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Abstract

Sparse matrices are in the kernel of numerical applica-
tions. Their compressed storage, which permits both oper-
ations and memory savings, generatesirregular access pat-
terns, reducing the performance of the memory hierarchy.
In this work we present a probabilistic model for the pre-
diction of the number of misses of a direct mapped cache
memory, considering sparse matrices with a uniform en-
tries distribution. The number of misses is directly related
to the program execution time and the memory hierarchy
performace. The model considers the three types of stan-
dard interferences. intrinsic, self and cross interferences.
We explain in detail the modeling of a representative matrix
operation such as the sparse matrix-dense matrix product,
considering several loop orderings, and include validation
results that show the model accuracy.
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program execution or simulation each time any of its pa-
rameters changes. The same problem arises when we use
the hardware built-in counters some microprocessor archi-
tectures implement. In this last case there is the additiona
limitation that these devices are obviously limited to the
study of the architectures where they exist. As for the ana-
Iytical models based on the code, they have been tradition-
ally devoted to dense codes [5], [8], as the regularity their
access patterns exhibit favours their study. Purely aralyt
cal modeling has many advantages, being the most relevant
flexibility and speed, and one major drawback: limited pre-
cision. Little effort has been devoted in this area to irregu
lar access patterns like those we model here. As a previous
work, we can mention [9], where a partial modeling of the
behavior of one vector in the sparse matrix-vector product
on a direct-mapped cache is developed. We mean by partial
modeling that they only consider intrinsic misses and self
interferences, but not cross interferences.

In this work we present a probabilistic model that pre-
dicts the number of misses produced in a direct-mapped
cache during the execution of algorithms based on sparse
matrices. The model includes all the possible types of-inter

There are many numerical applications that lead to ferences.We have applied it to a number of algebra kernels

sparse matrices. !n order to save memory and operationsg,, -, 55 sparse matrix-vector product, sparse matrix toansp
they are stored using vector based compressed formats [

Thi lead . | dl]sition and sparse matrix-dense matrix product [3], but due
Is storage eads to Irregu ar memory access pett'erns U% space limitations only the latter will be here described.
to the use of indirect addressing, making the efficient ex-

ploitation of the spatial and temporal locality in the megnor
hierarchy more difficult, besides making difficult its pa¥fo
mance prediction.

Cache miss rates can be derived by trace-driven simu-  Our model considers &'s words direct mapped cache
lations [10], which although being very accurate lack flex- with Ls words per line (andVe = Cs/Ls lines). Three
ibility and consume many computing resources. Another kinds of misses may take place: intrinsic, cross and self
approach is that of analytical models that extract theiuinp  interferences. The first one arise when accessing a mem-
parameters from address traces [2], [6], thus requiring theory block for the first time, while the other ones are due to

“This work was supported by the Comision Interministeriaiciencia line replacements by lines either from other data strusture
y Tecnologa (CICYT) under project TIC96-1125, Xunta de Galicia under (CrOSS 'nterferences) or from the same data structure the re
Project XUGA20605B96 placed line belongs to (self interferences).

2 Probabilistic modé




In this way, the first access to a memory line results
always in a miss. The remaining references have a miss
probability directly proportional to the ratio of the cache
area affected by the memory accesses since the last tim
the considered line has been referenced. Our model use
this ratio as the miss probability in the accesses not bein
the first one, so it is based on the calculation and addition
of the cache area ratios affected by the accesses to the di
ferent data structures between consecutive references to
given line. As the array base addresses of the arrays ar
unknown to the model, it adds the area ratios associated td
different arrays as independent probabilities. That mean
that given two arrayX andY whose accesses affect a ra-
tio Sx and Sy respectively, the portion of the cache af-
fected by accesses to any of these vectors is calculated as
Sx U Sy = Sx + Sy — Sx - Sy. From now on we will
employ the symbal in order to denote this operation. matrix. In this format one vector stores the sparse matrix

For the calculation of the area ratios covered by the ac-entries A, other one stores the column of each enfrgnd
cesses to each array, we use a series of functions or algoene last,R, indicates in which point oA andC a new row
rithms that will depend on the access pattern it undergoes.of the sparse matrix starts. The dense matrix involved in the
The simplest one is the accessitoonsecutive positions of  product isB, andD is the product matrix.

