
Direct Mapped Cache Performance Modeling
for Sparse Matrix Operations∗

Ramón Doallo, Basilio B. Fraguela
Dept. de Electrónica e Sistemas

Universidade da Coruña
15071 A Coruña (SPAIN)
{doallo,basilio}@udc.es

Emilio L. Zapata
Dept. de Arquitectura de Computadores

Universidad de Málaga
29080 Málaga (SPAIN)

ezapata@ac.uma.es

Abstract

Sparse matrices are in the kernel of numerical applica-
tions. Their compressed storage, which permits both oper-
ations and memory savings, generates irregular access pat-
terns, reducing the performance of the memory hierarchy.
In this work we present a probabilistic model for the pre-
diction of the number of misses of a direct mapped cache
memory, considering sparse matrices with a uniform en-
tries distribution. The number of misses is directly related
to the program execution time and the memory hierarchy
performace. The model considers the three types of stan-
dard interferences: intrinsic, self and cross interferences.
We explain in detail the modeling of a representative matrix
operation such as the sparse matrix-dense matrix product,
considering several loop orderings, and include validation
results that show the model accuracy.

1 Introduction

There are many numerical applications that lead to
sparse matrices. In order to save memory and operations,
they are stored using vector based compressed formats [1].
This storage leads to irregular memory access patterns due
to the use of indirect addressing, making the efficient ex-
ploitation of the spatial and temporal locality in the memory
hierarchy more difficult, besides making difficult its perfor-
mance prediction.

Cache miss rates can be derived by trace-driven simu-
lations [10], which although being very accurate lack flex-
ibility and consume many computing resources. Another
approach is that of analytical models that extract their input
parameters from address traces [2], [6], thus requiring the

∗This work was supported by the Comisión Interministerial de Ciencia
y Tecnoloǵia (CICYT) under project TIC96-1125, Xunta de Galicia under
Project XUGA20605B96

program execution or simulation each time any of its pa-
rameters changes. The same problem arises when we use
the hardware built-in counters some microprocessor archi-
tectures implement. In this last case there is the additional
limitation that these devices are obviously limited to the
study of the architectures where they exist. As for the ana-
lytical models based on the code, they have been tradition-
ally devoted to dense codes [5], [8], as the regularity their
access patterns exhibit favours their study. Purely analyti-
cal modeling has many advantages, being the most relevant
flexibility and speed, and one major drawback: limited pre-
cision. Little effort has been devoted in this area to irregu-
lar access patterns like those we model here. As a previous
work, we can mention [9], where a partial modeling of the
behavior of one vector in the sparse matrix-vector product
on a direct-mapped cache is developed. We mean by partial
modeling that they only consider intrinsic misses and self
interferences, but not cross interferences.

In this work we present a probabilistic model that pre-
dicts the number of misses produced in a direct-mapped
cache during the execution of algorithms based on sparse
matrices. The model includes all the possible types of inter-
ferences.We have applied it to a number of algebra kernels
such as sparse matrix-vector product, sparse matrix transpo-
sition and sparse matrix-dense matrix product [3], but due
to space limitations only the latter will be here described.

2 Probabilistic model

Our model considers aCs words direct mapped cache
with Ls words per line (andNc = Cs/Ls lines). Three
kinds of misses may take place: intrinsic, cross and self
interferences. The first one arise when accessing a mem-
ory block for the first time, while the other ones are due to
line replacements by lines either from other data structures
(cross interferences) or from the same data structure the re-
placed line belongs to (self interferences).



In this way, the first access to a memory line results
always in a miss. The remaining references have a miss
probability directly proportional to the ratio of the cache
area affected by the memory accesses since the last time
the considered line has been referenced. Our model uses
this ratio as the miss probability in the accesses not being
the first one, so it is based on the calculation and addition
of the cache area ratios affected by the accesses to the dif-
ferent data structures between consecutive references to a
given line. As the array base addresses of the arrays are
unknown to the model, it adds the area ratios associated to
different arrays as independent probabilities. That means
that given two arraysX andY whose accesses affect a ra-
tio SX and SY respectively, the portion of the cache af-
fected by accesses to any of these vectors is calculated as
SX ∪ SY = SX + SY − SX · SY. From now on we will
employ the symbol∪ in order to denote this operation.

