, a comparison of the predicted number of misses with

the real values measured using the internal built-in counters of the R10000 micro-

processor shown that, although the model is far from being quantitatively accurate

due to several factors it does not take into account (context switches, sharing of

certain cache levels with code, etc.), its predictions do follow the real cache behavior

qualitatively.

Besides, the model presents the advantage of its high execution speed in com-

parison to simulations and even to real executions providing a flexible architecture-

independent tool for the analysis of the cache hierarchy behavior and the proposal

of optimum blocks. As an example, let us consider the product of a 5000x5000

sparse matrix with 500K entries by a dense matrix with H = 100 using a 20x1000

block on a direct mapped 128Kw cache with Ls = 16. These are the parameters of

the second level cache of the Ultra 1 system mentioned above. The time required

to generate the trace and process it in this system was 690 seconds using dineroIII.

The real execution time of this product consumed 7 seconds of CPU time, while

the model required 0.64 seconds. Although two executions of the model are needed



to reflect the behavior of this two-level hierarchy, the model is still competitive

with respect to the real execution. This is specially true if we take into account

compilation times. The difference grows with the dimensions of the matrices and

the number of entries (as the simulation and execution times are proportional to

the number of accesses) and with large miss rates, because of optimizations in the

model implementation.
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