a vector, that is There are three basic versions for the sparse matrix-
. dense matrix product code depending on the order in which
Ss(n) = min{l, (n+ Ls = 1)/Cs} @) the loops are nested: JIK, IJK and IKJ, where the first let-
whereLs — 1 is added to to stand for the extra words that ter corresponds to the outermost loop and the last letter to
are brought to cache in the first and last lines of the accessthe innermost one. The elements of the sparse matrix, the
Another access to be considered is the corresponding to amlense matriX8 and the product matrii are referenced by
n word vector in which each one of the cache lines into (I,K), (K,J) and (1,J), respectively. We shall use &hx N
which it is mapped has the same probabilRy of being sparse matrix withVnpz entries uniformly distributed and a
accessed. Its cache ratio may be calculated as dense matrix withd columns. The uniform distribution we
consider in this work allows to state that= 1 — (1 —a)*s,
Sin, B) =1+ ((ﬁ _ {ﬁD P — 1) 1-R) {TSJ wherea = Nnz/(M - N) is the matrix density, is the prob-
Cs [Cs ability that there is at least one entry in a groug.gfmatrix
(2) positions. As a result of this uniform distribution, we dhal

Finally, for the calculation of the self interference prob- IS0 consider that there are on avergge Nnz/M entries
ability a function to compute the average number of lines P€r row. Table 1 summarizes the parameters describing the
with which a line of the vector competes for the same cache cache and the matrix.
line is needed. This function is defined as

0 if v <1 3.1 JIK ordering

Cln) = { lv]/v(2v— |v] = 1) fo>1 (3)

wherev = n/Cs is the average number of lines of the vec-
tor mapped to the same cache line.

In this work we shall use as memory unit the word, which
is chosen to be the size of a floating point number. Integers
will be considered through the use of a scaling constanat
integer sizéfloating point size.

Cache size in words

Line size in words

Number of lines in the cach@’'s/ Ls)
integer siz¢floating point size

Number of rows of the sparse matrix
Number of columns of the sparse matrix
z | Number of entries of the sparse matrix
Average number of entries per rofhz/M)
Matrix density(Nnz/(M - N))

Probability that there is at least one entry
in Ls positions of the sparse matrix — (1 — «)%S)
Number of columns of the dense matrix

q g.

(2] Y%
SRS SR

S

Table 1. Notation used.

The accesses to the three vectors that comprise the sparse
matrix and one column of the product matrix are sequential
in each iteration of lood (see Figure 1), thus most of the
misses are intrinsic during the product by the first column
of matrix B. There are no self interferences and very few
misses due to cross interferences. Therefore we can calcu-
late the number of misses for these vectors as the number of
. . cache lines they occupy (intrinsic misses) plus a miss prob-
3 Sparse Matrix-Dense Matrix Product ability, in every access which is not the first to a line, equal

Modeling to the union of the areas covered by the accesses to the other
vectors since the last access to the considered line. For ex-

Without any loss of generality, we use the Compressedample, for vectoA, between two consecutive accesses to a
Row Storage (CRS) format [1] in order to store the sparseline there is an access to vectoand another to matri,



DO J=1, H whereMa(p) gives the the number of misses corresponding
DO1=1, M to the accesses to vectaduring the product of the sparse
REG=0. 0 matrix by one column of matriB as a function of the prob-
DO K=R(1), R(I1+1)-1 abil_ity P c_)f miss in t_he first accesss to a line of this vector
REG=REG + A(K) * B(C(K), J) during this processing:
ENDDO Nnz
D(I,J)= D(1,J)+REG Ma(p) = L—S(p + (Ls — 1)Sintintf A) (7)
ENDDO
ENDDO However, each column of matri® suffers indirect ac-
cesses dependent on the entries location in the sparse ma-
Figure 1. Sparse matrix-dense matrix product trix, as it is addressed from the value@fJ) . We calculate
with JIK ordering. the number of misses accessing this column multiplying the

number of lines referenced per dot product by the number
of rows of the sparse matrix and the miss probability of one
of these accesses. If we multiphby the length of the vec-