For the calculation of the area ratios covered by the ac-
cesses to each array, we use a series of functions or algo-
rithms that will depend on the access pattern it undergoes.
The simplest one is the access ton consecutive positions of
a vector, that is

Ss(n) = min{1, (n + Ls− 1)/Cs} (1)

whereLs− 1 is added ton to stand for the extra words that
are brought to cache in the first and last lines of the access.
Another access to be considered is the corresponding to an
n word vector in which each one of the cache lines into
which it is mapped has the same probabilityPl of being
accessed. Its cache ratio may be calculated as

Sl(n, Pl) = 1 +

((

n

Cs
−

⌊

n

Cs

⌋)

Pl − 1

)

(1 − Pl)

—

n

Cs

�

(2)

Finally, for the calculation of the self interference prob-
ability a function to compute the average number of lines
with which a line of the vector competes for the same cache
line is needed. This function is defined as

C(n) =

{

0 if v ≤ 1
⌊v⌋/v(2v − ⌊v⌋ − 1) if v > 1

(3)

wherev = n/Cs is the average number of lines of the vec-
tor mapped to the same cache line.

In this work we shall use as memory unit the word, which
is chosen to be the size of a floating point number. Integers
will be considered through the use of a scaling constantr =
integer size/floating point size.

3 Sparse Matrix-Dense Matrix Product
Modeling

Without any loss of generality, we use the Compressed
Row Storage (CRS) format [1] in order to store the sparse

Cs Cache size in words
Ls Line size in words
Nc Number of lines in the cache(Cs/Ls)
r integer size/floating point size
M Number of rows of the sparse matrix
N Number of columns of the sparse matrix

Nnz Number of entries of the sparse matrix
β Average number of entries per row (Nnz/M )
α Matrix density(Nnz/(M · N))
p Probability that there is at least one entry

in Ls positions of the sparse matrix(1 − (1 − α)Ls)
H Number of columns of the dense matrix

Table 1. Notation used.

matrix. In this format one vector stores the sparse matrix
entries,A, other one stores the column of each entry,C and
one last,R, indicates in which point ofA andC a new row
of the sparse matrix starts. The dense matrix involved in the
product isB, andD is the product matrix.

There are three basic versions for the sparse matrix-
dense matrix product code depending on the order in which
the loops are nested: JIK, IJK and IKJ, where the first let-
ter corresponds to the outermost loop and the last letter to
the innermost one. The elements of the sparse matrix, the
dense matrixB and the product matrixD are referenced by
(I,K), (K,J) and (I,J), respectively. We shall use anM × N
sparse matrix withNnz entries uniformly distributed and a
dense matrix withH columns. The uniform distribution we
consider in this work allows to state thatp = 1− (1−α)Ls,
whereα = Nnz/(M ·N) is the matrix density, is the prob-
ability that there is at least one entry in a group ofLs matrix
positions. As a result of this uniform distribution, we shall
also consider that there are on averageβ = Nnz/M entries
per row. Table 1 summarizes the parameters describing the
cache and the matrix.

3.1 JIK ordering

The accesses to the three vectors that comprise the sparse
matrix and one column of the product matrix are sequential
in each iteration of loopJ (see Figure 1), thus most of the
misses are intrinsic during the product by the first column
of matrix B. There are no self interferences and very few
misses due to cross interferences. Therefore we can calcu-
late the number of misses for these vectors as the number of
cache lines they occupy (intrinsic misses) plus a miss prob-
ability, in every access which is not the first to a line, equal
to the union of the areas covered by the accesses to the other
vectors since the last access to the considered line. For ex-
ample, for vectorA, between two consecutive accesses to a
line there is an access to vectorC and another to matrixB,



