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Abstract.

Multicores are now the norm and new generations of softwarst take advan-
tage of the presence of several cores in a given archited@arallel programming
requires specific skills beyond from those required for teeetbpment of tradi-
tional sequential programs. The usage of parallel libsaiseone of the best ways
to facilitate parallel programming, as they does not regngw compilers and they
allow to parallelize sequential codes without big efforystbe programmer. This
paper presents an efficient and portable parallel set cmntarhis container has
been used to program parallel versions of several algositfithe experimental re-
sults show that the container facilitates the programritglihd achieves a good
performance on multicore systems.
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1. Motivation

Parallel libraries are a good method to facilitate the esgion of parallelism to pro-
grammers. Libraries have several advantages with respehetusage of parallel lan-
guages [4] or compiler directives [3], as they provide a npmeable solution that short-
ens the development time and do not require new compileitseolearning of new lan-
guages.

Data container types are widely used in modern programnaisdghey are a nor-
malized method to store the data managed by a program. Girjectted languages are
the natural implementation vehicle for these containéngeswe are defining new data
types. Besides they facilitate the construction of comiarof complex data types (e.g.
objects with runtime polymorphism). Features such as pohpiism and operator over-
loading are very useful in this context, as they provide aeraamvenient notation for
the representation of operations.

Data parallelism is preferably exploited in the parallafian of data containers (in-
stead of task parallelism), as the methods that manage tloesainers may be paral-
lelized by dividing the container into different parts, ohish these operations are ap-
plied concurrently. This paper presents a parallel datas®giner type for C++ which
uses efficiently the resources available in multicore aechires. The data type supports
the API of the Standard Template Library (STL) [12] and aiddial methods which can
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be used to explicitly or implicitly express parallelism.élinderlying parallelization of
the data type and its operations is done using the Intel Timgauilding Blocks (TBB)
library [9].

The rest of this document is organized as follows. Sectiontrnes the main op-
erations implemented by our library. Section 3 describegdkt programs implemented
using the library and the performance numbers obtainedid®et discusses the related
work and Section 5 summarizes the conclusions.

2. The concurrent_set data type

Theconcurrent _set data type supports the APl of tls¢ d: : set type of the STL
library. This facilitates code reuse as well as the graddap#ation of existing codes,
which can first replace the standard STL setgbycur r ent _set with no effort and
later useconcur r ent _set additional methods when and wherever desired. The pro-
grammer sees a single flow of execution, being the operatinroncurrent_sets im-
plicitly parallel. The container is polymorphic, as setsi@ining elements of any data
type may be defined. In addition, it offers methods for all tiperations that are usu-
ally applied on sets. The meaning of some of these operaisodsfined as described
in the standard set theory: Is_a_member_of, Is_subsédinidn, Intersection, Comple-
ment and Symmetric difference. Other operations provitlat are not specified in the
standard set theory are:

SelectionWhen it is a applied on a set of elements of typel’, given a predicated
Pred : T — {true, false} it generates a subs& = {a € A/Pred(a) =
true}

Application Given a setd of elements of typd", and a functionf : T — T, this
operation applies this function on each membedof

Reduction Given a setd of elements of typd” and a reduction function : (7,7) —

T, the reduction function is applied on all the memberd aintil it returns a single
element.

Map Given a setd of elements of typd™ and a functionf : T' — S, this operation
applies this functions on each memberdnd it returnsased = {f(a)/a € A}

Relationship Given two setsA and B, and defined the cartesian product of these data
setsA x B as the sef{(a,b)/a € A,b € B}, this operation builds a set that
contains all the pairs ol x B that fulfill a predicate that defines the relationship.

The library also provides more complex operators such asffarieat parallel
MapReduce which are not detailed here due to space reasons.