so the affected area between these accesses is: tor in lines (V/Ls) we obtain the number of lines of the
column accessed in each dot product.
Sintintf A = 5s(1) U Ss(1) ) The hit probability in the first access to a line of ma-
For the products by the remaining columns of maB;jma- trix B in each dot product depends on the number of dot

trix D has the same behavior, but vect&rCandRhave a  Products carried out since the last access to this line. As a
hit probability in the first access to each line that is the op- consequence, the hit probability is obtained as a weighted
posite of the cache area ratio affected by accesses to sector2Verage of the probabilities associated to the differarsee
since the last access to that line. As an example, this cach&liStances, being its value in thieth row

ratio for a line of vectoA is:

j—1
Sintf A =Ss(C(Nnz)Cs) U Ss(Nnzr) U Phitgld) = Zp(l —p)" (1= Sipe (D) (8)
Se(Mr)U Ss(M) U ) | i=1
1-(1-p)M wherep(1—p)*~!is the probability that the last access to the
T) line has taken placedot products ago anéiif g(¢) is the
interference area ratio generated by the accesses produced

where the first four componentes correspond to sequentiaduring these dot products, which is calculated as
accesses, modeled ISy (see eq. (1)). They are associated,

S (2N,1 —

respectively, to the possible self interferences duriegsit: Sintf B(#) =S1(C(N)Cs,1 = (1~ p)") U
cess to the whole vectd, plus the cross interferences gen- Ss(iB) U Ss(ifr) U 9)
erated by the references to vect@andR, and one column S, (ir) U S, (i)

of matrix D. The formula takes into account that b&tand

R are made up of integers by multiplying their number of where the five terms (see eq. (1) and (2)) correspond to the

elements by-. On the other hand, portions belonging to interference area ratios generated by the column itseth(ea

two columns of matriXB are accessed between two consec- one of theC'(IV) potentially interferencing lines has a prob-

utive accesses to a line of vecidin two iterations of loop  abililty 1 — (1 — p)* of having been accessed), vectdr<

J. In this case we handle an irregular access pattern whosandR and the current column @, respectively. The aver-

influence on the cache may be estimated using an uniformage hit probability is obtained as

reference probability per line on 26V elements that con- v ,

form the two columns. The average probability is the aver- P — Zj:l Phit g()

age of the probabilities that a line has been accessed during hit B = M

the processing od, 1,... , M — 1 rows of the sparse ma-

trix. As the access probability per lineggor each row, for

i rows this probability will bel — (1 — p)¢. The probability

in (5) is the average of this value for= 0,1, ... , M — 1.
As a result, the number of misses on vectomay be L _

estimated by: Sintintf B = S:(1)U (1) D

(10)

The Nnz — pM (N/Ls) accesses to matri& not being the
first one to a line during the dot products in which a column
of this matrix is involved have an approximate probability

of resulting in a miss, since only one line of vectdand
Mp = Ma(1) + (H = 1)MA(Sintf o) (6) another ofC are referenced before the line is reused. So the



DO I=1, M DO I=1, M
DO K=R(1), R(I1+1)-1 DO J=1, H
REGD=A( K) REG=0
REGL=C( K) DO K=R(1), R(1+1)-1
DO J=1, H REG=REG+A( K) * B( C(K) , J)
D(I,J)=D(1,J)+REGD* B( REGL, J) ENDDO
ENDDO D(1,J3)=D(1,J)+REG
ENDDO ENDDO
ENDDO ENDDO
Figure 2. Sparse matrix-dense matrix product Figure 3. Sparse matrix-dense matrix product
with IKJ ordering. with 1K ordering.

number of misses on this matrix is given by expression: whereN| = MNp/Ls. In what follows we will denote as
My the number of misses over a vector

Mp = H(pMLE(l — Phitg) + For D the process is very similar to the one explained
S (12) for matrix B. The area covered between two consecutive ac-
(an—pM£> Sintintf ) cesses to the same line of matixs (Sg U S,(1) US,(1)),
Lg) ~Intint B andgp = max{0,H — 2(H — SpNc¢)}. In this case the