DO J=1, H
DO I=1, M

REG=0.0
DO K=R(I), R(I+1)-1
REG=REG + A(K) * B(C(K), J)

ENDDO
D(I,J)= D(I,J)+REG

ENDDO
ENDDO

Figure 1. Sparse matrix-dense matrix product
with JIK ordering.

so the affected area between these accesses is:

Sint intf A = Ss(1) ∪ Ss(1) (4)

For the products by the remaining columns of matrixB, ma-
trix D has the same behavior, but vectorsA, C andR have a
hit probability in the first access to each line that is the op-
posite of the cache area ratio affected by accesses to vectors
since the last access to that line. As an example, this cache
ratio for a line of vectorA is:

Sintf A =Ss(C(Nnz)Cs) ∪ Ss(Nnzr) ∪

Ss(Mr) ∪ Ss(M) ∪

Sl

(

2N, 1 −
1 − (1 − p)M

pM

)

(5)

where the first four componentes correspond to sequential
accesses, modeled bySs (see eq. (1)). They are associated,
respectively, to the possible self interferences during the ac-
cess to the whole vectorA, plus the cross interferences gen-
erated by the references to vectorsC andR, and one column
of matrixD. The formula takes into account that bothC and
R are made up of integers by multiplying their number of
elements byr. On the other hand, portions belonging to
two columns of matrixB are accessed between two consec-
utive accesses to a line of vectorA in two iterations of loop
J. In this case we handle an irregular access pattern whose
influence on the cache may be estimated using an uniform
reference probability per line on the2N elements that con-
form the two columns. The average probability is the aver-
age of the probabilities that a line has been accessed during
the processing of0, 1, . . . , M − 1 rows of the sparse ma-
trix. As the access probability per line isp for each row, for
i rows this probability will be1− (1− p)i. The probability
in (5) is the average of this value fori = 0, 1, . . . , M − 1.

As a result, the number of misses on vectorA may be
estimated by:

MA = MA(1) + (H − 1)MA(Sintf A) (6)

whereMA(p) gives the the number of misses corresponding
to the accesses to vectorA during the product of the sparse
matrix by one column of matrizB as a function of the prob-
ability p of miss in the first accesss to a line of this vector
during this processing:

MA(p) =
Nnz
Ls

(p + (Ls− 1)Sint intf A) (7)

However, each column of matrixB suffers indirect ac-
cesses dependent on the entries location in the sparse ma-
trix, as it is addressed from the value ofC(J). We calculate
the number of misses accessing this column multiplying the
number of lines referenced per dot product by the number
of rows of the sparse matrix and the miss probability of one
of these accesses. If we multiplyp by the length of the vec-
tor in lines (N/Ls) we obtain the number of lines of the
column accessed in each dot product.

The hit probability in the first access to a line of ma-
trix B in each dot product depends on the number of dot
products carried out since the last access to this line. As a
consequence, the hit probability is obtained as a weighted
average of the probabilities associated to the different reuse
distances, being its value in thej-’th row

Phit B(j) =

j−1
∑

i=1

p(1 − p)i−1(1 − Sintf B(i)) (8)

wherep(1−p)i−1 is the probability that the last access to the
line has taken placei dot products ago andSintf B(i) is the
interference area ratio generated by the accesses produced
during thesei dot products, which is calculated as

Sintf B(i) =Sl(C(N)Cs, 1 − (1 − p)i) ∪

Ss(iβ) ∪ Ss(iβr) ∪

Ss(ir) ∪ Ss(i)

(9)

where the five terms (see eq. (1) and (2)) correspond to the
interference area ratios generated by the column itself (each
one of theC(N) potentially interferencing lines has a prob-
abililty 1 − (1 − p)i of having been accessed), vectorsA, C
andR and the current column ofD, respectively. The aver-
age hit probability is obtained as

Phit B =

∑M

j=1
Phit B(j)

M
(10)

TheNnz− pM(N/Ls) accesses to matrixB not being the
first one to a line during the dot products in which a column
of this matrix is involved have an approximate probability