The library is publicly available in https://forxa.mancamorg/projects/ctl/

Figure 1 shows an easy example of usage ofdbacurrent set data type
which illustrates its simplicity. Line 1 shows the only headhat must be included to
enable the use of the library. The instruction in line 5 @eatconcurrent _set of
elements of typehar . Let us notice that it uses one of the standard construcfdheo
stl::set datatype and thatoncurrent _set is defined in thect | namespace.
This set is filled with thechar ’s of the string initialized in line 4. Line 6 executes a
map operation on the set using the implicit parallelism proditg the library. Thisrap
operation applies the function declared on line 2 on all tleenents of the set. This
function substitutes each char by the next char in the akgthab



~NOoO b WN R

#include "concurrent_set.h"

inline char suml(const char c) {return c+1;}

void main () {
char str[]= "abcd";
ctl::concurrent_set <char> set(str, &str[sizeof(strl]);
set.map(suml, set);

Figure 1. Example of map operation implemented usingdie@cur r ent _set data type

2.1. Implementation details
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Theconcurrent _set data type is defined as a C++ template which allows to
define sets containing elements of any type. The paraltaizaf all the operations is
achieved by dividing internally the set in a number of subsEe structure is organized
as astd: : vect or of std: set’s. The concurrency is implemented using the Intel
Threading Building Blocks library which allows to define dmically the tasks that
process concurrently each subset and provides automatidklancing among the cores
available. We developed an alternate implementation ofilinary using OpenMP but
it was up to twice slower for some operations. The number bEsts defaults to the
amount of hardware threads available in the system, buhibeaselected by the user for
eachconcurrent _set . The mapping of objets to subsets is done according to a hash
function which tries to balance the number of elements antieagubsets. Again, while
a default one is provided, a user-defined one can be supplied.

The implementation of the operations with reduced paisttellike for example a
insertion of one isolate element in the set, is done simplggplying the sequential ver-
sion of the operation on the corresponding subset. Thieis#ise of several operations
already presentin the APl of tiet d: : set type of the STL library. The remaining op-
erations are implemented using efficient strategies wiaikl advantage of the presence
of several cores. The parallelism is limited in these openatmainly by two factors.
(1) The impossibility of different tasks to operate coneutty on the same inner set or
subset. (2) The mapping of tlkoncur r ent _set elements to subsets is determined
by a hash function of the contents of each element. Thergfdbe operation modifies
one element, it may change its location. Thus, the opemfi@nformed by each task
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Figure 4. Scheme to process a all-to-all operation when the two opesah are the same sdt S; to S
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may potentially affect any subset, which limits largely flexformance as factor (1) es-
tablished. These operations are classified in four categor which a separate strategy
has been designed to perform the operation efficiently. Eneyow explained in turn.

Map operationsThis category includes the operations where the same amidiap-
plied on all the elements of the séfppl i cat i on andMap are examples of this cat-
egory. If the function applied on each element of the set dasnodify its contents,
there is not risk that the element has to be relocated in ardift subset after the function
is applied. In that case, it is safe to apply the operatiorcamently on the elements of
different subsets. If the function may modify the conteritthe element and conversely
the subset where it is located, it is not safe to apply thetfanaconcurrently, as the
same subset could be affected by different tasks. The enligito create an auxiliary
grid layout, like that one represented in Figure 2, which &3 row per source subset
(those where the elements are before they are modified) smdadamn per destination
subset (where the elements are placed once modified). Esichpalies the function on
the elements of its associated source subset and storesrttieenappropriate columns
of its associated row. As the elements already exist andahegimply modified, the grid
stores only the pointers to the original elements (once figat}i Finally, the elements
(the pointers) are moved from this grid to the correspondirtzsets of a new set. In this
movement, the processing of each column of this grid can Henmeed concurrently by
a different task, as it is guaranteed that the elements fafrdiit columns are inserted in
different subsets of the destination structure.

Comparison operationgsiven two setsd and B, this kind of operations searches for
occurrences of each element /in set B and viceversa. Symmetric difference and
intersection are examples of this kind of operations. Tlaecteof the elements of sdit

in setB has a complexity 0O(N - log(M)), N andM being the cardinalities ofl and

B respectively. This complexity can be reduced because #megits in a set are always
ordered according to their hash function, thus, the sedrtiredirst element ofA starts



at the first element oB and continues until the same element, or an element withta has
function greater than the searched element, is found. Tarels®f the second element
of A starts where the search of the first element finished. Theepsocontinues until
the end of sef3 is reached, or all the elements dfhave been searched. This strategy
allows to reduce the complexity of this searchi@og(N + M)). If both sets have the
same number of subsets and they use the same policy to disttiteir elements among
them (same hash function and comparator), the search ofeimepts on each subset of
A is limited to the corresponding subset Bf When this is not the case, a copy of set
B is created with the same number of subsets and using the saimgtp distribute its
elements as in set.