Note that in this ordering the modeling of another basic al- expression providing the number of misses is

gebra kernel is embebbed. JIK ordering corresponds to the M
sparse matrix-vector product repeated as many times as the MD = (6Ls — 1) 7—gp(Sg U Ss(1) U Ss(1)) +
: ) ) s
number of columnsH,, in the dense matrix (see Figure 1). M (14)
—qp + Nnz(H — qp)

3.2 IKJordering Ls

For A andCthere is an intrinsic miss evellys accesses
In the algorithm of Figure 2 both matrRand matrixB  (Lgs/r for integer vectorC). When the reference is not the
are accessed by rows. Therefore, the hit probability on thefirst to a line, the replacement probability$g U Sp (be-
reuse of their cache lines depends on the relationship between two consecutive accessestandC a complete row

tween the first dimension of these matrices and the cachepf B andD are accessed). Therefore, the number of misses
size, as several memory lines can be mapped to the sameyr A is

cache lines. In order to take into account this effect we cal-

culate, by means of a deterministic algorithm [3], the cache Mp = (1/LsU Sg U Sp U1/Nc)Nnz (15)
area covered by the access to a row of each one of these
matrices §p andSg). andM(c is calculated substituting/ Ls by / Ls in the pre-

If H > 2SgNc all the lines participating in the access Vious expression.
to a row of B replace each other. It is thus impossible to ~ Finally, Ris an integer vector with a intrinsic miss ev-
get hit on reuses, the number of misses when accessing &'Y Ls/r accesses. Between two consecutive accegses,
row is H and there is a total off Nz misses. As a result, €lements ofA and C, one row ofD and 3 rows of B are
we can calculates = max{0, H — 2(H — SgNc)} as the accessed. Calculating these areas we obtain the number of
number of lines that are not replaced by this phenomenonmisses oveR in a similar way as foA and C. Nonethe-
The probabilityP’ it g of a hit over a line oB that has not Ie;s, given the small portion of misses generatedey
been replaced by lines in its same row in different iteration With respect to the total number, the model accuracy is al-
of loop | can be calculated using the formulae explained in most not affected if we only consider the intrinsic misses
the previous section. The only change is that the number of(M + 1)r/Ls).
lines that may generate interferences is no lodgeY ) but
max{0, SgN/Ls — 1}. The number of misses on matix ~ 3.3 1JK ordering
is
MB =Nigs(1— P'hirg) + In this version, showp in Figure 3, matriixis still tgken
(13) by rows, whereas matri is accessed by columns in loop
(Nnz — N|)gBSp + Nnz(H — qB) K, but only accessing in each column the elements required



to perform the inner product with a row of the sparse ma-
trix. There may be reuse in this loop in each cache line if
there are several entries in a setffl@fconsecutive positions

of the sparse matrix. With respect to the reuse in different
iterations in lood , matrixB is accessed by rows, there be-
ing ¢ lines not affected by the self interferences with other
lines of the row. Therefore the number of misses is

Mg =N|(H — qaP’pjt ) + (16)
(Nnz— Nj)H(2/Nc)
whereP' it g V] andg are calculated as explained in the
previous section.

Regarding matrixD, there is a hit probability on the
reuses ofjp of eachH accesses if they are not replaced due
to cross interferences. This cross interference prolaisli

1KJ

Log Cs

Figure 4. Number of misses during the sparse
matrix-dense matrix product as a function
of the ordering and (g for a sparse matrix

10K x10K with o = 0.05, H = 10K and Lg = 8.
ScrossD =Si1(NH,p) U Ss(1) U

Ss(206) U Ss(26r)

as there is an access with uniform reference probability perWhere the first component stands for the accesses to a col-
line p that affects the whole matri® (N H words), a read umn of matrix _densB during its dot product with a row of

of one element of vectdR when starting the process of a & Sparse matrix, the second one corresponds to the access
new row of the sparse matrix, and the references to the datd® One element of vectdR when starting the process of a

in vectorsA and C that make up two consecutive rows of NEW row, and the last one describes the acceses to vector
the sparse matrix, which contain on averageelements, C during the processing of a row of the sparse matrix (in
and taking into account that vectBrneeds the use of the ’CTOSSA) Or t0 VECtorA (in PcrossC). _ _
coeficient- due to the possibly different size of its elements ~ The number of misses for vectBrare estimated in the

(integers instead of floating point values). Finally theatot Same way as in section 3.2, as their access pattern in the
number of misses ovédis area covered between two consecutive accesses to the same

v line of this vector are the same in both cases.