Sint intf B = Ss(1) ∪ Ss(1) (11)

of resulting in a miss, since only one line of vectorA and
another ofC are referenced before the line is reused. So the



DO I=1, M
DO K=R(I), R(I+1)-1

REG0=A(K)
REG1=C(K)
DO J=1, H
D(I,J)=D(I,J)+REG0*B(REG1,J)

ENDDO
ENDDO

ENDDO

Figure 2. Sparse matrix-dense matrix product
with IKJ ordering.

number of misses on this matrix is given by expression:

MB = H

(

pM
N

Ls
(1 − Phit B) +

(

Nnz− pM
N

Ls

)

Sint intf B

) (12)

Note that in this ordering the modeling of another basic al-
gebra kernel is embebbed. JIK ordering corresponds to the
sparse matrix-vector product repeated as many times as the
number of columns,H , in the dense matrix (see Figure 1).

3.2 IKJ ordering

In the algorithm of Figure 2 both matrixD and matrixB
are accessed by rows. Therefore, the hit probability on the
reuse of their cache lines depends on the relationship be-
tween the first dimension of these matrices and the cache
size, as several memory lines can be mapped to the same
cache lines. In order to take into account this effect we cal-
culate, by means of a deterministic algorithm [3], the cache
area covered by the access to a row of each one of these
matrices (SD andSB).

If H ≥ 2SBNc all the lines participating in the access
to a row ofB replace each other. It is thus impossible to
get hit on reuses, the number of misses when accessing a
row is H and there is a total ofHNnz misses. As a result,
we can calculateqB = max{0, H − 2(H − SBNc)} as the
number of lines that are not replaced by this phenomenon.
The probabilityP ’hit B of a hit over a line ofB that has not
been replaced by lines in its same row in different iterations
of loop I can be calculated using the formulae explained in
the previous section. The only change is that the number of
lines that may generate interferences is no longerC(N) but
max{0, SBN/Ls− 1}. The number of misses on matrixB
is

MB =NlqB(1 − P ’hit B) +

(Nnz− Nl)qBSD + Nnz(H − qB)
(13)

DO I=1, M
DO J=1, H

REG=0
DO K=R(I), R(I+1)-1
REG=REG+A(K)*B(C(K),J)

ENDDO
D(I,J)=D(I,J)+REG

ENDDO
ENDDO

Figure 3. Sparse matrix-dense matrix product
with IJK ordering.

whereNl = MNp/Ls. In what follows we will denote as
MV the number of misses over a vectorV.

For D the process is very similar to the one explained
for matrixB. The area covered between two consecutive ac-
cesses to the same line of matrixD is (SB ∪Ss(1)∪Ss(1)),
andqD = max{0, H − 2(H − SDNc)}. In this case the
expression providing the number of misses is

MD =(βLs− 1)
M

Ls
qD(SB ∪ Ss(1) ∪ Ss(1)) +

M

Ls
qD + Nnz(H − qD)

(14)

ForA andC there is an intrinsic miss everyLs accesses
(Ls/r for integer vectorC). When the reference is not the
first to a line, the replacement probability isSB ∪ SD (be-
tween two consecutive accesses toA andC a complete row
of B andD are accessed). Therefore, the number of misses
for A is

MA = (1/Ls∪ SB ∪ SD ∪ 1/Nc)Nnz (15)

andMC is calculated substituting1/Ls by r/Ls in the pre-
vious expression.

Finally, R is an integer vector with a intrinsic miss ev-
ery Ls/r accesses. Between two consecutive accesses,β
elements ofA andC, one row ofD and β rows of B are
accessed. Calculating these areas we obtain the number of
misses overR in a similar way as forA andC. Nonethe-
less, given the small portion of misses generated byR
with respect to the total number, the model accuracy is al-
most not affected if we only consider the intrinsic misses
((M + 1)r/Ls).