All-to-all operationsin this kind of operations, every element of geis combined with
each one of the elements of g&tRel at i onshi pis an example. The processing of the
elements of each subset.dfcan be performed concurrently if the elementdadire not
modified. If they are modified, then it is necessary to lockabeess to each subseti®f

If each task accesses the subsetB @fi the same order, there is a big contention and the
locks and waits are systematic. The interference among faskinimized if each task
starts the processing &f at a different subset, as it is represented in Figure 3. Watn s
A andB are the same, establishing locks on the access to this setésproblematic. We
solve this problem by splitting the set into two halves. Fegd represents the process.
In a first stage, the elements in the subsets of the first ml@nbined with those in the
second half. The processing of each subset in the first hatfriducted concurrently by
different tasks and the the subsets in the second half mustked to avoid concurrent
accesses by different tasks. Reciprocally, the elemertteeisecond half are combined
with those in the first one. The process is repeated reclysineeach half until each one
contains only one element, which is finally combined witkelits

Reduce operation3.he reduction on each subset is performed concurrentiya, these
partial results are combined. Some reductions finish whememglement is found. In
our parallel implementation, the tasks are synchronizéthus flag which is activated
when one of the tasks finds the value. All the tasks are tetednhahen they find this
flag activated.

3. Evaluation

The library has been validated with a set of codes paradidliasing intensively the
concurrent _set datatype and its associated operations. These programs are

e Air control This program implements a simple air control simulator. Hire
space is represented by a square space, where planes &sergpd by points
which move according to a velocity in a given direction. lecleaimulation time,
the program checks if the distance between two of the plate®ishort. In that
case, it reports a danger of collision.

e Shortest path This program implements the search of the shortest pathemetw
two points in a graph.

e Barnes-Hut algorithm This program performs the simulation of the evolution
of a dynamic system where a number of particles interactrdaug to a force
whose effects diminish with the distance following the BegyHut algorithm [1].



Table 1. Comparison of the programmability provided by Intel TBBslaroncur r ent _set using three
guantitative metrics

concurrent_set Intel TBBs
Code
SLOC PE V | SLOC PE \%
Air control 85 338037 | 11 120 524608 | 15
Shortest path 120 | 1062305 | 25 172 | 1967884 | 30
Barnes-Hut 369 | 2126524 | 44 390 | 2350400 | 46
Delaunay 166 374757 | 23 206 721169 | 25

Table 2. Times (in milliseconds) of the sequential and parallel iers of the test programs and speedup (in
parenthesis) calculated against sequential versions

Code Seq. 1 thread 2 threads 4 thread 8threads| 16threads| 24 threads
Air control 28966 | 33418(0.87)| 16316(1.78)| 7863(3.68) | 3987(7.27) | 2812(10.3)| 1393(20.79)
Shortest path| 5566 | 5685 (0.98)| 2852(1.95)| 1487(3.74)| 752(7.40) | 494(11.27)| 378(14.72)
Barnes-Hut | 21098 | 21324(0.99)| 11686(1.81)| 6333(3.33)| 3425(6.16) | 2226(9.48) | 1467(14.38)
Delaunay 1952 | 1899(1.02) | 1323(1.47)| 953(2.04)| 789(2.47)| 732(2.6)| 765(2.55)

The system is simulated through a series of discrete sionléimes where the
interaction of each particle in the systems with all the pffegticles is calculated.

e Delaunay refinementThis program refines an unstructured mesh of triangles so
that it fulfills the Delaunay property [10], i.e., no angletire mesh is less than 30
degrees.