Mp = L_S(H + (H — qp(1 — PcrossD))(Ls — 1)) (18)

(17)

4 Model validation and Ordering Compari-
VectorsA andC are sequentially accessed in groups of son
elements corresponding to a given row of the sparse matrix.
Each_ one of these groups is accesgedimes _before ac- The model has been validated by means of simulations
cessing the next one. Between two consecutive accesses to_ . . : . . . -

! : arried out using synthetic matrices with a uniform distri-
a cache line of these vectors, another two lines are accesse@

Therefore, the misses obtained when accessing elementsution of the entries and a local developed simulator that
that are nc;t the first one of a line aké, LS_lH(2/N ) for was validated using dinerolll, belonging to the WARTS
ZL—S Cc

toolset [7]. Without any loss of generality, we have consid-
A, and anL ;TH(Q/NC) for C. Regarding the accesses ered squared matriced/(= M) in the analysis, and = 1
corresponding to the first component of each line, they con-(the model is independent of the word size). Table 2 shows
stitute intrinsic misses during the multiplication by thesti ~ the model deviation for the three possible orderings of the
column ofB. The otherH{ — 1 accesses to the first element Sparse matrix-dense matrix product for some input param-
of each line ofA andC may generate misses with proba- €ters combinationsCs is expressed in Kwords anfs in

bilities PcrossA and PcrossC, respectively, that take the words. The average errof of the model in the total set of
following values: trials performed has been 0.75% for the JIK ordering, 0.6%
for IKJ and 0.79% for 1JK.

PcrossA = S;(N,p) U Ss(1) U Ss(Br) (19) We compare in Figures 4 through 6 the behavior of the

three orderings JIK, IKJ and IJK (Figures 1, 2 and 3 re-

and spectively) of the sparse matrix-dense matrix product with
respect to paramete€ss and Ls. The largest slope of the

PerossC = 5i(N,p) U Ss(1) U Ss(5) (20)  number of misses for the JIK ordering in Figure 4 occurs



| N | o | H [Cs]| Ls| Dev.JIK]| Dev. IKJ | Dev. IJK |

2000| 5% | 100 4| 4 0.41%| -0.03% 1.02%
2000| 5% | 100| 32| 4| -0.03%| -0.04% 0.05%
2000| 5% | 100| 4| 8 0.11%| -0.01% 0.58%
2000| 5% | 100| 32| 8 -0.06% | -0.02% 0.03%
2000 5% | 200| 4| 4| -1.45% 0.18% | -0.71%
2000 5% | 200| 32| 4| -0.09% 0.00% 0.14%
2000 5% | 200| 4| 8 -1.05% 0.69% | -0.41%
2000| 5% | 200| 32| 8 -0.07% 0.00% 0.07%
1000| 1% | 1000| 4| 4| -0.25%| -0.28% 0.08%
1000| 1% | 1000| 32| 4 2.91% 0.23% 0.17%
1000| 1% | 1000| 4| 8 -0.50% 0.00% 0.17%
1000 | 1% | 1000| 32| 8 2.97% 1.02% 0.20%

Table 2. Deviation of the model for sparse matrix-dense matr

x 10"
12

10[ 11K

Misses
e

19K
BT (1

ix product with the three orderings.