3.3 IJK ordering

In this version, shown in Figure 3, matrixD is still taken
by rows, whereas matrixB is accessed by columns in loop
K, but only accessing in each column the elements required



to perform the inner product with a row of the sparse ma-
trix. There may be reuse in this loop in each cache line if
there are several entries in a set ofLs consecutive positions
of the sparse matrix. With respect to the reuse in different
iterations in loopI, matrixB is accessed by rows, there be-
ing qB lines not affected by the self interferences with other
lines of the row. Therefore the number of misses is

MB =Nl(H − qBP ’hit B) +

(Nnz− Nl)H(2/Nc)
(16)

whereP ’hit B, Nl andqB are calculated as explained in the
previous section.

Regarding matrixD, there is a hit probability on the
reuses ofqD of eachH accesses if they are not replaced due
to cross interferences. This cross interference probability is

ScrossD =Sl(NH, p) ∪ Ss(1) ∪

Ss(2β) ∪ Ss(2βr)
(17)

as there is an access with uniform reference probability per
line p that affects the whole matrixB (NH words), a read
of one element of vectorR when starting the process of a
new row of the sparse matrix, and the references to the data
in vectorsA andC that make up two consecutive rows of
the sparse matrix, which contain on average2β elements,
and taking into account that vectorR needs the use of the
coeficientr due to the possibly different size of its elements
(integers instead of floating point values). Finally the total
number of misses overD is

MD =
M

Ls
(H + (H − qD(1 − PcrossD))(Ls− 1)) (18)

VectorsA andC are sequentially accessed in groups of
elements corresponding to a given row of the sparse matrix.
Each one of these groups is accessedH times before ac-
cessing the next one. Between two consecutive accesses to
a cache line of these vectors, another two lines are accessed.
Therefore, the misses obtained when accessing elements
that are not the first one of a line areNnz

Ls−1

Ls H(2/Nc) for

A, andNnz
Ls−r

Ls H(2/Nc) for C. Regarding the accesses
corresponding to the first component of each line, they con-
stitute intrinsic misses during the multiplication by the first
column ofB. The otherH − 1 accesses to the first element
of each line ofA andC may generate misses with proba-
bilities PcrossA andPcrossC, respectively, that take the
following values:

PcrossA = Sl(N, p) ∪ Ss(1) ∪ Ss(βr) (19)

and

PcrossC = Sl(N, p) ∪ Ss(1) ∪ Ss(β) (20)

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

9

10

11
x 10

10

Log Cs

M
is

se
s

IKJ

JIK

IJK

Figure 4. Number of misses during the sparse
matrix-dense matrix product as a function
of the ordering and Cs for a sparse matrix
10K×10K with α = 0.05, H = 10K and Ls = 8.

where the first component stands for the accesses to a col-
umn of matrix denseB during its dot product with a row of
a sparse matrix, the second one corresponds to the access
to one element of vectorR when starting the process of a
new row, and the last one describes the acceses to vector
C during the processing of a row of the sparse matrix (in
PcrossA) or to vectorA (in PcrossC).

The number of misses for vectorR are estimated in the
same way as in section 3.2, as their access pattern in the
area covered between two consecutive accesses to the same
line of this vector are the same in both cases.

4 Model validation and Ordering Compari-
son

The model has been validated by means of simulations
carried out using synthetic matrices with a uniform distri-
bution of the entries and a local developed simulator that
was validated using dineroIII, belonging to the WARTS
toolset [7]. Without any loss of generality, we have consid-
ered squared matrices (N = M ) in the analysis, andr = 1
(the model is independent of the word size). Table 2 shows
the model deviation for the three possible orderings of the
sparse matrix-dense matrix product for some input param-
eters combinations.Cs is expressed in Kwords andLs in
words. The average errof of the model in the total set of
trials performed has been 0.75% for the JIK ordering, 0.6%
for IKJ and 0.79% for IJK.