The library has been tested from two points of view: expxétysand performance.
We have evaluated the expressivity of the library followthg methodology proposed
in [5], which relies on three quantitative metrics: the nmaf source lines of code [14],
the programming effort (PE) [6], and the cyclomatic numbér [8]. The SLOC met-
ric is influenced by the user programming style, while the ttloer metrics attenuate
the influence of this factor. The programming effort (PE) iguaction of the number
of unique and total, operands and operators found in a pmogfae operands stand
for the constants and identifiers, while the operators aeymbols or combinations of
symbols that affect the value or ordering of operands. Thigiamming effort metric
is approximately proportional to the programming effoguiged to implement an algo-
rithm. Finally, the cyclomatic number V is equal to P +1, Prigeihe number of deci-
sion points or predicates in a program. The smaller V, the ¢esnplex the program is.
These metrics are used in Table 1 to compare two implemengatf the algorithms,
one using Intel TBB library and the other one using our liprdihe PE and V metrics
were collected using the C3MS tool used in [5]. The usage oflibtary implies, on
average, a 20% reduction in the total size of the code withe&tsto the TBB version,
despite the fact our library is used only in small pieces efdbde. Our library also im-
proves clearly the programmability of these benchmarkhk véspect to the Intel TBBs
in terms of programming effort and cyclomatic number. Atdially, let us recall that
our library implements the API of thet d: : set and this API is widely used by the
programmers. Thus, these programmers can use easily canyliand the large amount
of existing codes which already use this interface have most immediate translation
to our library. Regarding the highly parallel operations$ pesent in the STL API, the
proposed API offers a quite natural method to express thiallpism (see Fig. 1).



The performance of the implementations that assmcurr ent _set has been
compared with the performance of a sequential version optbgrams. Table 2 shows
the times in milliseconds of the sequential version of thegpeam, and the parallel ver-
sion implemented with our library for different numbers bfdads. The speedup of the
parallel version with respect to the sequential one is thetlbetween parentheses. The
times where taken in a Intel Xeon hexa-core E7450 to 2.40 Gliz 4vprocessor to-
taling 24 cores using the compiler gcc 4.1.2. The results show thgpénrmance of
the parallel version scales quite well with the number oesoDelaunay presents low
scalability because it has important non-parallel sesti@md its parallelization intro-
duces additional processes which are not present in thesgglversion due to its high
irregularity. For example, it performs speculative congpiohs which are discarded if
conflicts among threads are found.

4. Related work

Several works have tackled the improvement of the prograuwiityaof multicore sys-
tems using libraries. This section is focused in those whigblement generic parallel
data structures. The STAPL framework [13] defip€&ont ai ner s, which are generic
data structures that can be used in shared and distributetbrpeenvironments, and
which can be composed hierarchically to achieve arbitragreles of nested parallelism.
These two characteristics are shared with the Hierardpidded Arrays (HTAS) [2],
data structures which facilitate locality and parallelisfrarray intensive computations
on both shared and distributed memory environments. Thad Trttreading Building
Blocks library [9] also provides several containers whiah be used in shared memory
systems, but they do not make use of the semantics of theicergdo exploit data par-
allelism. The main advantage of our approach with respetiidee ones is its confor-
mance to the STL API. This facilitates its usage by progransratready familiar with
that APl and increases the migration and reuse of existidg.co

Other works have also used the STL as a reference. For exatfia+ [7] is a
library and language extension framework for portable |fgr@++ programming. This
library includes the Parallel Standard Template LibrarTR) framework, which im-
plements several containers (includeset ), based in the STL API, and selected par-
allel versions of several algorithms which can be used irs&ibduted memory environ-
ment. Unlike our work, this one is focused on distributed regnenvironments and the
number of parallel algorithms implemented is more limit@though it provides parallel
versions of several containers (seven).

The Multi-Core Standard Template Library (MCSTL) [11] pides efficient parallel
implementations of the algorithms in the STL API in sharedmogy environments. The
main difference with our work is that it does not provide iemplentations of algorithms
out of those in the STL API. The reason is that its main targéd iprovide parallelism
simply by recompiling existing codes already written usthg containers in the STL
API.



5. Conclusions

This work presents a simple, portable and efficient parsdietontainer. The experimen-
tal results show that this parallel data type improves mhetprogrammability in com-
parison to other alternatives for parallel programminghsas Intel Threading Building
Blocks. The usage of a STL-like interface softens the legyicurve and facilitates the
gradual adaption of existing codes. The codes implementidtiis parallel container
achieve a good performance taking advantage of the presérareincreasing number
of cores and providing automatic load balancing.
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