L ——- JK32K

x—-—-x  JIK128K
X x1KJ 128K
*—x  1JK 128K

1KJ 32K
—  NK32K

Figure 5. Number of misses during the sparse Figure 6. Number of misses during the sparse
matrix-dense matrix product as a function matrix-dense matrix product as a function of

of the ordering and Ls for a sparse ma- the ordering and « for a sparse matrix 1K x 1K
trix 10K x10K with o« = 0.05, H = 10K and with H = 1K and Lg = 8 for two possible

Cs = 16Kw. cache sizes.



whenCs increases from a value much smaller thsirto a Simulfation [ Model
similar one, as the self interferences in the access to golum LO/9erl N | o | H | Cs| Ls| time time
of matrix B processed in each iteration of lodpdisappear IKJ | 2000 5% | 200 4| 4 3546 0.05
and cross interferences are severely reduced. It may be oh- IKJ | 2000 | 5% | 200 | 32| 4 33.28| 0.28
served in Figure 5 how the number of misses significantly| 9K | 2000| 5% | 200 4| 4 43.82] 0.05
decreases abs increases because the accesses to all the K | 2000| 5% | 200 | 32| 4 42.88| 0.30
vectors except the column of matr&are sequential (see JIK 12000 5% | 200 4| 4 4222 0.01
Figure 1). Only for very large values dfs the increase of JIK |1 2000| 5% | 200| 32| 4 39.35| 0.01

the interference probability begins to unbalance the advan _ _
tages obtained from a more efficient use of the spatial local-  Table 3. Example simulation and model user
ity exhibited by the remaining vectors. This effect incess times on an Origin 200 server with R10000
with the value ofx. processors at 180MHz.

The IKJ ordering is the only one in which the dense ma-
trix is accessed by rows. As a result, it is very sensitive to
self interferences in the access to the lines of a given now. | ) )
the case shown in Figure 4, m¢i = 10K, Cs) = 625Cs, mgtrlx-dense ma_tnx produgt. Th_e model may be parame-
then self interferences appear from colu@ 16 on. Thus, te_nze_d and cqns!d_ers matrices with an unn_‘orm entries d_|s—
only for C's > 64K w can we take advantage when reusing tr|bu_t|on. It S|gr_1|f_|cantly extends the previous models in
lines. However, the large probability of cross interferenc 1€ literature as itincludes the three possible types dieac
in the reuse of the lines of any vector causes the number ofnisses (intrinsic misses, and self and cross interferénces
misses for this ordering to be still quite larger than for the ~ As shown in Section 4, it is possible to analyze the be-
other two. havior of the number of misses with respect to the basic

The problem of the self interferences in the reuse of lines characteristics of the cache (its size and its line size, th
of matrixB in products of different rows of the sparse ma- nesting order of the IOOpS of the algorithm and the features
trix also arises in the 1JK ordering. However, given tBat  Of the matrix.
is accessed by columns, the interferences between two suc- The execution time required by the programs that imple-
cessive accesses to the same line during the product times ment the particular models is significantly shorter than tha
row of the sparse matrix present a low probability. Matrix of the execution of the algorithms or their simulations. Ta-
D is also accessed by columns, there are no self interfer-ble 3 gives an idea of the relation between these times for
ences and its cross interference probability is much smalle some input parameter combinations. This difference grows
than that of the IKJ ordering. Besides, the cross interfggen the larger the dimensions and/or density of the matrices and
probability in the accesses to vectéysindC s very small vectors considered are.

and their access is sequential in each dot product times a The model proposed is modular enough to permit work-
column of matrixB. For all of these reasons, the reduction |ng with different sparse a|gebra kernels such as matrix
of the number of misses is much more Significant with re- transposition [3] or more Comp|ex a|gorithms Considering
spect to an increase dfs than to an increase dfs. blocking at the memory and register levels [4]. Another ex-
Finally, Figure 6 shows once more that no matter which tensjon of the model already implemented but not explained
is the density of our matrix, the evolution on the number here due to space limitations consists is the considerafion
of misses favours always the use of the JIK ordering, beingmatrices with a non uniform entries distribution.
the IKJ the worst option. This behavior also makes this Finally, we have focused this work on the prediction of

last order to be the only one to get real benefits from Iargethe number of misses. However, the model may be applied
increases in the cache size for high densities once the cach[eo the optimization of the performance of a memory hierar-

can keep as many lines as columns the dense matriz hag, or 4 multiprogrammed system, or be used as a base for
The other two orders absorb the increase of accesses by thgpijar analyses in multiprocessor systems.

exploitation of the spatial locality thanks to the conseut
accesses to the lines that make up a column of m&rix
during its dot product with a row of the sparse matrix. References
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