We compare in Figures 4 through 6 the behavior of the
three orderings JIK, IKJ and IJK (Figures 1, 2 and 3 re-
spectively) of the sparse matrix-dense matrix product with
respect to parametersCs andLs. The largest slope of the
number of misses for the JIK ordering in Figure 4 occurs



N α H Cs Ls Dev. JIK Dev. IKJ Dev. IJK

2000 5% 100 4 4 0.41% -0.03% 1.02%
2000 5% 100 32 4 -0.03% -0.04% 0.05%
2000 5% 100 4 8 0.11% -0.01% 0.58%
2000 5% 100 32 8 -0.06% -0.02% 0.03%
2000 5% 200 4 4 -1.45% 0.18% -0.71%
2000 5% 200 32 4 -0.09% 0.00% 0.14%
2000 5% 200 4 8 -1.05% 0.69% -0.41%
2000 5% 200 32 8 -0.07% 0.00% 0.07%
1000 1% 1000 4 4 -0.25% -0.28% 0.08%
1000 1% 1000 32 4 2.91% 0.23% 0.17%
1000 1% 1000 4 8 -0.50% 0.00% 0.17%
1000 1% 1000 32 8 2.97% 1.02% 0.20%

Table 2. Deviation of the model for sparse matrix-dense matr ix product with the three orderings.

1 2 3 4 5 6 7
0

2

4

6

8

10

12
x 10

10

Log Ls

M
is

se
s

IKJ

JIK

IJK

Figure 5. Number of misses during the sparse
matrix-dense matrix product as a function
of the ordering and Ls for a sparse ma-
trix 10K ×10K with α = 0.05, H = 10K and
Cs = 16Kw.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

2

4

6

8

10

12

14

16

18
x 10

7

α

M
is

se
s

JIK 128K
IKJ 128K
IJK 128K
JIK 32K 
IKJ 32K 
IJK 32K 

Figure 6. Number of misses during the sparse
matrix-dense matrix product as a function of
the ordering and α for a sparse matrix 1K ×1K
with H = 1K and Ls = 8 for two possible
cache sizes.



whenCs increases from a value much smaller thanN to a
similar one, as the self interferences in the access to column
of matrixB processed in each iteration of loopJ disappear
and cross interferences are severely reduced. It may be ob-
served in Figure 5 how the number of misses significantly
decreases asLs increases because the accesses to all the
vectors except the column of matrixB are sequential (see
Figure 1). Only for very large values ofLs the increase of
the interference probability begins to unbalance the advan-
tages obtained from a more efficient use of the spatial local-
ity exhibited by the remaining vectors. This effect increases
with the value ofα.

The IKJ ordering is the only one in which the dense ma-
trix is accessed by rows. As a result, it is very sensitive to
self interferences in the access to the lines of a given row. In
the case shown in Figure 4, mcm(N = 10K, Cs) = 625Cs,
then self interferences appear from columnCs/16 on. Thus,
only for Cs ≥ 64Kw can we take advantage when reusing
lines. However, the large probability of cross interference
in the reuse of the lines of any vector causes the number of
misses for this ordering to be still quite larger than for the
other two.

The problem of the self interferences in the reuse of lines
of matrixB in products of different rows of the sparse ma-
trix also arises in the IJK ordering. However, given thatB
is accessed by columns, the interferences between two suc-
cessive accesses to the same line during the product times a
row of the sparse matrix present a low probability. Matrix
D is also accessed by columns, there are no self interfer-
ences and its cross interference probability is much smaller
than that of the IKJ ordering. Besides, the cross interference
probability in the accesses to vectorsA andC is very small
and their access is sequential in each dot product times a
column of matrixB. For all of these reasons, the reduction
of the number of misses is much more significant with re-
spect to an increase ofLs than to an increase ofCs.

Finally, Figure 6 shows once more that no matter which
is the density of our matrix, the evolution on the number
of misses favours always the use of the JIK ordering, being
the IKJ the worst option. This behavior also makes this
last order to be the only one to get real benefits from large
increases in the cache size for high densities once the cache
can keep as many lines as columns the dense matriz has.
The other two orders absorb the increase of accesses by the
exploitation of the spatial locality thanks to the consecutive
accesses to the lines that make up a column of matrixB
during its dot product with a row of the sparse matrix.

5 Conclusions and Future Work

We have presented a model that allows to predict with
great accuracy the number of misses during the execution
of an algorithm with irregular access patterns, as the sparse

Order N α H Cs Ls
Simulation

time
Model
time

IKJ 2000 5% 200 4 4 35.46 0.05
IKJ 2000 5% 200 32 4 33.28 0.28
IJK 2000 5% 200 4 4 43.82 0.05
IJK 2000 5% 200 32 4 42.88 0.30
JIK 2000 5% 200 4 4 42.22 0.01
JIK 2000 5% 200 32 4 39.35 0.01

Table 3. Example simulation and model user
times on an Origin 200 server with R10000
processors at 180MHz.

matrix-dense matrix product. The model may be parame-
terized and considers matrices with an uniform entries dis-
tribution. It significantly extends the previous models in
the literature as it includes the three possible types of cache
misses (intrinsic misses, and self and cross interferences).

As shown in Section 4, it is possible to analyze the be-
havior of the number of misses with respect to the basic
characteristics of the cache (its size and its line size), the
nesting order of the loops of the algorithm and the features
of the matrix.

The execution time required by the programs that imple-
ment the particular models is significantly shorter than that
of the execution of the algorithms or their simulations. Ta-
ble 3 gives an idea of the relation between these times for
some input parameter combinations. This difference grows
the larger the dimensions and/or density of the matrices and
vectors considered are.

The model proposed is modular enough to permit work-
ing with different sparse algebra kernels such as matrix
transposition [3] or more complex algorithms considering
blocking at the memory and register levels [4]. Another ex-
tension of the model already implemented but not explained
here due to space limitations consists is the considerationof
matrices with a non uniform entries distribution.

Finally, we have focused this work on the prediction of
the number of misses. However, the model may be applied
to the optimization of the performance of a memory hierar-
chy or a multiprogrammed system, or be used as a base for
similar analyses in multiprocessor systems.

References

[1] R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. van der
Vorst. Templates for the Solution of Linear Systems: Build-
ing Blocks for Iterative Methods. SIAM Press, Philadelphia,
1994.



[2] D. Buck and M. Singhal. An analytic study of caching in
computer systems.Journal of Parallel and Distributed Com-
puting, 32(2):205–214, Feb. 1996.

[3] B. B. Fraguela. Cache miss prediction in sparse matrix com-
putations. Technical report, Departamento de Electrónica e
Sistemas da Univerdade da Coruña, April 1997.

[4] B. B. Fraguela, R. Doallo, and E. L. Zapata. Cache misses
prediction for high performance sparse algorithms. InPro-
ceedings of the 4th Intl. Euro-Par Conference, LNCS, vol-
ume 1470, pages 224–233, Sep 1998.

[5] S. Ghosh, M. Martonosi, and S. Malik. Cache miss equa-
tions: An analytical representation of cache misses. InPro-
ceedings of the 11th International Conference on Supercom-
puting (ICS-97), pages 317–324, New York, July7–11 1997.
ACM Press.

[6] B. L. Jacob, P. M. Chen, S. R. Silverman, and T. N.
Mudge. An analytical model for designing memory hier-
archies. IEEE Transactions on Computers, 45(10):1180–
1194, Oct 1996.

[7] A. R. Lebeck and D. A. Wood. Cache profiling and the spec
benchmarks: A case study.IEEE Computer, 27(10):15–26,
Oct 1994.

[8] O. Temam, C. Fricker, and W. Jalby. Cache interference
phenomena. InProceedings of the Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages
261–271, New York, NY, USA, May 1994. ACM Press.

[9] O. Temam and W. Jalby. Characterizing the behaviour of
sparse algorithms on caches. InProc. IEEE Int’l. Conf. on
Supercomputing (ICS’92), pages 578–587, Nov 1992.

[10] R. A. Uhlig and T. N. Mudge. Trace-driven memory simu-
lation: A survey.ACM Computing Surveys, 29(2):128–170,
June 1997.


